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Analisi matematica. — L Q2L 2 weighted estimate for the wave equation with po-
tential. Nota di VLADIMIR GEORGIEV e NICOLA VISCIGLIA, presentata (*) dal Socio S.
Spagnolo.

ABSTRACT. — We consider a potential type perturbation of the three dimensional wave equation and
we establish a dispersive estimate for the associated propagator. The main estimate is proved under the
assumption that the potential VF0 satisfies

NV(x)NG C
(11NxN)21e 0

,

where e 0D0.

KEY WORDS: Perturbed wave equation; Resolvent estimates; Spectral theory; Fredholm theory.

RIASSUNTO. — Stime L Q2L 2 pesate per l’equazione delle onde con potenziale. Si considera l’equazio-
ne delle onde perturbata con un potenziale in dimensione tre e si provano delle stime dispersive per il
propagatore associato. La stima principale è ottenuta sotto la condizione che il potenziale VF0
soddisfi

NV(x)NG C
(11NxN)21e 0

,

dove e 0D0.

1. INTRODUCTION

The classical models in quantum mechanics (see [11, Chap. X.2]) lead in a natural
way to the study of potential type perturbations of the Laplace operator. The corre-
sponding wave evolution problem is the following one

(¯ t
22D) u(t , x)1V(x) u(t , x)40, x�R3 .(1.1)

For potential V(x) satisfying the properties

V(x)�L Q (R3 )(1.2)

the Kato-Rellich Theorem (see [11, Theorem X.12]) implies that

2D1V : H 2 (R3 )KL 2 (R3 )

is a self-adjoint operator. In this work we study potentials satisfying the additional
sign assumption

V(x)F0, almost everywhere in R3 .(1.3)

In fact, operators of type 2D1V , such that (1.3) is not true, might have nontrivial
kernels and this would be an obstacle to obtain dispersive estimates for (1.1).

The assumption (1.3) enables one to give a meaning to the operator k2D1V and
to write an explicit representation of the solution to the Cauchy problem for (1.1) with

(*) Nella seduta del 14 febbraio 2003.
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initial data

u(0 , x)40, ¯t u(0 , x)4 f(1.4)

as follows

u(t , x)4 UV (t) f ,(1.5)

where

UV (t)4
sin gtk2D1Vh

k2D1V
.

The main goal of the work is to obtain a dispersive estimate of the type

VUV (t) f VL 4G
C( f )

kt
,(1.6)

where V QVL p is the standard Lebesgue norm in R3 for pF1.
This estimate for the case V40 is known as Strichartz estimate (see [15]) and it

plays important role in the applications to nonlinear wave equations (see for example
[13]).

The Strichartz estimate for the case of potential type perturbation is established in
[4] and [7]. The assumptions in these works require that the potential decays very
rapidly at infinity. For instance, the assumption V(x)4O(NxN232e 0 ), e 0D0, is as-
sumed in [7]. Here we shall relax the assumptions on the potential to the following
one V(x)4O(NxN222e 0 ) as NxNKQ . We shall consider potentials that are not neces-
sarily radial. The case V(x)4a/NxN2 with radially symmetric data f is studied recently
in [10], while in [6] is considered the same problem with general initial data.

The classical Strichartz estimate in dimension 3 is the following

VU0 (t) f VL 4G C

kt
V f VL 4/3 ,(1.7)

where f�C0
Q (R3 ) and U0 (t) is the free propagator

U0 (t)4
sin gtk2Dh

k2D
.

In this work we shall obtain the following variant of this estimate

VUV (t) f VL 4G C

kt
V f V3/21d ,(1.8)

where d is arbitrary positive number and V QVs denotes the following norm:

V f V2
s 4 �

R3

Nf(x)N2 axbs dx ,

where axb4k11NxN2. The weighted Lebesgue space with norm V f Vs will be denot-
ed by L 2

s (R3 ).
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In our case we shall assume that the measurable potential V(x) satisfies (1.3) and
for some e 0D0 and CD0 the following inequality is satisfied

NV(x)NG C
(11NxN)21e 0

(1.9)

The main result of this work is the following.

THEOREM 1.1. If the potential V(x)F0 satisfies the assumption (1.9), then the esti-
mate (1.8) is fulfilled.

The natural question that arises is the relation between the classical Strichartz
norm

V f VL 4/3

in the right side of (1.7) and the L 2 weighted norm

V f V3/21d

in our estimate (1.8). It is easy to see that

V f VL 4/3GCd V f V3/21d ,(1.10)

so the classical Strichartz estimate (1.7) seems to be stronger that the one in (1.8).
However, the assumption (1.9) is a very weak one on the decay of the potential and we
have met essential difficulties to apply the classical methods based on the study of the
Lippman-Schwinger equation (see [7]). For this we have been forced to use different
approach based on appropriate estimates of the resolvent operator for D2V .

It is an open question the possible generalization of our result to the case of non-
negative potentials satisfying the weaker estimate

NV(x)NG C
NxN2

.(1.11)

The results in proved in [6] and [10] for the case of V(x)4a/NxN2 suggest us that clas-
sical Strichartz estimate shall be satisfied, when the potential VF0 has the form

V(x)4
Y(x/NxN)

NxN2
1V1 (x),

where Y(v)F0 is a measurable function on the sphere S2 and the remainder V1 (x)F
F0 satisfies (1.9). The result in this work can be considered as a first step towards the
proof of this conjecture.

The main idea of the proof is to use suitable a priori estimates for the resolvent of
the perturbed Laplace operator 2D1V that is

RV (z)4 (z1D2V)21 .

This operator is a well-defined bounded one in L 2 (R3 ) if z�C0R . Using suitable L 2

weighted estimates of RV (l 26 ie) for e� (0 , 1], lD0 it is possible to prove the exis-
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tence of a natural limit operator RV (l 26 i0) defined as follows,

RV (l 26 i0) f4 lim
eK0

RV (l 26 ie) f .

This limiting absorbtion principle is discussed in details in Corollary 6.2 in the
Appendix.

The main step in the proof of Theorem 1.1 is to prove the estimate (1.8) under ad-
ditional abstract assumption connected with the operator R0 (l 26 i0) defined by

R0 (l 260)U(x)42 1
4p
�

R3

e 6ilNx2yN

Nx2yN
U(y) dy .(1.12)

It is clear that the kernel of the operator [I2R0 (l 26 i0)V] consists of solutions U(x)
of the integral equation

U(x)42 1
4p
�

R3

e 6ilNx2yN

Nx2yN
V(y)U(y) dy .(1.13)

Our additional abstract assumption has the form

If lF0 and U�L 2
232d is a solution of (1.13)

for dD0 small , then U(x)40.
(1.14)

The key point in the proof of Theorem 1.1 is the following.

