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LAURENT VÉRON

BOUNDARY TRACE OF SOLUTIONS OF
SEMILINEAR ELLIPTIC EQUALITIES AND INEQUALITIES

ABSTRACT. — The boundary trace problem for positive solutions of

2Du1g(x , u) F0

is considered for nonlinearities of absorption type, and three different methods for defining the trace are
compared. The boundary trace is obtained as a generalized Borel measure. The associated Dirichlet pro-
blem with boundary data in the set of such Borel measures is studied.

KEY WORDS: Laplacian; Poisson potential; Singularities; Radon measures; Borel measures; Balayage;
Convergence in measure.

1. INTRODUCTION

Let V be an open domain of RN with a C 2 boundary and g : V3R O g(x , r) a
continuous real-valued function. If u�C 1 (V) is a solution of

2Du1g(x , u) F0 in V ,(1.1)

a natural problem is to associate to this function an extended notion of boundary
value called the boundary trace of u .

It is wellknown that if u is a positive harmonic function in V , there exists a Radon
measure m on ¯V which is the boundary trace of u on ¯V in the following natural
sense:

lim
tI0

�
S t

u(s , t)z t (s , t)dSt4 �
¯V

z(s)dm ,(1.2)

for any z�C0 (¯V), in which formula S t4 ]x�V : r(x) 4 t( (tD0) and

r(x) 4dist (x , ¯V), (x�V .

We denote by dSt is the induced surface measure on S t , s4s(x) the orthogonal pro-
jection of x on ¯V and put z t (s , t) 4z(s). The above formulation is consistent since
the mapping

P : (s , t) O x

is a local diffeomorphism from ¯V3 (0 , t0 ) onto V t0
4 ]x�V : r(x) E t0(, for some

t0D0. Moreover, if V admits a Poisson kernel P V (this is always the case if it is
bounded) the Herglotz formula asserts that u admits an integral representation

u(x) 4 �
¯V

P V (x , y)dm(y) 4PV
m (x), (x�V .(1.3)

The extension of the above results to positive super-harmonic functions has been per-
formed by Doob. If u is a positive super-harmonic function in V , it admits a boundary
trace which is a nonnegative Radon measure m , and, for any compact subset K of RN ,



L. VÉRON302

[Du] �L 1 (VOK ; rdx). Furthermore if V is bounded and G V is the Green kernel in
V , there holds:

u(x) 4�
V

G V (x , y)[2Du]dy1 �
¯V

P V (x , y)dm(y).(1.4)

In order to extend the linear theory to the semilinear one, we consider positive
solutions of (1.1), assuming that g(x , u) F0 (notice that the case g(x , u) G0, is de-
scribed by Doob’s result). Actually, in the subharmonic framework, the nonlinear
term plays a crucial role.

There are several approaches for defining the boundary trace of positive solutions
u of nonlinear equations such as (1.1) and we present three of them here.

l The first method is based upon convexity and duality arguments. It was first de-
veloped for the following type of equation

2Du1u q40,(1.5)

where qD1 [13-15, 10, 11, 3, 4]. The boundary trace Tr¯V (u) of u exists in the class
�1

reg (¯V) of outer regular positive Borel measures, not necessarily locally bounded.
There exists a critical exponent qc4 (N11)/(N21). If 1 EqEqc the generalized
Dirichlet problem

.
/
´

2Du1u q40 in V ,

Tr¯V (u) 4n��1
reg (¯V),

(1.6)

is uniquely solvable for any n . This is no longer the case if qFqc . The study of the
boundary trace problem is extended in [8] to

2Du1e u40,(1.7)

and in [6] to

2Du1u ln1
a (u) 40,(1.8)

for aD0.

l The second method is introduced in [18] to handle equations with a non-uni-
form absorption term. In such equations the duality-convexity argument is no longer
valid because of the boundary degeneracy of the non-linear term, and it has to be re-
placed by a localization principle called the strong barrier property. The typical case is

