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JUAN LUIS VÁZQUEZ

THE PROBLEMS OF BLOW-UP FOR NONLINEAR HEAT EQUATIONS.
COMPLETE BLOW-UP AND AVALANCHE FORMATION

ABSTRACT. — We review the main mathematical questions posed in blow-up problems for reaction-
diffusion equations and discuss results of the author and collaborators on the subjects of continuation of
solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and ava-
lanche formation as a mechanism of complete blow-up.
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1. INTRODUCTION

Many processes in the applied sciences are modeled by means of evolution equa-
tions involving differential operators, or systems of such equations. When suitable ad-
ditional conditions – usually, initial and boundary conditions – are supplied, we ob-
tain well-posed problems with a well-defined solution. The classical mathematical the-
ories involve linear operators in the governing equations. However, many of the most
important models in science, like those of relativity theory or fluid flows, reacting or
not, involve nonlinear partial differential equations. These systems exhibit a number
of properties which are absent from the linear theories and make them quite difficult
to analyze. Moreover, these nonlinear properties are often related to essential features
of the real world phenomena which the mathematical model aims at describing; the
linear approximation is only a first-step procedure to prepare more realistic nonlinear
analysis.

The study of nonlinear processes has been a continuous source of new problems
and it has motivated the introduction of new methods in the areas of mathematical
analysis, partial differential equations and other disciplines, becoming a most active
area of mathematical research in the last decades.

To be specific, one of the most remarkable properties that distinguish nonlinear
evolution problems from the linear ones is the possibility of eventual occurrence of
singularities starting from perfectly smooth data, or more accurately, from classes of
data for which a theory of existence, uniqueness and continuous dependence can be
established for small time intervals, so-called well-posedness in the small. While singu-
larities can arise in linear problems, this happens through the singularities contained
in the coefficients or data of the problem (fixed singularities). On the contrary, in non-
linear systems they may arise from the nonlinear mechanisms of the problem and their
time and location are to be determined by the mathematical analysis (moving
singularities).

Blow-up for ordinary differential equations. The simplest form of spontaneous sin-
gularities in nonlinear problems appears when the variable or variables tend to infinity
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as time approaches a certain finite limit TD0. This is what we call a blow-up phe-
nomenon. Blow-up happens in an elementary form in the theory of ordinary differen-
tial equations (ODE’s). The simplest example appears in the equation of quadratic
growth: we consider the following problem for a real scalar variable u4u(t):

ut4u 2 , tD0; u(0) 4a .(1.1)

For data aD0 it is immediate that a unique solution exists in the time interval
0 E tET with T41/a , given by the formula

u(t) 4
1

T2 t
.(1.2)

Therefore, the evolution is given by a smooth function for tET . As tKT 2 (limit
from the left), we see that u(t) KQ , i.e., the solution blows up. Note that we also
know how quickly the solution blows up, namely u(t) 4O( (T2 t)21 ). Blow-up is re-
ferred to in Latin languages as explosion, and in fact the mathematical problems in-
volved aim in many cases at describing explosive phenomena.

Starting from this example, the concept of blow-up can be widely generalized as
the phenomenon whereby solutions cease to exist globally in time because of infinite
growth of one of several of the variables describing the evolution process. A first ex-
tension step is given by ODE’s of the form ut4u p , with pD1 and, more
generally,

ut4 f (u),(1.3)

where f is positive and, say, continuous, under the condition

�
1

Q

ds/f (s) EQ .(1.4)

This Osgood’s condition in the ODE theory established in 1898, [32], is necessary and
sufficient for the occurrence of blow-up in finite time for any solution with positive ini-
tial data. More generally, we can think of systems ut4 f (t , u) for a vector variable
u�Rn . In this case we may have blow-up due to the same mechanism if f is super-
linear with respect to u for NuN large, and also blow-up due to the singular character of
f with respect to t at certain given times. It is the generalization of the first form that
will be of concern in these notes.

The study of ODE’s supplies basic tools and intuitions for the whole theory of
blow-up, and, more generally, the study of singularities. Not always we will find ex-
plicit formulas like the ones above, but we will find detailed information about when,
where, and how blow-up happens, how to calculate it and what happens after.

Blow-up for PDES. Fluid flows and other problems. The study of blow-up is consi-
derably more difficult (and interesting) when the equations involved are PDEs, and
indeed, it has become both a kind of industry and an art. The most typical scenario
deals with evolution processes, and then the problem has both a spatial and a time
structure, so that the unknowns depend not only on time, like the ODE case, but also
on space. Specifically, u4u(x , t), with x�V , a domain in Rn , while time stretches to
an interval 0 G tET .
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Those problems are interesting because of their mathematical difficulty, but mainly
because of their application to different sciences. Maybe the most famous blow-up
problems at this moment are those asking whether the solutions of the two basic equa-
tions of fluid motion, the Euler equations and the Navier-Stokes equations, develop
singularities in finite time for cases where the initial data are smooth and conveniently
decreasing as NxNKQ . Unfortunately, the work reported here does not offer a new
clue to these problems.

Blow-up has been investigated for many other equations and systems: reaction-dif-
fusion equations, wave equations, conservation laws, Prandtl’s equations, and so on. A
quite large number of different phenomena have been discovered and analyzed, hav-
ing in any case important common trends. This recommends specializing the subject
to gain in depth.

