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RICCARDA ROSSI - GIUSEPPE SAVARÉ

EXISTENCE AND APPROXIMATION RESULTS FOR GRADIENT FLOWS

ABSTRACT. — This note addresses the Cauchy problem for the gradient flow equation in a Hilbert
space H

.
/
´

u 8 (t)1¯f(u(t) ) �0 a.e. in (0 , T),

u(0) 4u0 ,

where f : H K (2Q , 1Q] is a proper, lower semicontinuous functional which is not supposed to be a
(smooth perturbation of a) convex functional and ¯f is (a suitable limiting version of) its subdifferential.
The interest for this kind of equations is motivated by a number of examples, which show that several
mathematical models describing phase transitions phenomena and leading to systems of evolutionary
PDEs have a common gradient flow structure. In particular, when quasi-stationary models are considered,
highly non-convex functionals naturally arise. We will present some existence results for the solution of
the gradient flow equation by exploiting a variational approximation technique, featuring some ideas
from the theory of Minimizing Movements.

KEY WORDS: Phase transitions; Evolution problems; Gradient flows; Minimizing Movements.

1. THE GRADIENT FLOW STRUCTURE OF SOME PHASE FIELD MODELS

In this section we first recall some basic examples, which will motivate our further
abstract discussion.

EXAMPLE 1 (Phase relaxation). In [28], A. Visintin proposed a relaxed formulation
of the classical Stefan problem, which consists of the system

¯t e2D(e2x) 40 in V3 (0 , T),(1.1)

e¯t x1 (x2e)1V 8 (x) �0(1.2) in V3 (0 , T),

with suitable initial and lateral boundary conditions on (e , x). Here V is an open
bounded subset of Rd , e can be interpreted as the enthalpy density of a physical sys-
tem subject to, e.g., a solid-liquid phase transition, x is the phase variable taking values
in [0 , 1] and representing the local proportion of the two phases, eD0 is a relaxation
parameter, V : RK [0 , 1Q] is a convex potential which is finite only in [0 , 1] and
confines the values of x. The simplest choice for V is represented by the indicator
function of [0 , 1]

V(x) 4 I[0 , 1] (x) »4
.
/
´

0

1Q

if 0 GxG1,

otherwise .
(1.3)

The «derivative» (in fact, the subdifferential) of V is given by the inverse H 21 of the
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Heaviside graph

V 8 (x) 4H 21 (x) »4
.
/
´

(2Q , 0]

0

[0 , 1Q)

if x40,

if 0 ExE1, D(V 8 ) 4 [0 , 1].

if x41,

(1.4)

As it stands, this model has been proposed to account for supercooling and superheat-
ing effects in phase transition phenomena, and its well-posedness has been proved in
[28]; the classical Stefan problem can be recovered as eI0.

As we will show later on, this system is naturally associated to the convex Lya-
punov functional

F 1 (e , x) »4�
V

g 1
2

Ne2xN21V(x)h dx ,(1.5)

which is decreasing in time along the solutions of (1.1-1.2).

EXAMPLE 2 (Phase field). An alternative model for melting and freezing processes
is the classical phase field system proposed by G. Caginalp [9, 10], in which the
energy balance equation (1.1) is coupled to

e¯t x1 (x2e)1
1
h W 8 (x)2hDx40 in V3 (0 , T),(1.6)

W 8 being the derivative of a double well potential function W vanishing exactly at 0
and 1 , e.g.

W(x) 4
1
4

x 2 (x21)2 ,(1.7)

while h is a (positive) relaxation parameter. We will show that, as for the previous
example, further insight may be gained into the nature of the system (1.1, 1.6) by tak-
ing into account the non convex Lyapunov functional

F 2, h (e , x) »4�
V

g 1
2

Ne2xN21
1
h W(x)1

h
2

N˜xN2h dx .(1.8)

Phase transitions models as gradient flows for the «entropy» functional. In both the
previous examples, the evolution of the physical phenomena under interest can be
modelled by a system of partial differential equations in the variables e and x. Such a
system is somehow naturally related to a (not necessarily convex) functional F , (as in
(1.5), (1.8)),

F(e , x) 42S(e , x , ˜x , R),

which is the opposite of the (mathematical) entropy functional S and contains all the
specific information of the model. Within this approach, the equilibrium states of the
system correspond to the minima of the functional F , which in particular satisfy the
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resulting system of Euler equations

.
/
´

dF
de

40,

dF
dx

40.

