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Analisi funzionale. — Optimal stability and instability results for a class of nearly inte-
grable Hamiltonian systems. Nota di Massimiliano Berti, Luca Biasco e Philippe Bolle,
presentata (*) dal Socio A. Ambrosetti.

Abstract. — We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems
with a (trigonometric polynomial) O(µ)-perturbation which does not preserve the unperturbed tori. We
prove the existence of Arnold diffusion with diffusion time Td = O((1=µ) log(1=µ)) by a variational method
which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove
that our estimate of the diffusion time Td is optimal as a consequence of a general stability result proved
via classical perturbation theory.

Key words: Arnold diffusion; Variational methods; Shadowing theorem; Perturbation theory; Non-
linear functional analysis.

Riassunto. — Risultati ottimali di stabilità e di instabilità per una classe di sistemi Hamiltoniani quasi-
integrabili. In questa Nota consideriamo sistemi Hamiltoniani quasi-integrabili, non-isocroni, a-priori
instabili soggetti ad una perturbazione di ordine µ (un polinomio trigonometrico) che non preserva i
tori imperturbati. Facendo uso di tecniche variazionali che NON richiedono l’esistenza di «catene di
tori KAM di transizione», dimostriamo l’esistenza di orbite di diffusione con un tempo di diffusione
Td = O((1=µ) log(1=µ)). Proviamo inoltre che la nostra stima sul tempo di diffusione è ottimale, a seguito
di un risultato generale di stabilità per le variabili di azione dimostrato mediante la teoria classica delle
perturbazioni.

1. Introduction

We outline in this Note some recent results on Arnold’s diffusion obtained in [6]
where we refer for complete proofs. We consider nearly integrable non-isochronous
Hamiltonian systems described by

(1.1) Hµ =
I 2

2
+

p2

2
+ (cos q − 1) + µf (I; p;ϕ; q; t );

where (ϕ; q; t ) ∈ Td × T1 × T1 are the angle variables, (I; p) ∈ Rd × R1 are the action
variables and µ ≥ 0 is a small real parameter. The Hamiltonian system associated with
H

µ
writes

(Sµ) ϕ̇= I + µ@I f; İ = −µ@ϕf; q̇ = p + µ@pf; ṗ = sin q − µ@qf:

The perturbation f is assumed, as in [11], to be a trigonometric polynomial of order
N in ϕ and t , namely

(1.2) f (I; p;ϕ; q; t ) =
∑

|(n;l )|≤N

fn;l (I; p; q) expi(n·ϕ+lt ) :

(*) Nella seduta del 10 maggio 2002.
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(S
µ
) describes a system of d «rotators» weakly coupled with a pendulum through a small

periodically time dependent perturbation term. The unperturbed Hamiltonian system
(S0) is completely integrable and, in particular, the energy I 2

i =2 of each rotator is a
constant of the motion. The problem of Arnold diffusion in this context is whether,
for µ �= 0, there exist motions whose net effect is to transfer O(1)-energy among the
rotators. A natural complementary question regards the time of stability (or instability)
for the perturbed system: what is the minimal time to produce an O(1)-exchange of
energy, if any takes place, among the rotators?

The mechanism proposed in [2] to prove the existence of Arnold diffusion and
thereafter become classical, is the following one. The unperturbed Hamiltonian system
(S0) admits a continuous family of d -dimensional partially hyperbolic invariant tori
Tω = {ϕ ∈ Td ; I = ω; q = p = 0} possessing stable and unstable manifolds W s

0 (Tω) =

= W u
0 (T

ω
) = {ϕ ∈ Td ; I = ω; (p2=2) + (cos q − 1) = 0}. The method used in

[2] to produce unstable orbits relies on the construction, for µ �= 0; of «transition
chains» of perturbed partially hyperbolic tori T µ

ω close to Tω connected one to another
by heteroclinic orbits. Therefore in general the first step is to prove the persistence of
such hyperbolic tori T µ

ω for µ �= 0 small enough, and to show that its perturbed stable
and unstable manifolds W s

µ(T µ
ω

) and W u
µ (T µ

ω
) split and intersect transversally («splitting

problem»). The second step is to find a transition chain of perturbed tori: this is a
difficult task since, for general non-isochronous systems, the surviving perturbed tori T µ

ω

are separated by the gaps appearing in KAM constructions. Two perturbed invariant
tori T µ

