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CHAPTER 1

Introduction

In the last decades there has been considerable interest in the study of

qualitative properties of positive solutions to nonlinear elliptic Dirichlet

problems such as the following

(P )





−∆u+ λu = up x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω

where Ω is an open bounded subset of RN , λ ∈ R is a parameter and p is

either the critical Sobolev growth 2∗−1 = N+2
N−2

or a slightly subcritical

exponent.

Problem (P ) is a model case for many problems in differential geometry

(Yamabe problem, the scalar curvature problem, H-bubbles, harmonic

maps, minimal surfaces), physics (Yang-Mills connections, liquid crys-

tals, Ginzburg-Landau model for superconductivity) or even biology

(Keller-Segal aggregation model, ”shadow system” for some activator-

inhibitor models).

The existence of solutions for problem (P ) can be studied through

a variational approach, i.e. solutions can be seen as critical points

u ∈ H1
0 (Ω) of the energy functional

Eλ(u) :=
1

2

∫

Ω

|∇u|2 + λu2 − 1

p

∫

Ω

|u|p

However, classical variational tools such as the Mountain Pass, which

guarantee existence in the subcritical case, completely fail in the critical

case.

The main difficulty in dealing with problem (P ) is that the embedding

H1(RN) ↪→ L
2N
N−2 (RN) is continuous but not compact.

3



4 1. INTRODUCTION

The existence of noncompact invariant symmetry groups for such PDEs

is responsible for the noncompactness, i.e. weak but not strong con-

vergence, of Palais-Smale sequences at certain energy levels. In this

case the phenomenon of ”blow-up” solutions appears, and the study of

such solutions has been a major research issue in Nonlinear Analysis

in recent years.

Historically, the study of problem (P ) begins in 1960 when Yamabe in

[42] addresses the following question: is it possible, given a compact

Riemannian manifold (M, g) of dimension N ≥ 3, to find a metric

which is conformal to g and has constant scalar curvature?

Even if this conjecture was true, Yamabe’s original proof contained a

gap: this is why such question has become famous as the ”Yamabe

problem” (see [37]).

The link between this geometrical issue and problem (P ) is that Yam-

abe’s conjecture is equivalent to an elliptic problem with critical Sobolev

growth on manifolds.

Eventually Yamabe problem was completely solved, especially through

the works of Aubin [5] and Schoen [39], but problems such as (P )

began to raise considerable interest in research.

The first result regarding this problem is negative and is a famous

nonexistence theorem due to Pohozaev [32] in 1965: if p is critical

and the domain Ω is starshaped, problem (P ) has no solutions for any

λ ≥ 0.

In 1975 Kazdan and Warner [28] observe a singular circumstance: in

striking contrast to Pohozaev result, problem (P ) is solvable if the

domain Ω is an annulus. Both results suggested a link between the

topology of the domain and the solvability of problem (P ), but this

connection has not been fully understood yet.

In 1976 Talenti [41] proved that the radial functions

Uε,y(x) =
1

ε
2−N

2

[
N(N − 2)

N(N − 2) + |x− y|2
]N−2

2



1. INTRODUCTION 5

for any y ∈ RN and ε > 0 are the unique minimizers of the Sobolev

quotient in RN .

In fact, defining the best Sobolev constant S as

S = inf
H1

0 (Ω))\{0}

∫
Ω
|∇u|2

(∫
Ω
u

2N
N−2

)N−2
N

this infimum is attained in RN by all the Talenti functions and this

constant is indipendent of the domain Ω. In particular, S is never

attained if the domain Ω is either a bounded domain or a half space.

In 1983 Brezis and Nirenberg [11] prove that for some values of λ there

is compactness of any Palais-Smale sequence for (P ) exactly below the

energy threshold SN/2

N
. Furthermore, taking

Sλ = inf
H1

0 (Ω)\{0}

∫
Ω
|∇u|2 + λu2

(∫
Ω
u

2N
N−2

)N−2
N

this infimum is attained (and thus (P ) has at least a minimal solution)

if and only if Sλ < S.