Accordingly, the evolution dynamics of the system is yielded by the system

.
/
´

¯t e2div g˜ dF
de

h40

e¯t x1 dF
dx

40

in V3 (0 , T),

in V3 (0 , T).
(1.9)

As a matter of fact, (1.9) has the same form of the systems (1.1-1.2) and (1.1, 1.6) (for
F4F 1 , F4F 2, h , respectively). On the other hand, let us note that (1.9) has a gradi-
ent flow structure which can be better understood if we reformulate (1.9) by inverting
the Laplace operator in the first equation (e.g., supposing for simplicity that homoge-

neous Dirichlet boundary conditions on dF
de

are imposed), thus obtaining

.
/
´

(2D)21 ¯t e1
dF
de

40

e¯t x1
dF
dx

40

in V3 (0 , T),

in V3 (0 , T).
(1.10)

The above system can be further rephrased in terms of the vector u»4 (e , x): if Je is
the duality map between He »4H 21 (V)3L 2 (V) and H0

1 (V)3L 2 (V), induced by
the norm

VuVe
2 »4 a2D21 e , eb1e�

V

NxN2 dx , so that Je (e , x) »4 (2D21 e , ex),

then (1.10) becomes

Je (¯t u)1
dF
du

40 in (0 , T),(1.11)

which is the gradient flow equation for the functional F in the Hilbert space He .

The variational approximation scheme. One of the standard ways to approximate
(1.11) (starting from an initial condition u(0) 4u0) is to fix a time step t4T/N ,
N�N , inducing a uniform partition

Pt »4 ]t040, t14t , R , tn4nt , R , tN4T( of the interval (0 , T),

and to find a discrete approximation U nBu(tn ) of the values of the solution u at the
nodes tn by solving recursively the implicit Euler scheme

Jeg U n2U n21

t
h1

dF
du

(U n ) 40 n41, R , N ; U 0 »4u0 .(1.12)
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Note that (1.12) can be recast in terms of the variables e and x, yielding for
U n4 (E n , x n )

.
/
´

(2D)21g E n2E n21

t
h1 dF

de
(E n ) 40,

e
x n2x n21

t 1 dF
dx

(x n ) 40,

(1.13)

which is exactly the time implicit approximation scheme associated to (1.10). On the
other hand, (1.12) is the Euler equation for the variational problem

.
/
´

find U n� He which minimizes

Fe (t , U n21 ; U) »4 1
2t

VU2U n21
Ve

2
1F(U) among all U� He .

(1.14)

This minimization problem is solvable under suitable lower-semicontinuity and coer-
civity assumptions on F . If ]U n(n41

N is a sequence of solutions, we can consider the
piecewise constant interpolants

Ut (t) »4U n if t� ( (n21)t , nt] ,(1.15)

and we can try to recover the solution u as the (uniform) limit in He of Ut as
tI0.

In the previous examples, the convergence of this approximation procedure is
guaranteed by the convexity of F 1 (ex. 1) and of (a quadratic perturbation of) F 2 (ex.
2). Nevertheless, let us also notice that the quadratic perturbation needed to «convexi-
fy» F 2 is of order e21 and blows up when e vanishes. This fact reflects a crucial aspect
of the family of «quasi-stationary models» which we are going to discuss, and explains
the higher intrinsic difficulty of their analysis.