ω
and T µ

ω′ could be too distant one from the other, forbidding the existence
of an heteroclinic intersection between W u

µ (T µ

ω
) and W s

µ(T µ

ω′ ): this is the famous «gap
problem». In [2] this difficulty is bypassed by the peculiar choice of the perturbation
f (I;ϕ; p; q; t ) = (cos q − 1)f (ϕ; t ), whose gradient vanishes on the unperturbed tori
Tω, leaving them all invariant also for µ �= 0. The final step is to prove, by a «shadowing
argument», the existence of a true diffusion orbit, close to a given transition chain of
tori, for which the action variables I undergo a drift of O(1) in a certain time Td called
the diffusion time.

The first paper proving Arnold diffusion in presence of perturbations not preserving
the unperturbed tori was [11]. Extending Arnold’s analysis, it is proved in [11] that, if
the perturbation is a trigonometric polynomial in the angles ϕ, then, in some regions of
phase space, the «density» of perturbed invariant tori is high enough for the construction
of a transition chain.

Regarding the shadowing problem, geometrical method, see e.g. [11-14], and vari-
ational ones, see e.g. [8], have been applied, in the last years, in order to prove the
existence of diffusion orbits shadowing a given transition chain of tori and to estimate
the diffusion time. We also quote the important paper [7] which, even if dealing only
with the Arnold’s model perturbation, has obtained, using variational methods, very
good time diffusion estimates and has introduced new ideas for studying the shadowing
problem. For isochronous systems new variational results concerning the shadowing and
the splitting problem have been obtained in [3-5]

In this Note we describe an alternative mechanism, proposed in [6], to produce
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diffusion orbits. This method is not based on the existence of transition chains of
tori, namely it avoids the KAM construction of the perturbed hyperbolic tori, proving
directly the existence of a drifting orbit as a local minimum of an action functional, see
Theorem 2.1. At the same time this variational approach achieves the optimal diffusion
time Td = O((1=µ) log(1=µ)), see (2.2). We also prove that our time diffusion estimate
is the optimal one as a consequence of a general stability result, Theorem 2.2, proved
via classical perturbation theory. As in [11] our diffusion orbit will not connect any
two arbitrary frequencies of the action space, even if we manage to connect more
frequencies than in [11], proving the drift also in some regions of phase space where
transition chains might not exist. Clearly if the perturbation is chosen as in Arnold’s
example we can drift in all phase the space with no restriction, see Theorem 2.3.

Actually our variational shadowing technique is not restricted to the a-priori unstable
case, but would allow, in the same spirit of [3-5], once a «splitting property» is somehow
proved, to get diffusion orbits with the best diffusion time (in terms of some measure
of the splitting).

In conclusion the results and the method described in this Note constitute a further
step in a research line, started in [3-5], whose aim is to find new mechanisms for
proving Arnold diffusion. We expect that these variational methods could be suitably
refined in order to prove the existence of drifting orbits in the whole phase space, and
also for generic analytic perturbations. Another possible application of these methods
could regard infinite dimensional Hamiltonian systems where the existence of «transition
chains of infinite dimensional hyperbolic tori» is far for being proved.

2. Main results

For simplicity, even if not really necessary, when proving the existence of diffu-
sion orbits, we assume f to be a purely spatial perturbation, namely f (ϕ; q; t ) =

=
∑

|(n;l )|≤N fn;l (q) exp(i(n · ϕ + lt )). The functions fn;l are assumed to be smooth.
Let us define the «resonant web» DN , formed by the frequencies ω «resonant with

the perturbation»,

(2.1)
DN :=

{
ω ∈ Rd

∣∣∣ ∃(n; l ) ∈ Zd+1 s:t: 0 < |(n; l )| ≤ N and ω · n + l = 0
}

=

= ∪0<|(n;l )|≤N En;l

where En;l := {ω ∈ Rd | ω · n + l = 0}. Let us also consider the Poincaré-Melnikov
primitive

Γ(ω;ϕ0; θ0) := −
∫

R

[
f (ωt + ϕ0; q0(t ); t + θ0) − f (ωt + ϕ0; 0; t + θ0)

]
dt;

where q0(t ) = 4 arctan(exp t ) is the unperturbed separatrix of the pendulum satisfying
q0(0) = π.

