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Teoria dei numeri. — Zeros and poles of Dirichlet series. Nota di Enrico Bomsier: e
AvserTo PERELLI, presentata (¥) dal Socio E. Bombieri.

Asstract. — Under certain mild analytic assumptions one obtains a lower bound, essentially of order
7, for the number of zeros and poles of a Dirichlet series in a disk of radius 7. A more precise result is also
obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.

Key worps: - General Dirichlet series; Almost-periodic functions; Nevanlinna theory.

Ruiassunto. — Zeri e poli delle serie di Dirichlet. Sotto ipotesi molto generali di tipo analitico si dimostra
una stima dal basso, essenzialmente di ordine 7, per il numero di zeri e poli di una serie di Dirichlet in un
cerchio di raggio 7. Un risultato pil preciso si ottiene sotto ipotesi piu restrittive.

1. RESuLTS AND PROOFS

For a meromorphic function f(s) in the complex plane, we denote by n(r, a; ) the
number of solutions, counted with multiplicity, of the equation f(s) = # in the disk
|s|] < r, and write as usual

N asf) /r n(t, af) :‘ w0, af) 4+ 70, & f)log 7,

0

- 1 27 N 1
m(r, ﬂ,f)—ﬁ/o log ‘fm’d&;

27
m(r, oo; f) = ZL/ log* [f(r€i0)|d9,
T Jo
T(r, f) = N(r, 005 f) + m(r, oo f).
The order p(f) of f(s) is given by

p(f) = Tlim M_

r—+o0 ogr
By Nevanlinna’s first theorem, we have N(r, a;f) + m(r, a; f) = T(r, ) + O(1) for
every fixed 4. In particular,

(1) T(r,f)>N(r,af)— OQ1).

An analytic function f(s) of the complex variable s is said to be uniformly almost
periodic (briefly, u.a.p.) in a strip & < R(s) < ¢ (b and ¢ may be +o00) if for every
€ > 0 the set of real numbers 7 such that

s+ im)—f)] <e for b<R(G)<c

(*) Nella seduta del 9 febbraio 2001.
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is relatively dense, in other words if for every € > 0 there is an /> 0 such that every
interval of length / contains such a number 7.

It is well known (see for instance [1, Ch. III, Th. 6, Cor.]) that the sum of an
exponential series

f©=> ae"”, A €R
n=1

uniformly convergent in the strip & < R(s) < ¢ is w.a.p. there. An immediate conse-
quence of almost periodicity and uniform convergence in a strip is that if the equation
f(s) = a is soluble in the strip, then it will have infinitely many solutions, and their
imaginary parts will form a relatively dense set; in particular N(r, @;f) > r. This is a
well-known application of Rouché’s Theorem (see for example [3, 6. Theorem]), which
we repeat for reader’s convenience. Let s, be a zero of f(s) — « in the strip. Then there
exists an 7, > 0 such that the circle C = {s5: [s— 5| = 1,} is contained in the strip and
f(s) # a there. Take ¢ to be the minimum of |f(s) — 4| along C. By u.a.p., there is
[ such that every interval of length / contains 7 such that /(s + i7) — f(s)| < ¢ along
C. By Rouché’s Theorem, we deduce that f(s) — @ and f(s 4+ i7) — 2 have the same
number of zeros inside the circle C, proving what we want.
Thus by (1) if f(s) is non-constant and u.a.p. in a strip then

(2) T(r,f)>»r and p(f)>1

as 7 ——+ oo.
We prove the following theorem.

Treorem 1. Let f(s) = ane‘k”’, A, € R, be the sum of an exponential series uniformly
convergent in a half-plane R(s) > b, admitting an analytic continuation in the whole complex
plane as a non-constant meromorphic function of finite order. Suppose also that f (s) tends to a
non-zero finite limit as N(s) =+ oo. Then for any fixed v < 1 we have
— N(r,0; N(r, 003

. (r,0;f) + (rOOf)>O.

lim
r—+oo V’Y

Proor. We may assume that f(s) — 1 as R(s) —+ oo. Since f(s) has finite order,
we can write

A 4
f(f) = m e,

where A(s) and B(s) are the Weierstrass products associated to the zeros and poles of
f(s), and where A(s) is a polynomial. The degree of /(s) and the orders of the entire
functions A(s) and B(s) do not exceed the order of f(s).

Let w > 0 and let 7 be the operator

7f(s) = £ () /f (s + w).
Then if ¢ is an integer greater than the degree of A(s) we have

Z0
{0 =70 = g5
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because /(s) has degree at most g— 1 and hence its finite difference of order ¢ vanishes.
In particular,

®3) p(f;) < max(p(A) , p(B)).

