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D a v id  A. V o g a n  Jr.

UNITARY REPRESENTATIONS OF REDUCTIVE LIE GROUPS

A bstract. —  One o f the fundamental problems o f abstract harmonic analysis is the determination of 
the irreducible unitary representations o f simple Lie groups. After recalling why this problem is o f interest, 
we discuss the present state o f knowledge about it. In the language o f Kirillov and Kostant, the problem 
finally is to «quantize» nilpotent coadjoint orbits.
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1. In t r o d u c t io n

In the 1930s I.M. Gelfand outlined a program of abstract harmonic analysis, which 
offered a paradigm for the use of symmetry to study a very wide class of mathematical 
problems. In this paper I want to explain Gelfand’s program, and to look in some 
detail at one of the unsolved problems standing in the way of further applications of it.

The setting for Gelfand’s program is a group G acting on a space X . We have in 
mind some class of «interesting questions» about X . Almost anything is allowed. If X  
is finite, we can ask for its cardinality; if it is a topological space, about its homology; 
if it is a Riemannian manifold, about eigenspaces of the Laplace operator.

In this setting, Gelfand’s program proceeds in four steps. The first step is to attach 
to X  a vector space V, so that questions about X  can be translated into questions about 
V. Roughly speaking V  should be thought of as a space of functions on X> although 
often something a little different is needed. For example, to study the cohomology of a 
manifold, we might look not at functions on X  but at the whole complex of differential 
forms. A fundamental requirement is that the action of G on X  should lift to a linear 
action

(1.1 a) G x V  —► V, ig> v) h ► ix{g)v

of G on V.
The second step in Gelfand’s program is to find the finest possible G-invariant 

decomposition

(1 m  v = ' E v r
i

We have already translated our questions about X  into questions about V; now we 
want to use this decomposition to translate them into questions about each Vr  The 
decomposition (I .lb )  should be thought of as a G-equivariant analogue of a basis of 
V. When V  is infinite-dimensional, the algebraic notion of basis must often be re­
placed by a topological one. A simple example is an orthonormal basis o f a Flilbert



148 D.A. VOGAN JR.

space; a more subtle one is thinking of l} (X )  as a «direct sum» of delta functions 
at the points of X . In the G-equivariant setting the possible complications multi­
ply, and precise versions of (1.1 b) are available only under fairly strong hypotheses 
(for example, when V  is a Hilbert space and G acts by unitary operators). We will 
not address these questions here. Finally the hope is that each Vi is an irreducible 
representation of G. (Careful definitions of this and other technical terms are col­
lected in Section 3. For the moment all that matters is that the irreducibility of 
each ^  corresponds to the requirement that the decomposition in (1.1 b) be as fine as 
possible).

The third step in Gelfand’s program (and the main topic for this paper) is to 
understand the set

(1.1c) G =  {equivalence classes of irreducible representations of G } .

Our questions about X  have been translated into certain questions about the irreducible 
representations V{; so «understand» here should mean «be able to answer these ques­
tions».

The fourth and final step in Gelfand’s program is to assemble our information about 
the irreducible representations Vi into answers to our questions about V, and so finally 
into information about X .

The rest of this introduction is devoted to two examples of Gelfand’s program. The 
first is a toy example, designed to show what the words mean. The second is more 
serious; it shows the kind of information about a real problem that one can hope to 
find just by studying irreducible representations.

Foi the first example, let G  =  S , the symmetric group on n letters; and let X p be 
the collection o f  ̂ -element subsets of { 1 (Often we will tacitly assume n is at 
least one). The question we ask is this: what is the cardinality of X pi The first step of 
Gelfand’s program asks us to translate this into a linear algebra question about a vector 
space of something like functions on X p. In this case it is natural to define

(1.2 a) Vp — functions on X p;

then the cardinality of X p is equal to the dimension of Vp. O f course G acts on Vp by

(1 .2 «  (7T(g)f)(x) = f ( g - lx) ( f e V p , x e  X p).

There is an obvious G-equivariant identification X p ~  x n~p (by taking complements of 
subsets); so we may as well assume henceforth that p  <  n — p.

The second step in Gelfand’s program is to find the finest possible G-equivariant 
decomposition of Vp. There is one obvious G-invariant subspace, consisting of constant 
functions:

V(n) = { /  € Vf I / ( * )  =f(y)  {x, y€ X>)}.

(The subscript (n) refers to the classification of irreducible representations of Sn by 
parti titrons of n. The trivial representation corresponds to the trivial partition n — ri).
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With a little more thought one can invent a complementary G-invariant subspace

(1.2*0 I F = j / e  Y '|  £ / ( * )  =  o l ;
I x e X P  J

then there is a G-invariant decomposition

V* = v in)® w .

If p  =  0 or 1, then this decomposition cannot be further refined. (In fact if p  =  0, 
then W  — 0; the one-dimensional space Vp =  admits no further decomposition). 
For p  between 2 and n — 2, however, we can decompose W. One way to do this is 
using the «Radon transforms», defined for q < p  by

T*‘*: Vf  -> V* ( 7 ^ / ) ( j )  =  Y  f ( x ) ,
xeXP  , y C x

Sq'f : V q —> Vp {S ^ g ) (x )=  Y .  g(y).
y e X V , y C x

These linear transformations are «intertwining operators» for the representations of G 
(see Section 2). In particular, their images and kernels are G-invariant subspaces. Notice 
that is the image of 5 ° ’̂ , and W  is the kernel of Tp’°. I will not continue the 
analysis of these Radon transforms, but here is the conclusion. There is a G-invariant 
direct sum decomposition

(1-20
0 < r < p

The image of Sq’P is E o V i n - r , r y  and kemel ° f ^  'S T , q< r < p  V ( n - r , r Y  ThÌS 
decomposition has no G-invariant refinement. Again the subscript ( n — r, r) refers to 
the fact that the representation of Sn on V̂ n_r r̂ is the one parametrized by the partition 
n — {n — r) +  r. Recall that we want to translate our question about V  (what is the 
dimension of Vi) into questions about the subspaces V(n_r ry  This is very easy:

dim V =  Y  d i m V (n- r , ry
0 <r<p

The third step in Gelfand’s program is to understand all the irreducible representa­
tions of Sn. «Understand» in this problem means «be able to calculate the dimension». 
In our case consideration of arbitrary representations may seem like unnecessary gen­
erality; the representations we need are explicitly given by the Radon transforms. For 
example,

V r , r ) = ™ ^ n k c r r - 1.