The next theorem states that, for any connected component C ⊂ Dc
N , ωI ;ωF ∈ C,

there exists a solution of (S
µ
) connecting a O(µ)-neighborhood of T

ωI
to a O(µ)-

neighborhood of TωF
, in a time-interval of length Td = O((1=µ)| logµ|).
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Theorem 2.1. Let C be a connected component of Dc
N , ωI ;ωF ∈ C and let γ : [0; L] → C

be a smooth embedding such that γ(0) = ωI and γ(L) = ωF . Assume that ’ω := γ(s)
(s ∈ [0; L]), Γ(ω; ·; ·) possesses a non-degenerate local minimum (ϕω

0 ; θω0 ). Then ’η > 0
there exists µ0 := µ0(γ; η) > 0 and C := C (γ) > 0 such that ’0 < µ ≤ µ0 there
exists a solution (ϕ

µ
(t ); q

µ
(t ); I

µ
(t ); p

µ
(t )) of (S

µ
) and two instants τ1 < τ2 such that

I
µ(τ1) = ωI + O(µ), Iµ(τ2) = ωF + O(µ) and

(2.2) |τ2 − τ1| ≤
C
µ
| logµ|:

Moreover dist (I
µ(t ); γ) < η for all τ1 ≤ t ≤ τ2.

In addition, the above result still holds for any perturbation µ(f + µf̃ ) with any smooth
f̃ (ϕ; q; t ).

We can also build diffusion orbits approaching the boundaries of DN at distances
as small as a certain power of µ: see for a precise statement Theorem 6.1 of [6].
Theorem 2.1 improves the corresponding result in [11] which enables to connect two
frequencies ωI and ωF belonging to the same connected component C ⊂ Dc

N1
for

N1 = 14dN and with dist({ωI ;ωF };DN1
) = O(1). As already said such restriction of

[11] arises because transition chains might not exist in the whole C ⊂ Dc
N . Unlikely our

method enables to show up Arnold diffusion between any two frequencies ωI ;ωF ∈
∈ C ⊂ Dc

N and along any path, since it does not require the existence of chains of true
hyperbolic tori of (Sµ).

Theorem 2.1 improves also the known time-estimates on the diffusion time. The
first estimate on the diffusion time obtained by geometrical method in [11] is Td =

= O(exp (1=µ2)). In [12-14], still by geometrical methods, and in [8], by means of
Mather’s theory, the diffusion time has been proved to be just polynomially long in
the splitting µ (the splitting angles between the perturbed stable and unstable manifolds
W s;u

µ (T µ

ω ) at a homoclinic point are, by classical Poincaré-Melnikov theory, O(µ)). We
note that the variational method proposed by Bessi in [7] had already given, even
if in the case of perturbations preserving all the unperturbed tori, the time diffusion
estimate Td = O(1=µ2). For isochronous systems the estimate on the diffusion time
Td = O((1=µ)| logµ|) has already been obtained in [3, 4]. Very recently, in [13], the
diffusion time (in the non-isochronous case) has been estimated as Td = O((1=µ)| logµ|)
by a method which uses «hyperbolic periodic orbits»; however the result of [13] is of
local nature: the previous estimate holds only for diffusion orbits shadowing a transition
chain close to some torus run with diophantine flow.

Our next statement (a stability result) concludes this quest of the minimal diffusion
time Td : it proves the optimality of our estimate Td = O((1=µ)| logµ|).

Theorem 2.2. Let f (I;ϕ; p; q; t ) be as in (1:2), where the fn;l (|(n; l )| ≤ N ) are
analytic functions. Then ’κ; r; r̃ > 0 there exist κ0;µ1 > 0 such that ’ 0 < µ ≤ µ1, any
solution (I (t );ϕ(t ); q(t ); p(t )) of (Sµ) with |I (0)| ≤ r and |p(0)| ≤ r̃ satisfies

(2.3) |I (t ) − I (0)| ≤ κ; ’ |t | ≤ κ0

µ
log

1
µ

:
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Actually the proof of Theorem 2.2 contains much more information: in particular
the stability time (2.3) is sharp only for orbits lying close to the separatrices. On the
other hand the orbits lying far away from the separatrices are much more stable, namely
exponentially stable in time according to Nekhoroshev type time estimates, see (2.4).
Indeed the diffusion orbit of Theorem 2.1 is found (as a local minimum of an action
functional) close to some pseudo-diffusion orbit whose (q; p) variables stay close to the
separatrices of the pendulum (turning O(1=µ) times around them).

