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Calcolo delle variazioni. — The mean curvature of a Lipschitz continuous mani-
fold. Nota di ELISABETTA BAROZZI, EDUARDO GONZALEZ e UMBERTO MASSARI, presen-
tata (*) dal Socio M. Miranda.

ABSTRACT. — The paper is devoted to the description of some connections between the mean curva-
ture in a distributional sense and the mean curvature in a variational sense for several classes of non-
smooth sets. We prove the existence of the mean curvature measure of ¯E by using a technique introdu-
ced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under
suitable assumptions, the mean curvature measure of ¯E is the weak limit (in the sense of distributions)
of the mean curvatures of a sequence of regular n-dimensional manifolds Mj convergent to ¯E . The mani-
folds Mj are closely related to the level surfaces of the variational mean curvature HE of E .

KEY WORDS: Calculus of Variations; Geometric Measure Theory; Functions of Bounded Variation;
Mean Curvature.

RIASSUNTO. — La curvatura media di una varietà Lipschitziana. L’articolo è dedicato allo studio di al-
cuni legami tra la curvatura media nel senso delle distribuzioni e la curvatura media in senso variazionale
di alcune classi di insiemi non regolari. Si dimostra l’esistenza di curvatura media misura per ¯E usando
tecniche introdotte in [4] e basate sul concetto di curvatura media variazionale. Più precisamente, si di-
mostra, sotto opportune ipotesi, che la curvatura media misura della frontiera di E è il limite debole (nel
senso delle distribuzioni) delle curvature medie di una successione di varietà n-dimensionali Mj regolari
convergenti alla frontiera di E . Le varietà Mj sono legate alle superfici di livello della curvatura media va-
riazionale HE di E .

0. INTRODUCTION

A function H�L 1 (U) (U an open set of Rn11 ) is said to be a variational mean
curvature of a given set E%U if E locally minimizes the functional

FH (F)4�
U

NDf FN1 �
UOF

H(x) dx(0.1)

(see § 1).
By computing the first variation of (0.1), it can be easily seen that if H is a varia-

tional mean curvature of E , ¯E is a smooth manifold in a neighbourhood of a point
x�¯EOU and H is a continuous function at x , then H(x) is (up a constant factor) the
classical mean curvature of ¯E at x . This is the reason why minimizers of (0.1) are
called «sets of variational mean curvature H».

It is well known that if H is a variational mean curvature of E and H�L p (U) with
pDn11, then we have the decomposition

¯EOU4S rNS s ,

(*) Nella seduta del 19 giugno 2003.
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where S r (the so-called regular subset) is an n-dimensional C 1, a manifold and S s (the
so-called singular subset) is a closed subset of ¯EOU , and

Hk (S s )40 (kDn27

(see [14, 15]).
However, the existence of a variational mean curvature H�L 1 (U) does not imply,

in general, any smoothness of ¯E . As a matter of fact, a variational mean curvature
HE�L 1 (U) can be constructed for every set E%U of finite perimeter (see [4, 5]). We
refer to [13] for a more detailed account.

On the other hand, the mean curvature of non regular manifolds can be defined in
a different way by using the methods of Geometric Measure Theory (see, for example,
[1]). In particular, assume that M%U is an n-dimensional Lipschitz-continuous mani-
fold, and that exists a positive constant K such that

N�
M

divM Xd HnNGKVXVQ (X�C0
1 (U , Rn11 ) .(0.2)

By (0.2) and by the Riesz Representation Theorem, it follows the existence of an
(n+1)-dimensional vector valued Radon measure on M , which we denote by

H
K

4 (H1 , R , Hn , Hn11 ) ,

such that

(0.3) �
M

divM Xd Hn42�
M

XldH
K

42 !
j41

n11

�
M

Xj dHj (X�C0
1 (U , Rn11 ) .

The measure H
K

will be called the mean curvature measure of M in U .
An interesting case is when the Radon measure H

K
is absolutely continuous with re-

spect to the Hausdorff measure HnNM . Then we have

H
K

4H
K
QHnNM

where the density H
K

: MKRn11 belongs to [L 1 (M) ]n11 . In this case (0.3) be-
comes

�
M

divM X d Hn42�
M

HlX d Hn (X�C0
1 (U , Rn11 ) .(0.4)

The connection between the two definitions of mean curvature does not seem to
be evident even when (0.4) holds. A variational mean curvature is defined as an ele-
ment of L 1 (U) which is typically discontinuous at points x�¯EOU . Instead mean
curvature measures (or more simply density functions) are defined only over the mani-
fold M4¯E .

In this paper, we prove the existence of a mean curvature measure of ¯E
by using a technique introduced in [4] and based on the concept of variational
mean curvature. More precisely, we prove that, under suitable assumptions, the
mean curvature measure of ¯EOU is the weak limit (in the sense of measures)
of the mean curvatures of a sequence of n-dimensional manifolds Mj convergent
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to ¯E . The manifolds Mj are closely related to the level surfaces of the variational
mean curvature HE .