In the forthcoming sections we will introduce the main problems in the framework
of reaction-diffusion equations, one of the fields in which the blow-up theory has wit-
nessed more effort and progress. This paper is a kind of continuation of the survey pa-
per [17], written in collaboration with Victor Galaktionov, with emphasis on progress
done by the author and collaborators in recent years. Most of the contents of the next
two sections is taken from that source. In particular, we review the Question List for
blow-up problems proposed in [17], that is now reformulated as a 7-item list. We also
point out that this reference contains a number of historical facts and ends with exten-
sive discussion of other blow-up and extinction problems for reaction-diffusion and
for other equations.

The last sections report on the subjects of complete blow-up and continuation
after blow-up, and on the mechanism of avalanche formation.

Let us finally note that the formation of singularities in finite time is also important
in the attack to geometric problems by means of the technique of evolving curvature,
like the Ricci flow, proposed by Hamilton [21, 22], where curvature may blow-up in
finite time at certain manifold locations. The Ricci flow is strongly related to the non-
linear heat problems treated below, [1].

2. BLOW-UP IN REACTION-DIFFUSION EQUATIONS

Reaction-diffusion equations have developed into a quite large subtopic in PDE
research, cf. [37]. In the theories of thermal propagation and combustion it is natural
to consider quasilinear equations of the form:

ut4˜ Q A(u , ˜u , x , t)1B(u , ˜u , x , t)(2.5)

with standard ellipticity conditions on the operator A and growth and regularity con-
ditions on both A and B . To fix ideas, we typically think of (2.5) as a nonlinear heat
propagation model in a reactive medium, and then u is a temperature.

Reaction-diffusion models have played a prominent role in the study of blow-up.
The concept of blow-up is now formulated in its simplest form in the following
framework.
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(i) We start from the well-posedness of the mathematical problem in a certain
framework and for small times; thus, assuming nice regularity conditions on A and B ,
we will have an existence and uniqueness theory for, say, the Cauchy problem or one
of the initial-boundary value problems, in a certain class of bounded and nonnegative
data, so that the solutions evolve being bounded for some time 0 E tET .

(ii) We have also a regularity and continuation theory in this framework which says
that bounded solutions have the necessary smoothness so that they can be continued
locally in time. For classical solutions of parabolic equations this theory is based on
Schauder estimates. Corresponding estimates exist for weak solutions of divergence-
form equations in Sobolev spaces, or even for fully nonlinear equations.

Blow-up occurs then if the solution becomes infinite at some (or many) points as t
approaches a certain finite time T . Namely, there exists a time TEQ , called the blow-
up time, such that the solution is well defined for all 0 E tET , while

sup
x�V

Nu(x , t)NKQ as tKT 2 .(2.6)

The mathematical theory has been actively investigated by researchers in the 60’s
mainly after general approaches to blow-up by Kaplan [23], Fujita [10, 11], Friedman
[9] and some others; there is as yet no complete theory developed in the generality
presented above, but detailed studies have been performed on a hierarchy of models
of increasing complexity and there is nowadays a very extensive literature on the sub-
ject. There are two classical scalar models. One of them is the exponential reaction
model

ut4Du1le u , lD0,(2.7)

which is important in combustion theory [41] under the name of solid-fuel model
(Frank-Kamenetsky equation), and also in other areas. It is also of interest in differen-
tial geometry, [24], and other applications. The occurrence and type of blow-up de-
pends on the parameter lD0, the initial data and the domain. The other classical
blow-up equation is

ut4Du1u p .(2.8)

For exponents pD1 we have the property of blow-up in (2.8); depending on the value
of p it may happen not only for some but for all the solutions in a given class. There are
a number of other popular models of evolution problems involving nonlinear parabo-
lic equations, possibly degenerate. Here are models with the porous medium and
p-Laplace operators,

ut4Du m1u p (mD0) and ut4˜ Q (N˜uNs ˜u)1u p (sD21).(2.9)

All these models take the form ut4 A(u)1 f (u), where A is a second-order elliptic
operator, maybe nonlinear and degenerate, representing a diffusion, and f (u) is a su-
perlinear function of u representing reaction.

There exist some good texts which display many of the results which are known,
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like the books by Bebernes and Eberly [4] and Samarskii et al. [36]. However, this is a
very active field where there are many new developments. More detailed references to
recent literature are discussed for instance in Bandle-Bruner’s [2] and in [17].

A more general framework. Extinction. As we have said, it is very useful to insert
the study of blow-up in a more general framework by considering it as a special type
of singularity that develops for a certain evolution process. To be specific, we may
have an evolution process described by a law and an initial condition:

ut4 A(u) for tD0, u(0) 4u0 ,(2.10)

and we want to study the existence of a solution u4u(t) as a curve living in a certain
functional space, u(t) �X . Frequent instances of X are C(V)OL Q (V), or L p (V), or
the Sobolev space H 1 (V). Typically, we are able to prove that for initial data u0�X
the problem is well-posed in the small (i.e., the solution u with initial data u0 is well-
defined and lives in X for some time 0 E tET4T(u0 ) D0), and we face the problem
that the solution leaves the space X as tKT 2 . As we see, the occurrence of a singula-
rity becomes in this view contingent upon the type of ambient space and the concept
of solution used. However, an essential blow-up will defy all standard choices of sol-
ution and functional framework. This will be apparent in the type of blow-up called
complete blow-up which will be introduced in Section 3 and discussed in later
sections.