Quasi-stationary problems. The quasi-stationary models can be formally obtained
from the general phase field system (1.9) by taking the limit as eI0:

.
/
´

¯t e2div g˜ dF
de

h40

dF
dx

40

in V3 (0 , T),

in V3 (0 , T).
(1.16)

Apart from the case of a convex functional F , where convergence can be rigorously
proved, the passage to the limit can be justified only at the discrete level of the varia-
tional steps (1.14), thus assuming that the parameter e vanishes much more quickly
than the step size t of the approximations. If this is the case, it is easy to see by stan-
dard G-convergence results that, under fairly mild lower semicontinuity and coercivity
assumptions on F , the G-limit of the functionals U O Fe (t , U n21 ; U) is

(1.17) F0 (t , U n21 ; U) »4
1

2t
VU2U n

V

2
01F(U) 4

4
1

2t
VE2E n21

VH 21 (V)
2

1F(E , x),
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and therefore the solutions of (1.14) converge as eI0 (up to subsequences) to solu-
tions of the recursive scheme

U n� argmin
U

F0 (t , U n21 ; U)(1.18)

or, equivalently,

(E n , x n ) � argmin
(E , x)

m 1
2t

VE2E n21
VH 21 (V)

2 1F(E , x)n .(1.19)

We immediately check that the first variation of (1.19) yields

.
/
´

(2D)21g E n2E n21

t
h1

dF
de

(E n ) 40,

dF
dx

(x n ) 40,
(1.20)

which is just the implicit Euler discretization of (1.16). Let us quickly review the new
problems associated to the previous examples after this asymptotic procedure.

EXAMPLE 3 (Quasi-stationary phase relaxation). Choosing F4F 1 in (1.16), we
obtain the quasi-stationary version of (1.1-1.2)

.
/
´

¯t e2D(e2x) 40

x1V 8 (x) �e

in V3 (0 , T),

in V3 (0 , T),
(1.21)

which, in the case (1.4), corresponds to the weak formulation of the Stefan problem
(see e.g. [29]). Note that the second equation may be rewritten as

e2x4b(e), with b(e) »4
.
/
´

e

0

e21

if eG0,

if 0 EeE1,

if eF1.

(1.22)

EXAMPLE 4 (Quasi-stationary phase field model). Selecting the functional F4

4F 2, h given by (1.8), (1.16) yields the quasistationary phase field system

.
/
´

¯t e2D(e2x) 40

x2e1 1
h W 8 (x)2hDx40

in V3 (0 , T),

in V3 (0 , T).
(1.23)

P. Plotnikov and V.N. Starovoitov [23] and R. Schätzle [27] proved the existence of a
variational solution of (1.23) in the (technically quite different) cases of homogeneous
Dirichlet and of Neumann boundary conditions for e2x, respectively. In their ap-
proach, the proof of the convergence of a time-discrete approximation relies on
Holmgren uniqueness theorem or on refined spectral analysis arguments, which essen-
tially depend on the particular shape and regularity of the double well potential (1.7)
and of the elliptic operator.

EXAMPLE 5 (Stefan-Gibbs-Thomson Problem). Another interesting example can
be obtained by taking the limit of (1.23) as hI0. Here the variational formulation
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(1.19) with F»4F 2, h is particularly convenient, since it is well known that the G-limit
of (1.8) is

F 2, 0 (e , x) »4�
V

g 1
2

Ne2xN21 I]0, 1( (x)h dx1g�
V

NDxN ,(1.24)

where I]0, 1( is the (highly non convex!) indicator function of the two pointed set
]0, 1( (I]0, 1( being defined in the same way as the functional (1.3) for the interval
[0 , 1]), s

V
NDxN is the total variation of x, extended to 1Q outside of BV(V) (see e.g.

[29, XI.1]), and g is a positive coefficient related to the shape of W . The correspond-
ing evolution problem has to be formulated as a coupling between a diffusion equa-
tion and a variational inequality, and takes the form

.
/
´

¯t e2D(e2x) 40

F 2, 0 (e(t), x(t) ) GF 2, 0 (e(t), v)

in V3 (0 , T),

( v�BV(V), a.e. in (0 , T).
(1.25)

Note that (1.25) provides a variational formulation of the Stefan problem with the
Gibbs-Thomson law for the evolving interface (which can be inferred directly from
the quasi-stationary variational condition) and has been proposed by A. Visintin; the
existence of a (so called Lyapunov) solution to (1.25) with homogeneous Dirichlet
conditions for e2x has been proved by S. Luckhaus in [18] (whose proof is also pre-
sented in [29, Ch. VIII]).

