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AUGUSTO VISINTIN

QUASILINEAR HYPERBOLIC EQUATIONS WITH HYSTERESIS

ABSTRACT. — Hysteresis operators are illustrated, and a weak formulation is studied for an initial-
and boundary-value problem associated to the equation (¯ 2 /¯t 2 )[u1 F (u) ]1Au4 f ; here F is a (possi-
bly discontinuous) hysteresis operator, A is a second order elliptic operator, f is a known function. Pro-
blems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence
result is outlined.

KEY WORDS: Hysteresis; Hysteresis operator; Quasilinear hyperbolic equations; Existence of weak
solutions.

1. HYSTERESIS OPERATORS

The word hysteresis originates from an ancient Greek term, meaning lag in arrival.
It seems that it was first used in connection with ferromagnetism in 1882. Hysteresis
occurs in several physical phenomena: plasticity, ferromagnetism, ferroelectri-
city, porous media filtration, phase transitions, superconductivity, the recently deve-
loped theory of materials with shape memory, and many others. In spite of the obvious
importance of these phenomena, the investigation of the properties of hysteresis in the
framework of function spaces only began less than 40 years ago, cf. [2]. In the 1970s
M.A. Krasnosel’skiı̆ and a group of Russian mathematicians systematically studied the
concept of hysteresis operator, acting in spaces of time dependent functions; see Kras-
nosel’skiı̆ and Pokrovskiı̆’s monograph [8]. Since the beginning of the 1980s other
mathematicians have also been studying hysteresis phenomena, especially in connec-
tion with P.D.E.s and applicative problems; see e.g. the monographs [4, 9, 16], the
proceedings [15], and the survey [17].

In order to outline a simplified picture of hysteresis, let us consider a system charac-
terized by two scalar variables, u and w , and assume that at any instant t� [0 , T],
w(t) depends on the previous evolution of u (memory effect) and on the initial state;
that is,

w(t) 4 [F (u , w 0 ) ](t) (t� [0 , T].(1.1)

For any fixed w 0 , F (Q , w 0 ) represents an operator acting in some Banach space of
time-dependent functions. This memory operator must also be causal, i.e.,

(1.2) ((u1 , w 0 ), (u2 , w 0 ) �Dom (F ), (t� [0 , T],

if u14u2 in [0 , t], then [F(u1 , w 0 ) ](t) 4 [F (u2 , w 0 ) ](t).

In typical examples, the state (u , w) is confined to a set L % R2 , cf. fig. 1; we then
assume that

if (u(0), w 0 ) � L then [F(u , w 0 ) ](0) 4w 0 .(1.3)
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Fig. 1. – Example of hysteresis loop. The exterior loop and an (incomplete) internal loop
are outlined.

Rate-Independence. We name hysteresis operator any causal memory operator
F : u O w such that the path of the pair (u(t), w(t) ) is invariant w.r.t. any increasing
diffeomorphism W : [0 , T] K [0 , T], that is,

F (u i W , w 0 ) 4 F (u , w 0 ) i W in [0 , T];(1.4)

in other terms, if u O w then u i W O w i W . This means that at any instant t , w(t) only
depends on u( [0 , t] ), and on the order in which values have been attained. This prop-
erty also allows one to draw hysteresis curves, without the need of relating them to any
specific time-law of the input curve u(t). In particular, if the input function u is peri-
odic, the w vs. u relation shall not depend on the frequency.

It is easy to see that rate-independence excludes any viscous-type memory, like
that represented by time-convolution. In reality, even in most typical hysteresis phe-
nomena, memory is not purely rate-independent, as rate-dependent effects are super-
posed to hysteresis.

Although so far we assumed that at any instant t the state of the system is charac-
terized by the pair (u(t), w(t) ), several hysteresis operators can also account for inter-
nal variables.

P.D.E.s with Hysteresis. Some partial differential equations including hysteresis
operators have been studied. In particular results have been derived for quasi-linear or
semi-linear parabolic equations of the form

¯

¯t
[u1 F (u , w 0 ) ]1Au4 f ,(1.5)
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¯u
¯t

1Au1 F (u , w 0 ) 4 f ,(1.6)

and for quasi-linear hyperbolic equations like

¯ 2

¯t 2
[u1 F (u , w 0 ) ]1Au4 f ,(1.7)

¯

¯t
[u1 F (u , w 0 ) ]1v Q˜u4 f .(1.8)

Here F is a (possibly discontinuous) scalar hysteresis operator, A is an elliptic opera-
tor, f and v are given functions. Equations of this sort arise in ferromagnetism, ferro-
electricity, elasto-plasticity, and so on. Initial- and boundary-value problems associat-
ed either with (1.5), or with (1.6), or with (1.8) are well-posed.

