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Analisi matematica. — Classical, viscosity and average solutions for PDE’s with
nonnegative characteristic form. Nota (*) di CRISTIAN E. GUTIÉRREZ e ERMANNO LAN-
CONELLI, presentata dal Socio A. Tesei.

ABSTRACT. — We compare several definitions of weak solutions to second order partial differential
equations with nonnegative characteristic form.

KEY WORDS: Weak solutions; Viscosity solutions; Second order PDE’s with nonnegative characteri-
stic form.

RIASSUNTO. — Soluzioni classiche, viscose ed in media per equazioni differenziali alle derivate parziali
con forma caratteristica non negativa. In questa Nota confrontiamo alcune nozioni di soluzione per equa-
zioni alle derivate parziali del secondo ordine con forma caratteristica semidefinita positiva.

1. INTRODUCTION

Let V%RN be open and u : VKR a continuous function. For x�V and rD0 de-
note

Mr u(x) 4 �–
Br (x)

u(y) dy ,

where Br (x) is the Euclidean ball centered at x with radius r . Then, by the Gauss-
Koebe Theorem, u is harmonic in V if and only if u(x) 4 Mr u(x) for all x and r such
that Br (x) L V . This classical and very well known result has been generalized in
countless directions. Here we are interested in the following asymptotic version due to
Brelot [2]: if u : VKR is continuous, then u is harmonic in V if and only if

lim
rK0

Mr u(x)2u(x)

r 2
40, (x�V .(1.1)

The only if part of this theorem is a trivial consequences of Gauss Theorem. In the
case where u is C 2 the same statement also follows from the classical Pizzetti’s formula
for C 2 functions:

1
2(N12)

Du(x) 4 lim
rK0

Mr u(x)2u(x)

r 2
, (x�V ,(1.2)

where D denotes the Laplacian in RN. An enlightening step towards the proof of
Brelot’s Theorem is the following remark: a continuous function u satisfying (1.1)
solves the equation Du40 in V in the viscosity sense of Crandall, Ishii and Lions, see
Theorem 3.3 below. From the general regularity theory for viscosity solutions, it fol-
lows that u is smooth and therefore harmonic. We notice that Ramaswamy [14] was
able to prove that viscosity solutions to Laplace’s equation are harmonic by using ba-
sic tools from potential theory.

(*) Pervenuta in forma definitiva all’Accademia l’8 ottobre 2003.
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The main purpose of this paper is to compare several definitions of weak solutions
to second order linear pde’s with nonnegative characteristic form. Given that the reg-
ularity theory of viscosity solutions for these operators is not available, we follow an
approach closer to the one considered in [14].

The paper is organized as follows. In Section 2, we prove the equivalence of classi-
cal and viscosity solutions to (2.1) assuming Conditions 2.1 and 2.2, extending the re-
sults of [14]. In Section 3, we introduce our notion of asymptotic-average solution as-
suming a general asymptotic representation formula for C 2 functions u involving a sort
of integral averages of u and Lu . We then prove that these solutions are viscosity sol-
utions. These results combined with the ones in Section 2 give that the notions of clas-
sical, viscosity and average solutions are equivalent if Conditions 2.1 and 2.2
hold.

Finally, in Section 4 we show several noteworthy examples of operators to which
our results apply. In particular, 4.2 extends to a class of hypoelliptic operators the
Theorems of Gauss-Koebe, Brelot and Ramaswamy.

Closing this introduction we would like to mention the recent papers [7] and [15]
containing results related to ours.

2. H-SOLUTIONS AND VISCOSITY SOLUTIONS

Let us consider the linear second order operator:

L»4 !
i , j41

N

aij (x) ¯xi xj
1 !

i41

N

bi (x) ¯xi
, x�X ,(2.1)

where X is an open subset of RN . Throughout the paper, we assume without further
comments that the matrix A(x) 4 (aij (x) )1Gi, jGN is symmetric and non-negative defi-
nite at any x�X , and the functions aij and bi are continuous. In this section, we sup-
pose that L satisfies the following condition:

CONDITION 2.1. For every bounded open set V such that V %X there exists a func-
tion h�C 2 (V) such that LhE0 and hF0 in V .

