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Analisi numerica. — Estimates of deviations from exact solutions of initial-boundary
value problem for the heat equation. Nota di Sergey Repin, presentata (*) dal Socio O.A.
Ladyzhenskaya.

Abstract. — The paper is concerned with deriving functionals that give upper bounds of the difference
between the exact solution of the initial-boundary value problem for the heat equation and any admissible
function from the functional class naturally associated with this problem. These bounds are given by
nonegative functionals called deviation majorants, which vanish only if the function and exact solution
coincide. The deviation majorants pose a new type of a posteriori estimates that can be used in numerical
analysis. Also, the estimates formed by such majorants can be viewed as a certain extension of well known
«energy» estimates for solutions of parabolic type problems (see [1]).

Key words: Parabolic equations; Deviations from exact solution; A posteriori estimates.

Riassunto. — Stime delle deviazioni dalle soluzioni esatte per il problema di Cauchy-Dirichlet relativo
all’equazione del calore. Questa Nota è rivolta allo studio di funzionali che stabiliscono limiti superiori per
la differenza tra soluzioni esatte del problema di Cauchy-Dirichlet per l’equazione del calore e qualsiasi
funzione ammissibile nella classe associata in modo naturale a questo problema. Tali limiti sono espressi da
funzionali non negativi, detti maggioranti di deviazione, che si annullano solo se la funzione coincide con
la soluzione esatta. I maggioranti di deviazione pongono un nuovo tipo di stime a posteriori che possono
essere utili nell’analisi numerica. Le stime date da questi maggioranti possono inoltre essere considerate
come prolungamenti di stime dell’energia ben note per la soluzione di problemi di tipo parabolico (vedi [1]).

0. Introduction

Assume that u ∈ V is a solution of a certain boundary-value or initial-boundary
value problem, V is a proper functional space v ∈ V is a given function, which is
compared with u. Finding computable and effective estimates of the quantity ‖u − v‖,
where ‖ · ‖ is the respective norm, presents an important task from many viewpoints.

If v is an approximate solution, then such an estimate can be used for the explicit
control of approximation errors and, therefore, presents a special interest for the nu-
merical analysis. By evident reasons, it is called an a posteriori error estimate. In last
decades, a posteriori estimates were intensively investigated by many authors (see, e.g.
[2-4] and the references therein). If it is assumed that v = vk , where vk is the Galerkin
approximation found for a subspace Vk ⊂ V , then one can obtain the required estimate
by using the Galerkin orthogonality condition. In the literature, this method is known
as the «residual method». The general form of the residual type error estimates is as
follows

(0.1) ‖u − uk‖ ≤ M (uk; c1; c2; : : : ; cN ;D);

(*) Nella seduta del 10 maggio 2002.
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where D denotes the set of given data (i.e. boundary conditions, coefficients etc.) and
ci; i = 1; 2; : : : ; N are the so-called interpolation constants that depend on properties
of a special type interpolation operator acting from V to Vk (see [5]). The number
N depends on the dimension of Vk and may be rather large. Note that finding the
collection of sharp constants ci presents a special and often not an easy problem (see,
e.g., [6]). For parabolic type problems such estimates also include the so-called stability
constants that characterize stability of the initial-boundary value problem (see, e.g., [7]).
Estimates (0.1) are widely used in computational practice for indication of errors and
subsequent mesh refinement. However, there is a restriction on the applicability of these
estimates that originates from the method of their deriving: the estimates are valid only
for exact solutions of the respective finite dimensional problems.

However, in many cases it is very desirable to have estimates of deviation from exact
solution that are valid for any function v from a wide class of admissible functions and
does not require an information on how this function was obtained. In other words,
the case in point is deriving functional type a posteriori estimates. The general form of
a functional type a posteriori error estimate is

(0.2) ‖u − v‖ ≤ M(v; CΩ;D); ’v ∈ V;

where CΩ is a constant (or several constants) depending on the domain Ω considered
in the problem. Usually, CΩ is formed by constants in embedding estimates associated
with basic spaces of functions defined on Ω. The functional M is natural to call the
majorant of deviation from exact solution or shortly the deviation majorant. It must be
continuous with respect to v, vanish if v = u and be practically computable for any
v ∈ V . Evidently, (0.2) should in a certain way generalize the estimate of ‖u‖ known
in the theory of partial differential equations (see, e.g., [1, 8]).

