ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Augusto Visintin

Some properties of two-scale convergence

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **15** (2004), n.2, p. 93–107.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2004_9_15_2_93_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2004.

Equazioni a derivate parziali. — Some properties of two-scale convergence. Nota di AUGUSTO VISINTIN, presentata (*) dal Socio E. Magenes.

ABSTRACT. — We reformulate and extend G. Nguetseng's notion of *two-scale convergence* by means of a variable transformation, and outline some of its properties. We approximate *two-scale derivatives*, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces $W^{1, p}(\mathbb{R}^N)$, $L^2_{tot}(\mathbb{R}^3)^3$, $L^2_{div}(\mathbb{R}^3)^3$ and $W^{2, p}(\mathbb{R}^N)$ is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.

KEY WORDS: Two-scale convergence; Two-scale decomposition; Sobolev spaces.

RIASSUNTO. — Alcune proprietà della convergenza a due scale. Mediante una trasformazione di variabile, la nozione di convergenza a due scale di G. Nguetseng è qui riformulata ed estesa, ed alcune delle sue proprietà sono presentate. Tale convergenza è quindi estesa a spazi di funzioni differenziabili mediante l'approssimazione delle derivate a due scale. Inoltre si caratterizza il limite a due scale di derivate di successioni limitate negli spazi di Sobolev $W^{1, p}(\mathbf{R}^N)$, $L^2_{rot}(\mathbf{R}^3)^3$, $L^2_{div}(\mathbf{R}^3)^3$ e $W^{2, p}(\mathbf{R}^N)$. Infine si studia il limite a due scale dei potenziali di una successione convergente a due scale di campi irrotazionali.

INTRODUCTION

Let us fix any $N \ge 1$ and set $Y := [0, 1[^N]$. The following concept was introduced by Nguetseng [15], and then studied in detail by Allaire [1] and others: a bounded sequence $\{u_{\varepsilon}\}$ of $L^2(\mathbb{R}^N)$ is said (weakly) *two-scale convergent* to $u \in L^2(\mathbb{R}^N \times Y)$ iff

(1)
$$\lim_{\varepsilon \to 0} \int_{\mathbf{R}^N} u_{\varepsilon}(x) \psi\left(x, \frac{x}{\varepsilon}\right) dx = \int_{\mathbf{R}^N \times Y} \int_{\mathbf{R}^N \times Y} u(x, y) \psi(x, y) dx dy,$$

for any smooth function $\psi : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ that is Y-periodic w.r.t. the second argument. Here is a *canonic example:* for any function ψ as above, $u_{\varepsilon}(x) := \psi(x, x/\varepsilon)$ two-scale converges to $\psi(x, y)$.

Two-scale convergence can account for occurrence of a fine-scale periodic structure, and indeed has been applied to a number of homogenization problems, see *e.g.* [1, 3, 5, 7, 8, 11-13, 15, 16, 18, 19]. For periodic homogenization problems, two-scale convergence can indeed represent an alternative to the classic *energy method* of Tartar, see *e.g.* [2, 4, 9, 10, 14, 17].

Along the lines of [3, 5, 8, 11, 12], in Sections 1-5 we reduce (1) to standard weak convergence in $L^2(\mathbf{R}^N \times Y)$, via a transformation of variable which can be interpreted as a *two-scale decomposition*, We characterize two-scale convergence, extend it to L^p (for $p \in [1, +\infty]$) and C^0 , and derive some basic properties. Some of these results are already known, cf. *e.g.* [1, 7, 8, 11, 12, 15]; here we organize these properties from the point of view of two-scale decomposition, in order to illustrate the potentialities of

^(*) Nella seduta del 14 maggio 2004.

that approach. We then study two-scale compactness, introduce *approximate two-scale derivatives*, and use them to extend two-scale convergence to spaces of differentiable functions. We thus show that several classic results (of Rellich-Kondrachov, Sobolev, Morrey, and so on) have a two-scale counterpart, that concerns sequences of functions instead of single functions.

In Sections 6-8 we characterize the two-scale limit of derivatives of bounded sequences in the Sobolev spaces $W^{1, p}(\mathbf{R}^N)$, $L^2_{\text{rot}}(\mathbf{R}^3)^3$, $L^2_{\text{div}}(\mathbf{R}^3)^3$ and $W^{2, p}(\mathbf{R}^N)$ $(p \in]1, +\infty[$). Theorem 6.1 may be compared with results of Nguetseng [15], of Allaire [1], and with one Cioranescu, Damlamian and Griso recently announced in [8]; the latter one is also based on two-scale decomposition, but uses a different approximation. Finally, in Section 9 we deal with the two-scale limit of the potential of a two-scale convergent vector field. Details, proofs and applications to homogenization problems will appear apart.

1. Two-scale convergence

Two-Scale Decomposition. In this paper we denote by \mathcal{Y} the set $Y = [0, 1[^N]$, we equip with the topologic and differential structure of the *N*-dimensional torus, and identify any function on \mathcal{Y} with its periodic extension to \mathbb{R}^N . For any $\varepsilon > 0$, we decompose real numbers and real vectors as follows:

(1.1)
$$\begin{cases} \widehat{n}(x) := \max \{ n \in \mathbf{Z} : n \leq x \}, & \widehat{r}(x) := x - \widehat{n}(x) (\in [0, 1[) \quad \forall x \in \mathbf{R}, \\ \mathcal{N}(x) := (\widehat{n}(x_1), \dots, \widehat{n}(x_N)) \in \mathbf{Z}^N, & \mathcal{R}(x) := x - \mathcal{N}(x) \in \mathcal{Y} \quad \forall x \in \mathbf{R}^N. \end{cases}$$

Thus $x = \varepsilon[\mathcal{N}(x/\varepsilon) + \mathcal{R}(x/\varepsilon)]$ for any $x \in \mathbb{R}^N$; $\varepsilon \mathcal{N}(x/\varepsilon)$ and $\mathcal{R}(x/\varepsilon)$ represent coarsescale and fine-scale variables w.r.t. the scale ε , respectively. Besides this *two-scale decomposition*, we define the *two-scale composition* function:

(1.2)
$$S_{\varepsilon}(x, y) := \varepsilon \mathcal{N}(x/\varepsilon) + \varepsilon y \quad \forall (x, y) \in \mathbf{R}^{N} \times \mathcal{Y}, \forall \varepsilon > 0$$

The next lemma can easily be proved via a variable transformation in the integral.

LEMMA 1.1. Let
$$f: \mathbb{R}^N \times \mathcal{Y} \to \mathbb{R}$$
 be such that
 $f \in L^1(\mathcal{Y}; (C^0 \cap L^\infty)(\mathbb{R}^N)) \cup L^1(\mathbb{R}^N; C^0(\mathcal{Y}))$

and extend it by periodicity to \mathbf{R}^{2N} . Then, for any $\varepsilon > 0$, the function $\mathbf{R}^N \times \mathcal{Y} \rightarrow \mathbf{R}$: (x, y) $\mapsto f(S_{\varepsilon}(x, y), y)$ is integrable, and

(1.3)
$$\int_{\mathbf{R}^N} f(x, x/\varepsilon) \, dx = \int_{\mathbf{R}^N \times \mathcal{Y}} f(S_\varepsilon(x, y), y) \, dx dy \quad \forall \varepsilon > 0.$$

For any $p \in [1, +\infty]$, the operator $g \mapsto g \circ S_{\varepsilon}$ is then a linear isometry $L^{p}(\mathbf{R}^{N}) \rightarrow D^{p}(\mathbf{R}^{N} \times \mathcal{Y})$.

Two-Scale Convergence in $L^{p}(\mathbf{R}^{N} \times \mathcal{Y})$. In this *Note* by ε we represent the generic element of an arbitrary but prescribed, positive and vanishing sequence of real numbers; *e.g.*, $\varepsilon = \{1, 1/2, 1/3, ..., 1/n, ...\}$. For any sequence of measurable functions,

 $u_{\varepsilon}: \mathbb{R}^N \to \mathbb{R}$, and any measurable function, $u: \mathbb{R}^N \times \mathcal{Y} \to \mathbb{R}$, we say that u_{ε} two-scale converges to u (w.r.t. the prescribed sequence $\{\varepsilon_n\}$) in some specific sense, whenever $u_{\varepsilon} \circ S_{\varepsilon} \to u$ in the corresponding standard (*i.e.*, one-scale) sense. In this way, for any $p \in [1, +\infty]$ we define strong and weak (weak star for $p = \infty$) two-scale convergence in $L^p(\mathbb{R}^N \times \mathcal{Y})$; we then write $u_{\varepsilon} \to u$, $u_{\varepsilon} \to u$, $u_{\varepsilon} \to u$ (resp.). For any domain $\Omega \subset \mathbb{R}^N$, two-scale convergence in $L^p(\Omega \times \mathcal{Y})$ is then defined by extending functions to $\mathbb{R}^N \setminus \Omega$ with vanishing value.