The difficulty is that this description does not immediately reveal the dimension of 
V̂ n_r r). This difficulty can be overcome, but I will instead follow Gelfand’s program 
more literally. What one discovers is that

(F.2^) Sn =  {partitions o f  n}.
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Writing VT for the irreducible representation corresponding to a partition r, then it 
turns out that

(1.2h) dim VT =  number of standard Young tableaux of shape r.

There are many ways to count the standard tableaux of shape (n — r, r); one finds

The fourth step in Gelfand’s program is to assemble all of this information to 
answer our original question about X p. Combining (1.2c), (1 .2 /), and (1.2/*), we find 
(for p  < n — p)

(1.2» cardinality of X ' =  £  ( /  ( / / / )  =  ( ”)  5

the last equality is a fairly easy exercise (by induction on p).
For the second example, we take G to be a connected linear real reductive Lie group 

(see Definition 5.1 below), T c G a discrete cocompact subgroup, and X  =  G /Y . Let 
K  C  G be a maximal compact subgroup; then

(1.3a) Z  =  K \G /Y  =  K \X

is a Riemannian locally symmetric space. The problem we consider is to understand 
the de Rham cohomology H P(Z). The group G does not act on the double coset 
space Z; so even the first step in Gelfand’s program requires some ingenuity. (For 
details, background, and motivation, one can consult [3]). Since we are interested in 
cohomology of Z , it would be natural to consider the space of p -forms on Z; but G 
does not act on this space. We use instead

(1.3*) V = C ° ° (X ) .

The action of G  on this space is differentiable, and so gives rise to a representation of 
the complexified Lie algebra g. Now using any representation W  of g equipped with 
a compatible representation of K , one can construct «relative Lie algebra cohomology 
groups» //^ (g , K ; W). These are the cohomology groups of a certain complex

H o m /A '(g /« ) , WO;

a definition of the differential (and more motivation) may be found in [3]. Because 
g /t  is the (complexified) tangent space to Z  at the identity coset, it is not hard to see 
that this complex for our choice of V  may be identified with differential forms on Z:

(1.3c) Homir(A/'(g/^), C°°(X)) ^  smooth p -forms on K \X .

The identification respects the differential. (This is no accident: relative Lie algebra 
cohomology was introduced in order to study the cohomology of homogeneous spaces 
for compact groups. The isomorphism in (1.3 c) holds whenever G is a Lie group 
acting on X  with open orbits, and K  is a subgroup acting freely on X ). At any rate,
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we have expressed the cohomology of Z  as a certain invariant (the relative Lie algebra 
cohomology) o f the representation V .

The second step in Gelfand’s program is to decompose V  in a (7-invariant way. This 
is a version of the basic problem of automorphic representation theory; our assumption 
that T is cocompact simplifies the analytic aspects of the problem enormously, but 
does not help with the far more difficult arithmetic ones. We will be content with a 
qualitative statement: there is a decomposition

(1.3 d) v = J 2 mJ  T )V ~ .
Tre Gu

The sum is over irreducible unitary representations ir of G; that is the meaning of the 
subscript u on G. The multiplicities are all finite, and they are positive only for a 
countable set of 7T. The space \Ç° is the space of smooth vectors in the Hilbert space 

. The direct sum requires a topological interpretation, which we omit. (If we had 
worked instead with V =  L2(X), then we would get a Hilbert space direct sum of the 
Hilbert spaces V .̂ Then the difficulty would appear at (1.3c), where we would have 
instead something like L2 p -forms). What (1.3c) and ( \3 d )  suggest is that

(1.3?) dim H p{Z) =  mw(T) dim H p(g , K; V°°).
7T

This result, due to Matsushima, is true. O f course the Betti numbers on the left are 
finite; what happens is that there are only finitely many n for which H p(g , K; V^°) ^  0, 
and for those 7r the cohomology is finite-dimensional.

The third step in Gelfand’s program is the study of irreducible representations. 
For the present problem we can narrow it to this: classify the irreducible unitary 
representations 7r with H p($ , K \ V™) 7  ̂ 0. For reasons that are beautifully illuminated 
in [6], the main example is the trivial representation Vn =  C. This always appears 
in C°°(X) with multiplicity 1, realized on the space of constant functions. Its
relative Lie algebra cohomology can be interpreted as follows. As a connected linear 
reductive group, G may be realized as a subgroup of GL(n , C) stable under inverse 
conjugate transpose, with K  =  G r 1 U (ri). Let p0 be the space of Hermitian matrices 
in the Lie algebra g0 (regarded as an algebra of n x n matrices), so that g0 =  t Q +  p0. 
The «compact dual» Gc of G is by definition the connected subgroup of U(n) with 
Lie algebra

00 =  e0 +  P̂o­

lt is a compact group containing K . The «compact dual o f G /K» is the compact 
symmetric space

U  =  Gc/ K

(Actually G c and the space U  may change by a finite covering if the embedding of G in 
GL(jiy C) changes, but the de Rham cohomology of U  is well-defined). An argument 
beginning with (1.3 c) for X  =  Gc shows that

( 1.3f )  Hp(q , K ; Q ^ H p(U).
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A complete classification of the irreducible unitary representations 7r for which 
H p{ $ , K ; V f )  f  0 may be found in [19]. Each of the non-trivial unitary repre­
sentations 7r in this classication is attached to a smaller compact symmetric space U , 
and its relative Lie algebra cohomology is given by

(1.3*) H > (s, K; V )  ~  , <  =  -(d im  U  -  dim U J.

This formula was actually first proved by Kumaresan in [9]. One very interesting feature 
of it is that the cohomology vanishes for p  <  d^.

The last step in Gelfand’s program is to assemble this information about irreducible 
representations into information about the cohomology of the locally symmetric space 
Z . One explicit form of the result is

(1.3h) dim H P(Z) =  dim H f (U)  +  ^  m JT) dim H p- dH U J .
7T̂1

Recall that here U  is the compact symmetric space dual to Z , and the various £/. are 
smaller compact symmetric spaces. Because the numbers m^ÇT) (which are essentially 
dimensions of certain spaces of automorphic forms) are so difficult to compute, this 
formula does not at first appear to be very informative. But the remark at the end of 
the last paragraph suggests writing

(1.3i) H P( K \ G / T ) ~ H P(U ), {p < m ind  ).
7T̂ l

This is the Kumaresan vanishing theorem. (The idea is that the contribution of H P(U) 
is the trivial part of the cohomology of Z . What is «vanishing» is the non-trivial part). 
The possible spaces £/. are easy to enumerate, so the minimum (which is some positive 
integer depending only on G) is easy to compute; it is tabulated in [19, table 8 .2 ] ) .