The general view of treating blow-up problems as singularities gives a unified ap-
proach in which to address very interesting related problems like extinction. A typical
example of the latter is the semilinear heat equation with absorption

ut4Du2u p , pE1,(2.11)

where solutions with positive data are considered and the exponent p may be allowed
to pass to the so-called singular range, pG0, see the survey paper [29]. The difference
with the blow-up problem lies in the fact that here the singularity that hinders the
continuation of the solution past a given time is not a blow-up of the unknown u , but
rather the blow-up of its derivative ut and the absorption term f (u). Blow-up of
derivatives is therefore another reasonable way in which nonlinear evolution equa-
tions develop singularities which may or may not stop the evolution of their
solutions.

Other examples of the more general framework will occur for instance when the
reaction term depends on the spatial gradient and the latter blows-up, even if the solu-
tion stays bounded, or in free boundary problems when the free boundary develops a
cusp while the solution is regular in its domain, like in some Stefan or Hele-Shaw
flows.

Let us point out that there is a great amount of work on blow-up for elliptic and
other stationary equations which shares with the above presentation the idea that a
singularity develops at a certain point (or at some points). Its scope and techniques
have a different flavor.
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3. THE BASIC QUESTIONS

We concentrate next on the analysis of the main questions raised in the study of
blow-up for reaction-diffusion equations. This list can be suitably adapted to other
singularity formation problems. We have proposed in [17] a list of questions that re-
flect the different aspects of blow-up. Slightly improved, it reads as follows: it starts
with three classical questions

(1) Does blow-up occur? (2) When? (3) Where?
followed by two questions on How?:

(4) How fast? (5) Which pattern?
it continues with the questions of

(6) What happens later?
and ends with

(7) How to compute blow-up numerically.

Naturally, the last questions have come to the field only later, and they are very ac-
tively pursued at this time. Let us describe what these questions mean in brief
terms.

(1) The first question is: Does blow-up occur? The blow-up problem is properly for-
mulated only when a suitable class of solutions is chosen. Usually, the existence and
uniqueness of the solutions of the problem can be formulated in different functional
settings, and blow-up is just the inability to continue the solutions in that framework
up to or past a given time. By default, we deal with classical solutions, but weak, vis-
cosity or other kinds of generalized solutions can be more natural to a given problem.
We may consider cases where blow-up happens in a functional framework and not in
another one, for instance for classical solutions but not for weak L 1 solutions.

The general question can be split into these two aspects:
1.i) Which equations and problems do exhibit blow-up in finite time? The answer

is determined by the form of the equation (in terms of its coefficients, or more general-
ly its structural conditions) and the form of the data. Recall that explosive phenomena
can be caused by the boundary conditions.

1.ii) In case the previous question has a positive answer, we may ask which sol-
utions do blow-up in finite time? The possibilities for the last question are two-fold:
blow-up occurs for all solutions in the given class, or it only occurs for some solutions
(which should be identified). A problem for which all solutions blow-up is called a
Fujita problem. The classical example is the semilinear heat equation ut4Du1u p

posed in Rn where all classical nonnegative solutions blow-up in finite time when the
exponent lies in the range p� (1 , (n12)/n). The upper bound is the so-called Fujita
exponent.

Note that if a particular solution does not blow-up, then it lives globally in
time.

(2) The second question is: When? Granted that blow-up occurs in finite time, can we
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estimate the blow-up time? Indeed, the property of blow-up can also happen in a less
striking form in infinite time, when the solution exists in the given functional frame-
work for all 0 E tEQ but becomes unbounded as tKQ . Thus, we have the alterna-
tive: finite versus infinite-time blow-up. Indeed, a four-option table occurs for the
solutions of reaction-diffusion systems:

2.i) global solutions which remain uniformly bounded in time (i.e., no blow-up),
2.ii) global solutions with blow-up at infinity, infinite-time blow-up,
2.iii) solutions with finite-time blow-up (the standard blow-up case), and
2.iv) instantaneous blow-up, i.e., the solution blows up at t40 in a sense to be

specified.
The latter is a very striking nonlinear phenomenon, but we have shown that it

occurs for such a simple equation as the exponential reaction equation ut4Du1le u ,
cf. [33, 38].

(3) Next comes the question of Where? Firstly, for a solution u4u(x , t) in QT4V3

3 (0 , T), which blows up at a time TD0, we define the blow-up set as

B(u0 ) 4 ]x�V : )]xn , tn( %QT , tnKT 2 , xnKx , u(xn , tn ) KQ(.(3.1)

This is a closed set. Its points are the blow-up points. A smaller blow-up set is

B1 (u0 ) 4 ]x�V : )]tn( % (0 , T), ]tn( KT 2 , u(x , tn ) KQ(.(3.2)

Typical alternatives when V4Rn are: single-point blow-up, where B(u0 ) consists of a
single point (or of a finite number of points), regional blow-up, where the measure of
B(u0 ) is finite and positive, and global blow-up, where B(u0 ) 4Rn . These notions are
naturally adapted when V is not the whole Euclidean space. In the Russian literature
of the 1970-80s these types of blow-up are called LS-regime, S-regime and HS-regime
of blow-up, respectively [36]. In the first two cases the blow-up solutions are called
localized.

(4) Next question is: How fast does blow-up occur? In other words, we want to calcu-
late the rate at which u diverges as t approaches the blow-up time and x approaches a
blow-up point.

Usually, this information is replaced by some norm estimate of u(Q , t) as t ap-
proaches blow-up, or better by an asymptotic expansion. In general, the question
How? proceeds via a change of variables (renormalization) that rescales the evolution
orbit to bounded size, followed by the study of the limits of these orbits, which are
now restricted to the blow-up set instead of the non-blowing points.

