ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

MAURO COSTANTINI, GIOVANNI ZACHER

K-groups and wreath products

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **16** (2005), n.4, p. 239–250.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_4_239_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2005.

Mauro Costantini - Giovanni Zacher

K-GROUPS AND WREATH PRODUCTS

To Guido Zappa on the occasion of his 90th birthday

ABSTRACT. — We give criteria for a wreath product to have complemented subgroup-lattice.

KEY WORDS: Complemented group; Wreath product; Subgroup lattice.

A group *G* is called a *K*-group if its subgroup lattice $\ell(G)$ is a complemented lattice. For basic information concerning *K*-groups we refer the reader to [9, §3 n. 1]. While finite simple groups are *K*-groups, [2], and while the structure of solvable *K*-groups is well understood [11], a characterization of all finite *K*-groups is still missing. The purpose of the present paper is to give a contribution in this direction, by establishing several criteria for a wreath product *G* of *L* by *H*, $G = L \wr H$, to be a *K*-group.

The paper is divided in 4 sections. Section 1 contains preliminaries of general nature and shows how to reduce the classification of *K*-groups to the case where the solvable radical S(G) of *G* is trivial. In section 2, we give relevant structural information on the *H*-invariant subgroups of the interval $[B/\Delta B]$, where *B* is the base group of *G* and ΔB is the diagonal subgroup of *B*: Propositions 2.3 and 2.4 are central for our applications. In section 3 and 4 are presented several criteria which guarantee that a wreath product is a *K*-group; particular relevance in this regard have Theorems 3.2, 3.5, 3.8 and 4.2.

The notation is mainly standard; in case of special symbols, we shall define them when first needed in the course of exposition. We emphasize that throughout the paper H stands for a transitive permutation group of degree $n \ge 2$ on a set Ω whose elements are either the digits $1, 2, \ldots, n$ or the right cosets $H_i h$ with H_i the stabilizer of i and $h \in H$. All groups are meant to be finite.

1. We recall that in a K-group G, an interval [E/D] is a complemented lattice as soon as D is a Dedekind subgroup ([9], 2.1) and E is a dual-Dedekind subgroup ([9], 2.4) of G; moreover if $A \leq B \leq G$ with A normal in G and B subnormal in G, then the Frattini subgroup $\Phi(B/A)$ is trivial. In particular the generalized Fitting subgroup $F^*(G)$ is a direct product of simple groups. Useful in this context is the well known statement:

(1.1) Let A be a nilpotent subnormal subgroup of a group G. Then $A^G \Phi(G)/\Phi(G)$ is a direct product of minimal normal subgroups of $G/\Phi(G)$ and has a complement in $G/\Phi(G)$ [4, 12].

PROPOSITION 1.1. Let S be a solvable subnormal subgroup of G. Then G is a K-group if and only if G/S^G is a K-group and $\Phi(G/F_i(S^G)) = 1$ for all terms of the ascending Fitting series of S^G .

PROOF. The necessity is clear. Conversely, let *G* be a minimal counterexample. Then $S \neq 1$ and, since $\Phi(G) = 1$, by (1.1) we have $G = F(S^G) : C$, where $F(S^G)$ is a direct product of minimal normal subgroups, while $C \cong G/F(S^G)$ is a *K*-group. But then, by [9] 3.1.9, *G* itself is a *K*-group, a contradiction.

COROLLARY 1.2. The group G is a K-group if and only if: i) G/S(G) is a K-group, and ii) $\Phi(G/F_i(S(G))) = 1$ for all i's.

As one may note, Corollary 1.2 reduces the study of K-groups essentially to the semisimple case.

COROLLARY 1.3. Let G be a K-group and $N \trianglelefteq G$. Then N is a K-group if and only if N/S(N) is a K-group.

PROOF. Assume N/S(N) a K-group and N a minimal counterexample. Then $S(N) \neq 1$ and, since G/F(S(N)) is a K-group, such is N/F(S(N)). Moreover $\Phi(N) \leq \Phi(G) = 1$ so that, by (1.1), N = F(S(N)) : C, with F(S(N)) a direct product of minimal normal subgroups of N, while C is a K-group. But then N is a K-group by [9] 3.1.9, a contradiction.

By Corollary 1.3, if R is subnormal in S(G) and G is a K-group, then R is a K-group.

Given a non-trivial group L, let L^{Ω} be the group of all functions of Ω in L, group which can be identified with the direct product B of n copies of L, $B = L_1 \times \cdots \times L_n$. The position $f^b(\omega) = f(\omega^{b^{-1}})$ defines a right action of b on L^{Ω} . The semidirect product G of Bby H defined by $(f, b)(f_1, b_1) = (g, bb_1)$, with $g = ff_1^b$, is called the *wreath product* of L by H and is denoted by $G = L \wr H = B : H$. The group $B = L^{\Omega}$ is called the *base group* and the subgroup ΔB of constant functions is called the *diagonal subgroup*. The group Hpermutes the elements of $\{L_1, \ldots, L_n\}$ via conjugation according to the rule $L_i^b = L_{i^b}$. We recall that $H_G = 1$, $C_G(B) = Z(B)$, $C_G(H) = Z(H) \times \Delta B$, $N_G(H) = H \times \Delta B$, while H_i is the normalizer as well as the centralizer of L_i in H.

(1.2) Given $G = L \wr H$, assume $S(L) \neq L$. Then $\Phi(G) \leq S(G) = S(B) \cong (S(L))^n$.

PROOF. We have $G/S(B) \cong (L/S(L)) \wr H$ and $S(G) \cap B = S(B)$; hence $S(G)/S(B) \leq C_{G/S(B)}(B/S(B)) \leq B/S(B)$, since $S(L) \neq L$.

PROPOSITION 1.4. Given $G = L \wr H$ we have

a) if G is a K-group then $(L/S(L)) \wr H$, H and S(L) are K-groups. L itself is a K-group if (and only if) L/S(L) is a K-group.