THEOREM 1.2. If the potential VF0 satisfies the assumptions (1.9) and (1.14), then
the estimate (1.8) is fulfilled.

In the proof of Theorem 1.2 the following representation of the perturbed
propagator

UV (t) f»4�
0

Q

sin lt[RV (l 21 i0)2RV (l 22 i0) ] fdl ,(1.15)

will be very useful and will be combined with some L 2 weighted estimates for the limit
resolvent operator RV (l 26 i0).

The idea to use the representation (1.15) for the proof of Strichartz type estimate
as been used in [17], where a simplified proof of the classical Strichartz estimate is ob-
tained in the case V40. More precisely, in the case V40 the solution to the free
wave equation

(¯ t
22D) u(t , x)40, x�R3 ,(1.16)

with initial data u(0)40, ¯t u(0)4 f is defined by

u(t , x)4 U0 (t) f ,(1.17)

where

U0 (t) f»4�
0

Q

sin lt[R0 (l 21 i0)2R0 (l 22 i0) ] fdl .(1.18)
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The type of estimate that we prove for the resolvent limit

RV (l 26 i0)4 lim
eK0

RV (l 26 ie)

have the general form

VRV (l 26 i0) f VsG
C
l A

V f Vs(1.19)

with C4C(s , s)D0, A4A(s , s)F0 suitably chosen.
These estimates have a semiclassical analogue in the study of the scattering poles

[12, 14]. In some sense the high frequency case( lKQ) corresponds to the semiclassi-
cal estimates of the resolvent established in [12]. The corresponding estimates in the
low frequency domain (lA0) have been studied in [16] and they play essential role in
the proof of local energy decay.

In this paper the estimates of the type (1.19) will be combined with the representa-
tion (1.15), or more exactly they will be useful for the estimate of the following
operators

UV , low (t) f4 �
lA0

sin lt[RV (l 21 i0)2RV (l 22 i0) ] fdl

that represents the low frequency part of the propagator and

UV , high (t) f4 �
lAQ

sin lt[RV (l 21 i0)2RV (l 22 i0) ] fdl

that corresponds to the high frequency part of the propagator. Note that the following
identity is fulfilled trivially

UV (t) f4 UV , low (t) f1UV , high (t) f .

For the estimate for the low frequency part we shall use a simple interpolation be-
tween a dispersive estimate and L 2 estimate. For the high frequency term we define an
analytic family of operators and use the Stein interpolation Theorem.

Once the Theorem 1.2 is established it remains to show that the abstract assump-
tion (1.14) follows from (1.9) and the fact that V is non-negative. Namely, we have the
following.

THEOREM 1.3. Suppose that the potential VF0 satisfies (1.9) and lF0. If

U�L 2
232d , 0EdEe 0

is a solution to the integral equation

U(x)42 1
4p
�

R3

e 6ilNx2yN

Nx2yN
V(y) U(y) dy ,(1.20)

then U40.

In other words, the conclusion of this Theorem means that the kernel of the opera-
tor [I2R0 (l 26 i0)V ] is trivial for lF0.
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We shall explain the main points in the proof of this Theorem.
The assumption (1.9) shows (see Section 3) that this operator

[I2R0 (l 26 i0)V]

is bounded in the weighted Lebesgue space L 2
232d , 0EdEe 0 .

From results due to Ikebe, Alsholm, Schmidt (see Lemma 4.4 in [8, p. 15], Propo-
sition 1 in [2, p. 308] or Lemma 6.1 in the Appendix) one easily obtains the conclusion
of Theorem 1.3 for lD0.

On the other hand, the operator R0 (l 26 i0) has a natural limit in the uniform op-
erator topology of L(L 2

11d ; L 2
232d ) (the Banach space of all bounded operators from

L 2
11d in L 2

232d) as lK0

lim
lK01

R0 (l 26 i0)4R0 (0),(1.21)

where

R0 (0) f(x)42 1
4p
�

R3

f(y)
Nx2yN

dy .(1.22)

A detailed proof is given in Lemma 3.1 in Section 3 below.
Once we extended R0 (l 26 i0) continuously for lF0 one can show (see Lemma

6.2 in the Appendix) that the conditions (1.9) and VF0 imply that any solution to the
integral equation (1.20) satisfies the estimate

NU(x)NG C
11NxN

with some constant CD0, independent of lF0. Using this estimate we easily con-
clude the proof of Theorem 1.3.

The plan of the work is the following. In Section 2 we give various L 2 weighted es-
timate of the free resolvent and its square. To evaluate RV (l 26 i0) uniformly in l we
need an application of the Fredholm Theorem together with suitable estimates of the
operator

[I2R0 (l 26 i0)V]21 .

These estimates are discussed in Section 3 provided the abstract assumption (1.14) is
satisfied. Applying the Fredholm Theorem, in Section 4 we extend the estimates of
Section 2 for the case of perturbed resolvent. In Section 5 we prove Theorem 1.2. Fi-
nally, Section 6 is devoted to the verification of (1.14) when the potential VF0 satis-
fies (1.9).

2. RESOLVENT AND POWER RESOLVENT ESTIMATES FOR THE FREE LAPLACIAN

The basic result of this section is a Theorem that unifies various weighted esti-
mates for the free resolvent. In particular we are interested in the decay of the resol-
vent estimates for the high frequencies and its boundedness for the low frequen-
cies.
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Here and below the number e 0 is the number related to the decay of the potential
in (1.9).

THEOREM 2.1. Given any real number dD0 we have the following estimates:
1) if 0GaE22d , then there exists CD0 so that for any lD0 and any

f�C Q
c (R3 ) we have

VR0 (l 26 i0) f V212a2dGCV f V32a1d ;(2.1)

2) there exists CD0 so that for any lD0 and any f�C Q
c (R3 ) we have

VR0 (l 26 i0) f V212dG
C
l
V f V11d ;(2.2)

3) if a� [0 , 22d), bFda/(22d) and a1bG2 then there exists CD0 so that
for any lD0 and any f�C Q

c (R3 ) we have

VR0 (l 26 i0) f V212a2dG
C

l 12 (a1b) /2
V f V11b1d .(2.3)

For the proof of the Theorem the following lemma will be useful.