In Sections 2 and 3 of this survey we review some simple examples of continuous
and discontinuous scalar hysteresis operators. In Section 4 we provide a weak formu-
lation for an initial- and boundary-value problem associated to equation (1.7), for a
large class of (possibly discontinuous) scalar hysteresis operators, and outline an exis-
tence result.

Finally, a remark about the classification of P.D.E.s with hysteresis is in order. Any
scalar hysteresis operator, F, is reduced to a superposition operator on any time inter-
val in which the input function is monotone (either increasing or decreasing). Let us
denote by SF this class of superposition operators; in typical examples, they are associ-
ated to (possibly multivalued) nondecreasing functions. We then say that an equation
which includes F is parabolic (hyperbolic, resp.) whenever it would be so if the opera-
tor F were replaced by any element of SF . As these equations are nonlinear, we also ex-
tend the usual denomination of semi-linearity, quasi-linearity and full nonlinearity by
the same criterion. This classification can also be extended to some vector hysteresis
operators.

2. EXAMPLES OF CONTINUOUS HYSTERESIS OPERATORS

Hysteresis operators acting in Banach spaces of time dependent functions, e.g.
C 0 ( [0 , T] ) or W 1, 1 (0 , T), are typically constructed via the following procedure:

(i) first the operator is defined for all piecewise monotone inputs;
(ii) uniform continuity is derived w.r.t. the strong topology of the Banach

space;
(iii) the operator is then extended by continuity to the whole space.

Here we review some especially simple classes of hysteresis operators.

The Duhem Model [6]. Let g1 , g2�C 1 (R2 ). For any w 0� R and any
u�C 1 ( [0 , T] ), this model is defined via the Cauchy problem

.
/
´

dw
dt

4g1 (u , w)g du
dt

h1

2g2 (u , w)g du
dt

h2

in ]0 , T[,

w(0) 4w 0 .

(2.1)
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Fig. 2. – Stop.

It is easy to see that this system defines a rate-independent operator C 1 ( [0 , T] ) K

KC 1 ( [0 , T] ) : u O w . Consistently with the irreversibility of hysteresis phenomena,
here we assume that t is nondecreasing, whence dtF0. The differential equation
(2.1)1 is then formally equivalent to

.
/
´

dw
du

4g1 (u , w) if u is increasing ,

dw
du

4g2 (u , w) if u is decreasing .
(2.2)

Under suitable assumptions on the functions g1 and g2 , the operator (u , w 0 ) O w can
be extended by continuity to W 1, 1 (0 , T), see e.g. [16, Chap. V]. This formulation can
easily be modified, to confine (u , w) to a subset of R2 .

Stop: Prandtl’s Model of Elasto-Plasticity [12]. This model can be represented by a
simple rheological model, which consists in a linear spring coupled in series with a
friction element, cf. fig. 2.

Let us set

sign (j) »4 ]21( (jE0, sign(0) »4 [0 , 1], sign(j) »4 ]1( (jD0.

Assuming that all mechanical coefficients are normalized, denoting the strain by u and
the stress by w , and denoting the time derivative by 8 , we represent the operator
u O w by the system

.
/
´

w 81sign21 (w) �u 8 in ]0 , T[,

w(0) 4w 0 .
(2.3)

The rate-independence is obvious. This differential inclusion is equivalent to a varia-
tional inequality:

w� [21, 1], (w 82u 8 )(w2v) G0 (v� [21, 1].(2.4)
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Fig. 3. – Play.

Play: Model of Plasticity with Strain-Hardening. This operator can also be repre-
sented by a rheological model: a linear spring coupled in parallel with a friction ele-
ment. Still assuming that all mechanical coefficients are normalized, and (at variance
with above) denoting the strain by w and the stress by u , here we have

.
/
´

sign(w 8 )1w�u in ]0 , T[,

w(0) 4w 0 ,
(2.5)

cf. fig. 3. The rate-independence is obvious here, too. This differential inclusion is also
equivalent to a variational inequality:

(w2u)(w 82v)1Nw 8 N2NvNG0 (v� R.(2.6)

The play operator F : u O w can be extended by continuity to an operator acting
in C 0 ( [0 , T] ). One can also show a regularizing property: FgC 0 ( [0 , T] )h%BV(0 , T).
This result is easily understood: by the uniformly continuity of the input function u ,
the pair (u , F (u) ) can move from the ascending branch ](u , w) � R2 : w4u21( to
the descending branch ](u , w) � R2 : w4u11( just a finite number of times, if any.
Therefore F (u) is a piecewise monotone function of time, hence its total variation is
finite.

