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Equazioni a derivate parziali. — Some properties of two-scale convergence. Nota
di AUGUSTO VISINTIN, presentata (*) dal Socio E. Magenes.

ABSTRACT. — We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means
of a variable transformation, and outline some of its properties. We approximate two-scale derivatives,
and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of
bounded sequences in the Sobolev spaces W 1, p (RN ), L 2

rot (R3 )3 , L 2
div (R3 )3 and W 2, p (RN ) is then characte-

rized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational
fields is finally studied.

KEY WORDS: Two-scale convergence; Two-scale decomposition; Sobolev spaces.

RIASSUNTO. — Alcune proprietà della convergenza a due scale. Mediante una trasformazione di varia-
bile, la nozione di convergenza a due scale di G. Nguetseng è qui riformulata ed estesa, ed alcune delle sue
proprietà sono presentate. Tale convergenza è quindi estesa a spazi di funzioni differenziabili mediante
l’approssimazione delle derivate a due scale. Inoltre si caratterizza il limite a due scale di derivate di suc-
cessioni limitate negli spazi di Sobolev W 1, p (RN ), L 2

rot (R3 )3 , L 2
div (R3 )3 e W 2, p (RN ). Infine si studia il limi-

te a due scale dei potenziali di una successione convergente a due scale di campi irrotazionali.

INTRODUCTION

Let us fix any NF1 and set Y»4 [0 , 1[N . The following concept was introduced
by Nguetseng [15], and then studied in detail by Allaire [1] and others: a bounded se-
quence ]ue( of L 2 (RN ) is said (weakly) two-scale convergent to u�L 2 (RN3Y)
iff

lim
eK0

�
RN

ue (x) c gx , x
e h dx4� �

RN3Y

u(x , y) c(x , y) dxdy ,(1)

for any smooth function c : RN3RNK R that is Y-periodic w.r.t. the second argu-
ment. Here is a canonic example: for any function c as above, ue (x) »4c(x , x/e) two-
scale converges to c(x , y).

Two-scale convergence can account for occurrence of a fine-scale periodic structu-
re, and indeed has been applied to a number of homogenization problems, see e.g. [1,
3, 5, 7, 8, 11-13, 15, 16, 18, 19]. For periodic homogenization problems, two-scale con-
vergence can indeed represent an alternative to the classic energy method of Tartar,
see e.g. [2, 4, 9, 10, 14, 17].

Along the lines of [3, 5, 8, 11, 12], in Sections 1-5 we reduce (1) to standard weak
convergence in L 2 (RN3Y), via a transformation of variable which can be interpreted
as a two-scale decomposition, We characterize two-scale convergence, extend it to L p

(for p� [1 , 1Q]) and C 0 , and derive some basic properties. Some of these results are
already known, cf. e.g. [1, 7, 8, 11, 12, 15]; here we organize these properties from the
point of view of two-scale decomposition, in order to illustrate the potentialities of

(*) Nella seduta del 14 maggio 2004.
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that approach. We then study two-scale compactness, introduce approximate two-sca-
le derivatives, and use them to extend two-scale convergence to spaces of differentia-
ble functions. We thus show that several classic results (of Rellich-Kondrachov, Sobo-
lev, Morrey, and so on) have a two-scale counterpart, that concerns sequences of fun-
ctions instead of single functions.

In Sections 6-8 we characterize the two-scale limit of derivatives of bounded se-
quences in the Sobolev spaces W 1, p (RN ), L 2

rot (R3 )3 , L 2
div (R3 )3 and W 2, p (RN )

(p�]1 , 1Q[). Theorem 6.1 may be compared with results of Nguetseng [15], of Al-
laire [1], and with one Cioranescu, Damlamian and Griso recently announced in [8];
the latter one is also based on two-scale decomposition, but uses a different approxi-
mation. Finally, in Section 9 we deal with the two-scale limit of the potential of a two-
scale convergent vector field. Details, proofs and applications to homogenization pro-
blems will appear apart.

1. TWO-SCALE CONVERGENCE

Two-Scale Decomposition. In this paper we denote by Y the set Y4 [0 , 1[N , we
equip with the topologic and differential structure of the N-dimensional torus, and
identify any function on Y with its periodic extension to RN . For any eD0, we de-
compose real numbers and real vectors as follows:

.
/
´

n×(x) »4 max ]n� Z : nGx(,

8(x) »4 (n×(x1 ), R , n×(xN ) ) � ZN ,

r×(x) »4x2n×(x) (� [0 , 1[)

R(x) »4x28(x) � Y

(x� R,

(x� RN .
(1.1)

Thus x4e[8(x/e)1 R(x/e) ] for any x� RN ; e8(x/e) and R(x/e) represent coarse-
scale and fine-scale variables w.r.t. the scale e , respectively. Besides this two-scale de-
composition, we define the two-scale composition function:

Se (x , y) »4e8(x/e)1ey ((x , y) � RN3 Y, (eD0.(1.2)

The next lemma can easily be proved via a variable transformation in the
integral.

