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Fisica matematica. — Hamiltonian principle in the binary mixtures of Euler fluids
with applications to the second sound phenomena. Nota (*) di HENRI GOUIN e TOMMA-
SO RUGGERI, presentata dal Socio T. Ruggeri.

ABSTRACT. — In the present paper we compare the theory of mixtures based on Rational Thermome-
chanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the
adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodyna-
mical case we show that we have also coincidence in the case of low temperature when the second sound
phenomena arises for superfluid Helium and crystals.

KEY WORDS: Fluid mixtures; Superfluidity; Second sound; Hamiltonian principle.

RIASSUNTO. — Principio di Hamilton in una miscela di fluidi di Eulero con applicazione ai fenomeni di
secondo suono. Nel presente lavoro noi confrontiamo la teoria delle miscele basata sulla Termomeccanica
Razionale con quella ottenuta da un principio di Hamilton. Noi proviamo che le due teorie coincidono
nel caso adiabatico quando l’azione è costruita mediante la Lagrangiana intrinseca. Nel caso termodina-
mico completo si dimostra la coincidenza delle due teorie se ci si limita nel range di basse temperature
dove i fenomeni di secondo suono sono presenti per l’Elio superfluido e nei cristalli.

1. INTRODUCTION

The first mathematical model of homogeneous mixture of fluids in the context of
Rational Thermodynamics was due to Truesdell [1]. The compatibility with the sec-
ond principle of thermodynamics was well established by Müller in the framework of
classical mechanics [2] and by Hutter and Müller in relativity [3].

In the framework of binary mixture of Euler fluids, [4, 5] was able to revisit the
well known Landau model of superfluidity [6, 7]. The second sound phenomena in
the case of liquid He II is now well explained from a macroscopic point of view. Re-
cently Ruggeri [8] observed that a mixture of two Euler fluids can be regarded as a
single heat conducting fluid. This result is advantageous to explain the second sound
phenomena of crystals with the same model than for superfluid helium.

A different approach was given by Gavrilyuk et al. [9], Gavrilyuk and Gouin [10,
11]. They consider a variational approach to describe two-velocity effects in homoge-
neous mixtures: a Lagrangian of the system is chosen as a difference of the kinetic en-
ergy of the two constituents and a volumic potential which is Galilean invariant de-
pending on the relative velocity of components. The equation of motions of the two
components are not in balance form (in fact they are in balance form in Lagrangian
variables associated with each component). Nevertheless, the momentum and the en-
ergy equations for the total mixture are in the classical balance form.

The present work compares the previous approaches and proves that the two theo-
ries coincide in the mechanical case when the Hamiltonian action is constructed with the
intrinsic Lagrangian, i.e. does not depend on the relative velocity. Such is the case with

(*) Pervenuta in forma definitiva all’Accademia il 27 giugno 2002.
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the Lagrangian considered by Gouin in [12]. In the thermodynamical case we prove also
the coincidence in the case of low temperature and we obtain a complete agreement be-
tween the two approaches and the superfluid model considered first by Landau.

2. THE BINARY MIXTURES OF EULER FLUIDS

The thermodynamics of a homogeneous mixture of n constituents is well codified
as a branch of Extended Thermodynamics [13]. It is based on the metaphysical princi-
ples of Truesdell [1] which postulates the same balance laws of a single fluid for sim-
ple mixtures.

2.1. The balance system.

The equations of balance of mass, momentum and energy of the constituents read
as follows

¯r a

¯t
1div (r ava )4t a ,

¯r ava

¯t
1div (r ava7va2ta )4ma , (a41, 2 , R n) ,

¯ g 1
2

r a va
21r a e ah
¯t

1div {g 1
2

r a va
21r a e ah va2tava1qa}4ea .

