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LUIGI AMBROSIO

ON SOME RECENT DEVELOPMENTS OF THE THEORY
OF SETS OF FINITE PERIMETER

ABSTRACT. — In this paper we describe some recent progress on the theory of sets of finite perimeter,
currents, and rectifiability in metric spaces. We discuss the relation between intrinsic and extrinsic theo-
ries for rectifiability.
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1. INTRODUCTION

In my talk I will describe some recent progress on the theory of sets of finite
perimeter and on its natural higher codimension extension, the theory of currents. I
will also try to illustrate the link and the continuity, that I feel quite strongly, between
the pioneering work of Caccioppoli and De Giorgi and the present work of many
mathematicians, including me.

The summary of the talk is the following:

Part 1. We review the classical theory of sets of finite perimeters and currents.

Part 2. We recall the «metric» theory of De Giorgi.

Part 3. We describe some recent work on intrinsic theories of rectifiability and of
sets of finite perimeter.

2. THE PLATEAU PROBLEM

Let G4G k%Rn be an embedded C 1 surface without boundary. The Plateau prob-
lem is

min ]Area (M) : ¯M4G( ,

with suitable definitions of (k11)-dimensional surface area and boundary.
l Parametric methods work only in particular situations: k40 (curves), k41

(conformal parametrizations), graphs, see for instance [16].
l Therefore it was natural to look for general and non-parametric definitions of

surface area and boundary.

3. CACCIOPPOLI SETS

Caccioppoli sets, or sets of finite perimeter, can be characterized by the following
definition.
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DEFINITION 3.1. E is a set of finite perimeter if there exist polyhedral sets Eh such
that EhKE locally in measure and

sup
h�N

Area (¯Eh )E1Q .

It turns out that for any set of finite perimeter a weak Gauss-Green formula holds,
namely

�
E

div g dx42 �
R n

ag , n E b dm E (g�C Q
c (Rn , Rn ).

In modern language n E m E is the polar decomposition of Dx E , the derivative of x E

(the characteristic function of E) in the sense of distributions.
The project of Caccioppoli was not limited to codimension 1 surfaces. In the more

general setting a weak form of Stokes theorem arises.

4. DE GIORGI’S REDUCED BOUNDARY AND RECTIFIABILITY

DEFINITION 4.1 (Reduced boundary). Let F E be the set of all points x�spt m E such
that

) nE (x) »4 lim
rK01

1
m E (Br (x) )

�
Br (x)

n E (y) dm E (y)

and NnE (x)N41.

De Giorgi showed in [8] the the blow-up of E at any point x� F E is the halfspace
orthogonal to nE (x) and containing nE (x). Using this information he proved that F E is
rectifiable, i.e.

m E
uF E0 0

i40

Q

G i
v40(̃ )

for suitable C 1 embedded hypersurfaces G i .
Three years later Federer recognized in [11] the role of the Hausdorff measure

H n21 and showed that one can replace H n21 by m E in (*).

REMARKS. (1) Notice that in (*) one can consider, instead of C 1 hypersurfaces G i,
either:

(a) level sets of C 1 functions without critical points (by the implicit function
theorem)

(b) Lipschitz images of subsets of Rn21 (by Whitney’s extension theorem).

Condition (a) is intrinsic, while condition (b) has an extrinsic nature.
(2) No perimeter measure lives out of F E and

nE4n E m E -a.e. in Rn ,

by Besicovitch differentiation theorem. Therefore the weak Gauss-Green formula be-



ON SOME RECENT DEVELOPMENTS OF THE THEORY . . . 181

comes much closer to the classical one:

�
E

div g dx42 �
F E

ag , n E b d H n21 (g�C Q
c (Rn , Rn ).

The only difference is in the way normal and boundary are understood (topological
versus measure-theoretic).