For many equations like (2.8) there is scale-invariance which implies the existence
of solutions which blow-up at a power rate [19, 12]. Self-similar blow-up becomes
then the usual form of blow-up and fixes the blow-up rates. However, it has been
found that for large values of the exponent p in (2.8) the actual rate of blow-up can be
given by a larger function than the self-similar power, a phenomenon called sometimes
fast blow-up, though there are good reasons to call it slow. Such a blow-up has been
detected in a number of problems and its rates and profiles are difficult to
obtain.
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(5) Next is the question of Which pattern, i.e., the final-time blow-up profiles as limits
of u(x , t) when tKT 2 at the blow-up points or at the non-blowing points.

The renormalized analysis usually leads to generic shape in the form of a stable
blow-up pattern. The general classification of the singularity implies the further study
of other unstable patterns. Typically, finite-time singularities, like blow-up, generate a
countable discrete (not continuous!) spectra of structurally different patterns called
eigenfunctions of nonlinear media in [36].

(6) A question that has received until recently less attention, but is of great impor-
tance for the practical application of mathematical models involving blow-up, is:
What happens after a finite-time blow-up singularity occurs? This is the problem of
Continuation after blow-up, also referred to as Beyond blow-up. A basic prerequisite is
to find a suitable concept of continued solution. This is typically done, see below, by
means of monotone approximation of the reaction term and the data so that the ap-
proximate problems have global solutions. Passing then to the limit we have to decide
whether the solution becomes trivial (i.e., identically infinite) after T or not [3]. This is
the natural approach in the application to thermal propagation and combustion. With
this method essentially three alternatives appear:

6.i) The solution cannot be continued. In the models we discuss below this hap-
pens because if continued it must be infinite everywhere in a natural sense. We call it
Complete Blow-up.

6.ii) The solution can be continued in some region of space-time after T , but it is
infinite in the complement, Incomplete Blow-Up.

6.iii) The solution becomes bounded again after T . This is a Transient Blow-up.
We have found it in the form of peaking blow-up, where it becomes bounded immedi-
ately after T . In the models investigated so far, this is a very unstable phenomenon, a
transition between more stable evolution patterns.

Alternative methods of continuation are not excluded and can be useful in suitable
contexts, like continuation in complex time, cf. [30], who shows a way to continue the
solution of ut4Du1u 2 past t4T along a certain sector of times in the complex
plane, avoiding the singularity. Unfortunately, this analytic continuation is not unique.
Pointing out the interest in the study of continuation after blow-up is one of the main
concerns of these notes.

(7) The final question refers to the numerical methods to detect the blow-up
phenomenon and compute or approximate the blow-up solutions, times and profiles.
The first problem is how to produce the computational solution. For instance,
semi-discretization in space leads to an initial-value problem for a system of
nonlinear ODEs. We can then use finite differences, collocation or finite elements
to treat the spatial derivatives. Some of the relevant questions when we want
the computational solution to display the properties of the blow-up phenomenon
are the choice of spatial and temporal meshes, the choice of time integrator,
the use of adaptive methods, and in a more theoretical direction the analysis
of convergence. A good numerical approximation should be able to give an
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explanation of why a solution cannot be continued in complete blow-up. We
refer to the survey paper [2] for more information.

4. CONTINUATION AFTER BLOW-UP

We devote the rest of the paper to discuss concrete results, focusing on some pro-
blems where the author has been involved. An important question that we have stud-
ied in some detail is the possibility of natural continuation of the solutions of a blow-
up problem after a blow-up occurs in finite time.

Concept of continuation. Proper solutions. A preliminary step consists of examin-
ing the most reasonable physical or mathematical options at our disposal when classi-
cal continuation fails. The experts in evolution problems aim at defining a continuous
semigroup of maps in a certain space which will represent the time evolution of the
physical problem, for all time if possible.

Baras and Cohen addressed this problem in 1987, [3], for the semilinear heat
equations (2.8): ut4Du1u p , posed for V%RN and tD0 with exponent pD1 in the
framework of nonnegative solutions. The way favored by them and, more generally, by
the Reaction-Diffusion community is to introduce a sequence of approximate pro-
blems that admit solutions globally in time. Namely, we assume that the reactive term
f (u), source of the explosive event, is replaced by a nicer term fn (u) where fn is a
smooth function with not more than the linear growth in uc1 and the monotone con-
vergence fn 6 f holds, so that the corresponding solution of the initial-value problem
un is globally defined in time. If the Maximum Principle applies, as is the case, the se-
quence ]un( is monotone increasing in n . Therefore, we can pass to the limit by mono-
tonicity and obtain a function

uA(x , t) 4 lim
nKQ

un (x , t).(4.1)

Function uA extends the classical solution u past the blow-up time, with finite or infi-
nite values. In the particular case above, [3] proved that for f (u) 4u p in the subcritical
Sobolev parameter range 1 EpEps4 (n12)/(n22), if nF3 (or 1 EpEQ if
n41, 2) a continuation defined in a natural or physical way is not possible, because it
leads to the conclusion that

uA(x , t) 4Q for all x�V , tDT .(4.2)

They labeled the phenomenon complete blow-up. The case pDps remained open.
Brezis posed then the problem of finding equations where a nontrivial natural conti-
nuation exists, i.e., the existence of reaction-diffusion equations with incomplete blow-
up. This problem has been addressed by the authors in three works [14-16]. The re-
sults show that the continuation after blow-up is a relatively simple phenomenon in 1D.