(1)

These equations have the same form as the balance equations for a single body, except
for the non-zero right hand sides which represent the production of masses, momenta
and energies. These productions are due to interaction between the different con-
stituents. Of course, since the total mass, momentum and energy of the total mixture is
conserved, we must have

!
a41

n

t a40, !
a41

n

ma40, !
a41

n

ea40 ,

where r a , va , e a , ta , qa are the mass density, velocity, internal energy, stress and heat
flux respectively of the a-component of the mixture.

If we sum the equations (1) over all constituents and introduce

the density r4 !
a41

n

r a , the velocity v4 !
a41

n r a

r va ,(2)

the diffusion velocity ua4 va2v ,(3)

the stress tensor t4 !
a41

n

(ta2r aua7ua ) ,(4)

the intrinsic energy density re I4 !
a41

n

r a e a ,(5)

the internal energy density re4re I1
1
2
!
a41

n

r a ua
2 ,(6)

and the heat flux q4 !
a41

n {qa1r age a1
1
2

ua
2h ua2taua} ,(7)

we obtain for the total mixture:
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The balance mass

¯r
¯t

1div (rv)40,(8)

the balance equation of momentum

¯rv
¯t

1div (rv7v2t)40,(9)

the balance of energy

¯g 1
2

rv 21reh
¯t

1div {g 1
2

rv 21reh v2tv1q}40.(10)

Note that equations (8)-(10) have the same form as those for a single fluid. Moreover
in equation (10) for the balance of energy we observe that the total kinetic energy is
1
2

rv 2 is not the sum of the kinetic energy of the components. In fact we have

1
2

rv 24 1
2
!
a41

n

r a va
22 1

2
!
a41

n

r a ua
2 .

By analogy with the intrinsic internal energy we call intrinsic kinetic energy the
expression

Ec4
1
2
!
a41

n

r a va
2 .

As we consider a single absolute temperature T , the aim of extended thermodynamics
for fluid mixtures is the determination of the 4n11 fields:

mass densities

velocities

temperature

r a

va (a41, 2 , Rn) .

T

To determinate these fields we need an appropriate number of equations. They are
based on the equations for each constituent of balance of mass (1)1 , momentum (1)2

and conservation of energy of the total mixture (10).

2.2. The equations of binary mixture of Euler fluids.

We consider a binary mixture of Euler fluids, i.e. fluids that are neither viscous nor
heat-conducting:

qaf0, ta42paI, (a41, 2).

Instead of the mass and momentum balance laws for the second component, we use
the equivalent equations of total conservation for mass and momentum. Therefore, as-



H. GOUIN - T. RUGGERI72

sociated with the 9 unknown fields (r 1 , r 2 , v1 , v2 , T), we have the 9 balance
equations:

¯r
¯t

1div (rv)40

¯r 1

¯t
1div (r 1v1 )4t 1

¯rv
¯t

1div (rv7v2t)40

¯r 1v1

¯t
1div (r 1v17v11p1I)4m1

¯ g 1
2

rv 21reh
¯t

1div {g 1
2

rv 21reh v2tv1q}40

(11)

with

q4 !
a41

2 mr age a1
1
2

ua
2h1pan ua ,

t42!
a41

2

(paI1r aua7ua ) ,

p4 !
a41

2

pa .

(12)

2.3. The entropy principle and thermodynamical restrictions.

The compatibility between the system (1) and the entropy principle expresses in
the form

¯rS
¯t

1div ]rSv1C(F0,(13)

which yields several restrictions on the constitutive equations [13]:

rS4r 1 S11r 2 S2(14)

p1fp1 (r 1 , T); p2fp2 (r 2 , T); e 1fe 1 (r 1 , T); e 2fe 1 (r 2 , T)(15)
such that

TdS14de 12
p1

r 1
2

dr 1 ; TdS24de 22
p2

r 2
2

dr 2(16)

C4
q
T

2 1
T

(r 1 m 1u11r 2 m 2u2 ) ,(17)

where m afe a1
pa

r a
2TSa is the chemical potential of constituent a .

