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Meccanica dei solidi. — An elementary theory of the oblique impact of rods. Nota di
Robin J. Knops e Piero Villaggio, presentata (*) dal Socio P. Villaggio.

Abstract. — An extension is proposed of a classical approximate method for estimating the stress state
in an elastic rod obliquely colliding against a rigid wall.
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Riassunto. — Una teoria elementare dell’urto obliquo delle sbarre. Si propone un’estensione di un classico
metodo approssimato per valutare lo stato di sforzo di una sbarra elastica che urta obliquamente contro una
parete rigida.

1. The classical approximation

The longitudinal impact of an elastic rod against a rigid wall has been described
by F. Neumann [2] in terms of a system of second order partial differential equations,
which, for the axial displacement, reduce to a single d’Alembert equation. This equation,
however, is not easily solved, especially when, as frequently occurs, the cross-section of
the rod is variable or the stress exceeds the elastic limit of the rod. Consequently,
many contributors, including Tredgold [6], Cox [1], Saint-Venant and Flamant [4],
have sought approximate methods of solution. In reviewing these various approaches,
Pöschl [3] has remarked that the rod is usually regarded as a system possessing one
degree of freedom and the aim is to seek the configuration of maximum compression
when the rod first achieves instantaneous equilibrium.

A simple example of this treatement is offered by a light linear elastic bar ab of
length l and constant cross-section impinging with normal impact velocity vy on a rigid
wall, as shown in fig. 1. We assume that a rigid solid of mass M is clamped at the
end a. The bar ab has extensional rigidity EA and flexural rigidity EJ , where E is the
elastic modulus of the material and A, J respectively denote the area and moment of
inertia of the uniform cross-section. The mass of the bar is neglected compared with M .

Let us suppose that the moment of impact of the end b of the bar against the rigid
wall is the instant t = 0. During subsequent contact and before rebounding, the system
will behave as a simple harmonic oscillator whose motion is described by the equation

(1) M ÿ + H y = 0 ;

where y(t ) is the normal displacement of the point a, H is the coefficient EA=l of the
axial restoring force, and a superimposed dot indicates differentiation with respect to
time, t .

(*) Nella seduta del 13 novembre 2000.
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Fig. 1.

On setting λ2 = H=M , and recalling that y(0) = 0 ; ẏ (0) = vy , we obtain the
solution to (1) in the form

(2) y(t ) = (vy=λ) sinλt ;

which is given in standard texts on elementary mechanics (cf. e.g. [5, § 23]). From (2)
may be deduced the duration of contact, the maximum descent of the mass M , and
the maximum axial force during the first half of the compression period [0, π=2λ].

2. Oblique impact

The analysis of the previous section fails when the bar impacts obliquely on the rigid
wall. In order to study this problem, we suppose that, immediately prior to impact,
the bar with the clamped mass M is moving as a rigid body with constant velocity in a
plane perpendicular to the wall and the longitudinal axis of the bar inclined at an angle
α with the wall at the instant of first contact. We assume that 0 ≤ α ≤ π=2, but the
analysis may easily be extended to π=2 < α ≤ π. The solid mass M has a moment of
inertia Θ with respect to an axis perpendicular to the plane of motion (fig. 2). At the
instant t = 0, the end b of the bar collides with the wall, and the subsequent motion
after impact is to be determined from general principles of mechanics subject to certain
additional assumptions to be stated. In particular, the rebound depends upon whether
the surface of the wall is smooth or rough.

In either case, we assume that the duration of the rebound process is not instan-
taneous but nevertheless is sufficiently small for the bar to remain approximately the
same length l as before the impact and inclined at an angle α to the wall. Simul-
taneously, compressive behaviour of the bar is permitted in accordance with standard
approximations of the linear theory of elasticity. Rates of change of the displacements
to first and higher orders are therefore not necessarily zero during the rebound. Of



an elementary theory of the oblique impact of rods 51

Fig. 2.

course, after impact, conversion of the rotational inertia of the clamped mass M causes
the bar immediately to commence bending.

In the plane of motion we select a two-dimensional Cartesian system of coordinates
with origin at the position of a on impact, and y-axis normal to the wall and directed
towards it. The components of the uniform velocity prior to impact are given by
(vx; vy), while, during the period subsequent to contact, the displacement components
of the end a are (x(t ); y(t )) and the anti-clockwise rotational displacement of the
clamped mass M is denoted by ϕ(t ).

