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Calcolo delle variazioni. — Collisions and fractures: a model in SBD. Nota (*) di
ELENA BONETTI e MICHEL FRÉMOND, presentata dal Socio E. Magenes.

ABSTRACT. — We investigate collisions (assumed to be instantaneous) and fractures of three-dimen-
sional solids. Equations of motion and constitutive laws provide a set of partial differential equations,
whose corresponding variational problem may be solved in the space of special functions with bounded
deformations (SBD), exploiting the direct method of calculus of variations.

KEY WORDS: Collisions; Fractures; Velocities of bounded deformations.

RIASSUNTO. — Collisioni e fratture: un modello in SBD. Studiamo il fenomeno delle collisioni (assunte
istantanee) e della formazione di fratture in solidi nel caso tridimensionale. Le equazioni di moto e le leg-
gi costitutive danno origine ad un sistema di equazioni alle derivate parziali, il cui corrispondente proble-
ma variazionale viene risolto nello spazio delle funzioni speciali a deformazione limitata, utilizzando il
metodo diretto del calcolo delle variazioni.

1. INTRODUCTION

In this paper, we investigate collisions and fractures of solids. Consider, for in-
stance, a plate falling on the floor and breaking, or a rock avalanching from a moun-
tain on a concrete protecting wall (depending on the circumstances either both the
rock and the concrete wall break, or only one breaks, or none of them breaks). We ad-
dress this problem at the engineering macroscopic level and derive a model by discon-
tinuum mechanics theory. Hence, our aim is to investigate this subject both from me-
chanical and analytical point of view. Let us observe that in our approach collisions
are assumed to be instantaneous, as they are very short when compared to the flight
time of the solids (cf. [11]). Then, after observing that the state quantities at collision
time t are constant, we recall that a collision is characterized by a time discontinuity of
the velocity field. By u2 we denote the smooth velocity field before the collision and
by u1 the velocity field after the collision. As a consequence of the collision, fractures
may appear in the solid (cf. [8]). We characterize a fracture resulting from the colli-
sion by a spatial discontinuity of the velocity field u1 . The equations of motion are
derived by the principle of virtual work at time t , which includes interior percussions
accounting for the very large stresses and forces related to the cinematic incompatibil-
ities (cf. [10]). More precisely, we have interior volume percussion stresses and interi-
or surface percussions. The latter appear on the contact surface as well on the fracture
surfaces. The constitutive laws are derived by use of dissipative potentials (cf. [13]) in
coherence with the second law of thermodynamics, i.e. to satisfy the Clausius-Duhem
inequality.

Let us now briefly describe the mechanical phenomenon. We consider a solid, lo-
cated in a smooth domain V% R 3 , colliding on a part of its boundary ¯V 1 with a fixed

(*) Pervenuta in forma definitiva all’Accademia il 2 ottobre 2003.
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obstacle. The remaining part ¯V 2 of the boundary is free. The system we consider is
made of the solid and the obstacle, whose velocity is assumed to remain equal to 0, as
the obstacle is taken very massive. This model has been introduced in [7] to describe
fractures caused by collisions and percussions in a one-dimensional system.

The PDE’s system resulting from the equations of motion and from the constitu-
tive laws is investigated in a variational framework.

2. THE MODEL

2.1. The principle of virtual work.

The equations of motion are derived by the principle of virtual work at collision
time (a work is a duality pairing in mathematical terms), in which surface and volume
percussions are considered. The virtual work of the interior percussions is defined by
(G denotes the fracture)

(2.1) Rint (v1 , v2 ) 42 �
V0G

S : E g v11v2

2
h dV1�

G

R Qk v11v2

2
l d H 22

2 �
¯V 1

R g v11v2

2
h d H2 ,

where d H 2 stands for the two-dimensional Hausdorff measure (from a mechanical
point of view it corresponds to the surface measure), E(v) 4 (1/2(vi , j1vj , i ) ) is the
classical symmetric strain rate, and v1 , v2 are virtual velocity fields. The fracture G is
oriented (n in the following of this paragraph stands for the normal vector). Thus, we
are allowed to consider a «left» part (vl) and a «right» part (vr) of the velocity field
w.r.t. the orientation of the fracture G (see [3] for details). The spatial velocity discon-
tinuity is indicated by [v]:4 vr2vl . Note that in Rint we have introduced the volume
percussion stress S and the surface percussion R defined on the unknown fracture G
and the contact surface ¯V 1 . The virtual work of acceleration forces is

