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YANYAN LI

LIOUVILLE TYPE THEOREMS FOR SOME CONFORMALLY
INVARIANT FULLY NONLINEAR EQUATIONS

ABSTRACT. — This is a report on some joint work with Aobing Li on Liouville type thorems for some
conformally invariant fully nonlinear equations.
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This is a report on some joint work with Aobing Li, the full proof of which, as well
as some of our other results on conformally invariant fully nonlinear equations, can be
found in [8-12].

For nF3, consider

2Du4 n22
2

u
n12
n22 , on Rn .(1)

It was proved by Obata [15] and Gidas, Ni and Nirenberg [6] that any positive C 2

solution of (1) which is regular at infinity must be of the form

u(x)4 (2n)
n22

4 g a
11a 2 Nx2xN2 h n22

2 ,

where aD0 and x�Rn. A function u is said to be regular at infinity if NxN22n u g x
NxN2 h

can be extended as a C 2 function near x40. The hypothesis that u is regular at infinity
was removed by Caffarelli, Gidas and Spruck [1]; this is important for applications.
The method in [6] is completely different from that of [15]. The method used in our
proof of the Liouville type theorems on conformally invariant fully nonlinear equa-
tions (Theorem 1 and Theorem 3) is in the spirit of [6] rather than that of [15]. As in
[1], the superharmonicity of the solution has played an important role in our proof of
Theorem 3, see Lemma 1 below. On the other hand, under some additional hypothesis
on the solution near infinity, the superharmonicity of the solution is not needed, see
Theorem 1 and Remark 2 below.

Somewhat different proofs of the result of Caffarelli, Gidas and Spruck were given
in [5, 14] and [13]. A related result of Gidas and Spruck in [7] states that there is no

positive solution to the equation 2Du4u p in Rn when 1EpE n12
n22

. An extension

of this result to fully nonlinear equations is given in [11] (see also [12] for a somewhat
more detailed version).
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Let c be a Möbius transformation and let u be any positive C 2 function u on Rn,
we have the identity

guc

2 n12
n22 Duch4 gu 2 n12

n22 Duh i c , on Rn ,

where uc »4NJcN
n22

2n (u i c) and Jc denotes the Jacobian of c. A Möbius transforma-
tion is a finite composition of translations, multiplications by non-zero constants and
the inversion xKx/NxN2.

Let Sn3n be the set of n3n real symmetric matrices, S1
n3n% Sn3n be the set of posi-

tive definite matrices, and O(n) be the set of n3n real orthogonal matrices.
For H�C 0 (Rn3R3Rn3Sn3n ), we say, as in [9], that H(Q , u , ˜u , ˜2 u) is con-

formally invariant on Rn if for any Möbius transformation c and any positive function
u�C 2 (Rn ), we have

H(Q , uc , ˜uc , ˜2 uc )fH(Q , u , ˜u , ˜2 u) i c on Rn .

It was proved in [9] that H is conformally invariant if and only if it is of the
form

H(Q , u , ˜u , ˜2 u)fF(A u ) ,

where

A u »42 2
n22

u
2 n12

n22 ˜2 u1 2n
(n22)2

u
2 2n

n22 ˜u7˜u2 2
(n22)2

u
2 2n

n22 N˜uN2 I ,

I is the n3n identity matrix and F is invariant under orthogonal conjugation, i.e.

F(O 21 MO)4F(M) (A� Sn3n , O�O(n) .

Let U% Sn3n be an open set satisfying

O 21 UO4U , (O�O(n) ,(2)

and

UO ]M1 tNN0E tEQ( convex (M� Sn3n , N� Sn3n
1 ,(3)

and let F�C 1 (U) satisfy

F(O 21 MO)4F(M), (M�U , O�O(n) ,(4)

and

g ¯F
¯Mij

(M)hD0 , (M�U .(5)

The following theorem extends the above mentioned result of Obata and Gidas, Ni
and Nirenberg to general conformally invariant operators of elliptic type.