This method of defining continuation by «approximations from below» works for
quasilinear equations and also allows to treat unbounded initial data (by approximat-
ing them in a monotone increasing manner with bounded ones). It produces a «solu-
tion», finite or infinite, and can work in various settings where the maximum principle
applies, like fully nonlinear equations. But, as always the case with so-called limit sol-
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utions, it poses the problem of uniqueness of the limit object, i.e., independence of the
approximation choices. In [15] we have proved that this kind of definition does not
depend on the approximations performed on the reaction term and/or the data. It is a
continuation in the sense that it coincides with the classical or weak solution as long as
it exists and is bounded, or with the minimal nonnegative solution in cases of non-
uniqueness. We have given it the name of proper solution of the initial-value problem
to distinguish it from other possible methods of constructing a limit solution. It is a
kind of viscosity solution of the problem.

In the sequel continuation will be discussed in the framework of proper solutions,
and will omit the tilde in the notation, uA 4u .

Characterization of complete vs incomplete blow-up in 1D. This problem has been
solved in [14] in one space dimension for equations of the general form

ut4f(u)xx1 f (u),(4.3)

under quite general assumptions on f and f . In particular, f and f are positive for
uD0 and f is increasing. More precisely, we assume that f�C( [0 , Q) )OC 1 (0 , Q),
with f 8 (u) D0 for uD0 and f(0) 40. The reaction term f (u) is assumed to be con-
tinuous and positive for uD0. We study the Cauchy problem u(x , 0 ) 4u0 (x), x�R ,
with bounded, continuous, nonnegative and nontrivial initial data.

We obtain a characterization of the possibility of nontrivial continuation of solu-
tions of the Cauchy problem after blow-up, in terms of the properties of the constitu-
tive nonlinearities f and f . In principle, the alternative will also depend on the initial
data u0 , but this will not be the case once the class of initial functions is fixed. In order
to fix this setting we admit the assumption, typical in the blow-up literature, that the
data are bell-shaped, i.e., that u0 has only one maximum point and goes to zero at infi-
nity. The main results generalize to data with several humps.

Integral conditions and main results. Let us begin by stating the conditions which
determine the form of continuation for bell-shaped data. The presence of complete or
incomplete blow-up depends on the behaviour at infinity of three integrals.

We recall that finite-time blow-up occurs whenever f (u) is super-linear for large u ,
as is well-known. More precisely, the first condition, (B1), is the convergence at infini-
ty of the integral

I1 (u) 4�
1

u

ds/f (s),(4.4)

i.e., I1 (Q) EQ . Precisely, blow-up for positive constant initial data occurs if and
only if the integral is finite. This follows from the ODE (1.3) satisfied by all spatially
flat solutions u(t). The problem of blow-up and continuation is thus completely
solved for flat data and solutions (i.e., not dependent on x) and the result does not de-
pend on the data. For non-flat initial data the necessity of this condition for blow-up
follows from the Maximum Principle.

Now, for bell-shaped data it is not always sufficient for blow-up, f has a say! In-
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deed, the second integral that comes into play is

I2 (u) 4�
1

u

f (s)f 8 (s)ds ,(4.5)

which allows to measure the relative influence of diffusion and reaction, and is reflect-
ed in our proofs in the existence of a certain type of blow-up traveling waves through
the boundedness of the ratio

F(u) 4 I2 (u) /u 2(4.6)

as uKQ (condition (B2) in [14]). Finally, we need to control

I3 (u) 4�
1

Q

[f 8 (s) /s]ds ,(4.7)

which affects only the strength of the diffusion nonlinearity. The boundedness of this
integral (condition (B3)) is equivalent to the property of finite speed of propagation
for large values of u , reflected in the existence of traveling waves which become infi-
nite at a finite distance. In order to get an intuitive idea of what these conditions mean
we may consider the case of power-like nonlinearities, equation

u t4 (u m )xx1u p ,(4.8)

mD0 and pD0. Then (B1) holds for pD1, (B2) for m1pG2 and (B3) for mE1. In
terms of these integrals we can formulate the following blow-up results.

THEOREM 4.1 (Global continuation). Let u be a proper solution to the above pro-
blem under the stated general conditions. If (B1), (B2) and (B3) hold, then u can be con-
tinued in a non-trivial way for all times tD0 (i.e., u(Q , t) gQ for tDT) even if u blows
up at a time TEQ .

In fact, the result says that the burnt zone B[u](t), i.e., the set of points where the
continuation is infinite, is a bounded subset of Rn or the empty set. (B1)-(B3) are valid
for equation (4.8) in 1D precisely when pD1 and p1mG2. This means that mG22

2pE1, a regime of fast diffusion. In particular, (B3) excludes linear diffusion, proba-
bly the main reason why the phenomenon of nontrivial continuation after blow-up in
such a simple type of equation was unnoticed. The propagation of the burnt zone after
blow-up, with the appearance of singular interfaces, is studied in [16].

The opposite situation happens when (B2) fails.

THEOREM 4.2 (Complete blow-up). Let u be a solution of equation (4.3) under the
above general conditions and assume that it blows up at time 0 ETEQ . If (B2) does
not hold then ufQ for tDT .