LEMMA 2.1. If d , a are real numbers such that 0GaE22d , then the func-
tions

1
ayb31d2a axb11d1a Nx2yN2

belong to the Lebesgue space L 1 (R3
x3R3

y ).

PROOF. We start with the estimate of the following 3-dimensional integrals de-
pending on the parameter y:

�
R3

1
Nx2yN2 axb11d1a

dx .

It is easy to prove that if NyNE1, then these integrals are uniformly bounded. We now
prove a decay estimate for NyND1. We split the integrals as follows:

�
R3

1
Nx2yN2 axb11d1a

dx4 I1 II1 III ,(2.4)

where

I4

III4

�
NxNF2NyN

1
Nx2yN2 axb11d1a

dx ; II4 �
NxNG NyN

2

1
Nx2yN2 axb11d1a

dx ;

�
NyN
2

GNxNG2NyN

1
Nx2yN2 axb11d1a

dx .
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Estimate for I:

IG �
NxNF2NyN

4
NxN2 axb11d1a

dxG C
NyNd1a

.(2.5)

Estimate for II:

IIG 4
NyN2

�
B(0 , NyN

2
)

1
axb11d1a

dxG C
NyNd1a

.(2.6)

Note that here we need the estimate 11d1aE3, i.e. aE22d .

Estimate for III:

(2.7) IIIG �
NyN
2

GNxNG2NyN

1
NyN11d1a Nx2yN2

dxG �
B(y, 4NyN)

1
NyN11d1a Nx2yN2

dxG C
NyNd1a

,

then we have finally

�
R3

1
Nx2yN2 axb11d1a

dxGmin {C , C
NyNd1a } .

An easy application of the Fubini Theorem yields the desired estimate

�
R3

�
R3

1
ayb31d2a axb11d1a Nx2yN2

dx dyG�
R3

C
ayb312d

dyEQ . o

PROOF OF THEOREM 2.1.

Proof of (2.1):

Using the explicit representation of R0 (l 26 i0) we have

VR0 (l 26 i0) f VL 2
212d2a

2 G�
R3

1
axb11d1a N�

R3

Nf(y)N 1
Nx2yN

dyN2
dx ,(2.8)

then the Cauchy inequality yields

(2.9) VR0 (l 26 i0) f VL 2
212d2a

2 G

GV f V2
31d2a�

R3

�
R3

1
axb11d1a ayb31d2a Nx2yN2

dy dxGCV f V2
31d2a ,

where lemma 2.1 is used in the last inequality.

Proof of (2.2):

This estimate is contained in the paper [3].
An alternative proof can be obtained combining Theorem 2.3 and Theorem A.6

in [5].
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Proof of (2.3):

The estimate (2.1) implies that the desired estimate is valid on the semi-closed
segment

AB4](a , b); a1b42, 0GaE22d(,

where

A(2 , 0 ), B(22d , d).

The estimate (2.2) shows that the desired estimate is valid at the point C(0 , 0 ). Mak-
ing interpolation, we obtain the desired estimate in the triangle !ABC defined by the
relations

0GaE22d , bF da
22d

, a1bG2.

This completes the proof. o

Our next step is to evaluate the square of the free resolvent. This type of estimates
will be useful to perform an integration by parts in (1.15), since the derivative of the
resolvent is related to its power.

THEOREM 2.2. Given any real number dD0 we have the following estimates:
1) there exists CD0 so that for any lD0 and any f�C Q

c (R3 ) we have

VR0
2 (l 26 i0) f V232dG

C
l
V f V31d ;(2.10)

2) there exists CD0 so that for any lD0 and any f�C Q
c (R3 ) we have

VR0
2 (l 26 i0) f V232dG

C
l 2

V f V31d .(2.11)

PROOF.

Proof of (2.10):

We have the following identity of operators,

2lR0
2 (l 26 i0)4 d

dl
R0 (l 26 i0)

then,

lR0
2 (l 26 i0) f(x)4 1

2
d
dl

e iNlNNxN

NxN
˜f4 i

2
e iNlVxN˜f .

The desired estimate will be then a consequence of the following inequality

Ve iNlVyN˜f V232dGCV f V31d .
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that we can prove using the Hölder inequality:

(2.12) Ve iNlNNyN˜f V232dG�
R3

1
axb31d N�

R3

Nf (y)Nayb
3
2
1 d

2

ayb
3
2
1 d

2

dyN2
dx

GV f V2
31d�

R3

�
R3

1
axb31d ayb31d

dx dy4CV f V2
31d .(2.13)

Proof of (2.11):

The proof can be found in Theorem (11) of [9]. o

3. FREDHOLM THEORY FOR THE LAPLACIAN WITH A POTENTIAL

The main result of this section concerns the existence of the inverse of a one-par-
ameter family of operators and the estimates of its norms. The key point of the proof
will be the Fredholm Theorem [11]. The result will be very useful to generalize the
weighted estimates proved for the free Laplacian to the case of the perturbed
Laplacian.

THEOREM 3.1. Assume that the potential V(x) satisfies the assumptions (1.9) and
(1.14) and a is a real number satisfying

1GaG3.
Then the operators [I2R0 (l 26 i0)V] are invertible in L(L 2

2a2d , L 2
2a2d ). More-

over there exists a constant CD0 such that for any dEe 0 /2 the following estimate
holds

V[I2R0 (l 26 i0)V]21 f V2a2dGCV f V2a2d , (l�R .

To prove this Theorem first we shall consider the case a43. As a second step we
shall consider the case a41. Applying an interpolation argument, we complete the
proof.

LEMMA 3.1. Let dD0, d 1D0 and 0GaG2. Then the one parameter family of op-
erators R0 (l 26 i0) is continuous in the space of operators L(L 2

11a1d 1
, L 2

231a2d ) for
l� [0 , Q).

PROOF. We shall consider the cases a40, a42 separately and then we shall com-
plete the proof by interpolation argument.

First, we start with the case a40.
We just prove the continuity in zero. Using explicit representation of the operators

R0 (l 26 i0) and making similar computations as in Theorem 2.1, we have

(3.1) V[R0 (l 26 i0)2R0 (0) ] f V2
232dG

G�
R3

�
R3

Ne ilNx2yN21N2

axb31d ayb11d 1 Nx2yN2
dy dxV f V2

12d12e 0
,
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and for the Lebesgue dominated convergence Theorem the last integral converges to
zero, when l goes to zero.