Their beautiful result is the following

Theorem 1.1. Let N ≥ 3 and Ω ⊂ RN be a domain (in particular

bounded). Let λ1 be the first eigenvalue of the Laplacian −∆ with

homogeneous Dirichlet condition on the boundary ∂Ω. Then if N ≥ 4

for any λ ∈ (−λ1, 0) we have Sλ < S; if N = 3 there exists λ∗ ∈
(−λ1, 0] such that for any λ ∈ (−λ1, λ∗) we have Sλ < S.

Another fundamental existence result, based on a more topological

approach, is the following theorem proved in 1988 by Bahri and Coron

[6]

Theorem 1.2. Assume Ω has ”nontrivial” topology (for example, Ω

noncontractible). Then (P ) has a solution.

Anyhow we will not be interested in existence theory for problems

such as (P ) whereas we will mainly focus our attention in answering

questions concerning the qualitative properties of positive solutions of

problem (P ) such as:
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1. Suppose the domain has any symmetry, do solutions of problem (P )

inherit this symmetry? And where are the critical points located?

2. Suppose problem (P ) is singularly perturbed, do bounded energy

solutions cease to exist if the perturbation parameter goes to infinity?

And where are the blow-up points located?

Let us describe the outline of this Thesis.

In chapter 2 we will present a survey about all the different formulations

of the Maximum Principle that will be applied to prove the results in

the subsequent two chapters, as well as some applications.

In chapter 3, we will consider the slightly subcritical problem

(I)





−∆u = N(N − 2)up−ε in A

u > 0 in A

u = 0 on ∂A

where A is an annulus in RN , N ≥ 3, p + 1 = 2N
N−2

is the critical

Sobolev exponent and ε > 0 is a small parameter. We will prove

that solutions of (I) which concentrate at one or two points are axially

symmetric by means of the Maximum Principle and the method of

rotating hyperplanes (see [15]).

In chapter 4, we will continue our investigation of problem (I) and ex-

tend the symmetry results of the preceding chapter to solutions with

any number of peaks. Through a geometrical approach we prove that

solutions of (I) which concentrate at k points, 3 ≤ k ≤ N , have

these points all lying in the same (k-1)-dimensional hyperplane Πk

passing through the origin and are symmetric with respect to any (N-

1)-dimensional hyperplane containing Πk (see [16]).

In chapter 5 we will consider a singular perturbation of problem (P )

with critical growth





−∆u+ λu = u
N+2
N−2 x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω
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where λ is a large parameter. Following a previous work of Druet-

Hebey-Vaugon (see [17]), we prove that the energy of positive solutions

of this prolem tends to infinity as λ → +∞. We also prove, extending

and simplifying recent results, that bounded energy solutions to the

corresponding mixed B.V.P. have at least one blow-up point on the

Neumann component of the boundary ∂Ω as λ → +∞. In other words,

for large λ we prove the nonexistence of bounded energy solutions for

the Dirichlet problem and the nonexistence of solutions concentrating

only in the interior of the domain for the mixed problem (see [14]).





CHAPTER 2

Maximum Principle and Symmetry

In this chapter we would like to collect a survey of all the different

formulations of the Maximum Principle for linear elliptic partial dif-

ferential equations we will use and give sufficient conditions for this

important tool to hold. We will also consider a few interesting ap-

plications of the Maximum Principle, especially those regarding the

symmetry and monotonicity of solutions of elliptic PDEs. This will

allow us to show how the Maximum Principle is a simple and yet pow-

erful tool in proving the partial symmetry of solutions to problem (P )

with almost critical growth in an annulus, which will be the object of

the next two chapters.