5. THE FEDERER-FLEMING THEORY OF CURRENTS

l k-dimensional currents are defined by duality with D k (Rn ), the space of
smooth k-forms with compact support (this idea goes back to De Rham).

l The pull-back and the exterior derivative operators on forms induce a push-for-
ward operator and a boundary operator on currents, namely

f
J

T(v) »4T( f J v) whenever f : RnKRm

for any v� D k (Rm ) and

¯T(v) »4T(dv) for any v� D k21 (Rn ).

l Inside the (large) class of k-currents one can single out the rectifiable ones, asso-
ciated to the integration on a k-rectifiable set M of an integer multiplicity function u, i.e.

T(v) »4�
M

u(x)at(x), v(x)b d H k (x).

Here t is a simple unit k-vector providing an orientation of the (approximate) tangent
space to M and v is thought as a k-covector field.

l This dual representation provides the notion of mass M(T) of a current T. For
rectifiable currents T as above it reduces to �

M
uNd H k.

The main results of the theory of currents are [10]:

BOUNDARY RECTIFIABILITY THEOREM. If T is rectifiable and ¯T has finite mass, then
¯T is rectifiable.

CLOSURE AND COMPACTNESS THEOREM. If Th are rectifiable and the sequence
M(Th )1M(¯Th ) is bounded, then Th has converging subsequences (in the natural dual
topology) and any limit point is still rectifiable.

POLYEDRAL APPROXIMATION THEOREM. If T and its boundary have finite mass, then
T can be approximated by polyhedral currents Th keeping M(Th ) and M(¯Th )
bounded.

The theory provides general existence and partial regularity results for the non-
parametric Plateau problem and has by now a large class of applications which go
much beyond the Plateau problem, for instance:
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l geometric evolution problems (e.g. the mean curvature flow in any dimension
and codimension);

l variational problems involving vector-valued maps;
l description of singularities and energy concentration effects on lower dimen-

sional sets;
l regularity theory (monotonicity, e-regularity theorems).

6. THE METRIC THEORY OF DE GIORGI

Let (X , d) be a metric space. De Giorgi’s idea (see [9]) is to define k-currents in X
by looking to the duality with metric «k-forms», i.e. formal expressions

f0 df1RRRdfk

with fi Lipschitz, 0G iGk, and f0 bounded.
l In this general setting df1RRRdfk has no pointwise meaning.
This approach has some analogies with Cheeger’s recent work [7] on Rademacher

theorem in a general metric setting.
l De Giorgi’s aim was to cover non-oriented objects (e.g. varifolds) as well.
l The push-forward operator and the boundary operator are naturally defined in

this setting:

W
J

T( f0 df1RRRdfk ) »4T( f0 i W df1 i WRRRdfk i W)

for W�Lip (X , Y) and

¯T( f0 df1RRRdfk21 ) »4T(1 df0RRRdfk21 ).

l The mass VTV is the least measure m in X satisfying

NT( f0 df1RRRdfk )NG »
i41

k

Lip ( fi )�
X

f0 dm .

In a Euclidean or Riemannian setting this definition is consistent with the Federer-
Fleming one.

l Rectifiable currents are simply defined as W
J

Tu , where W�Lip (Rk , X),
u�L 1 (Rk , Z) and Tu is the canonical k-current in Rk given by

Tu ( f0 df1RRRdfk ) »4 �
R k

u(x) f0 (x) det˜f (x) dx .

These definitions appear in the paper [9] entitled Problema di Plateau generale e
funzionali geodetici. In the same paper De Giorgi raises the question of finding condi-
tions on the metric space X and S ensuring the existence of solutions to the general-
ized Plateau problem

min mVTV(X) : ¯T4Sn(̃ )

in the class of rectifiable currents.
The answer is given in two joint papers with B. Kirchheim [3, 4].
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THEOREM. The closure theorem and the boundary rectifiability theorem for
rectifiable currents hold in any complete metric space.

COROLLARY. If (X , d) is compact, problem (*) has a solution, provided the class
]T : ¯T4S( is not empty.