We separately discuss two limiting cases.

a) Smooth contact.
The reaction on impact (fig. 2) consists only of a normal force X1 as the wall

is smooth. Linear momentum of the mass M is conserved in the x-direction and
consequently the system maintains a uniform velocity vx after the impact. On resolving
in the y-direction and taking moments about the end a we obtain

(3) M ÿ + X1 = 0 ;

(4) Θϕ̈+ X1 l cosα = 0 :

Elimination of X1 between (3), (4) and integration leads to

(5) My l cosα = Θϕ + Gt ;

where G = Mvy l cosα − Θω1, and the initial conditions y(0) = ϕ(0) = 0, ẏ (0) = vy ,
ϕ̇(0) = ω1 are used. Furthermore, elementary beam theory yields the relation

(6) X1 = K (y + lϕ cosα) ;
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where

(7) K =

[
l 3 cos2 α

3 EJ
+

l sin2 α

EA

]−1

:

On setting

(8) y(t ) = A2t + z(t ) ;

where

(9) A2 =
Gl cosα

M l 2 cos2 α + Θ
;

and on eliminating ϕ between (5) and (6), we obtain from (3)

(10) z(t ) = A3 sinλ1t ;

where

(11) λ1 =

[
K (M l 2 cos2 α + Θ)

MΘ

] 1
2

;

(12) A3 =
Θ(vy + l cosαω1)

λ1(M l 2 cos2 α + Θ)
:

We deduce from (5) that

(13) ϕ(t ) = B2t + B3 sinλ1t ;

with

(14) B2 =
−G

M l 2 cos2 α + Θ
; B3 =

M l cosαA3

Θ
;

while (3) yields

(15) X1 = (A3 λ
2
1 M ) sinλ1 t :

Inspection of expressions (8), (13) reveals that the motion in the short interval
of time after impact is the sum of a linear part and an oscillatory compressive and
elongational part. The maximum reactive force X1, attained at the end t = π=2λ1 of
the first half period of compression, is

(16) X1|max = A3λ
2
1 M ;

while the strain energy absorbed by the bar after the same interval is

(17) W =
1
2

K −1 (X1|max

)2
=

1
2

MΘ(vy + l cosαω1)2

(Ml 2 cos2 α + Θ)
:

It follows from (15) that contact with the wall is broken by the rebounding bar at
time t = π=λ1. At this instant the end b of the bar must be moving instantaneously
away from the wall, but on recalling that lω1 = −(vx sinα + vy cosα), we may deduce
from (8) and (10) that provided 0 ≤ α ≤ π=4 the end a is moving towards the
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wall (ẏ (π=λ1) > 0). The end a moves away from the wall (ẏ (π=λ1) < 0) when
π=4 < α ≤ π=2 and either l is sufficiently large or certain conditions are satisfied that
relate Ml 2; Θ; vx; and vy . The conditions are easily derivable from (8) and (10) and
are omitted. On loss of contact at t = π=λ1; the end a is displaced by a distance
A2π=λ1, although the maximum displacement occurs at t = π=2λ1 and is given by
A2π=2λ1 + A3.

Note that for t > π=λ1, the present analysis ceases to be appropriate and conse-
quently attention is confined to the interval [0;π=λ1].

b) Rough contact.
It is now assumed that the rigid wall in the neighborhood of the instantaneous

impact is rough with sufficiently small coefficient of friction µ to allow sliding of the
base b after the impact. The value of µ (0 ≤ µ ≤ 1) is determined subsequently. The
reaction of the point of contact consists of a normal force Y1 and a force Y2 parallel to
the wall. We continue to assume that, during the interval of compression and restitution
(supposed sufficiently small), the length of the bar and its inclination to the wall may
be approximated by their respective values just before impact, but that the first and
higher order rates of change of the displacement components (x(t ); y(t )) of the end a
are not necessarily zero.

The equations of motion of the mass M normal and parallel to the wall become

(18) M ÿ + Y1 = 0 ;

(19) M ẍ + Y2 = 0 ;

where the frictional force Y2 is assumed to be (cf. [5, § 22])

(20) Y2 = −µ v
|v| Y1 for v �= 0 ; Y2 = 0 for v = 0 ;

and v is the velocity of b along the wall, i.e. v(t ) = ẋ(t ) + l sinα ϕ̇(t ):
During the first period of compression, we assume v(t ) does not alter sign, so that

Y2 = −µY1. Then the normal force Y1 again may be determined in terms of the
variables y(t ), ϕ(t ), and elementary beam theory yields the expression

(21) Y1 = L(y + l cosαϕ) ;

where

(22) L =

[
l 3

3EJ
(cos2 α + µ sinα cosα) +

l
EA

(sin2 α− µ sinα cosα)
]−1

:

We henceforth introduce the hypothesis that the bar is sufficiently slender, which implies
the inequality l 2 ≥ (3J=A) and hence L ≤ K .