1. Sufficient conditions for the Maximum Principle

Let Ω ⊂ RN be open, smooth, bounded and connected and let us con-

sider a general second order partial differential operator L : C2(Ω) →
C(Ω). L can be written in the form

L ≡
N∑

i,j=1

aij(x)
∂2

∂xi∂xj

+
N∑

i

bi(x)
∂

∂xi

+ c(x)

where all the coefficients aij(x), bi(x), c(x) ∈ C(Ω), i, j = 1, .., N .

Consider the matrix A associated to the principal part of L, Aij(x) =

aij(x), i, j = 1, .., N , and let λ(x) and Λ(x) be respectively its smallest

and largest eigenvalues for x ∈ Ω. We have the following

Definition 2.1. L is elliptic if A(x) > 0 for any x ∈ Ω, strictly

elliptic if λ(x) > 0 for any x ∈ Ω, uniformly elliptic if the ratio
Λ(x)
λ(x)

is bounded in Ω.

Let us begin by recalling three classical versions of the Maximum Prin-

ciple for elliptic operators.

9



10 2. MAXIMUM PRINCIPLE AND SYMMETRY

Theorem 2.2 (Weak Maximum Principle). Let L be elliptic in Ω with

c(x) ≤ 0. Suppose Lu ≥ 0 and u ≤ 0 on ∂Ω. Then u ≤ 0 in Ω.

Theorem 2.3 (Hopf Lemma). Let L be uniformly elliptic in Ω. Sup-

pose Lu ≥ 0 and that there exists x0 ∈ ∂Ω such that u(x) < u(x0) for

x ∈ Ω. Then ∂u
∂ν
(x0) > 0.

Theorem 2.4 (Strong Maximum Principle). Let L be uniformly elliptic

in Ω. Suppose Lu ≥ 0 and u ≤ 0 in Ω. Then either u < 0 in Ω or

u ≡ 0 in Ω.

For our purposes the classical versions of the Maximum Principle would

not be sufficient, that is why we will need a slightly more general point

of view on the topic. To be more specific let us give the following

Definition 2.5. Let L : C2(Ω) ∩ C(Ω) → C(Ω) be a linear partial

differential operator. L satisfies the Maximum Principle in Ω if

for any u ∈ C2(Ω)∩C(Ω) such that Lu ≥ 0 in Ω and u ≤ 0 on ∂Ω we

have u ≤ 0 in Ω.

We easily deduce from the classical Weak Maximum Principle that

being elliptic with nonnegative order zero coefficient is sufficient for

an operator L to satisfy the maximum principle. However, this is not

always the case for most elliptic operators considered, especially those

related to the critical growth. We will state and prove several different

conditions which guarantee the validity of the Maximum Priciple for

general L.

One of the main conditions for the Maximum Principle to hold is the

existence of at least one strictly positive test function for L for which L

is nonpositive. As we will see, this is related to the first eigenvalue and

the correspondent eigenfunction of L. As we will see later on, this con-

dition can be relaxed by considering an even more general formulation

of the Maximum Principle (see [9]).

Proposition 2.6. Suppose that there exists g > 0 in Ω such that Lg ≤
0. Then L satisfies the Maximum Principle.

Proof: Let u be any function such that Lu ≥ 0 in Ω and u ≤ 0 on

∂Ω and consider v ≡ u
g
.

Let L0 = L− c(x). By simple calculations we get
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0 ≤ Lu = L0v + (Lg)v ≡ L1v

Since L1 is elliptic with nonpositive order zero coefficient c1(x) = Lg,

L1 satisfies the Maximum Principle.

Thus from v ≤ 0 on ∂Ω and L1 ≥ 0 in Ω we obtain v = u
g
≤ 0 in Ω.

Since g > 0 in Ω, we get u ≤ 0 in Ω, as we wanted to prove.