The case a42 leads to the following integral

�
R3

�
R3

Ne ilNx2yN21N2

axb11d ayb31d 1 Nx2yN2
dy dx

and again the Lebesgue dominated convergence Theorem assures the convergence to 0.
This completes the proof. o

LEMMA 3.2. Let s , s be real numbers, such that sE s , then the embedding

H 1
loc (R3 )OL 2

s (R3 ) %KL 2
s (R3 )

is compact.

PROOF. Let ]un( be a bounded sequence in H 1
loc (R3 )OL 2

s (R3 ). This means that
there exists a sequence CkD0 of real constants, such that

�
NxNGk

N˜unN21NunN2GCk , �
R3

axbs NunN2 dxGC0 , (n�N .

Using an elementary estimate we have

�
NxNFk

axbs NunN2 dxG
C0

akbs2s .(3.2)

Moreover for the compactness of the Sobolev embedding on bounded sets we have
that for any k�N there exists a subsequence of ]un(, that we denote still by ]un(, that
has a strong limit in L 2 (NxNEk). It is now easy to deduce from this property and esti-
mate (3.2) the result. o

PROOF OF THEOREM 3.1. First we take a43.
Using the hypothesis on the potential V we can prove that

V : L 2
232dKL 2

12d12e 0

and for Theorem 2.1 with a4212d22e 0 we have

R0 (l 26 i0) : L 2
12d12e 0

KL 2
2323d12e 0

.

Moreover with standard local elliptic regularity results one can prove that

R0 (l 26 i0) : L 2
12d12e 0

KH 1
locOL 2

2323d12e 0

and using Lemma 3.2 we deduce that the linear applications

R0 (l 26 i0)V : L 2
232dKL 2

232d

are compact.
The assumption (1.14) implies that the linear applications

[I2R0 (l 26 i0) ]
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are injective then for the Fredholm alternative Theorem [11] they are invertible
operators.

To prove the uniform boundedness of the norm of the inverse operator we consid-
er the low and the high frequencies case separately.

I case: 0GlGl 0EQ.
We remark that the family [I2R0 (l 26 i0) ] is continuous on the compact set

[0 , l 0 ] and their inverses have the same property hence they are uniformly bounded
in L(L 2

232d , L 2
232d ).

II case: lDl 0 for l 0 large enough and such that VR0 (l 26 i0)VV232d , 232dG
1
2

for lDl 0 . The existence of a l 0 with this property can be deduced as follows. The
decay assumption on the potential V guarantees that

V : L 2
232dKL 2

12d12e 0
.

Moreover, we can apply (2.3) taking

a4222d , b4d

in (2.3). It is not difficult to see that the conditions

0GaE22d , a1bG2, bF da
(22d)

are satisfied with this choice of a , b . The operator

R0 (l 26 i0) : L 2
112dKL 2

231d

has a norm O(l2d/2 ) according to (2.3) so this norm is small for l 0 large enough. It re-
mains to note that the embedding

L 2
12d12e 0

%KL 2
112d

for dE2e 0 /3 has a norm 1 . The same is valid for the embedding

L 2
231d

%KL 2
232d

In conclusion

R0 (l 26 i0) : L 2
12d12e 0

KL 2
232d

and its norm is O(l2d/2 ).
Hence, we conclude that

R0 (l 26 i0)V : L 2
232dKL 2

232d

has a norm E1/2 for lFl 0 and l 0 large enough.

Then for lDl 0 we have VI2R0 (l 26 i0)VVF 1
2

and consequently

V[I2R0 (l 26 i0)V]21
VGC .

Next we consider the case a41. Then following the same argument we conclude
that the operators [I2R0 (l 26 i0)V] are invertible in L(L 2

212d , L 2
212d ). Moreover

there exists a constant CD0 such that for any dEe 0 /2 the following estimate
holds

V[I2R0 (l 26 i0)V]21 f V212dGCV f V212d , (l�R .
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Making interpolation between a41 and a43 we complete the proof of the
Theorem. o

4. RESOLVENT AND POWER RESOLVENT ESTIMATES FOR THE LAPLACIAN

WITH A POTENTIAL

In this section we generalize the estimates proved for the free Laplacian to the per-
turbed Laplacian. The main tool that we use is the resolvent identity. The main result
is the following.

THEOREM 4.1. Assume that the potential V satisfies the assumptions (1.9) and (1.14)
then given any real number dD0 we have the following estimates:

1) if 0GaE22d , then there exists CD0 so that for any lD0 and any
f�C Q

c (R3 ) we have

VRV (l 26 i0) f V212a2dGCV f V32a1d ;(4.1)

2) there exists CD0 so that for any lD0 and any f�L 2
11d (R3 ) we have

VRV (l 26 i0) f V212dG
C
l
V f V11d ;(4.2)

3) there exists a constant CD0 such that for any lD0 and any f�L 2
11d (R3 )

V(RV (l 26 i0) f V232dGCV f V11d ;(4.3)

4) if a� [0 , 22d), bFda/(22d) and a1bG2 then there exists CD0 so that
for any lD0 and any f�C Q

c (R3 ) we have

VRV (l 26 i0) f V212a2dG
C

l 12 (a1b) /2
V f V11b1d .(4.4)

PROOF.

Proof of (4.1):

The resolvent identity guarantees that we have,

RV (l 26 i0)4R0 (l 26 i0)1R0 (l 26 i0)VRV (l 26 i0)(4.5)

or

[I2R0 (l 26 i0)V] RV (l 26 i0)4R0 (l 26 i0).

From Theorem 3.1 we have,

RV (l 26 i0)4 [I2R0 (l 26 i0)V]21 R0 (l 26 i0).

We conclude the proof applying Theorems (3.1) and (2.1).

Proof of (4.2):

It is similar to the Proof of (4.1).
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Proof of (4.3):

It is obtained from (4.1) taking a4222d . In this way we get

VRV (l 26 i0) f V231dGCV f V113d .

Replacing 3d by d we obtain the desired estimate.

Proof of (4.4):

It is sufficient to combine (2.3) and Theorem 3.1. o

Next result generalizes the weighted estimates proved in Theorem 2.2 for the
square of the free resolvent to the square of the perturbed resolvent.