Racc (v1 , v2 ) 4�
V

r(u12u2 ) Q v11v2

2
dV ,(2.2)

where r is the density of the solid and r(u12u2 ) is the collision inertial percussion.
There is no exterior action, thus the exterior virtual work is zero. The equations of
motion

r(u12u2 )2div S40 in V0G ,

[S] n 40, Sn 4 R on G ,

Sn1R 40 on ¯V 1 ,

Sn 40 on ¯V 2 ,

(2.3)

result from the principle of virtual work

( v1 , v2 Racc (v1 , v2 ) 4Rint (v1 , v2 ) .(2.4)
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Note that in (2.3), we have used the same notation for the normals to the fractures and
to the boundary.

2.2. The constitutive laws and the resulting equations.

We assume that the velocity u2 before the collision is a datum of our problem, and
let the unknown be the velocity u1 after the collision. The constitutive laws for S and
R which have to satisfy the Clausius-Duhem inequalities (cf. [7, 10]) are defined by
three functions: the volume dissipative function F and the surface dissipative func-
tions F G , F ¯V 1

. We choose the volume dissipative function as

F(E(u11u2 ) ) 4k0 N E(u11u2 )N1
k1

2
N E(u11u2 )N2 .(2.5)

For simplicity’s sake, we use the same symbol to denote the length of a vector NxN4

4kxi xi and the norm of a symmetric tensor NAN4kAij Aij . Hence, the fracture dissi-
pative function on G is addressed as follows

(2.6) F G ( [u11u2 ] )42k2 kN[u11u2 ]N1k3 N[u11u2 ]N1I1 ( [u11u2 ] Qn).

The constants ki , i40, R , 3 , are chosen to be strictly positive. Let us comment on
our choices regarding the mechanical behaviour of the body. The volume dissipative
function (2.5) ensures a classical behaviour away from the fractures. The effect of the
function 2k2 kN[u11u2 ]N is to avoid having many fractures with small discontinu-
ities. The indicator function I1 of R1 takes into account the impenetrability condi-
tion on the interior fractures

[u1 ] Qn F0.(2.7)

Thus, taking into account the natural orientation of the boundary, the unilateral
boundary condition on ¯V 1 may be described by a dissipative function depending on
(u11u2 ) (recall that the velocity of the obstacle is 0)

F ¯V 1
(u11u2 ) 4 I2 (u1 Qn) 4 I1 ( (u22 (u11u2 ) ) Qn),(2.8)

where I2 is the indicator function of R2 . We point out that in (2.8) we have implicitly
considered an exterior velocity of V corresponding to the velocity of the obstacle
(equal to 0) and dealt with the unilateral boundary condition on ¯V 1 including the
obstacle in the domain of the model. Hence, we observe that the dissipative functions
F and F ¯V 1

are pseudo-potentials of dissipation, i.e. positive convex functions attain-
ing their minimum 0 at the origin [13] (cf. Remark 2.1). On the contrary, F G is not be-
cause it is not a convex function of [u11u2 ]. Nevertheless, F G may be split into a
convex part, F G

c , and a non convex part, F G
nc . Its generalised subdifferential set ¯F G

is the sum of the subdifferential set of the convex part and of the extended derivative
of the non convex part (cf. [7] for a similar assumption). We address the following
constitutive laws

S�¯F(E(u11u2 ) ) in V0G , 2R �¯F G ( [u11u2 ] ) on G ,

R �¯F ¯V 1
(u11u2 ) on ¯V 1 .