K-GROUPS AND WREATH PRODUCTS

b) G is a K-group if and only if $(L/S(L)) \wr H$ is a K-group and $\Phi((L/F_i(S(L)) \wr H) = 1$ for all i's.

PROOF. a) Since $G/S(B) \cong (L/S(L)) \wr H$ and $H \cong G/B$, they are K-groups and, by Corollary 1.3, such is S(B) and so is S(L). Also, again by Corollary 1.3, B is a K-group if and only if B/S(B) is a K-group, so that L is a K-group if and only if L/S(L) is a K-group.

b) By Proposition 1.1, G is a K-group if and only if G/S(B) is a K-group and $\Phi(G/F_i(S(B))) = 1$ for all *i*'s, and we are done since $G/F_i(S(B)) \cong (L/F_i(S(L))) \wr H$. \Box

Given a group G and a subgroup X, the interval [G/X] is called *monocoatomic* with *coatom* M if M is the unique maximal subgroup of G containing X. For later references we recall the following criterion established in [2].

PROPOSITION 1.5. Let $\{[G/X_i]\}_i$ be a family of monocoatomic intervals with $\{M_i\}_i$ the family of its coatoms. Then G is a K-group if each X_i is a K-group and $(\cap_i M_i)_{P(G)} = 1$, P(G) being the group of all autoprojectivities of G.

2. Given $G = L \wr H$ and a non-empty subset I of Ω , set $\Delta_I = \{(x_1, \ldots, x_n) \in B \mid x_i = x_j \text{ for all } i, j \in I\}$. Thus Δ_I is the subgroup of B of all functions constant on I: we have $\Delta_I = \Delta(\underset{k \in I}{\times} L_k) \times \prod_{k \notin I} L_k \cong L^{|\Omega \setminus I|+1}$ and, for $b \in H$, $\Delta_I^b = \Delta_{I^b} = \Delta(\underset{k \in I}{\times} L_k) \times \prod_{k \notin I^b} L_k = \Delta(\underset{k \in I}{\times} L_k^b) \times \prod_{k \notin I^b} L_k$. The following intersection formulas hold for non-empty subsets I, J of Ω

$$\Delta_{I} \cap \Delta_{J} = \begin{cases} \Delta_{I \cup J} & \text{if } I \cap J \neq \emptyset \\ \Delta(\underset{k \in I}{\times} L_{k}) \times \Delta(\underset{k \in J}{\times} L_{k}) \times \prod_{k \notin I \cup J} L_{k} & \text{if } I \cap J = \emptyset \end{cases}$$

The map $X \mapsto X \cap B$ defines an isomorphism of [G/H] onto the lattice $[B/1]_H$ of Hinvariant subgroups of B; in what follows we are mainly interested in describing the structure of maximal subgroups as well of maximal H-invariant subgroups of B. If one puts $\hat{L}_i = \{f \in L^{\Omega} \mid f(i) = 1\}$, then $\hat{L}_i \triangleleft \hat{L}_i \varDelta B = B$ and $X \mapsto X \cap \hat{L}_i$ defines an isomorphism of $[B/\varDelta B] \rightarrow [\hat{L}_i/1]_{\varDelta B}$. For $T \leq B$ we set $T^u = \underset{i \in I}{\times} T^{\pi_i}$, with $\pi_i : B \rightarrow L_i$ the projection map, and $T_\ell = \underset{i \in I}{\times} T_i$, $T_i = L_i \cap T \triangleleft T$. T is called a *standard subgroup* of Bif $T = T^u (= T_\ell)$ and non-standard otherwise: since $(\varDelta B)^u = B$, all elements of $[B/\varDelta B]$ different from B are non-standard subgroups. Clearly a standard subgroup T of B is Hinvariant if and only if $T_i^b = T_{i^b}$ for all i's and it is a maximal standard H-invariant subgroup of B if moreover $T_i < L_i$.

According to [10, §1], to get a maximal subgroup F in $[B/\Delta B]$ one can proceed in the following way: consider in B an H-invariant standard subgroup $S = S_1 \times \cdots \times S_n$, $S_i^b = S_{i^b}$, with S_i maximal normal in L_i , and set $F = R \times \prod_{\substack{k \notin u \\ k \notin u}} L_k$, $u = \{r, s\}$, $R = (S_r \times S_s) \Delta(L_r \times L_s)$. Then F is a maximal subgroup of B containing ΔB . We are

now interested in determining the structure of F_H . To this end, we introduce the set \mathcal{U} of all subsets of Ω of cardinality 2. On \mathcal{U} we define a relation ~ by setting

(**) $u \sim v$ if there exist sequences u_0, \ldots, u_t in \mathcal{U} and h_1, \ldots, h_t in H, t > 0,

such that $u_{i-1}^{b_i} = u_i$ and $u_{i-1} \cap u_i \neq \emptyset$ for all i > 0.

Clearly ~ is an equivalence relation, and it is an *H*-congruence [3, Exercise 1.5.4], in the sense that $u \sim v$ if and only if $u^b \sim v^b$: hence *H* acts on the quotient space \mathcal{U}/\sim . We note that $u \sim v$ implies $v = u^b$ for some $b \in H$.

LEMMA 2.1. Given $u \in U$, let V be the congruence class of u and let $V^H = \{U_i\}_{i \in I}$ be the orbit of V in U/\sim . Then

a) if $\{r, s\} \in U_i$ and $\{r, s'\} \in U_j$, with $i, j \in I$, then i = j;

b) for $i \in I$, set $\Omega_i := \underset{v \in \mathcal{U}_i}{\times} v \subseteq \Omega$. Then $\{\Omega_i\}_{i \in I}$ is a complete system of (imprimitivity) blocks for H with $\Omega_i = \Omega_j$ if and only if i = j, $H_{\mathcal{U}_i} = H_{\Omega_i}$, $|I| = |H: H_{\Omega_i}|$, $|\Omega_i| = |H_{\Omega_i}: H_r|$, $r \in \Omega_i$.

c) let $i \in I$ be such that $u \in U_i$, and let $r \in u$. Then Ω_i is the intersection of all blocks for H containing u or, equivalently, if $u = \{H_r, H_rx\}$, then $\Omega_i = \{H_r h \mid h \in \langle H_r, x \rangle\}$; Ω_i is a minimal block [3, Example 1.5.1] if and only if $H_r < \langle H_r, x \rangle$.