The main Theorem is the following:

THEOREM 0.1. Suppose that ¯EOU is locally the graph of a function f�C 1, a that is
a weak supersolution of the minimal surface equation or that E is a convex set. Then
there exists a ( n11)-dimensional vector valued Radon measure H

K
such that

�
M

divM X d Hn42�
M

XldH
K

(X�C0
1 (U , Rn11 ) ,

where M4¯E .

1. THE VARIATIONAL MEAN CURVATURE

The notion of variational mean curvature H is a generalization of the definition of
minimal boundary introduced by E. De Giorgi in the fifties (see [6, 7]), in the context
of sets of finite perimeter or Caccioppoli sets (see for example [11, 16]).

We now recall some basic definitions and results that will be used in the
sequel.

If U%Rn11 is an open set and E is a subset of U , we denote by s
U
NDf EN the

perimeter of E in U , that is

�
U

NDf EN4 sup m �
U

div g(x) dx , g�C0
1 (U , Rn11 ), VgVQG1n .(1.1)

For H�L 1 (U) and F%U , define

F(F , U)4�
U

NDf FN1�
F

H(x) dx .(1.2)

A set E is said to have variational mean curvature H in U if

.
/
´

i)

ii)

�
V

NDf ENE1Q (V%%U ,

F(E , V)G F(F , V) (V%%U , (F%U
such that (E2F)N (F2E)%%V .

(1.3)

The next theorem, due to E. De Giorgi [6], U. Massari [14, 15], is probably the
most important result concerning the variational mean curvature:

THEOREM 1.1. If E has variational mean curvature H in U and H�L p (U)
with pDn11, then

¯EOU4S rNS s ,(1.4)

where S r (the regular part of ¯E) is a n-dimensional C 1, a manifold and S s

(the singular part of ¯E) is a closed subset of ¯E such that

Hk (S s )40 (sDn27,(1.5)
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where Hk is the Hausdorff measure of dimension k�R. In particular, for nG6
we have S s4¯ .

Theorem 1.1 and decomposition (1.4) cannot be extended to the case p4n11
(see [13]).

Finally, for H�L p (U) with 1GpEn11, no regularity result may be expected. In
fact, in [5], Barozzi, Gonzalez and Tamanini have proved that every set E of finite
perimeter has a variational mean curvature HE�L 1 (U). For the critical case p4n11
see [12].

For the reader’s convenience, we outline the construction of HE .
Let h : Rn11KR be a non negative, measurable function such that s

E
h(x) dxE1Q.

Moreover suppose that

F%E , �
F

h(x) dx40 ` NFN40,

where N QN denotes the Lebesgue measure in Rn11 . For lF0 and F%E , consider the
functional

Bl (F)4 �
R n11

NDf FN1l �
E2F

h(x) dx .(1.6)

By well known results of Calculus of Variations, for every lF0 there exists a solution
El of the minimum problem

.
/
´

i)

ii)

Bl (F)Kmin ,

F� El4]F , F%E( .
(1.7)

Moreover,

i) if 0GlEm ¨ El%Em

ii) N ]El , lD0(4E .
(1.8)

By defining

HE (x)42 inf ]lh(x), x�El , lF0( (x�E(1.9)

we obtain a function HE : EKR with the following two properties:

�
E

NHE (x)Ndx4 �
R n11

NDf EN(1.10)

�
R n11

NDf EN1�
E

HE (x) dxG �
R n11

NDf FN1�
F

HE (x) dx (F%E .(1.11)

Arguing in the same way with E replaced by Rn112E , we can define HE in Rn112E
too. In [4, 5] it is proved that the function HE obtained above is a variational mean
curvature for E in Rn11 . Moreover, we have

�
R n11

NHE (x)Ndx42 �
R n11

NDf EN .(1.12)
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Whenever E is a bounded set, two interesting choices for the function h in the
above construction of HE (see (1.6)) are given by

h(x)41 (x�E(1.13)

h(x)4dist (x , ¯E) (x�E .(1.14)

E. Barozzi in [4] has used (1.13) to prove a minimality property of the L p-norm of
HE . Almgren, Taylor and Wang in [2] have used (1.14) to introduce a variational ap-
proach to the motion by the mean curvature. In the second case we remark that
S l , rOInt (E) (Int (E)4 the interior of E, S l , r the regular part of ¯El , see (1.4)) is a
smooth n-dimensional C 2, a manifold with classical mean curvature Hl given by

Hl (x)4lh(x) n(x) (x�S l , rOInt (E)(1.15)

(where n(x) is the outer normal vector to S l , r at x). Moreover, if we assume that E is a
convex set, we can use the strong maximum principle to conclude that El%%Int (E).
Then S l , r�C 2, a, and we can write (0.4) in the form

�
Ml

divMl
X d Hn42l �

Ml

h(x) Xlnd Hn (X�C0
1 (U , Rn11 )(1.16)

where Ml4¯El .
The main purpose of this paper is to study the behaviour of (1.16) when lK1Q

or, equivalently, the behaviour of the family of measures

n l (A)4l �
MlOA

h(x) d Hn , A%U .(1.17)

EXAMPLE 1.2. Let E4BR (0) and h given by (1.14). By a straightforward computa-

tion we obtain that for lR 2D
4(n11)2

n12
, the unique solution El of the minimum

problem (1.7) is the sphere BRl
(0), where

Rl4
R
2
1o R 2

4
2 n

l
.