(2.9)
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It is easy to prove that, owing to the above prescriptions, the Clausius-Duhem in-
equality is satisfied. This follows by standard properties of the pseudo-potentials of
dissipation and the results presented in [7].

The equations for the velocity u1 are derived by the principle of virtual work
(2.4), combined with the constitutive relations (2.9), and the expression of dissipative
potentials (2.6) and (2.8). They are written in the smooth bounded domain V% R 3

with boundary ¯V4 ¯V 1 N¯V 2 (¯V 1 has a strictly positive measure and such that it
is ¯V 1O¯V 24¯). We get

ru12div S4ru2 in V0G ,

S�¯F(E(u11u2 ) ) in V0G ,

Sn �¯F G [u11u2 ], [S] n 40 on G ,

Sn1¯F ¯V 1
(u11u2 ) �0 on ¯V 1 ,

Sn 40 on ¯V 2 .

(2.10)

In the following, we deal with a variational formulation of the above problem, written
in a suitable space of discontinuous and sufficiently smooth velocities.

REMARK 2.1. Because the solid is falling on the obstacle, we have

u2 Qn F0 in ¯V 1 .(2.11)

This condition ensures that F ¯V 1
(u11u2 ) is zero at the origin (i.e. if u11u240),

which has to be verified if F ¯V 1
is a pseudo-potential of dissipation (cf. (2.8)). From

now on we assume this condition is satisfied.

3. VARIATIONAL FORMULATION

We look for u1 minimizing a functional whose Euler equations correspond to
(2.10). To this aim, we consider the weak formulation of a minimization problem asso-
ciated to the following functional

(3.1) F (v) 4 �
V0 G

F(E(v1u2 ) ) dV1�
V

g r
2

(v)22rv Qu2h dV1

1�
G

F G ( [v1u2 ] ) d H 21 �
¯V 1

F ¯V 1
(v1u2 ) d H 2 .

We address the corresponding weak problem in the space SBD(V) of special func-
tions with bounded deformations (cf. [2]). Before proceeding, let us specify some use-
ful notation used in the following. We recall that a function u is a function of bound-
ed deformation (cf. [14, 12, 15]), i.e. u �BD(V), if u �L 1 (V) and its distributional
symmetric gradient Eu is a bounded Radon measure, i.e. Eu � Mb (V). For every
u �BD(V), we let the jump set Ju to be defined as the set of points x�V where u has
two different one sided Lebesgue limits, ur (x) c ul (x) ([u] c0), w.r.t. the direction
nu normal to the approximate tangent space to Ju . We recall that Ju is a countably rec-
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tifiable set. Hence, Eu can be split in the sum of an absolutely continuous part w.r.t.
the Lebesgue measure dV , E au 4 EudV (here Eu denotes the density of the measure
E au), and a singular part, E su 4E ju1E cu, where E ju stands for the jump part (re-
striction of E su to Ju) and E cu the Cantorian part (restriction of E su to V0Ju). A
function u �BD(V) belongs to SBD(V) if and only if E cu 40. Moreover, it has been
proved in [2] that

E ju 4 [u] U nu d H 2 D Ju ,(3.2)

where U is the symmetric tensor product and d H 2 D Ju the 2-Hausdorff measure re-
stricted to Ju . In the sequel n will denote the normal to the boundary. Towards the
aim of including the fixed obstacle in the system (whose velocity vext is 0), we extend
the domain V outside the part ¯V 1 . In particular, we aim to deal on ¯V 1 with the dis-
continuity vext2v (v is here the interior trace on ¯V 1 of the velocity v defined in V).
The extended domain V 8&V is smooth and such that a part of its boundary is ¯V 2

(¯VO¯V 84 ¯V 2). The extension is in contact with the initial domain on boundary
¯V 1 , i.e. VO(V 8 0V) 4 ¯V 1. Then, we can provide a unified weak formulation of
the impenetrability condition on the fractures and on the boundary ¯V 1 . We require
that (cf. [7])