It is well known that this condition implies the following maximum principle: if
u�C 2 (V) and

LuF

lim sup
xKy

u(x) G

0
0,

in V
(y�¯V ,

then uG0 in V .
Given V%X open, we define

H(V) 4 ]u�C 2 (V) : Lu40(.

The bounded open set V such that V %X will be called H-regular if for any
f�C(¯V) there exists a unique function Hf

V� H(V)OC(V) such that Hf
V4f on

¯V .
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In this section, we also assume that the following property holds:

CONDITION 2.2. There exists a class B of H-regular open sets that form a basis of the
Euclidean topology of X .

DEFINITION 2.3 (H-subsolutions). Let V%X be open. The function u : VKR is an
H-subsolution in V if u is upper semicontinuous and if for each V� B, V %V , and
f�C(¯V) with fFu on ¯V , we have

Hf
VFu in V .

A function u is a H-supersolution if 2u is a H-subsolution.
We shall denote by H*(V) (H*(V)) the set of the H-subsolutions (supersolu-

tions) on V . By using the maximum principle stated before, one easily recognize that
if u�C 2 (V) and LuF0 in V , then u� H*(V). We also have H(V) 4

4 H*(V)OH*(V), for any open set V%X . In what follows we call every member of
H(V) a H-solution in V .

DEFINITION 2.4 (Viscosity solutions). The upper semicontinuous function u : VK

KR is a viscosity subsolution to Lu40 in V if whenever f�C 2 (V) and x0�V are such
that (u2f)(x) G (u2f)(x0 ) for all x in a neighborhood of x0 , then we must
have

Lf(x0 ) F0.

A function u : VKR is a viscosity supersolution if 2u is a viscosity subsolution. A real
function u is a viscosity solution to Lu40 if it is both a viscosity subsolution and
supersolution.

Note that in order to check that u is a viscosity subsolution (supersolution) it is
enough to use test functions W�C 2 (V) such that u2W has a strict local max (min) at
x0 . Because if for example u2W has a maximum at x0 and we set W(x) 4W(x)1eNx2

2x0N2 , then u2W has a strict maximum at x0 . Since LW(x0 ) 4LW(x0 )12e trace A(x0 ),
letting eK0 we get LW(x0 ) F0.

PROPOSITION 2.5 (Maximum Principle for viscosity subsolutions). Let V be a
bounded open set such that V %X . Let u : VKR be a viscosity subsolution such
that

lim sup
xKy

u(x) G0 (y�¯V .(2.2)

Then uG0 in V .

PROOF. Let h�C 2 (V) be such that LhE0 and hF0 in V . For any fixed eD0 de-
fine ve »4u2eh . Let x0� V be such that

sup
V

ve4 sup
VOBr (x0 )

ve (rD0.(2.3)



C.E. GUTIÉRREZ - E. LANCONELLI20

Such a point must exist, since V is compact. Suppose x0�V . Since u is upper semicon-
tinuous, we get

sup
V

ve4 lim
rK0

g sup
VOBr (x0 )

veh4 lim sup
xKx0

veGve (x0 ) .

It follows that x0 is a maximum point for ve . As a consequence, since u is a viscosity
subsolution, L(eh)(x0 ) F0. This contradicts the condition LhE0 in V . Then, the
point x0 must belong to ¯V . This, together with (2.2) and condition hG0 in V ,
imply

sup
V

ve4 lim
rK0

g sup
VOBr (x0 )

veh4 lim sup
xKx0

(u(x)2eh(x) ) G lim sup
xKx0

u(x) G0.

Thus, ve4u2ehG0 in V for every eD0. Letting e go to zero, we get uG0 in
V . o

We compare the notion of viscosity solution with that of H-solution.