Two-Scale Convergence in $C^0(\mathbb{R}^N \times \mathfrak{Y})$. Because of the discontinuity of $S_{\varepsilon}(\cdot, y)$, in general the function $u_{\varepsilon} \circ S_{\varepsilon}$ is discontinuous even if u_{ε} is continuous. A modification is thus needed, in order to extend the previous definitions to the space of continuous functions. For i = 1, ..., N, let us denote by e_i the unit vector of the x_i -axis, set $x_{[i]} := x - x_i e_i$ for any $x \in \mathbb{R}$, and

(1.4)
$$\begin{cases} (I_{\varepsilon,i}w)(x, y) \coloneqq w(x_{[i]} + \varepsilon \,\widehat{n}(x_i/\varepsilon) \, e_i, y) + \\ + \,\mathcal{R}(x_i/\varepsilon)[w(x_{[i]} + \varepsilon \,\widehat{n}(x_i/\varepsilon) \, e_i + \varepsilon e_i, y) - w(x_{[i]} + \varepsilon \,\widehat{n}(x_i/\varepsilon) \, e_i, y)] \\ \forall (x, y) \in \mathbf{R}^N \times \mathcal{Y}, \forall w \colon \mathbf{R}^N \times \mathcal{Y} \to \mathbf{R}, \text{ for } i = 1, \dots, N; \\ L_{\varepsilon}v \coloneqq (I_{\varepsilon, 1} \circ \dots \circ I_{\varepsilon, N})(v \circ S_{\varepsilon}) \quad \forall v \colon \mathbf{R}^N \to \mathbf{R}. \end{cases}$$

Thus $L_{\varepsilon}v$ is piecewise linear w.r.t. x, whereas $v \circ S_{\varepsilon}$ is piecewise constant w.r.t. x. If $v \in C^0(\mathbb{R}^N)$, then $L_{\varepsilon}v \in C^0(\mathbb{R}^N \times \mathcal{Y})$. For instance, for N = 2, let us set $r(x) := \mathcal{R}(x|\varepsilon)$ and $v_{ij}^m(y) := v(\varepsilon(m+y) + \varepsilon(i, j))$ for $i, j \in \{0, 1\}$ and for any $m \in \mathbb{Z}^N$; for any $x \in \varepsilon m \mathcal{Y}$ and any $y \in \mathcal{Y}$, then

$$(L_{\varepsilon}v)(x, y) := (1 - r_1)(1 - r_2)v_{00}^m + r_1(1 - r_2)v_{10}^m + (1 - r_1)r_2v_{01}^m + r_1r_2v_{11}^m$$

For any sequence $\{u_{\varepsilon}\}$ in the $C^{0}(\mathbf{R}^{N})$ and any $u \in C^{0}(\mathbf{R}^{N} \times \mathcal{Y})$, we say that u_{ε} strongly (weakly, resp.) two-scale converges to u in $C^{0}(\mathbf{R}^{N} \times \mathcal{Y})$ iff $L_{\varepsilon} u_{\varepsilon} \rightarrow u$ ($L_{\varepsilon} u_{\varepsilon} \rightarrow u$ resp.) in $C^{0}(\mathbf{R}^{N} \times \mathcal{Y})$ w.r.t. to the usual topology of Fréchet space.

2. Some properties of two-scale convergence

It is easy to check that in L^p weak/strong one-scale convergence and weak/strong two-scale convergence are related as follows. An analogous result holds in C^0 .

PROPOSITION 2.1. Let $p \in [1, +\infty[$ and $\{u_{\varepsilon}\}$ be a sequence in $L^{p}(\mathbf{R}^{N})$. Then:

(2.1)
$$u_{\varepsilon} \to u \text{ in } L^{p}(\mathbf{R}^{N}) \Leftrightarrow \begin{cases} u_{\varepsilon} \to u \text{ in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}) \\ u \text{ is independent of } y, \end{cases}$$

(2.2)
$$u_{\varepsilon} \xrightarrow{2} u \text{ in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}) \Rightarrow u_{\varepsilon} \xrightarrow{2} u \text{ in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}),$$

(2.3)
$$u_{\varepsilon} \xrightarrow{\sim} u \text{ in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}) \Rightarrow u_{\varepsilon} \xrightarrow{\sim} \int_{\mathcal{Y}} u(\cdot, y) \, dy \text{ in } L^{p}(\mathbf{R}^{N})$$

Limit Decomposition and Orthogonality. Let $p \in [1, +\infty)$. If $u_{\varepsilon} \xrightarrow{\sim} u$ in $L^p(\mathbb{R}^N \times \mathcal{Y})$,

and $u_{\varepsilon} \rightarrow u_0$ in $L^p(\mathbb{R}^N)$, setting $u_1 := u - u_0$, by (2.3) we trivially get the *two-scale* decomposition

(2.4)
$$\begin{cases} u(x, y) = u_0(x) + u_1(x, y) & \text{for a.a.} (x, y) \in \mathbb{R}^N \times \mathcal{Y}, \\ \int u_1(x, y) \, dy = 0 & \text{for a.a.} \quad x \in \mathbb{R}^N. \end{cases}$$

Let us set p' := p/(p-1) if $p \neq 1, 1' := \infty$. If $\varphi_{\varepsilon} \xrightarrow{2} \varphi$ in $L^{p'}(\mathbb{R}^N \times \mathfrak{Y})$ and $\varphi_{\varepsilon} \xrightarrow{} \varphi_0$ in $L^{p'}(\mathbb{R}^N)$, setting $\varphi_1 := \varphi - \varphi_0$ we then have

(2.5)
$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} u_\varepsilon(x) \varphi_\varepsilon(x) \, dx = \int_{\mathbb{R}^N \times \mathfrak{Y}} \int_{\mathbb{R}^N \times \mathfrak{Y}} u(x, y) \varphi(x, y) \, dx \, dy =$$
$$= \int_{\mathbb{R}^N} u_0(x) \varphi_0(x) \, dx + \int_{\mathbb{R}^N \times \mathfrak{Y}} \int_{\mathbb{R}^N \times \mathfrak{Y}} u_1(x, y) \varphi_1(x, y) \, dx \, dy.$$

If p = 2, the decomposition (2.4) is orthogonal in $L^2(\mathbf{R}^N \times \mathcal{Y})$, and

(2.6)
$$\|u\|_{L^{2}(\mathbb{R}^{N}\times\mathcal{Y})}^{2} = \|u_{0}\|_{L^{2}(\mathbb{R}^{N})}^{2} + \|u_{1}\|_{L^{2}(\mathbb{R}^{N}\times\mathcal{Y})}^{2}$$

In Sections 6-8 we shall encounter examples of this two-scale decomposition of the limit.

The formula (2.7) below states the equivalence between the above definitions of weak and strong two-scale convergence and the original ones of Nguetseng [15] and Allaire [1]. The remainder is easily checked.

PROPOSITION 2.2. Let $p \in [1, +\infty[$ and $\{u_{\varepsilon}\}\ be a sequence in <math>L^{p}(\mathbb{R}^{N})$. Then (2.7) $u_{\varepsilon} \xrightarrow{2} u$ in $L^{p}(\mathbb{R}^{N} \times \mathcal{Y}) \Leftrightarrow \{u_{\varepsilon}\}\ is bounded in <math>L^{p}(\mathbb{R}^{N})$ and $\int_{\mathbb{R}^{N}} u_{\varepsilon}(x) \psi(x, x/\varepsilon) dx \rightarrow \int_{\mathbb{R}^{N} \times \mathcal{Y}} \int_{\mathbb{R}^{N} \times \mathcal{Y}} u(x, y) \psi(x, y) dxdy \ \forall \psi \in \mathcal{O}(\mathbb{R}^{N} \times \mathcal{Y}),$

(2.8) $u_{\varepsilon} \xrightarrow{2} u \text{ in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}) \Rightarrow$

$$\Rightarrow \liminf_{\varepsilon \to 0} \left\| u_{\varepsilon} \right\|_{L^{p}(\mathbb{R}^{N})} \ge \left\| u \right\|_{L^{p}(\mathbb{R}^{N} \times \mathcal{Y})} \left(\ge \left\| \int_{\mathcal{Y}} u(\cdot, y) \, dy \right\|_{L^{p}(\mathbb{R}^{N})} \right),$$

$$(2.9) \quad if \ p \in]1, \ + \infty [, \quad u_{\varepsilon} \xrightarrow{2} u \ in \ L^{p}(\mathbb{R}^{N} \times \mathcal{Y}) \Leftrightarrow \begin{cases} u_{\varepsilon} \xrightarrow{2} u \ in \ L^{p}(\mathbb{R}^{N} \times \mathcal{Y}) \\ \left\| u_{\varepsilon} \right\|_{L^{p}(\mathbb{R}^{N})} \rightarrow \left\| u \right\|_{L^{p}(\mathbb{R}^{N} \times \mathcal{Y})}.$$