In this case

HE (x)4

.
`
/
`
´

4(n11)2

(n12)R 2
(R2NxN)

n
NxN

0

if 0GNxNG
(n12) R

2(n11)

if
(n12) R
2(n11)

GNxNGR

if NxNDR .

REMARK 1.3. If h is given by (1.14), then we can estimate the distance between ¯El

and ¯E . Precisely, we have:
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i)

dist (x , ¯E)G2 o n11
l

for x�¯ElOInt (E) .

In fact, by applying the inequality (see Tamanini [17], formula (1.10))

�
¯B

(12f F ) d HnG�
B

NDf FN1
n11

r NB2FN ,(1.18)

(which holds for any ball B%Rn11 with radius r) with B4BR/2 , R4dist (x , ¯E) and
F4El , we obtain

�
¯B

(12f El
) d HnG�

B

NDf El
N1

2(n11)
R

NB2ElN .

On the other hand, from the minimality of El , we have

�
B

NDf El
NG �

¯B

(12f El
) d Hn2l �

B2El

dist (z , ¯E) dz

and therefore

2(n11)
R

NB2ElNFl �
B2El

dist (z , ¯E) dzFl R
2
NB2ElN

and the desired inequality follows.

ii) if E satisfies an internal sphere condition (that is, if there exists RD0 and, for
every point y�¯E , a ball of radius R such that B%E and BO¯E4]y(), if

lR 2D
4(n11)2

n12
and x�¯ElOInt (E), then

dist (x , ¯E)G R
2
2o R 2

4
2 n

l
E 2n

Rl
.

In fact, if E1%E2 and E1, l , E2, l are solutions of the minimum problem (1.7) with
E1 and E2 respectively, then E1, l%E2, l . It follows that the ball BRl

of Example 1.2 is
contained in El and the desired inequality follows.

Therefore, in this case we obtain

lh(x)4l dist (x , ¯E)E 2n
R

(x�¯ElOInt (E).

We conclude this section with some further remarks about the non parametric
case.

We assume that U4V3R (V an open subset of Rn) and E4]x4 (y , z)�V3
3R, zE f (y)(, where f : VKR is a given function. For f�C 2 (V), we set:

Tf(y)4
Df(y)

k11NDf(y)N2
, y�V
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and

H(y , z)4div (Tf )(y)4 !
j41

n

Dju Dj f (y)

k11NDf(y)N2
v , (y , z)�U .(1.19)

It is easy to see that

�
M

divM Xd Hn42�
M

HXlnd Hn (X�C0
1 (U , Rn11 ) .(1.20)

Here M4¯EOU and n is the outer normal to ¯EOU .
In this case we can write

divM X4 !
j41

n11

d j Xj(1.21)

where d j , j41, R , n11 are the tangential derivatives, that is,

d j4Dj2n j !
h41

n11

n h Dh , j41, R , n11.

The function H (given by (1.19)) is a variational mean curvature for E in U .
Sometimes a formula like (1.20) may be true with a given function H�L 1 (M)

without the assumption f�C 2 . In such a case we shall say that H�L 1 (M) is a weak
mean curvature of M .

For example, we can consider a symmetric surface M , i.e.,

f (y)4g(r) , r4NyN� (0 , R)(1.22)

with g�C 2 (0 , R). In this case (1.19) becomes

H(y , z)4
g 9 (r)

(11g 82 (r) )3/2
1

(n21) g 8 (r)

r(11g 82 (r) )1/2
, r� (0 , R) .(1.23)

Now, denoting by Mr4M2Br3R, (0E rER , Br4]y�Rn : NyNE r(), we ob-
tain

(1.24) �
Mr

divM X d Hn42�
Mr

HXlnd Hn1

1g12 1
(11g 82 (r) )1/2 h �

¯Br

!
j41

n

Xj

yj

r d Hn212
g 8 (r)

k11g 82 (r)
�

¯Br

Xn11 dHn21

(X�C0
1 (U , Rn11 ) .