2 . F or m a lism  o f  r e pr e se n t a t io n  th e o r y

In this section we collect some of the basic definitions associated with Gelfand’s 
program, and recall very briefly some of the general results that justify our emphasis on 
unitary 'representations o f reductive groups.

Representation theory is linear algebra with a group action. We will try to em­
phasize the correspondence between elementary notions from linear algebra and the
representation-theoretic ideas. We begin with a topological group G. A represen­
tation o f  G is a complex topological vector space V  endowed with a continuous 
action

(2.1^) G x V  —> V, (g, v) e-» 7T{g)v

so that all the operators ir(g) are linear operators on V. We will often refer to the map
7r, or to the pair (n , V), as the representation. The dimension o f it is by definition the 
dimension of V. An invariant subspace of V  is a closed subspace W  C  V  preserved by 
all the Qperators 7r(g):

(2 Ab) 7r(g)we W  ( g e  G, w e  W).
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Two examples are W  =  {0} and W  =  V. We say that V  is irreducible if there are precis­
ely two invariant subspaces. Because the zero vector space has only one subspace, an ir­
reducible representation is non-zero. Any one-dimensional representation is irreducible.

The notion of irreducible representation seems at first not to have an analogue in 
linear algebra. In fact the analogue is a vector space with exactly two subspaces: that 
is, a one-dimensional vector space. The theory of bases is concerned with decomposing 
an arbitrary vector space as a sum of one-dimensional subspaces. In representation 
theory, one seeks in a parallel way to decompose an arbitrary representation as a sum 
of irreducible representations. In contrast with the linear algebra situation, such a 
decomposition is not always possible.

Suppose (7r , V) and (p , W) are two representations of the same group G. An 
intertwining operator from V to W  is a continuous linear map

(2.2) T :V  W y T ott =  p o T .

The requirement just means that T  should respect the actions of (7 on V  and on W . 
Clearly the kernel of T  is an invariant subspace of V,  and the closure of the image 
of T  is an invariant subspace of W.  The vector space of all intertwining operators 
from V  to W  is written H om ^ K , W).  The composition of intertwining operators is 
an intertwining operator. In particular, Hom G(Vr, V) is a complex associative algebra, 
with the identity operator as unit.

Intertwining operators play the role of linear operators in linear algebra.
Two representations (7t, V) and ( p , W)  of G are called equivalent if there is an 

invertible intertwining operator T  G H om ^ K , W) with T ~ l continuous. (Once T~ 
is known to be continuous, the fact that it is an intertwining operator is automatic). 
Write (tentatively!)

G =  {equivalence classes of irreducible representations of G}.

This definition turns out to be badly behaved for infinite-dimensional representa­
tions. The reason is that there are too many non-isomorphic topological vector spaces. 
Here is a family of examples. The group G =  GL{2 , R) acts on the real projective 
space X  =  RP1 of lines in M2; this is just a circle. Consequently G acts on function 
spaces on the circle: LP(X) (for 1 < p  <  oc), C°°(X), the analytic functions CU(X), 
various Sobolev spaces, distribution spaces, and so on. All of these are continuous repre­
sentations of G. They are not quite irreducible, since each contains a one-dimensional 
invariant subspace W  of constant functions; but in every case the quotient V /W  is 
an irreducible representation. All of these representations of G are inequivalent. The 
only intertwining operators from C °°{X )/W  to LP(X )/W ,  for example, come from the 
scalar multiples of the natural embedding C°°(X) LP(X). (This fact is not obvious, 
but it is not terribly difficult to prove). The embedding is not invertible because it is 
not surjective: there are Lp functions that are not smooth.

On the other hand, all these representations of G are clearly closely related; for 
many purposes, it is convenient to identify them. There is no machinery available to 
dò that in general, but at least two approaches are sometimes useful.
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The first is to restrict enormously the class of representations considered, in such a 
way that only one of the examples for GL(2 , R) appears. A representation (7r , V) of G 
is called unitary if V  is a Hilbert space, and the action of G preserves the inner product; 
that is, if all the operators 7r(g) are unitary. If W  is an invariant subspace (closed by 
definition!) o f the unitary representation (n , V)r then the orthogonal complement W ± 
is also invariant, and

(23a) V =  W  e
If W  is neither 0 nor V, then this G-invariant decomposition is non-tri vial. Con­
sequently a non-zero unitary representation is irreducible if and only if it cannot be 
written as a non-trivial direct sum. (The corresponding statement in linear algebra is 
that a non-zero vector space has dimension one if and only if it cannot be written as 
a non-trivial direct sum). We write

(2 3  b) G u =  {equivalence classes of irreducible unitary representations of G}.

This definition is fundamental, so we restate it: an irreducible unitary representation of 
G consists of a non-zero complex Hilbert space V  and a continuous homomorphism 
7r from G to the group o f unitary operators on V, with the property that no proper 
closed subspace o f V  is invariant under all the operators 7r (g). (Here the group of 
unitary operators is given the strong topology to define the continuity of the map 7t).

T h e o r e m  2.4 [4, Théorème 8.5.2]. Any unitary representation o f a locally compact group 
G on a separable Hilbert space V  may be written as a direct integral o f irreducible unitary 
representations o f G .

The notion of direct integral generalizes that of Hilbert space direct sum. Details, 
and a discussion of the uniqueness of the decomposition, may be found in [4]. In the 
setting of unitary representations, this result corresponds to the second step of Gelfand’s 
program of abstract harmonic analysis. More precisely, it is a fairly general guarantee 
that the second step is possible; as was evident in the examples in Section 1, it is often 
important to know something about which irreducible unitary representations actually 
appear In the direct integral decomposition.

In light of Theorem 2.4, a reasonable special case of the third step in Gelfand’s 
program is

P roblem  2.5. For every locally compact group G , describe the irreducible unitary 
representations of G.