Two-Scale Convergence of Distributions. Let us denote the duality pairing between $\mathcal{O}'(\mathbf{R}^N)$ and $\mathcal{O}(\mathbf{R}^N)$ by $\langle \cdot, \cdot \rangle$, and that between $\mathcal{O}'(\mathbf{R}^N \times \mathcal{Y})$ and $\mathcal{O}(\mathbf{R}^N \times \mathcal{Y})$ by $\langle \langle \cdot, \cdot \rangle \rangle$. For any sequence $\{u_{\varepsilon}\}$ in $\mathcal{O}'(\mathbf{R}^N)$ and any $u \in \mathcal{O}'(\mathbf{R}^N \times \mathcal{Y})$, we say that u_{ε} two-scale converges to u in $\mathcal{O}'(\mathbf{R}^N \times \mathcal{Y})$ iff

$$(2.10) \qquad \langle u_{\varepsilon}(x), \psi(x, x/\varepsilon) \rangle \rightarrow \langle \langle u(x, y), \psi(x, y) \rangle \rangle \quad \forall \psi \in \mathcal{O}(\mathbb{R}^{N} \times \mathcal{Y}).$$

By (2.7), this extends the weak two-scale convergence in L^p . For instance, for N = 1, let $\{\varphi_{\varepsilon}\}$ be a sequence in $L^1(0, 1)$ such that $\varphi_{\varepsilon}(y) \rightarrow \delta_0(y - 1/2)$ (the Dirac mass at 1/2) in $\mathcal{O}'(0, 1)$, and extend φ_{ε} to **R** by periodicity. We have

(2.11) $x \varphi_{\varepsilon}(x/\varepsilon) \longrightarrow x$ in $\mathcal{O}'(\mathbf{R})$, $x \varphi_{\varepsilon}(x/\varepsilon) \longrightarrow x \delta_0(y-1/2)$ in $\mathcal{O}'(\mathbf{R} \times \mathcal{Y})$.

One can also define two-scale convergence in $\mathcal{O}'(\mathbf{R}^N \times Y^0)$ (Y^0 representing the interior of Y), by letting ψ range in $\mathcal{O}(\mathbf{R}^N \times Y^0)$ in (2.10). However this definition seems less convenient.

Two-scale convergence in the spaces of Radon measures, $C^0(\mathbf{R}^N \times \mathcal{Y})'$, is defined similarly.

3. Two-scale compactness

Let us say that a sequence $\{u_{\varepsilon}\}$ is compact iff it is possible to extract a convergent subsequence from any of its subsequences. Proposition 2.1 trivially entails the following statement.

PROPOSITION 3.1. Let $p \in [1, +\infty[$. For any sequence $\{u_{\varepsilon}\}$ in $L^{p}(\mathbf{R}^{N})$,

(3.1) {
strong one-scale compactness entails strong two-scale compactness;
strong two-scale compactness entails weak two-scale compactness;
weak two-scale compactness entails weak one-scale compactness.

The same holds for $C^0(\mathbf{R}^N)$, and (replacing weak compactness by weak star compactness) for $L^{\infty}(\mathbf{R}^N)$.

The next statement is also easily checked: parts (*i*) and (*ii*) follow from Lemma 1.1 and the Banach-Alaoglu theorem; part (*iii*) can be derived via the classic de la Vallée Poussin criterion.

PROPOSITION 3.2 (Weak Two-Scale Compactness in L^p).

(i) Let $p \in [1, +\infty]$. Any sequence $\{u_{\varepsilon}\}$ of $L^{p}(\mathbb{R}^{N})$ is weakly star two-scale compact in $L^{p}(\mathbb{R}^{N} \times \mathcal{Y})$ iff it is bounded, hence iff it is weakly star one-scale compact in $L^{p}(\mathbb{R}^{N})$.

(ii) Similarly, any sequence of $L^1(\mathbf{R}^N)$ is weakly star two-scale compact in $C_c^0(\mathbf{R}^N \times \mathfrak{Y})'$ iff it is bounded, hence iff it is weakly star one-scale compact in $C_c^0(\mathbf{R}^N)'$.

(iii) Finally, any sequence of $L^1(\mathbf{R}^N)$ is weakly two-scale compact in $L^1(\mathbf{R}^N \times \mathcal{Y})$ iff it is weakly one-scale compact in $L^1(\mathbf{R}^N)$.

We also have a two-scale version of Chacon's biting lemma, cf. [6].

PROPOSITION 3.3 (Two-Scale Biting Lemma). Let $\{u_{\varepsilon}\}$ be a bounded sequence in $L^{1}(\mathbb{R}^{N})$. Then there exist $u \in L^{1}(\mathbb{R}^{N} \times \mathcal{Y})$, a subsequence $\{u_{\varepsilon'}\}$, and a nondecreasing sequence $\{\Omega_{k}\}$ of measurable subsets of \mathbb{R}^{N} such that the measure of $\mathbb{R}^{N} \setminus \Omega_{k}$ vanishes

(3.2)
$$u_{\varepsilon'|\Omega_k} \xrightarrow{\sim} u_{|\Omega_k \times \mathcal{Y}|}$$
 in $L^1(\Omega_k \times \mathcal{Y})$, as $\varepsilon' \to 0$, $\forall k \in \mathbb{N}$.

Strong one-scale compactness is not equivalent to strong two-scale compactness in L^{p} - and C^{0} -spaces. However, the classic Riesz and Ascoli-Arzelà compactness theorems entail the following results.

PROPOSITION 3.4 (Strong Two-Scale Compactness in L^p). Let $p \in [1, +\infty[$. A sequence $\{u_{\varepsilon}\}$ of $L^p(\mathbb{R}^N)$ is strongly two-scale compact in $L^p(\mathbb{R}^N \times \mathcal{Y})$ iff it is bounded and

(3.3)
$$\int_{\mathbf{R}^N} |u_{\varepsilon}(x+S_{\varepsilon}(h,k))-u_{\varepsilon}(x)|^p dx \to 0 \quad as \ (h,k,\varepsilon) \to (0,0,0),$$

(3.4)
$$\sup_{\varepsilon} \int_{\mathbf{R}^N \setminus B(0, R)} |u_{\varepsilon}(x)|^p dx \to 0 \quad as \ R \to +\infty.$$

PROPOSITION 3.5 (Strong Two-Scale Compactness in C^0). A sequence $\{u_{\varepsilon}\}$ of $C^0(\mathbf{R}^N)$ is strongly two-scale compact in the Fréchet space $C^0(\mathbf{R}^N \times \mathcal{Y})$ iff it is bounded and

(3.5)
$$\sup_{x \in K} |u_{\varepsilon}(x + S_{\varepsilon}(h, k)) - u_{\varepsilon}(x)| \to 0 \quad as \ (h, k, \varepsilon) \to (0, 0, 0), \forall K \subset \mathbb{R}^{N}$$

In the two latter theorems $S_{\varepsilon}(h, k) := \varepsilon \mathcal{N}(h/\varepsilon) + \varepsilon k$ cannot be replaced by $h + \varepsilon k$: this more restrictive hypothesis would yield the strong one-scale compactness of $\{u_{\varepsilon}\}$ in $L^{p}(\mathbf{R}^{N})$ (in $C^{0}(\mathbf{R}^{N})$, resp.).

4. Two-scale derivatives

Let $w \in \mathcal{O}(\mathbb{R}^N \times \mathfrak{Y})$. Although $u_{\varepsilon}(x) := w(x, x/\varepsilon) \xrightarrow{2} w(x, y)$ in $L^p(\mathbb{R}^N \times \mathfrak{Y})$ for any $p \in [1, +\infty[$, in general $\nabla w(x, y)$ is not the (weak) two-scale limit of $\nabla u_{\varepsilon}(x)$; actually, this sequence is bounded in $L^p(\mathbb{R}^N)^N$ only if w(x, y) does not depend from y. In this section we show that nevertheless it is possible to express the gradient of the two-scale limit without evaluating the limit itself, via what we name *approximate twoscale gradient*.