For elliptic boundary-value problems, majorants of type (0.2) were obtained in [9,
10] (and in some other papers cited therein). These papers are focused on convex
variational problems and attracts general methods of the functional analysis and calculus
of variations for deriving a posteriori error majorants. Their practical performance was
investigated in [11]. In [12], they were used for estimating the accuracy of 2-D models
in 3-D elasticity theory. In [13], two-sided estimates of deviations from exact solutions
of elliptic type problems were obtained. For this purpose, two methods – variational
and nonvariational – were used. The variational method is based on the analysis of
the variational formulation of problem in question and the nonvariational one – on
the analysis of the integral identity. The idea that majorants of deviations can be
also obtained by analyzing integral identities was proposed by O. Ladyzhenskaya in the
process of discussing the results of the author earlier obtained by variational techniques.
In [13], both methods were analyzed and compared. It was stated that for linear elliptic
equations they lead to the identical forms of majorants and minorants. In general, areas
of applicability of the two methods are different. From one hand, it is clear that
the variational method cannot be used if a problem has no variational form. From
another hand, there are nonlinear problems having a variational form where using dual
variational formulations is very useful (see, e.g., [14]).
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In this paper, deviation estimates are obtained for the initial-boundary value problem
associated with the heat equation, which presents a typical problem of parabolic type.
This problem has no variational form, so that the method is based upon integral identity.
It is interesting, that the resulting majorants (see Theorems 2 and 3) are functionals of
some new variational problems whose lower bounds give upper bounds of the deviation.
They can be used for a posteriori control of errors of approximate solutions obtained
by various numerical methods.

Results of the paper can be viewed as a step on the way to solving the general
problem on finding computable majorants of deviations for nonvariational problems
that was stated as a goal by O. Ladyzhenskaya.

1. Statement of the problem and main results

Let Ω be an open, connected and bounded domain in Rn with Lipschitz continuous
boundary @Ω, QT := Ω × (0; T ), and ST := @Ω × [0; T ]. By ‖ · ‖2;Ω and ‖ · ‖2;QT

we denote L2-norms of functions defined on Ω and QT , respectively. By L2;1(QT ), we

denote the space of functions g ∈ L1(QT ) such that the quantity
∫ T

0 ‖g (·; t )‖2:Ωdt is
finite. Also, we use the space W ∆;1

2;0 (QT ) that consists of functions w ∈ L2(QT ) having
finite norm

‖w‖∆;1
2;0 :=

∫

QT

(w2 + w2
t +| ∇w |2+ (∆w)2) dx dt

and vanishing on ST . Other subsequently used spaces are as follows: the Hilbert spaces

W 1;0
2 (QT ) := L2((0; T ); W 1

2 (Ω));
◦

W 1;0
2 (QT ) := L2((0; T );

◦
W 1

2(Ω));

the space

W 1
2;0(QT ) := {v ∈ W 1

2 (QT ) | v(x; t ) = 0 on ST }

and the space V2(QT ), which is the Banach space of functions from W 1;0
2 (QT ) having

finite norm

|||w|||2 := vrai max
t∈(0;T )

‖w(·; t )‖2
2;Ω + ‖∇w‖2

2;QT
:

Here, and later on the symbol := means «equals by definition». The space

V 1;0
2 (QT ) = C ([0; T ]; L2(Ω)) ∩ W 1;0

2 (QT )

is a subspace of V2(QT ). For all t ∈ [0; T ], elements of this space have traces from
L2(Ω) on cross-sections of QT that continuously change with respect to t ∈ [0; T ]. By
◦

V 1;0
2 (QT ) we denote another subspace of V2(QT ), which is the intersection of V 1;0

2 (QT )

and
◦

W 1;0
2 (QT ).

In addition, for elements of the space V 1;0
2 (QT ) we define the quantity

[[[w]]]2
(γ;δ) := γ‖w(·; T )‖2

2;Ω + δ‖∇w‖2
2;QT

:
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The energy norm ||| · ||| and the above quantity will be used as a measure of the difference
between the exact solution and its approximation.