That is, we are asking for a description of Gu. This is the «unitary dual problem». In 
the case of an abelian locally compact group A, there is a beautiful solution. The set A u 
has in a natural way the structure of a locally compact abelian group, the «dual group» of 
A. The double dual of A  is canonically isomorphic to A. The duality relation on locally 
compact abelian groups has been worked out explicitly in a wide range of examples, 
and the results are at the bottom of many deep and beautiful parts of mathematics: 
Fourier series, the Fourier transform, and class field theory, for example.
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Understanding of the non-abelian case has come more slowly. Building on ideas of 
Eugene Wigner about the Lorentz group, George Mackey in the 1950s made a deep 
study of G when G has a closed normal subgroup N . (A good place to read about 
this work is [11]). Roughly speaking, he showed how to build irreducible unitary 
representations of G from those of N  and of G /N . This statement must be carefully 
qualified to be correct; but nevertheless it suggests that one should focus attention on 
groups G having no non-trivial closed normal subgroups; that is, on simple groups. 
Duflo in [5] has made this idea precise for an algebraic Lie group G, using Mackey’s 
work to give an explicit description of Gu in terms of unitary duals of smaller reductive 
Lie groups. (A reductive Lie group is one that is locally isomorphic to a direct product of 
simple Lie groups). For algebraic Lie groups, Problem 2.5 has therefore been reduced to

P roblem  2.6. For every reductive Lie group G , describe the irreducible unitary 
representations of G.

This problem will be the topic of the rest of the paper.

3 . Q u a n t u m  m e c h a n ic s  a n d  classical m e c h a n ic s

Problem 2.6 asks us to find Hilbert spaces equipped with nice families of unitary 
operators. The idea that we will describe for doing that comes from mathematical 
physics, by way of Kirillov and Kostant. Here is an outline. The mathematical set­
ting for quantum mechanics is a Hilbert space and a nice family of unitary operators. 
Quantum mechanical systems often correspond formally to classical mechanical ones. 
One might therefore hope that there is a group-theoretic object that is a «classical ana­
logue» of a unitary representation. What Kirillov and Kostant accomplished was to 
define just such a classical analogue, and then to classify completely the corresponding 
«irreducible» objects. Their hope (realized in many settings) was that there should be 
a method of «quantization» for passing from these classical analogues to actual unitary 
representations, and that one should get in this way something close to a solution to 
Problem 2.6.

In order to justify their definitions, we recall first some of the barest rudiments of 
the corresponding ideas in mathematical physics.

For quantum mechanics we refer to [10], in part because this book is written with 
connections to unitary representation theory in mind. A quantum-mechanical physical 
system corresponds to a complex Hilbert space 7i. The possible states of the system 
are parametrized by lines in 7i. Physical observables correspond to operators {Æ} on 
H . If the system is in a state parametrized by a unit vector v e  H, then the result of 
the observation corresponding to an operator A  has a certain probability distribution. 
The expectation of this distribution is (Av, v); notice that this depends only on the 
line in which the unit vector v lies. These expectations need not be finite for every v\ 
correspondingly, the operators A. may be unbounded.
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There is a distinguished observable called the energy, corresponding to a skew-adjoint 
operator AQ. Attached to A() is a one-parameter group of unitary operators

(3.1) £/(*) =  exp(*4)).

These operators govern the time evolution of the quantum-mechanical system, in the 
sense that if the state of the system at time tQ is v0, then the state at time t  +  tQ is 
U (t)v0. One consequence is that evaluating the observable A  at time t  +  tQ is like 
evaluating exp(—fc40X4exp(&40) at time t(). Said briefly, the observable A  evolves as 
exp(— &40)ylexp(fc40). In particular, the observable A  is conserved (constant in time) if 
and only if [A0 , A] =  0. To summarize: a quantum-mechanical system is a complex 
Hilbert space equipped with a family {Af i  of operators. The commutation relations 
among these operators control some of the basic physics.

We turn next to the mathematical formalism of classical mechanics. A convenient 
reference is [1]. Recall first o f all that a symplectic manifold is a manifold M  endowed 
with a Lie algebra structure { ,  } on C°° (M) called the Poisson bracket. This bracket 
must satisfy

(3.2a) { a y be} =  { a , b}c +  b {a y c}

and a certain nondegeneracy condition. (One excuse for omitting a statement of the 
nondegeneracy condition is this. Without it one gets not a symplectic manifold but 
a Poisson manifold. All of the formalism below still makes sense; and indeed it is 
sometimes convenient to work in this more general setting). Each smooth function f  
on M  defines a Hamiltonian vector field

(3.2 b) £/ =  { /;•} .

A classical mechanical system corresponds to a symplectic manifold M . A state 
of the system (usually corresponding to something like knowledge of the positions 
and velocities of all the particles) corresponds to a point in M . Physical observables 
correspond to smooth functions {af i  C C°°(M); the value of the observable a on the 
state m is the number a(m). Again there is a distinguished observable called the energy, 
corresponding to a real-valued function aQ. The time evolution of the system is the 
flow of the corresponding Hamiltonian vector field £ . That is, the time history of a 
particle is a smooth function m from R to Af, satisfying the differential equation

(3.3a)

A consequence is that the evolution of any other observable a is governed by the 
differential equation

d(a  o m)
(3.3b) — —  =  {a0 y a}.

In particular, the observable a is conserved if and only if {aQ , a} =  0. To summarize, 
a classical mechanical system is a symplectic manifold equipped with a family {af i  of 
smooth functions. The Poisson bracket relations among these functions control some 
of the basic physics.
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4 . U n it a r y  r e pr e se n t a t io n s  a n d  «classical» r e pr e se n t a t io n s

We begin by recasting our description of a unitary representation (n ,H )  o f a Lie 
group G so as to emphasize the analogy with quantum mechanics. Write

(4.1 a) g0 =  Lie G

for the Lie algebra of G. Each element X  G 0O defines a one-parameter subgroup 
exp(rA) o f G. Applying the unitary representation 7r gives a one-parameter group of 
unitary operators ir(exp(tX)) on H. According to Stone’s theorem, such a one-parameter 
group is attached to a (possibly unbounded) skew-adjoint operator d7c(X) on 7Y, by the 
requirement

(4.1b) 7r(exp(tX)) =  exp(&/7r(A)) (X  G 0O , t G R).

The Lie group structure on G is reflected in commutation relations

(4.1c) [dir(X ) , dir(Y)\ =  dir([X, Y]) (X, Y  G fl0).