�
Jv

f[v] Qnv d H 21 �
¯V 1

f(2v) Qnd H 2F0,(3.3)

for any f�Cc
0 (V 8 ) with fF0. Condition (3.3) is equivalent to

[v] Qnv d H 2 D Jv1 ( (2v) Qn) d H 2 D¯V 1F0,(3.4)

in the sense of measures in V 8 (in the following we use the notation M(V 8 )).
We assume, as it is usual, that before the collision the solid moves with a rigid

body velocity, i.e. Eu240. Then, we can make precise the functional we aim to mini-
mize. To simplify notation, but without loss of generality, we put the physical con-
stants equal to 1 in (3.1), and deal with

(3.5) G(v)4 1
2
�

V

NE(v)N2 dV1NEvN(V)1�
V

g 1
2

(v)22v Qu2h dV1�
Jv

N[v]N1/2 d H 2 ,

where NEvN(V) is the total variation of the measure Ev. We address the problem in
the following convex subset of smooth kinematically admissible velocities
SCV(V , ¯V 1 ) (accounting for (3.4))

SCV(V , ¯V 1 ) »4 ]v �SBD(V)OL 2 (V) ;

[v] Qnv d H 2 D Jv1 ( (2v) Qn) d H 2 D¯V 1F0 in M(V 8 )(.
(3.6)

The problem we aim to solve reads

inf ]G(v) : v �SCV(V , ¯V 1 )(.(3.7)

The following theorem states existence of a solution for (3.7).

THEOREM 3.1. Let u2 be a rigid body velocity satisfying (2.11). Then, the minimiza-
tion problem (3.7) admits a solution.
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To prove Theorem 3.1 we use the direct method of calculus of variations, which is
based on compactness and lower semicontinuity arguments. We consider a minimiz-
ing sequence vn of G in SCV(V , ¯V 1 ) (in particular we have vn�SBD(V)). The first
step is to show that G is coercive in SBD . By (3.5), recalling in particular the definition
of norm in BD , i.e. VuVBD(V)4VuVL 1 (V)1NEuN(V), and applying the Young inequal-
ity, we are allowed to deduce

Vvn VBD(V)1�
Jvn

N[vn ]N1/2 d H21V Evn VL 2 (V)1Vvn VL 2 (V)Gc ,(3.8)

for a positive constant c independent of n . In the sequel, to simplify notation, we use
the same symbol c for possibly different positive constants, in particular not depend-
ing on n . Next, we prove a weak compactness result holding in SBD and allowing us to
pass to the limit vn�SCVK v �SCV (in a suitable weak sense), in such a way that G

turns out to be lower semicontinuous, i.e. lim inf
nK1Q

G(vn ) F G(v). The compactness (Sec-

tion 3.1) and lower semicontinuity (Section 3.2) results exploit two theorems we have
proved for rather general dissipative potentials.

3.1. A weak compactness and convergence theorem in SBD.

We prove the following compactness theorem holding in SBD(V), which apply to
the sequence vn owing to (3.8).

THEOREM 3.2. Let un�SBD(V) a sequence of functions fulfilling

l un is uniformly bounded in BD(V);

l Eun are equi-integrable;

l there exists a function C : [0 , 1Q) K [0 , 1Q), non decreasing and such
that C(t) /tK1Q as t70, satisfying

sup
n

�
Jun

C(N[un ]N) d H2E1Q .(3.9)

Then, there exists a subsequence still denoted by un , which converges in L 1 (V) to some
u �SBD(V). Moreover, the Lebesgue part and the jump part of Eun converge weakly
separately, i.e. the Lebesgue part converges weakly in L 1 (V) and the jump part weakly
in the sense of measures.

REMARK 3.3. The above theorem generalizes an analogous compactness and lower
semicontinuity result holding in SBV (cf. [3, 1, 4]). Nonetheless, we recall that we can-
not directly apply the result in SBD , as the Korn inequality does not still hold in this
space (cf. [12]) and a bound for the antisymmetric part of the gradient does not follow
from the assumptions of the Theorem 3.2.