LEMMA 1.1. Let f : RN3 Y K R be such that

f�L 1 (Y; (C 0OL Q )(RN ) )NL 1 (RN ; C 0 (Y) ),

and extend it by periodicity to R2N . Then, for any eD0, the function RN3 Y K R :
(x , y) O f (Se (x , y), y) is integrable, and

�
RN

f (x , x/e) dx4� �
RN3 Y

f (Se (x , y), y) dxdy (eD0.(1.3)

For any p� [1 , 1Q], the operator g O g i Se is then a linear isometry L p (RN ) K
KL p (RN3 Y).

Two-Scale Convergence in L p (RN3 Y). In this Note by e we represent the generic
element of an arbitrary but prescribed, positive and vanishing sequence of real num-
bers; e.g., e4 ]1, 1/2 , 1/3 , R , 1/n , R(. For any sequence of measurable functions,
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ue : RNK R, and any measurable function, u : RN3 Y K R, we say that ue two-scale
converges to u (w.r.t. the prescribed sequence ]e n() in some specific sense, whenever
ue i SeKu in the corresponding standard (i.e., one-scale) sense. In this way, for any
p� [1 , 1Q] we define strong and weak (weak star for p4Q) two-scale convergence
in L p (RN3 Y); we then write ueK

2
u , ue �

2
u , ue �

2
* u (resp.). For any domain V% RN ,

two-scale convergence in L p (V3 Y) is then defined by extending functions to RN 0V
with vanishing value.

Two-Scale Convergence in C 0 (RN3 Y). Because of the discontinuity of Se (Q , y), in
general the function ue i Se is discontinuous even if ue is continuous. A modification is
thus needed, in order to extend the previous definitions to the space of continuous
functions. For i41, R , N , let us denote by ei the unit vector of the xi-axis, set x[i] »4
4x2xi ei for any x� R, and

(1.4)

.
`
/
`
´

(Ie , i w)(x , y) »4w(x[i]1en×(xi /e) ei , y)1
1 R(xi /e)[w(x[i]1en×(xi /e) ei1eei , y)2w(x[i]1en×(xi /e) ei , y) ]

((x , y) � RN3 Y, (w : RN3 Y K R, fori41, R , N ;

Le v»4 (Ie , 1 i R i Ie , N )(v i Se ) (v : RNK R.

Thus Le v is piecewise linear w.r.t. x , whereas v i Se is piecewise constant w.r.t. x . If
v�C 0 (RN ), then Le v�C 0 (RN3 Y). For instance, for N42, let us set r(x) »4 R(xNe)
and vij

m (y) »4v(e(m1y)1e(i , j) ) for i , j� ]0, 1( and for any m� ZN ; for any
x�em Y and any y� Y, then

(Le v)(x , y) »4 (12 r1 )(12 r2 )v00
m1 r1 (12 r2 )v10

m1 (12 r1 ) r2 v01
m1 r1 r2 v11

m .

For any sequence ]ue( in the C 0 (RN ) and any u�C 0 (RN3 Y), we say that ue

strongly (weakly, resp.) two-scale converges to u in C 0 (RN3 Y) iff Le ueKu (Le ue � u
resp.) in C 0 (RN3 Y) w.r.t. to the usual topology of Fréchet space.

2. SOME PROPERTIES OF TWO-SCALE CONVERGENCE

It is easy to check that in L p weak/strong one-scale convergence and weak/strong
two-scale convergence are related as follows. An analogous result holds in C 0 .

PROPOSITION 2.1. Let p� [1 , 1Q[ and ]ue( be a sequence in L p (RN ). Then:

ueKu in L p (RN ) `
.
/
´

ueK
2

u in L p (RN3 Y)

u is independent of y ,
(2.1)

ueK
2

u in L p (RN3 Y) ¨ ue �
2

u in L p (RN3 Y),(2.2)

ue �
2

u in L p (RN3 Y) ¨ ue � �
Y

u(Q , y) dy in L p (RN ).(2.3)

Limit Decomposition and Orthogonality. Let p�[1,1Q[. If ue�
2

u in L p(RN3Y),
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and ue � u0 in L p (RN ), setting u1 »4u2u0 , by (2.3) we trivially get the two-scale
decomposition

.
/
´

u(x , y) 4u0 (x)1u1 (x , y) for a.a. (x , y) � RN3 Y,

�
Y

u1 (x , y) dy40 for a.a. x� RN .(2.4)

Let us set p 8 »4p/(p21) if pc1, 18 »4Q . If W eK
2

W in L p 8 (RN3 Y) and W e � W 0

in L p 8 (RN ), setting W 1 »4W2W 0 we then have

(2.5) lim
eK0

�
RN

ue (x) W e (x) dx4� �
RN3 Y

u(x , y) W(x , y) dxdy4

4 �
RN

u0 (x) W 0 (x) dx1� �
RN3 Y

u1 (x , y) W 1 (x , y) dxdy .