At this stage one might ask what are the reasons (besides the undoubtable beauty
of De Giorgi’s definitions) for developing such a general theory. Here are some
answers:

l The theory provides a natural language to deal with Lipschiz manifolds, mani-
folds with singularities, ...

l Some features (the essential ones) of the classical Federer-Fleming theory be-
come more transparent in this general framework. We obtain new results even within
the classical theory (e.g. rectifiability criteria for k-currents based on slicing or on Lip-
schitz projections on Rk11).

l We provide an existence theorem for the k-dimensional Plateau problem in in-
finite dimensional Banach spaces (even the Hilbert case was open). In order to over-
come the lack of local compactness of the ambient space the proof uses Gromov-
Hausdorff convergence, the Ekeland-Phelps variational principle and, in an essential
way, the validity of the closure theorem in general metric spaces.

On the negative side, we find important examples of metric spaces where De Gior-
gi’s theory of rectifiable currents does not apply simply because the class of rectifiable
currents is very poor. The simplest of these examples is the Heisenberg group Hn .

We recall that HnACn3R is a Lie group with group law (the generic point x�Hn

has coordinates (z , t))

(z , t)5 (z 8 , t 8 )4 gz1z 8 , t1 t 812 !
i41

n

Im (zi zi8 )h .

Besides the family of translations, there is a family of dilations d r : HnKHn commut-
ing with the group law, defined by

d r (z , t) »4 (rz , r 2 t).

An example of left invariant and homogeneous metric is the Korányi metric:

d(x , y) »4Vy 21 xV where V(z , t)V»44kNzN41 t 2 .

The Heisenberg group has topological dimension 2n11 but metric dimension 2n1
12, due to the behaviour of the distance in the «vertical» directions.

Hn is the simplest example of stratified nilpotent (step 2) Lie group, associated via
the exponential map to the nilpotent Lie algebra generated by the 2n vector
fields

Xi »4 (1 , 0 , 2yi ), Yi »4 (0 , 1 , 22xi ), i41, R , n

whose commutators [Xi , Yi ] is (0 , 0 , 4 ).
The following result has been proved in [3].
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THEOREM. If (X , d) is the Heisenberg group H1 endowed with any left invariant ho-
mogeneous metric, then any k-dimensional rectifiable current is identically 0 for
k42, 3 , 4.

The underlying reason is that any homogeneous group homeomorphism L : RkK
KH1 is not injective. The Area formula [20, 17] and Pansu’s differentiability theorem
yield that

H k (W(A) )40 (W�Lip (A , H1 ).

7. UPPER GRADIENTS AND INTRINSIC SOBOLEV AND BV SPACES

Here we need more than the metric structure, condidering a metric measure space
(X , d , m).

l (Heinonen-Koskela) Let u : XKR be a continuuous function. We say that
g : XK [0 , 1Q] is an upper gradient of u if

Nu(x)2u(y)NG�
g

g

for any Lipschitz curve g : [0 , 1]KX with g(0)4x, g(1)4y.
l If some upper gradient is in L p, pD1, we recover a «minimal» upper gradient

by minimizing �NgNp dm in the class of upper gradients. For locally Lipschitz functions
the minimal upper gradient is the modulus of the gradient in the Euclidean case (or
Riemannian case) and is the modulus of the horizontal gradient when E is a Carnot
group (in this case m is the Haar measure).

l We can define the Sobolev space (pD1) or the BV space (p41) by looking at
all maps u such that there exists a sequence of locally Lipschitz functions uh converg-
ing to u in L 1

loc and satisfying

sup
h�N
�

X

gh
p dm(x)E1Q .(̃ )

l This definition is consistent with the Euclidean (or Riemannian) theory, with
the BV theory in Carnot groups [15] and with the theory of BV functions in weighted
measure spaces [5]. For Sobolev spaces, there is consistency with the Folland-Stein
theory of horizontal Sobolev spaces.

l By looking at the local minimal energy in (*) one can define a total variation (or
perimeter measure). Many properties of BV functions (e.g. the coarea formula) are still
true in this setting [18].

8. SETS OF FINITE PERIMETER

Let E be a set with finite perimeter in X and let m E be its perimeter measure. In
view of De Giorgi’s rectifiability theorem in Euclidean spaces, the following two
problems are natural:
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PROBLEM 1. Can we say that m E lives on a «codimension 1» set?

PROBLEM 2. If this is the case, is this set «intrinsically rectifiable»?