We study the behaviour of (1.24) when rK0 with the choice

g(r)4cr a , cD0 , a� (0 , 1](1.25)

(a cusp when a� (0 , 1 ), a cone when a41). Whenever nF2, the last two integrals
in the right side of (1.24) go to zero as rK0 and then (1.20) is true with H given by

H(y , z)4
caNyNa22 (a1n221 (n21) c 2 a 2 NyN2a22 )

(11c 2 a 2 NyN2a22 )3/2
.(1.26)
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For n41, from (1.24) when rK0, we obtain

�
M

divM Xd H142�
M

HXlnd H122X2 (0 , 0 ) lim
rK0

g 8 (r)

k11g 82 (r)
(1.27)

and the value of the limit is

L(a)4
.
/
´

1
c

k11c 2

if a� (0 , 1 )

if a41.(1.28)

In this case (1.20) fails to be true. In fact, (1.27) implies that the Radon measure which
represents the linear functional

XK�
M

divM Xd H1 , X�C0
1 (U , R 2 )

has a singular component with respect to the Hausdorff measure H1NM , given by the
«Dirac measure»

m s4 (0 , 22 L(a) d (0 , 0) ) .(1.29)

2. VARIATIONAL MEAN CURVATURE OF A PSEUDOCONVEX SET

In this section we construct a variational mean curvature of a subgraph E of a Lips-
chitz continuous function f , by following the method introduced in [4, 5].

Let A%Rn be an open bounded set. Let f : AKR be a Lipschitz continuous
function. Let V%A be an open set with ¯V�C 2 and mean curvature of ¯V nonnega-
tive. Let E4](y , z)�V3R : y�V , zG f (y)( be the subgraph of f . In the following
we shall suppose that E is a pseudoconvex set, i.e.

�
V

k11NDfN2G�
V

k11NDvN2 (v�BV(V), spt (v2 f )%%V , vF f ,(2.1)

or, in other words, that f is a weak supersolution of the minimal surface equation,
i.e.,

�
V

TflDf dyF0 (f�C0
1 (V), fF0.(2.2)

For each lF0, we define the funcional Bl : BV(V)KR by setting

Bl (v)4�
V

k11NDvN21 l
2
�

V

( f2v)2 dy1 �
¯V

Nf2vNd Hn21 .(2.3)

Then we can state the following (see for example [10]).

THEOREM 2.1. The functional Bl has a unique minimizer ul�BV(V). Moreover
ul�C 2, a (V)OC(V) (a� (0 , 1) and ul (y)4 f (y) (y�¯V .
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REMARK 2.2. The function ul is a solution of the Euler equation associated to the
functional Bl , i.e.

Mul (y)4div (Tul )(y)42l( f (y)2ul (y) ) (y�V .(2.4)

REMARK 2.3. From the inequality Bl (ul )G Bl ( f ) and the lower-semicontinuity of
the area functional (with respect to the L 1 (V)-convergence), we obtain

lim
lK1Q

l�
V

(ul2 f)2 dy40(2.5) i)

(in particular, ulK f in L 2 (V))

lim
lK1Q

�
V

k11NDulN24�
V

k11NDfN2 .(2.5) ii)

Moreover,

DulKDf in L 1 (V) .(2.5) iii)

In fact, from (2.5) i) and (2.5) ii), we have that Dul weakly converges as distributions
to Df and that ]Dul(l is bounded in L 1 (V), and (2.5) iii) follows (see [3, Exercise
1.20]).

PROPOSITION 2.4.

0GlEm ¨ ul (y)Gum (y)G f (y) a.e. y�V .(2.6)

PROOF. From (2.1) it follows that umR f is also a minimum for Bm . Thus, by the
uniqueness of um it follows that umR f4um , i.e. umG f .

Now, let v4ulRum , w4ulSum , G4]x�V : ul (y)Dum (y)(. Adding the
inequalities

Bm (um )G Bm (w) ; Bl (ul )G Bl (v) ,

and recalling that

�
V

k11NDvN21�
V

k11NDwN2G�
V

k11NDulN
21�

V

k11NDumN
2 ,

we obtain

m k �
G

g( f2um )22 ( f2ul )2h dylGl k �
G

g( f2um )22 ( f2ul )2h dyl .

On the other hand

( f2um )22 ( f2ul )24 (2 f2um2ul )(ul2um )D0 in G .

Hence NGN40, that is ulGum a.e. in V .

REMARK 2.5. Suppose now that there exists a function Mf�L 1
loc (V) such that

�
V

TflDWdy42�
V

(Mf ) Wdy (W�C0
1 (V),(2.7)
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i.e. suppose that the distributional divergence of the vector Tf4
Df

k11NDfN2
is a

function Mf�L 1
loc (V).

If Mf�L p (V), 1EpG1Q, then the family

c l (y)4l( f (y)2ul (y) ) (y�V (lD0(2.8)

is bounded in L p (V) and the estimate

Vc l VpGVMf Vp (lD0(2.9)

holds. Moreover we have

MulKMf weakly in L p (V) .(2.10)

In fact, multiplying (2.4) by ( f2ul )p21 and integrating by parts, we obtain

l�
V

( f2ul )p dy4�
V

Tul lD[ ( f2ul )p21 ] dy .

