Rendiconti Lincei Matematica E Applicazioni

Enrico Bombieri, Umberto Zannier
A Note on squares in arithmetic progressions, II
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 13 (2002), n.2, p. 69-75.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2002_9_13_2_69_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://ww.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2002.

Teoria dei numeri. - A Note on squares in arithmetic progressions, II. Nota di Enrico Bombieri e Umberto Zannier, presentata (*) dal Socio E. Bombieri.

Авstract. - We show that the number of squares in an arithmetic progression of length N is at most $c_{1} N^{3 / 5}(\log N)^{c_{2}}$, for certain absolute positive constants c_{1}, c_{2}. This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent $\frac{2}{3}$ in place of our $\frac{3}{5}$. The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus 5 as in [1].

Key words: Diophantine equations; Elliptic curves; Arithmetic progressions.

Riassunto. - Una Nota sul numero di quadrati in una progressione aritmetica, II. Si dimostra che il numero di quadrati in una progressione aritmetica di lunghezza N non supera $c_{1} N^{3 / 5}(\log N)^{c_{2}}$, per due costanti positive assolute c_{1}, c_{2}. Questo teorema migliora il precedente risultato di Bombieri, Granville e Pintz [1], dove si aveva l'esponente $\frac{2}{3}$ al posto del nuovo esponente $\frac{3}{5}$. La dimostrazione si basa sulle idee introdotte in [1], con una importante semplificazione ottenuta lavorando con curve ellittiche invece che con curve di genere 5 come in [1].

1. The main result

Let $Q(N ; q, a)$ denote the number of squares in the arithmetic progression $q n+a$, $n=1,2, \ldots, N$, and let $Q(N)$ be the maximum of $Q(N ; q, a)$ over all non-trivial arithmetic progressions $q n+a$. Rudin conjectured that $Q(N)=O(\sqrt{N})$, and it is quite likely that $Q(N) \sim \sqrt{\frac{8}{3}} N$ as N tends to ∞. The most optimistic conjecture is that $Q(N)=Q(N ; 24,-23)$ for every sufficiently large N. We refer to [1] for a discussion of Rudin's conjecture and evidence for these bounds.

The bound $Q(N)=o(N)$ follows, as observed by Szemerédi [2], from Szemerédi's theorem on arithmetic progressions (in this case, length 4 suffices) and Euler's result, already stated by Fermat in 1640, that no four squares can form an arithmetic progression. The main result of [1] states that $Q(N) \leq c N^{2 / 3}(\log N)^{c^{\prime}}$ for two positive absolute, and computable, constants c, c^{\prime} and represents a substantial improvement over the qualitative bound obtained through the use of Szemerédi's theorem.

In this paper we prove
Theorem 1. We have $Q(N) \leq c_{1} N^{3 / 5}(\log N)^{c_{2}}$ for two positive absolute, and computable, constants c_{1}, c_{2}.

2. First reductions and lemmas

We begin by stating certain elementary reductions which restrict the ranges to be considered for q and a, referring to [1] for the easy proofs.

First of all, there is no loss of generality in assuming that q and a are coprime [1, p. 371], and moreover we need only consider the case in which q is rather large with respect to N, namely

$$
\begin{equation*}
q>e^{\sqrt{N}} \tag{1}
\end{equation*}
$$

as shown in [1, p. 371], using a large sieve argument. Indeed, the large sieve proves that $Q(N ; q, a) \ll \sqrt{N} \log N$ uniformly in q, unless q is divisible by at least half of the primes up to $3 \sqrt{N}$. Therefore, the crux of the matter consists in dealing with very large values of q with many small prime factors.