For i = 1, ..., N, let us denote by $\nabla_i \varphi$ the partial derivative w.r.t. x_i of any function $\varphi(x)$, and by $\nabla_{x_i} \psi$ and $\nabla_{y_i} \psi$ the partial derivatives of any function $\psi(x, y)$. Let us also denote by e_i the unit vector of the x_i -axis, define the shift operator $(\tau_{\xi} v)(x) := v(x + \xi)$ for any $x, \xi \in \mathbb{R}^N$, set

$$(4.1) \quad \nabla_{\varepsilon, i} := \frac{\tau_{\varepsilon e_i} - I}{\varepsilon} , \quad \nabla_{\varepsilon}^{a} := \prod_{i=1}^{N} \nabla_{\varepsilon, i}^{a_i}, \quad \nabla^{a} = \prod_{i=1}^{N} \nabla_{i}^{a_i} \quad \forall a \in \mathbb{N}^{\mathbb{N}}, \ \forall \varepsilon > 0,$$

and define ∇_x^{α} , ∇_y^{α} similarly. Finally, for any $\varepsilon > 0$ let us set $\mathbf{R}_{\varepsilon}^N := \bigcup_{m \in \mathbf{Z}^N} \varepsilon(m + Y^0)$, and denote by $\widetilde{\nabla}$ the gradient in the sense of $\mathcal{D}'(\mathbf{R}_{\varepsilon}^N)$.

PROPOSITION 4.1. Let $m \in \mathbb{N}$, $p \in]1, +\infty[$, and $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$.

(i) If $\{u_{\varepsilon}\}$ is a sequence in $W^{m, p}(\mathbf{R}^{N}), |\alpha| + |\beta| \leq m$, and

(4.2)
$$u_{\varepsilon} \xrightarrow{2} u \quad in \ L^{p}(\mathbf{R}^{N} \times \mathcal{Y}), \qquad \sup_{\varepsilon} \|\nabla_{\varepsilon}^{a}(\varepsilon \nabla)^{\beta} u_{\varepsilon}\|_{L^{p}(\mathbf{R}^{N})} < +\infty,$$

then

(4.3)
$$\nabla_x^{\alpha} \nabla_y^{\beta} u \in L^p(\mathbb{R}^N \times \mathcal{Y}), \quad \nabla_{\varepsilon}^{\alpha} (\varepsilon \nabla)^{\beta} u_{\varepsilon} \xrightarrow{2} \nabla_x^{\alpha} \nabla_y^{\beta} u \quad in \ L^p(\mathbb{R}^N \times \mathcal{Y}),$$

(4.4)
$$\begin{cases} \forall i \in \{1, \dots, N\}, \forall \gamma \leq \beta \text{ such that } \gamma_i < \beta_i, \\ \nabla_x^{\alpha} \nabla_y^{\gamma} u(x, \cdot) \text{ is } 1 \text{-periodic w.r.t. } y_i, \text{ for a.a. } x \in \mathbb{R}^N. \end{cases}$$

(ii) If $\{u_{\varepsilon}\}$ is a sequence in $L^{p}(\mathbf{R}^{N}) \cap W^{m, p}(\mathbf{R}_{\varepsilon}^{N}), |\beta| \leq m$, and

(4.5)
$$u_{\varepsilon} \xrightarrow{2} u \text{ in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}), \quad \sup_{\varepsilon} \| (\varepsilon \widetilde{\nabla})^{\beta} u_{\varepsilon} \|_{L^{p}(\mathbf{R}^{N}_{\varepsilon})} < + \infty ,$$

then

(4.6)
$$\nabla_{y}^{\beta} u \in L^{p}(\mathbf{R}^{N} \times \mathcal{Y}), \qquad (\varepsilon \widetilde{\nabla})^{\beta} u_{\varepsilon} \xrightarrow{\sim} \nabla_{y}^{\beta} u \quad in \ L^{p}(\mathbf{R}^{N} \times \mathcal{Y}).$$

The \mathcal{Y} -periodicity may fail in case (*ii*). This proposition has natural corollaries for more general linear differential operators with constant coefficients. For instance, if $\varepsilon \nabla \cdot u_{\varepsilon}$ is bounded in $L^{p}(\mathbb{R}^{N})$ ($\nabla \cdot := div$), then $\nabla_{y} \cdot u \in L^{p}(\mathbb{R}^{N} \times \mathcal{Y})$, and the normal component of $u(x, \cdot)$ fulfils the periodicity condition on ∂Y , for a.a. $x \in \mathbb{R}^{N}$. A similar statement holds for the curl operator.

Two-Scale Boundedness in $W^{1, p}(\mathbf{R}^N \times \mathcal{Y})$. Let us define the approximate two-scale gradient $\Lambda_{\varepsilon} := (\nabla_{\varepsilon}, \varepsilon \nabla)$, and say that a sequence $\{u_{\varepsilon}\}$ is two-scale bounded in $W^{1, p}(\mathbf{R}^N \times \mathcal{Y})$ iff $\{u_{\varepsilon}\}$ and $\{\Lambda_{\varepsilon} u_{\varepsilon}\}$ are bounded in $L^p(\mathbf{R}^N)$ and $L^p(\mathbf{R}^N)^{2N}$, resp. The above canonic example shows that in $W^{1, p}$ two-scale boundedness is strictly weaker than one-scale boundedness, at variance with what we saw for L^p .

The next statement can be proved by means of Proposition 3.4.

THEOREM 4.2 (Two-Scale Rellich-Kondrachov-Type Result). Let $p \in [1, +\infty]$. Any sequence $\{u_{\varepsilon}\}$ of $W^{1, p}(\mathbf{R}^{N})$ that is two-scale bounded in $W^{1, p}(\mathbf{R}^{N} \times \mathcal{Y})$ is strongly two-scale compact in $L^{p}_{loc}(\mathbf{R}^{N} \times \mathcal{Y})$.

One might also define an alternative (weaker) concept: a sequence $\{u_{\varepsilon}\} \in W^{1,p}(\mathbf{R}_{\varepsilon}^{N})$ is two-scale bounded in $W^{1,p}(\mathbf{R}^{N} \times Y^{0})$ whenever the sequences $\{\|u_{\varepsilon}\|_{L^{p}(\mathbf{R}^{N})}\}, \{\|\nabla_{\varepsilon} u_{\varepsilon}\|_{L^{p}(\mathbf{R}^{N})^{N}}\}, \{\varepsilon\|\nabla u_{\varepsilon}\|_{L^{p}(\mathbf{R}_{\varepsilon}^{N})^{N}}\}$ are bounded. This entails strong two-scale compactness in $L_{loc}^{p}(\mathbf{R}^{N} \times Y^{0})$. Henceforth however we shall just refer to the former definition.

Defining $I_{\varepsilon, i}$ and L_{ε} as in (1.4), it is easy to check that for any $p \in [1, +\infty[$ and any $v \in W^{1, p}(\mathbb{R}^N)$

(4.7)
$$\begin{cases} \nabla_{x_i} I_{\varepsilon,i}(v \circ S_{\varepsilon}) = (\nabla_{\varepsilon,i} v) \circ S_{\varepsilon} \\ \nabla_{y_i} I_{\varepsilon,i}(v \circ S_{\varepsilon}) = I_{\varepsilon,i} [\varepsilon(\nabla_i v) \circ S_{\varepsilon}] \end{cases} \text{ in } \mathbf{R}^N \times \mathcal{Y}, \forall i,$$

(4.8)
$$\begin{cases} \nabla_{x_{i}}(I_{\varepsilon,j} \circ I_{\varepsilon,i})(v \circ S_{\varepsilon}) = I_{\varepsilon,j} \nabla_{x_{i}} I_{\varepsilon,i}(v \circ S_{\varepsilon}) \\ \nabla_{y_{i}}(I_{\varepsilon,j} \circ I_{\varepsilon,i})(v \circ S_{\varepsilon}) = I_{\varepsilon,j} \nabla_{y_{i}} I_{\varepsilon,i}(v \circ S_{\varepsilon}) \end{cases} \quad \forall i, j.$$

This yields the next statement.

PROPOSITION 4.3. Let $p \in [1, +\infty[$. For any sequence $\{u_{\varepsilon}\}$ in $W^{1, p}(\mathbf{R}^{N})$,

(4.9)
$$\begin{cases} u_{\varepsilon} \text{ is two-scale bounded in } W^{1, p}(\mathbf{R}^{N} \times \mathcal{Y}) \\ \Leftrightarrow L_{\varepsilon} u_{\varepsilon} \text{ is one-scale bounded in the same space,} \end{cases}$$

(4.10)
$$u_{\varepsilon} \xrightarrow{2} u \Leftrightarrow L_{\varepsilon} u_{\varepsilon} \xrightarrow{} u \quad in \ W^{1, p} (\mathbf{R}^{N} \times \mathcal{Y})^{2N}$$

An equivalence analogous to (4.10) holds for strong convergence.

5. Two-scale convergence in spaces of differentiable functions

In this section we define two-scale convergence in spaces of either weakly or strongly differentiable functions, by means of the *approximate two-scale gradient*, $\Lambda_{\varepsilon} := (\nabla_{\varepsilon}, \varepsilon \nabla)$, cf. (4.1).