(There are serious problems about domains in forming these commutators of unbounded 
operators, but these will not affect our search for inspiration).

In the analogy between unitary representations and quantum mechanical systems, the 
family of skew-adjoint operators {d7r(X)} corresponds to the physical observables. The 
irreducibility condition is that these operators should have no common closed invariant 
subspace but 0 and 7i. It is worth noticing that the quantum mechanical systems 
arising in this way are extremely special ones, in that the collection of observables is 
both finite-dimensional and closed under commutation.

We can now define «classical» representations, following Kirillov and Kostant. A 
Hamiltonian G -space is first o f all a symplectic manifold M  with smooth action

(4.2a) G x M  —> M , (g, ni) i—» g  • m

respecting the symplectic structure. Each defines by this smooth action a vector
field £(X) on M . The second requirement is a U-equivariant Lie algebra homomor-
phism

(4.2 b) 0o - c ~ ( j t f ) ,  X ^ f ( X )

satisfying

(4.2 c)

Nòtice that the quantum family of operators {dn (X ) \ X  G 0O} (sending the Lie bracket 
to commutator) has been replaced by a classical family of functions { f ( X ) | X  G g0} 
(sending the Lie bracket to Poisson bracket). The classical analogue of «irreducibility» 
is the requirement that M  be a homogeneous space for G.

Our goal is the classification of irreducible unitary representations. The physical 
analogy suggests that we warm up by trying to classify homogeneous Hamiltonian 
(9-spaces. The linear map f  from the vector space g0 to the space of smooth functions
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on M  is equivalent to a smooth map (i from M  to the dual vector space g :̂ explicitly, 

(4.2*0 = f ( X ) ( m )  ( m e M , X e  g0).

This formulation suggests that we might look around for Hamiltonian (/-spaces.
Elements of g0 may be regarded as smooth (linear) functions on gjj. The Lie bracket 

on g0 extends uniquely to a Poisson bracket { ,  } on C°°(g*). Now fix

(4.3) M = G - \ ~  G / H  c  g*

an orbit of G. (This is a coadjoint orbit, because the action of G on ĝ  is called 
the coadjoint actiori). The Poisson bracket on ĝ  restricts to ((/-invariant) symplectic 
structure on M . Elements X  G g0 (regarded as functions on gj) restrict to func­
tions f ( X )  G In this way M  =  Gj H  becomes a homogeneous Hamiltonian
(7-space. This structure is inherited by any (7-equivariant covering space M =  G /H v  
with H d H . D  Hq.

T h e o r e m  4.4 (Kirillov-Kostant; see [8, Theorem 5.4.1]). Every homogeneous Ham­
iltonian G -space is (by means o f the moment map (i\M  —► a G -equivariant cover o f a
coadjoint orbit.

According to this theorem, classifying «classical» representations amounts to classify­
ing the orbits of G on the dual of its Lie algebra. We will see that this is an entirely 
tractable problem. The analogy with mathematical physics outlined at the beginning of 
Section 3 now suggests

P r o b le m  4 .5 .  For every reductive Lie group (7 , and all (appropriately «integral») 
coadjoint orbits M  — G • À C  g^, find a «quantization procedure» to produce an 
associated unitary representation ir(M) of (7.

This is the «philosophy o f coadjoint orbits» of Kirillov and Kostant, and discussing 
it will occupy the rest o f this paper. We can summarize where we are with a diagram 
of analogies and wishful thinking:

unitary representations <— > quantum mechanical systems
î  T

coadjoint orbit covers <— ► classical mechanical systems

The right vertical arrow is «quantization»; it should exist since the world exists, and 
is quantum-mechanical. The left vertical arrow is the wishful thinking part. It should 
exist by analogy with the right.

I will conclude this section with some remarks about the relationship between coad­
joint orbits and the unitary dual (Problem 2.6). First, one cannot expect that quanti­
zation of coadjoint orbits will produce all the irreducible unitary representations of (7. 

Already for SL(2 ,  M) it does not produce the «complementary series» of representations 
discovered by Bargmann. Nevertheless, it does better - that is, it predicts more unitary 
representations - than any other general approach that I know. (Next most effective are 
Arthurs conjectures, based on Langlands ’ philosophy and automorphic representation 
theory).
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Second, quantization will be possible only under an appropriate (and subtle) inte­
grality constraint on the coadjoint orbit. This point is not yet fully understood; one 
can find information in [5, 6]. When the integrality constraint can be satisfied at all, 
it can often be satisfied in several ways. What is called tt(M) in Problem 4.5 should 
therefore be understood as a small (usually finite) family of unitary representations.

5 . T h r e e  k i n d s  o f  c o a d j o i n t  o r b i t  a n d  t w o  k i n d s  o f  q u a n t i z a t i o n

In order to proceed further we need to be a little more precise about the notion of 
reductive. Here is a convenient definition, taken essentially from [7].

D e f i n i t i o n  5.1. Write GL(n) for the group of real or complex n x n matrices. The 
Cartari involution of GL(ri) is the automorphism conjugate transpose inverse:

o(g) =  T l -
A linear reductive group is a closed subgroup Gx of some GL(n), preserved by 6 and 
having finitely many connected components. (Because of the natural inclusions

GL{n y R) c  GL(ny C) c  GL(2n, R).,

we may always arrange if necessary that the matrices appearing be real or that they be 
complex. For the construction of the compact dual symmetric space in the introduction, 
complex matrices were needed. For Definition 5.2 below, real matrices are convenient). 
A reductive group is a Lie group G endowed with a homomorphism n: G Gx onto a 
linear reductive group, so that the kernel of 7r is finite.

Henceforth G will always be a reductive Lie group in this sense. The definition 
allows connected semisimple Lie groups with finite center, compact Lie groups, and real 
points of reductive algebraic groups; it also has convenient heriditary properties (in that 
many nice subgroups of a reductive group are automatically reductive).

D e f i n i t i o n  5.2. Suppose G is a real reductive Lie group (Definition 5.1). The map

G GL{n, R)

givès rise to an inclusion

CL ^{{nyW) =  n x n real matrices.

The vector space g[(w, R) is naturally isomorphic to its dual by means of the bilinear 
form

{Xy Y) -  ttXY.

This form is non-degenerate on the subspace £j0, defining an isomorphism ~  0O and 
therefore an inclusion

0o C n x n real matrices.