As in [1], we consider first two solutions $q n_{i}+a=m_{i}^{2}, i=0,1$ and $1 \leq n_{i} \leq N$, for two squares in the progression $q n+a$. Then n_{0} and n_{1} are uniquely determined by the rational point on \mathbb{P}^{1} with homogenous coordinates $\left(m_{0}: m_{1}\right)$, as long as $q>2 N$ and $G C D(q, a)=1$ (see [1, p. 372]). This remark establishes a one-to-one correspondence, once q and a are fixed, between certain rational points $\left(m_{0}: m_{1}\right)$ and pairs $\left(n_{0}, n_{1}\right)$ of solutions.

Next, consider a third solution $q n_{2}+a=m_{2}^{2}$. By eliminating a we obtain

$$
\begin{equation*}
\left(n_{1}-n_{2}\right) m_{0}^{2}+\left(n_{2}-n_{0}\right) m_{1}^{2}+\left(n_{0}-n_{1}\right) m_{2}^{2}=0 \tag{2}
\end{equation*}
$$

which is the equation of a conic in the projective plane \mathbb{P}^{2}, with a rational point with projective coordinates $\left(m_{0}: m_{1}: m_{2}\right)$. By the previous remark, the rational point $\left(m_{0}: m_{1}: m_{2}\right)$ determines uniquely n_{0}, n_{1} and n_{2}.

There are too many rational points on a conic for this result to be directly useful, hence we consider a fourth solution $q n_{3}+a=m_{3}^{2}$, yielding as before an equation

$$
\begin{equation*}
\left(n_{2}-n_{3}\right) m_{1}^{2}+\left(n_{3}-n_{1}\right) m_{2}^{2}+\left(n_{1}-n_{2}\right) m_{3}^{2}=0 \tag{3}
\end{equation*}
$$

Now we interpret the system of equations (2) and (3) as the intersection of two quadrics in projective space \mathbb{P}^{3}, giving an elliptic curve C with a rational point $\left(m_{0}: m_{1}: m_{2}: m_{3}\right)$ in homogeneous coordinates. Again, such a rational point determines uniquely n_{0}, \ldots, n_{3}. We have $\left(m_{i}+m_{j}\right)\left(m_{i}-m_{j}\right)=m_{i}^{2}-m_{j}^{2}=q\left(n_{i}-n_{j}\right)$, from which it follows

$$
\begin{equation*}
\left|m_{i}\right|<q N \tag{4}
\end{equation*}
$$

for every i.
From (2) and (3) we deduce

$$
\left(\left(n_{2}-n_{1}\right) m_{0} m_{3}\right)^{2}=\left(\left(n_{2}-n_{0}\right) m_{1}^{2}+\left(n_{0}-n_{1}\right) m_{2}^{2}\right)\left(\left(n_{2}-n_{3}\right) m_{1}^{2}+\left(n_{3}-n_{1}\right) m_{2}^{2}\right)
$$

which, after multiplying both sides by $\left(n_{2}-n_{0}\right)^{2}\left(n_{2}-n_{3}\right)^{2} m_{1}^{2} m_{2}^{-6}$, becomes

$$
\begin{equation*}
Y^{2}=X(X+A)(X+B) \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
X=\left(n_{2}-n_{0}\right)\left(n_{2}-n_{3}\right)\left(\frac{m_{1}}{m_{2}}\right)^{2}, \quad Y=\left(n_{2}-n_{0}\right)\left(n_{2}-n_{1}\right)\left(n_{2}-n_{3}\right) \frac{m_{0} m_{1} m_{3}}{m_{2}^{3}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\left(n_{0}-n_{1}\right)\left(n_{2}-n_{3}\right), \quad B=\left(n_{1}-n_{3}\right)\left(n_{0}-n_{2}\right) . \tag{7}
\end{equation*}
$$

Note that $B-A=\left(n_{1}-n_{2}\right)\left(n_{0}-n_{3}\right)$.
Equation (5) gives us an elliptic curve E with integer coefficients, of discriminant

$$
\begin{equation*}
\Delta=16 \prod_{i<j}\left(n_{i}-n_{j}\right)^{2} \tag{8}
\end{equation*}
$$