2Du1r(x)a u q40,(1.9)

with aD22 and qD1. For such an equation, many of the results obtained for (1.5),
(1.6) are extendable, but their proofs are much more intricate.

l The last method is intended to treat not only equations, but inequalities such as

2Du1g(x , u) F0,(1.10)

where g(x , r) F0 for (x , r) �V3R1 . It is no longer based upon localization, but on
a balayage principle in which the main role is handled by the solutions vm (whenever
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they exist) of

.
/
´

2Dvm1g(x , vm ) 40

vm4m

in V ,

on ¯V ,
(1.11)

where m is a positive Radon measure on ¯V . Let 81
g (¯V) be the set of measures such

that problem (1.11) is solvable (always uniquely if g(. , r) is nondecreasing with respect
to r). Then min ]u , um( is a supersolution of (1.10) which admits a boundary trace in
81

g (¯V). If we denote by g u (m) this boundary trace, it is proven that the
formula

n4 sup
m�81

g (¯V)
Tr¯V (g u (m) ),(1.12)

defines a Borel measure, not necessarily regular, that we call the extended boundary
trace and denote by Tr e

¯V (u). This method, developed in [19] (and in [20] for the asso-
ciated parabolic inequalities), is well adapted to treat highly degenerate inequalities
such as

2Du1exp (21/r(x) ) f (u) F0,(1.13)

under a very weak assumption on f .
Our article is organized as follows: The power case; The strong barrier method;

The balayage method.

2. THE POWER CASE

Let qD1 and V%RN be any domain. By a solution of

2Du1NuNq21 u40 in V .(2.1)

We mean a C 2 (V) function. Keller [9] and Osserman [21] proved independently that
the set of solutions of (2.1) is locally uniformly bounded, and more precisely
that

Nu(x)NGC(N , q)r(x)22/(q21) , (x�V .(2.2)

The result is more general since it holds for subsolutions with a much larger class of
nonlinearities. As a consequence there exists always a maximal solution uM to (2.1). If
V is smooth enough, the maximal solution is unique and satisfies [1, 23]

lim
r(x) K0

r(x)2/(q21) u(x) 4 u 2(q11)

(q21)2 v1/(q21)

.(2.3)

In the case q42, and using probabilistic methods Le Gall [10] obtained the first
boundary trace result for positive solutions of (2.1) in the unit ball of R2 . Three years
after Marcus and Véron [13] extended Le Gall’s result, using only analytic tools, to
any exponent qD1, in any space-dimension. The result is the following.

THEOREM 2.1. Let V%RN be a smooth domain and qD1. Let u be a positive solu-
tion of (2.1). Then for any v�¯V the following alternative occurs,
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(i) either for every relatively open subset O %V containing v

lim
tK0

�
Ot

u(s , t)dSt4Q ,(2.4)

(ii) or there exist a relatively open subset O %V containing v and a positive linear
functional l on Cc

Q (O) such that for every z�C Q
c (O),

lim
tK0

�
Ot

u(s , t)z t (s , t)dSt4 l (z).(2.5)

We write ¯V4 S(u)N R(u) where S(u) is the closed subset of boundary points
where (i) occurs, and R(u) 4¯V0 S(u). By using a partition of unity, there exists a
unique positive Radon measure m on R(u) such that

lim
tI0

�
R(u)

u(s , t)z t (s , t)dSt4 �
R(u)

z(s)dm ,(2.6)

for every z�Cc (R(u) ). Thus we define the boundary trace by the following
couple

Tr¯V (u) 4 (S(u), m).(2.7)

The set S(u) is called the singular part of the boundary trace of u , while m�81 (R(u) )
is the regular part. To the couple (S(u), m) is associated in a unique way an outer regu-
lar positive Borel measure n (an element of �1

reg (¯V) ), with singular part S(u) and
regular part m .

PROOF OF THEOREM 2. The following dichotomy holds for every boundary point v .