An element À £ 0q called hyperbolic if the corresponding matrix is diagonalizable; 
elliptic if it is diagonalizable over C, with purely imaginary eigenvalues; and nilpotent if 
the corresponding matrix is nilpotent.
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A basic problem about matrices is «normal form»: to classify them up to the conju­
gation action of GL(n, M). It can be solved very explicitly using the Jordan decomposi­
tion and these three special types. In the same way, general coadjoint orbits for G (and 
therefore homogeneous Hamiltonian G-spaces) can be classified. The answer (known 
by the 1960s, and described in some detail in [18]) is not much more complicated 
than the theory of Jordan normal form for real matrices (which is just the special case
G = G L ( n , R ) ) .

We turn therefore to Problem 4.5, attaching a unitary representation ir(M) to a 
coadjoint orbit M  =  G • A ~  Gj Gx. This can also be reduced to the three special cases 
described in Definition 5.2. Here is a summary of what is known. Recall that, as a 
homogeneous Hamiltonian G-space, M  is in particular a symplectic manifold; so the 
dimension of M  is an even integer 2m. A submanifold N  is called coisotropic if the 
ideal J( N)  of functions on M  vanishing on N  is closed under Poisson bracket. This 
condition forces J( N)  to be fairly small, and therefore forces N  to be fairly large; in 
particular, it forces dim TV > m. We say that TV is Lagrangian if it is coisotropic, and 
dim TV — m.

T h e o r e m  5.3. Suppose G is a real reductive Lie group, a n d \  G is hyperbolic. Write 
M  =  G • À. Then there is a G -equivariant fibration M  —> Z  with Lagrangian fibers and Z  
compact. Attached to M  is a natural finite set o f G -equivariant Hermitian vector bundles on Z \ 
we can attach to M  the unitary representations o f G on spaces o f i f  sections o f these Hermitian 
vector bundles on Z .

The isotropy group for the action of G on Z  is a real parabolic subgroup of G. 
These unitary representations (which are a slightly special case of degenerate principal series 
representations) were introduced by Gelfand-Naimark and others by the early 1950s.

T h e o r e m  5.4. Suppose G is a real reductive Lie group, a n d \  G is elliptic. Then there is 
a G -equivariant complex structure on M  =  G • A making M  an (indefinite) Kähler manifold. 
Under an integrality constraint on \ ,  we can construct a finite set o f G -equivariant holomorphic 
vector bundles on M; and finally attach to M  unitary representations o f G realized in the 
Dolbeqult cohomology o f M  with coefficients in these vector bundles.

When G is compact, these homogeneous Kähler manifolds are projective algebraic 
varieties. The corresponding representations were understood in the 1950s (the Borel- 
Weil-Bott theorem). At the same time Harish-Chandra studied the case when M  is 
Stein, which happens essentially only when G /K  is a Hermitian symmetric space. In 
this way he was able to construct the «holomorphic discrete series» representations, 
realized in spaces of i f  holomorphic sections of vector bundles on G / K.  Whenever 
the isotropy group Gx is compact, one expects to realize discrete series representations 
of G on G - À. Langlands made a precise conjecture along these lines in 1965, and 
this conjecture (which includes much of Theorem 5.4) was proved by Schmid in [13]. 
What remains are the singular elliptic coadjoint orbits. The necessary representations 
were constructed by Zuckerman in 1978, and their unitarity was established in [15]. 
Zuckerman’s construction is sometimes called cohomologicalparabolic induction, and the
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representations are unfortunately often referred to as zlq(A) modules. (The term elliptic 
representations is more elegant and descriptive, but there seems to be little hope of 
popularizing it now).

T h e o r e m  5 .5 .  Suppose G is a real reductive Lie group, and A <G g* is nilpotent. Then 
M  — G • À is a cone ( closed under positive dilations in g^).

We have no general method to attach unitary representations (to be called unipotent 
representations) to a nilpotent coadjoint orbit. This is really all that is left of Problem 4.5: 
the constructions of representations underlying Theorems 5.3 and 5.4 are sufficiently 
flexible to solve Problem 4.5 in general once we know how to treat the nilpotent case. 
For the rest of the paper we concentrate on that.

6 . Q u a n t iz in g  n il p o t e n t  o r b it s: m o t iv a t io n

We continue to assume G is a real reductive Lie group. Define 

(6.1 a) A/JJ =  cone of nilpotent elements in g^.

This is a finite union of orbits of G; we want to attach unitary representations to these 
orbits. There are two guiding principles.

The first principle is «compatibility with restriction to K». G has a maximal com­
pact subgroup K , and we understand the unitary representations of K  very well. In 
particular, we understand fairly well the relationship between the «classical» and «quan­
tum» notions of representation theory. The main feature is that representations are 
constructed from classical objects using invariant complex structures. The basic example 
of this is the Borel-Weil construction of irreducible representations of K , mentioned 
after Theorem 5.4. Such representations extend naturally to the complexification of 
K , which is a complex reductive algebraic group.

This principle suggests that we might try to replace the cone A/jJ with a complex 
algebraic variety A/£ carrying an algebraic action, in such a way that the actions of 
K  on A/J£ and A/£ are (more or less) equivalent. Here is a way to do that. Define

(6.lib) g* =  HomR(g0 , C ) ,

(6.1c) Af* =  {A G g* I A |t=  0 and A is nilpotent}.

Here are the basic facts about this new cone.

(1) (Kostant-Rallis) The cone A/£ is a complex algebraic variety on which acts 
with finitely many orbits.

(2) (Sekiguchi) These orbits are in one-to-one correspondence with the orbits of G 
onA/jJ.

(3) (Vergne) Corresponding orbits are ATequivariantly diffeomorphic.

The conclusion we want to draw from the first principle is that representations 
attached to nilpotent orbits should be realized (as representations of K ) as (global 
sections of) A^-equivariant sheaves of modules on AQ.
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The second principle is «compatibility with classical limit». So far we have consid­
ered only the problem of constructing a quantum system from a classical one. The 
mathematical models of quantum mechanics typically contain Planck’s constant as a 
parameter, and the physical notion of «classical limit» is letting Planck’s constant tend 
to zero. The usual effect of this process mathematically is to make operators more 
commutative. A fundamental example is the symbol calculus for differential operators 
on a manifold X , which relates the noncommutative algebra V(X)  to the commutative 
algebra C°°(r*(X)).