2.4. The mixture considered as a single heat conducting fluid.

Ruggeri [8] proved that it is possible to write the velocities of the two constituents
in terms of velocity and heat flux:

v14 v1 a
r 1

q, v24 v2 a
r 2

q
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where

1
a 4 ge 11

p1

r 1
1 1

2
u1

2h2 ge 21
p2

r 2
1 1

2
u2

2h .(18)

Introducing the concentration c4
r 1

r , equations (11)2 and (11)4 can be written in

terms of r , c , v and q and the system (11) becomes:

¯r
¯t

1div (rv)40

¯(rc)
¯t

1div (rcv1aq)4t

¯rv
¯t

1div grv7v1pI1 a 2

rc(12c)
q7qh40

¯(rcv1aq)
¯t

1divmrcv7v1 a 2

rc q7q1a(v7q1q7v)1nIn42bq

¯ g 1
2

rv 21reh
¯t

1div {g 1
2

rv 21re1ph v1u a 2v Qq
rc(12c)

11v q}40.

(19)

To eliminate the index 1 , we write as in [8], n4p1 , t4t 1 and m142bq. In an ex-
tended thermodynamic model with 9 fields, the binary mixture can be considered as a
single heat conducting fluid with a variable concentration.

Equation of evolution (19)4 is a natural extension of the Cattaneo equation for the
heat flux. Thermal inertia term a together with term n have to be interpreted as new
constitutive functions. The advantage of this procedure comes from the fact that the
two functions are now understandable in the light of mixture theory: term n plays the
role of one-component pressure while the thermal inertia term a given in (18) is the
inverse of the difference between the non-equilibrium enthalpies of the two
constituents.

Moreover in [8] was proved that the previous system is symmetric hyperbolic in
the main field components and therefore, for well known theorems, the local in time
Cauchy problem is well posed in suitable Sobolev space.

2.5. The superfluidity and second sound.

Dreyer [4] proved that the Landau theory of superfluidity is a particular case of
simple mixtures with the thermodynamical peculiarities:

Ss40; m s2m n1
1
2

(vs2vn )240, ms4t svs ,(20)

where the indexes n and s correspond to normal and the superfluid compo-
nents.

By neglecting the quadratic term in the second equation, in the small diffusion
case the two chemical potential m s and m n must be equal. Consequently, the relation
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m s4m n allows to obtain one field variable in terms of the others and it is possible to
write

r sfr s (r , T).

In this case equation (11)2 evaluates the mass production value t s and the super-
fluid helium framework becomes a theory with 8 fields (i.e. the system is formed by
equations (11)1 , (11)3 , (11)4 , (11)5 or equivalently equations (19)1 , (19)3 , (19)4 ,
(19)5).

The condition (20)3 is the most complex. In fact (11)4 with (11)2 can be rewritten
(see [5] for details):

¯vs

¯t
1˜ g 1

2
vs

21m sh1curl vs3vs40.

This equation is in balance form only when the involutive constraint curl vs40 holds.
In this case the system (19) coincides with the Landau model [6]:

¯r
¯t

1div (rv)40,

¯rv
¯t

1div (rv7v2t)40,

¯vs

¯t
1˜ g 1

2
vs

21m sh40,

¯ g 1
2

rv 21reh
¯t

1div {g 1
2

rv 21reh v2tv1q}40.

(21)

Taking into account (13), (17) and (20)1 , the entropy law reduces to the Clausius
form:

¯rS
¯t

1div grS v1
q
T
h40,(22)

where the heat flux (12)1 is:

q4rTS un1
1
2

(r s us
2us1r n un

2un ) .(23)

In the diffusion velocity we neglect the third order terms and we obtain the Landau
entropy law for the heat flux [6]. The entropy flux becomes rS vn and the entropy is
convected by the normal component

¯rS
¯t

1div (rS vn )40 .(24)

To focus on the thermal wave associated with the second sound we consider a rigid
body at rest with constant density. For the superfluid component, the system of energy
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and momentum equations is:

¯re
¯t

1div q40,

¯vs

¯t
1˜ g 1

2
vs

21m sh40,

with q4rTS vn . Such a system is in the form (19) for a single fluid:

¯re
¯t

1div q40

¯(aq)
¯t

1˜n42bq .