Consider the classical initial-boundary value problem for the heat equation: find
u(x; t ) such that

Lu = f in QT(1.1)

u(x; 0) = ϕ(x); x ∈ Ω(1.2)

u(x; t ) = 0; (x; t ) ∈ ST ;(1.3)

where

(1.4) Lu := ut − ∆u :

In the framework of the well-known existence theory for the parabolic type problems

(see, e.g., [1]), the function u ∈
◦

V 1;0
2 (QT ) is called a (generalized) solution of (1.1)-(1.3)

if it satisfies the following integral identity:

(1.5)

∫

QT

∇u · ∇η dx dt −
∫

QT

uηt dx dt +

∫

Ω

(u(x; T )η(x; T ) − u(x; 0)η(x; 0))dx =

=

∫

QT

f η dx dt ’ η ∈ W 1
2;0(QT ):

We recall the classical solvability results (see, e.g., [1, 8]) for this problem.

Theorem 1. Let Ω be a bounded connected domain with Lipschitz continuous boundary @Ω.

(i) Let f ∈ L2(QT ) and φ(x) ∈
◦

W 1
2(Ω). Then problem (1:1)-(1:3) is uniquely solvable in

the space W ∆;1
2;0 (QT ).

(ii) If f ∈ L2;1(QT ) and φ ∈ L2(Ω) then u belongs to the class
◦

V 1;0
2 (QT ).

Assume that the conditions (i) of Theorem 1 hold, so that the solution u exists

in both spaces W ∆;1
2;0 (QT ) and

◦
V 1;0

2 (QT ). Let v ∈ W 1
2;0(QT ) be a given function. In

particular, v can be an approximation of u obtained by a certain numerical procedure.
We are interested in deriving an upper bound of the deviation ũ := u − v evaluated in
the norm ||| · ||| (or in terms of the quantity [[[ · ]]](γ;δ)). Hereafter, such an upper bound is
called the deviation majorant. The majorants derived are presented by Theorems 2 and
3 below. Theorem 3 shows that the majorant is equivalent to a cerain measure of the
deviation.

2. First form of the deviation majorant

2.1. The energy-balance equation for deviations.

Assume that

(2.1) f ∈ L2(QT ); φ ∈
◦

W 1
2(Ω):
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In this case, u ∈ W ∆;1
2;0 (QT ). Let the function v compared with u be such that

(2.2) v ∈ W 1
2;0(QT ):

From (1.5) we obtain
∫

QT

∇ũ · ∇η dx dt −
∫

QT

ũηt dx dt +

∫

Ω

(ũ (x; T )η(x; T ) − ũ (x; 0)η(x; 0)) dx =

=

∫

QT

(f η −∇v · ∇η − vtη) dx dt ’ η ∈ W 1
2;0(QT ):

Set η = ũ and note that

−
∫

QT

ũ ũ t dx dt +

∫

Ω

| ũ (x; T ) |2 dx−
∫

Ω

| ũ (x; 0) |2 dx =
1
2
‖ũ (·; T )‖2

2;Ω−
1
2
‖ũ (·; 0)‖2

2;Ω:

This gives the integral relation

(2.3) ‖∇ũ‖2
2;QT

+
1
2
‖ũ (·; T )‖2

2;Ω =

∫

QT

(f ũ −∇v · ∇ũ −vt ũ )dxdt +
1
2
‖ũ (·; 0)‖2

2;Ω

that presents the energy-balance in terms of deviations. The relation (2.3) can be
considered as a generalization of the well-known energy-balance equation for the heat
equation (see, e.g. [8]). It is easy to see that the classical energy-balance equation
follows from (2.3) if set v ≡ 0. Subsequently, we use (2.3) as a starting point for
deriving majorants of v − u.

2.2. General estimate.

Introduce a new vector-valued function y∗(x; t ) ∈ Y ∗(QT ), where

Y ∗(QT ) :=
{

y∗(x; t ) = {y∗
i (x; t )} | y∗

i ∈ L2(QT ); i = 1; 2; : : : ; n
}

and rearrange (2.3) as follows:

(2.4)

‖∇ũ‖2
QT

+
1
2
‖ũ (·; T )‖2

2;Ω − 1
2
‖ũ (·; 0)‖2

2;Ω =

=

∫

QT

(f ũ − vt ũ − y∗ · ∇ũ ) dx dt +

∫

QT

(y∗ −∇v) · ∇ũ dx dt:

For almost all t ∈ [0; T ], we can define the linear functional

Ft ( · ; v; y∗) :
◦

W 1
2(Ω) → R

by the relation

Ft (η; v; y∗) :=
∫

Ω

(
f η − vtη − y∗ · ∇η

)
dx:
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The quantity

[[[]]]Ft (v; y∗)[[[]]]Ω := sup
η∈

◦
W 1

2(Ω)
η �=0

∫
Ω

(
f η − vtη − y∗ · ∇η

)
dx

‖∇η‖2;Ω

is evidently finite for almost all t ∈ [0; T ], and can be viewed as the norm of this
functional. Moreover,