If p42, the decomposition (2.4) is orthogonal in L 2 (RN3 Y), and

VuVL 2 (RN3 Y)
2 4Vu0 VL 2 (RN )

2 1Vu1 VL 2 (RN3 Y)
2 .(2.6)

In Sections 6-8 we shall encounter examples of this two-scale decomposition of the
limit.

The formula (2.7) below states the equivalence between the above definitions of
weak and strong two-scale convergence and the original ones of Nguetseng [15] and
Allaire [1]. The remainder is easily checked.

PROPOSITION 2.2. Let p� [1 , 1Q[ and ]ue( be a sequence in L p (RN ). Then

(2.7) ue �
2

u in L p (RN3 Y) ` ]ue( is bounded in L p (RN ) and

�
RN

ue (x) c(x , x/e) dxK� �
RN3 Y

u(x , y) c(x , y) dxdy (c� D(RN3 Y),

(2.8) ue�
2

u in L p(RN3Y) ¨

¨ lim inf
eK0

Vue VL p (RN )FVuVL p (RN3 Y)uF V�
Y

u(Q , y) dyV
L p (RN )

v,

(2.9) if p�]1 , 1Q[, ueK
2

u in L p (RN3 Y) `
.
/
´

ue �
2

u in L p (RN3 Y)

Vue VL p (RN )KVuVL p (RN3 Y) .

Two-Scale Convergence of Distributions. Let us denote the duality pairing between
D8 (RN ) and D(RN ) by aQ , Qb, and that between D8 (RN3 Y) and D(RN3 Y) by
aaQ , Qbb. For any sequence ]ue( in D8 (RN ) and any u� D8 (RN3 Y), we say that ue

two-scale converges to u in D8 (RN3 Y) iff

aue (x), c(x , x/e)b K aau(x , y), c(x , y)bb (c� D(RN3 Y).(2.10)
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By (2.7), this extends the weak two-scale convergence in L p . For instance, for N41,
let ]W e( be a sequence in L 1 (0 , 1 ) such that W e (y) � d 0 (y21/2) (the Dirac mass at
1/2) in D8 (0 , 1 ), and extend W e to R by periodicity. We have

(2.11) xW e (x/e) � x in D8 (R), xW e (x/e) �
2

xd 0 (y21/2) in D8 (R3 Y).

One can also define two-scale convergence in D8 (RN3Y 0 ) (Y 0 representing the
interior of Y), by letting c range in D(RN3Y 0 ) in (2.10). However this definition
seems less convenient.

Two-scale convergence in the spaces of Radon measures, C 0 (RN3 Y)8, is defined
similarly.

3. TWO-SCALE COMPACTNESS

Let us say that a sequence ]ue( is compact iff it is possible to extract a convergent
subsequence from any of its subsequences. Proposition 2.1 trivially entails the follow-
ing statement.

PROPOSITION 3.1. Let p� [1 , 1Q[. For any sequence ]ue( in L p (RN ),

.
/
´

strong one-scale compactness entails strong two-scale compactness ;

strong two-scale compactness entails weak two-scale compactness ;

weak two-scale compactness entails weak one-scale compactness .

(3.1)

The same holds for C 0 (RN ), and (replacing weak compactness by weak star compact-
ness) for L Q (RN ).

The next statement is also easily checked: parts (i) and (ii) follow from Lemma 1.1
and the Banach-Alaoglu theorem; part (iii) can be derived via the classic de la Vallée
Poussin criterion.

PROPOSITION 3.2 (Weak Two-Scale Compactness in L p).
(i) Let p�]1 , 1Q]. Any sequence ]ue( of L p (RN ) is weakly star two-scale com-

pact in L p (RN3 Y) iff it is bounded, hence iff it is weakly star one-scale compact in
L p (RN ).

(ii) Similarly, any sequence of L 1 (RN ) is weakly star two-scale compact in
C 0

c (RN3 Y)8 iff it is bounded, hence iff it is weakly star one-scale compact in
C 0

c (RN )8 .
(iii) Finally, any sequence of L 1 (RN ) is weakly two-scale compact in L 1 (RN3 Y)

iff it is weakly one-scale compact in L 1 (RN ).

We also have a two-scale version of Chacon’s biting lemma, cf. [6].