The Maximum Principle is somewhat related also to the size, especially

the ”width” of the domain Ω, as we will see in the next corollary of

the previous proposition. Heuristically, the Maximum Principle holds

if c(x) ≤ λ1(L), the first eigenvalue. If the domain is very narrow λ1

tends to infinity and c(x) becomes necessarily smaller than the first

eigenvalue. To be more precise we have the following

Corollary 2.7. There exists ε = ε(L) such that L satisfies the Maxi-

mum Principle in Ω if Ω is contained in a strip Sε = {x ∈ RN : a−ε <

x1 < a} for some a ∈ R.

Proof: We will construct a function g such that g > 0 in Ω and

Lg ≤ 0.

Take g(x) = eαa − eαx1 , with α to be chosen later.

Obviously g > 0 in Sε, so g > 0 in Ω for any ε > 0.

Suppose a11(x) ≥ m > 0, b1(x) ≥ −b and c(x) ≤ c for some positive

constants m, b, c. We have

Lg = −a11α
2eαx1 − αb1e

αx1 + c(x) (eαa − eαx1) ≤
≤ −mα2eαx1 + bαeαx1 + ceαx1

(
eα(a−x1) − 1

)
=

= eαx1
(
−mα2 + bα + c

(
eα(a−x1) − 1

))
≤

≤ eαx1
(
−mα2 + bα + c (eαε − 1)

)

Taking α = 2b
m

and noticing that eαε − 1 = O(ε), we obtain

Lg ≤ eαx1

(
−2b2

m
+O(ε)

)
< 0

for sufficiently small ε, and this concludes the proof.
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Not only the width, but also the measure of the domain Ω is responsible

for the Maximum Principle to hold for an operator L = ∆ + c(x): if

the measure of the domain is small enough the first eigenvalue of L

becomes positive. This is the so called ”Maximum Principle in small

domains” and is the content of the following

Theorem 2.8. Let Lu = ∆u+c(x)u. There exists δ = δ(N, diam Ω) >

0 such that L satisfies the Maximum Principle in any Ω′ ⊂ Ω such that

|Ω′| ≤ δ.

Proof: The proof is based on the following result by Alexandrov-

Bakelman-Pucci: suppose u ∈ C2(Ω) ∩ C(Ω), f ∈ LN(Ω) and Lu =

∆u+ c(x) ≥ f in Ω with c(x) ≤ 0 and u ≤ 0 on ∂Ω. Then

(2.1.1) sup
Ω

u ≤ C(diam Ω, N)|f |LN (Ω)

Now if c+(x) = max{c(x), 0} and c−(x) = −min{c(x), 0} we have

0 ≤ Lu = ∆u+ c(x)u = ∆u+ c+u− c−u

which implies

∆u− c−u ≥ −c+u ≥ −c+u+

From (2.1.1) we get

sup
Ω

u ≤ C|c+u+|LN (Ω)

for some fixed constant C.

Suppose by contradiction u � 0 in Ω, so that supΩ u = supΩ u+. Then

sup
Ω

u+ = sup
Ω

u ≤ C|c(x)|L∞(Ω) sup
Ω

u+|Ω| 1
N

Choosing |Ω| < δ(N, d) =
(
CN |c(x)|L∞

)−1
in this inequality we reach a

contradiction. Then u ≤ 0 in Ω and L satisfies the Maximum Principle.
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We would like to recall that there is a generalized formulation of the

Maximum Principle and a more general definition of the first eigen-

value λ1(L,Ω) when the boundary ∂Ω is not smooth due to Berestycki,

Nirenberg and Varadhan. Even if their definitions are much more gen-

eral than the ones we intend to use in proving our partial symmetry

results, they are worth mentioning for two reasons: first of all, with

this ”refined” definitions the link between the validity of the Maxi-

mum Principle and the positivity of the principal eigenvalue are much

clearer; furthermore, some of the conditions for the validity of the Max-

imum Principle can be relaxed.