Two-Scale Convergence in $W^{m, p}(\mathbf{R}^N \times \mathcal{Y})$. Let $m \in \mathbf{N}$ and $p \in [1, +\infty[$. For any sequence $\{u_{\varepsilon}\}$ in $W^{m, p}(\mathbf{R}^N)$ and any $u \in W^{m, p}(\mathbf{R}^N \times \mathcal{Y})$, we say that u_{ε} weakly two-scale converges to u in $W^{m, p}(\mathbf{R}^N \times \mathcal{Y})$ iff

(5.1,2)
$$\nabla^{\alpha}_{\varepsilon}(\varepsilon\nabla)^{\beta} u_{\varepsilon} \xrightarrow{\sim}_{2} \nabla^{\alpha}_{x} \nabla^{\beta}_{y} u \quad \text{in } L^{p}(\mathbf{R}^{N} \times \mathcal{Y}), \forall \alpha, \beta \in \mathbf{N}^{N}, |\alpha| + |\beta| \leq m,$$

and define strong two-scale convergence similarly. We also say that a sequence $\{u_{\varepsilon}\}$ is two-scale bounded in $W^{m, p}(\mathbb{R}^{N} \times \mathcal{Y})$ iff the set $\{\nabla_{\varepsilon}^{\alpha}(\varepsilon \nabla)^{\beta} u_{\varepsilon}: \alpha, \beta \in \mathbb{N}^{N}, |\alpha| + |\beta| \leq m\}$ is bounded in $L^{p}(\mathbb{R}^{N})$.

The next statement follows from Propositions 3.2 and 4.1.

PROPOSITION 5.1. For any $m \in N$ and any $p \in]1, +\infty[$, any sequence of $W^{m, p}(\mathbb{R}^N)$ that is two-scale bounded in $W^{m, p}(\mathbb{R}^N \times \mathcal{Y})$ has a weakly two-scale convergent subsequence in the latter space.

Weak Two-Scale Convergence in $W^{m, p}(\mathbf{R}^N \times \mathcal{Y})'$. Let us fix any $m \in \mathbf{N}$, any $p \in [1, +\infty[$, and denote by $\langle \cdot, \cdot \rangle$ ($\langle \langle \cdot, \cdot \rangle \rangle$, resp.) the duality pairing between $W^{m, p}(\mathbf{R}^N)$ ($W^{m, p}(\mathbf{R}^N \times \mathcal{Y})$, resp.) and the respective dual space. For any sequence $\{u_{\varepsilon}\}$ in $W^{m, p}(\mathbf{R}^N)'$ and any $u \in W^{m, p}(\mathbf{R}^N \times \mathcal{Y})'$, we say that u_{ε} weakly two-scale converges to u in $W^{m, p}(\mathbf{R}^N \times \mathcal{Y})'$ iff

(5.3)
$$\begin{cases} \langle u_{\varepsilon}(x), \psi_{\varepsilon}(x) \rangle \rightarrow \langle \langle u(x, y), \psi(x, y) \rangle \rangle \\ \forall \{\psi_{\varepsilon}\} \in W^{m, p}(\mathbf{R}^{N}) \text{ such that } \psi_{\varepsilon} \xrightarrow{2} \psi \text{ in } W^{m, p}(\mathbf{R}^{N} \times \mathfrak{Y}). \end{cases}$$

The next statement can be proved by transposing derivatives and applying the above definitions of two-scale convergence in the spaces $W^{m, p}(\mathbf{R}^N \times \mathcal{Y})$ and in $W^{m, p}(\mathbf{R}^N \times \mathcal{Y})'$.

100

PROPOSITION 5.2. For any $p \in [1, +\infty[$ and any sequence $\{u_{\varepsilon}\}$ in $L^{p'}(\mathbf{R}^N)$, if $u_{\varepsilon} \xrightarrow{\sim} u$ in $L^{p'}(\mathbf{R}^N \times \mathcal{Y})$ then

(5.4)
$$\nabla^{\alpha}_{\varepsilon} (\varepsilon \nabla)^{\beta} u_{\varepsilon} \xrightarrow{2} \nabla^{\alpha}_{x} \nabla^{\beta}_{y} u \quad in \ W^{|\alpha| + |\beta|, p} (\mathbf{R}^{N} \times \mathfrak{Y})', \ \forall \alpha, \beta \in \mathbf{N}^{N}$$

Two-Scale Convergence in $C^{0,\lambda}(\mathbf{R}^N \times \mathcal{Y})$. For any $\lambda \in]0, 1]$, any sequence $\{u_{\varepsilon}\}$ in $C^{0,\lambda}(\mathbf{R}^N)$ and any $u \in C^{0,\lambda}(\mathbf{R}^N \times \mathcal{Y})$, we say that u_{ε} weakly star two-scale converges to u in $C^{0,\lambda}(\mathbf{R}^N \times \mathcal{Y})$ iff $L_{\varepsilon}u_{\varepsilon} \stackrel{*}{\rightharpoonup} u$ in the latter space. Strong two-scale convergence in $C^{0,\lambda}(\mathbf{R}^N \times \mathcal{Y})$ can be defined similarly.

A sequence $\{u_{\varepsilon}\}$ of $C^{0, \lambda}(\mathbf{R}^N)$ is said two-scale bounded in $C^{0, \lambda}(\mathbf{R}^N \times \mathcal{Y})$ whenever the sequence $\{L_{\varepsilon}u_{\varepsilon}\}$ is bounded in $C^{0, \lambda}(\mathbf{R}^N \times \mathcal{Y})$.

PROPOSITION 5.3. For any $\lambda \in]0, 1]$, any sequence of $C^{0, \lambda}(\mathbf{R}^N)$ that is two-scale bounded in $C^{0, \lambda}(\mathbf{R}^N \times \mathcal{Y})$ has a weakly star two-scale convergent subsequence in the latter space.

Two-Scale Convergence in $C^m(\mathbf{R}^N \times \mathcal{Y})$. For any integer m > 0, any sequence $\{u_{\varepsilon}\}$ in the Fréchet subspace $C^m(\mathbf{R}^N)$ and any $u \in C^m(\mathbf{R}^N \times \mathcal{Y})$, we say that u_{ε} weakly two-scale converges to u in $C^m(\mathbf{R}^N \times \mathcal{Y})$ iff

(5.5)
$$\nabla^{\alpha}_{\varepsilon}(\varepsilon \nabla)^{\beta} L_{\varepsilon} u_{\varepsilon} \xrightarrow{2} \nabla^{\alpha}_{x} \nabla^{\beta}_{y} u$$
 in $C^{0}(\mathbb{R}^{N} \times \mathcal{Y}), \forall \alpha, \beta \in \mathbb{N}^{N}, |\alpha| + |\beta| \leq m$

and analogously for strong two-scale convergence.

One might also define two-scale convergence in $C^{m, \lambda}(\mathbf{R}^N \times \mathcal{Y})$, but here we omit that issue.

Two-Scale Convergence in $\mathcal{O}(\mathbf{R}^N \times \mathcal{Y})$. If $\{u_{\varepsilon}\}$ is a sequence in $\mathcal{O}(\mathbf{R}^N)$ and $u \in \mathcal{O}(\mathbf{R}^N \times \mathcal{Y})$, we say that u_{ε} two-scale converges to u in $\mathcal{O}(\mathbf{R}^N \times \mathcal{Y})$ iff

(5.6)
$$\begin{cases} \exists K \subset \mathbf{R}^{N} \colon \forall \varepsilon, \ u_{\varepsilon} \equiv 0 \text{ in } \mathbf{R}^{N} \setminus K, \text{ and} \\ \nabla_{\varepsilon}^{\alpha} (\varepsilon \nabla)^{\beta} L_{\varepsilon} u_{\varepsilon} \xrightarrow{2} \nabla_{x}^{\alpha} \nabla_{y}^{\beta} u \text{ in } C^{0} (\mathbf{R}^{N} \times \mathcal{Y}), \ \forall \alpha, \beta \in \mathbf{N}^{N}. \end{cases}$$

One might similarly define two-scale convergence of a sequence in $\mathcal{O}(\mathbf{R}_{\varepsilon}^{N})$ to an element of $\mathcal{O}(\mathbf{R}^{N} \times Y^{0})$.

Imbedding-Type Results. By applying Proposition 4.3 and the classic Sobolev and Morrey theorems to the sequence $\{L_{\varepsilon} u_{\varepsilon}\}$ in $\mathbb{R}^{N} \times \mathcal{Y}$, one gets the following result.