PROPOSITION 3.3 (Two-Scale Biting Lemma). Let ]ue( be a bounded sequence in
L 1 (RN ). Then there exist u�L 1 (RN3 Y), a subsequence ]ue 8 (, and a nondecreasing
sequence ]V k( of measurable subsets of RN such that the measure of RN 0V k vanishes
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as kKQ , and

ue 8NV k
�

2
uNV k3 Y in L 1 (V k3 Y), as e 8K0, (k� N.(3.2)

Strong one-scale compactness is not equivalent to strong two-scale compactness in
L p- and C 0-spaces. However, the classic Riesz and Ascoli-Arzelà compactness theo-
rems entail the following results.

PROPOSITION 3.4 (Strong Two-Scale Compactness in L p). Let p� [1 , 1Q[. A se-
quence ]ue( of L p (RN ) is strongly two-scale compact in L p (RN3 Y) iff it is bounded
and

�
RN

Nue (x1Se (h , k) )2ue (x)Np dxK0 as (h , k , e) K (0 , 0 , 0 ),(3.3)

sup
e

�
RN 0 B(0 , R)

Nue (x)Np dxK0 as RK1Q .(3.4)

PROPOSITION 3.5 (Strong Two-Scale Compactness in C 0). A sequence ]ue( of
C 0 (RN ) is strongly two-scale compact in the Fréchet space C 0 (RN3 Y) iff it is bounded
and

sup
x�K

Nue (x1Se (h , k) )2ue (x)NK0 as (h , k , e) K (0 , 0 , 0 ), (K%% RN .(3.5)

In the two latter theorems Se (h , k) »4e8(h/e)1ek cannot be replaced by h1ek:
this more restrictive hypothesis would yield the strong one-scale compactness of ]ue(
in L p (RN ) (in C 0 (RN ), resp.).

4. TWO-SCALE DERIVATIVES

Let w� D(RN3 Y). Although ue (x) »4w(x , x/e) K
2

w(x , y) in L p (RN3 Y) for

any p� [1 , 1Q[, in general ˜w(x , y) is not the (weak) two-scale limit of ˜ue (x); ac-
tually, this sequence is bounded in L p (RN )N only if w(x , y) does not depend from y .
In this section we show that nevertheless it is possible to express the gradient of the
two-scale limit without evaluating the limit itself, via what we name approximate two-
scale gradient.

For i41, R , N , let us denote by ˜i W the partial derivative w.r.t. xi of any func-
tion W(x), and by ˜xi

c and ˜yi
c the partial derivatives of any function c(x , y). Let us

also denote by ei the unit vector of the xi-axis, define the shift operator (t j v)(x) »4
4v(x1j) for any x , j� RN , set

˜e , i »4
t eei

2 I
e , ˜e

a »4 »
i41

N

˜e , i
a i , ˜a4 »

i41

N

˜i
a i (a� NN , (eD0,(4.1)

and define ˜x
a , ˜y

a similarly. Finally, for any eD0 let us set RN
e »4 0

m� ZN
e(m1Y 0 ), and

denote by Ã the gradient in the sense of D8 (RN
e ).

PROPOSITION 4.1. Let m� N, p�]1 , 1Q[, and a , b� NN .
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(i) If ]ue( is a sequence in W m , p (RN ), NaN1NbNGm , and

ue �
2

u in L p (RN3 Y), sup
e

V˜e
a (e˜)b ue VL p (RN )E1Q ,(4.2)

then

˜x
a ˜y

b u�L p (RN3 Y), ˜e
a (e˜)b ue �

2
˜x

a ˜y
b u in L p (RN3 Y),(4.3)

.
/
´

(i� ]1, R , N(, (gGb such that g iEb i ,

˜x
a ˜y

g u(x , Q) is 1-periodic w.r.t. yi , for a.a. x� RN .
(4.4)

(ii) If ]ue( is a sequence in L p (RN )OW m , p (RN
e ), NbNGm , and

ue �
2

u in L p (RN3 Y), sup
e

V(e Ã)b ue VL p (RN
e )E1Q ,(4.5)

then

˜y
b u�L p (RN3 Y), (e Ã)b ue �

2
˜y

b u in L p (RN3 Y).(4.6)

The Y-periodicity may fail in case (ii). This proposition has natural corollaries for
more general linear differential operators with constant coefficients. For instance, if
e˜ Que is bounded in L p (RN ) (˜ Q »4div), then ˜y Qu�L p (RN3 Y), and the normal
component of u(x , Q) fulfils the periodicity condition on ¯Y , for a.a. x� RN . A similar
statement holds for the curl operator.

Two-Scale Boundedness in W 1, p (RN3 Y). Let us define the approximate two-scale
gradient L e »4 (˜e , e˜), and say that a sequence ]ue( is two-scale bounded in
W 1, p (RN3 Y) iff ]ue( and ]L e ue( are bounded in L p (RN ) and L p (RN )2N , resp. The
above canonic example shows that in W 1, p two-scale boundedness is strictly weaker
than one-scale boundedness, at variance with what we saw for L p .