PROOF. a) Let $h \in H$ be such that $\mathcal{U}_i^b = \mathcal{U}_j$. Then $\{r, s\}^b \sim \{r, s'\}$, so that $\{r, s'\} = \{r, s\}^{bb'}$ for a certain $b' \in H$; but then $\{r, s\} \sim \{r, s'\}$, *i.e.* $\mathcal{U}_j = \mathcal{U}_i$, and j = i.

b) Assume $r \in \Omega_i \cap \Omega_j$. Then $\{r, s\} \in \mathcal{U}_i, \{r, s'\} \in \mathcal{U}_j$ for certain s, s', so by a), i = j. Let $h \in H_{\Omega_i}$ and let $\mathcal{U}_i^b = \mathcal{U}_j$. Then $\Omega_i = \Omega_i^b = \bigcup_{v \in \mathcal{U}_j} v = \Omega_j$, so i = j, and $\mathcal{U}_i^b = \mathcal{U}_i$.

c) Let $\overline{\Omega}$ be the intersection of all blocks containing u, and suppose $\overline{\Omega} \subset \Omega_i$. Then there exists a $v \in \mathcal{U}_i$ such that $v\overline{\Omega}$. Since $u \sim v$, there are sequences (u_i) , (b_i) as in (**). Hence there exists j such that $u_{j-1} \in \overline{\Omega}$, but $u_j \notin \overline{\Omega}$, but this is a contradiction, since $u_j = u_{j-1}^{b_j}$, so that $\overline{\Omega} \cap \overline{\Omega}^{b_j} \supseteq u_{j-1} \cap u_j \neq \emptyset$. Therefore $\Omega_i = \overline{\Omega}$. If $r \in u$ and we identify uwith $\{H_r, H_r x\}$ (for a certain $x \in H \setminus H_r$), then the minimal block containing u has setwise stabilizer the subgroup $\langle H_r, x \rangle \in [H/H_r]$ [3, Theorem 1.5A], that is $\Omega_i = \{H_r b \mid b \in \langle H_r, x \rangle\}$. The conclusion follows.

For simplicity and without loss of generality, further on we shall assume that $u = \{1, r\}$ and call U_1 the congruence class of u.

LEMMA 2.2. Set $\Omega_1 = \bigcup_{v \in U_1} v$, $F = \Delta_u$. Then a) $F_{H_{U_1}} = F_{H_{\Omega_1}} = \Delta_{\Omega_1}$; b) $F_{(H_{\Omega_1})b} = F^b_{H_{\Omega_1}} = \Delta_{\Omega_1^b}$.

PROOF. a) We have $H_{\mathcal{U}_1} = H_{\Omega_1}$ by Lemma 2.1 b). For $b \in H_{\mathcal{U}_1}$, we get $F^b = \Delta_{u^b}$ with $u \sim u^b$; so if (u_i) , (b_i) are sequences as in (**), using (*) we get

$$F \wedge F^{\flat} \geq \varDelta_{u_0=u} \wedge \cdots \wedge \varDelta_{u_n=u^{\flat}} \geq \varDelta_{\Omega_1}.$$

Since Δ_{Ω_1} is H_{Ω_1} -invariant, we get $F_{H_{\Omega_1}} \ge \Delta_{\Omega_1}$. But since $\Omega_1 = \bigcup_{b \in H_{\mathcal{U}_1}} u^b$, also the other inclusion holds.

b)
$$F_{(H_{\Omega_1})b} = F_{(H_{\mathcal{U}_1})b} \bigwedge_{y \in H_{\mathcal{U}_1} b} F^y = \left(\bigwedge_{x \in H_{\mathcal{U}_1}} F^x\right)^b = \varDelta_{\Omega_1^b}.$$

PROPOSITION 2.3. Set $H = \bigcup_{1 \le i \le m} H_{\Omega_1} h_i$, with $h_1 = 1$, $F = \Delta_u$. Then

a)
$$F_H = \underset{1 \le i \le m}{\times} \mathcal{A}(\underset{k \in \mathcal{Q}^{h_i}}{\times} L_k) \cong L^m, \ \mathcal{A}B \le F_H, \ F_H \land L_i = 1;$$

b) there exists an order-inverting embedding φ of $[H/H_1]$ into $[B/\Delta B]_H$ such that $X^{\varphi} \wedge L_i = 1$ for all i's, if $X \neq H_1$.

c) if L is simple non-abelian, then $(F_HH)_G = 1$.

PROOF. a) $F_H = \bigwedge_{1 \le i \le m} F_{H_{\Omega_1} b_i} = \bigwedge_i F_{H_{\Omega_1}}^{b_i} = \bigwedge_i \Delta_{\Omega_1}^{b_i} = \underset{1 \le i \le m}{\times} \Delta(\underset{k \in \Omega_1^{b_i}}{\times} L_k) \cong L^m$ using Lemma 2.2 b).

b) For $X \in [H/H_1]$ consider the imprimitivity system $\{\overline{\Omega}_j\}_{1 \le j \le m}$ determined by X. Then the map $\varphi: X \mapsto \underset{1 \le j \le m}{\times} \Delta(\underset{k \in \overline{\Omega}_j}{\times} L_k)$ has the required properties.

c) Set $N = (F_H H)_G$. Then $N \wedge B = 1$, hence $N \leq C_G(B) = 1$.