Prandtl-Ishlinskiı̆ Models [7, 13]. The above formulation of the stop and play ope-
rators via differential inclusions and variational inequalities allows for an automatic
extension to tensors. Suitable series and parallel arrangements of the corresponding
rheological models yield more complex constructions (Prandtl-Ishlinskiı̆ models),
which can be represented by systems of variational inequalities, cf. e.g. [16, Chap. III].
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These models also account for occurrence of internal variables, and are widely used in
elasto-plasticity. Coupled with the laws of dynamics or statics, they yield problems for
which several results have been established in the framework of Sobolev spaces, cf.
e.g. [16, Chap. VII].

3. DISCONTINUOUS HYSTERESIS

Relay Operator. Let us denote by C 0
r ( [0 , T[) the space of functions that are con-

tinuous on the right in [0 , T[. For any pair r»4 (r 1 , r 2 ) � R2 (r 1Er 2 ) we intro-
duce the (delayed) relay operator

hr : C 0 ( [0 , T] )3 ]21, 1( KBV(0 , T)OC 0
r ( [0 , T[).

For any u�C 0 ( [0 , T] ) and any j421 or 1 , first let us set Xt »4 ]t�]0 , t] : u(t) 4

4r 1 or r 2( for any t�]0 , T], and define the function w4hr (u , j) : [0 , T] K

K ]21, 1( as follows:

w(0) »4
.
/
´

21

j

1

if u(0) Gr 1 ,

if r 1Eu(0) Er 2 ,

if u(0) Fr 2 ,

(3.1)

w(t) »4

.
/
´

w(0)

21

1

if Xt4¯

if Xtc¯ and u(max Xt ) 4r 1 (t�]0 , T].

if Xtc¯ and u(max Xt ) 4r 2

(3.2)

These conditions define w uniquely in [0 , T]. For instance let u(0) Er 1 ; then
w(0) 421, and w(t) 421 as long as u(t) Er 2 ; if at some instant u reaches r 2 then
w jumps up to 1 , where it remains as long as u(t) Dr 1 ; if later u reaches r 1 , w jumps
down to 21; and so on, cf. fig. 4.

For any function u�C 0 ( [0 , T] ) the number of oscillations of u between r 1 and
r 2 is necessarily finite, because of uniform continuity; hence w can just have a finite
number of jumps between 21 and 1 if any. Therefore w is piecewise constant and its
total variation in [0 , T] is finite. It is easy to check that w is also continuous on the
right in [0 , T[ and that hr (Q , w 0 ) : u O w is rate-independent, piecewise monotone
(i.e., if u is either nondecreasing or nonincreasing in an interval [t1 , t2 ] % [0 , T], then
w has the same monotony in that interval), and order preserving (i.e., if u1Gu2 then
w1Gw2).

Extension of the Relay Operator. When dealing with P.D.E.s, one is induced to
extend the graph of the relay operator, by allowing w to attain intermediate values
between 21 and 1 as follows, in order to get a closed operator in suitable function
spaces. For any u�C 0 ( [0 , T] ) and any j� [21, 1], let us set w�kr (u , j) if and only
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Fig. 4. – (Delayed) relay. If u(t) cr 1 , r 2 , then w is constant in a neighbourhood of t . Moreover w can
jump from 21 to 1 only for u4r 2 , and from 1 to 21 only for u4r 1 .

if w is measurable in ]0 , T[ and

w(0) �

.
`
/
`
´

]21(

[21, j]

]j(

[j , 1]

]1(

if u(0) Er 1 ,

if u(0) 4r 1 ,

if r 1Eu(0) Er 2 ,

if u(0) 4r 2 ,

if u(0) Dr 2 ,

(3.3)

w(t) �
.
/
´

]21(

[21, 1]

]1(

if u(t) Er 1 ,

if r 1Gu(t) Gr 2 ,

if u(t) Dr 2 ,

(3.4)

.
/
´

if u(t) cr 1 , r 2 ,

if u(t) 4r 1 ,

if u(t) 4r 2 ,

then w is constant in a neighbourhood of t ,

then w is nonincreasing in a neighbourhood of t ,

then w is nondecreasing in a neighbourhood of t .