The next statement can be proved by means of Proposition 3.4.

THEOREM 4.2 (Two-Scale Rellich-Kondrachov-Type Result). Let p� [1 , 1Q].
Any sequence ]ue( of W 1, p (RN ) that is two-scale bounded in W 1, p (RN3 Y) is stron-
gly two-scale compact in L p

loc (RN3 Y).

One might also define an alternative (weaker) concept: a sequence
]ue( %W 1, p (RN

e ) is two-scale bounded in W 1, p (RN3Y 0 ) whenever the sequences
]Vue VL p (RN )(, ]V˜e ue VL p (RN )N (, ]eV˜ue VL p (RN

e )N ( are bounded. This entails strong two-
scale compactness in L p

loc (RN3Y 0 ). Henceforth however we shall just refer to the for-
mer definition.

Defining Ie , i and Le as in (1.4), it is easy to check that for any p� [1 , 1Q[
and any v�W 1, p (RN )

.
/
´

˜xi
Ie , i (v i Se ) 4 (˜e , i v) i Se

˜yi
Ie , i (v i Se ) 4 Ie , i [e(˜i v) i Se ]

in RN3 Y, (i ,(4.7)
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.
/
´

˜xi
(Ie , j i Ie , i )(v i Se ) 4 Ie , j ˜xi

Ie , i (v i Se )

˜yi
(Ie , j i Ie , i )(v i Se ) 4 Ie , j ˜yi

Ie , i (v i Se )
(i , j .(4.8)

This yields the next statement.

PROPOSITION 4.3. Let p� [1 , 1Q[. For any sequence ]ue( in W 1, p (RN ),

.
/
´

ue is two-scale bounded in W 1, p (RN3 Y)

` Le ue is one-scale bounded in the same space ,
(4.9)

ue �
2

u ` Le ue � u in W 1, p (RN3 Y)2N .(4.10)

An equivalence analogous to (4.10) holds for strong convergence.

5. TWO-SCALE CONVERGENCE IN SPACES OF DIFFERENTIABLE FUNCTIONS

In this section we define two-scale convergence in spaces of either weakly or stron-
gly differentiable functions, by means of the approximate two-scale gradient, L e »4
4 (˜e , e˜), cf. (4.1).

Two-Scale Convergence in W m , p (RN3 Y). Let m� N and p� [1 , 1Q[. For any
sequence ]ue( in W m , p (RN ) and any u�W m , p (RN3 Y), we say that ue weakly two-
scale converges to u in W m , p (RN3 Y) iff

˜e
a (e˜)b ue �

2
˜x

a ˜y
b u in L p (RN3 Y), (a , b� NN , NaN1NbNGm ,(5.1, 2)

and define strong two-scale convergence similarly. We also say that a sequence ]ue( is
two-scale bounded in W m , p (RN3 Y) iff the set ]˜e

a (e˜)b ue : a , b� NN , NaN1
1NbNGm( is bounded in L p (RN ).

The next statement follows from Propositions 3.2 and 4.1.

PROPOSITION 5.1. For any m� N and any p�]1 , 1Q[, any sequence of W m , p (RN )
that is two-scale bounded in W m , p (RN3 Y) has a weakly two-scale convergent sub-
sequence in the latter space.

Weak Two-Scale Convergence in W m , p (RN3 Y)8. Let us fix any m� N, any
p� [1 , 1Q[, and denote by aQ , Qb (aaQ , Qbb, resp.) the duality pairing between
W m , p (RN ) (W m , p (RN3 Y), resp.) and the respective dual space. For any sequence
]ue( in W m , p (RN )8 and any u�W m , p (RN3 Y)8 , we say that ue weakly two-scale con-
verges to u in W m , p (RN3 Y)8 iff

.
/
´

aue (x), c e (x)b K aau(x , y), c(x , y)bb

(]c e( %W m , p (RN ) such that c eK
2

c in W m , p (RN3 Y).
(5.3)

The next statement can be proved by transposing derivatives and applying the
above definitions of two-scale convergence in the spaces W m , p (RN3 Y) and in
W m , p (RN3 Y)8 .
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PROPOSITION 5.2. For any p� [1 , 1Q[ and any sequence ]ue( in L p 8 (RN ), if
ue �

2
u in L p 8 (RN3 Y) then

˜e
a (e˜)b ue �

2
˜x

a ˜y
b u in W NaN1NbN , p (RN3 Y)8 , (a , b� NN .(5.4)

Two-Scale Convergence in C 0, l (RN3 Y). For any l�]0 , 1], any sequence ]ue( in
C 0, l (RN ) and any u�C 0, l (RN3 Y), we say that ue weakly star two-scale converges to
u in C 0, l (RN3 Y) iff Le ue �* u in the latter space. Strong two-scale convergence in
C 0, l (RN3 Y) can be defined similarly.