As a byproduct of the techniques developed in this paper we have the following
result concerning «Arnold’s example» [2]

Theorem 2.3. Let f (ϕ; q; t ) := (1 − cos q)f̃ (ϕ; t ). Assume that for some smooth
embedding γ : [0; L] → Rd , with γ(0) = ωI and γ(L) = ωF , ’ω := γ(s) (s ∈ [0; L]),
Γ(ω; ·; ·) possesses a non-degenerate local minimum (ϕω

0 ; θω0 ). Then ’η > 0 there exists
µ0 := µ0(γ; η) > 0, and C := C (γ) > 0 such that ’0 < µ ≤ µ0 there exists a heteroclinic
orbit (η-close to γ) connecting the invariant tori TωI

and TωF
. Moreover the diffusion time

Td needed to go from a µ-neighbourhood of TωI
to a µ-neighbourhood of TωF

is bounded by
Td ≤ (C=µ)| logµ|.

The method of proof of Theorem 2.1 (and Theorem 2.3) relies on a finite di-
mensional reduction of Lyapunov-Schmidt type, variational in nature, introduced in
[1] and later extended in [3-5] to the problem of Arnold diffusion. The diffusion
orbit of Theorem 2.1 (and Theorem 2.3) is found as a local minimum of the action
functional close to some pseudo-diffusion orbit whose (q; p) variables move along the
separatrices of the pendulum. The pseudo-diffusion orbits, constructed by the Implicit
Function Theorem, are true solutions of (Sµ) except possibly at some instants θi , for
i = 1; : : : ; k, when they are glued continuously at the section {q = π; mod 2πZ}
but the speeds (q̇

µ
(θi); ϕ̇µ(θi)) = (pµ(θi); Iµ(θi)) may possibly have a jump. The time

interval Ts = θi+1 − θi is heuristically the time required to perform a single transition
during which the rotators can exchange O(µ)-energy, i.e. the action variables vary of
O(µ). During each transition we can exchange only O(µ)-energy since the Melnikov
contribution in the perturbed functional is O(µ)-large. Hence in order to exchange
O(1) energy the number of transitions required will be k = O(1=µ).

We underline that the question of finding the optimal time and the mechanism for
which we can avoid the construction of true transition chains of tori are deeply con-
nected. Indeed the main reason for which our drifting technique avoids the construction
of KAM tori is the following one: if the time to perform a simple transition Ts is,
say, just Ts = O(| logµ|) then, on such short time intervals, it is easy to approximate
the action functional with the unperturbed solutions living on the stable and unstable
manifolds of the unperturbed tori W s(Tω) = W u(Tω) = {ϕ ∈ Td ; I = ω; p2=2 +

+ (cos q − 1) = 0}, see Lemma 3.5 of [6]. In this way we do not need to construct
the true hyperbolic tori T µ

ω close to Tω (actually for our approximation we only need
the time for a single transition to be Ts << 1=µ).

The fact that it is possible to perform a single transition in a very short time interval
like | logµ| is not obvious at all. In [7] the time to perform a single transition, in the
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example of Arnold, is O(1=µ). This time separation arises in order to ensure that the
variations of the action functional of the rotators are small compared with the (positive
definite) second derivative of the Poincaré-Melnikov primitive at its minimum point.
Unfortunately this time is too long to make directly our approximations of the action
functional. The key observation that enables us to perform a single transition in a
very short time interval concerns the behaviour the «gradient flow» of the unperturbed
action functional of the rotators. In Section 6 of [6] it is shown that the variations
of the action of the rotators are small, even on time intervals Ts << 1=µ, and do not
«destroy» the minimum of the Poincaré-Melnikov primitive.

When trying to build a pseudo-diffusion orbit which performs single transitions in
very short time intervals we encounter another difficulty linked with the ergodization
time. The time to perform a single transition Ts must be sufficiently long to settle,
at each instant θi , the projection of the pseudo-orbit on the torus sufficiently close to
the minimum of the Poincaré-Melnikov function, i.e. the homoclinic point (in our
method it is sufficient to arrive just O(1)-close, independently of µ, to the homoclinic
point). This necessary request creates some difficulty since our pseudo-diffusion orbit
may arrive O(µ)-close in the action space to resonant hyperplanes of frequencies whose
linear flow does not provide a dense enough net of the torus. The way in which this
problem is overcome is discussed in [6]: we observe a phenomenon of «stabilization
close to resonances» which forces the time Ts for some single transitions to increase.
Anyway the total time required to cross these (finite number of) resonances is still
Td = O((1=µ) log(1=µ)). This discussion enables us to prove optimal fast-Arnold dif-
fusion in large regions of phase space and allows to improve the local diffusion results
of [13].