Quasi-stationary phase field models as gradient flows of the reduced entropy.
The main feature of the variational scheme (1.18) A (1.19) is its degeneration in

the metric quadratic part of the functional

1
2t

VU2U n21
V0

2
4

1
2t

VE2E n21
VH 21 (V)

2 , U4(E , x) �H 21 (V)3L 2 (V),(1.26)

which is the square of a seminorm and in fact controls only the E-component of the
couple U4 (E , x) �H 21 (V)3L 2 (V). This fact suggests splitting (1.19) into two it-
erated minimization problems, thus writing

min
E , x

m 1
2t

VE2E n21
V

2
H 21 (V)1F(E , x)n4

4 min
E

m 1
2t

VE2E n21
V

2
H 21 (V)1 gmin

x
F(E , x)hn .

Therefore, it seems natural to work in the reduced Hilbert space H0 »4H 21 (V) by
introducing the reduced functional

f(e) »4 inf
x

F(e , x), ( e� H,(1.27)
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and by writing the recursive minimization algorithm (1.19) as

.
/
´

find E n , x n which minimize respectively

1
2t

VE2E n21
VH 21 (V)

2
1f(E) among all E �H 21 (V),

F(E n , x) among all x�L 2 (V).

(1.28)

In principle, this splitting allows to write an independent evolution equation for e ,
which we interpret as the gradient flow for f in H0 »4H 21 (V),

(2D)21 ¯t e1
df
de

40,(1.29)

and to recover x4x(t) at each time t as the solution of

Fge(t), x(t)h4fge(t)hGFge(t), vh ( v�L 2 (V), a.e. in (0 , T).(1.30)

Lack of convexity. Let us rewrite the reduced entropy for the Examples 3, 4, and 5
we detailed in the previous section: in the first case, we have

f 1 (e) »4�
V

j(e) dx , j(e) 4 min
x

g 1
2

(e2x)21V(x)h .(1.31)

In the particular case (1.3), (1.31) gives

j(e) 4

.
`
/
`
´

1
2

e 2

0

1
2

(e21)2

eE0,

if 0 GeG1,

if eD1,

(1.32)

which was introduced by [6] in his gradient flow formulation of the Stefan problem;
in particular df 1 /de4b(e), with b as in (1.22). The functionals corresponding to Ex-
amples 4 and 5 are

f 2, h (e) »4 inf
x
�

V

g 1
2

Ne2xN21
1
h W(x)1

h
2

N˜xN2h dx ,(1.33)

f 2, 0 (e) »4 inf
x
�

V

g 1
2

Ne2xN21 I]0, 1( (x)dxh dx1g�
V

NDxN .(1.34)

Note that, while f 1 is convex, f 2, h and f 2, 0 are neither convex nor C 1 perturbations
of a convex functional. The lack of convexity properties is indeed somehow latent in
the analytical difficulties of the latter two models and can be better understood by
highlighting a further characteristic of the above functionals.
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Concave perturbations. Let us denote by

.
`
/
`
´

c h (x) »4�
V

g 1
2

NxN21
1
h W(x)1

h
2

N˜xN2h dx ,

c 0 (x) »4�
V

g 1
2

NxN21 I]0, 1( (x)h dx1g�
V

NDxN ,
(1.35)

and observe that for hF0

(1.36) f 2, h (e) 4 inf
x u 1

2
�

V

e 2 dx1c h (x)2�
V

ex dxv4

4
1
2
�

V

e 2 dx2sup
x

gae , xbL 2 (V)2c h (x)h4
1
2
�

V

e 2 dx2c h*(e),

where c h* is the conjugate function of c h w.r.t. the L 2 (V) scalar product.
Being c h* always convex, independently of the convexity of c h , we have thus rep-

resented f h as a concave perturbation of the convex square L 2-norm. We know that
c h* is C 1 only if c h** is (at least locally) uniformly convex, which is surely not verified
for small values of h ; moreover, we have also to take into account that our underlying
space is H 21 (V) and not L 2 (V).

Nonetheless, the gradient flow structure of these problems, and the particular de-
composition (1.36) as well, will be sufficient to derive the existence of their solution
by applying a general variational result, which allows for a great flexibility in the
choice of the functionals and of the ambient spaces and, at least we hope, can be ap-
plied to several other different situations.