[[[]]]Ft (v; y∗)[[[]]]Ω ≤ CΩ

(
‖f (·; t )‖2;Ω + ‖vt (·; t )‖2;Ω

)
+ ‖y∗(·; t )‖2;Ω;

where CΩ is a constant in the Friedrichs-Poincaré inequality. Therefore, the quantity
[[[]]]Ft (v; y∗)[[[]]]Ω is square integrable on (0; T ).

Now, we rewrite (2.4) as follows:

(2.5) ‖∇ũ‖2
QT

+
1
2
‖ũ (·;T )‖2

2;Ω−
1
2
‖ũ (·;0)‖2

2;Ω =

T∫

0

Ft (ũ ;v;y∗)dt +

∫

QT

(y∗−∇v)·∇ũ dx dt:

Let δ and µ be two given constants such that

(2.6) 0 < δ ≤ 2; 0 < µ < 1 :

Define the set

Bµ(0; T ) := {β(t ) ∈ L∞(0; T ) | β(t ) ≥ µ for almost all t ∈ (0; T )}:

Take two scalar-valued functions α1(t ) and α2(t ), such that

(2.7) α1(t ) =
1
δ

(
1 +

1
β(t )

)
; α2(t ) =

1
δ

(1 + β(t )) :

In virtue of the Young-Fenchel inequality, we have

T∫

0

Ft (ũ; v; y∗)dt ≤
T∫

0

(
α1(t )

2
[[[]]]Ft (v; y∗)[[[]]]2

Ω +
1

2α1(t )
‖∇(ũ )‖2

2;Ω

)
dt

∫

QT

(∇v − y∗) · ∇ũ dx dt ≤
T∫

0

(
α2(t )

2
‖∇v − y∗‖2

2;Ω +
1

2α2(t )
‖∇(ũ )‖2

2;Ω

)
dt:

Note that α1(t ) and α2(t ) satisfy the relation

1
α1(t )

+
1

α2(t )
= δ :

Now, (2.5) and above inequalities imply the estimate

(2.8) (2 − δ)‖∇ũ‖2
2;QT

+ ‖ũ (·; T )‖2
2;Ω ≤ Mδ(v; y∗;β);
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whose right-hand side is the functional

(2.9)

Mδ(v; y∗;β) := ‖v(·; 0) − φ‖2
2;Ω +

+
1
δ

T∫

0

(
(1 + β)‖y∗ −∇v‖2

2;Ω +

(
1 +

1
β

)
[[[]]]Ft (v; y∗)[[[]]]2

Ω

)
dt :

This estimate is valid for any β(t ) ∈ Bµ(0; T ) and δ ∈ (0; 2].

It is not difficult to see that Mδ(v; y∗;β) vanishes if and only if

Ft (· ; v; y∗) = 0 for almost all t ∈ (0; T );

y∗ = ∇v a.e. in QT ;

v(0; x) = φ(x) for a.e. x ∈ Ω:

Such a situation arises if v coincides with generalized solution of problem (1.1)-(1.3)
and, therefore, ũ = 0 (so that (2.8) holds as equality).

2.3. Majorants of the deviation.

The functional Mδ(v; y∗;β) involve only quadratic terms. It gives upper bounds
for various measures of the deviation ũ . For example, if set δ = 1 and δ = 2, then
(2.8) respectively implies the following two estimates:

‖∇ũ‖2
2;QT

≤ M1(v; y∗;β);(2.10)

max
t∈[0;T ]

‖ũ (·; t )‖2
2;Ω ≤ M2(v; y∗;β);(2.11)

where the functions β(t ) ∈ Bµ(0; T ) and y∗(x; t ) ∈ Y ∗(QT ) may be taken arbitrary.