Recalling that

(Tf2Tul ) l (Df2Dul )F0,

from (2.7) and Hölder’s inequality, we obtain

l�
V

( f2ul )p dy4�
V

Tul lD( f2ul )p21 dyG�
V

TflD( f2ul )p21 dy4

42�
V

Mf( f2ul )p21 dyGVMf Vp V f2ul Vp
p21

and (2.9) follows.
We now prove (2.10). Observe that (2.5) iii) implies

lim
lK1Q

�
V

NTul (y)2Tf (y)Ndy40.(2.11)

Then we have, (W�C0
1 (V)

�
V

MfW dy42�
V

TflDW dy42 lim
hKQ

�
V

Tul h
lDW dy4 lim

hKQ
�

V

Mul h
Wdy ,

which proves (2.10).

EXAMPLE 2.6. Let g : [0 , 2]KR be the function defined by

g(t)4
.
/
´

0
2(t21)a

if 0G tG1
if 1G tG2

where a� (1 , 2 ) and let f (y)4g(NyN), y�R 2 , NyNG2. It is easy to see that (2.7) is

verified and Mf�L p (B2 ) if and only if p(22a)E1. In particular, if aD 3
2

, then we
have Mf�L 2 (B2 ).

We now proceed to the construction of the variational mean curvature of the
set

E4](y , z)�V3R, zE f (y)(.
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Let

El4](y , z)�V3R, zEul (y)(,

where ul is the unique minimizer of Bl and define

H(y , z)4
.
/
´

2 inf ]l( f (y)2z), (y , z)�El , lF0( se (y , z)�E

0 se (y , z)� (V3R)2E .
(2.12)

We claim that the function H , just defined, is a variational mean curvature of E in
V3R.

From (2.1) and a standard symmetrization argument, it is sufficient to prove

FH ( f )G FH (v) (v�BV(V) spt ( f2v)%%V , vG f(2.13)

where FH : BV(V)KR is the functional

FH (v)4�
V

k11NDvN21�
V

u �
2Q

v(y)

H(y , z) dzv dy .(2.14)

From (2.6) and (2.12), we get that if 0GlEm and (y , z)�Em2El , then

2m( f (y)2z)GH(y , z)G2l( f (y)2z) .(2.15)

For k�N, put

l j4
j

2k
, j40, 1 , 2 , 3 , R , uj4ul j

, Ej4El j
,

and define

Hk (y , z)4
.
/
´

2l j ( f (y)2z)

0

if (y , z)�Ej2Ej21 , j�N

if (y , z)�E0N [ (V3R)2E) ].
(2.16)

We prove now the following

THEOREM 2.7. H�L 1 (V3R) and

FH ( f )G FH (v) (v�BV(V) spt ( f2v)%%V , vG f(2.17)

(i.e., H is a variational mean curvature for E). Moreover

VHVL 1 (V3R)4�
V

k11NDfN22�
V

k11NDu0N
2 .(2.18)

PROOF. From (2.15) whith l4
j21

2k
, m4

y

2k
we obtain

2
j

2k
( f (y)2z)GH(y , z)G2

j21

2k
( f (y)2z) ( (y , z)�Ej2Ej21(2.19)

and therefore

VHVL 1 (V3R)G!
j41

Q j

2k
�

V

u �
uj21

uj

( f (y)2z) dzv dy (k�N.(2.20)



E. BAROZZI ET AL.268

Now, from Bl j21
(uj21 )G Bl j21

(uj ), we obtain

j21

2k
�

V

u �
uj21

uj

( f (y)2z) dzv dyG�
V

k11NDujN22�
V

k11NDuj21N
2 ,

and therefore

!
j41

Q j

2k
�

V

u �
uj21

uj

( f (y)2z) dzv dy4

4!
j41

Q
1
2k
�

V

u �
uj21

uj

( f (y)2z) dzv dy1!
j41

Q j21

2k
�

V

u �
uj21

uj

( f (y)2z) dzv dyG

G 1
2k
�

V

u �
u0

f

( f (y)2z) dzv dy1!
j41

Q k �
V

k11NDujN
22�

V

k11NDuj21N
2l4

4 1
2k
�

V

u �
u0

f

( f (y)2z) dzv dy1 k�
V

k11NDfN22�
V

k11NDu0N
2l .

Letting kK1Q we obtain

VHVL 1 (V3R)G�
V

k11NDfN22�
V

k11NDu0N
2(2.21)

and therefore H�L 1 (V3R).
Let

Fk (v)4 FHk
(v)4�

V

k11NDvN21�
V

u �
2Q

v

Hk (y , z) dzv dy .(2.22)

We now prove that

Fk (uj )G Fk (v) (v�BV(V), spt (uj2v)%%V , vGuj .(2.23)

We argue by induction on j . If j41, then (2.23) follows from the inequality
Bl 1

(u1 )G Bl 1
(v) of Theorem 2.1. Suppose now that (2.23) holds for some j . If

v�BV(V) is such that spt (uj112v)%%V and vGuj11 , then we can write

Fk (uj )G Fk (ujRv) (inductive assumption)

Bl j11
(uj11 )G Bl j11

(ujSv) (by Theorem 2.1).