THEOREM 5.4 (Two-Scale Sobolev- and Morrey-Type Results). For any $p \in [1, +\infty[$, there exists a constant $C = C_{N, p}$ such that, for any sequence $\{u_{\varepsilon}\}$ in $W^{1, p}(\mathbb{R}^{N})$ that is two-scale bounded in $W^{1, p}(\mathbb{R}^{N} \times \mathcal{Y})$ and any ε , (cf. (1.4))

(5.7)
$$p < 2N \Rightarrow \|u_{\varepsilon}\|_{L^{\tilde{p}}(\mathbb{R}^{N})} \leq C \|\nabla(L_{\varepsilon}u_{\varepsilon})\|_{L^{p}(\mathbb{R}^{N}\times \mathfrak{Y})^{2N}} \quad \left(\tilde{p} := \frac{2Np}{2N-p}\right),$$

$$(5.8) p = 2N \Rightarrow \|u_{\varepsilon}\|_{L^{q}(\mathbb{R}^{N})} \leq C \|\nabla(L_{\varepsilon}u_{\varepsilon})\|_{L^{p}(\mathbb{R}^{N}\times\mathcal{Y})^{2N}} \quad \forall q \in [p, +\infty[,$$

(5.9)
$$p > 2N \Rightarrow \|u_{\varepsilon}\|_{C^{0,\lambda}(\mathbb{R}^N)} \leq C \|\nabla(L_{\varepsilon} u_{\varepsilon})\|_{L^p(\mathbb{R}^N \times \mathcal{Y})^{2N}} \qquad \left(\lambda := 1 - \frac{2N}{p}\right).$$

(By (4.9), the right-hand side of each of these formulae is bounded).

By a standard argument Theorems 4.2 and 5.4 entail the next two-scale compactness result.

THEOREM 5.5. For any sequence $\{u_{\varepsilon}\}$ in $W^{1, p}(\mathbf{R}^N)$ that is two-scale bounded in $W^{1, p}(\mathbf{R}^N \times \mathcal{Y})$,

(5.10) $p < 2N \Rightarrow \{u_{\varepsilon}\}$ is two-scale strongly compact in $L^{q}_{loc}(\mathbf{R}^{N} \times \mathcal{Y}) \quad \forall q < \frac{2Np}{2N-p}$,

(5.11) $p=2N \Rightarrow \{u_{\varepsilon}\}$ is two-scale strongly compact in $L^{q}_{loc}(\mathbf{R}^{N} \times \mathcal{Y}) \ \forall q < +\infty$,

(5.12)
$$p > 2N \Rightarrow \{u_{\varepsilon}\}$$
 is two-scale strongly compact in $C_{\text{loc}}^{0,\lambda}(\mathbf{R}^N \times \mathfrak{Y}) \quad \forall \lambda < 1 - \frac{2N}{p}$

6. Two-scale convergence of gradients

Let us set
$$\mathbf{R}_{\varepsilon}^{N} := \bigcup_{m \in \mathbf{Z}^{N}} \varepsilon(m+]0, 1[^{N}) \ (\neq \mathbf{R}^{N})$$
, for any $\varepsilon > 0$.

THEOREM 6.1. Let $p \in [1, +\infty[$, and a sequence $\{u_{\varepsilon}\}$ be such that $u_{\varepsilon} \rightarrow u$ in $W^{1, p}(\mathbf{R}^{N})$. For any ε , there exists a unique $u_{1\varepsilon} \in W^{1, p}(\mathbf{R}^{N}_{\varepsilon})$ such that, for any $m \in \mathbf{Z}^{N}$, (omitting restrictions)

(6.1)
$$u_{1\varepsilon} \in W^{1, p}(\varepsilon(m+\mathcal{Y})), \qquad \int_{\varepsilon(m+\mathcal{Y})} u_{1\varepsilon}(x) \, dx = 0,$$

(6.2)
$$\int_{\varepsilon(m+\mathfrak{Y})} (\varepsilon \nabla u_{1\varepsilon} - \nabla u_{\varepsilon}) \cdot \nabla \psi \, dx = 0 \qquad \forall \psi \in W^{1, p'}(\varepsilon(m+\mathfrak{Y})).$$

Then there exists $u_1 \in L^p(\mathbb{R}^N; W^{1, p}(\mathcal{Y}))$ such that $\int_{\mathcal{Y}} u_1(x, y) dy = 0$ for a.a. $x \in \mathbb{R}^N$, and, as $\varepsilon \to 0$ along a suitable subsequence,

(6.3)
$$u_{1\varepsilon} \xrightarrow{\sim} u_1$$
 in $L^p(\mathbf{R}^N \times \mathfrak{Y})$, $\varepsilon \nabla u_{1\varepsilon} \xrightarrow{\sim} \nabla_y u_1$ in $L^p(\mathbf{R}^N \times \mathfrak{Y})^N$,

(6.4)
$$\nabla u_{\varepsilon} \xrightarrow{2} \nabla u + \nabla_{y} u_{1} \quad in \ L^{p}(\mathbf{R}^{N} \times \mathcal{Y})^{N}.$$

We remind the reader that in Section 1 we defined \mathcal{Y} to be the *N*-dimensional torus; hence $W^{1,p}(\varepsilon(m + \mathcal{Y})) \neq W^{1,p}(\varepsilon(m +]0, 1[^N))$ for any $m \in \mathbb{Z}^N$, although $L^p(\varepsilon(m + \mathcal{Y})) = L^p(\varepsilon(m +]0, 1[^N))$. The $]0, 1[^N$ -periodic extension of any $v \in W^{1,p}(\varepsilon(m + \mathcal{Y}))$ to \mathbb{R}^N is locally of class $W^{1,p}$; its gradient in the sense of $\mathcal{Q}'(\varepsilon(m + \mathcal{Y}))^N$ then coincides with that in the sense of $\mathcal{Q}'(\mathbb{R}^N)^N$. In (6.3) then $\nabla u_{1\varepsilon} \in L^p(\mathbb{R}^N)^N$. This type of remark will also apply to Sections 7, 8.

Here is a simple example. Let N = 1 and $u_{\varepsilon}: \mathbb{R} \to \mathbb{R}$ be such that $u_{\varepsilon}(x) := x + 1$

102

 $+ \varepsilon \sin(2\pi x/\varepsilon)$ for any x in some neighbourhood of [0, 1]. After (6.1) and (6.2),

(6.5)
$$\begin{cases} u_{1\varepsilon}(x) = \sin\left(2\pi x/\varepsilon\right) \xrightarrow{2} \sin\left(2\pi y\right) = u_1(y), \\ & \text{in } L^p(]0, \ 1[\times \mathcal{Y}), \ \forall p \in]1, \ +\infty[.\\ \varepsilon Du_{1\varepsilon}(x) = 2\pi \cos\left(2\pi x/\varepsilon\right) \xrightarrow{2} 2\pi \cos\left(2\pi y\right) = D_y u_1(y) \end{cases}$$

Theorem 6.1 can be compared with Theorem 3 of [15] and Proposition 1.14 of [1], where (for p=2) existence of a function $u_1 \in L^p(\mathbb{R}^N; W^{1,p}(\mathcal{Y}))$ as in (6.4) is proved without exhibiting its relation with the sequence $\{u_{\varepsilon}\}$. That relation is however derived in Theorem 1 of [8], via a construction different from (6.1) and (6.2).

Denoting the weak one-scale (two-scale, resp.) limit by $\lim_{\epsilon \to 0}^{(1)} (\lim_{\epsilon \to 0}^{(2)}, \text{ resp.})$, (6.4) also reads

(6.6)
$$\lim_{\varepsilon \to 0} (2^{n}) \nabla u_{\varepsilon} = \lim_{\varepsilon \to 0} (1^{n}) \nabla u_{\varepsilon} + \nabla_{y} u_{1} \Big(= \nabla \lim_{\varepsilon \to 0} (1^{n}) u_{\varepsilon} + \nabla_{y} u_{1} \Big) \quad \text{a.e. in } \mathbf{R}^{N} \times \mathcal{Y};$$

this may be compared with (2.4). For p = 2, this decomposition is orthogonal in $L^2(\mathbb{R}^N \times \mathfrak{Y})^N$.

7. Two-scale convergence of curls and divergences

Two-Scale Convergence of Curls. In this section we assume that N = 3 and p = 2. We remind the reader that $L^2_{rot}(\mathbf{R}^3)^3 := \{v \in L^2(\mathbf{R}^3)^3: \nabla \times v \in L^2(\mathbf{R}^3)^3\}$ $(\nabla \times :=$ = curl) is a Hilbert space equipped with the graph norm.