To make these estimates computationally attractive, we should replace the norm of
Ft by an explicitly computable quantity. This can be done if take y∗ in a certain
subspace of Y ∗(QT ). Namely, assume that

(2.12) y∗ ∈ Y ∗
div(QT ) := {y∗ ∈ Y ∗(QT ) | divy∗ ∈ L2(QT )}:

Then, for almost all t ∈ (0; T ),
∫

Ω

ũ (x; t )divy∗(x; t ) dx = −
∫

Ω

y∗(x; t ) · ∇ũ (x; t ) dx

and we have

(2.13) [[[]]]Ft (v; y∗)[[[]]]Ω ≤ CΩ

∫

Ω

| f − vt + divy∗ |2 dx:
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Therefore, the functional

(2.14)

M̂
δ
(v; y∗;β) :=

∫

Ω

|v(x; 0) − φ(x)|2 dx +

+
1
δ

∫

QT

(
(1 + β)|y∗ −∇v|2 + C 2

Ω

(
1 +

1
β

)
|f − vt + divy∗|2

)
dxdt

gives an upper bound of Mδ(v; y∗;β) if y∗ ∈ Y ∗
div(Ω).

Theorem 2. Let the conditions (2:1) and (2:2) be satisfied. Then
(i) For any β ∈ Bµ(0; T ) and y∗ ∈ Y ∗

div(QT ) the estimates

‖∇ũ‖2
2;QT

≤ M̂1(v; y∗;β);(2.15)

max
t∈[0;T ]

‖ũ (·; t )‖2
2;Ω ≤ M̂2(v; y∗;β)(2.16)

hold.
(ii) For any δ ∈ (0; 2] and β ∈ Bµ(0; T ) the variational problem

(2.17) inf
v∈W 1

2;0(QT )
y∗∈Y ∗

div(QT )

M̂δ(v; y∗;β)

has a solution. The exact lower bound of this problem is equal to zero and is attained if and only
if v = u and y∗ = ∇u.

Proof. (i) Estimates (2.15) and (2.16) follow from (2.10) and (2.11).
(ii) Existence of the pair (v; y∗) ∈ W 1

2;0(QT ) × Y ∗
div(QT ) minimizing the functional

M̂δ(v; y∗;β) is proved straightforwardly. Really, set v = u and y∗ = ∇u. Since
u ∈ W ∆;1

2;1 , we see that div∇u ∈ L2(QT ) and, therefore, y∗ ∈ Y ∗
div(QT ). In this case,

Mδ(v; y∗;β) = 0, so that the exact lower bound is attained.
Assume that Mδ(v; y∗;β) = 0. This means that the function v(x; t ) satisfies the

initial and boundary conditions and, also, that for almost all (x; t ) ∈ QT the relations

∇v = y∗ ∈ Y ∗
div(QT );(2.18)

div y∗ − vt + f = 0(2.19)

hold. They mean that v is the exact solution of problem considered. Indeed, (2.19)
implies
∫

QT

(vηt − y∗ · ∇η) dx dt −
∫

Ω

v(x; T )η(x; T )dx +

∫

Ω

v(x; 0)η(x; 0)dx +

+

∫

QT

f η dx dt = 0 ’ η ∈ W 1
2;0(QT ):

In view of (2.18), this relation is equivalent to the integral identity (1.5). Hence, we
conclude that v = u.
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Corollary 1. By (2:15) and (2:16) we can estimate the deviation ũ in the «energy» norm
as follows

(2.20) |||ũ |||2 ≤ M̂1(v; y∗;β) + M̂2(v; y∗;β) :

Also, by (2:8) we obtain

(2.21) [[[ũ]]]2
(1;δ′) ≤ M̂

δ
(v; y∗;β); δ′ = 2 − δ :

Remark 1. The majorant M̂δ(v; y∗;β) is defined if v ∈ W 1
2;0(QT ), f ∈ L2(QT ),

v(x; 0) ∈ L2(Ω), and φ(x) ∈ L2(Ω). It is possible to extend estimates (2.15), (2.16),
(2.20), and (2.21) to a wider set of functions by arguments close to those used in [8,
Chapter 2, §2].

Remark 2. The majorants Mδ and M̂δ yield various estimates of type (0.2). For
example, take y∗ = ∇v in Mδ and y∗ = R∇v in M̂δ, where R : Y ∗(QT ) → Y ∗

div(QT ) is
a smoothing operator (computationally inexpensive operators of such a type are known
in the numerical analysis). Then the quantity Mδ(v;∇v;β) or M̂δ(v;R∇v;β) form
the right-hand side of (0.2) provided that δ and β lies in the admissible sets.