In order to give a general answer to Problem 1 we make the following two
assumptions:

(A1) (Ahlfors regularity) There exist n� (1 , Q) and constants c1Fc2D0 such
that

c1 r nFm(Br (x) )Fc2 r n (x�X , r� (0 , 1 ).

(A2) (Poincaré inequality) There exist cPF0 and lF1 such that

�
Br (x)

Nu(y)2ur Ndm(y)GcP r �
Blr (x)

g dm

for any locally Lipschitz function u and any upper gradient g.
The following result has been proved by the author in [1].

THEOREM. Under assumptions (A1), (A2) the essential boundary

S»4 {x : lim inf
rK01

m(Br (x)OE)Rm(Br (x)0E)
m(Br (x) )

D0}
has finite H n21-measure and m E is representable as u H n21 -S for a suitable function
u. In addition

lim sup
rK01

m E (B2 r (x) )
m E (Br (x) )

E1Q(̃ )

for m E-a.e. x�X.

The classical proof of De Giorgi can not be adapted to this situation, due to the lack
of an homogeneous structure and to the failure of Besicovitch differentiation theorem for
general measures in a general metric space. We use some ideas about lower semicontinu-
ity and quasi-minimality coming from the theory of minimal surfaces. Notice also that
Assumption A1 can be replaced by a more general doubling condition, after giving a
good definition of a codimension 1 Hausdorff measure in this setting [2].

When an homogeneous structure (dilations, translations) is present, we can initiate
the De Giorgi blow-up procedure and try to give an answer to Problem 2. This is the
case for Carnot groups. It turns out that the asymptotic doubling condition (*) implies
that the one can differentiate with respect to the perimeter measure m E .

9. INTRINSIC RECTIFIABILITY IN CARNOT GROUPS

Let G be a stratified nilpotent Carnot group, with homogenous dimension Q.

DEFINITION 9.1. In G a C 1 surface is defined as the level set of a function with con-
tinuous and nonzero horizontal gradient.
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We say that S%G is G-rectifiable if there exist countably many C 1 surfaces G i such
that

H Q21gS00
i

G ih40 .

In an analogus fashion, one can define the reduced boundary F E of a set of G-fi-
nite perimeter E using the horizontal distributional derivative of x E .

The following result is due to Franchi, Serapioni and Serra Cassano [12, 13].

THEOREM. Let E be a set with finite perimeter in Hn . Then for any x� F E the
rescaled sets d r (x 21 E) converge as rKQ to a vertical subgroup of Hn . As a conse-
quence, the reduced boundary F E is intrinsically rectifiable.

The proof requires, amon other things, the understanding of classical results (im-
plicit function theorem, Whitney extension theorem) in the Carnot group set-
ting.

The result has been recently extended in [14] to any step 2 Carnot group.

10. OPEN PROBLEMS

1. Extend the rectifiability result to general Carnot groups and Carnot
spaces.

In general Carnot groups there are remarkable examples showing that this exten-
sion is a non-trivial task. Franchi, Serapioni and Serra Cassano give in [14] an example
in the Engel group (step 3, with grading (2,1,1)) arising from the 4-dimensional Lie al-
gebra with commutator relations

[X1 , X2 ]4X3 , [X1 , X3 ]4X4 .

This group has metric dimension 2+2+3 and the 6-dimensional cone (in exponential
coordinates)

1
6

x2 (x1
21x2

2 )2 1
2

x1 x31x440

is «flat» with respect to the intrinsic geometry (i.e. it has a constant normal), is an en-
tire minimal surface but it is not a subgroup. In lower dimensional groups, as in H1 ,
one can still build entire minimal surfaces which are not subgroups but their normal is
not constant [19, 6].

2. The regularity theory for minimal surfaces in the Heisenberg group
3. Develop a general theory of currents which embodies on the one hand the ex-

trinsic metric theory of De Giorgi (modelled on the Lipschitz embedding of Eu-
clidean spaces) and on the other hand the intrinsic theories of BV functions and sets of
finite perimeter, now well estabilished in Carnot groups and sub-Riemannian metric
spaces.
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