The demonstration of Theorem 3.2 is based on similar arguments as that exploited
in [6] (cf. also [5]). Nonetheless, our result is fairly different as we introduce the func-
tion C applied to the jump part of Eun and we do not require that the measure of the
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fracture (i.e. the set of discontinuities) is uniformly bounded w.r.t. n . Thus, for the
sake of brevity, we point out only the part of the proof concerning the bound and the
lower semicontinuity of C while we refer to [6] for the remaining details. The main
idea is to reduce to one-dimensional sections of SBD functions (i.e. investigate the vel-
ocity field restricted to fixed directions in R 3), then apply the results known for SBV
in 1D domains, and finally integrate these informations on all directions. This method
is based on the fact that we can characterize SBD functions through their one-dimen-
sional sections exploiting fine properties of this space (cf. [2]). It has been proved that
u �SBD(V) if and only if for any j4j i1j j (j i , i41, 2 , 3 being a basis in R 3) and
for H 2 a.e. y�Vj , one has u j

y �SBV(Vj
y ), where,

u j
y (t) 4u j (y1 tj) 4 u(y1 tj) Qj(3.10)

Vj4 ]y� R3 : y Qj40, Vj
yc¯((3.11)

Vj
y4 ]t� R : y1 tj�V( .(3.12)

Now, owing to the boundedness of un (cf. (3.8)) and weak* compactness results in
BD(V) (which can be identified with the dual of a Banach space), we find a suitable
subsequence un weakly* converging in BD(V) to some u �BD(V), i.e. unK u strong-
ly in L 1 (V) and EunKEu in the sense of measures in V (in the following we still de-
note any subsequences by un to simplify notation). Thus, the first step is to prove that
u �SBD(V), showing that u j

y �SBV(Vj
y ) for any j and a.e. y . To this aim, let us con-

sider the sequence u j
ny�SBV(Vj

y ), defined as by (3.10). Applying the results of [2] and
proceeding as in [6], we can prove for a constant c not depending on j or n

�
Vj

u �
Vj

y

N(u j
ny )8 (t)Ndt1 �

Ju j
ny

N[u j
ny ]Nd H 0v dyGNEunN(V) Gc ,(3.13)

where (u j
ny )8 denotes the classical derivative w.r.t. t . Analogously proceeding, we infer

that

�
Vj

�
Ju j

ny

C(N[uny
j ]N) d H 0 dy4 �

Jun

C(N[un ] QjN)d H 2G �
Jun

C(N[un ]N) d H 2Gc .(3.14)

Then, applying a compactness theorem in SBV(Vj
y ) (cf. e.g. [1]), we claim that there

exists a subsequence such that uny
j Kh in L 1 (Vj

y ), with h�SBV(Vj
y ), and eventually

identify h4u j
y by the convergence of un . Thus, we get u �SBD(V). Moreover, we can

infer that (u j
ny )8 converges weakly to (u j

y )8 in L 1 (Vj
y ) (and also that [u j

ny ] K [u j
y ] in

the sense of measures on Vj
y). Now, we aim to discuss the asymptotic behaviour of

Eun . Owing to the above convergences stated for one-dimensional sections, exploit-
ing semicontinuity arguments and applying the Fatou lemma (mainly to get results for
a subsequence of un not depending on j or y�Vj), we proceed as in [6], and show
that there exists a subsequence of un such that for any w�L 1 (V), there holds
s

V
N(Eu) j Qj2wNG lim inf

nK1Q
s

V
N(Eun ) j Qj2wN . In particular, it follows that (cf. [3])

(Eun ) j Qj converges weakly in L 1 (V) (actually in our applications in L 2 (V)) to
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(Eu) j Qj , for any j4j i1j j , i , j41, 2 , 3 . Then, due to the symmetry of Eun , we
eventually get EunK Eu weakly in L 1 (V). Finally, the convergence in the sense of
measures of E jun easily follows combining the convergence in the sense of measures of
the strain rates Eun and the convergence of the regular parts Eun (to Eu and Eu,
respectively).