Notice that we do not have still a complete characterization since the assumptions
of the two results are not complementary of each other, due to the presence of condi-
tion (B3). They would combine into a complete results if it could be eliminated. This
is almost true: under a number of light extra assumptions (B1) and (B2) imply (B3). It
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is for instance true for the 1D power equation (3.8). Besides, if condition (B2) is
strengthened into (B2’)

f 8 (u) f (u) /uGC for all large u ,

then we have f 8 (u) /uGC/f (u), hence (B1) 1 (B2’) imply (B3). The implication fol-
lows also when f is monotone. However, we have shown in [14] that there exist
«pathological» choices of f and f for which (B1) and (B2) hold but (B3) does not.
Equations in the pathological class have curious properties.

THEOREM 4.3. If (B1) and (B2) hold and (B3) does not, then all the solutions with
flat initial data u0fconstD0 blow-up in finite time, while no solution with bell-
shaped compactly supported data does.

Our results are true not only for solutions to the Cauchy problem, but can also be
directly applied to initial-boundary value problems in bounded spatial domains with
Dirichlet or Neumann boundary conditions. In fact, the analysis of complete/incom-
plete blow-up is local in the sense that the behaviour for tDT depends only on the be-
haviour of the solution in a small neighbourhood of a given blow-up point, thus being
independent of the boundary conditions.

The proof of the results is based on the Method of Traveling Waves, that replaces
in the analysis the more usual method of investigation of blow-up phenomena, the
Method of Stationary States, see [36], Chapter 7. A complete classification of existing
traveling waves is done and then careful comparison arguments allow to pass the in-
formation to the blow-up solutions.

It is to be noted that only possibilities (6.i) and (6.ii) of item (6) of the Question
list occur in one dimension. We will see that the situation in several space dimensions
is much more complicated and admits option (6.iii).

Finally, we recall that the same techniques allowed us to treat the problem of Con-
tinuation after Extinction for equations of the form

ut4f(u)xx2 f (u),(4.9)

which was also open, cf. [14]. There are again three conditions that control the occur-
rence of complete or incomplete extinction.

5. TRANSIENT BLOW-UP IN SEVERAL DIMENSIONS

In contrast to the results of previous section, the situation in several dimensions is
much more complex, and we have found in [15] new forms of blow-up described by a
kind of blow-up solutions that we have called peaking solutions: they blow-up only at
one point and one instant of time, and have a classical continuation afterwards. They
represent a transient form of blow-up, and a minimal one at that.

Let us present this contribution of paper [15] in some detail. We consider
equation

ut4Du m1u p ,(5.1)
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for x�Rn and tD0. We assume that nF3 and mDmc4 (n22)/n . While for
1 EpGps the alternative between complete and incomplete blow-up reminds us of
the 1D case, the novelty of the peaking solutions appears in the supercritical Sobolev
range,

pDps4m(n12)/(n22).(5.2)

Our main result can be stated as follows.

THEOREM 5.1. There exists a number ppDps depending on m , n such that for
p� (ps , pp ) there exist proper solutions globally defined in time, which blow-up at finite
TD0 and are bounded at all other times. For nG10 we can take pp4Q . Our solutions
satisfy u(x , t) GS(x) for all tFT , where S is the singular stationary solution.

The singular solution is given by

S(x) 4cs NxN22/(p2m) ,

for some csD0 that depends on m , p and n . S(x) is defined if nF3 and pDpst4

4mn/(n22) (otherwise, no suitable cs�R exists). Observe that S(x) is locally inte-
grable and moreover S p�L 1

loc (Rn ). Note that, even if S has a point singularity that may
qualify as incomplete blow-up, it does not fit our blow-up framework since it does not
start from bounded and smooth data at t40.

As for the range of allowed p’s, in dimensions nF11, and denoting N4n2

210 D0, we have a finite value for pp given by the formula

pp411
3m1 [ (m21)2 N 212(m21)(5m24)N19m 2 ]1/2

N
.(5.3)

This new (and impressive) exponent was first introduced in [28] for m41, where it
takes the simpler form pp4116/(n210). The subindex in the exponent pp refers to
«peaking». Observe that pp is larger than another critical exponent pu4m[114/(n2

2422kn21) ], nF11; pu appears in the theory as responsible for the uniqueness of a
solution with the singular initial data, cf. [15].

The peaking solution is constructed with a self-similar form, both for tET and
tDT . This means that

u(x , t) 4 (T2 t)a u 1 (NxN(T2 t)2b ), u(x , t) 4 (t2T)a u 2 (NxN(t2T)2b ),(5.4)

resp. for tET and tDT , with a421/(p21) and b4 (p2m) /2(p21) and u 1 and
u 2 suitable one-dimensional profile functions such that

lim
sKQ

u 1 (s) s 2/(p2m)4 lim
sKQ

u 2 (s) s 2/(p2m)D0.(5.5)

This is the matching condition, that allows them to be parts of one global solution.
The construction relies on an ODE stability study for the singular stationary solution
S , which happens to be completely different for pEpu and pFpu . Moreover, for
pEpu we can construct infinitely many different peaking solutions, while for pFpu

only a finite number can be shown to exist by our method. We claim that, at least for
self-similar solutions, the above value pp is optimal for the theorem.
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These peaking solutions have the weakest possible form of blow-up. In fact, it is
easy a posteriori to check that u�C( [0 , Q): Lloc

r (Rn ) ) for every 1 E rEn(p2m) /2 , a
number that for pDps is larger than 2mn/(n22). They are also weak solutions of the
equation in the standard sense of integration by parts.