As explained before we need, in order to prove Theorems 2.1 and 2.3, some estimates
on the «ergodization time of the torus» for linear flows possibly resonant but only at
a «sufficiently high order». The following result (Theorem 2.4) gives an answer which
may be of independent interest. Let Γ be a lattice of Rl , i.e. a discrete subgroup of Rl

such that Rl =Γ has finite volume. ’Ω ∈ Rl the «ergodization time required by the flow
{Ωt} to fill the torus Rl =Γ within δ» is defined as T (Γ; Ω; δ) := inf{t ∈ R

+
| ’ x ∈

∈ Rl d (x; [0; t ]Ω + Γ) ≤ δ} (with infE =+ ∞ if E = ∅). For R > 0 define also
Γ∗

R = {p ∈ Rl | 0 < |p| ≤ R; ’γ ∈ Γ p ·γ ∈ Z} and α(Γ; Ω; R) = inf{|p ·Ω| | p ∈ Γ∗
R}:

The following result holds:

Theorem 2.4. ’l ∈ N, ∃al > 0 such that, for all lattice Γ ⊂ Rl , ’Ω ∈ Rl , ’δ > 0,
T (Γ; Ω; δ) ≤ (α(Γ; Ω; al =δ))−1. Moreover T (Γ; Ω; δ) ≥ (1=4)α(Γ; Ω; 1=4δ)−1.

A straighforward consequence of Theorem 2.4 is, for example, Theorem D of [10]:
if Ω is a C −τ diophantine vector, i.e. there exist C > 0 and τ ≥ l −1 such that |k ·Ω| ≥
≥ C=|k|τ , ’k ∈ Zl \ {0}, then T (Ω; δ) ≤ aτ

l =(C δτ ) (where T (Ω; δ) := T (Zl ; Ω; δ)).
Also Theorem B of [10] is an easy consequence of Theorem 2.4.

We conclude this Note discussing briefly the proof of Theorem 2.2, see Section 7
of [6]. First we prove stability in the region «far from the separatrices of the pendulum»
E1 := {(I;ϕ; q; p) | |E (q; p)| ≥ µc}, where E (q; p) := p2=2 + (cos q − 1) and c is a
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suitable positive constant. In E1 we can write Hamiltonian H
µ

in action-angle variables
(I;ϕ; Q; P; t ) where Q := Q (q; p) and P := P (q; p) are the action-angle variables of
the standard pendulum E (q; p), i.e E (q(Q; P ); p(Q; P )) := K (P ). In these variables
the new Hamiltonian writes H1 := I 2=2 + K (P ) + µf1(ϕ; Q; t; P; I ), and, by a result
of [9], it is analytic with an analyticity radius r1 ≈ µc (when µ goes to zero, the
region E1 approximate closer and closer to the separatrices and the analyticity estimate
deteriorates). It turns out that H1 is steep (actually for E positive it is even quasi-

convex, see [16]) and then, for c > 0 small enough, we can apply the Nekhoroshev
Theorem as proved in [15]. In this way we obtain exponential stability in the whole
region E1, i.e.

(2.4) |I (t ) − I (0)| ≤ const:µb ’ |t | ≤ T := const:
1
µ

exp
(

1
µ

)a

for two constants a; b > 0. Finally we study the behaviour of an orbit close to the
separatrices of the pendulum, namely in the region E c

1. Roughly speaking, such an
orbit will spend alternatively a time TS = O(| logµ|) into a small O(1)-neighborhood
of (p; q) = (0; 0) and a time TF = O(1) outside. In this second case we directly
obtain ∆I :=

∫ s+TF
s

İ µ = O(µTF ) = O(µ). In [6] it is proved, roughly speaking, that
∆I = O(µ) also in the first case. This result is obtained first writing the pendulum
in hyperbolic variables in a small neighborhood of the origin and then performing one
step of classical perturbation theory (with a resonant normal form) and an analysis of
the resonances of Nekhoroshev-type.
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Université d’Avignon
33, rue Louis Pasteur - 84000 Avignon (Francia)

philippe.bolle@univ-avignon.fr