Inspired by this discussion, we will devote the following sections to the analysis of
gradient flow equations in arbitrary Hilbert spaces, first of all handling carefully the
matter of defining a suitable notion of subdifferential in this non-convex setting.

2. ABSTRACT GRADIENT FLOWS IN HILBERT SPACES

Let H be a separable Hilbert space with scalar product aQ , Qb and norm N QN , and
let

f : H K (2Q , 1Q] a proper , lower semicontinuous function ,(2.1)

with non empty proper domain D(f) »4 ]v� H: f(v) E1Q(, such that for some
t *D0

the function v O 1
2t*

NvN21f(v) has strongly compact sublevels .(2.2)

For the moment, we denote by ˜f : H K2H , with proper domain D(˜f) %D(f), a
suitable choice for the subdifferential of f , which we will make precise in the sequel.
The evolution problem associated to the gradient flow equation for f is
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PROBLEM 2.1. Given the initial datum u0�D(f), find a function u : (0 , T) K H
such that

u 8 (t)1˜f(u(t) ) �0 a.e. in (0 , T), and u(0) 4u0 .(2.3)

As we suggested in the previous section, we are interested in solutions of (2.3)
which result from the approximating variational scheme

.
/
´

U 04u0 , U n� argmin
V� H

F(t , U n21 ; V), n41, R , N ,

F(t , U n21 ; V) »4
NV2U n21N2

2t
1f(V),

(2.4)

as a limit (up to the possible extraction of a subsequence) for tI0 of the piecewise
constant interpolants Ut defined by (1.15).

This variational approach has been used by several authors in many different con-
texts (see e.g. [7, 13, 14, 18, 29, 1, 17, 15, 3]); in our framework, the existence of at
least one discrete solution Ut associated to a sequence ]U n(n41

N solving (2.4) is an im-
mediate consequence of (2.1) and (2.2), at least for tEt * .

The choice of ˜f. A reasonable definition of ˜f should imply that any discrete solu-
tion ]U n(n41

N of (2.4) solves as well the associated Euler equation

U0 »4u0 , U n2U n21

t 1˜f(U n ) �0 n41, R , N .(2.5)

Dealing with a minimization problem, a preliminary choice for ˜f could be the so
called Fréchet subdifferential defined by

j�¯F f(v) ` v�D(f), lim inf
wKv

f(w)2f(v)2 aj , w2vb

Nw2vN
F0.(2.6)

It is easy to see that a vector j is the Fréchet differential of f at a point v if and only if
it belongs to the Fréchet subdifferential of f and 2f . Moreover, for any convex func-
tional f the Fréchet subdifferential coincides with the usual one.

Among the general properties which are satisfied by ¯F f , we mention the convexi-
ty of its values

¯F f(v) is a closed convex subset of H, ( v� H(2.7)

and the chain rule

.
/
´

if t O v(t), t O f(v(t) ) are differentiable at t0 ,

j�¯F f(v(t0 ) ), then d
dt

f(v(t) )Nt4 t0
4 aj , v 8 (t0 )b.

(2.8)

Unfortunately, simple finite dimensional examples as f(x) »42NxN , x�R , show that
for general Lipschitz concave functions f (or concave perturbations of convex func-
tions) the graph of ¯F f is not closed in the product space H3H: therefore, it is natu-
ral to consider a version of its closure. At least two choices are possible:
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DEFINITION 2.2 (Limiting subdifferentials). We say that j belongs to the limiting
subdifferential ¯e f of f if

) j n , vn� H: j n�¯F f(vn ), vnKv , j n � j , lim sup
nH1Q

f(vn ) E1Q .(2.9)

REMARK 2.3. The basic assumption of the theory developed by [19], as pointed out
in [2], is that ¯ff¯e f , i.e. the graph of ¯F f is strongly-weakly closed. As we men-
tioned before, this assumption seems too strong in view of applications to quasi-sta-
tionary phase field models. On the other hand, in general ¯e f does not satisfy (2.7)
and (2.8) any more; we shall see that a general existence result can be proved if it satis-
fies at least one of these two properties.