COROLLARY 2.4. Let T be an element of $[B/\Delta B]_H$ such that $\overline{L}_i = L_i/L_i \wedge T$ is simple non-abelian. Then T is a maximal element in $[B/\Delta B]_H$ if and only if $T/T_\ell = \underset{1 \leq i \leq m}{\times} \Delta(\underset{k \in \Omega_i}{\times} \overline{L}_k)$, where $m = |H : H_{\Omega_1}|$ and $\{\Omega_i\}$ is a complete system of minimal blocks for H, afforded by an $R \in [H/H_1]$ such that $H_1 < R$.

PROOF. The sufficiency is clear from our previous discussion. Assume now that *T* is a maximal element in $[B/\Delta B]_H$. Since $T \neq B$, there exists $u = \{1, r\}$ such that $T/T_\ell \leq F/T_\ell = \Delta_u T_\ell/T_\ell = \Delta(\overline{L}_1 \times \overline{L}_r) \times \prod_{k \neq u} \overline{L}_k < B/T_\ell$. So $T \leq F_H \in [B/\Delta B]_H$ implies $T = F_H$ and T/T_ℓ has the indicated structure by Proposition 2.3 *a*). Moreover, since *T* is maximal *H*-invariant, according to Lemma 2.1*c*), $\Omega_1 = \{H_1 b \mid b \in R\}$, with $H_1 < R$. The conclusion follows.

COROLLARY 2.5. Let $F = \Delta_u$, $u = \{H_1, H_1x\}$. Then

a) $F_H = \Delta B$ if and only if $H = \langle H_r, x \rangle$ i.e. $x \notin \bigcup M_i$, $H_1 \leq M_i \lt H$. b) if H is primitive and L is a non-abelian simple group then $[B/\Delta B]_H$ has length 1.

PROOF. *a*) By Proposition 2.3 *a*), $F_H = \Delta B$ if and only if $H_{\Omega_1} = \langle H_r, x \rangle = H$. *b*) follows from Corollary 2.4.

REMARK 2.1. We note that in general if $[B/\Delta B]_H$ has length 1, then H is primitive and L is simple, since then, by Proposition 2.3 b), we have $H_1 < H$ and, if $S \triangleleft L$, then $S \wr H \in [B/\Delta B]_H$. However, in the other direction, if L is not assumed to be non-abelian,

then $[B/\Delta B]_H$ may have length greater than 1. Consider the following example: let $L = C_p$, $H = \langle (12 \dots n) \rangle$. Then $H_1 = \{1\} < H$ if and only if *n* is prime. Assume now n = 3. Then the cardinality *h* of $[B/\Delta B]_H$ is

$$h = \begin{cases} 3 & \text{if } p = 3 \\ 2 & \text{if } p \equiv -1 \mod 3 \\ 4 & \text{if } p \equiv 1 \mod 3 \end{cases}$$

and $[B/\Delta B]_H$ has length 1 if and only if $p \equiv -1 \mod 3$.

In general, if *n* is an odd prime *q*, then $[B/\Delta B]_H$ has length 1 if and only if *q* is a primitive divisor of $p^{q-1} - 1$, that is if and only if $q \neq p$ and *q* does not divide $p^i - 1$ for $1 \leq i < q - 1$ (see [6]).

To the expression $F_H = \tilde{L}_1 \times \cdots \times \tilde{L}_m$ in Proposition 2.3 *a*), where \tilde{L}_i stands for $\Delta(\underset{k \in \Omega_i^{L_i}}{\times} L_k)$ we can associate, via conjugation, the transitive permutation representation $\theta : H \to \text{Sym}(m)$ of degree *m*. In the next lemma we collect some useful properties of θ .

LEMMA 2.6. We have:

a) ker $\theta = (H_{\Omega_1})_H$ and, if $\tilde{H} = H/\ker \theta$, then $\tilde{G} = F_H H/\ker \theta = F_H : \tilde{H} = \tilde{L} \wr \tilde{H}$, with \tilde{H} a transitive permutation group of degree deg $\tilde{H} = |H : H_{\Omega_1}| < \deg H$ acting on the complete system of blocks $\{\Omega_1^H\}$ for H on Ω .

b) if $\Phi(G) = 1$ and H is a K-group, then for any normal subgroup N of F_HH contained in ker θ , $\Phi(F_HH/N) = 1$.

PROOF. a) We have $\tilde{H}_{\tilde{G}} = 1$ and $N_{\tilde{H}}(\tilde{L}_i) = C_{\tilde{H}}(\tilde{L}_i)$, so that $\tilde{G} = \tilde{L} \wr \tilde{H}$.

b) Set $\mathcal{M} = \{X \leqslant F_H H \mid N \leq X\}$, $\mathcal{M}_{H,N} = \{X \leqslant H \mid N \leq X\}$ and $\tilde{\mathcal{M}} = \{F_H X \mid X \in \mathcal{M}_{H,N}\}$; then $F_H X \leqslant F_H H$, $F_H X \land H = X$ and $\tilde{\mathcal{M}} \subseteq \mathcal{M}$. Thus $\bigwedge_{\mathcal{M}} Y \leq \ker \theta \land (\bigwedge_{\mathcal{M}} Y) \leq H \land (\bigwedge_{\mathcal{M}} Y) = \bigwedge_{\mathcal{M}_{H,N}} Y = N$ since $\Phi(H/N) = 1$.

THEOREM 2.7. Given a group L consider $G = L \ H$. Let S_i be a maximal normal subgroup of L_i with $\overline{L}_i = L_i/S_i$ non-abelian, $S_i^h = S_{i^h}$ for each i and $S = S_1 \times \cdots \times S_n$. Then a T in [B/SAB] is H-invariant if and only if T = B or there exists a complete system of blocks $\{\Omega_i\}_{1 \le i \le m}$ for H on Ω such that $T/S = \underset{1 \le i \le m}{\times} \Delta(\underset{k \in \Omega_i}{\overline{L}_k})$.