(i) Either there exists an open ball Br0
(v) such that

�
Br0 (v)OV

u q rdx4Q ,(2.8)

(ii) or for any rD0,

�
Br (v)OV

u q rdxEQ .(2.9)

Then S(u) is precisely the set of points where (i) occurs, and R(u) the complement,
where (ii) occurs. The original way to prove that (2.8) implies (2.5) is based upon the
fact that for any smooth open subset G%V and any f�Cc

2 (G),

�
G

(2uDf1u q f)dx42�
¯G

¯f
¯nG

udS .(2.10)

There exist test functions fD0 in G such that,

�
G

f2q/q 8 NDfNq 8 dxEQ ,(2.11)
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(with q 84q/(q21). By Hölder’s inequality

N�
G

uDfdxN G u �
G

f2q/q 8 NDfNq 8 dxv1/q 8u �
G

u q fdxv1/q

.

Now (2.10) implies the next two inequalities

�
G

u q fdx1 u �
G

f2q/q 8 NDfNq 8 dxv1/q 8u �
G

u q fdxv1/q

F2�
¯G

¯f
¯nG

udS ,(2.12)

and

�
G

u q fdx2 u �
G

f2q/q 8 NDfNq 8 dxv1/q 8u �
G

u q fdxv1/q

G2�
¯G

¯f
¯nG

udS .(2.13)

Next we choose G4GF4 ]x4 (s , t) : s� O, tE tGt 0( for some 0 EtEt 0

and O %¯V relatively open and smooth, and f(s , t) 4Wa
1 (s)(t2t) where W 1 is the

first positive eigenfunction of the Laplace Beltrami operator in W 1, 2
0 (O) and a is a po-

sitive real number larger than (q11)/(q21). Then 2¯f/¯nGBfa
1 on ]x4 (s , t) :

s� O( and (2.11) holds uniformly with respect to t . By using inequalities (2.12) and
(2.13), it is clear that the behaviour (blow-up, or boundedness) of the boundary term
as tK0 is governed by the integrability or nonintegrability of u q r in G0 and the re-
maining of the proof is straightforward. o

The reverse problem is to find a function u , solution of (2.1) in V with a given
boundary trace in �reg

1 (¯V). The following result is due to Marcus and Véron [14, 15].

THEOREM 2 . 2 . L e t V%RN b e a bo u n d e d d o m a i n o f c l a s s C 2 a n d 1 EqE

E (N11)/(N21). Then for any n��reg
1 (¯V), there exists a unique u�C 2 (V) sol-

ution of the problem

.
/
´

2Du1NuNq21 u40 in V ,

Tr¯V (u) 4n .
(2.14)

REMARK 2.1. (i) The case q4N42 was first treated by Le Gall [10], by probabilis-
tic methods.

(ii) When n is a Radon measure, a former result of Gmira and Véron [7] gives exis-
tence and uniqueness, always in the range 0 EqE (N11)/(N21). This is different
from the L 1 case which was solved by Brezis (1975) under the mere assumption
qD0.

(iii) In the range 1 EqE (N11)/(N21) the main point is that the local average
blow-up (2.4) which occurs for any v� S(u) implies a pointwise blow-up, namely, for
every compact cone cv%V0]v( with vertex v , there exist a constant C depending on
the opening of the cone cv , on q and N , but not on u and v , such that

u(x) FCNx2vN22/(q21) , (x�V .(2.15)
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(iv) When qF (N11)/(N21) existence does not hold for any Borel measure,
even any Radon measure, as observed by Gmira and Véron [7]. Furthermore (2.15)
does not hold, and as a consequence uniqueness does not hold too. Necessary and suf-
ficient conditions for existence of a maximal solution have been found separately by
Marcus and Véron [14, 15, 17], and Dynkin and Kuznetsov [3, 4].