From these inequalities, we obtain

Fk (uj11 )G Fk (v).
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Indeed

Fk (uj11 )4�
V

k11NDuj11N21�
V

u �
2Q

uj11

Hk (y , z) dzv dy4

4�
V

k11NDujN21�
V

u �
2Q

uj

Hk (y , z) dzv dy1

1�
V

k11NDuj11N22�
V

k11NDujN
21�

V

u �
uj

uj11

Hk (y , z) dzv dyG

G�
V

k11ND(ujRv)N21�
V

u �
2Q

ujRv

Hk (y , z) dzv dy1

1�
V

k11NDuj11N22�
V

k11NDujN
21�

V

u �
uj

uj11

Hk (y , z) dzv dy4

4 Bj11 (uj11 )1�
V

k11ND(ujRv)N22�
V

k11NDujN
21

1�
V

u �
2Q

ujRv

Hk (y , z) dzv dy2
j11

2k
�

V

u�
uj

f

( f (y)2z) dzv dyG

G Bj11 (ujSv)1�
V

k11ND(ujRv)N22�
V

k11NDujN
21

1�
V

u �
2Q

ujRv

Hk (y , z) dzv dy2
j11

2k
�

V

u�
uj

f

( f (y)2z) dzv dyG

G�
V

k11NDvN21
j11

2k
�

V

1
2

( f2 (ujSv) )2 dy2

2
j11

2k
�

V

1
2

( f2uj )2 dy1�
V

u �
2Q

ujRv

Hk (y , z) dzv dy4

4�
V

k11NDvN21�
V

u �
uj

ujSv

Hk (y , z) dzv dy1�
V

u �
2Q

ujRv

Hk (y , z) dzv dy4

4�
V

k11NDvN21�
V

u �
2Q

v

Hk (y , z) dzv dy4 Fk (v).

Hence, (2.23) follows.
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Now, letting jK1Q in (2.23), we obtain

Fk ( f )G Fk (v) (v�BV(V), spt ( f2v)%%V , vG f(2.24)

Hence Hk is a mean variational curvature for the set E .
From (2.19) it follows that HkK

k
H in L 1 (V3R) and we obtain immediately that

also H is a mean variational curvature for E .
Finally, from FH ( f )G FH (u0 ), we obtain

�
V

k11NDfN21�
V

u �
2Q

f

H(y , z) dzv dyG�
V

k11NDu0N
2 ,

i.e.

�
V

k11NDfN22�
V

k11NDu0N
2GVHVL 1 (V3R) .(2.25)

By (2.25) and (2.21) we obtain (2.18).
Hence, the proof of Theorem 2.7 is complete.
We can repeat the preceding construction all over again replacing the function

h(y , z)4 [ f (y)2z]S0 by an arbitrary measurable function h : V3RKR such
that h(y , z)F0 a.e. (y , z)�V3R, and s

F
h(x) dx40 ¨ NFN40. The relevance of

the choice h(y , z)4Nf (y)2zN becomes clear from the following.

THEOREM 2.8. In addiction to the hypotheses of Theorem 2.7 suppose that f is not a
solution of the minimal surface equation in V . Then:

a) ul (y)E f (y) (y�V (lF0
b) 0GlEm ¨ ul (y)Eum (y) (y�V
c) ul�C 2, a (V) (lF0.

PROOF. The inequalities ul (y)Gum (y)G f (y) (y�V were already proved in
Proposition 2.4. Now we set g(p)4k11NpN2 , p�Rn and

aij (y)4�
0

1
¯ 2 g
¯pi ¯pj

(Df(y)1 t(Dul (y)2Df(y) ) ) dt .

Then we have

Tul2Tf4 !
i , j41

n

aij Dj (ul2 f ),

and accordingly,

�
V

(Tul2Tf ) lDWdy4 !
i , j41

n

�
V

aij Dj (ul2 f ) Di W dy .(2.26)

Therefore, if W�C0
1 (V), WF0, then we have

!
i , j41

n

�
V

aij Dj (ul2 f ) Di WdyG2�
V

Mul Wdy4l�
V

( f2ul ) Wdy .
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We obtain

!
i , j41

n

�
V

aij Dj (ul2 f ) Di Wdy1l�
V

(ul2 f ) WdyG0 (W�C0
1 (V), WF0.(2.27)

Then, from the strong maximum principle applied to ul2 f (see [9, Theorem 8.19]), a)
follows.

In the same way we can prove that

!
i , j41

n

�
V

aij Dj (ul2um ) Di Wdy4�
V

(Tul2Tum ) lDWdy4�
V

[l( f2ul )2m( f2um ) ] Wdy

and observing that

l( f2ul )2m( f2um )42l(ul2um )1 (m2l)(um2 f )G2l(ul2um ),

we obtain

!
i , j41

n

�
V

aij Dj (ul2um ) Di Wdy1l�
V

(ul2um ) WdyG0 (W�C0
1 (V), WF0.(2.28)

Then we can apply the strong maximum principle and b) follows.
Statement c) is a straightforward consequence of a) and the classical regularity the-

ory (see [14, 15]).