PROOF. Assume T to be H-invariant in $[B/S\Delta B]$, and $T \neq B$. We have $S_i \leq T_i$, hence $S = T_\ell < T < T^u = B$ and by Corollary 2.4 there exists $F = S\Delta_u$, with $u = \{H_1, H_1x\}$ and $H_1 < \langle H_r, x \rangle$ such that F_H is a maximal element of $[B/\Delta B]_H$, $T/S \leq F_H/S = \underset{1 \leq i \leq m}{\times} \tilde{L}_i$, where $\tilde{L}_i = \Delta(\underset{k \in \Omega_i}{\times} L_k) \cong L$. By Lemma 2.6, $(F_H/S) : \tilde{H} = \tilde{L} \wr \tilde{H} = \tilde{G}$, $m = \deg \tilde{H} = |H : H_{\Omega_1}| < \deg H$. Let G be a counterexample with H of minimal degree. If m = 1, then $T/S = \tilde{L}_1$, a contradiction. Hence $m \geq 2$. In $\tilde{G} = \tilde{L} \wr \tilde{H}$ we have $\Delta \tilde{B} \leq T < T^u = \tilde{B}$ *i.e.* T is a proper element of $[\tilde{B}/\Delta \tilde{B}]_H$. By minimality, there exists a complete system of blocks $\{\Omega_j\}_{1 \leq j \leq s}$ for $\tilde{H}, s \leq m$ such that $T/S = \underset{1 \leq j \leq s}{\times} \Delta(\underset{k \in \Omega_i}{\times} \tilde{L}_k)$. Let d

be the cardinality of Ω_j . Then each block Ω_j is the union of d convenient blocks of $\{\Omega_i\}$: $\Omega_j = \bigcup_{\substack{1 \le i \le d \\ i \le j \le d}} \Omega_i^{(j)}$ and so Ω_j (thought as a subset of Ω) is a block $\tilde{\Omega}_j$ for H with $|\tilde{\Omega}_j| = d | H_{\Omega_1} : H_1 |$ and $T/S = \underset{1 \le j \le s}{\times} \Delta(\underset{k \in \tilde{\Omega}_j}{\times} L_k) \cong L^s$, a contradiction. The converse is clear by Proposition 2.3 b).

(2.1) Given $G = L \wr H$, we have $(\Delta B \times H)_G = 1$ if and only if Z(L) = 1.

PROOF. $Z(L) \cong Z(\Delta B) \leq \Delta B \times H$ and since $Z(\Delta B) \triangleleft G$, $(\Delta B \times H)_G \neq 1$ if $Z(L) \neq 1$. Assume now Z(L) = 1 and $(\Delta B \times H)_G = N \neq 1$. If $N \land B = 1$ we get $N \leq C_G(B) \leq B$, *i.e.* $N \leq Z(B)$, a contradiction. So $D = N \land B \neq 1$ and since $N \leq \Delta B \times H$ we have $D \leq (\Delta B \times H) \land B = \Delta B$ and $D \triangleleft G$. Take a non-trivial element $(d, \ldots, d) \in D$ and pick $1 \neq (\ell_1, 1, \ldots, 1) \in B$. Then $(\ell_1, 1, \ldots, 1)^{-1}(d, \ldots, d)(\ell_1, 1, \ldots, 1) = (d^{\ell_1}, d, \ldots, d) \in D$, *i.e.* $d^{\ell_1} = d$ for all $\ell_1 \in L$ so $d \in Z(L) = 1$, a contradiction. Therefore N = 1.

3. We begin with

LEMMA 3.1. Let L be a simple non-abelian group and assume that H has a maximal corefree subgroup M_0 . For $R \le M_0$, let H_R denote the (faithful) right coset representation of H afforded by R. Then $G_R = L \wr H_R$ is a K-group if and only if H is a K-group.

PROOF. We begin with $R = M_0$. By Corollary 2.5 b), ΔB is a maximal element in $[B/\Delta B]_H$, hence $\Delta B \times H$ is a maximal K-subgroup of G_R , since $\Delta B \cong L$. By (2.1) $(\Delta B \times H)_G = 1$, hence by Proposition 1.5, G is a K-group. For $R \leq M_0$, assume that G_R is a counterexample and choose R with $|H:R| \neq 1$ minimal. Thus $R \neq M_0$ and we can take $u = \{R, Rx\}$ with $R < \langle H_r, x \rangle = A \leq M_0$. Then for $F = \Delta_u$, F_{H_R} is, by Corollary 2.4, a maximal element in $[B/\Delta B]_{H_R}$, hence $F_{H_R}H_R < G$. According to Lemma 2.6, $F_{H_R}H_R \cong \tilde{L} \wr \tilde{H}$, with $\tilde{H} \cong H$ since ker $\theta = A_H = 1$ and deg $\tilde{H} = |H:A| < \langle |H:R| = \deg H_R$. By the minimality assumption, $\tilde{L} \wr \tilde{H}$ is a K-group and by Proposition 2.3 c), $(F_{H_R}H_R)_G = 1$. But then by Proposition 1.5, G_R is a K-group, a contradiction.

THEOREM 3.2. Let L be a given group such that L/S(L) is a direct product of simple groups and let H be a group with a maximal core-free subgroup M_0 . Then for every $R \le M_0$, G_R is a K-group if and only if H is a K-group and $\Phi(G/F_i(S(B))) = 1$ for all i's.