REMARK 2.2. By using a similar convexity method Grillot and Véron studied the
boundary trace of the solutions of the 2-dimensional conformal Gaussian equa-
tion

2Du1K(x)e 2u40 in V .(2.16)

Assuming that KD0 is bounded from below, they showed the existence of a boun-
dary trace in 8reg (¯V) and gave sufficient conditions for solving the corresponding
Dirichlet problem

.
/
´

2Du1K(x)e 2u40 in V ,

Tr¯V (u) 4n�8reg (¯V).
(2.17)

In [6] Fabbri and Licois obtained somewhat similar results for the weakly super-linear
equation

2Du1u ln1 u a40 in V(2.18)

for aD0, and the associated generalized Dirichlet problem.

3. THE STRONG BARRIER METHOD

In this section we assume that V is a smooth bounded domain and
g : (x , r) O g(x , r) is a continuous function defined on V3R such that g(x , r) F0
for rF0. The method for proving the existence of a boundary trace of positive
solutions of the semilinear equation

2Du1g(x , u) 40 in V .(3.1)

Relies on two notions: the coercivity property and the strong barrier property which al-
lows us to define a boundary trace in the class of outer regular positive Borel
measures.

From the linear theory, it is known that, if u�C 2 (V) is a positive solution of (3.1)
in V such that g(. , u)r�L 1 (V), then u admits a boundary trace on ¯V in the class of
Radon measures. Moreover a representation formula similar to (1.4) holds. It is not
difficult to prove the following local version of this result.

PROPOSITION 3.1. Let u�C 2 (V) be a positive solution of (3.1). Suppose that for
some point v�¯V there exists an open neighborhood U such that

�
UOV

g(x , u)r(x)dxEQ .(3.2)
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Then u�L 1 (KOV) for any compact subset K%U , and there exists a Radon measure m
on UO¯V such that

lim
tI0

�
UOS t

u(s , t)z t (s , t)dSt4 �
UO¯V

z(s)dm ,(3.3)

for every z�Cc (UO¯V).

As a consequence we are led to the following definition.

DEFINITION 3.1. Let u be a nonnegative solution of (3.1). A point v�¯V is called a
regular point of u if there exists an open neighborhood U of v such that (3.2) holds.
The set of regular points is denoted by R(u). It is a relatively open subset of ¯V . Its
complement, S(u) 4¯V0 R(u) is the singular set of u .

By a partition of unity, it exists a positive Radon measure m on R(u) such that

lim
tI0

�
R(u)t

u(s , t)z t (s , t)dSt4 �
R(u)

z(s)dm ,(3.4)

for every z�Cc (R(u) ). In order to be able to consider solutions of (3.1) with a strong
blow-up localized on a part the boundary, we introduce the following notions.

DEFINITION 3.2. A function g is a coercive nonlinearity in V if, for every compact
subset K%V , the set of positive solutions of (3.1) is uniformly bounded on K .

A model example of coercive nonlinearity is the following:

g(x , r) Fh(x)g(r), ((x , r) �V3R1(3.5)

where h�C(V) is continuous and positive, and f�C(R1 ) is nondecreasing, and satis-
fies the Keller-Osserman assumption

�
u

Qu �
0

t

f (s)dsv21/2

dtEQ , (uD0.(3.6)

The verification of this property is based upon the maximum principle and the con-
struction of local super solutions by the Keller-Osserman method.

DEFINITION 3.3. A function g possesses the strong barrier property at v�¯V if
there exists r0D0 such that for any 0 E rG r0 there is a positive super solution
v4vv , r of (3.1) in Br (v)OV such that v�C(Br (v)OV) and

lim
yKx
y�V

v(y) 4Q , (x�V3¯Br (v).(3.7)

If g(x , r) 4 f (r) where f satisfies the Keller-Osserman assumption, then it possesses
the strong barrier property at any boundary point. If

g(x , r) 4r(x)a r q , ((x , r) �V3R1
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for some aD22 and qD1, it possesses also the strong barrier property, but the
proof, due to Du and Guo [2], is difficult in the case aD0 (the nonlinearity is dege-
nerate at the boundary). Finally, if

g(x , r) 4exp (21/r(x) ) r q , ((x , r) �V3R1 ,

for qD1, then Marcus and Véron proved in [20] that the strong barrier property does
not hold.