REMARK 2.9.
i) If l jHl, then ul j

Hul uniformly.
ii) If u0 (y)EzE f (y), then there exists lD0 such that ul (y)4z (y�V).
Then we easily conclude that H is continuous in E .

3. A GRADIENT ESTIMATE

In this section, we prove a global gradient estimate for the family of functions
]ul(lF0 that is independent of l . Such a gradient bound is obtained in the following
two cases:

i) when f�C 1, a (A) and (2.1) is verified;
ii) when f is a concave function.
Each case needs a suitable choice of V .
At first, we prove the following

LEMMA 3.1. Let f�C 1, a (V) and the function NDul (y)N has a relative maximum at
a point y0�V . Then

NDul (y0 )NGNDf(y0 )N(3.1)

PROOF. For simplicity, we set u4ul . Then we can write (2.4) in the form

!
i , j41

n

aij (Du) Dij u42l( f2u),(3.2)
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where

aij (p)4
(11NpN2 ) d ij2pi pj

(11NpN2 )3/2
(p�Rn .

The assumption f�C 1, a (V) implies that u�C 3, a (V). Let w4 1
2
NDuN2 . Differentiat-

ing equation (3.2) with respect to yh , multiplying by Dh u and summing with respect to
h , we obtain

(3.3) !
i , j41

n

aij Dij w2 !
i , j , h41

n

aij Dih uDjh u1 !
i , j , k41

n

Dpk
aij Dij uDk w4

42l g !
h41

n

Dh fDh u2 !
h41

n

Dh uDh uh
Recalling now that

Dk w(y0 )40

!
i , j41

n

aij (Du(y0 ) ) Dij w(y0 )G0

!
i , j41

n

aij (Du(y0 ) ) Dih u(y0 ) Djh u(y0 )F0 (h41, 2 , R , n ,

from (3.3) we deduce

NDu(y0 )N2GDf(y0 ) lDu(y0 )GNDf(y0 )VDu(y0 )N

and (3.1) is proved.

THEOREM 3.2. Assume that ¯V�C 3 , that the mean curvature of ¯V be non negative
(take for example V4 a sphere) and assume that f�C 1, a (V) and (2.2) holds. Then
there exists a constant kD0 (k4k(n , V , V f VC 1, a (¯V) ) ) such that

NDul (y)NGk (y�V , (lF0.(3.4)

PROOF. By Proposition 2.4, we have

u0 (y)Gul (y)G f (y) (y�V (lF0.(3.5)

Now u0 is a solution of the minimal surface equation in V and then, by Theorem 2.1 of
[8], we have

Nu0 (y1 )2u0 (y2 )NGk1 Ny12y2N (y1 , y2�V(3.6)

where k14k1 (n , V , V f VC 1, a (¯V) ).
Now, if there exists y0�V such that

NDul (y)NGNDul (y0 )N (y�V ,

from Lemma 3.1, we obtain

NDul (y)NGNDf(y0 )NGL (y�V .
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On the other hand, from (3.5) it follows that

2k1 Ny12y2NGu0 (y1 )2u0 (y2 )G f (y1 )2 f (y2 ) (y1�V (y2�¯V

(because u0 (y2 )4 f (y2 )).
We deduce that

NDul NGmax ]k1 , L(

and Theorem 3.2 is proved.

REMARK 3.3. If f is supposed to be only Lipschitz-continuous, we may no more use
the results of [8] to obtain the estimate (3.6) and then it fails to exist (in general) an
inferior Lipschitz-continuous barrier. For example, the function u(y1 , y2 )4

4 ln u 21k3

ky1
21y2

21ky1
21y2

221
v is a solution of the minimal surface equation in

V4](y1 , y2 )�R 2 , y1D11y2
2(, u(11y2

2 , y2 ) is Lipschitz-continuous but NDuN is
not bounded at all.

Now, let’s consider the case ii) in which f is a concave function.

Let y0�A , 0ErE 1
4

dist (y0 , ¯A), and L be the Lipschitz constant of f in B4r (y0 ).
Let

v(y)4 f (y0 )24rL13LNy2y0N (y�Rn .(3.7)

Clearly,

v(y)F f (y) (y�B4r (y0 )2B2r (y0 )

v(y)G f (y) (y�Br (y0 ).

Now we choose

V4]y�B2r (y0 ) : v(y)E f (y)(.(3.8)

Clearly, V is an open convex subset of A such that

Br (y0 )%V%B2r (y0 ).

Since v is a convex function, we have

v(y)Gul (y)G f (y) (y�V .(3.9)

We are now ready to state the following

THEOREM 3.5. Let V be defined by (3.8). We have

NDul (y)NG3L (y�V .(3.10)

PROOF. We have to slightly modify the proof of Lemma 3.1. Indeed, in general
ul�C 3 (V). We sketch the proof.