Now, we come back to the proof of Theorem 3.1. Owing to (3.8), we apply stan-
dard weak compactness results in L 2 and Theorem 3.2 to eventually get

vnK v strongly in L 1 (V), weakly in L 2 (V),(3.15)

EvnK Ev weakly in L 2 (V),(3.16)

E j (vn ) KE j (v) in the sense of measures in V ,(3.17)

for a suitable subsequence and v �SBD(V). It remains to prove that

G(v) G lim inf
nK1Q

G(vn ),(3.18)

and

v �SCV(V , ¯V 1 ).(3.19)

3.2. A lower semicontinuity result in SBD.

Towards the aim of proving (3.18), we prove the following lower semincontinuity
result holding in SBD(V).

THEOREM 3.4. Let vn�SBD(V) fulfill the assumptions of Theorem 3.2. In addition,
we require the function C to be lower semicontinuous, subadditive, i.e.

C(a1b) GC(a)1C(b),(3.20)

and satisfying

C(ab) 4C(a) C(b)(3.21)

for any a , bF0. Then, there exists a subsequence fulfilling the thesis of Theorem 3.2
s.t.

lim inf
nK1Q

�
Jun

C(N[un ]N) d H 2F�
Ju

C(N[u]N) d H 2 .(3.22)

We proceed as in the proof of Theorem 3.2. Thus, for j and y fixed, we consider
the one-dimensional sections uny

j , and apply the lower semicontinuity result result stat-
ed by [9, Theorem 2.10] and holding e.g. in SBV(V y

j ). By similarly arguing as above
and in [6], we can eventually infer that for any direction j there holds

lim inf
nK1Q

�
Jun

C(N[un ] QjN) d H 2F�
Ju

C(N[u] QjN) d H 2 .(3.23)

To get (3.22), we integrate (3.23) on all directions j�S 2 »4 ]j� R 3 : NjN41(. For
any v � R 3 and j�S 2 , we can write Nv QjN4NvNNcos (u(v, j) )N , where u(v, j) is the
angle between v and j . Using Fatou’s lemma, the Fubini-Tonelli theorem, and strong-
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ly exploiting (3.21), we can infer that

(3.24) �
Ju

C(N[u]N)�
S 2

C(Ncos u(u, j)N) 4�
S 2

�
Ju

C(N[u] QjN) G

G lim inf
nK1Q

�
S 2

�
Jun

C(N[un ] QjN) 4 lim inf
nK1Q

�Jun
C(N[un ]N)�

S 2

C(Ncos u(un , j)N) .

Thus, after observing that, as we integrate over all the directions j , there holds

�
S 2

C(Ncos u(u, j)N) dj4�
S 2

C(Ncos u(un , j)N) dj4 c×,(3.25)

we can divide (3.24) by c× and eventually get (3.22).
Hence, (3.18) follows by Theorem 3.4 and well-known weak lower semicontinuity

of norms.

REMARK 3.5. To prove (3.22), we have strongly exploited the properties (3.21),
which is not required for an analogous result in SBV (also in the higher dimensional
case, cf. [9, Theorem 2.12]). Thus, one could think to extend the result of Theorem 3.4
to a more general function C , with weaker assumptions than (3.21). Nonetheless, to
our knowledge this remains as an open question.

Now, to complete the proof of the existence result, we have to prove (3.19), i.e.
show that v satisfies the impenetrability condition on the extended domain V 8 . More
precisely, we have to verify that (3.4) is fulfilled. We observe that by Theorem 3.2 we
get a convergence in the sense of measures for E jvn , but an analogous result does not
hold for the traces on ¯V 1 of vn . Indeed, it is known that the trace operator BD(V) K