The system coincides with the one deduced by Ruggeri and coworkers for the model
of second sound in crystals [14]. Such a model explains the change of form of the in-
itial square thermal waves both in crystals [14-16] and in the superfluid helium [17].

3. THE HAMILTONIAN PROCEDURE FOR TWO-FLUID MIXTURES

To obtain the equations of motion and energy, the procedure is the follow-
ing:

Let us suppose that the mixture of two miscible fluids is well described by the
two-component velocities v1 , v2 , the densities r 1 , r 2 and the intrinsic internal energy
b4re I .

The intrinsic internal energy is a Galilean invariant and does not depend on the
reference frame. We consider the general case where b depends on r 1 , r 2 but also of
the relative velocity w4 v12v2 through the norm v4Nv12v2N [9]. The intrinsic

kinetic energy is Ec4
1
2

(r 1 v1
21r 2 v2

2 ).

Without dissipative effects, chemical reactions and with conservation of masses of
the two components, an extended form of Hamilton principle of least action is used in
the form

dI40 with I4 �
W0

L dx dt ,

where the Lagrangian is L4Ec2b(r 1 , r 2 , v), W 4 [t0 , t1 ]3D is a time-space
cylinder and the variations must vanish on the boundary of W. The virtual motions of
the mixture are defined in [9, 10].

From the variations of Hamilton action, we obtain the equations of motions in the
form

¯ka

¯t
1curl ka3va1˜ g ¯b

¯r a
2 1

2
va

21kavah40 (a41, 2)(25)

where

ka4 va2 (21)a 1
r a

¯b
¯v

w
v .
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The momentum conservation law is obtained by summing on a41, 2 equation (25)
multiplied by r a :

(26)
¯(r 1v11r 2v2 )

¯t
1˜ gr 1

¯b
¯r 1

1r 2
¯b
¯r 2

2bh1
1div gr 1v17v11r 2v27v22

¯b
¯v

w7w
v h40.

Additive terms come from the dependance of b in v and in the mechanical case

r 1
¯b
¯r 1

1r 2
¯b
¯r 2

2b represents the total pressure p .

The conservation of energy is obtained by summing on a41, 2 equation (26) mul-
tiplied by r ava :

(27) ¯

¯t
g 1

2
r 1 v1

21 1
2

r 2 v1
21b1v

¯b
¯v
h1

1div gr 1v1
¯b
¯r 1

1k1v11r 2v2
¯W
¯r 2

1k2v2h40.

In the following, we consider the case where b is independent of v and the entropy
principle (15) presented in [13] yields b4r 1 e 1 (r 1 )1r 2 e 2 (r 2 ). Then, equation
(25) writes

¯va

¯t
1curl va3va1˜ g 1

2
va

21m ah40, (a41, 2).(28)

Multiplying equation (28) by r a straightforward calculations yield equation (11)4 with
ma40. Equations (26, 27) yield equations (11)3 , (11)5 and balance of mass equations
correspond to t a40 (a41, 2).

A purely mechanical case is the adiabatic one and we have verified the following
results:

In the adiabatic case with intrinsic Lagrangian L4Ec2re I difference between the
intrinsic kinetic energy and the intrinsic internal energy re I4r 1 e 1 (r 1 )1r 2 e 2 (r 2 ),
the system deduced from Hamilton principle coincides with the system coming from Ra-
tional Thermomechanics.