Existence results for «Lyapunov» and «energy» solutions. Corresponding to (2.9),
we can introduce two notions of solution for Problem 2.1:

DEFINITION 2.4. We say that u�H 1 (0 , T ; H) is a Lyapunov solution of Problem
2.1 if it satisfies the differential equation

u(0) 4u0 , u 8 (t)1¯e f(u(t) ) �0 for a.e. t� (0 , T),(2.10)

and the energy inequality

f(u(t) )1�
0

t

Nu 8 (l)N2 dlGf(u0 ) ( t� (0 , T).(2.11)

We say that u is an energy solution of Problem 2.1 if it satisfies the differential equation
(2.11) and the energy identity

f(u(t) )1�
0

t

Nu 8 (l)N2 dl4f(u0 ) (t� (0 , T).(2.12)

It is not difficult to show that the family ]Ut(tD0 is relatively compact with respect
to the strong uniform convergence. Following [14], we call GMM(u0 , F) the set of all
limit points u as tI0 such that

u�GMM(u0 , F) ` ) t kI0 : Ut k
(t) Ku(t) (t� (0 , T).(2.13)

REMARK 2.5. In the case of a (quadratic perturbation of a) convex functional f , we
have

¯F f4¯e f ;

existence, uniqueness, and regularity of the solution of (2.10) follow from the well
known theory developed by Komura [16], Crandall-Pazy [12], Brézis [7]: cf. the
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monograph [8]. Further, the whole family Ut is converging and no further extraction
of subsequences are needed; this property follows from a priori [11, 4, 25, 26] and a
posteriori [22] estimates of the error Nu(t)2Ut (t)N ; those estimates are independent
of the compactness assumption (2.2), which therefore can be avoided. Up to now, no
general error estimates are known in the non convex case.

The following results provide a description of GMM(u0 , F) under some extra as-
sumption on f and its gradients.

THEOREM 1 (Lyapunov solutions). Assume f fulfills (2.1, 2.2), and suppose that

¯e f(v) is a singleton for every v�D(¯e f).(2.14)

Then, any function u�GMM(u0 , F) is a Lyapunov solution of Problem 2.1. Moreover,
if the additional continuity assumption holds

(2.15) vnKv , ) j n�¯F f(vn ) : sup
n

]Nj nN , f(vn )( E1Q ¨ f(vn ) Kf(v),

then the following refined energy inequality holds

(2.16) �
s

t

Nu 8 (s)N2 ds1f(u(t) ) Gf(u(s) ), for a.e. s , t� (0 , T), with sG t .

THEOREM 2 (Energy solutions). Assume f fulfills (2.1, 2.2) and suppose that the fol-
lowing chain rule inequality holds

.
/
´

v�H 1 (0 , T ; H), l �L 2 (0 , T ; H) and l (t) �¯e f(v(t) ) a.e. in (0 , T),

Nf(v(t) )2f(v(s) )NG�
s

t

N l (s)NNv 8 (s)Nds ( 0 G sG tGT .
(2.17)

Then any function u�GMM(u0 , F) is an energy solution of Problem 2.1 and 2u 8 (t)
coincides with the projection of the origin on the closed affine envelope of ¯e f(u(t) )
for a.e. t� (0 , T); in particular, it coincides with its element of minimal norm.

REMARK 2.6. A particular case in which the chain rule (2.17) is satisfied is provided
by dominated concave perturbations (cf. (1.36)) of convex functionals, e.g. when there
exists a convex l.s.c. function c : H K [0 , 1Q] and positive constants a r , Cr de-
pending on r�(0,1Q) such that the sum f1c is convex and

.
/
´

if v�D(¯F f), u�¯F f(v) with max gf(v), NvN2hGr , then

¯c(v) cR , NjNGa r NuN1Cr (j�¯c(v).
(2.18)

Observe that in the case of a finite dimensional Hilbert space H, any globally defined
concave functional f satisfies (2.18); thus Theorem 2 can be considered as an exten-
sion to infinite dimensional Hilbert spaces of [5], where gradient flows of concave
functionals in the euclidean spaces are considered.