KL 1 (¯V) is not continuous if the two spaces are endowed with the weak topology (cf.
[14, 3]), which is our case. Thus, we aim to find a convergence in the sense of mea-
sures also for the traces, which we consider as jumps between the velocity of V and
the velocity of the obstacle (V 8 0V). We point out that this is the same idea we have
exploited in modelling the impenetrability condition by the dissipative function F ¯V 1

in (2.8) (cf. also (3.6)). We consider a field of velocity which describes the velocity of
the whole system located in V 8 , given by the velocity of the body and the velocity of
the fixed obstacle. In particular, we will consider the unilateral boundary condition on
¯V 1 as an impenetrability condition prescribed on a jump of the extended velocity
field. We let zn defined in V 8 be equal to vn in V (velocity of the solid) and 0 in
V 8 0 V (velocity of the obstacle). We note that zn�SBV(V 8 ) and Jzn

4 Jvn
N¯V 1 .

Moreover, we infer that

[zn ] U nzn
d H 2 D Jzn

4 [vn ] U nvn
d H 2 DJvn

1 ( (2vn ) U n) d H 2 D¯V 1 .(3.26)

It is a standard matter to verify that (cf. (3.8))

Vzn VBD(V 8 )1Vzn VL 2 (V 8 )1V E(zn )VL 2 (V 8 )Gc ,(3.27)
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independently of n . Hence, after recalling the continuity of the trace operator
BD(V) KL 1 (¯V), we get

(3.28) �
Jzn

N[zn ]N1/24 �
Jvn

N[vn ]N1/21 �
¯V 1

N[vn ]N1/2G

Gc1 �
¯V 1

NvnN1/2Gc u11 �
¯V 1

(11NvnN)vGc (11Vvn VBD(V) ) Gc .

Thus, the sequence zn satisfies the assumptions of Theorem 3.2. In particular, we can
find a subsequence converging in SBD(V 8 ) to z, where z 4 v in V and z 40 in
V 8 0 V. Indeed, zn converges strongly in L 1 (V 8 ) to z, and consequently a.e. in V 8 , as
well vn converges strongly in L 1 (V) to v, and consequently a.e. in V . By the above ar-
guments and Theorem 3.2, it follows in particular

(3.29) [vn ] U nvn
d H2 D Jvn

1 ( (2vn ) U n) d H2 D¯V 14 [zn ] U nzn
d H2 D Jzn

K

K [z] U nz d H 2 D Jz4 [v] U nv d H 2 D Jv1 ( (2v) U n) d H 2 D¯V 1 ,

in the sense of measures in V 8 . We observe that (3.29) means that for any
s ij�Cc

0 (V 8 ) with s ij4s ji there holds ([Q]i means the i-component of [Q])

(3.30) �
Jvn

[vn]is ijnvnjdH21 �
¯V 1

(2vn)is ijnjdH 2K�
Jv

[v]is ijnvjdH 21 �
¯V 1

(2v)is ijnjdH 2.

Let us choose s4 (j k7j k ) f , s ij4 (j k )i (j k )j f , with no summation w.r.t. k , where
j k are the unit vectors in R 3 (whose components are (j k )i with i41, 2 , 3) and
f�Cc

0 (V 8 ). We get for k41, 2 , 3

(3.31) �
Jvn

[vn]knvnkfdH21 �
¯V 1

(2vn)knkfdH 2K�
Jv

[v]knvkfdH 21 �
¯V 1

(2v)knkfdH 2.

Now, we are in the position of deducing (3.4). Indeed, after summing up (3.31) w.r.t.
k , we have that the normal discontinuities converge in the sense of measures and the
weak impenetrability condition holding for vn pass to the limit as nK1Q .

REMARK 3.6. Let us point out that even though from the analytical point of view one
could expect to treat boundary conditions (as the impenetrability condition) in a differ-
ent way than the impenetrability conditions on the interior traces, i.e., using the notion
of interior traces of the velocities, the problem shows that it is not the correct way, as
the mechanical application suggests. Indeed, we need to extend the domain and to deal
with the whole set of impenetrability conditions (on the interior fractures and on the
boundary), to get significant mathematical results. This fact agrees with the mechanical
point of view which includes the obstacle in the system, so that the trace of the velocity
of the body is a jump of the global velocity (i.e., the difference between the velocity of
the obstacle and the velocity of the solid which is colliding). The same ideas apply for
more sophisticated constitutive laws on colliding boundary ¯V 1 .
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