3. Second form of the deviation majorant

3.1. General estimate.

Now we reform the right-hand side of (2.4) by other means. Present the right-hand
side of this relation as sum of three terms, which are

I1 =

∫

QT

(
f ũ − vt ũ − wt ũ − y∗ · ∇ũ

)
dxdt;

I2 =

∫

QT

(
y∗ −∇v + ∇w

)
· ∇ũ dxdt;

I3 =

∫

QT

(
wt ũ −∇w · ∇ũ

)
dxdt :

Here, y∗ ∈ Y ∗(QT ) and w ∈ W 1
2;0(QT ) are arbitrary functions (later we discuss how to

chose these functions in order to obtain rigorous estimates).

For almost all t ∈ (0; T ), we define the linear functional

Ft ( · ; v; w; y∗) :
◦

W 1
2(Ω) → R

by the relation

Ft (η; v; w; y∗) :=
∫

Ω

(
f η − vtη − wtη − y∗ · ∇η

)
dx :
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It is easy to see that the quantity

[[[]]]Ft (v; w; y∗)[[[]]]Ω := sup
η∈

◦
W 1

2(Ω);
η �=0

∫
Ω

(
f η − vtη − wtη − y∗ · ∇η

)
dx

‖∇η‖2;Ω

is finite for almost all t ∈ [0; T ] and can be considered as a norm of this functional.
The terms I1 and I2 are estimated by the same method as has been used in the

previous section. In view of (1.5), we have

I3 = L(v; w) +

∫

Ω

(ũ (x; T )w(x; T ) − ũ (x; 0)w(x; 0)) dx;

where
L(v; w) :=

∫

QT

(
∇v · ∇w + vt w − fw

)
dx dt :

By following the lines of the previous section, we deduce the general estimate

(3.1)

(2 − δ)‖∇ũ‖2
QT

+

(
1 − 1

γ

)
‖ũ (·; T )‖2

2;Ω ≤ γ‖w(·; T )‖2
2;Ω +

+
1
δ

T∫

0

(
(1 + β)‖y∗ −∇v + ∇w‖2

2;Ω +

(
1 +

1
β

)
[[[]]]Ft (v; w; y∗)[[[]]]2

Ω

)
dt +

+ 2L(v; w) +

∫

Ω

(
|φ(x) − v(x; 0)|2 − 2w(x; 0)(φ(x) − v(x; 0))

)
dx;

which is valid for any

w(x; t ) ∈ W 1
2;0(QT );(3.2)

y∗ ∈ Y ∗(QT );(3.3)

β(t ) ∈ Bµ(0; T );(3.4)

γ ≥ 1; δ ∈ (0; 2]:(3.5)

As in the previous section, we find a majorant of the right-hand side of this estimate
provided that

(3.6) y∗ ∈ Y ∗
div(QT ):

This majorant is given by the functional

M̂γδ(v; w; y∗;β) := γ‖w(·; T )‖2
2;Ω +

+
1
δ

T∫

0

(
(1+β)‖y∗−∇v + ∇w‖2

2;Ω +
C 2

Ω(1 + β)
β

‖f − vt − wt + divy∗‖2
2;Ω

)
dt +

+ 2L(v; w) +

∫

Ω

(
|φ(x) − v(x; 0)|2 − 2w(x; 0)(φ(x) − v(x; 0))

)
dx :
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The theorem below states important properties of the quadratic functional M̂
γδ

(v;w;y∗;β).

Theorem 3. Let the conditions (2:1); (2:2), and (3:5) be satisfied. Then
(i) For any β, w and y∗ subject to the conditions (3:2); (3:4), and (3:6) the estimates

‖∇ũ‖2
2;QT

≤ M̂1(v; w; y∗;β);(3.7)

max
t∈[0;T ]

‖ũ (·; t )‖2
2;Ω ≤ M̂2(v; w; y∗;β)(3.8)

hold.
(ii) For any and β ∈ Bµ(0; T ), the variational problem

(3.9) inf
v∈W 1

2;0(QT )

w∈W 1
2;0(QT )

y∗∈Y ∗
div(QT )

M̂γδ(v; w; y∗;β)

has a solution. The exact lower bound of this problem is equal to zero and is attained if v = u,
w = 0 and y∗ = ∇u.

Proof. Estimates (3.7) and (3.8) directly follow from (3.1).

Since M̂γδ(v; w; y∗;β) > 0 and M̂γδ(u; 0;∇u;β) = 0, we see that (u; 0;∇u)
is a minimizer.