REMARK 2.7. Theorems 1 and 2 are particular cases of more general results dis-
cussed in the forthcoming paper [24]; we refer the interested reader to this paper for
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the related proofs, which combine ideas from the Minimizing Movement approach
and tools from the theory of the so called «Young measures» in spaces of infinite
dimension.

3. APPLICATIONS

The quasi-stationary phase field model. Recalling the discussion of Example 3 and
the related «reduced entropy» formulation (1.27, 1.29, 1.33) in the first Section, we
have the following result.

THEOREM 3.1. In the Hilbert space H »4H 21 (V), let us choose an initial datum
e0�L 2 (V) and an element e�GMM(e0 , F) for the functional F defined as in (2.4) and
with f4f 2, h given by (1.33). Then e is an energy solution of Problem 2.1, and
setting

u�L 2 (0 , T ; H 1
0 (V) ), 2Du42¯t e , x»4e2u ,(3.1)

the couple (e , x) is a solution of (1.23) with

e , x�L 2 (0 , T ; H 1 (V) ), e2x�L 2 (0 , T ; H0
1 (V) ), ¯t e�L 2 (0 , T ; H 21 (V) ).

REMARK 3.2. More generally, we can replace F 2, h of (1.8) by a functional of the
type

F
A

»4�
V

1
2

Ne2xN2 dx1F(x), f
A(e) »4 inf

x
F
A(e , x),(3.2)

where F : H 1 (V) K (2Q , 1Q] is a weakly lower semicontinuous, coercive func-
tional, i.e.

lim
VvVH 1(V)K1Q

F(v) 41Q .

We can thus consider the generalized phase-field system given by (1.1), coupled with
the variational inequality

x(t) �H 1 (V), F
A(e(t), x(t) ) G F

A(e(t), v) (v�H 1 (V), a.e. in (0 , T).(3.3)

For such a system, a result analogous to Theorem 3.1 can be proved, by solving the
gradient flow equation (2.10) for the functional f

A in H »4H 21 (V) (in the case of ho-
mogeneous Dirichlet boundary conditions on e2x) or in H »4 gH 1 (V)h8 (in the case
of homogeneous Neumann boundary conditions on e2x).

REMARK 3.3. Keeping the notation of the previous Remark, a crucial property for
the limiting subdifferentials of f

A, which enlightens the link between the abstract for-
mulation (2.10) and the system (1.23), is provided by the following formula

j�¯ef
A(e) ¨ j42D(e2x), for some x�M(e),(3.4)

where

M(e) »4argminxF
A(e , x).(3.5)
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The Stefan-Gibbs-Thomson problem. As it can be deduced from the preliminary
discussion of Example 5, we can obtain another proof of the existence result of [18]
for the Stefan-Gibbs-Thomson problem (1.25) by solving in H »4H 21 (V) the gra-
dient flow equation (2.10) for the functional f 2, 0 previously introduced in (1.34). In
this case, taking into account Remark 3.3, the crucial property is that the set

M(e) »4argminx�BV(V) F 2, 0 (e , x),(3.6)

which is non-empty for every e�D(f 2, 0 ), satisfies

e�D(¯e f 2, 0 ) ¨
.
/
´

M(e) 4 ]x(e)( is a singleton,

¯e f 2, 0 (e) 42D(e2x(e) ).
(3.7)

So, ¯e f 2, 0 is trivially convex, and Theorem 1 yields the following result:

THEOREM 3.4. In the Hilbert space H »4H 21 (V), let us choose an initial datum
e0�L 2 (V) and an element e�GMM(e0 , F) for the functional F defined as in (2.4) and
f4f 2, 0 given by (1.34). Then e is a Lyapunov solution of Problem 2.1 and, defining
u , x as in (3.1), the couple (e , x) is a solution of (1.25) with

e , x�L 2 (0 , T ; H 1 (V) ), e2x�L 2 (0 , T ; H0
1 (V) ), ¯t e�L 2 (0 , T ; H 21 (V) ).
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[3] L. AMBROSIO - N. GIGLI - G. SAVARÉ, Gradient Flows. Lecture Notes in Mathematics ETH Zürich,
Birkhäuser, Basel. To appear.