On taking moments about a, we obtain

(23) Θ ϕ̈+ Y1l (cosα + µ sinα) = 0 :

Equations (18), (19), (23), subject to the initial conditions x(0) = y(0) = ϕ(0) = 0,
ẋ(0) = vx; ẏ (0) = vy; ϕ̇(0) = ω1, may be solved in similar fashion to before and result
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in the expressions

(24) x(t ) = A4t + A5 sinλ2t ;

(25) y(t ) = A6t + A7 sinλ2t ;

(26) ϕ(t ) = B4t + B5 sinλ2t ;

where

(27) λ2 =

√
LN
ΘM

;

(28) N = Θ + M l 2 cosα (cosα + µ sinα) ;

(29) A4 = vx +
µΘ

N
(vy + l cosαω1) ; A5 = −µA7 ;

(30) A6 =
l cosα

N

[
M l (cosα + µ sinα) vy − Θω1

]
; A7 =

Θ

λ2 N
(vy + l cosαω1) ;

(31) B4 = −

[
M l (cosα + µ sinα) vy − Θω1

]

N
; B5 =

Ml
Θ

(cosα + µ sinα) A7 :

From (25) and (18) we obtain

(32) Y1 = M λ2
2 A7 sinλ2t ;

which enables Y2 to be determined from (20). The maximum value of Y1 occurs at
t = π=2λ2 and is given by Mλ2

2 A7. Contact is first broken at time t = π=λ2 and
accordingly, we consider behaviour only in the interval [0;π=λ2]. Conditions may be
derived from (25) under which the end a is moving either towards or away from the
wall at the instant of broken contact. In particular, ẏ (π=λ2) < 0 for π=4 < α ≤ π=2
and l sufficiently large. Expression (25) may be used to discuss the displacement of the
end a.

The stress in the bar is due to the combined reactive forces (Y1; Y2) which determine
the stress resultants at each cross section of the bar. The strain energy absorbed by the
bar at the end of the compression period (t = π=2λ2) is now

Wµ =
1
2

(
Y1|max

)2
[

l 3

3EJ
(cosα + µ sinα)2 +

l
EA

(− sinα + µ cosα)2
]

=(33)

=
1
2

MLΘ(vy + ω1 l cosα)2 [Θ + M l 2 cosα(cosα + µ sinα)
]−1

(34) ·
[

l 3

3EJ
(cosα + µ sinα)2 +

l
EA

(− sinα + µ cosα)2
]

;

where L is given by (22).
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The relative magnitudes of W µ and W depend upon µ and the mechanical prop-
erties of the system. For example, from (17) and (34) we conclude that W

µ ≤ W
provided the following conditions are satisfied

(35) FEAΘ ≤ Ml 2;

and

(36) µ[Θ(FEA sin2 α + 1) + Ml 2 cos2 α] ≤ cosα sinα(Ml 2 − FEAΘ);

where F = (1=3EJA)(l 2A − 3J ). By a previous assumption we have

(37) F ≥ 0:

The maximum value of µ that permits sliding to occur at b after impact is deter-
mined from the condition that the velocity of b remains positive throughout the period
of contact. From (24), (26) we obtain the restriction

0 < ẋ(t ) + l sinα ϕ̇(t ) = (A4 + l sinαB4) + λ2 cosλ2t (A5 + l sinαB5) :

The minimum of the right-hand side occurs at t = π=λ2 and hence µ must be such
that

(38) λ2(A5 + l sinαB5) < A4 + l sinαB4 :

Different values of µ satisfy (38) depending upon the system’s properties and the
initial velocity (vx; vy). As illustration, let us suppose that

(39) vx cosα− vy sinα > 0

and

(40) 2Θ < Ml 2(1 + sin2 α):

Then on setting lω1 = −(vx sinα + vy cosα), we conclude that (38) holds provided µ

satisfies the condition

(41) µ < cotα[Θ + Ml 2(1 + sin2 α)]=[Ml 2(1 + sin2 α) − 2Θ]:

It remains to justify the assumption that the period of compression is small but
finite. The respective measures for rough and smooth contact are proportional to λ−1

2

and λ−1
1 . But by (11) and (27), and subject to (37) we have that λ−1

2 ≤ λ−1
1 . Under

the additional condition (35), the period of compression decreases as µ increases to the
maximum value given by (38).
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