The associated morphism $C \rightarrow E$ has degree 4.
Up to now, we have followed the arguments in [1]. The new observation is that, since $m_{i}^{2} \equiv a(\bmod q)$, the rational point (X, Y) on the elliptic curve E satisfies the additional constraint

$$
\begin{equation*}
X \equiv\left(n_{2}-n_{0}\right)\left(n_{2}-n_{3}\right)(\bmod q) . \tag{9}
\end{equation*}
$$

Moreover, an easy estimate using (4) shows that

$$
\begin{equation*}
h(1: X: Y) \leq 3 \log q+6 \log N \tag{10}
\end{equation*}
$$

The key step in the proof will be a uniform bound for the number of rational points of E satisfying (9) and (10).

We may also work with the Néron-Tate height $\widehat{b}(P)=\lim 4^{-n} h\left(2^{n} P\right)$ rather than the absolute logarithmic height $h(P)$ of a point P. Explicit bounds for the difference of the two heights have been obtained by Zimmer in [3], for curves given in Weierstrass model $y^{2}=4 x^{3}-g_{2} x-g_{3}$. There is no problem in adapting Zimmer's bound to curves as in (5), and for our curve E and any rational point $P=(1: X: Y)$ on E we obtain

$$
\begin{equation*}
|h(P)-\widehat{b}(P)| \leq c_{3} \log N \tag{11}
\end{equation*}
$$

for an explicitly computable (and not too large) absolute constant c_{3}. Since we assume $\log q>\sqrt{N}$, these corrections by an amount proportional to $\log N$ are negligible compared to $\log q$ as soon as N is sufficiently large. Therefore, given $\varepsilon>0$ and assuming $N \geq N_{1}(\varepsilon)$ sufficiently large as a function of ε alone, we need only compute the number of rational points $P=(1: X: Y)$ of E satisfying (9) and

$$
\begin{equation*}
\widehat{b}(P) \leq(3+\varepsilon) \log q . \tag{12}
\end{equation*}
$$

The key lemma is
Lemma 1. Let \mathcal{X} be the set of rational points of E satisfying the congruence (9) and let $\varepsilon>0$. We assume $N \geq N_{1}(\varepsilon), q>e^{\sqrt{N}}$, where $N_{1}(\varepsilon)$ is a certain computable function of ε.

Let $P_{1}, P_{2}, P_{3} \in \mathcal{X}$ be three distinct points such that $P_{i}+P_{j} \neq O$ for every $i \neq j$. Then we have

$$
\max _{i j} \widehat{b}\left(P_{i}-P_{j}\right)>(1-\varepsilon) \log q .
$$

Proof. By (11), since $q>e^{\sqrt{N}}$ and $N \geq N_{1}(\varepsilon)$ it suffices to prove the statement with the absolute logarithmic height h in place of the canonical height \widehat{b}.

We write $X(P), Y(P)$ for the (X, Y)-coordinates of a point P of E, not equal to the origin O at ∞. Let $i, j \in\{1,2,3\}, i \neq j$. By the addition formula on E, we have

$$
\begin{equation*}
X\left(P_{i}-P_{j}\right)=\left(\frac{Y\left(P_{i}\right)+Y\left(P_{j}\right)}{X\left(P_{i}\right)-X\left(P_{j}\right)}\right)^{2}-X\left(P_{i}\right)-X\left(P_{j}\right)-A-B \tag{13}
\end{equation*}
$$

note that $X\left(P_{i}\right)-X\left(P_{j}\right) \neq 0$ because $P_{i} \neq \pm P_{j}$ by hypothesis. The congruence (9) shows that

$$
\begin{equation*}
X\left(P_{i}\right)-X\left(P_{j}\right) \equiv 0(\bmod q) \tag{14}
\end{equation*}
$$

Moreover, since $\left(n_{2}-n_{0}\right)\left(n_{2}-n_{3}\right)$ is an integer, the congruence (9) shows that for any $P \in \mathcal{X}$ the denominator of $X(P)$ is coprime with q, hence the same holds for the other coordinate $Y(P)$.