[4] C. BAIOCCHI, Discretization of evolution variational inequalities. In: F. COLOMBINI - A. MARINO - L.
MODICA - S. SPAGNOLO (eds.), Partial differential equations and the calculus of variations. Vol I,
Birkäuser, Boston 1989, 59-62.

[5] A. BRESSAN - A. CELLINA - G. COLOMBO, Upper semicontinuous differential inclusions without con-
vexity. Proc. Amer. Math. Soc., 106, n. 3, 1989, 771-775.

[6] H. BREZIS, On some degenerate nonlinear parabolic equations. Nonlinear Functional Analysis (Proc.
Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), Amer. Math. Soc., Providence, R.I.,
1970, 28-38.

[7] H. BREZIS, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differen-
tial equations. Nonlinear Functional Analysis, Proc. Sympos. Math. Res. Center, Univ. Wisconsin,
Madison 1971, Academic Press, New York 1971, 101-156.

[8] H. BREZIS, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de
Hilbert. North-Holland Math. Stud., No. 5, North-Holland, Amsterdam 1973.



R. ROSSI - G. SAVARÉ196

[9] G. CAGINALP, An analysis of a phase field model of a free boundary. Arch. Rational Mech.
Anal., 92, 1986, 205-245.

[10] G. CAGINALP, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations.
Phys. Rev. A (3), 39, n. 11, 1989, 5887-5896.

[11] M.G. CRANDALL - T.M. LIGGETT, Generation of semigroups of nonlinear transformations on general
Banach spaces. Amer. J. Math., 93, 1971, 265-298.

[12] M.G. CRANDALL - A. PAZY, Semigroups of nonlinear contractions and dissipative sets. J. Functional
Analysis, 3, 1969, 376-418.

[13] E. DE GIORGI - A. MARINO - M. TOSQUES, Problemi di evoluzione in spazi metrici e curve di massima pen-
denza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187.

[14] E. DE GIORGI, New problems on minimizing movements. In: C. BAIOCCHI - J.-L. LIONS (eds.), Boun-
dary Value Problems for PDE and Applications. Masson, 1993, 81-98.

[15] R. JORDAN - D. KINDERLEHRER - F. Otto, The variational formulation of the Fokker-Planck equation.
SIAM J. Math. Anal., 29, n. 1, 1998, 1-17.

[16] Y. KOMURA, Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 1967, 493-507.
[17] V.I. LEVITAS - A. MIELKE - F. THEIL, A variational formulation of rate-independent phase transforma-

tions using an extremum principle. Arch. Ration. Mech. Anal., 162, n. 2, 2002, 137-177.
[18] S. LUCKHAUS, Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting

temperature. European J. Appl. Math., 1, n. 2, 1990, 101-111.
[19] A. MARINO - C. SACCON - M. TOSQUES, Curves of maximal slope and parabolic variational inequalities

on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16, n. 2, 1989, 281-330.
[20] L. MODICA, Gradient theory of phase transitions and minimal interface criterion. Arch. Rational

Mech. Anal., 98, 1986, 123-142.
[21] L. MODICA - S. MORTOLA, Un esempio di G-convergenza. Boll. Un. Mat. Ital. B, 14, 1977,

285-299.
[22] R. NOCHETTO - G. SAVARÉ - C. VERDI, A posteriori error estimates for variable time-step discretiza-

tions of nonlinear evolution equations. Comm. Pure Appl. Math., 53, n. 5, 2000, 525-589.
[23] P.I. PLOTNIKOV - V.N. STAROVOITOV, The Stefan problem with surface tension as the limit of a phase

field model. Differential Equations, 29, 1993, 395-404.
[24] R. ROSSI - G. SAVARÉ, Gradient flows of non convex functionals in Hilbert spaces and applications.

Preprint IMATI-CNR, n. 7-PV, 2004, 1-45.
[25] J. RULLA, Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer.

Anal., 33, n. 1, 1996, 68-87.
[26] G. SAVARÉ, Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci.

Appl., 6, n. 2, 1996, 377-418.
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