PROOF. The necessity follows from Proposition 1.4 *a*); actually, in our case, *L* itself is a *K*-group by Corollary 1.3, since L/S(L) is a *K*-group by [2]. Conversely, by Proposition 1.4 b), we may assume S(L) = 1, *i.e.* $L = S_1 \times \cdots \times S_t$, S_i 's simple non-abelian groups. We have to investigate $G_R = L \wr H_R = B : H_R = (B_1 \times \cdots \times B_t) : H_R$, B_i the base group of $S_i \wr H_R$, with *H* a *K*-group. If t = 1, the conclusion follows by Lemma 3.1. We assume now t > 1 and use induction on t. Thus $\hat{B}_i : H_R$ is a *K*-group for all *i*'s, where $\hat{B}_i = B_1 \times \cdots \times B_i \times \cdots \times B_t$. Assume, to begin, $R = M_0$ and set $F_i = \Delta B_i \times \hat{B}_i H_R$.

Since, by Corollary 2.5, $\Delta B_i \times H_R < B_i H_R$, F_i is a maximal K-subgroup of G_R . Now by (2.1) $(F_i)_G = \hat{B}_i$, so $\wedge (F_i)_G = \wedge \hat{B}_i = 1$ and therefore by Proposition 1.5, G_R is a Kgroup. For a contradiction, assume that there exists an $R \leq M_0$ such that G_R is not a Kgroup; choose R such that |H : R| is minimal. From what just seen, $R \neq M_0$. Let x be an element of M_0 such that $R < \langle H_r, x \rangle = A \leq M_0$; set $u = \{R, Rx\}$ and for a fixed $1 \leq i \leq t$, consider $M_i = \Delta_u < B_i$ and define $\tilde{M}_i = M_i \times \hat{B}_i$. Then $\tilde{M}_i < B$ and $(\tilde{M}_i)_{H_R}$ is a maximal element of $[B/\Delta B_1 \times \cdots \times \Delta B_i]_{H_R}$ (see Proposition 2.3 and Corollary 2.4), thus $(\tilde{M}_i)_{H_R}H_R < G$. According to Lemma 2.6, $(\tilde{M}_i)_{H_R}H_R/\ker \theta_i \cong \tilde{L} \wr \tilde{H}, \tilde{L} \cong L$; here $\ker \theta_i = A_H = 1$ and $\deg \tilde{H} = |H : A| < |H : R|$. So, by the minimality assumption, $X_i = (\tilde{M}_i)_{H_R}H_R$ is a maximal K-subgroup of G_R . Since, by Proposition 2.3 c), $((\tilde{M}_i)_{H_R}H_R)_G = \hat{B}_i$ and $\wedge \hat{B}_i = 1$, by Proposition 1.5, G_R is a K-group, a contradiction.

We recall that given a permutation group *L* on a set Γ , the group $G = L \wr H$ becomes a permutation group on Γ^{Ω} via the *product action* by setting $\rho^{(f,b)}(\omega) = (\rho(\omega^{b^{-1}}))^{f(\omega^{b^{-1}})}$. The group *G* turns out to be a primitive group as soon as *L* is primitive not regular (see [3, 2.7A]).

COROLLARY 3.3. Let $\{H_i\}_{1 \le i \le \nu}$, $t \ge 2$, be a family of simple non-abelian primitive permutation groups on the sets Ω_i and let $L_i = H_i \times H_i$ be the primitive permutation group on the set $\Gamma_i = \{\Delta(H_i \times H_i)b \mid b \in L_i\}$. Then

a) $H = H_1 \wr (H_2 \wr (H_3 \wr \cdots) \cdots)$ in its product action is a primitive K-group;

b) $H = L_1 \wr (L_2 \wr (L_3 \wr \cdots) \cdots)$ in its product action is a primitive K-group.

PROOF. *a*) for t = 2 the primitive group $H_1 \wr H_2$ is a *K*-group by Lemma 3.1. Using induction, $H_2 \wr (H_3 \wr \cdots)$ is a primitive *K*-group, hence the primitive group *H* is also a *K*-group by Theorem 3.2.

b) L_i is a primitive K-group, since $\Delta(H_i \times H_i) < L_i$. Thus, by Theorem 3.2, $L_1 \wr L_2$ is a K-group and, as in case *a*), with an induction argument, one reaches the conclusion.

We like to point out that Corollary 3.3 in combination with Theorem 3.2 allows to construct further examples of *K*-groups.

PROPOSITION 3.4. Let L be a group such that L/S(L) is simple and H a direct product of simple groups. Then $G = L \wr H$ is a K-group if and only if $\Phi(L/F_i(S(L))) \wr H) = 1$ for all i's.

PROOF. The necessity follows from Proposition 1.4 b). For the converse, we note that H is a K-group and by Proposition 1.4 b), we may assume S(L) = 1. Pick $u = \{1, r\}$, $F = \Delta_u$, so that F < B and $F_H H < G$. For a contradiction, assume that G is not a K-group, and take a counterexample with minimal deg H. Applying Lemma 2.6, we get $F_H H = \tilde{L} \wr \tilde{H} \times \ker \theta$, since $H = \ker \theta \times R$, and deg $\tilde{H} < \deg H$. By minimality reasons,

 $L \wr H$ is a K-group, hence $F_H H$ itself and by Proposition 2.3 c) $(M_H H)_G = 1$. So by Proposition 1.5, G is a K-group, a contradiction.

THEOREM 3.5. Let L be a group such that L/S(L) is simple and H be a group whose proper normal subgroups are solvable. Then $G = L \wr H$ is a K-group if and only if H is a K-group and $\Phi(G/F_i(S(B))) = 1$ for all i's.