Let ${ }^{1}$)

$$
q_{i j}:=G C D\left(Y\left(P_{i}\right)+Y\left(P_{j}\right), q\right) ;
$$

then by (13) and (14) we see that the denominator of $X\left(P_{i}-P_{j}\right)$ is divisible by $\left(q / q_{i j}\right)^{2}$. Therefore, the denominator of $Y\left(P_{i}-P_{j}\right)$ is divisible by $\left(q / q_{i j}\right)^{3}$ and a fortiori

$$
\begin{equation*}
h\left(P_{i}-P_{j}\right) \geq 3 \log \left(q / q_{i j}\right) . \tag{15}
\end{equation*}
$$

If the lemma were false, (15) would imply $q_{i j} \geq q^{\frac{2}{3}+\frac{\varepsilon}{3}}$ and, since each $q_{i j}$ divides q, we would get

$$
\begin{equation*}
q_{0}:=G C D\left(q_{12}, q_{23}, q_{31}\right) \geq q^{3\left(\frac{2}{3}+\frac{\varepsilon}{3}\right)-2}=q^{\varepsilon} . \tag{16}
\end{equation*}
$$

Now q_{0} divides the numerator of each $Y\left(P_{i}\right)+Y\left(P_{j}\right)$ and summing over distinct pairs $i j$ we see that q_{0} divides the numerator of $2\left(Y\left(P_{1}\right)+Y\left(P_{2}\right)+Y\left(P_{3}\right)\right)$. Hence q_{0} divides the numerator of each fraction $2 Y\left(P_{i}\right), i=1,2,3$.

On the other hand, by (9) we see that for $P \in \mathcal{X}$ we have

$$
4 Y(P)^{2}=4 X(P)(X(P)+A)(X(P)+B) \equiv 4\left(n_{2}-n_{0}\right)^{2}\left(n_{2}-n_{1}\right)^{2}\left(n_{2}-n_{3}\right)^{2}(\bmod q) .
$$

Since q_{0} divides both q and $2 Y\left(P_{i}\right)$, we conclude that q_{0} divides $4\left(n_{2}-n_{0}\right)^{2}\left(n_{2}-\right.$ $\left.-n_{1}\right)^{2}\left(n_{2}-n_{3}\right)^{2}$, hence $q_{0}<4 N^{6}$. Since $q>e^{\sqrt{N}}$, this contradicts (16) for N sufficiently large as a function of ε, completing the proof.

Let $r=\operatorname{rank}_{\mathbb{Q}} E(\mathbb{Q})$. As usual, the real vector space $\mathbb{R}^{r}=\mathbb{R} \otimes E(\mathbb{Q})$ can be equipped with the euclidean norm $|\mathbf{x}|$ defined by $|\mathbf{x}|=\sqrt{\widehat{h}(P)}$ if \mathbf{x} is the class of $P \in E(\mathbb{Q})$ modulo torsion and extending it by continuity and linearity to all of \mathbb{R}^{r}.
(1) If u / v is a rational fraction in lowest terms with $G C D(v, q)=1$, we define $G C D(u / v, q)=$ $=G C D(u, q)$.

Lemma 2. Suppose $N \geq N_{1}(\varepsilon)$. Then the number of points of \mathcal{X} whose image in $\mathbb{R} \otimes E(\mathbb{Q})$ lies in any given ball of radius $\rho:=\frac{1}{2}(1-\varepsilon)^{1 / 2} \sqrt{\log q}$ is at most 4 .