A sequence ]ue( of C 0, l (RN ) is said two-scale bounded in C 0, l (RN3 Y) whene-
ver the sequence ]Le ue( is bounded in C 0, l (RN3 Y).

PROPOSITION 5.3. For any l�]0 , 1], any sequence of C 0, l (RN ) that is two-scale
bounded in C 0, l (RN3 Y) has a weakly star two-scale convergent subsequence in the
latter space.

Two-Scale Convergence in C m (RN3 Y). For any integer mD0, any sequence ]ue(
in the Fréchet subspace C m (RN ) and any u�C m (RN3 Y), we say that ue weakly two-
scale converges to u in C m (RN3 Y) iff

˜e
a (e˜)b Le ue �

2
˜x

a ˜y
b u in C 0 (RN3 Y), (a , b� NN , NaN1NbNGm ,(5.5)

and analogously for strong two-scale convergence.
One might also define two-scale convergence in C m , l (RN3 Y), but here we omit

that issue.

Two-Scale Convergence in D(RN3 Y). If ]ue( is a sequence in D(RN ) and
u� D(RN3 Y), we say that ue two-scale converges to u in D(RN3 Y) iff

.
/
´

)K%% RN : (e , uef0 in RN 0K , and

˜e
a (e˜)b Le ueK

2
˜x

a ˜y
b u in C 0 (RN3 Y), (a , b� NN .

(5.6)

One might similarly define two-scale convergence of a sequence in D(RN
e ) to an

element of D(RN3Y 0 ).

Imbedding-Type Results. By applying Proposition 4.3 and the classic Sobolev and
Morrey theorems to the sequence ]Le ue( in RN3 Y, one gets the following
result.

THEOREM 5.4 (Two-Scale Sobolev- and Morrey-Type Results). For any p�[1, 1Q[,
there exists a constant C4CN , p such that, for any sequence ]ue( in W 1, p (RN ) that is
two-scale bounded in W 1, p (RN3 Y) and any e , (cf. (1.4))

pE2N ¨ Vue VL pA (RN )GCV˜(Le ue )VL p (RN3 Y)2N gpA »4
2Np

2N2p
h ,(5.7)

p42N ¨ Vue VL q (RN )GCV˜(Le ue )VL p (RN3 Y)2N (q� [p , 1Q[,(5.8)
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pD2N ¨ Vue VC 0, l (RN )GCV˜(Le ue )VL p (RN3 Y)2N gl»412 2N
p h .(5.9)

(By (4.9), the right-hand side of each of these formulae is bounded).
By a standard argument Theorems 4.2 and 5.4 entail the next two-scale compact-

ness result.

THEOREM 5.5. For any sequence ]ue( in W 1, p (RN ) that is two-scale bounded in
W 1, p (RN3 Y),

(5.10) pE2N ¨ ]ue( is two-scale strongly compact in L q
loc (RN3Y) (qE

2Np
2N2p

,

(5.11) p42N ¨ ]ue( is two-scale strongly compact in L q
loc (RN3Y) (qE1Q,

(5.12) pD2N ¨ ]ue( is two-scale strongly compact in C 0,l
loc (RN3Y) (lE12 2N

p .

6. TWO-SCALE CONVERGENCE OF GRADIENTS

Let us set RN
e »4 0

m� ZN
e(m1]0 , 1[N ) (c RN ), for any eD0.

THEOREM 6.1. Let p�]1 , 1Q[, and a sequence ]ue( be such that ue � u in
W 1, p (RN ). For any e , there exists a unique u1e�W 1, p (RN

e ) such that, for any m� ZN ,
(omitting restrictions)

u1e�W 1, p (e(m1 Y) ), �
e(m1 Y)

u1e (x) dx40,(6.1)

�
e(m1 Y)

(e˜u1e2˜ue ) Q˜c dx40 (c�W 1, p 8 (e(m1 Y) ).(6.2)

Then there exists u1�L p (RN ; W 1, p (Y) ) such that s
Y

u1 (x , y) dy40 for a.a. x� RN ,

and, as eK0 along a suitable subsequence,

u1e �
2

u1 in L p (RN3 Y), e˜u1e �
2

˜y u1 in L p (RN3 Y)N ,(6.3)

˜ue �
2

˜u1˜y u1 in L p (RN3 Y)N .(6.4)

We remind the reader that in Section 1 we defined Y to be the N-dimensional to-
rus; hence W 1, p (e(m1 Y) ) cW 1, p (e(m1]0 , 1[N ) ) for any m� ZN , although
L p (e(m1 Y) ) 4L p (e(m1]0 , 1[N ) ). The ]0 , 1[N-periodic extension of any
v�W 1, p (e(m1 Y) ) to RN is locally of class W 1, p ; its gradient in the sense of
D8 (e(m1 Y) )N then coincides with that in the sense of D8 (RN )N . In (6.3) then
˜u1e�L p (RN )N . This type of remark will also apply to Sections 7, 8.