THEOREM 4.2. Assume that the potential V satisfies the assumptions (1.9) and
(1.14). Then given any real number dD0 we have the following estimates:

1) there exists CD0 so that for any lD0 and any f�L 2
31d (R3 ) we have

VR 2
V (l 26 i0) f V232dG

C
l
V f V31d ;(4.6)

2) there exists CD0 so that for any lD0 and any f�L 2
31d (R3 ) we have

VR 2
V (l 26 i0) f V232dG

C
l 2

V f V31d ;(4.7)

3) for any e� (0 , 1 ) there exists CD0 so that for any lD0 and any f�L 2
31d (R3 )

we have

VR 2
V (l 26 i0) f V232dG

C
l 11e

V f V31d .(4.8)

PROOF.

Proof of (4.6):

For the resolvent identity we have

(4.9) RV
2 (l 26 i0)4 [R0 (l 26 i0)1R0 (l 26 i0)VRV (l 26 i0) ] RV (l 26 i0)

4R0 (l 26 i0)[R0 (l 26 i0)1R0 (l 26 i0)VRV (l 26 i0) ](4.10)

1R0 (l 26 i0)VRV
2 (l 26 i0)(4.11)

then

[I2R0 (l 26 i0)V] RV
2 (l 26 i0)4R0

2 (l 26 i0)1R0
2 (l 26 i0)VRV (l 26 i0)

or equivalently

RV
2 (l 26 i0)4 [I2R0 (l 26 i0)V]21 R0

2 (l 26 i0)

1[I2R0 (l 26 i0)V]21 R0
2 (l 26 i0)VRV (l 26 i0).

The estimate is an easy consequence of Theorem 3.1 and (2.10), (4.1).

Proof of (4.7):

It is similar to the proof of (4.6).
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Proof of (4.8):

We make interpolation between previous two steps. o

5. DISPERSIVE ESTIMATE

In this section we prove Theorem 1.2.
Take a Paley-Littlewood partition of unity

14 !
k40

Q

f k (x),

such that NxNA2k for x�supp f k . Then the propagator

UV (t) f»4�
0

Q

sin lt[RV (l 21 i0)2RV (l 22 i0) ] fdl

can be decomposed as

UV (t) f4 !
k40

Q

Uk (t) f ,(5.1)

where

Uk (t) f4 UV (t)(f k f).

We can further decompose each operator Uk (t) as a sum of two terms: high and low
frequency parts as follows

Ulow
k (t) f»4�

0

Q

c 1 (l2k ) sin lt[RV (l 21 i0)2RV (l 22 i0) ] f k fdl ,(5.2)

Uhigh
k (t) f»4�

0

Q

c 2 (l2k ) sin lt[RV (l 21 i0)2RV (l 22 i0) ] f k fdl ,(5.3)

where c 1 is function satisfying the following condition
1) c 1�C Q

0 (R),
2) supp c 14 [22, 2],
3) c 141 for x� [21, 1],

and c 2412c 1 .
The corresponding unperturbed operators are:

Ulow
k , 0 (t) f»4�

0

Q

c 1 (l2k ) sin lt[R0 (l 21 i0)2R0 (l 22 i0) ] f k fdl ,(5.4)

Uhigh
k , 0 (t) f»4�

0

Q

c 2 (l2k ) sin lt[R0 (l 21 i0)2R0 (l 22 i0) ] f k fdl .(5.5)

For the low frequency term we use the explicit integral representation in (5.2) and
shall derive the following
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LEMMA 5.1. There exists a constant CD0 such that for any integer kF0 we
have

VUlow
k (t) f VLQGC 2

k
2
1dk

t
V f VL 2 .(5.6)

On the other hand, the functional calculus for 2D1V leads to the following L 2

estimate of the low frequency part.

LEMMA 5.2. There exists a real constant CD0 such that the following estimates
hold

VUlow
k (t) f VL 2GC2k1dk

V f VL 2 .(5.7)

Interpolation between Lemma 5.1 and Lemma 5.2 gives the following esti-
mate.

COROLLARY 5.1. There exists a real constant CD0 such that the following estimate
hold

VUlow
k (t)( f )VL 4GC 2

3k
4

1dk

kt
V ff k VL 2 .(5.8)

For the high frequency term Uhigh
k (t) we introduce appropriate analytic family of

operators

(5.9) Uhigh, z
k (t) f»4�

0

Q

c 2 (l2k ) sin lt[RV (l 21 i0)2RV (l 22 i0) ] ff k l2z dl .

The unperturbed family has analogous definition

(5.10) Uhigh, z
k , 0 (t) f»4�

0

Q

c 2 (l2k ) sin lt[R0 (l 21 i0)2R0 (l 22 i0) ] ff k l2z dl .

This operator is well-defined for Re zF21. For Re z41 we have the following es-
timate that we shall prove later on.

LEMMA 5.3. There exists a real constant CD0 such that for any integer kF0 and
s�R the following estimate holds

VUhigh, 11 is
k (t) f VLQG C

t
2

3
2

k1dk
V f VL 2 .(5.11)

On the line Re z421 we have

LEMMA 5.4. There exists a constant CD0 such that for any integer kF0 we
have

VUhigh, 211 is
k (t) f VL 2GCV f VL 2

VUhigh, 211 is
k , 0 (t) f VL 2GCV f VL 2

for s�R.
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We will prove this Lemma later on. A complex interpolation between the esti-
mates in the last two Lemmas imply.

COROLLARY 5.2. There exists a real constant CD0 such that the following estimates
hold

VUhigh
k (t)( f )VL 4GC 2

3k
4

1dk

kt
V ff k VL 2 .(5.12)

Unifying the estimates (5.8) for the low frequency part with the corresponding es-
timate (5.12) for the high frequency part, we get

VUV (t)(f k f )VL 44VUk (t)( f )VL 4GC 2
3k
4

1dk

kt
V ff k VL 2 .(5.13)

Now we can complete the

PROOF OF THEOREM 1.2. We decompose f using Paley-Littlewood partition

f4 !
k40

Q

ff k .

Applying the estimate (5.13) (substituting dD0 with d/4), we find

VUV (t) f VL 4GV!
kF0

UV (t)(f k f ) V
L 4
G!

kF0
VUk (t)(f k f )VL 4G C

kt
!
kF0

23k/41dk/4
Vf k f VL 2 .

Using the Cauchy inequality, we get

g !
kF0

23k/41dk/4
Vf k f VL 2h2

GC !
kF0

N23k/41dk/2
Vf k f VL 2 N2 .