The strong barrier property is used to derive that on the singular set S(u) of any
positive solution of (3.1) the integral blow-up occurs in the sense of (2.4), without
using the duality-convexity argument associated to Hölder’s inequality, and more
precisely.

PROPOSITION 3.2. Let u�C 2 (V) be a positive solution of (3.1) and suppose that
v� S(u). Suppose that at least one of the following sets of conditions holds:
I. There exists an open neighborhood U 8 of v such that u�L 1 (U 8OV).

II. (a) g(x , Q) is non-decreasing in R1 , for every x�V;
(b) )Uv , an open neighborhood of v , such that g is coercive in UvOV;
(c) g possesses the strong barrier property at v .

Then, for every open neighborhood U of v ,

lim
tK0

�
UOS t

u(x)dSt4Q .(3.8)

This proposition, jointly with Proposition 3.1, yields to the following trace result.

THEOREM 3.1. Let g be a coercive nonlinearity which has the strong barrier property
at any boundary point. Assume also that r O g(x , r) is nondecreasing on R1 for every
x�V . Then any nonnegative solution u of (3.1) possesses a boundary trace n in
�reg

1 (¯V) with

n4Tr¯V (u) B (S(u), m), where m�81 (R(u) ).(3.9)

This result applies in the particular case where g(x , r) 4r(x)a r q . Actually, in this
case, the following extension of Theorem 2.1 holds, with a more difficult proof.

THEOREM 3.2. Let V%RN be a bounded open domain of class C 2 , aD22 and
1 EqE (N111a) /(N21). Then for any n��reg

1 (¯V), there exists a unique
u�C 2 (V) solution of the problem

.
/
´

2Du1ra NuNq21 u40 in V ,

Tr¯V (u) 4n .
(3.10)

Again q4 (N111a) /(N21) is a critical value, above which conditions have to
be put on the Borel measure n in order the problem (3.10) be solvable.
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4. THE BALAYAGE METHOD

The method developed below, due to Marcus and Véron [19, 20], deals with the
definition of an extended boundary trace for positive solutions of

2Du1g(x , u) F0.(4.1)

The nonlinearity g is always supposed to be be continuous in V3R and to satisfy

g(x , 0 ) 40, (x�V ; r O g(x , r) is nondecreasing .(4.2)

The solvability of the nonlinear Dirichlet problem with Radon measures as boun-
dary data plays a key role in this approach.

DEFINITION 4.1. Let y�8(¯V). A function u4um defined in V is a solution of the
problem

.
/
´

2Du1g(x , u) 40

u4m

in V ,

on ¯V ,
(4.3)

if u�L 1 (V), g(. , u)r�L 1 (V) and the equality

�
V

(2uDz1g(x , u)z)dx42�
¯V

¯z
¯n

¯z
¯n

dm ,(4.4)

holds for every z�C 2
c (V).

Existence may not hold for any measure, but the monotonicity implies uniqueness.
Since g(x , r) F0 for (x , r) �V3R1 , um is nonnegative whenever mF0. Moreover um

satisfies (1.2) for any z�C(¯V), thus admits m as boundary trace.

DEFINITION 4.2. Given a function g as above we denote by class 8g
1 (¯V) the set of

positive Radon measures such that problem (4.3) is solvable. The function g is posi-
tively subcritical if (4.3) is solvable for any measure m�81 (¯V).

We give below some examples of positive measures belonging to the class
8g

1 (¯V) and some functions positively subcritical.

l The following implication holds

g(. , Pm ) �L 1 (V ; rdx) ¨ m�8g
1 (¯V),

since Pm is a positive super-solution such that g(. , Pm ) �L 1 (V ; rdx) of (4.1), and 0 a
solution.

l Let g(x , . ) satisfy the D 2 condition, uniformly with respect to x , that is there
exists KD0 such that

g(x , r1 s) GK(g(x , r)1g(x , s) ) (x�V , (r , sF0.

