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Teoria dei numeri. — Zeros and poles of Dirichlet series. Nota di Enrico Bombieri e
Alberto Perelli, presentata (*) dal Socio E. Bombieri.

Abstract. — Under certain mild analytic assumptions one obtains a lower bound, essentially of order
r , for the number of zeros and poles of a Dirichlet series in a disk of radius r . A more precise result is also
obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.

Key words: General Dirichlet series; Almost-periodic functions; Nevanlinna theory.

Riassunto. — Zeri e poli delle serie di Dirichlet. Sotto ipotesi molto generali di tipo analitico si dimostra
una stima dal basso, essenzialmente di ordine r , per il numero di zeri e poli di una serie di Dirichlet in un
cerchio di raggio r . Un risultato più preciso si ottiene sotto ipotesi più restrittive.

1. Results and proofs

For a meromorphic function f (s) in the complex plane, we denote by n(r; a; f ) the
number of solutions, counted with multiplicity, of the equation f (s) = a in the disk
|s| ≤ r , and write as usual

N (r; a; f ) =

∫ r

0

n(t; a; f ) − n(0; a; f )
t

dt + n(0; a; f ) log r;

m(r; a; f ) =
1

2π

∫ 2π

0
log+

∣∣∣ 1
f (reiθ) − a

∣∣∣d θ;

m(r;∞; f ) =
1

2π

∫ 2π

0
log+ |f (reiθ)|d θ;

T (r; f ) = N (r;∞; f ) + m(r;∞; f ):

The order ρ(f ) of f (s) is given by

ρ(f ) := lim
r→+∞

log T (r; f )
log r

:

By Nevanlinna’s first theorem, we have N (r; a; f ) + m(r; a; f ) = T (r; f ) + O(1) for
every fixed a. In particular,

(1) T (r; f ) ≥ N (r; a; f ) − O(1):

An analytic function f (s) of the complex variable s is said to be uniformly almost
periodic (briefly, u.a.p.) in a strip b < �(s) < c (b and c may be ±∞) if for every
ε > 0 the set of real numbers τ such that

|f (s + iτ ) − f (s)| < ε for b < �(s) < c

(*) Nella seduta del 9 febbraio 2001.
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is relatively dense, in other words if for every ε > 0 there is an l > 0 such that every
interval of length l contains such a number τ .

It is well known (see for instance [1, Ch. III, Th. 6, Cor.]) that the sum of an
exponential series

f (s) =
∞∑

n=1

aneλns; λn ∈ R

uniformly convergent in the strip b < �(s) < c is u.a.p. there. An immediate conse-
quence of almost periodicity and uniform convergence in a strip is that if the equation
f (s) = a is soluble in the strip, then it will have infinitely many solutions, and their
imaginary parts will form a relatively dense set; in particular N (r; a; f ) � r . This is a
well-known application of Rouché’s Theorem (see for example [3, 6. Theorem]), which
we repeat for reader’s convenience. Let s0 be a zero of f (s)− a in the strip. Then there
exists an η0 > 0 such that the circle C = {s : |s − s0| = η0} is contained in the strip and
f (s) �= a there. Take ε to be the minimum of |f (s) − a| along C . By u.a.p., there is
l such that every interval of length l contains τ such that |f (s + iτ ) − f (s)| < ε along
C . By Rouché’s Theorem, we deduce that f (s) − a and f (s + iτ ) − a have the same
number of zeros inside the circle C , proving what we want.

Thus by (1) if f (s) is non-constant and u.a.p. in a strip then

(2) T (r; f ) � r and ρ(f ) ≥ 1

as r →+ ∞.
We prove the following theorem.

Theorem 1. Let f (s) =
∑

aneλns , λn ∈ R, be the sum of an exponential series uniformly
convergent in a half-plane �(s) > b, admitting an analytic continuation in the whole complex
plane as a non-constant meromorphic function of finite order. Suppose also that f (s) tends to a
non-zero finite limit as �(s) →+ ∞. Then for any fixed γ < 1 we have

lim
r→+∞

N (r; 0; f ) + N (r;∞; f )
rγ > 0:

Proof. We may assume that f (s) → 1 as �(s) →+ ∞. Since f (s) has finite order,
we can write

f (s) =
A(s)
B(s)

eh(s);

where A(s) and B(s) are the Weierstrass products associated to the zeros and poles of
f (s), and where h(s) is a polynomial. The degree of h(s) and the orders of the entire
functions A(s) and B(s) do not exceed the order of f (s).

Let ω > 0 and let τ be the operator

τ f (s) = f (s)=f (s + ω):

Then if q is an integer greater than the degree of h(s) we have

fq(s) := τ q f (s) =
τ qA(s)
τ qB(s)
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because h(s) has degree at most q−1 and hence its finite difference of order q vanishes.
In particular,

(3) ρ(fq) ≤ max(ρ(A); ρ(B)):

Next, we verify that fq(s) is not constant. Otherwise we would have fq(s) = 1 identically
and since fq(s) = fq−1(s)=fq−1(s + ω) the function fq−1(s) would be periodic, with period
ω. But fq−1(s) is bounded for �(s) sufficiently large, hence fq−1(s) would be bounded
everywhere and it would be a constant by Liouville’s theorem. Since f (s) → 1 as
�(s) → ∞, we would get fq−1(s) = 1. By descending induction, we would find that
f (s) is a constant, which was excluded.