3.2. Equivalence of the deviation and majorant.

Let us now focus on another property of the majorant. Assume that v is a given
approximation of u. From (3.1), we find that the estimate

(3.10) [[[ũ]]]2
(γ′;δ′) ≤ M̂γδ(v; w; y∗;β); γ′ = 1 − 1

γ
; δ′ = 2 − δ

holds for any β ∈ Bµ(0; T ), w ∈ W 1
2;0(QT ), and y∗ ∈ Y ∗

div(QT ). However, to obtain a
rigorous upper bound one should minimize the majorant over the above defined sets.
This procedure gives the quantity

M̂⊕
γδ

(v) := inf
β∈Bµ(0;T )

w∈W 1
2;0(QT )

y∗∈Y ∗
div(QT )

M̂
γδ

(v; w; y∗;β);

which is the desired upper bound. We are aimed to show that this bound is realistic,
i.e. it does not lead to large overestimation of the actual value of the deviation. Since
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u ∈ W ∆;1
2;0 (QT ), we may set y∗ = ∇u ∈ Y ∗

div(QT ). Then

M⊕
γδ

(v) ≤ M̂
γδ

(v; u − v;∇u;β) =
4
δ

T∫

0

(1 + β)‖∇ũ‖2
2;Ω dt +

+ γ‖ũ (·; T )‖2
2;Ω − 2

∫

QT

(|∇ũ |2 + ũ t ũ )dxdt +

+ 2
∫

QT

(∇u · ∇(u − v) + ut (u − v) − f (u − v))dxdt +

− ‖φ− v(·; 0)‖2
2;Ω =

T∫

0

(
4

1 + β

δ
− 2

)
‖∇ũ‖2

2;Ω dt +

+ (γ − 1)‖ũ (·; T )‖2
2;Ω + ‖ũ (·; 0)‖2

2;Ω − ‖φ− v(·; 0)‖2
2;Ω:

Hence, we obtain

M̂⊕
γδ(v) ≤ 2

δ
(δ′ + 2µ)‖∇ũ‖2

2;QT
+ (γ − 1)‖ũ (·; T )‖2

2;Ω:

Thus, for any v ∈ W 1
2;0(QT ),

(3.11) [[[u − v]]]2
(γ′;δ′) ≤ M̂⊕

γδ
(v) ≤ [[[u − v]]]2

(γ′′;δ′′) ;

where δ′′ = 2
δ
(δ′ + 2µ) and γ′′ = γ − 1. This relation means that the quantity M⊕

γδ(v)
is equivalent to a certain measure of deviation ũ . In particular, if set δ = 1 and γ = 1,
then this double inequality comes in the form

‖∇(u − v)‖2
2;QT

≤ M̂⊕
1;1(v) ≤ 2(1 + 2µ)‖∇(u − v)‖2

2;QT
;

which shows that M̂⊕
1;1(v) is equivalent to a certain measure of deviation.

3.3. On the justification of the method of Runge.

Finally, we briefly comment on possible applications of the estimates derived. In the
numerical analysis, it is widely used a heuristic method originally proposed for ordinary
differential equations by C. Runge. In this method, the accuracy of an approximate
solution obtained on the mesh with mesh-size H is controlled by comparing it with
another solution obtained on a finer mesh h (e.g. h = H=2). Subsequently, such a
heuristic approach was often applied to partial differential equations solved by finite
difference or finite element methods. The estimates obtained in this paper provide a
quantitative basis for the method of Runge. Really, let UT H be an approximate solution
of the heat equation computed on the mesh with mesh-size T for time variable and H
for spatial variables. Let u

τh be another approximate solution computed on a finer mesh
(τ; h). Then, estimates (2.15), (2.16), (2.20), (2.21), (3.7), (3.8), (3.10), and (3.11)
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can be directly used for measuring computational errors. For example, by applying the
estimates (2.21) and (3.10), we obtain

[[[u − UT H ]]]2
(1;δ′) ≤ M̂

δ
(UT H ; R(∇u

τh); β);(3.12)

[[[u − UT H ]]]2
(γ′;δ′) ≤ M̂

γδ
(UT H ; u

τh − UT H ; R(∇u
τh); β);(3.13)

where R is an appropriate smoothing operator mapping vector-valued functions to
Y ∗

div(QT ). To make these estimates sharper one may minimize their right-hand sides
with respect to β ∈ Bµ(0; T ) by using a suitable minimization procedure.
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