Here is a simple example. Let N41 and ue : R K R be such that ue (x) »4x1
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1e sin (2px/e) for any x in some neighbourhood of [0 , 1]. After (6.1) and (6.2),

(6.5)

.
/
´

u1e (x) 4sin (2px/e) �
2

sin (2py) 4u1 (y),

in L p (]0 , 1[3 Y), (p�]1 , 1Q[.

eDu1e (x) 42p cos (2px/e) �
2

2p cos (2py) 4Dy u1 (y)

Theorem 6.1 can be compared with Theorem 3 of [15] and Proposition 1.14 of [1],
where (for p42) existence of a function u1�L p (RN ; W 1, p (Y)) as in (6.4) is prov-
ed without exhibiting its relation with the sequence ]ue(. That relation is however
derived in Theorem 1 of [8], via a construction different from (6.1) and (6.2).

Denoting the weak one-scale (two-scale, resp.) limit by lim
eK0

(1) ( lim
eK0

(2) , resp.), (6.4)
also reads

lim
eK0

(2) ˜ue4 lim
eK0

(1) ˜ue1˜y u1g4˜ lim
eK0

(1) ue1˜y u1h a.e. in RN3 Y;(6.6)

this may be compared with (2.4). For p42, this decomposition is orthogonal in
L 2 (RN3 Y)N .

7. TWO-SCALE CONVERGENCE OF CURLS AND DIVERGENCES

Two-Scale Convergence of Curls. In this section we assume that N43 and p42.
We remind the reader that L 2

rot (R3 )3 »4 ]v�L 2 (R3 )3 : ˜3v�L 2 (R3 )3( (˜3 »4
4curl ) is a Hilbert space equipped with the graph norm.

THEOREM 7.1. Let ]ue( be a bounded sequence in L 2
rot (R3 )3 such that ue �

2
u in

L 2 (R33 Y)3 . For any e , there exists a unique u1e�H 1 (R3
e )3 such that, for any m� Z3 ,

(omitting restrictions)

u1e�H 1 (e(m1 Y) )3 , �
e(m1 Y)

u1e (x) dx40,(7.1)

.
/
´

˜ Qu1e40 a.e. in e(m1 Y),

�
e(m1 Y)

(e˜3u1e2˜3ue ) Q˜3c dx40 (c�H 1 (e(m1 Y) )3 .(7.2)

Then there exists u1�L 2 (R3 ; H 1 (Y)3 ) such that s
Y

u1 (x , y) dy40 for a.a. x� R3 ,

˜y Qu140 a.e. in R33 Y, and, as eK0 along a suitable subsequence,

u1e �
2

u1 , e˜3u1e �
2

˜y3u1 in L 2 (R33 Y)3 .(7.3)

Moreover, setting u(x) 4 s
Y

u(x , y) dy for a.a. x� R3 ,

˜3ue �
2

˜x3u1˜y3u1 in L 2 (R33 Y)3 .(7.4)

Finally, e˜3ue �
2

˜y3u40 in L 2 (R33 Y)3 .
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˜x3u and ˜y3u1 are orthogonal in L 2 (R33 Y)3 , and (7.4) also reads

(7.5) lim
eK0

(2) ˜3ue4˜3lim
eK0

(1)ue1˜y3u14lim
eK0

(1) ˜3ue1˜y3u1 a.e. in R33Y,

which may be compared with (2.4) and (6.6).

Two-Scale Convergence of Divergences. A result similar to Theorems 7.1 holds if
the curl is replaced by the divergence, and L 2

rot by L 2
div .

THEOREM 7.2. Let ]ue( be a bounded sequence in L 2
div (R3 )3 such that ue �

2
u in

L 2 (R33 Y)3 . For any e , there exists a unique u1e�H 1 (R3
e )3 such that, for any m� Z3 ,

(omitting restrictions)

u1e�H 1 (e(m1 Y) )3 , �
e(m1 Y)

u1e (x) dx40,(7.6)

.
/
´

˜3u1e40 a.e. in e(m1 Y),

�
e(m1 Y)

(e˜ Qu1e2˜ Que )˜ Qc dx40 (c�H 1 (e(m1 Y) )3 .(7.7)

Then there exists u1�L 2 (R3 ; H 1 (Y)3 ) such that s
Y

u1 (x , y) dy40 for a.a. x� R3 , ˜y3

3u140 a.e. in R33 Y, and, as eK0 along a suitable subsequence,

u1e �
2

u1 in L 2 (R33 Y)3 , e˜ Qu1e �
2

˜y Qu1 in L 2 (R33 Y).(7.8)

Moreover, setting u(x) 4 s
Y

u(x , y) dy for a.a. x� R3 ,

˜ Que �
2

˜x Qu1˜y Qu1 in L 2 (R33 Y).(7.9)

Finally, e˜ Que �
2

˜y Qu40 in L 2 (R33 Y).