THEOREM 2.6. Let V be an open subset of X and u : VKR an upper semicontinu-
ous function. The function u is an H-subsolution if and only if u is a viscosity subsolu-
tion to Lu40.

PROOF. We first prove the «only if» part. Suppose by contradiction that u is an H-
subsolution which is not a viscosity subsolution. Then there exists h�C 2 (V) and
x0�V such that (u2h)(x) E (u2h)(x0 ) for all x�Bd (x0 )0]x0(, (strict maximum)
with

Lh(x0 ) E0.

By continuity

Lh(x) E0 for all x�Bm (x0 ).

We have that h is an H-supersolution to Lh40 in BR (x0 ) with R4 min ]d , m(. Recall
that the maximum of u2h at x0 is strict. We may assume that (u2h)(x0 ) 40. By
Condition 2.2, let V� B, V %BR (x0 ) with x0�V and

M4 max
¯V

(u(x)2h(x) ) E0,

and set h *(x) 4h(x)1M . We have h *(x) Fu(x) on ¯V , and h * is an H-supersolu-
tion in BR (x0 ).

We claim that h *Fu in V . Since u is an H-subsolution, it follows taking f4h *
on ¯V and letting HR* being the H-solution with HR*4h * in ¯V , that HR*Fu in V .
On the other hand, since h * is an H-supersolution in BR (x0 ), we get that HR*Gh * in
V . Therefore uGHR*Gh * in V , and the claim is proved. Hence h *(x0 ) 4h(x0 )1

1MFu(x0 ), and since u(x0 ) 4h(x0 ), we get MF0, a contradiction.
We are left with the «if» part. Suppose u is a viscosity subsolution and take an H-
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regular open set V% V %V . Let f�C(¯V) be such that fFuN¯V . Since Hf
V is a C 2 sol-

ution to Lv40, it follows from the definition of viscosity subsolution that u2Hf
V is a

viscosity subsolution in V . Moreover,

lim sup
V�xKy

(u(x)2Hf
V (x) ) Gu(y)2f(y) G0 (y�¯V .

Then, by Proposition 2.5 we get uGHf
V in V and u is an H-subsolution. This com-

pletes the proof. o

3. AVERAGE SOLUTIONS

In this section, we assume that there exist linear operators Mr , 8r such that Mr is
defined for all semicontinuous functions in X , 8r is defined for all continuous func-
tions, and both have values in the class of functions on X . In addition, we assume that
if uF0 in a neighborhood of x , then Mr u , 8r uF0, for all r sufficiently small, and
the following representation formula holds:

u(x) 4 Mr u(x)28r (Lu)(x)1o(Qr (x) ),(3.1)

as rK0, for all x�V%X , for all u�C 2 (V), where Qr (x) is nonnegative and
satisfies

lim
rK0

8r (w(x) )
Qr (x)

4w(x),(3.2)

for all w�C(V) and for all x�V .

DEFINITION 3.1 (Asymptotically L-harmonic). Let u�C(V), V%Rn open. u is
asymptotically L-harmonic in V , i.e., AL-harmonic, if

lim
rK0

Mr u(x)2u(x)
Qr (x)

40,

for each x�V .

Obviously, if u�C 2 (V) and Lu40 in V , then u is AL-harmonic in V . We will
show that AL-harmonic solutions are viscosity solutions to Lu40. To this end we in-
troduce the notions of sub and super AL-harmonicity.

DEFINITION 3.2. An upper semicontinuous function u : VKR is AL-subharmonic
in V if

lim inf
rK0

Mr u(x)2u(x)
Qr (x)

F0,

for each x�V. The function u is AL-superharmonic in V if 2u is AL-subharmonic in V .
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From the previous definitions, we straightforwardly obtain the following prop-
erties:

1. If u is sub and super AL-harmonic, then u is AL-harmonic in V .
2. If u�C 2 (V) and LuF0 in V , then u is AL-subharmonic in V .