A corresponding idea in the setting of group representations is to make use of the 
Poincaré-Birkhoff-Witt isomorphism

(6.2a) gr U(g) ~  S(g) .

That is, we try to replace representations (modules for the noncommutative algebra 
U(g)) by modules for the polynomial ring S(g).

Here is a construction. Suppose V  is an irreducible Harish-Chandra module for G 
[7, Section 10.9]. Choose a iT-invariant good filtration

(6,2b) K# c K , c -  \ J V n = V  Up( g) -Vq c V p+q.
n

Then gr V  is a finitely generated i^-equivariant 5(g/l)-m odule supported on J\f*. (A 
more detailed discussion of this construction may be found in [16]). This module is a 
natural «classical limit» of V , and so its support (a closed union of orbits on J\f*) 
is a natural candidate for a classical analogue of V.

The conclusion we want to draw from the second principle is that representations V  
attached to nilpotent orbits should have gr V  an uncomplicated module with specified 
support in Afg-. (Some additional suggestions about what is meant by «uncomplicated» 
may be found in [16]).

Problem 4.5 for a nilpotent orbit G • Ä now looks like this: we seek a unitary 
representation of G so that the corresponding Harish-Chandra module V  makes gr V  
an uncomplicated module with specified support (namely the closure of the orbit 
on AT* ! corresponding to C-À). The Kazhdan-Lusztig conjectures (which are proved for 
linear groups) tell us how to construct many Harish-Chandra modules V  with specified 
support. There are two (related) difficulties: gr V' may be complicated, and V  may 
not be unitary.

One possible manifestation of the first difficulty is that the multiplicity of gr V' 
(along the generic part of its support) may be bigger than 1. (Any finitely generated 
module looks locally like several copies of the algebra of functions along an open set in 
its support. The «multiplicity» is equal to the number of copies. One way of saying 
that the module is uncomplicated is to require the generic multiplicity to be one).

A manifestation of the second difficulty is that V  may carry an invariant Hermitian 
form with indefinite signature.

In the next section I will explain how to prove (sometimes) that the second difficulty 
forces the first to occur: that is, that an indefinite invariant Hermitian form on V  can
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exist only if the generic multiplicity of gr V' is greater than one. One special case is 
easy. If the nilpotent orbit we are considering is the point {0}, then the condition that 
the support of gr V  is {0} is equivalent to requiring dim V  <  oo. In this case the 
generic multiplicity of V  is equal to the dimension of V f. It is certainly true that V' 
can carry an indefinite Hermitian form only if dim Y  >  1; that is, if and only if the 
generic multiplicity is greater than 1. The case of larger nilpotent orbits is more subtle, 
of course, but similar in spirit.

We may therefore hope to approach Problem 4.5 in the following way. Given a 
nilpotent orbit, we use ideas from the Kazhdan-Lusztig conjectures to find a Harish- 
Chandra module V  whose support is the closure of the corresponding orbit. The 
problem of calculating the generic multiplicity of gr V  is sometimes tractable, although 
there is no general algorithm for solving it; so we can hope to show that the generic 
multiplicity of gr V  is 1. The argument to be explained in the next section may then 
allow us to deduce that V  comes from a unitary representation.

7 . Q u a n t iz in g  n il p o t e n t  o r b it s: sig n a tu r e s  a n d  u n it a r it y

The argument given at the end of the last section was that an indefinite Hermitian 
form can be defined only on a vector space of dimension at least two. The reason is that 
if the signature of the form is (p y q), then the dimension of the space is p  +  q, and the 
form is indefinite if and only if p  and q are both non-zero. To extend this to infinite­
dimensional Harish-Chandra modules, we need some control over their signatures. This 
is provided by the following theorem, in which the modules M + and M ~  are like the 
integers p  and q. Statement (1) corresponds to the dimension being p  +  q; statement 
(2) is a consequence; statement (3) is the indefiniteness criterion; and statement (4) is 
a technical condition that will allow us to control V ± .

T h e o r e m  7 .1  [1 5 ] . Suppose V  is an irreducible Harish-Chandra module for a real reductive 
Lie group G admitting a non-degenerate invariant Hermitian form, and supported on a K^- 
orbit closure X  c Nq . Then there are -equivariantfinitely generated graded S (g / Ï) -modules
M ± supported on X y with the following properties.

(1) We have gr V  =  M + +  M ~ in the Grothendieck group ofK^-equivariantfinitely generated
graded S(g/ t )  -modules supported on Af# .

(2) The generic multiplicity o f  gr V is equal to the sum o f the generic multiplicities o f M + and 
M ~ .

(3) The modules M ± are both non-zero i f  and only i f  the form on V  is indefinite.
(4) There are virtual Harish-Chandra modules V ± satisfying

(a) gr V ± =  M ± in the Grothendieck group; and
(b) the sizes o f infinitesimal characters satisfy

\infmitesimal character (Vr±)| < | infinitesimal character (V)\.

We conclude from this theorem that if the generic multiplicity of gr F is 1, then 
one of the two modules must have generic multiplicity zero; that is, must be
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supported on the boundary of the orbit closure X.  Possibly replacing the Hermitian 
form by its negative (which interchanges M + and M~),  we can arrange for gr V~ to 
have this smaller support. We also know (from (4)) an upper bound on the infinitesimal 
character of V~.  We are aiming (because of (3)) to show that V~ must be zero. In 
order to do that, we need results like

D e s id e r a tu m  7.2. Suppose W  is a virtual Harish-Chandra module, and gr W  is a non­
zero virtual module with small support. Then the infinitesimal character of W  is large. More 
precisely suppose that the support o f  gr W  is contained in the boundary o f the nilpotent orbit 
closure X  C  Afg. Then there is a constant cx with

I infinitesimal char acted W) | >  cx .

Techniques introduced by McGovern in [12] make it possible to prove results like 
this, with very explicit constants cx . Some additional discussion may be found in [18]. 
The calculations have so far been made only in quite special cases, but here is an 
example.

T h e o r e m  7.3. Suppose G is a reductive Lie group, and X  c  Afg is the closure o f a minimal
orbit. ( Therefore the boundary o f X  is the point {0}). Suppose W  is a virtual Harish- 

Chandra module with gr W  finite-dimensional and non-zero. Then the infinitesimal character 
of W  is at least as large as that o f the trivial representation. That is. Desideratum 7.2 holds, 
with cx the length o f p {half the sum o f a set o f positive roots).