PROOF. The necessity follows from Corollary 1.2 and (1.2). For the converse, by Proposition 1.4 b), we may assume L simple non-abelian. For a contradiction assume G is a counterexample with deg H minimal and pick $u = \{1, r\}$ such that $\Delta B \leq F = \Delta_u < B$ and $F_H H < G$. Since by Lemma 2.6 $F_H H / \ker \theta \cong \tilde{L} \wr \tilde{H}$, $\tilde{L} \cong L$ and deg $\tilde{H} < \deg H$, by minimality reasons $F_H H / \ker \theta$ is a K-group. Since $S(\tilde{L} \wr \tilde{H}) = S(\tilde{B})$ by (1.2) and $S(\tilde{B}) = 1$, we get $\Phi(\tilde{L} \wr \tilde{H}) = 1$, $(F_H H)_G = S(F_H H) = \ker \theta$, hence $\Phi(F_H H) \leq \ker \theta$. But now by Lemma 2.6 b) $\Phi(F_H H / F_i(\ker \theta)) = 1$ for all *i*'s and so by Proposition 1.1, $F_H H$ is a maximal K-subgroup of G. Since $(F_H H)_G = 1$ by Proposition 2.3 c), by Proposition 1.5 G is a K-group, a contradiction (note that in the case $H = \ker \theta$, *i.e.* $F_H = \Delta B$, then $\Delta B \times H < B : H$ and $\Delta B \times H \cong L \times H$ is a K-group).

We recall that a transitive permutation group H is $\frac{3}{2}$ -transitive if the stabilizer H_1 has orbits of the same length on $\Omega \setminus \{1\}$. By a theorem of Wielandt [7, Theorem 3.1 *a*] a $\frac{3}{2}$ -transitive group is either primitive, or a Frobenius group.

COROLLARY 3.6. Let L be a group such that L/S(L) is simple and H a $\frac{3}{2}$ -transitive permutation group. Then $G = L \wr H$ is a K-group if and only if H is a K-group and $\Phi(G/F_i(S(B))) = 1$ for all i's.

PROOF. This follows from Theorems 3.2 and 3.5, since a Frobenius K-group is necessarily solvable (if the Frobenius complement has even order, then it has exactly one element of order 2 [3, Theorem 3.4A]). \Box

Let us denote with \mathcal{X} the class of (simple) groups of Lie type such that $G(q) \in \mathcal{X}$, $q = p^f$, f > 1, if for each divisor d of f and each prime divisor r of d, the interval $[G(p^d)/G(p^{d/r})]$ is monocoatomic and $G(p^{d/r})$ is simple (non-abelian). In [1] one can find a list of groups which are members of the class \mathcal{X} . In the following we shall denote by φ the field automorphism of G(q) induced by $x \mapsto x^p$.

LEMMA 3.7. Given $G_0 = G_0(q) \in \mathcal{X}$ and $\psi \in \langle \varphi \rangle$, set $G = G_0 : \langle \psi \rangle$. If r is a prime divisor of f and $G_0(q^{1/r}) \leq M < G_0(q)$, then the interval $[G \wr H/G_0(q^{1/r})^n H \langle \psi \rangle^n]$ is monocoatomic with coatom $M^n H \langle \psi \rangle^n$.

PROOF. $G \wr H^{\ell} = G_0(q)^n \langle \psi \rangle^n : H$. Since $M^{\psi} = M$, $[G_0(q) \langle \psi \rangle / G_0(q^{1/r}) \langle \psi \rangle]$ is monocoatomic with coatom $M \langle \psi \rangle$; but then $[G_0(q)^n \langle \psi \rangle^n / G_0(q^{1/r})^n \psi^n]_H$ is monocoatomic

with coatom $M^n \langle \psi \rangle^n$, hence $[G_0(q)^n \langle \psi \rangle^n : H/G_0(q^{1/r})^n \langle \psi \rangle^n : H]$ is monocoatomic with coatom $M^n \langle \psi \rangle^n : H$.

THEOREM 3.8. Given $G_0 = G_0(q) \in \mathcal{X}$, $q = p^f$, let ψ be an element of $\langle \varphi \rangle$, where φ is the field automorphism of G_0 induced by $x \mapsto x^p$ and set $G = G_0 : \langle \psi \rangle$, $\tilde{G} = G \wr H$ where His either primitive, or a group with all its proper normal subgroups solvable. Then \tilde{G} is a Kgroup if and only if $(G/G_0)^n$ is a direct product of minimal H-invariant subgroups and H is a K-group.

PROOF. If \tilde{G} is a K-group, then $\tilde{G}/G_0^n \cong \langle \psi \rangle \wr H$ is a K-group; in particular $\Phi(\langle \psi \rangle \wr H) = 1$ and so the necessity follows from (1.1). Conversely, since $(G/G_0)^n$ is a direct product of minimal H-invariant subgroups, $|\psi|$ is square-free. Let \tilde{G} be a counterexample with minimal q. Let r be a prime divisor of $|\psi|$. By Lemma 3.6, $[\tilde{G}/G_0(q^{1/r})^n \langle \psi \rangle^n H]$ is monocoatomic with coatom $M^n \langle \psi \rangle^n H$. Now $(M^n \langle \psi \rangle^n H)_{\tilde{G}} \land G_0(q^{n} = 1$ and since $C_{\tilde{G}}(G^n) = Z(G^n) = 1$, we get $(M^n \langle \psi \rangle^n H)_{\tilde{G}} = 1$. We claim that $G_0(q^{1/r}) \langle \psi \rangle^n H$ is a K-group. Set $\langle \psi \rangle = \langle \psi \rangle_r \times \langle \psi \rangle_r$, with ψ_r of order r. By minimality and Theorems 3.2, 3.5, $(G_0(q^{1/r}) : \langle \psi_{r'} \rangle) \wr H$ is a K-group. Moreover $(G_0(q^{1/r}) : \langle \psi_{r'} \rangle) \wr H$ acts on $\langle \psi_r \rangle^n$ as H, hence $\langle \psi_r \rangle^n$ is a completely reducible $(G_0(q^{1/r}) : \langle \psi_r \rangle) \wr H$ -module. But then, by [9, Lemma 3.1.9], $G_0(q^{1/r}) \langle \psi \rangle \wr H$ is a K-group. According to Proposition 1.5, \tilde{G} is a K-group, a contradiction.

Note that if in the primitive group H one replaces H_1 with an $R \leq H_1$, then $\tilde{G}_R = G \wr H_R$ is still a K-group as soon as $(G/G_0)^{|H:R|}$ is a completely reducible H-module and H is a K-group: in fact still Theorem 3.2 applies in the proof.