4. THE HAMILTONIAN PROCEDURE FOR SUPERFLUID HELIUM

In the case of a binary mixture some change must be done in the definition of vir-
tual motions presented by Serrin in [18]. Let us consider the motion of Helium II as
two diffeomorphisms

z4M(Z), z4Mn (Zn )

where z4 g t
xh corresponds to the Eulerian variables in time-space and Z4 g l

Xh,
Zn4 gl n

Xn
h correspond to the Lagrangian variables associated with the barycentric
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motion and the normal component motion of Helium II. In coordinate form,

M(Z)4 ug(l , X)
f(l , X)

v , Mn (Zn )4 u g(l n , Xn )
fn (l n , Xn )

v .

We consider three one-parameter families of virtual motions which are sufficient to
obtain the governing equations:

(F )
.
/
´

t4g(l , X)4gn (l n , Xn )

x4F(l , X, e)

x4fn (l n , Xn )

with F(l , X, 0 )4f(l , X ),

(Fn )
.
/
´

t4g(l , X)4gn (l n , Xn )

x4f(l , X )

x4Fn (l n , Xn , e)

with Fn (l n , Xn , 0 )4fn (l n , Xn ),

(Ft )
.
/
´

t4G(l , X, e)4Gn (l n , Xn , e)

x4f(l , X )

x4fn (l n , Xn )

with G(l , X, 0 )4Gn (l n , Xn , 0 )4g(l , X)4gn (l n , Xn ).
The three families generate the virtual displacements

z4 g0
j
h4 u 0

¯F

¯e

vN
e40

, zn4 g 0
jn
h4 u 0

¯Fn

¯e

vN
e40

, zt4 gt0h4 u
¯G
¯e
0
vN

e40

.

The virtual motion (F ) generates an associated displacement dZn of the normal com-
ponent. Indeed, the relations

g(l , X)4gn (l n , X1 ) fn (l , Xn )4F(l , X, e)

imply

z4 u ¯gn

¯l 1
,

¯gn

¯Xn

¯fn

¯l n
,

¯fn

¯Xn

v dZn .

By using the definition of the deformation gradient F proposed in Appendix we
get

dZn4Cn z with Cn4 g 0

2Fn
21Vn

,

,

0

Fn
21h .(29)

In the same way, virtual motion (Fn ) generates an associated displacement d nZ of the
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barycentric motion

d nZ4Czn with C4 g 0

2F21V

,

,

0

F21h .

Now, H(Z, e) notes a perturbation of h(Z), the variation of h is

dh4 ¯H
¯e N

e40
.

We can also introduce Lagrangian variations corresponding to the families (Fn )
and (Ft ):

d n hn4
¯Hn

¯e N
e40

and d t ht4
¯Ht

¯e N
e40

.

The variations of the entropy S is a main step of our model: we make the physical as-
sumption that the entropy S is defined on the Zn-space. This result corresponds to
equation (24) proposed by Landau. Consequently, we deduce d n S40 and d t S40.
From relation (29) we obtain

dS4 ¯S
¯Zn

dZn4
¯S
¯x

j .

Following the Hamiltonian procedure presented in paragraph 3, we consider the La-
grangian L as a function of r , v, r n , vn , S (L4L(r , v, r n , vn , S)). Such is the case

for the intrinsic Lagrangian L4 1
2

(r n vn
21r s vs

2 )2b(r , r n , S) where r s and vs are
given by the relations:

r s4r2r n and vs4
rv2r nvn

r2r n
.(30)

Consequently,

¯vs

¯r
4 1

r s
(v2vs ),

¯vs

¯r n
4 1

r s
(vs2vn ),

¯vs

¯v
4

r
r s

I,
¯vs

¯vn
42

r n

r s
I .

The variation of the Hamilton action corresponding to the first family is:

dI4 �
W0

d(L det B) dw0

where B4 ¯z
¯Z

is the Jacobian of M and W0 is the associated Lagrangian domain in

the g l
Xh-space. Consequently,

dI4 �
W0

(dL1L Div z) det B dw0 .