The definition is the following

λ1(L,Ω) = sup{λ : there exists φ > 0 in Ω satisfying (L+ λ)φ ≤ 0}

In [9] they show that even with this definition all the main properties

of the ”classical” principal eigenvalue continue to hold. In particular

we have

Proposition 2.9. The principal eigenvalue λ1(L,Ω) is strictly decreas-

ing in its dependence on Ω and on the coefficient c(x). Moreover the

”refined” Maximum Principle holds for L if and only if λ1(L,Ω) is

positive.

It is important to notice that, by using this generalized definition of

the first eigenvalue, it is possible to prove that also the following condi-

tion, which is slightly weaker than proposition 2.6, is sufficient for the

Maximum Principle to hold.

Proposition 2.10. Suppose there exists g ∈ W 2,N
loc ∩C(Ω), g > 0 in Ω

such that Lg ≤ 0 in Ω but g 6≡ 0 on some regular part of ∂Ω. Then L

satisfies the Maximum Principle in Ω.

To conclude this section we would like to mention an interesting and

easy condition, due to Grossi and Molle (see [23]), which relates the

positivity of the first eigenvalue of an operator L = ∆ + c(x) to the

L
N
2 (Ω) of the coefficient c(x). Define the best Sobolev constant as

S = inf
u∈H1

0 (Ω),u 6=0

∫
Ω
|∇u|2

(∫
Ω
|u| 2N

N−2

)N−2
N
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The result is the following

Proposition 2.11. Suppose |c(x)|
L

N
2 (Ω)

< S. Then λ1(L,Ω) > 0.

Proof: Suppose by contradiction that there exists φ ∈ H1
0 (Ω) such

that |φ|
L

2N
N−2 (Ω)

= 1 and Lφ ≤ 0.

By Holder and Sobolev inequalities and the hypothesis we have that

∫

Ω

|∇φ|2 ≤
∫

Ω

c(x)φ2 ≤ |c(x)|
L

N
2 (Ω)

(∫

Ω

|φ| 2N
N−2

)N−2
N

≤

≤ |c(x)|
L

N
2 (Ω)

1

S

∫

Ω

|∇φ|2 <
∫

Ω

|∇φ|2

which is a contradiction.

2. Symmetry and monotonicity via the Maximum Principle

The Maximum Principle is a simple and yet powerful tool to prove

qualitative properties of solutions of second order elliptic equations,

especially the symmetry and monotonicity of such solutions. Proba-

bly the best example of this fact is the beautiful paper of Gidas, Ni

and Nirenberg [24]: in this paper the authors combine the classical

Maximum Principle with the Method of Moving Hyperplanes devel-

opped by Alexandrov and Serrin (see [38]) to prove the symmetry and

monotonicity of solutions of the problem

(P )





−∆u = f(u) x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω

where Ω is symmetric and convex in one direction and f is a locally

Lipschitz nonlinearity. The beauty of their result can be found in many

aspects, especially in the fact that it is very general and the proofs are

elegant and easy to read.

Let us state their main result

Theorem 2.12. Suppose Ω is convex and symmetric in the x1 direc-

tion. Let u ∈ C2(Ω) be a solution of problem (P ). Then u is symmetric

in x1 and ∂u
∂x1

< 0 for x1 > 0.
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Simple but important consequences of this theorem are the following

• If Ω = BR(0) a ball, all the solutions of (P ) are radially sym-

metric and radially decreasing with a unique critical point in

the origin

• If Ω = Ar,R an annulus, all the solutions are radially decreasing

(and so have no critical points) in the outer shell |x| > r+R
2

We will present a simplified proof by Beresticki and Nirenberg (see

[8]) which makes use of the Maximum Principle in small domains.

This proof requires a weaker regularity for the solution, namely u ∈
C2(Ω) ∩ C(Ω) instead of C2(Ω).

Proof: Let x = (x1, y) ∈ R × RN−1 = RN and suppose a is the first

value for which the hyperplanes Tλ = {x ∈ RN : x1 = λ} hit the

domain Ω, namely −a = infx∈Ω x1.