Proof. If we had five points of \mathcal{X} with image in such a ball, three of them, say P_{1}, P_{2}, P_{3}, would satisfy $P_{i}+P_{j} \neq O$ for every $i \neq j$. By Lemma 1 , there would be such a pair i, j with $\sqrt{\hat{h}\left(P_{i}-P_{j}\right)}>(1-\varepsilon)^{1 / 2} \sqrt{\log q}=2 \rho$. This contradicts the triangle inequality, proving what we want.

Corollary. Let $\varepsilon=\frac{1}{100}$ and $N \geq N_{1}\left(\frac{1}{100}\right)$. Let δ be the GCD of the differences $n_{i}-n_{j}$ for $0 \leq i<j \leq 3$.

Then the number of points of \mathcal{X} with $\widehat{h}(P) \leq(3+\varepsilon) \log q$ does not exceed (2) $4 \times$ $\times 8^{\sum_{i<j} \omega\left(\left(n_{j}-n_{i}\right) / \delta\right)}$.

Proof. Since δ^{2} divides both $A=\left(n_{0}-n_{1}\right)\left(n_{2}-n_{3}\right)$ and $B=\left(n_{1}-n_{3}\right)\left(n_{0}-n_{2}\right)$ in (5), the change of variables $X=\delta^{2} X^{\prime}, Y=\delta^{3} Y^{\prime}$ shows that the curve E is isomorphic over \mathbb{Q} to the elliptic curve E^{\prime} obtained by replacing A, B by A / δ^{2} and B / δ^{2}. By [1, Lemma 5], the \mathbb{Q}-rank r of E, which is the same as the rank of E^{\prime}, does not exceed

$$
r \leq \omega\left(A / \delta^{2}\right)+\omega\left(B / \delta^{2}\right)+\omega\left((B-A) / \delta^{2}\right) \leq \sum_{i<j} \omega\left(\left(n_{j}-n_{i}\right) / \delta\right)
$$

Let us abbreviate $R:=(3+\varepsilon)^{1 / 2} \sqrt{\log q}$. By a well-known covering argument (3), the ball of radius R can be covered with not more than $\left\lfloor(1+2 R / \rho)^{r}\right\rfloor$ balls of radius ρ. With $\varepsilon=\frac{1}{100}$ we have $1+2 R / \rho<8$, and the result follows from Lemma 2.

3. Proof of Theorem 1

We conclude the proof of Theorem 1 using the same combinatorial argument as in [1]. Let us fix q and a, coprime with $q>2 N$. Let \mathcal{Z} be a set of Z integers in the interval $[1, N]$ such that $q n+a$ is a square. For $d \geq 1$ let us define

$$
\mathcal{Z}(d, l):=\{n \in \mathcal{Z}: n \equiv l(\bmod d)\}
$$

$Z(d, l)$ is the number of elements of $\mathcal{Z}(d, l)$.
Let $\mathbf{n}:=\left(n_{0}, \ldots, n_{3}\right)$ be a quadruple of distinct points of $\mathcal{Z}(d, l)$. Then \mathbf{n} determines a point \boldsymbol{m} on the elliptic curve intersection of the two quadrics (2) and (3). Note that each $n_{i j}:=n_{i}-n_{j}$ is divisible by d; therefore, the homogeneous vector with coordinates $n_{i j}, 0 \leq i<j \leq 3$, has an integral representative \mathbf{k} with coordinates $k_{i j}=n_{i j} / d$, hence with $\left|k_{i j}\right|<N / d$. Conversely, let \mathbf{k} be a homogeneous vector of integers $k_{i j}$ with $k_{i j}+k_{j i}=0, k_{i j}+k_{j l}+k_{l i}=0$ for every i, j, l and $k_{i j} \neq 0$ if $i \neq j$. Then \mathbf{k} determines two quadrics as in (2), (3) and, by the remark immediately preceding (2), given a point
${ }^{(2)}$ Here $\omega(l)$ is the number of distinct prime factors of l.
${ }^{(3)}$ It suffices to take a maximal set of disjoint balls of radius $\rho / 2$ in the ball of radius $R+\rho / 2$; doubling the radius of these balls we obtain a covering.
($m_{0}: m_{1}: m_{2}: m_{3}$) on the resulting elliptic curve $C(\mathbf{k})$ there is at most one point \mathbf{n} with integer coordinates such that $q n_{i}+a=\left(c m_{i}\right)^{2}$ with rational c and $k_{i j}$ proportional to $n_{i}-n_{j}$.