Variations of L come from

dL4 ¯L
¯v

dv1 ¯L
¯vn

dvn1
¯L
¯r

dr1 ¯L
¯r n

dr n1
¯L
¯S

dS .
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with,

¯L
¯v

4rvs ,
¯L
¯vn

4r n (vn2vs ) ,

R4 ¯L
¯r

42 1
2

vs
21vsv2b r s

8 (r n , r s , S),

Rn4
¯L
¯r n

4 1
2

v 21 1
2

vs
22vsvn2b r n

8 (r n , r s , S)1b r s
8 (r n , r s , S),

rT42 ¯L
¯S

.

(31)

Moreover we have,

dvn4
¯vn

¯Zn

Cn z4
¯vn

¯x
j and dr n4

¯r n

¯Zn

Cn z4
¯r n

¯x
j .

Since z4 g0
j
h , we get (see Appendix for the variations dr and dv variations),

dL1L Div z4 ¯L
¯v

dj

dt
1 ¯L

¯vn

¯vn

¯x
j2r ¯L

¯r
div j1 ¯L

¯r n

¯r n

¯x
j1L div j1 ¯L

¯S
¯S
¯x

j4

4rvs
dj

dt
1r n (vn2vs )

¯vn

¯x
j2rR div j1Rn

¯r n

¯x
j1L div j1 ¯L

¯S
¯S
¯x

j .

By using the expression

rvs
dj

dt
4 ¯

¯t
(rvs j)2 ¯

¯t
(rvs ) j1div (r(v7vs ) j)2div (rv7vs ) j

we get

dL1L div j4 ¯

¯t
(rvs j)2 ¯

¯t
(rvs ) j1div (r(v7vs ) j)2div (rv7vs ) j1

1r nvn
¯vn

¯x
j2div (rR j)1˜(rR) j1Rn

¯r n

¯x
j1div (Lj)1 ¯L

¯S
˜S j2

2g ¯L
¯r

˜r1 ¯L
¯v

¯v
¯x

1 ¯L
¯r n

˜r n1
¯L
¯vn

¯vn

¯x
1 ¯L

¯S
˜Sh j

and from equations (31),

dL1L Div z4 g2 ¯

¯t
(rvs )2div (rv7vs )1˜(rR)2R˜r2r g ¯v

¯x h*vsh j1

1 ¯

¯t
(rvs j)1div (r(v7vs ) j)2div (rRj)1div (Lj) ,
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where * denotes the transposition. Consequently, the first equation of momentum is

¯vs

¯t
1˜ g 1

2
vs

21b r s
8 h4 vs3curl vs .(32)

If we note m s4b r s
8 , when vB0 , equation (32) yields

¯vs

¯t
1˜ g 1

2
vs

21m sh40(33)

which is the Landau equation for the superfluid component. In fact Landau pointed
out that Helium II lose its superfluidity when the velocity is not small enough and the
supplementary term curl vs3vB0 corresponds to this experimental evidence.

Variations of the Hamilton action are closely the same for the second family. The
variation of the entropy is d n S40 and consequently an entropy term is now appear-
ing in the equations of motion. The second equation of momentum is

(34) ¯

¯t
(r n (vn2vs ) )1div (r nvn7 (vn2vs ) )1

1r ng ¯un

¯x
h*(vn2vs )2r n ˜Rn2rT˜S40 .

By summing equations (32) and (34), equation (34) can be replaced by the balance of
total momentum:

¯

¯t
(rvs1r n (vn2vs ) )1div grv7vs1r svn7 (vn2vs )2r ¯L

¯r
2r n

¯L
¯r n

1Lh40.

Straightforward calculations yield the equation of momentum

¯rv
¯t

1div (rvn7vn1rvs7vs1p)40,(35)

where p4r s m s1r n m n2b is the total pressure, with m n4b r n
8 .

Finally, the third family is associated with the vector displacement zt4 gt0h . The

variations of basic variables are calculated in Appendix:

d tv42v dt
dt

, d t r4r˜t v, d tvn42vn
dn t

dt
, d t r n4r n ˜t vn , d t S40.