THEOREM 3.3. If u is AL-subharmonic in V , then u is a viscosity subsolution to
Lu40 in V .

PROOF. Let f�C 2 (V) and x0�V be such that u2fG (u2f)(x0 ) in a neighbor-
hood of x0 . From (3.1) we have that Mr 1 411o(Qr (x) ) and consequently

Mr (u2f)(x0 )2 (u2f)(x0 )
Qr (x0 )

4
Mr ( (u2f)2 (u2f)(x0 ) )(x0 )

Qr (x0 )
1o(1) Go(1)

for every rD0 sufficiently small. Since u is AL-subharmonic then

0 G lim inf
rK0

Mr u(x0 )2u(x0 )
Qr (x0 )

G lim
rK0

Mr f(x0 )2f(x0 )
Qr (x0 )

4Lf(x0 )

and the theorem is proved. o

From this theorem we immediately get the following corollary.

COROLLARY 3.4. Suppose L satisfies Conditions 2.1 and 2.2. If u is AL-subharmonic
in V , then u is an H-subsolution in V . In particular, if u is AL-harmonic in V , then
u�C 2 (V) and Lu40.

PROOF. If u is AL-subharmonic, then by Theorem 3.3, u is a viscosity subsolution
to Lu40 in V , so from Theorem 2.6 u is an H-subsolution in V . o

We close this section with the following.

REMARK 3.5. If u and v are sub and super AL-harmonic functions respectively in a
bounded open set V , and

lim sup
xKy

u(x) G lim inf
xKy

v(x), (y�¯V ,

then uGv in V . Indeed, it is quite easy to show that the function w4u2v is AL-sub-
harmonic in V so that, by Theorem 3.3, it is a viscosity subsolution to Lu40 in V .
Moreover, w satisfies the boundary condition lim sup

xKy
w(x) G0 for every y�V . Then,

by the Maximum Principle in Proposition 2.5, we get wG0 in V , and the assertion is
proved.

In order to emphasize the result just proved, we would like to recall that an impor-
tant open problem in the general setting of second order PDE’s with nonnegative
characteristic form is to know if a comparison principle for viscosity solutions
holds.
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4. EXAMPLES

4.1. EXAMPLE 1. Suppose L has the from in (2.1) with b14 Q Q Q4bN40. By [4,
Theorem, p. 514] we have

u(x) 4 Mr u(x)2CN r 2 Lu(x)1o(r 2 )

where

Mr u(x) 4 �–
NyN4r

u(x1B(x) y) ds(y),

B(x) is the unique positive square root of A(x) 4 (aij (x) ), and CN is a positive constant
depending only on N . Then (3.1) holds with

8r w(x) 4CN r 2 w(x), and Qr (x) 4 r 2 .

This type of representation formulas were used by Pucci and Talenti [13] in the ellip-
tic, and by Pagani [11] in the parabolic and the elliptic degenerate cases.

4.2. EXAMPLE 2. Suppose L is in divergence form, L4 !
i , j41

N

¯i (aij ¯j )1 !
i41

N

bi ¯i ,

where the coefficients are smooth and div (b1 , R , bN ) 40. We assume X4RN and
the operator L has a global fundamental solution G(x , y) which is smooth outside of
the diagonal and is such that

1. G(Q , y), G(x , Q) �L 1
loc (RN ) for all x , y�Rn ;

2. G(x , y) F0 and G(x , y) K0 as NyNKQ for each x�RN ; and
3. lim sup

yKx
G(x , y) 41Q for each y�RN .

Given x�Rn and rD0, we define the L-ball of center x and radius r by

V r (x) 4 ]y�RN : G(x , y) D1/r(.

These L-balls have the following properties:

1. V r (x) %V R (x) for rGR;
2. V r (x) c¯ for each rD0;
3. for each dD0 there exists r 4 r(d) D0 such that V r (x) %Bd (x);
4. by Sard’s lemma, the set ¯V r (x) 4 ]y : G(x , y) 41/r( is a smooth manifold of

dimension N21 for almost every rD0.