Next, we verify that f[;(s) is not constant. Otherwise we would have fq(s) = 1 identically
and since f[;(s) :fq‘—l(‘y)/f,;—l(‘y + w) the function ]271(5) would be periodic, with period
w. But ]271(5) is bounded for R(s) sufficiently large, hence ]271(5) would be bounded
everywhere and it would be a constant by Liouville’s theorem. Since f(s) — 1 as
R(s) — oo, we would get ]2 _,() = 1. By descending induction, we would find that
f(s) is a constant, which was excluded.

Note also that f; (s) is again w.a.p. in some right half-plane. Therefore, by (2)
and (3) we obtain

1 < max(p(4) , p(B).

On the other hand, if N(r, 0;f) + N(r, 00;f) < r'*° for any fixed € > 0, we have
max(p(A4), p(B)) <. Hence v > 1, proving what we want. O

Remark. A more difficult argument, which we leave to the interested reader, yields
the stronger result that on the hypotheses of the theorem the sum Y 1/(1 + |p|), taken
over all zeros and poles of f(s) counting multiplicities, is divergent. A proof can be
obtained using the rather delicate Cartan’s Lemma, see [5, 1.8. Th.11].

It remains an open question whether the conclusion of the theorem holds with
~v = 1, which would be best possible. One can prove

THeOREM 2. [nn addition to the hypotheses of Theorem 1, suppose that f(s) is w.a.p. in some
half plane R(s) < c and [(s) tends to a non-zero finite limit as R(s) — —oo. Then we have
— N, 0;f) + N(r, 005 f) > 0.

lim
r——+oo 7

Proor. Let £ > 0. The function g(s) = /(£ + s)f (£—s) is meromorphic, of order at
most the order of £(s), and is u.a.p. in some right half-plane. Let again gq(s) =T1g(s),
where g is larger than the degree of A(s). By (2), we have T'(r, gq) > r and p(gq) >1
provided g (s) is not constant, and we can satisfy this condition by choosing 4 and w
appropriately.

On the other hand, ¢ q(s) is even; therefore, we have ¢ q(:) = 1(s*) for some mero-

morphic function 9 (s). Since 7'(r, gq) = T(*, 1), we have
p() = plg,)/2.

Note also that N(r, 4 gq) = NG, z;10).

If p(gq) > 1, we verify as in (3) that p(gq) < max(p(4) , p(B)) and we end the proof
as we did for Theorem 1.

If instead p(gq) =1, we obtain p(1)) = J. By a theorem of R. Nevanlinna (see for
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instance [4, Ch. 4, Th. 4.5]) we deduce

= N(r,0;9) + N(r, c0;v) _ 1
) Jim ACRD) =

By (2), we have TG*,¢) = T(r, gq) > r; hence using

NG, 09) + NG, 0031p) = N(r, 0;g,) + N(r,005g) <
<27 N(r+ k4 glwl|, 0 1) +N(r + k + glw| , 005 f)]
and (4) we get Theorem 2. O

2. CONCLUDING REMARKS

A typical example of function f'(s) as in Theorem 2 is the quotient of two L-functions
F(s) and G(s) satisfying the same functional equation. In this case, Theorem 2 provides
a lower bound for the cardinality D, (7)) of the symmetric difference of the non-trivial
zeros up to 7', counted with multiplicity, of such L-functions. In particular, it follows
from Theorem 2 that under the above condition

©) Dy o(T) = UT).

Observe that (5) is obtained using only the function-theoretic properties of F(s) and
G(s), disregarding their arithmetical aspects. This is, in fact, our viewpoint in Theo-
rems 1 and 2. We recall that (5) has been proved by Murty and Murty [6] for any
two distinct L-functions F(s) and G(s) in the framework of the Selberg class [8]. How-
ever, the Selberg class deals only with Dirichlet series satisfying a functional equation
of standard type and certain additional arithmetic conditions, and these conditions are
much more restrictive than those which have been considered here. The better lower

bound
Dy (T)> Tlog T

is expected to hold in the Selberg class, which would be best possible.

We conclude by remarking that our results do not imply any lower bound for the
cardinality D(F, G; T)) of the asymmetric difference of the non-trivial zeros up to 7, i.e.
the excess of zeros of F(s) over those of G(s), counted with multiplicity. In fact, from
our hypotheses we cannot exclude, for example, that F(s) divides G(s). The problem
of the asymmetric difference of zeros is studied in [2], where the best possible lower

bound
D(F, G;T)>» Tlog T

is obtained for F(s) and G(s) in a rather general class of L-functions, under some
natural conditions needed to exclude divisibility phenomena and an additional technical
hypothesis on the density of the off-line zeros. This problem has also been recently
investigated in [7] for certain concrete families of Z-functions, with the aim of proving
that D(F, G5 T) — oo. However, most results in [7] can be obtained as special cases
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of a general result showing that D(F, G;7) — oo for pairs of L-functions in the
Selberg class satisfying functional equations of the same degree. A proof of such a
result can be obtained by a straightforward analysis of the integral representation of
the n-th coefficient of the Dirichlet series G(s)/F(s), using a formula akin to Landau’s
well-known formula for the Von Mangoldt function A(n).
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