˜x Qu and ˜y Qu1 are orthogonal in L 2 (R33 Y), and a formula like (7.5) holds for
divergences.

8. TWO-SCALE CONVERGENCE OF THE LAPLACE OPERATOR

THEOREM 8.1. Let p�]1 , 1Q[, and a sequence ]ue( be such that ue � u in
W 2, p (RN ). For any e , there exists a unique u2e�W 2, p (RN

e ) such that, for any m� ZN ,
(omitting restrictions)

u2e�W 2, p (e(m1 Y) ), �
e(m1 Y)

u2e (x) dx40,(8.1)

�
e(m1 Y)

(e 2 Du2e2Due )Dc dx40 (c�W 2, p 8 (e(m1 Y) ).(8.2)

Then there exists u2�L p (RN ; W 2, p (Y) ) such that s
Y

u2 (x , y) dy40 for a.a. x� RN ,
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and, as eK0 along a suitable subsequence,

u2e �
2

u2 in L p (RN3 Y), e 2 Du2e �
2

D y u2 in L p (RN3 Y),(8.3)

Due �
2

Du1D y u2 in L p (RN3 Y).(8.4)

The latter formula also reads

lim
eK0

(2) Due4D lim
eK0

(1) ue1D y u24 lim
eK0

(1) Due1D y u2 a.e. in RN3 Y,(8.5)

this may be compared with (2.4), (6.6), (7.5). For p42 this decomposition is orthogo-
nal in L 2 (RN3 Y). This theorem can be extended to more general linear elliptic
operators.

9. TWO-SCALE CONVERGENCE OF POTENTIALS

Finally, we deal with the two-scale limit of a sequence of solutions W e of the equa-
tion (L e W e »4) (˜e , e˜)W e4ue , as ue �

2
u in C 1 (RN3 Y)2N . For the sake of simplic-

ity we confine ourselves to N43.

THEOREM 9.1. Let two sequences ]u1e(, ]u2e( of C 1 (R3 )3 and u1 , u2�C 1 (R33 Y)3

be such that

u1e �
2

u1 , u2e �
2

u2 in C 1 (R33 Y)3 ,(9.1)

˜e3u1e4˜3u2e40, e˜u1e4˜e u2e in R3 , (e ,(9.2)

eu1e (em) Qei4�
0

1

u2e (em1etei ) Qei dt (m� Z3 , (e , fori41, 2 , 3 .(9.3)

For any (x , y) � R33 Y, let j x , h y and the sequences ]j e8(x/e)
e (, ]h y

e ( in C 1 ( [0 , 1] )3

be such that

.
/
´

j e8(x/e)
e (0) 4h y

e (0) 40, j e8(x/e)
e (1) 4e8(x/e), h y

e (1) 4y (e ,

j e8(x/e)
e Kj x , h y

e Kh y in C 1 ( [0 , 1] )3 .
(9.4)

[This determines the sequence ]h R(x/e)
e ( via diagonalization]. Finally, let us set

(9.5)

.
`
`
`
/
`
`
`
´

W e (x) »4�
0

1

u1e (j e8(x/e)
e (t) ) Q (j e8(x/e)

e )8 (t) dt1

1�
0

1

u2e (e8(x/e)1eh R(x/e)
e (t) ) Q (h R(x/e)

e )8 (t) dt (x� R3 , (e ,

W(x , y) »4�
0

1

u1 (j x (t), 0 ) Qj x8 (t) dt1

1�
0

1

u2 (x , h y (t) ) Qh y8 (t) dt ((x , y) � R33 Y.
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Then

W e�C 2 (R3 ), ˜e W e4u1e , e˜W e4u2e in R3 ,(9.6)

W�C 2 (R33 Y), W e (x) �
2

W(x , y) in C 2 (R33 Y).(9.7)

Moreover, the W e’s and W are path-independent (in R3 and in R33 Y, resp.); that is,
they do not depend on the specific choice of the sequences ]j e8(x/e)

e (, ]h y
e (.

(Although 8(x/e) and R(x/e) are discontinuous at any x such that R(x/e)i40 for
some i , by (9.3) the W e’s are continuous everywhere in R3). An analogous result holds
for strong two-scale convergence.
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