THEOREM 7.1. Let $\{u_{\varepsilon}\}$ be a bounded sequence in $L^{2}_{rot}(\mathbf{R}^{3})^{3}$ such that $u_{\varepsilon} \rightharpoonup u$ in $L^{2}(\mathbf{R}^{3} \times \mathcal{Y})^{3}$. For any ε , there exists a unique $u_{1\varepsilon} \in H^{1}(\mathbf{R}^{3}_{\varepsilon})^{3}$ such that, for any $m \in \mathbf{Z}^{3}$, (omitting restrictions)

(7.1)
$$u_{1\varepsilon} \in H^1(\varepsilon(m+\mathcal{Y}))^3, \qquad \int_{\varepsilon(m+\mathcal{Y})} u_{1\varepsilon}(x) \, dx = 0,$$

(7.2)
$$\begin{cases} \nabla \cdot u_{1\varepsilon} = 0 \quad a.e. \text{ in } \varepsilon(m + \mathcal{Y}), \\ \int_{\varepsilon(m + \mathcal{Y})} (\varepsilon \nabla \times u_{1\varepsilon} - \nabla \times u_{\varepsilon}) \cdot \nabla \times \psi \, dx = 0 \quad \forall \psi \in H^1(\varepsilon(m + \mathcal{Y}))^3. \end{cases}$$

Then there exists $u_1 \in L^2(\mathbb{R}^3; H^1(\mathcal{Y})^3)$ such that $\int_{\mathcal{Y}} u_1(x, y) \, dy = 0$ for a.a. $x \in \mathbb{R}^3$, $\nabla_y \cdot u_1 = 0$ a.e. in $\mathbb{R}^3 \times \mathcal{Y}$, and, as $\varepsilon \to 0$ along a suitable subsequence,

(7.3)
$$u_{1\varepsilon} \xrightarrow{\sim} u_1, \quad \varepsilon \nabla \times u_{1\varepsilon} \xrightarrow{\sim} \nabla_y \times u_1 \quad in \ L^2(\mathbf{R}^3 \times \mathcal{Y})^3$$

Moreover, setting $\overline{u}(x) = \int_{\mathcal{Y}} u(x, y) \, dy$ for a.a. $x \in \mathbb{R}^3$,

(7.4)
$$\nabla \times u_{\varepsilon} \xrightarrow{\sim} \nabla_{x} \times \overline{u} + \nabla_{y} \times u_{1} \quad in \ L^{2}(\mathbf{R}^{3} \times \mathcal{Y})^{3}.$$

Finally, $\varepsilon \nabla \times u_{\varepsilon} \xrightarrow{2} \nabla_{y} \times u = 0$ in $L^{2} (\mathbf{R}^{3} \times \mathfrak{Y})^{3}$.

 $\nabla_x \times \overline{u}$ and $\nabla_y \times u_1$ are orthogonal in $L^2(\mathbf{R}^3 \times \mathcal{Y})^3$, and (7.4) also reads (7.5) $\lim_{\epsilon \to 0} (2^{(1)}) \nabla \times u_{\epsilon} = \nabla \times \lim_{\epsilon \to 0} (1^{(1)}) u_{\epsilon} + \nabla_y \times u_1 = \lim_{\epsilon \to 0} (1^{(1)}) \nabla \times u_{\epsilon} + \nabla_y \times u_1$ a.e. in $\mathbf{R}^3 \times \mathcal{Y}$, which may be compared with (2.4) and (6.6).

Two-Scale Convergence of Divergences. A result similar to Theorems 7.1 holds if the curl is replaced by the divergence, and L_{rot}^2 by L_{div}^2 .

THEOREM 7.2. Let $\{u_{\varepsilon}\}$ be a bounded sequence in $L^{2}_{div}(\mathbf{R}^{3})^{3}$ such that $u_{\varepsilon} \xrightarrow{2} u$ in $L^{2}(\mathbf{R}^{3} \times \mathcal{Y})^{3}$. For any ε , there exists a unique $u_{1\varepsilon} \in H^{1}(\mathbf{R}^{3}_{\varepsilon})^{3}$ such that, for any $m \in \mathbf{Z}^{3}$, (omitting restrictions)

(7.6)
$$u_{1\varepsilon} \in H^1(\varepsilon(m+\mathfrak{Y}))^3, \qquad \int_{\varepsilon(m+\mathfrak{Y})} u_{1\varepsilon}(x) \, dx = 0,$$

(7.7)
$$\begin{cases} \nabla \times u_{1\varepsilon} = 0 \quad a.e. \text{ in } \varepsilon(m + \mathcal{Y}), \\ \int\limits_{\varepsilon(m + \mathcal{Y})} (\varepsilon \nabla \cdot u_{1\varepsilon} - \nabla \cdot u_{\varepsilon}) \nabla \cdot \psi \, dx = 0 \quad \forall \psi \in H^1(\varepsilon(m + \mathcal{Y}))^3 \end{cases}$$

Then there exists $u_1 \in L^2(\mathbb{R}^3; H^1(\mathfrak{Y})^3)$ such that $\int_{\mathfrak{Y}} u_1(x, y) \, dy = 0$ for a.a. $x \in \mathbb{R}^3, \nabla_y \times u_1 = 0$ a.e. in $\mathbb{R}^3 \times \mathfrak{Y}$, and, as $\varepsilon \to 0$ along a suitable subsequence, (7.8) $u_{1\varepsilon - \frac{1}{2}} u_1$ in $L^2(\mathbb{R}^3 \times \mathfrak{Y})^3$, $\varepsilon \nabla \cdot u_{1\varepsilon - \frac{1}{2}} \nabla_y \cdot u_1$ in $L^2(\mathbb{R}^3 \times \mathfrak{Y})$. Moreover, setting $\overline{u}(x) = \int_{\mathfrak{Y}} u(x, y) \, dy$ for a.a. $x \in \mathbb{R}^3$, (7.9) $\nabla \cdot u_{\varepsilon - \frac{1}{2}} \nabla_x \cdot \overline{u} + \nabla_y \cdot u_1$ in $L^2(\mathbb{R}^3 \times \mathfrak{Y})$.

Finally, $\varepsilon \nabla \cdot u_{\varepsilon} \xrightarrow{2} \nabla_{y} \cdot u = 0$ in $L^{2}(\mathbb{R}^{3} \times \mathcal{Y})$.

 $\nabla_x \cdot \overline{u}$ and $\nabla_y \cdot u_1$ are orthogonal in $L^2(\mathbf{R}^3 \times \mathcal{Y})$, and a formula like (7.5) holds for divergences.

8. Two-scale convergence of the Laplace operator

THEOREM 8.1. Let $p \in [1, +\infty[$, and a sequence $\{u_{\varepsilon}\}$ be such that $u_{\varepsilon} \rightarrow u$ in $W^{2, p}(\mathbf{R}^{N})$. For any ε , there exists a unique $u_{2\varepsilon} \in W^{2, p}(\mathbf{R}^{N}_{\varepsilon})$ such that, for any $m \in \mathbf{Z}^{N}$, (omitting restrictions)

(8.1)
$$u_{2\varepsilon} \in W^{2, p}(\varepsilon(m+\mathcal{Y})), \qquad \int_{\varepsilon(m+\mathcal{Y})} u_{2\varepsilon}(x) \, dx = 0,$$

(8.2)
$$\int_{\varepsilon(m+\mathfrak{Y})} (\varepsilon^2 \Delta u_{2\varepsilon} - \Delta u_{\varepsilon}) \Delta \psi \, dx = 0 \quad \forall \psi \in W^{2, p'}(\varepsilon(m+\mathfrak{Y})).$$

Then there exists $u_2 \in L^p(\mathbb{R}^N; W^{2, p}(\mathcal{Y}))$ such that $\int_{\mathcal{Y}} u_2(x, y) dy = 0$ for a.a. $x \in \mathbb{R}^N$,

and, as $\varepsilon \rightarrow 0$ along a suitable subsequence,

(8.3)
$$u_{2\varepsilon} \xrightarrow{} u_2$$
 in $L^p(\mathbf{R}^N \times \mathcal{Y}), \quad \varepsilon^2 \varDelta u_{2\varepsilon} \xrightarrow{} \varDelta_y u_2$ in $L^p(\mathbf{R}^N \times \mathcal{Y}),$

(8.4)
$$\Delta u_{\varepsilon} \xrightarrow{\sim} \Delta u + \Delta_{y} u_{2} \quad in \ L^{p}(\mathbf{R}^{N} \times \mathcal{Y}).$$

The latter formula also reads

(8.5)
$$\lim_{\varepsilon \to 0} (2^{\alpha}) \Delta u_{\varepsilon} = \Delta \lim_{\varepsilon \to 0} (1^{\alpha}) u_{\varepsilon} + \Delta_{y} u_{2} = \lim_{\varepsilon \to 0} (1^{\alpha}) \Delta u_{\varepsilon} + \Delta_{y} u_{2} \quad \text{a.e. in } \mathbf{R}^{N} \times \mathcal{Y},$$

this may be compared with (2.4), (6.6), (7.5). For p = 2 this decomposition is orthogonal in $L^2(\mathbf{R}^N \times \mathcal{Y})$. This theorem can be extended to more general linear elliptic operators.