The quantity in the right side is equivalent to V f V2
3/21d so we obtain

VUV (t) f VL 4G C

kt
V f V3/21d . o

The remaining part of this section is devoted to the proof of the above four
Lemmas.

PROOF OF LEMMA 5.1. We use the resolvent identity to obtain the following identi-
ty of operators

Ulow
k (t)4 Ulow

k , 0 (t)1 rlow
k (t),(5.14)

where

Ulow
k , 0 (t) f»4�

0

Q

c 1 (l2k ) sin lt[R0 (l 21 i0)2R0 (l 22 i0) ] f k fdl ,

rlow
k (t) f»4

�
0

Q

c 1 (l2k ) sin lt[R0 (l 21 i0)VRV (l 21 i0)2R0 (l 22 i0)VRV (l 22 i0) ] f k fdl .
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Applying a standard stationary phase method (see [17]), we get

VUlow
k , 0 (t) f VLQGC 2k/21dk

t
V f VL 2 .(5.15)

It is then sufficient to estimate rlow
k (t), or the operator

rAlow
k (t) f»4�

0

Q

c 1 (l2k ) sin ltR0 (l 21 i0)VRV (l 21 i0) f k fdl .

Using an explicit representation of the operators R0 (l 21 i0) we have the following
identity

rAlow
k (t)4�

0

Q

c 1 (l2k ) sin lt�
R3

e ilNx2yN

Nx2yN
[VRV (l 21 i0) ff k ](y) dldy .

After an integration by parts with respect to l we have

rAlow
k f4 1

t
(I1 II1 III)(5.16)

where

(5.17) I4�
0

Q

2kc 18(l2k) cos lt�
R3

e ilNx2yN

Nx2yN
[VRV(l 21i0) ff k](y) dydl;

II4�
0

Q

c 1 (l2k ) cos lt�
R3

e ilNx2yN[VRV (l 21 i0) f k f ](y) dydl ;(5.18)

III4�
0

Q

c 1 (l2k ) cos lt�
R3

e ilNx2yN

Nx2yN
[V¯l RV (l 21 i0) ff k ](y) dydl4(5.19)

42�
0

Q

c 1 (l2k ) cos lt�
R3

e ilNx2yN

Nx2yN
[VlRV

2 (l 21 i0) ff k ](y) dydl .

We estimate the integrals I , II , III separately.
The following inequality shall be used to evaluate these terms.

�
R3

V(y)Ng(y)N
Nx2yN

dyGCVgV232d , dE2e 0 .(5.20)

To verify this estimate we apply the Hölder inequality and get the estimate

�
R3

V(y)Ng(y)N
Nx2yN

dyGCVgV232d VaQb21e 0 VVLQu �
R3

ayb2122e 01d

Nx2yN2
dyv1/2

.
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The integral

�
R3

1
Nx2yN2

ayb2122e 01d dy

is bounded for dE2e 0 (see the argument of the proof of Lemma 2.1). Thus, the decay
assumption (1.9) leads to (5.20).

Estimate of the first term I.

Using the fact that lA22k for l�suppl c 18 (l2k ), we see that NIN is bounded from
above by constant times

sup
lA22k
�

R3

1
Nx2yN

N[VRV (l 21 i0) ff k ](y)Ndy .

From (5.20) we derive

NINGC sup
lA22k

VRV (l 21 i0) ff k ]V232d .

Now we are in situation to apply the estimate (4.3) and this gives

NINGC2k/21kd
V ff k VL 2 .(5.21)

Estimate of the second term II.

To evaluate II we follow similar idea. More precisely, NIIN is bounded from above
by constant times

�
lG22k

�
R3

N[VRV (l 21 i0) ff k ](y)Ndydl .

Using the Cauchy inequality we have

�
R3

N[VRV (l 21 i0) ff k ](y)NdyGCVRV (l 21 i0) ff k V212d .

Now we use the estimate (4.1) and find

NIINGC23k/21dk �
lG22k

dlV ff k VL 2GC2k/21dk
V ff k VL 2 .

In conclusion, we get
NIINGC2k/21kd

V ff k VL 2 .(5.22)

Estimate of the second term II.

In the estimate of III we use again (5.20) in combination with the estimate (4.6)
and get

NIIINGC �
lG22k

23k/21dk dlV ff k VL 24C2k/21dk
V ff k VL 2 .
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From this estimate, (5.21) and (5.22) we obtain (5.16) and via (2.9) we arrive at the es-
timate (5.6). o

PROOF OF LEMMA 5.2. We have the representation formula (see (5.2))

Uk
low (t) f4c 1 (2kk2D1V)

sin (tk2D1V)

k2D1V
(f k f).

This relation and the fact that the operator 2D1V is self-adjoint implies
that

VUk
low (t) f VL 2GV(2D1V)21/2 ( ff k )VL 2 .(5.23)

To finish the proof it is sufficient to show the estimate

V(2D1V)21/2 f VL 2GVNxNf VL 2 .(5.24)

To show this inequality we start with

V(2D1V)21/2 f V2
L 24�u(x) f(x) dx ,(5.25)

where u is a solution of the equation

(2D1V) u4 f .(5.26)

Multiplying this equation by u and using the fact that VF0, we get

V˜uV2
L 2G�Nu(x) f(x)Ndx .(5.27)

At this point we can use the Hardy inequality

VNxN21 uVL 2GCV˜uVL 2 .(5.28)

Combining the Hardy inequality, the estimate (5.27) and the Cauchy inequality, we
find

VNxN21 uV2
L 2GCVNxNf VL 2 VNxN21 uVL 2

so

VNxN21 uVL 2GCVNxNf VL 2 .(5.29)

Turning back to (5.25), we find

V(2D1V)21/2 f V2
L 2GCVNxN21 uVL 2 VNxNf VL 2

so applying (5.29), we get (5.24).
This completes the proof. o

PROOF OF LEMMA 5.3. We use the resolvent identity to obtain the following identi-
ty of operators

Uhigh, 11 is
k (t) »4 Uhigh, 11 is

k , 0 1 shigh, 11 is
k
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where

Uhigh, 11 is
k , 0 »4�

0

Q

c 2 (l2k ) sin lt[ (R0 (l 21 i0)2R0 (l 22 i0) ) f k f ](y) l211 is dldy ,

shigh, 11 is
k (t) »4�

0

Q

c 2 (l2k ) sin lt[R0 (l 21 i0)VRV (l 21 i0) ](f k f )(y)l211 is dldy2

2�
0

Q

c 2 (l2k ) sin lt[R0 (l 22 i0)VRV (l 22 i0) ](f k f )(y) l211 is dldy

The following estimate is a consequence of stationary phase method argument (see
[17])

VUhigh, 11 is
k , 0 (t) f VQG C

t
2

3
2

k1dk
V f V2 .(5.30)

It is sufficient to prove the estimate for the operator

sAhigh, 11 is
k »4�

0

Q

c 2 (l2k ) sin lt[R0 (l 21 i0)VRV (l 21 i0)f k f ](y)l211 is dldy .