Let m4m s1m r�8g
1 (¯V), with singular part m s and regular one m r with respect to

the (N21)-dimensional Hausdorff measure, be such that

g(. , Pm s
) �L 1 (V ; rdx) ¨ m�8g

1 (¯V),

then m�8g
1 (¯V). This follows from the fact that W4Pm s

1um r
is a super-solution

and g(. , W) �L 1 (V ; rdx).
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l If there exist two continuous and nondecreasing functions h and f defined on
R1 such that

.
/
´

0 Gg(x , r) Gh(r(x) ) f (r), ((x , r) �V3R1 ,

s
0

1

h(s) f (ss 12N ) s N dsEQ , (sF0,

either h(s) 4 s a , for some aF0, or f is convex.

(4.5)

It is proven in [19] that the following existence and stability theorem holds.

THEOREM 4.1. For any m�81 (¯V), Problem (4.3) admits a unique solution u4um .
Moreover the problem is stable, in the sense that if ]m n( %81 (¯V) converges to m in
the weak sense of measures on ¯V , the sequence of corresponding solutions um n

con-
verge to um , locally uniformly in V.

The balayage method is based upon the following result the proof of which follows
by Kato’s inequality, by using the monotonicity of g(x , . ) and Doob’s theorem on su-
per-harmonic functions.

PROPOSITION 4.1. Let g satisfy (4.2) and u�C(V) satisfy (4.1), then for any
m�8g

1 (¯V),

wm4 min ]u , um(

is a nonnegative super solution of (4.1) which admits a boundary trace g u (m) �
�8g

1 (¯V). Moreover the correspondence m O g u (m) is nondecreasing and

0 Gg u (m) Gm .

As a consequence there holds,

THEOREM 4.2. Let g and u be as in Proposition 4.1. Then the formula

n4 sup
m�8g

1 (¯V)
g u (m),(4.6)

defines a generalized positive Borel measure on ¯V .

This measure n may not be a regular one since the localization property may not
hold. It is by definition the extended boundary trace of u and denoted by

n4Tr e
¯V (u).(4.7)

If we denote by u * the largest solution of (3.1) dominated by u , there holds

Tr e
¯V (u) 4Tr e

¯V (u *).(4.8)

REMARK 4.1. But for some particular cases that we shall see later on, it is unknown
if the extended boundary trace is a boundary trace in the previous sense.

If we assume that g is positively subcritical, all the positive Radon measures m can
be used to define the extended boundary trace, in particular the Dirac masses. Since
g(x , . ) is nondecreasing, the same property holds for m O um , the solution of (4.3). If
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v�¯V we put

uQ , v4 lim
kKQ

ukd v
.(4.9)

Then uQ , v is a solution of (3.1) on ]x�V : uQ , v (x) EQ(. This set may be whole V
if g satisfies the Keller-Osserman condition. Thus

wkd v
4 min ]u , ukd v

( Gukd v
¨ supp . (g u (kd v ) ) 4 ]v(.

Then

g u (kd v ) 4 gAu (k , v)d v ,

where k O gAu (k , v) is nondecreasing. We set

gAu (v) 4 lim
kKQ

gAu (k , v).(4.10)

Since wkd v
is a super solution with boundary trace gAu (k , v)d v it dominates ugAu (k , v)d v

.
Therefore

ugAu (k , v)d v
Gu , (kF0 ¨ ugAu (v)d v

Gu ,

for every v�¯V .

PROPOSITION 4.2. Let g be positively subcritical and u satisfy (4.1) with extended
boundary trace n . Then

uFuQ , v ¨ n(v) 4Q .(4.11)

If we suppose moreover that g satisfies (4.5), then

n(v) 4Q ¨ uFuQ , v .(4.12)

We define the atoms of u as the boundary points v such that gAu (v) D0, the singu-
lar set of u as the closed subset S(u) of v�¯V such that

!
u� O

gAu (u) 4Q , ( O �8v ,(4.13)

where 8v is the set of relatively open neighborhoods of v included in ¯V , and the reg-
ular set of u as the relatively open subset R(u) of v�¯V such that there exists O �8v

such that

!
u� O

gAu (u) EQ .(4.14)

The real numbers gAu (v) play also an important role in the description of the point-
wise boundary behaviour of any positive solution of (4.1). We recall the following
notion.