(3.5)

Such a function w exists and belongs to BV(0 , T), because of the same argument we
used for hr . Thus

kr : C 0 ( [0 , T] )3 [21, 1] K P(BV(0 , T) ).(3.6)

The behaviour of kr is outlined in fig. 5. Note that its graph in the (u , w)-plane
includes the whole rectangle [r 1 , r 2 ]3 [21, 1]. kr will be named completed relay
operator. This completion procedure is somehow analogous to that of replacing the
sign0 function (with sign0 (0) »40) by the sign graph (sign(0) »4 [21, 1]).

If the space variable is inserted as a parameter in the input and output functions, u
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Fig. 5. – Completed relay. If u(t) cr 1 , r 2 , then w is constant in a neighbourhood of t . If u(t) 4r 1

(u(t) 4r 2 , resp.), then w is nonincreasing (nondecreasing, resp.) in a neighbourhood of t . The pair
(u , w) can attain any value in the rectangle [r 1 , r 2 ]3 [21, 1].

and w , one can show that the multivalued operator kr is closed w.r.t. the strong topo-
logy of L 2 (V ; C 0 ( [0 , T] ) ) for u and the weak star topology of L 2

w * (V ; BV(0 , T) ) for
w . This is especially convenient for the study of P.D.E.s that contain the relay
operator

Weak Formulation of the Relay Operator.

The operator kr can be represented by the following system.
(i) Confinement condition:

.
/
´

NwNG1

(w21)(u2r 2 ) F0 a.e. in ]0 , T[;

(w11)(u2r 1 ) F0

(3.7)

this constrains the states that are accessible to the pair (u , w).
(ii) Dissipation condition:

(3.8) �
0

t

u dwF�
0

t

[r 2 (dw)12r 1 (dw)2 ] 4

4
r 22r 1

2
�

0

t

NdwN1
r 21r 1

2
[w(t)2w(0) ] 4: C r (w , t) (t�]0 , T];

this accounts for the (dissipative) dynamics of the pair (u , w). Both conditions are il-
lustrated in fig. 5 above.
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Fig. 6. – Preisach model obtained by assemblying three relays.

The Preisach Model [14]. The pairs of admissible thresholds of relay operators
form the so called Preisach (half-)plane

P »4 ]r4 (r 1 , r 2 ) � R2 : r 1Er 2(.(3.9)

Let us denote by R the family of Borel measurable functions P K ]21, 1(, and by
]j r(, or more briefly j , a generic element of R. Let us fix any finite positive measure
m over P, and define the corresponding Preisach operator

.
/
´

Hm : C 0 ( [0 , T] )3 R KL Q (0 , T)OCr
0 ( [0 , T[),

[Hm (u , j) ](t) »4�
P

[hr (u , j r ) ](t)dm(r) (t� [0 , T].(3.10)

This operator is rate-independent, piecewise monotone and order preserving.
In general Hm (u , j) maps continuous functions to discontinuous ones, cf. fig. 6. It

is then convenient to replace the integrand hr by kr . However, under simple hypothe-
ses on the measure m , Hm operates and is continuous in C 0 ( [0 , T] ).

4. QUASILINEAR HYPERBOLIC EQUATIONS WITH HYSTERESIS

Let V be a regular domain of R3 and set Q»4V3]0 , T[. Let us assume that we
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are given a (measurable) field r : VK (P, m), and the functions

.
/
´

u 0 , w 0�L 2 (V), F�L 2g0, T ; H 21 (V)h;
Nw 0NG1, w 0421 if u 0Er 1 , w 041 if u 0Dr 2 a.e. in V .

(4.1)

We formulate an initial- and boundary-value problem in the framework of Sobolev
spaces.

PROBLEM 4.1. To find U�H 1 (Q) and w�L Q (Q) such that

.
/
´

g 0 U40 a.e. in (V3 ]0()N (¯V3]0 , T[),

NwNG1 a.e. in Q , ¯w
¯t

�C 0 (Q)8 ,
(4.2)

¯

¯t
(u1w)2DU4F in H 21 (Q)gu»4

¯U
¯t

h,(4.3)

.
/
´

(w21)(u2r 2 ) F0

(w11)(u2r 1 ) F0
a.e. in Q,(4.4)

(4.5) 1
2
�

V

[u(x , t)21N˜U(x , t)N22u 0 (x)21C r (w(x , Q), t) ]dxG

G�
0

t

aF , ubdt for a.a. t�]0 , T[,

(u1w)Nt404u 01w 0 in H 21 (V).(4.6)

INTERPRETATION. By differentiating (4.3) in time and setting f»4¯F/¯t , we get the
equation

¯ 2

¯t 2
(u1w)2Du4 f in D8 (Q).(4.7)

As NwNG1, (4.4) is equivalent to the confinement condition (3.7) a.e. in Q . If

u�L 2g0, T ; H 1
0 (V)h, we can multiply (4.7) by u4

¯U
¯t

, and integrate in space and

time. It is then easy to see (4.5) is formally equivalent to

(4.8) �
0

t

H 21 (V)
o ¯

¯t
(u1w), up

H 1
0 (V)

dtF

F
1
2
�

V

[u(x , t)22u 0 (x)2 ]dx1�
V

C(w , t) for a.a. t�]0 , T[.