Using the explicit representation of the operator R0 (l 21 i0) we have the following
identity

sAhigh, 211 is
k 4�

0

Q

c 2 (l2k ) sin lt�
R3

e ilNx2yN

Nx2yN
[VRV (l 21 i0)f k f ](y)l211 is dydl .

After an integration by parts we have

sAhigh, 11 is
k f (x)4 1

t
(I1 II1 III1 IV)(5.31)

where

(5.32) I4�
0

Q

2kc 28(l2k) cos lt�
R3

e ilNx2yN

Nx2yN
[VRV(l 21i0)f kf ](y)l211isdydl

(5.33) II4�
0

Q

c 2(l2k) cos lt�
R3

e ilNx2yN[VRV(l 21i0)f kf ](y)l211isdydl

(5.34) III4�
0

Q

c 2 (l2k ) cos lt�
R3

e ilNx2yN

Nx2yN
[V¯l RV (l 21 i0) f k f ](y)l211 is dydl

(5.35) IV4�
0

Q

c 2(l2k) cos lt�
R3

e ilNx2yN

Nx2yN
[VRV(l 21i0)f kf ](y)l221isdydl.

We estimate the integrals I , II , III , IV separately.
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Estimate of I.

We follow the argument of the estimate of the term I in the proof of Lemma 5.1.
Thus, we get

NING �
lA22k

23k/21kd dl
l

V ff k VL 2GC23k/21kd
V ff k VL 2 .

Estimate of II.

For the term II we follow the similar argument for the corresponding term II from
the proof of Lemma 5.1 with the minor change: we use the estimate (4.4) and substi-
tute d with d/2 . In this way we get

NIINGC23k/21dk/2 �
lF22k

dl

l 11e
V ff k VL 2GC23k/21dk/21ek

V ff k VL 2 .

Taking e4d/2 we obtain

NIINGC23k/21dk
V ff k VL 2 .

Estimate of III.

We follow the same line, only we use the estimate (4.8), replace d with d/2 and
get

NIIINGC �
lF22k

23k/21dk/2 dl

l 11e
V ff k VL 24C23k/21dk/21ek

V ff k VL 2 .

Taking e4d/2 we obtain

NIIINGC23k/21dk
V ff k VL 2 .

Estimate for IV.

We have

NIVNGC �
lD22k

VRV (l 21 i0)f k f V232d
dl

l 2
.

Applying the estimate (4.3), we get

NIVNGC �
lD22k

Vf k f V11d
dl

l 2
GC23k/21dk

Vf k f VL 2 .

Then using (5.30), (5.31) and the above estimates of I , II , III , IV we arrive at the
estimate of the Lemma. o

PROOF OF LEMMA 5.4. We have the following identities

Uhigh, 211 is
k (t)4c 2 (2kk2D1V)gsin tk2D1Vh(2D1V)is f k (x)

Uhigh, 211 is
k , 0 (t)4c 2 (2kk2D)gsin tk2Dh(2D)is f k (x)

and then the Lemma is a consequence of the spectral Theorem and the uniform
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boundedness of the family of functions

c 2 (2k l)l is sin tl . o

6. ABSENCE OF POINT SPECTRUM FOR POTENTIAL PERTURBATION OF LAPLACIAN

This section is devoted to the proof of Theorem 1.3. We split the proof in few
steps.

LEMMA 6.1. Let the potential V satisfies the assumption (1.9). Let be given a func-
tion U such that:

1) U�L 2
232d (R3 ) for d� (0 , e 0 );

2) the function U is a solution of the integral equation (1.13) for lF0,
then U belongs to the weighted Lebesgue space L 2

212d (R3 ).

PROOF. From the decay assumption (1.19) on the potential we deduce that if U sat-
isfies the assumption 1 then

VU�L 2
112e 02d .

Thus, using (2.1) with a4222e 012d and 0Edbe 0 , we deduce

U4R0 (l 26 i0)VU�L 2
2312e 023d .

Setting b042e 023d and taking dE2e 0 /3 , we see that b0D0 and

U4R0 (l 26 i0)VU�L 2
231b0

.

Further we repeat the above argument, starting with

U�L 2
231b

with some bD0. Then the assumption (1.9) on the potential implies that

VU�L 2
11b12e 0

.

Now we want to apply (2.1) with a422b22e 01d . To do this we need the as-
sumption aF0 and this condition implies

bG222e 01d .(6.1)
Once this condition is true, we apply (2.1) with a422b22e 01d and find

U4R0 (l 26 i0)VU�L 2
231b12e 022d .

Therefore, take b042e 023dD0 and

bk4b012k(e 02d), k41, R , N

with N defined by (6.1) as follows

bN21G222e 01dEbN .
Now an induction with respect to k , 1GkGN leads to

U4R0 (l 26 i0)VU�L 2
231bN

%L 2
231b

A ,

where b
A4222e 01d . Now we have

U�L 2
231bA4L 2

2122e 01d
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so

VU�L 2
31d

so this time we can apply (2.1) with a40 and this gives

U4R0 (l 26 i0)VU�L 2
231bA12e 022d4L 2

212d .

In this way we derive the improved decay of U

U�L 2
212d

and the corresponding improvement for VU

VU�L 2
31d . o

LEMMA 6.2. Let the potential V satisfies the assumption (1.9). Let be given a func-
tion U such that:

1) U�L 2
232d (R3 ) for d� (0 , e 0 );

2) the function U is a solution of the integral equation (1.13) for lF0,

then there exists a constant CD0 such that

NU(x)NG C
axb

(6.2)

and

N˜U(x)NG C
axb2

.(6.3)

PROOF. For the hypothesis we have the following identity

U4R0 (l 26 i0)VU

and for Lemma 6.1 we have VU�L 2
31d . First, we shall show the pointwise estimate

(6.2).
Using the explicit representation of the operator R0 (l 26 i0) and the Cauchy in-

equality we see that

NUNG �
R3

Nx2yN21 NV(y)U(y)NdyG u �
R3

Nx2yN22 ayb232d dyv1/2

VVUV31d .