DEFINITION 4.3. A set of m-measurable functions x O c r (x) (rD0), defined over a
measured space (E , S , m), with finite m-mass, converges in measure to c when rK0,
if for any eD0 there holds

lim
rK0

m]x�E : Nc r (x)2c(x)NDe( 40.

The functions c r converges in measure to Q , if for any kD0,

lim
rK0

mmx�E : c r (x) Gkn40.
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The convergence is equivalent to the following statement: from any sequence ]rn(

converging to 0 one can extract a subsequence ]rnk
( such that c rnk

converges to c
(or Q), m-a.e. in E .

DEFINITION 4.4. We say that the coordinates are proper at v4 (v 1 , R , v N ) �¯V
relatively to V if the plane x12v 140 is tangent to ¯V at v , and that the inward
pointing vector to ¯V is the direction x12v 1D0.

THEOREM 4.3. Assume g satisfies (4.2) is positively subcritical, u is a nonnegative
solution of (4.1) and v�¯V . If the coordinates are proper at v relatively to V , the fol-
lowing alternative holds. Either

(i) gAu (v) is finite and the following convergence holds

lim
xKv

(x12v 1 )/Nx2vNKh 1

Nx2vNN21 u(x)2C(N) gAu (v)h 140,(4.15)

in measure on S N21
1 ,

or

(ii) gAu (v) is infinite and

lim
xKv

Nx2vNN21 u(x) 4Q ,(4.16)

in measure on S N21
1 .

Finally, we recover the classical definition of the boundary trace if we assume that
g is not degenerate near the boundary in the sense that there exists a continuous non-
decreasing function f defined on R1 such that

.
/
´

0 Gg(x , r) G f (r), ((x , r) �V3R1 ,

s
0

1

f (s 12N ) s N dsEQ .
(4.17)

THEOREM 4.4. Assume g satisfies (4.2) and (4.17) and u is a nonnegative solution of
(4.1) with extended boundary trace n . Then for any v�¯V the following dichotomy oc-
curs. Either,

(i) n(O)4Q for any O �8v . In this case v� S(u) and uFuQ , v . Consequently

lim
tK0

�
Ot

u(y)dSt4Q , ( O �8a .(4.18)

Or

(ii) there exists O �8v such that n(O) EQ . In this case v� R(u) and

sup
0 E tGb 0

�
O8t

u(y)dStEQ ,(4.19)
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for relatively every open subset O8% O8 % O. Furthermore

lim
tK0

�
S t

u(y)f(s(y) )(y)dSt4 �
R(u)

f(y)dn(y),(4.20)

for every f�Cc (R(u) ).

A consequence of this result due to Marcus and Véron is that the extended boun-
dary trace is an outer regular Borel measure which coincides with the usual boundary
trace.

REMARK 4.2. (i) If g(x , r) 4 r q , inequality (4.17) is verified if and only if
1 EqE (N11)/(N21).

(ii) If g(x , r) 4r(x)a r q , condition (4.5) holds if and only if aD22 and
1 EqE (N111a) /(N21). In that case the it follows from Section 2 that the ex-
tended boundary trace coincides with the boundary trace.

(iii) If g(x , r) 4exp (21/r(x) ) r q with qD1, then the condition (4.5) holds, but
not the barrier property. More precisely (see [19]), for any v�¯V , the function
uQ , v4 lim

kKQ
ukd v

satisfies

.
/
´

2Du1exp (21/r(x) )u q40 in V ,

lim
r(x) K0

u(x) 4Q .(4.21)

Thus uQ , v is a large solution. Moreover, by using the techniques introduced in [12]. It
can be proved that this problem admits a unique solution u4uM . Thus either the ex-
tended boundary trace is a bounded Borel measure, or u4uM .
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