Let us mention as a precedent the work of Lacey and Tzanetis [27] for the expo-
nential equation (2.7), but there the matching of both developments is formal. Note
also that Incomplete blow-up patterns are known to be structurally unstable. More-
over, stable self-similar patterns exhibit complete blow-up which is expected to be a
stable mode, see [15, Section 14]. Construction of peaking solutions under conditions
that do not allow for self-similarity is not easy, and recent results are due to Fila and
Matano, cf. [8]. The existence of solutions which peak up several times is a quite diffi-
cult problem [added in proof: studied recently by Mizoguchi, 2004].

6. AVALANCHE FORMATION AT COMPLETE BLOW-UP

The last subject we will treat in this paper is the occurrence of complete blow-up.
This is a quite intriguing phenomenon that needs explanation. We will review the
conclusions of two papers coauthored with J. Rossi and F. Quirós [34, 35] where com-
plete blow-up is explained as the limit of a process of avalanche formation.

To be specific, let us consider as in [35] the semilinear heat equation

ut4Du1u p ,(6.6)

posed in RN or in a bounded domain with homogeneous Dirichlet boundary condi-
tions, with 1 EpEps , ps is the Sobolev exponent (ps4 (n12)/(n22) EQ if nF3).
This problem has solutions with finite-time blow-up, i.e., for large enough initial data
there exists TEQ such that u is a classical solution for 0 E tET , while it becomes
unbounded as t6T . In order to understand the situation for tDT we consider a na-
tural approximation by reaction problems of the form ut4Du1 fn (u), with fn (u) a
Lipschitz continuous approximation of the power u p , so that these equation have
global solutions un . We then pass to the limit nKQ . As has been said, the limit solu-
tion undergoes complete blow-up: after it blows up at t4T , the continuation is iden-
tically infinite for all tDT . Therefore, a quite strong discontinuity takes place at t4

4T , in the form of a jump from the finite profile formed at t4T2 to the infinite values
taken at t4T1. This is what we want to explain.

Actually, we contend that the singularity set of a solution that blows up as t6T
propagates instantaneously at time t4T to cover the whole space, producing the
catastrophic discontinuity between t4T2 and t4T1. This is called the avalanche.
We visualize it by looking at what happens to the approximations un on which the
construction of the proper solution is based: as t proceeds past T , the solutions of the
approximate problems, un , approach a certain asymptotic size and shape in the inner
core, near the place and time where blow-up takes place for u . We perform a suitable
renormalization or scaling that blows up time and space near the first blow-up point
with a rate depending on the approximation parameter n . Then, the renormalized solu-
tions vn tend to a structure, the inner layer, which is the solution of a simple limit
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problem in terms of an ordinary differential equation. Moreover, this inner build-up
produces in the outer region a traveling wave whose speed we can compute. The
speed scales like n (p21)/2 , which confirms in a quantitative way the fact that in the lim-
it the proper solution propagates instantaneously at time t4T to cover the whole
space. In case the spatial domain is bounded, the traveling waves are modified by the
effect of the boundary conditions, that become dominant at a later stage.

Outline of results. We start the analysis of paper [35] by collecting information on
what happens immediately before blow-up. We are in the situation of point-wise
blow-up. For definiteness, we assume that u blows up at x40 �V . Actually, we know
that the blow-up rate is given by

c(T2 t)21/(p21)GVu(Q , t)VQGC(T2 t)21/(p21)(6.7)

if p is subcritical, i.e., for 1 EpE (N12)/(N22)1 , see [19]. Moreover, in this case
the asymptotic behaviour close to the blow-up point x40 and the blow-up time T is
given by

lim
t6T

(T2 t)1/(p21) u(j(T2 t)1/2 , t) 4 (p21)21/(p21) ,

uniformly on sets NjNGR , see [13, 18-20, 40]. (Remark. This blow-up rate may fail for
large p in high dimensions, hence the restriction on p .)

We then construct a sequence of approximate solutions with suitable truncations
fn of the reaction term u p . There are two typical approximations: the flat truncation,
where fn (u) is defined for all uG0 as

fn (u) 4 min ]u p , n(,

and the linear truncation, where fn is defined for uDn as the linear function fn (u) 4

4n p1a(u2n), aD0. When a4pn p21 we get the tangent truncation.
The whole project aims at showing that for any sequence of truncations fn of u p

which grow at most linearly at infinity, the global solutions un undergo at times tBT
the transition from an approximation of the blow-up profile of u just outlined (first
approximate blow-up stage), through an intermediate «parabolic stage» towards the
resolution to different asymptotics which depend on the boundary conditions and
have partly parabolic, partly hyperbolic character.

If V is the whole space, the third stage consists of two main regions
(i) An outer region of the form NxNFcn (t2T

q

n ), T
q

nBT , where the solution un is
below the level n .

(ii) An inner region in which the solution is larger than n so that the reaction term
takes on the truncated value.

It is proved that there exists a traveling wave which propagates at the precise
speed

v(n) 4c* n (p21)/2 .

The normalized wave speed c* is calculated in [35] as the only value of the parameter c
that produces the correct connection in a phase plane. Note that c* depends on the type
of truncations used. This traveling wave gives the asymptotic behaviour of general solu-
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tions un in the following sense: the level sets S(t ; k , n) of points x where un (x , t) 4k
tend to travel with constant speed c* n (p21)/2 for large t . This had been predicted in
[15], based on the ODE analysis of the different types of traveling waves performed in
[14]. As nKQ we have v(n) KQ , and this is a precise quantitative explanation of
why complete blow-up occurs.