Let

fh (y)4 �
B4r (y0 )

f (y2z)t h (z) dz ,

where ]t h(h is a standard sequence of nonnegative mollifiers. Then ] fh(h is a se-
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quence of concave functions in C Q such that

NDfh (y)NGL (y�B4r (y0 )

and which converges uniformly to f on compact subsets of B4r (y0 ). Let

vh (y)4 fh (y0 )24rL13LNy2y0N

V h4]y�B2r (y0 ) : vh (y)E fh (y)(

and denote by ul
h the unique minimizer of

Bl
h (v)4 �

V h

k11NDvN2dy1 l
2
�

V h

( fh2v)2 dy1 �
¯V h

Nfh2vN d Hn21 .

We have that ul
h�C 3 (V h ) and

vh (y)Gul
h (y)G fh (y) (y�V h (lF0.

We can then conclude that

NDul
h (y)NG3L (y�V h (lF0.

If hK1Q , the last inequality implies (3.10).

4. MEAN CURVATURE MEASURES

In this Section, using the Riesz Representation Theorem and the ul’s functions, we
shall define the mean curvature of some classes of manifolds that are the graph of non-
smooth functions.

We denote by Ml and M the graphs of ul and f respectively and by divMl
and divM

the tangential divergence with respect to Ml and M . For example, if X�C0
1 (V3

3R, Rn11 ), then

divM X4 !
h41

n11

d h X h4 !
h41

n11

(Dh X h2n h (nlDX h ) ) ,

where n4 (n 1 , R , n n11 ) is the unit normal vector to M:

n4
(2Df , 1 )

k11NDfN2
.

Denoting by

H
K

l (y , ul (y) )4Mul (y) n l (y , ul (y) ) , y�V(4.1)

the following formula of integration by parts holds:

�
Ml

divMl
Xd Hn42 �

Ml

H
K

l lXd Hn (X�C0
1 (V3R, Rn11 ).(4.2)

We state the following

THEOREM 4.1. (X�C0
1 (V3R, Rn11 ) we have

lim
lK1Q

�
Ml

divMl
Xd Hn4�

M

divM Xd Hn .(4.3)
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PROOF. Let ]l j( be an increasing sequence with lim
jK1Q

l j41Q . We set Mj4Ml j
,

uj4ul j
, n j4n l j

. By Remark 2.3, we have

lim
jK1Q

�
V

NDuj (y)2Df(y)N dy40.(4.4)

Recalling that

�
M

divM Xd Hn4�
V

!
h41

n11

(Dh X h2n h (nlDX h ) ) k11NDfN2dy ,

�
Mj

divMj
Xd Hn4�

V

!
h41

n11

(Dh X h2n j
h (n j lDX h ) ) k11NDujN

2dy ,

where X4 (X 1 , R , X n , X n11 ), n j4 (n j
1 , R , n j

n , n j
n11 ), we obtain

N�
Mj

divMj
Xd Hn2�

M

divM Xd HnNG�
V

N !
h41

n11

Dh X hNNk11NDujN
22k11NDfN2N dy1

1�
V

!
h41

n11

N(DX h ln j ) n j
hk11NDujN22 (DX h ln) n hk11NDfN2Ndy .

Now (4.3) easily follows from (4.4).

THEOREM 4.2. Suppose that i) or ii) in the beginning of Section 3 holds. Then there
exists an (n11)-dimensional vector valued Radon measure

H
K

4 (H1 , H2 , R , Hn11 )

such that

�
V

divM Xd Hn42�
V

XldH
K

(X�C0
1 (V3R, Rn11 ).(4.5)

Such a measure H
K

will be called the mean curvature measure of M .

PROOF. We have

Mul (y)42l( f (y)2ul (y) )G0 (y�V

and therefore (4.1) implies that

NH
K

l (y , ul (y) )N42Mul (y) (y�V .

By the results of Section 3 we may suppose that

NDul (y)NGk (y�V (lF0.(4.6)
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Then (4.2) implies that

N �
Ml

divMl
Xd HnN4N �

Ml

H
K

l lXd HnNGVXVQ�
V

NH
K

lNk11NDulN
2dyG

GVXVQk11k 2�
V

NH
K

lNdyGVXVQk11k 2N�
V

2Mul dyN4

4VXVQk11k 2N �
¯V

Tul ln e d Hn21NGk11k 2 Hn21 (¯V)VXVQ ,

where n e is the outer normal to ¯V . Then Theorem 4.1 implies:

N�
M

divM Xd HnNGk11k 2 Hn21 (¯V)VXVQ (X�C0
1 (V3R, Rn11 ) .(4.7)

Theorem 4.2 is then a consequence of the Riesz Representation Theorem.

REMARK 4.3. From (4.2) and Theorems 4.1, 4.2 we immediately obtain that

�
M

XldH
K

4 lim
lK1Q

�
Ml

H
K

l lXd Hn (X�C0
1 (V3R, Rn11 ).(4.8)
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