5. 1
r NV r (x)NK0 as rK0, where N QN denotes Lebesgue measure.

We assume that the following Green’s representation formula holds for every
rD0

(4.1) u(x) 4 �
¯V r (x)

u(y)aA(y) Dy G(x , y), Dy G(x , y)b 1
NDy G(x , y)N

ds (y)2

2 �
V r (x)

gG(x , y)2
1
r h Lu(y) dy ,

and for all u�C 2 , where A(y) 4 (aij (y) ). Then (3.1) holds with the obvious meaning
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for Mr and 8r , and with o(Qr (x) ) replaced by 0 . Moreover (3.2) holds with

Qr (x) 4 �
V r (x)

gG(x , y)2
1
r h dy .(4.2)

An easy computation shows that

Qr (x) 4�
0

r
NV s (x)Ns 2

ds
.(4.3)

If L4D , then (4.1) is the classical Gauss-Poisson-Jensen formula. If L4D2¯t and
Lu40, then (4.1) was proved by B. Pini [12] and W. Fulks [5], (see also [16]). When
L is a sum of squares of vector fields satisfying the hypoellipticity Hörmander’s condi-
tion, formula (4.1) appears in [3]. For Kolmogorov-Fokker-Planck operators, (4.1)
was proved in [8, 6, 9]. Finally, for a class of hypoelliptic parabolic operators (4.1) was
proved in [10].

From (4.1) we can easily obtain solid representation formulas. Multiplying (4.1) by
r a with aD21 and integrating in r , we then get for each u�C 2 (V) the following
formula:

u(x) 4 Mr
(a) u(x)28r

(a) (Lu)(x),(4.4)

where

Mr
(a) u(x) 4 �

V r (x)

u(y) Kr
(a) (x , y) dy ,(4.5)

Kr
(a) (x , y) 4

a11
r a11

aA(y) Dy G(x , y), Dy G(x , y)b

G(x , y)21a
,(4.6)

and

8r
(a) w(x) 4

a11
r a11

�
0

r

ra �
V r (x)

w gG(x , y)2
1
r h dy dr .(4.7)

If we set

Qr
(a) (x) 48r

(a) (1 )(x),(4.8)

then

lim
rK0

8r
(a) w(x)

Qr
(a) (x)

4w(x),(4.9)

for any w�C(V) and each x�V . Then (3.1) holds with Mr , 8r and Qr given by (4.5),
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(4.7), (4.8) respectively. We notice that using (4.2) and (4.3) one gets

Qr
(a) (x) 4�

0

r
NV s (x)N

s 2
(12 (s/r)a11 ) ds .(4.10)

We explicitly remark that Corollary 3.4 can be applied to the operators considered in
the present example if we assume that for each compact set K%RN there exists 1 G jG
GN such that inf

K
ajjD0. In fact, this assumption trivially implies Condition 2.1, while

Condition 2.2 follows as in [1].

4.3. EXAMPLE 3. In RN11 we consider the differential operator

Lu4 !
i , j41

p

aij (z) ¯xi xj
u1 ax , BDub2¯t , D4 (D1 , R , DN ),(4.11)

where z4 (x , t) 4 (x1 , R , xN , t) is a point in RN11 and 1 GpGN . We assume the
coefficients aij4aji are continuous in RN11 and such that, for a suitable constant
mD0,

m21 !
j41

p

j j
2G !

i , j41

p

aij (z) j i j jGm !
j41

p

j j
2 ,

for any (j 1 , R , j p ) �Rp and any z�RN11 . We also assume that B is an N3N con-
stant matrix satisfying the condition

rank Lie ]¯x1
, R , ¯xp

, Y((z) 4N11, (z�Rn11 ,(4.12)

where Y4 ax , BDb2¯t . We stress that these conditions imply the hypoellipticity of
the frozen operators

Lz0
4 !

i , j41

p

aij (z0 ) ¯xi xj
1Y , z0�RN11 fixed.