As for the inner region, we perform the detailed analysis in the case of flat trunca-
tion, fn (u) 4 min ]u p , n p(, and obtain a conical pattern for the solution of the
form

lim
tKQ

un (un (p21)/2 t , t)

n p t
4 g12

NuN
c*

h
1

,(6.8)

uniformly for u�RN , where (v)14 max ]v , 0(. This looks like a sandpile growing
linearly in time. It is to be noted that this behaviour is independent of the space di-
mension. The result can be explained in simple terms by looking at the simplified
problem consisting of the heat equation

vt4Dv11,

posed in the cone R4 ](x , t): tD0, NxNGc* t( with zero boundary conditions on
the side of the cone. The solution of this problem has the asymptotic shape (6.8), as
can be shown by manipulating Gaussian kernels. Note also that the effect of the
Laplacian is confined to an even smaller inner region of the form NxN4o(t), while in
the rest of the inner region we have utAn p .

While the appearance of a traveling wave behaviour is a general phenomenon, the
formation of a conical pattern in the inner region depends on the flat truncation. In
the case of the tangent truncation, fn (u) 4 min ]u p , n p1pn p21 (u2n)1(, it is shown
that there is an exponential increase in time and a formation of a diffusive spatial
pattern.

An important step in the study of the third stage is to show that un stays large once
it becomes big. This is done via some technical, though crucial, estimates, that make
the whole analysis rather long and difficult.

Problem with boundary blow-up. Actually, the structure just described is so com-
plicated that we needed a preliminary study of a related but simpler model with com-
plete blow-up in order to prepare the machinery.

Thus, in [34] we study the continuation after blow-up of solutions u(x , t) of the
heat equation, ut4uxx , with a nonlinear flux condition at the boundary, 2ux (0 , t) 4

4 f (u(0 , t) ) and some related problems. The main problem we address is

.
/
´

ut4uxx

2ux (0 , t) 4 f (u(0 , t) )

ux (1 , t) 40

u(x , 0 ) 4u0 (x)

(x , t) � (0 , 1 )3 (0 , T),

t� (0 , T),

t� (0 , T),

x� (0 , 1 ),

(6.9)

where f is positive and continuous. We assume that u0 is continuous, nonnegative and
nontrivial (u0g0). Hence, the solution of problem (6.9) exists for a certain time inter-
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val 0 E tET and is C 1 up to the boundary for all tD0 as long as it is bounded. The
problem can be thought of as a model to describe heat propagation with constant
thermal conductivity (also referred to as linear diffusion) in a medium with a non-
linear radiation law at the left boundary, the right one being thermally insulated.

Our first result states that blow-up for problem (6.9) is complete for any radiation
function f as above for which there is blow-up, in the sense that the proper solution is
identically infinite for tDT .

We are interested in the avalanche formation at blow-up. We describe it in the
case f (u) 4u p , pD1, as a boundary layer which appears in the limit of the approxi-
mate problems by choosing a suitable scaling and passing to self-similar variables. We
then show that the layer is described by the solution of a limit problem. We also de-
scribe the asymptotic behaviour for the approximate problems as t goes to
infinity.

More precisely, we show that for a sequence of truncations fn of f which are linear
at infinity with increasing slope f 8n (s) Acn p21 , the global solutions un undergo at times
tBT the transition from an approximation of the blow-up profile of u towards an ap-
proximate traveling wave which propagates at speed v4v(n). As nKQ we have
v(n) KQ and complete blow-up occurs. This intermediate profile evolves later to-
wards different asymptotics of parabolic type which we also describe. Let us remark
that the study of the approximate problems for large n is in many cases (combustion,
chemistry) more realistic than the blow-up problem, which is a mathematical
idealization.

Finally, we consider the effect of a nonlinear diffusion in the equation. For sim-
plicity we take the usual power form ut4 (u m )xx with diffusion exponent mD0. For
mD1 this equation is called the porous medium equation, while for mE1 it is known
as the fast-diffusion equation. In any case, we arrive to

.
`
/
`
´

ut4 (u m )xx

2(u m )x (0 , t) 4 f (u(0 , t) )

(u m )x (1 , t) 40

u(x , 0 ) 4u0 (x)

(x , t) � (0 , 1 )3 (0 , T),

t� (0 , T),

t� (0 , T),

x� (0, 1 ).

(6.10)

We find the same phenomenon of complete blow-up for all f provoking blow-up if
and only if mF1, i.e., for porous medium equations. The thermal avalanche is also
described in this case. On the contrary, for the so-called fast diffusion equations,
0 EmE1, continuation after blow-up is always possible. Moreover, for mE1 the
only blow-up point is the origin x40 for all tFT and we are able to describe the
form of the isolated singularity after blow-up.

The last results show the fundamental role played by diffusion in the propagation
of the Q-level set. In case mD1 the infinite level propagates with infinite speed and
there is no possible continuation, no matter which is the nonlinearity f that we are con-
sidering at the boundary. However, when mE1 the Q-level set does not propagate at
all and there is an extension beyond t4T that remains finite everywhere except at the



J.L. VÁZQUEZ298

boundary, x40. Actually, as explained in [7], the label fast-diffusion is misleading
for blow-up problems since the diffusivity D(u) 4mu m21 goes to zero as uKQ for
mE1.

Avalanche is therefore related to the appearance of traveling waves that transport
the blow-up information from the core. There are many aspects that are not well un-
derstood in this connection. The author has been inspired by Bebernes’ work, cf. [5].
On the other hand, the formation and properties of travelling waves are a main topic
in the mathematical theory of combustion, cf. for instance the study of plane deflagra-
tion waves in [6].

Finally, let us mention that numerical results illustrate these stages and are report-
ed in the papers.
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