This derivation is rigorous whenever the left-hand side has a meaning as a duality pair-
ing over V3]0 , t[. (4.5) may then be regarded as a weak formulation of the dissipa-
tion condition (3.8) a.e. in V . The latter, (3.7) and the initial condition «w(Q , 0 ) 4w 0
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a.e. in V» (which is implicit in the above equations) represent the hysteresis
relation

w�kr (u , w 0 ) a.e. in V .(4.9)

Therefore Problem 4.1 is a weak formulation of an initial- and boundary-value pro-
blem associated to the system (4.7), (3.7), (3.8), namely, the equation (4.7) coupled
with the hysteresis relation (4.9).

By the discontinuity of the w vs. u relation, the equation (4.7) accounts for the oc-
currence of moving fronts which separate regions characterized by different values of
w . The location of these fronts is a priori unknown, namely, they are free
boundaries.

For N41, Problem 4.1 can represent processes in a univariate insulating ferri-
magnetic material. The equation (4.7) can be derived from the Maxwell equations, as-
suming that (with standard notation) the field D is proportional to E , that J40, and
denoting the fields H and M by u and w , respectively. The same problem can also
represent evolution in a univariate insulating ferroelectric material; in this case u and
w stay for the fields E and P , respectively.

THEOREM 4.1 [18]. If (4.1) is fulfilled and

F�L 1g0, T ; L 2 (V)h1W 1, 1g0, T ; H 21 (V)h,(4.10)

then Problem 1 has a solution (U , w) such that

U�W 1, Qg0, T ; L 2 (V)hOL Qg0, T ; H 1
0 (V)h.(4.11)

The argument is based upon
(i) approximation via implicit time-discretization,
(ii) derivation of a priori estimates,
(iii) passage to the limit by compactness and lower semicontinuity.
In particular, denoting the solution of the time-discretized problem by (um , wm )

(m�N), the dissipation condition (3.8) yields an estimate on s
V

dxs
0

T

NdwmN4

4V¯wm /¯tVC 0 (Q)8 . Hysteresis thus provides additional time-regularity. The argument also
uses the following compactness result, which is based on Banach-space interpolation
and on the compactness of Sobolev injections.

LEMMA 4.2. If the sequences ]zm(, ]wm( are such that

zmKz weakly in L 2 (Q)OH 21g0, T ; H 1 (V)h,
wmKw weakly star in L Q (Q),

V

¯wm

¯t V

L 1 (Q)
GConstant ,
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then

��
Q

wm zm dxdtK��
Q

wz dxdt .

The above existence result is based on the dissipative character of hysteresis, and
has no analog for quasi-linear hyperbolic equations without hysteresis. Thus the equa-
tion (4.7) turns out to be one of the few known examples in which analysis is made
easier by occurrence of hysteresis.

Uniqueness of the solution of Problem 4.1 is an open question.

EXTENSIONS. Problem 4.1 and Theorem 4.1 can be extended in two main
directions:

(i) the relay operator can be replaced by the Preisach model, cf. [18];
(ii) one can deal with the vector setting, i.e., with u and w ranging in R3 .
As we mentioned above, processes in an insulating ferrimagnetic material can the

represented by the Maxwell equations; assuming that the field D
K

is proportional to E
K

,
one gets an equation of the form

¯ 2

¯t 2
(H
K

1M
K

)1curl2 H
K

4 f
K

,(4.12)

(here written with normalized coefficients). The relation between M
K

and H
K

can be
represented by a vector extension of the relay operator, cf. [5, 10, 11]; an initial- and
boundary-value problem can be formulated in the framework of Sobolev spaces, and
existence of a solution can be proved. For this and other models of evolution in mag-
netic materials with hysteresis, we refer to [19].
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[8] M.A. KRASNOSEL’SKIĬ - A.V. POKROVSKIĬ, Systems with Hysteresis. Springer, Berlin 1989 (Russian ed.

Nauka, Moscow 1983).
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