The variation of the Hamilton action is

d t I4 �
W0

gd t L1L ¯t
¯t
h det B dw0

with

d t L4 ¯L
¯v

d tv1
¯L
¯vn

d tvn1
¯L
¯r

d t r1 ¯L
¯r n

d t r n1
¯L
¯s

d t s .
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Hence,

d t L1L ¯t
¯t

42rvsv g ¯t
¯t

1˜t vh2r n (vn2vs ) vng ¯t
¯t

1˜t vnh1
1rR˜t v1r n Rn ˜t vn1

¯

¯t
(Lt)2 ¯L

¯t
t4

42 ¯

¯t
(rvsv t)1 ¯

¯t
(rvsv) t2div (r(vsv) v t)1div (r(vsv) v) t2

2 ¯

¯t
(r n (vn2vs ) vn t)1 ¯

¯t
(r n (vn2vs ) vn ) t2div (r nvn (vn2vs ) vn t)1

1div (r n ( (vn2vs ) vn ) vn ) t1div (rRv t)2div (rR v) t1

1div (r n Rnvn t)2div (r n Rnvn ) t1 ¯

¯t
(Lt)2 ¯L

¯t
t .

Consequently,

¯

¯t
(rvsv1r n (vn2vs ) vn2L)1div ](vsv2R) rv1[ (vn2vs ) vn2Rn ] r nvn(40 .

If we notice that

rvsv1r n (vn2vs ) vn2L4 1
2

r n vn
21 1

2
r s vs

21b4re

and

(vsv2R) rv1((vn2vs ) vn2Rn ) r nvn4

4 g 1
2

vs
21b r s

8 h r svs1 g 1
2

vn
21b r n

8 h r nvn4q ,

we obtain the equation of balance of the total energy in the form:

¯re
¯t

1div q40.(36)

We notice that the specific entropy S does not appear explicitly anymore in equations
(32), (35), (36) and we conclude: In the case of superfluid Helium the Hamilton princi-
ple yields the Landau model.

5. APPENDIX. VARIATION OF BASIC TENSORIAL QUANTITIES

Let (l , X) be any generalized Lagrangian coordinates and (t , x) the associated
Eulerian coordinates

.
/
´

t4g(l , X)

x4f(l , X ) .
(37)
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The relation dx4 v dt1FdX defines simultaneously the velocity vector and the de-
formation gradient of motion (37):

v4
¯f

¯l
1
¯g
¯l

, F4
¯f

¯X
2

¯f

¯l

¯g

¯X
1
¯g
¯l

.

Let
.
/
´

t4G(l , X, e)
x4F(l , X, e)

be a virtual motion. The associated perturbation of the velocity v

is given by the formula:

u4
¯F

¯l
1
¯G
¯l

and consequently,

dv4 du
de N

e40
4

¯j

¯l
1
¯g
¯l

2v ¯t
¯l

1
¯g
¯l

.

For fixed values of Lagrangian coordinates the variation of v in Eulerian coordinates is:

dv4
dj

dt
2v dt

dt
where d

dt
4 ¯

¯t
1v ¯

¯x
.

Analogous calculation for F is:

dF4 g ¯j

¯x
2v ¯t

¯x
h F .

Moreover, the Euler-Jacobi identity yields

d det F4det F tr (F21 dF) .

Hence, the mass conservation law is: r det F4r 0 (X) and implies

dr42r( div j2˜t Qv) .

Equation (11)2 is the form of the mass balance for the normal component of Helium.
If we assume

r n det Fn4r 0n (l n , Xn ) ,

which means that r n is defined on the Lagrangian space of the normal component, the
variation of r n with respect to d n is always in the form:

d n r n42r n ( div jn2˜t Qvn ) .
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[2] I. MÜLLER, A new approach to thermodynamics of simple mixtures. Zeitschrift für Naturforschung,
28a, 1973, 1801.
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