Applying the argument of the estimate (2.4), we get

�
R3

Nx2yN22 ayb232d dyG C
axb2

then using this estimate and the property VU�L 2
31d we deduce

NU(x)NG C
axb

.(6.4)

Using agin explicit representation of the operator R0 (l 26 i0), the decay assumption
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on the potential V and the estimate (6.2) we get

N˜U(x)NG �
R3

Nx2yN22 V(y)NU(y)NdyGC�
R3

Nx2yN22 ayb232e 0 dy .

It is easy to prove that the last integral is bounded by constant times axb22 and this
proves (6.3).

The proof is complete. o

COROLLARY 6.1. Suppose that the potential V satisfies (1.9). Let be given a function
U such that:

1) U�L 2
232d (R3 ) for d� (0 , e 0 );

2) the function U is a solution of the integral equation (1.13) for lD0,

then necessarily U40.

PROOF. It is sufficient to apply Lemma 4.4 from [8] and use the fact that U satisfies
the estimate (6.2) established in the previous Lemma. o

REMARK. Using the Proposition 1 in [2, p. 308] one can obtain the same conclusion
(U40) using only the boundedness of U . Note that in the above corollary we did not
use the fact that VF0.

COROLLARY 6.2. If the potential V(x) satisfies the conditions (1.9), then for any
lD0 the following limit exists

lim
dK01

RV (l 26 id)4RV (l 26 i0)(6.5)

in the uniform topology of the operators space L(L 2
11d ; L 2

212d ).

PROOF. It follows from the limiting absorbtion principle established by Agmon [1]
(see Theorem 4.2 in [1, p. 166]) and the fact that the previous corollary assures that
the point spectrum of 2D1V on (0 , 1Q) is empty. o

PROOF OF THEOREM 1.3. It is sufficient to consider only the case l40, since the
case lD0 has been treated in Corollary 6.1.

If U�L 2
232d (R3 ) is solution of the integral equation (1.20) with l40, then neces-

sarily for the elliptic regularity we have U is a solution to the following elliptic equa-
tion equation

(2D1V)U40,(6.6)

then for the elliptic regularity theory we have U�H 2
loc (R3 ). Note that for any

f�H 1 (R3 ) having a compact support we can write the relation

�
R3

(DU(x) ) f(x) dx42�
R3

a˜U(x), ˜f(x)bdx .(6.7)

Take any smooth function W(x), such that W(x)41 for NxNG1 and the support of W is
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contained in the ball of radius 2 . Given any real RD1 set

f(x)4W g x
R
h U(x).

Then f�H 2 (R3 ) and we can multiply the equation (6.6) by f and integrate over R3 .
Then we use (6.7) and obtain

�
R3

(N˜U(x)N21V(x)NU(x)N2 ) W g x
R
h dx1

1�
R3

o˜U(x), ˜W g x
R hp U(x) dx

R
40.

(6.8)

Since W g x
R h41 on B(0 , R) and supp˜W g x

R h%B(0 , 2R)0B(0 , R) we have

�
B(0 , 2R)

gN˜U(x)N21V(x)NU(x)N2h dxG
V˜WVLQ

R
�

RENxNE2R

N˜UNNUNdx

From Lemma 6.2 we know that

NU(x)NG C
axb

, N˜U(x)NG C
axb2

.

These estimates show that there exists a real constant CD0, independent of R, such
that:

�
RENxNE2R

N˜UNNUNdxEC

then taking the limit for RK1Q and applying the Lebesgue convergence Theorem,
we arrive at

�
R3

gN˜U(x)N21V(x)NU(x)N2hdx40(6.9)

so U(x)40.
This completes the proof. o

ACKNOWLEDGEMENTS

The authors are grateful to Georgi Vodev for the useful discussions and suggestions during the
preparation of the work.

REFERENCES

[1] S. AGMON, Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (4), 2(2), 1975, 151-218.

[2] P. ALSHOLM - G. SCHMIDT, Spectral and scattering theory for Schrödinger operators. Arch. Rational
Mech. Anal., 40, 1970/1971, 281-311.

[3] J.A. BARCELO - A. RUIZ - L. VEGA, Weighted estimates for the Helmholtz equation and some applica-
tions. J. Funct. Anal., 150(2), 1997, 356-382.



L
Q2 L

2 WEIGHTED ESTIMATE FOR THE WAVE EQUATION WITH POTENTIAL 135

[4] M. BEALS - W. STRAUSS, L pestimates for the wave equation with a potential. Comm. Partial
Differential Equations, 18(7-8), 1993, 1365-1397.

[5] M. BEN-ARTZI - A. DEVINATZ, Resolvent estimates for a sum of tensor products with applications to
the spectral theory of differential operators. J. Analyse Math., 43, 1983/84, 215-250.

[6] N. BURQ - F. PLANCHON - J. STALKER - A. SHADI TAHVILDAR-ZADEH, Strichartz estimates for the Wave
and Schrödinger Equations with the Inverse-Square Potential. Preprint, 2002.

[7] S. CUCCAGNA, On the wave equation with a potential. Comm. Partial Differential Equations, 25(7-8),
2000, 1549-1565.

[8] T. IKEBE, Eigenfunction expansions associated with the Schroedinger operators and their applications
to scattering theory. Arch. Rational Mech. Anal., 5, 1960, 1-34.

[9] C. KERLER, Perturbations of the Laplacian with variable coefficients in exterior domains and differen-
tiability of the resolvent. Asymptot. Anal., 19(3-4), 1999, 209-232.

[10] F. PLANCHON - J. STALKER - A. SHADI TAHVILDAR-ZADEH, l p estimates for the wave equation with the
inverse-square potential. Discrete Contin. Dynam. Systems, v. 9, n. 2, 2003, 427-442.

[11] M. REED - B. SIMON, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness.
Academic Press [Harcourt Brace Jovanovich Publishers], New York 1975.

[12] D. ROBERT, Autour de l’approximation semi-classique. Progress in Mathematics, 68, Birkhäuser
Boston Inc., Boston, MA, 1987.

[13] J. SHATAH - M. STRUWE, Geometric wave equations. Courant Lecture Notes in Mathematics, 2, New
York University Courant Institute of Mathematical Sciences, New York 1998.
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