THEOREM 1 [9]. For nF3, let U% Sn3n be open and satisfy (2) and (3), and let
F�C 1 (U) satisfy (4) and (5). Assume that u�C 2 (Rn ) satisfies

F(A u )41 , uD0 , A u�U , on Rn ,
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and

u0, 1 can be extended to apositive C 2 function near the origin ,(6)

where u0, 1 (x) »4NxN22n u(x/NxN2 ). Then for some x�Rn , and some positive constants
a and b satisfying 2b 2 a 22 I�U and F(2b 2 a 22 I)41,

u(x)f g a
11b 2 Nx2xN2 h n22

2 , ( x�Rn .

Taking

F(M)4Trace (M) and U4 Sn3n ( or U4]M� Sn3n NTrace (M)D0() ,

we have

F(A u )42 2
n22

Du

u
n12
n22

,

and Theorem 1 in this case is the result of Obata and Gidas, Ni and Niren-
berg.

For 1GkGn, let

s k (l)4 !
1G i1ERE ikGn

l i1 R l ik , l4 (l 1 , R , l n )�Rn ,

denote the k-th symmetric function, and let

G k4]l�Rn Ns 1 (l)D0, R , l k (l)D0( ,

Uk4]M� Sn3n Nl(M)�G k( ,

and

Fk (M)4s k (l(M) )
1
k , M�Uk .

Here, and in the following, l(M) denotes the eigenvalues of M. For 1GkGn, it is
known that (Fk , Uk ) satisfies the hypothesis of Theorem 1 (see e.g. [2]), and the result
in this case is due to Viaclovsky [16, 17]).

Theorem 1 requires the strong hypothesis (6) on u near infinity. On the other
hand, the conclusion still holds under the following weaker hypothesis (see [9]):

u0, 1 can be extended to a positive continuous function near the origin ,(7)

and u0, 1 satisfies

lim sup
xK0

(x Q˜u0, 1 (x) )E n22
2

u0, 1 (0) ,(8)

and

lim
xK0

(NxN2 N˜u0, 1 (x)N)40 .(9)

For applications, as mentioned earlier, it is of importance to establish such results
without imposing any hypothesis on u near infinity. For this we first have

THEOREM 2 [9]. For nF3 and 1GkGn , let u�C 2 (Rn ) satisfy

Fk (l(A u ) )41 , uD0, A u�Uk , on Rn .
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Then for some aD0 and x�Rn ,

u(x)4c(n , k) g a
11a 2 Nx2xN2 h n22

2 , ( x�Rn ,

where c(n , k)42(n22)/4gnkh(n22)/4k
.

For nF3 and k41, Theorem 2 is the above mentioned result of Caffarelli, Gidas
and Spruck. For n44 and k42, the result is due to Chang, Gursky and Yang [3].
For n45 and k42, as well as for nF6, k42 and under the assumption

�
Rn u

2n
n22 EQ, the result was independently obtained by Chang, Gursky and Yang

[4].
More recently we have obtained the following general Liouville type theorem

which extends all the above mentioned results except for Theorem 1.

THEOREM 3 [10-12]. For nF3, let U% Sn3n be open and satisfy (2) and (3), and let
F�C 1 (U) satisfy (4) and (5). Assume that u�C 2 (Rn ) satisfies

F(A u )41, uD0, A u�U , on Rn ,(10)
and

DuG0 on Rn .(11)
Then, for some x�Rn and some constants aD0 and bF0 satisfying 2b 2 a 22 I�U and
F(2b 2 a 22 I)41, we have

u(x)f g a
11b 2 Nx2xN2 h n22

2 , ( x�Rn .(12)

REMARK 1. We proved in [9] that (11) is not needed if we impose some hypothesis
on u near infinity (i.e. (7), (8) and (9)).

REMARK 2. If U satisfies

Trace (M)F0 (M�U ,(13)
then (11) is automatically satisfied (since A u�U). (13) is satisfied by U4Uk for all
1GkGn.

QUESTION 1. Can the hypothesis (11) be removed in Theorem 3?

In the rest of this note we outline the proof of Theorem 3 in [11], see also [12] for
a somewhat more detailed version.

We first give a lemma. A slightly weaker version of the lemma was established in
[10] (which is enough in the proof of Theorem 3).