The Kolmogorov-Fokker-Plank operators in R2n11

L4 !
i , j41

n

aij (z) ¯xi xj
1 !

i41

n

(xi ¯xn1 i
1xn1 i ¯xi

)2¯t ,

and

L4 !
i , j41

n

aij (z) ¯xi xj
1 !

i41

n

xi ¯xn1 i
2¯t ,

satisfy all the previous conditions. They correspond with the case N42n , p4n and B
given by

u0

In

In

0
v, g0

0

In

0
h, In4n3n identity matrix ,

respectively.
Another remarkable example is given by

L4a11 (z) ¯x1
2 1x1 ¯x2

1R1xxN21
¯xN

2¯t ,
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corresponding to the case p41 and

B4

.
`
`
`
´

0
0
Q Q
0
0

1
0
Q
0
0

0
1
Q
0
0

Q Q Q
Q Q Q
Q Q Q
Q Q Q
Q Q Q

0
0
Q
1
0

ˆ
`
`
`
˜

.

Let us now come back to the general case. Denote by A4A(z) the following N3

3N block matrix

A(z) 4
C
`
D

A0 (z)

0

0

0

E
`
F

,

where A0 (z) 4 (aij (z0 ) )i , j41, R , p . We also define

Cz0
(t) 4�

0

t

E T (s) A(z0 ) E(s) ds , E(s) 4exp (2sB).

It follows from (4.12) that Cz0
(t) D0 for any z�RN11 , and any tD0. Then the frozen

operator Lz0
has a fundamental solution G z0

(z , z) given by

G z0
(z , z) 4G z0

(z21
i z),(4.13)

where G z0
(x , t) 40 if tG0, and

G z0
(x , t) 4 (4p)2N/2 e 2t tr B kdet Cz0

(t)21exp g2 1
4

aCz0
(t)21 x , xbh ,

if tD0, see [9]. We have denoted by i the following composition law in RN11

(x , t) i (y , t) 4 (y1E(t) x , t1t).

(R N11 , i ) is a Lie group and Lz0
is invariant with respect to the left translations in the

group. In (4.13), z21 denotes the opposite of z with respect to i . For every z4

4 (x , t) �RN11 and rD0 we define

V r (z) 4 ]z�RN11 : G z (z , z) D1/r(.

Then, for any function u�C 2 (RN11 ) we have the following representation formula

u(z) 4 Mr u(z)28r (Lz u)(z),(4.14)

where

Mr u(z) 4
1
r �

V r (z)

u(z)
aA(z) Dj G z (z , z), Dj G z (z , z)b

G z
2 (z , z)

dz , z4 (j , t),(4.15)

and

8r (w)(z) 4
1
r �

0

r

�
V r (z)

gG z (z , z)2
1
r h w(z) dz dr ,(4.16)

see [9]. We remark that Mr and 8r are linear increasing operators since their kernels
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are nonnegative. Moreover, if we define Qr (z) 48r (1)(z), then

lim
rK0

8r (w)(z)
Qr (z)

4w(z),

for any w�C(RN11 ) and z�RN11 . From (4.8), (4.10) with a40, we obtain

Qr (z) 4�
0

r
NV s (z)N

s 2
g12

s
r h ds .(4.17)

This implies

lim
rK0

8r (Lz u)(z)
Qr (z)

4Lz u(z) 4Lu(z).

Then, for every u�C 2 (RN11 ), and since Lz u(z)4Lu(z)1o(1) as zKz , we have

8r (Lz (u) )(z) 48r (Lu)(z)1o(Qr (z) ),

where we have used the fact that V r (z) shrinks to z as rK0. Replacing this identity in
(4.14) we obtain (3.1) with Mr , 8r and Qr given by (4.15), (4.16), and (4.17)
respectively.
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