COROLLARY 3.9. Let $G_0 = G_0(q) \in \mathcal{X}$, $q = p^f$ and $\psi \in \langle \varphi \rangle$. If $G = G_0 : \langle \psi \rangle$, then $\tilde{G} = G \wr A_n$ (resp. $G \wr S_n$) is a K-group if and only if $|\psi|$ is square-free and $(n, |\psi|) = 1$.

By Theorem 3.8, \tilde{G} is a *K*-group if and only if $(G/G_0)^n$ as an A_n -group (resp. S_n -group) is a direct product of minimal normal subgroups, and this is the case if and only if $|\psi|$ is square-free and $(|\psi|, n) = 1$ [8, 5.3.4].

4. In this last section we deal with the case L = S(L). As usual $G = L \wr H$.

LEMMA 4.1. Let L be a solvable group and U a minimal normal subgroup of L. Denote by \tilde{U} the base group of $U \wr H$. Then \tilde{U} is a minimal normal subgroup of G if and only if $U \not\leq Z(L)$.

PROOF. If $U \leq Z(L)$, then $\Delta(U^n) \triangleleft G$, and $\Delta(U^n) < \tilde{U}$. Assume now $U \land Z(L) = 1$. If $H = \bigcup_i H_1 b_i$, $b_1 = 1$, then $\tilde{U} = U \times U^{b_2} \times \cdots \times U^{b_n}$. Let N be a minimal normal subgroup of G with $N \leq \tilde{U}$. Take a non-trivial element $x \in N$, hence $x = x_1 x_2 \cdots x_n$,

K-GROUPS AND WREATH PRODUCTS

 $x_i \in U^{b_i}$ for all *i*'s, and without loss of generality we may assume $x_1 \neq 1$. Pick a $g \in L \setminus C_L(U)$; then $x_1^g \neq x_1$, hence $1 \neq x_1^g x_1^{-1} = x^g x^{-1} \in N \wedge U$. Thus $\langle x_1^g x_1^{-1} \rangle^L = U \leq N$, hence $U^H = \tilde{U} \leq N$.

THEOREM 4.2. Given a solvable group L, then $G = L \wr H$ is a K-group if and only if L and $(L/L') \wr H$ are K-groups.

PROOF. By Proposition 1.4 *a*), S(L) = L is a K-group, and so is $G/(L')^n \cong (L/L') \wr H$. For the converse, let G be a minimal counterexample. Then L is not nilpotent, since $\Phi(L) = 1$ implies L' = 1. Let U be a minimal normal subgroup of L contained in $L' \neq 1$. If \tilde{U} is the base group of $U \wr H$, $G/\tilde{U} \cong (L/U) \wr H$ is a K-group for minimality reasons. If $U \leq Z(L)$, $G = \tilde{U} \times L/U \wr H$ is a K-group, a contradiction. So $U \land Z(L) = 1$; by Lemma 4.1, \tilde{U} is a minimal normal subgroup of G and we get $G = \tilde{U} : L/U \wr H$, but then by [9, 3.1.9], G is a K-group, a contradiction.

COROLLARY 4.3. For a solvable group L, $L \wr A_n$ (resp. $L \wr S_n$) is a K-group if and only if L is a K-group and (|L/L'|, n) = 1.

PROOF. The conditions (|L/L'|, n) = 1 and L a K-group implies that $(L/L')^n$ is a completely reducible A_n -module (resp. S_n -module) [8, 5.3.4].

COROLLARY 4.4. Any twisted wreath product G of the alternating group A_m by A_n in which A_m is twisted by the point-stabilizer A_{n-1} is a K-group, except when m = 3 or m = 4 and $3 \mid n$.

PROOF. By [5, 3.4], $G \cong A_m \wr A_n$ and the conclusion follows from Theorem 3.2, 3.5 and Corollary 4.3.

References

- N. BURGOYNE R. GRIESS R. LYONS, Maximal subgroups and automorphisms of Chevalley groups. Pac. J. Math., 71, 1977, 365-403.
- [2] M. COSTANTINI G. ZACHER, The finite simple groups have complemented subgroup lattices. Pac. J. Math., 213, 2004, 245-251.
- [3] J.D. DIXON B. MORTIMER, Permutation Groups. Springer-Verlag, Berlin-Heidelberg-New York 1996.
- [4] W. GASCHÜTZ, Über die Φ -Untergruppe endlicher Gruppen. Math. Z., 58, 1953, 160-170.
- [5] F. GROSS L.C. KOVACS, On normal subgroups which are direct products. J. Algebra, 90, 1984, 133-168.
- [6] B. HUPPERT, Endliche Gruppen, I. Springer-Verlag, Berlin-Heidelberg-New York 1967.
- [7] B. HUPPERT N. BLACKBURN, Finite Groups, II. Springer-Verlag, Berlin-Heidelberg-New York 1982.
- [8] P.B. KLEIDMAN M.W. LIEBECK, The subgroup structure of the finite classical groups. London Math. Soc. Lecture Notes, 129, Cambridge University Press, Cambridge 1990.

[9] R. SCHMIDT, Subgroup lattices of groups. de Gruyter, Berlin 1994.

- [10] J. THÉVENAZ, Maximal subgroups of direct products. J. Algebra, 198, 1997, 352-361.
- [11] G. ZACHER, Caratterizzazione dei gruppi risolubili d'ordine finito complementati. Rend. Sem. Mat. Univ. Padova, 22, 1953, 113-122.
- [12] G. ZACHER, Costruzione dei gruppi finiti a sottogruppo di Frattini identico. Rend. Sem. Mat. Univ. Padova, 21, 1952, 383-394.

Dipartimento di Matematica Pura ed Applicata Università degli Studi di Padova Via Belzoni, 7 - 35131 PADOVA costantini@math.unipd.it zacher@math.unipd.it