LEMMA 1 [12]. For nF2, let B1 be the unit ball (centered at the origin) in Rn. Let
a�R , p , q�Rn , pcq , and let u�L 1

loc (B1 0]0() satisfy

DuG0 in B1 0]0( in the distribution sense ,
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lim inf
NxNK0

[u(x)2 (a1p Qx) ]NxN21F0 ,

and

lim inf
NxNK0

[u(x)2 (a1q Qx) ]NxN21F0 .

Then

lim inf
NxNK0

u(x)Da .

OUTLINE OF THE PROOF OF THEOREM 3. By the superharmonicity and the positivity
of u,

lim inf
NxNKQ

(NxNn22 u(x) )D0 .(14)

As in the proof of Lemma 2.1 in [13], we know that for any x�Rn, there exists
l 0 (x)D0 such that

ux , l (y) »4 g l
Ny2xN hn22

u ux1 l 2 (y2x)

Ny2xN2
vGu(y) , ( Ny2xNFl , 0ElEl 0 (x) .

Define, for any x�Rn,

l(x) »4 sup ]mNux , l (y)Gu(y), (Ny2xNFl , 0ElEm( .

Let

a»4 lim inf
NxNKQ

(NxNn22 u(x) ) .(15)

We know from (14) that 0EaGQ.
If a4Q, the moving sphere procedure can never stop (no touching of u and ux , l

at infinity may occur) and therefore l(x)4Q for any x�Rn. This follows from argu-
ments in [13] and [9]. The strong maximum principle and the Hopf lemma are used
in the arguments to rule out the touching of u and ux , l in ]yNNy2xNDl( or u and
ux , l become tangential to each other on ]yNNy2xN4l(. All these are based on the
conformal invariance of the equation: For a solution u of (10) and for any x�Rn and
any lD0, ux , l is still a solution, i.e.,

F(A ux , l )41, A ux , l�U , in Rn 0Bl (x) ,

where Bl (x) denotes the ball of radius l and centered at x.
Once we know that l(x)4Q for all x�Rn, we have, by the definition of

l(x),

ux , l (y)Gu(y) , ( Ny2xNFlD0 .

This implies (see e.g., Lemma 11.2 in [13]) that ufconstant, and Theorem 3 is prov-
ed in this case.

From now on, we assume that 0EaEQ. Since the moving sphere procedure
stops at l(x), we must have, by using the above mentioned arguments in [13] and
[9],

lim inf
NyNKQ

(u(y)2ux , l(x) (y) )NyNn2240 ,(16)
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i.e.,

a4 l(x)n22 u(x) , ( x�Rn .(17)
For a Möbius transformation f, we use notation

uf »4NJfN
n22

2n (u i f) ,

where Jf denotes the Jacobian of f.
For x�Rn, let

f (x) (y) »4x1
l(x)2 (y2x)

Ny2xN2
,

and we know that uf(x)4ux , l(x) .

For c(y) »4
y

NyN2
, x�Rn, define

w (x) »4 (uf (x) )c4uf (x) i c .

By (16) and (17),

w (x) (0 )4a , ( x�Rn ,(18)

and
lim inf

yK0
uc (y)4a .

By the conformal invariance of the equation satisfied by u, we know that
uc�C 2 (Rn 0]0() and DucG0 in Rn 0]0(.

By the definition of l(x) and by the construction of w (x), we have, for some
d(x)D0,

w (x)�C 2 (Bd(x) ), ( x�Rn ,

ucFw (x) in Bd(x) 0]0( , ( x�Rn ,

An application of Lemma 1 yields

˜w (x) (0 )4˜w (0) (0 ), i.e. ˜w (x) (0 ) is independent of x�Rn .

A calculation gives, using (17), that

˜w (x) (0 )4 (n22) l(x)n22 u(x) x1l(x)n ˜u(x)4 (n22) ax1a
n

n22 u(x)
n

22n ˜u(x) .
Since V

K
»4˜w (x) (0 ) is independent of x, we have

˜xg n22
2

a
n

n22 u(x)
2 2

n22 2
(n22) a

2
NxN21V

K
Qxhf0 ,

from which we deduce that u is of the form (12) with a , bD0. Theorem 3 is
established.
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