Any such elliptic curve $C(\mathbf{k})$ determines another elliptic curve $E(\mathbf{k})$ as in (5) and, as remarked before, a morphism $C(\mathbf{k}) \rightarrow E(\mathbf{k})$ of degree 4 and a set $\mathcal{X}(\mathbf{k})$. Therefore, the number of rational points m on $C(\mathbf{k})$ we are concerned with is not more than 4 times the number of points counted in the Corollary to Lemma 2, namely $16 \times 8^{\sum_{i<j} \omega\left(k_{i j}\right)}$.

Let $D \geq 1$ to be chosen later. As in [1, Lemma 6], we obtain this time

$$
\sum_{D<d \leq 2 D} \sum_{l=1}^{d}\binom{Z(d, l)}{4} \leq \sum_{\mathbf{k} \leq N / D} 16 \times 8^{\sum_{i<j} \omega\left(k_{i j}\right)}
$$

Since k_{01}, k_{02}, k_{03} determine every other $k_{i j}$, using the inequality between arithmetic and geometric means

$$
8^{\sum_{i<j} \omega\left(k_{i j}\right)} \leq \frac{1}{6} \sum_{i<j} 8^{6 \omega\left(k_{i j}\right)}
$$

and the elementary bound

$$
\sum_{m \leq x} u^{\omega(m)} \ll x(\log x)^{u-1}
$$

we get

$$
\sum_{\mathbf{k} \leq N / D} 16 \times 8^{\sum_{i<j} \omega\left(k_{i j}\right)} \ll\left(\frac{N}{D}\right)^{3}(\log N)^{8^{6}-1}
$$

This gives

$$
\sum_{D<d \leq 2 D} \sum_{l=1}^{d}\binom{Z(d, l)}{4} \ll\left(\frac{N}{D}\right)^{3}(\log N)^{8^{6}-1}
$$

The contribution to $Z=\sum_{l} Z(d, l)$ from terms with $Z(d, l) \leq 4$ is not more than 4d, while

$$
\binom{Z(d, l)}{4} \geq Z(d, l)
$$

whenever $Z(d, l) \geq 5$. Hence

$$
D Z \leq \sum_{D<d \leq 2 D}\left(4 d+\sum_{l=1}^{d}\binom{Z(d, l)}{4}\right) \ll D^{2}+\left(\frac{N}{D}\right)^{3}(\log N)^{8^{6}-1}
$$

The theorem, with $c_{2}=8^{6}-1$, follows by choosing $D=N^{3 / 5}$.

Acknowledgements

The second author supported in part for a visit to the Institute for Advanced Study, Princeton, N.J.

References

[1] E. Bombieri - A. Granville - J. Pintz, Squares in arithmetic progressions. Duke Math. J., 66, 1992, 369-385.
[2] E. Szemerédi, The number of squares in arithmetic progressions. Stud. Sci. Math. Hungar., 9, 1974, 417.
[3] H.G. Zimmer, On the difference of the Weil height and the Néron-Tate height. Math. Z., 147, 1976, 35-51.

Pervenuta l'8 dicembre 2001,
in forma definitiva il 14 gennaio 2002.
E. Bombieri:

Institute for Advanced Study
School of Mathematics
Princeton, NJ 08540 (U.S.A.)
eb@math.ias.edu
U. Zannier:

IUAV DCA
Santa Croce, 191-30135 Venezia
zannier@iuav.it