9. Two-scale convergence of potentials

Finally, we deal with the two-scale limit of a sequence of solutions φ_{ε} of the equation $(\Lambda_{\varepsilon}\varphi_{\varepsilon}:=)$ $(\nabla_{\varepsilon}, \varepsilon\nabla)\varphi_{\varepsilon} = u_{\varepsilon}$, as $u_{\varepsilon} \xrightarrow{2} u$ in $C^{1}(\mathbb{R}^{N} \times \mathcal{Y})^{2N}$. For the sake of simplicity we confine ourselves to N = 3.

THEOREM 9.1. Let two sequences $\{u_{1\varepsilon}\}, \{u_{2\varepsilon}\}$ of $C^1(\mathbf{R}^3)^3$ and $u_1, u_2 \in C^1(\mathbf{R}^3 \times \mathcal{Y})^3$ be such that

(9.1)
$$u_{1\varepsilon} \xrightarrow{2} u_1, \quad u_{2\varepsilon} \xrightarrow{2} u_2 \quad in \ C^1(\mathbf{R}^3 \times \mathcal{Y})^3,$$

(9.2)
$$\nabla_{\varepsilon} \times u_{1\varepsilon} = \nabla \times u_{2\varepsilon} = 0, \quad \varepsilon \nabla u_{1\varepsilon} = \nabla_{\varepsilon} u_{2\varepsilon} \quad in \ \mathbf{R}^3, \forall \varepsilon,$$

(9.3)
$$\varepsilon u_{1\varepsilon}(\varepsilon m) \cdot e_i = \int_0^{\infty} u_{2\varepsilon}(\varepsilon m + \varepsilon t e_i) \cdot e_i dt \quad \forall m \in \mathbb{Z}^3, \forall \varepsilon, fori = 1, 2, 3.$$

For any $(x, y) \in \mathbb{R}^3 \times \mathcal{Y}$, let ξ_x , η_y and the sequences $\{\xi_{\varepsilon,\mathcal{N}(x/\varepsilon)}^{\varepsilon}\}, \{\eta_y^{\varepsilon}\}$ in $C^1([0, 1])^3$ be such that

(9.4)
$$\begin{cases} \xi_{\varepsilon \mathcal{N}(x/\varepsilon)}^{\varepsilon}(0) = \eta_{y}^{\varepsilon}(0) = 0, & \xi_{\varepsilon \mathcal{N}(x/\varepsilon)}^{\varepsilon}(1) = \varepsilon \mathcal{N}(x/\varepsilon), & \eta_{y}^{\varepsilon}(1) = y \quad \forall \varepsilon, \\ \xi_{\varepsilon \mathcal{N}(x/\varepsilon)}^{\varepsilon} \rightarrow \xi_{x}, & \eta_{y}^{\varepsilon} \rightarrow \eta_{y} \quad in \ C^{1}([0, 1])^{3}. \end{cases}$$

[This determines the sequence $\{\eta^{\epsilon}_{\Re(x/\epsilon)}\}$ via diagonalization]. Finally, let us set

$$(9.5) \begin{cases} \varphi_{\varepsilon}(x) := \int_{0}^{1} u_{1\varepsilon}(\xi_{\varepsilon \mathcal{N}(x/\varepsilon)}^{\varepsilon}(t)) \cdot (\xi_{\varepsilon \mathcal{N}(x/\varepsilon)}^{\varepsilon})'(t) dt + \\ + \int_{0}^{1} u_{2\varepsilon}(\varepsilon \mathcal{N}(x/\varepsilon) + \varepsilon \eta_{\mathcal{R}(x/\varepsilon)}^{\varepsilon}(t)) \cdot (\eta_{\mathcal{R}(x/\varepsilon)}^{\varepsilon})'(t) dt \quad \forall x \in \mathbb{R}^{3}, \forall \varepsilon, \\ \varphi(x, y) := \int_{0}^{1} u_{1}(\xi_{x}(t), 0) \cdot \xi_{x}'(t) dt + \\ + \int_{0}^{1} u_{2}(x, \eta_{y}(t)) \cdot \eta_{y}'(t) dt \quad \forall (x, y) \in \mathbb{R}^{3} \times \mathcal{Y}. \end{cases}$$

Then

(9.6)
$$\varphi_{\varepsilon} \in C^{2}(\mathbf{R}^{3}), \quad \nabla_{\varepsilon} \varphi_{\varepsilon} = u_{1\varepsilon}, \quad \varepsilon \nabla \varphi_{\varepsilon} = u_{2\varepsilon} \quad in \ \mathbf{R}^{3},$$

(9.7)
$$\varphi \in C^2(\mathbf{R}^3 \times \mathcal{Y}), \quad \varphi_{\varepsilon}(x) \xrightarrow{2} \varphi(x, y) \quad in \ C^2(\mathbf{R}^3 \times \mathcal{Y}).$$

Moreover, the φ_{ε} 's and φ are path-independent (in \mathbb{R}^3 and in $\mathbb{R}^3 \times \mathcal{Y}$, resp.); that is, they do not depend on the specific choice of the sequences $\{\xi_{\varepsilon,\mathcal{N}(x/\varepsilon)}^{\varepsilon}\}, \{\eta_{\gamma}^{\varepsilon}\}.$

(Although $\mathcal{N}(x/\varepsilon)$ and $\mathcal{R}(x/\varepsilon)$ are discontinuous at any *x* such that $\mathcal{R}(x/\varepsilon)_i = 0$ for some *i*, by (9.3) the φ_{ε} 's are continuous everywhere in \mathbf{R}^3). An analogous result holds for *strong* two-scale convergence.

Acknowledgements

The author gratefully acknowledges a fruitful talk with Alain Damlamian, as well as several useful remarks of the referee.

This research was supported by the project «Free boundary problems in applied sciences» of Italian M.I.U.R.

References

- G. ALLAIRE, Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23, 1992, 1482-1518.
- [2] G. ALLAIRE, Shape Optimization by the Homogenization Method. Springer, New York 2002.
- [3] T. ARBOGAST J. DOUGLAS U. HORNUNG, Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal., 21, 1990, 823-836.
- [4] A. BENSOUSSAN J.L. LIONS G. PAPANICOLAOU, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam 1978.
- [5] A. BOURGEAT S. LUCKHAUS A. MIKELIC, Convergence of the homogenization process for a doubleporosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal., 27, 1996, 1520-1543.
- [6] J.K. BROOKS R.V. CHACON, Continuity and compactness of measures. Adv. in Math., 37, 1980, 16-26.
- [7] J. CASADO-DIAZ I. GAYTE, A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I, 323, 1996, 329-334.
- [8] D. CIORANESCU A. DAMLAMIAN G. GRISO, Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I, 335, 2002, 99-104.
- [9] D. CIORANESCU P. DONATO, An Introduction to Homogenization. Oxford Univ. Press, New York 1999.
- [10] V.V. JIKOV S.M. KOZLOV O.A. OLEINIK, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin 1994.
- [11] M. LENCZNER, Homogénéisation d'un circuit électrique. C.R. Acad. Sci. Paris, Ser. II, 324, 1997, 537-542.
- [12] M. LENCZNER G. SENOUCI, Homogenization of electrical networks including voltage-to-voltage amplifiers. Math. Models Meth. Appl. Sci., 9, 1999, 899-932.
- [13] D. LUKKASSEN G. NGUETSENG P. WALL, Two-scale convergence. Int. J. Pure Appl. Math., 2, 2002, 35-86.
- [14] F. MURAT L. TARTAR, H-convergence. In: A. CHERKAEV R. KOHN (eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston 1997, 21-44.
- [15] G. NGUETSENG, A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20, 1989, 608-623.

- [16] G. NGUETSENG, Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal., 21, 1990, 1394-1414.
- [17] L. TARTAR, Mathematical tools for studying oscillations and concentrations: from Young measures to H-measures and their variants. In: N. ANTONIĆ - C.J. VAN DUIJN - W. JÄGER - A. MIKELIĆ (eds.), Multiscale Problems in Science and Technology. Springer, Berlin 2002, 1-84.
- [18] E. WEINAN, Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45, 1992, 301-326.
- [19] V.V. ZHIKOV, On an extension of the method of two-scale convergence and its applications. Sb. Math., 191, 2000, 973-1014.

Pervenuta il 14 ottobre 2002,

in forma definitiva il 12 febbraio 2004.

Dipartimento di Matematica Università degli Studi di Trento Via Sommarive, 14 - 38050 POVO DI TRENTO (TN) visintin@science.unitn.it