Note also that fq(s) is again u.a.p. in some right half-plane. Therefore, by (2)
and (3) we obtain

1 ≤ max(ρ(A); ρ(B)):

On the other hand, if N (r; 0; f ) + N (r;∞; f ) 	 rγ+ε for any fixed ε > 0, we have
max(ρ(A); ρ(B)) ≤ γ. Hence γ ≥ 1, proving what we want.

Remark. A more difficult argument, which we leave to the interested reader, yields
the stronger result that on the hypotheses of the theorem the sum

∑
1=(1 + |ρ|), taken

over all zeros and poles of f (s) counting multiplicities, is divergent. A proof can be
obtained using the rather delicate Cartan’s Lemma, see [5, I.8.Th.11].

It remains an open question whether the conclusion of the theorem holds with
γ = 1, which would be best possible. One can prove

Theorem 2. In addition to the hypotheses of Theorem 1, suppose that f (s) is u.a.p. in some
half plane �(s) < c and f (s) tends to a non-zero finite limit as �(s) → −∞. Then we have

lim
r→+∞

N (r; 0; f ) + N (r;∞; f )
r

> 0:

Proof. Let k ≥ 0. The function g (s) = f (k + s)f (k − s) is meromorphic, of order at
most the order of f (s), and is u.a.p. in some right half-plane. Let again gq(s) = τ qg (s),
where q is larger than the degree of h(s). By (2), we have T (r; gq) � r and ρ(gq) ≥ 1
provided gq(s) is not constant, and we can satisfy this condition by choosing k and ω

appropriately.
On the other hand, gq(s) is even; therefore, we have gq(s) = ψ(s2) for some mero-

morphic function ψ(s). Since T (r; gq) = T (r2;ψ), we have

ρ(ψ) = ρ(gq)=2:

Note also that N (r; a; gq) = N (r2; a;ψ).
If ρ(gq) > 1, we verify as in (3) that ρ(gq) ≤ max(ρ(A); ρ(B)) and we end the proof

as we did for Theorem 1.
If instead ρ(gq) = 1, we obtain ρ(ψ) = 1

2 . By a theorem of R. Nevanlinna (see for
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instance [4, Ch. 4, Th. 4.5]) we deduce

(4) lim
r→+∞

N (r; 0;ψ) + N (r;∞;ψ)
T (r;ψ)

≥ 1
2

:

By (2), we have T (r2;ψ) = T (r; gq) � r ; hence using

N (r2; 0;ψ) + N (r2;∞;ψ) = N (r; 0; gq) + N (r;∞; gq) ≤
≤ 2q+1[N (r + k + q|ω|; 0; f ) +N (r + k + q|ω|;∞; f )

]

and (4) we get Theorem 2.

2. Concluding remarks

A typical example of function f (s) as in Theorem 2 is the quotient of two L-functions
F (s) and G (s) satisfying the same functional equation. In this case, Theorem 2 provides
a lower bound for the cardinality DF;G (T ) of the symmetric difference of the non-trivial
zeros up to T , counted with multiplicity, of such L-functions. In particular, it follows
from Theorem 2 that under the above condition

(5) DF;G (T ) = Ω(T ):

Observe that (5) is obtained using only the function-theoretic properties of F (s) and
G (s), disregarding their arithmetical aspects. This is, in fact, our viewpoint in Theo-
rems 1 and 2. We recall that (5) has been proved by Murty and Murty [6] for any
two distinct L-functions F (s) and G (s) in the framework of the Selberg class [8]. How-
ever, the Selberg class deals only with Dirichlet series satisfying a functional equation
of standard type and certain additional arithmetic conditions, and these conditions are
much more restrictive than those which have been considered here. The better lower
bound

DF;G (T ) � T log T

is expected to hold in the Selberg class, which would be best possible.
We conclude by remarking that our results do not imply any lower bound for the

cardinality D(F; G ; T ) of the asymmetric difference of the non-trivial zeros up to T , i.e.
the excess of zeros of F (s) over those of G (s), counted with multiplicity. In fact, from
our hypotheses we cannot exclude, for example, that F (s) divides G (s). The problem
of the asymmetric difference of zeros is studied in [2], where the best possible lower
bound

D(F; G ; T ) � T log T

is obtained for F (s) and G (s) in a rather general class of L-functions, under some
natural conditions needed to exclude divisibility phenomena and an additional technical
hypothesis on the density of the off-line zeros. This problem has also been recently
investigated in [7] for certain concrete families of L-functions, with the aim of proving
that D(F; G ; T ) → ∞. However, most results in [7] can be obtained as special cases
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of a general result showing that D(F; G ; T ) → ∞ for pairs of L-functions in the
Selberg class satisfying functional equations of the same degree. A proof of such a
result can be obtained by a straightforward analysis of the integral representation of
the n-th coefficient of the Dirichlet series G (s)=F (s), using a formula akin to Landau’s
well-known formula for the Von Mangoldt function Λ(n).
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