Let us summarize the reasoning to this point. We begin with a A^-orbit closure 
X  C  Afg . Suppose that Desideratum 7.2 has been established for X . Suppose finally that
V  is an irreducible Harish-Chandra module carrying a Hermitian form, and satisfying

(1) the support of gr V  is equal to X ;
(2) the generic multiplicity of gr V  is 1; and
(3) the length of the infinitesimal character of V  is strictly smaller than cx .

Then the Hermitian form on V  is definite; so V  comes from a unitary representation 
of G. It is by this argument that we hope to solve Problem 4.3 for nilpotent orbits. 
Here is an example.

C orollary  7.4. Suppose G is a reductive Lie group and V  is a Hermitian ladder represen­
tation o f infinitesimal character strictly shorter than half the sum o f a set o f positive roots. Then
V is unitary.

S k e t c h  o f  P r o o f . The «ladder» condition is that the highest weights of the K -types 
of V  all have multiplicity one, and form a string with separation equal to a highest 
weight of K  on g /L  It implies that the support of gr V  is a minimal orbit closure, 
and that the generic multiplicity is one. We can therefore apply Theorems 7.1 and 7.3 
to finish the argument. □
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Techniques for constructing Harish-Chandra modules V  satisfying the conditions in 
Corollary 7.4 have been available for a long time (and the unitarity of most of these 
representations was known as well). If for example G is a complex simple group, then 
the quotient of the enveloping algebra by the Joseph ideal has the required properties. 
In this way one can attach unitary representations to minimal nilpotent orbits whenever 
they satisfy the «integrality» constraint of Problem 4.5. (A completely different general 
approach to Problem 4.5 for minimal orbits may be found in [14]. Torasso’s method 
requires even less case-by-case analysis than the one using Corollary 7.4, and applies also 
to reductive groups over other local fields. It is not clear how to extend it to general 
nilpotent orbits, however).

For more general nilpotent orbits, making Desideratum 7.2 explicit is more difficult, 
but should not be impossible. I have already claimed that the Kazhdan-Lusztig conjec­
tures can help exhibit representations satisfying condition (1) on the list above; explicit 
information about the infinitesimal characters is easy to get, so (3) should not present 
difficulties. (These two steps are treated for complex groups in [2]). Condition (2) is 
the most difficult, but the same calculations involved in Desideratum 7.2 can help.

I will conclude with an example: the fourteen-dimensional simply connected split 
real group of type G2. The calculations have been done hastily, and the details should 
not be trusted too far.

The real nilpotent orbits are of dimensions 0, 6, 8, 10, and 12. There is a unique 
orbit of each dimension, except that there are two orbits of dimension 10. Correspond­
ingly the orbits of on AÇ are of complex dimensions 0, 3, 4, 5, and 6. We can 
realize the root system on the real Euclidean space

E — {(*> y> z) G M3 I x1 +  y  +  z  — 0};

the roots are

k  -  ej \ 1 ± i } u { ± ( k  -  ej  -  ek) I {*>j>k} =  0  > T  3}}.

The Weyl group is generated by permutation of the coordinates and —I; it has order 
12. An infinitesimal character is represented by an element of E , defined up to the 
action of the Weyl group; its length is just its length as a vector in E.

In table 7.5 we attach several infinitesimal characters to each nilpotent orbit of 
on Af*. Since these are the same for the two five-dimensional orbits, we label the 
rows of the table only by the dimension of the orbit. The first infinitesimal character 
(labelled «lower bound») is a lower bound (in length) for the infinitesimal character 
of a virtual Harish-Chandra module V  with gr V  supported on this orbit closure. To 
compute the number cx  of Desideratum 7.2, we need to find the maximum length for 
these infinitesimal characters on the boundary of X.  That is, cx  is the length of the 
«lower bound» infinitesimal character for the row above X.  (In the case of the orbit 
{0} the boundary is empty, so nothing can be supported there; so cx  =  oo).

The next family of infinitesimal characters are those of unipotent representations 
attached to the corresponding real orbits in the sense of Problem 4.5. Most of these 
unitary representations are discussed in [17]. Except for the orbits of dimensions 3
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and 4, they are all Arthur’s «special unipotent representations». One can show (in 
increasing order of difficulty) that they are Hermitian, that they have gr V  supported 
on the indicated orbit closure, and that they have generic multiplicity one. In order to 
prove that they are unitary by the argument outlined before Corollary 7.4, we therefore 
just need to check that the infinitesimal characters are strictly smaller than the «lower 
bound» infinitesimal character on the previous line. This is obviously true, so the 
representations are all unitary (as was already known).

T a b l e  7.5 -  Unipotent representations for split G2.

A^-orbit infinitesimal character 
dimension lower bound

0 ( 3 , - 1 ,  - 2 )
3 ( § , 0 , - § )
4 M , - § )
5 ( y o , - i )
6 (0 , 0 , 0)

infinitesimal characters 
of unipotent representations

( 3 , - 1 , - 2 )
( 1  _ !  _ 4 )
'3  * 3 * 3 '
(1,  I ,  _ | )

( y o , —i ) , ( i , - f , _ 2i ) , ( i , o , - i )  
( 0 , 0 , 0 )

There is a final subtlety about table 7.5 worth mentioning here. The «lower bound» 
column refers to infinitesimal characters of virtual Harish-Chandra modules supported 
on the orbit. The «unipotent representations» column refers to infinitesimal characters 
of actual Harish-Chandra modules supported on the orbit. It seems natural to expect 
that these two columns should be the same, or at least that the second column should 
be the smallest element of the third. This is usually the case, but not always. What 
happens here for the three-dimensional orbit is that one can find a small collection 
of representations of infinitesimal characters ( | , 0 , —-) and smaller, mostly supported 
on the five-dimensional orbit. Taking a certain integer combination of these represen­
tations kills the restrictions to the four- and five-dimensional orbits, leaving just the 
three-dimensional one. This cancellation appears only on the level of associated graded 
modules; it can’t be achieved for the group representations. (The Kazhdan-Lusztig con­
jectures; control which nilpotent orbit closures can appear as supports of representations 
with a specified infinitesimal character. In this case they say that the three-dimensional 
orbit can appear only at an infinitesimal character whose coordinates are distinct num­
bers all congruent to modulo Z).
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