We will prove that ∂u
∂x1

< 0 for x1 > 0 and that u(x1, y) < u(x
′
1, y) for

x1 + x
′
1 < 0 and x1 < x

′
1.

Then taking the limit for x
′
1 ↑ −x1 we find by continuity that u(x1, y) ≤

u(−x1, y) for x1 < 0.

Exchanging x1 with −x1, we obtain the reverse inequality which gives

the symmetry of u with respect to the x1 variable.

For −a < λ < 0, let

wλ(x) ≡ vλ(x)− v(x) ≡ u(2λ− x1, y)− u(x)

and

Σλ = {x ∈ Ω : x1 < λ}

Clearly




∆wλ(x) + cλ(x)wλ(x) = 0 x ∈ Σλ

wλ(x) 	 0 x ∈ ∂Σλ

where



16 2. MAXIMUM PRINCIPLE AND SYMMETRY

cλ(x) =
f(vλ(x))− f(u(x))

vλ(x)− u(x)

We want to prove that wλ > 0 in Σλ.

If λ ∼ −a, the measure of Σλ is small. From the Maximum Principle

in small domains we get wλ ≥ 0 in Σλ, and from the Strong Maximum

Principle wλ > 0 in Σλ.

Define

µ ≡ sup{λ > −a : wλ(x) > 0 in Σλ}

Arguing by contradiction, suppose µ < 0 and consider wµ(x): clearly

wµ ≥ 0 in Σµ and from the Strong Maximum Principle wµ > 0 in Σµ.

This means we can continue this process, considering Σµ+ε for small

positive ε.

Take K ⊂ Σµ compact such that |Σµ \K| ≤ δ
2
for small positive δ. In

particular, wµ(x) > 0 in K.

For ε > 0 sufficiently small, |Σµ+ε \K| ≤ δ. Then




∆wµ+ε(x) + cµ+ε(x)wµ+ε(x) = 0 x ∈ (Σµ+ε \K)

wµ+ε(x) 	 0 x ∈ ∂ (Σµ+ε \K)

since wµ+ε > 0 on ∂K.

From the Maximum Principle in small domains, wµ+ε ≥ 0 in (Σµ+ε \K).

Furthermore wµ+ε > 0 in K, so that wµ+ε ≥ 0 in the whole Σµ+ε, but

this contradicts the maximality of µ, so µ = 0 as we wanted to prove.

The monotonicity of the solution u comes from the Hopf Lemma ap-

plied on the boundary ∂Σλ of every cap Σλ: in fact on Tλ ∩ Ω we

have

0 >
∂wλ

∂ν
(x) = − ∂u

∂x1

(x)

and this concludes the proof.
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Let us now recall a proposition contained in [31] to show how the

Maximum Principle can be effectively applied, as we will see in the next

two chapters, to investigate symmetry properties of classical C2(Ω) ∩
C(Ω) solutions of problems of the type




−∆u = f(x, u) x ∈ Ω

u = g(x) x ∈ ∂Ω

where Ω is a bounded, somehow symmetric domain in RN not neces-

sarily convex, N ≥ 2, f : Ω×R → R is a continuos function of class C1

with respect to the second variable, g is continuous and both functions

have some symmetry in x.

The new and simple idea contained in the paper [31] to study the

symmetry of the solutions of problem (2), which works efficiently when

f(x, s) is convex in the s-variable, is to prove the non-negativity of the

first eigenvalue of the linearized operator in both caps determined by

a symmetry hyperplane for the domain. To be more precise let us fix

some notations.

Let us assume that Ω contains the origin and is symmetric with respect

to the hyperplane

T = {x = (x1, .., xN) ∈ RN : x1 = 0}

and denote by Ω− and Ω+ the caps to the left and right of T , i.e.

Ω− = {x = (x1, .., xN) ∈ RN : x1 < 0}
Ω+ = {x = (x1, .., xN) ∈ RN : x1 > 0}

Let u be a solution of (2) and let us consider the linearized operator

at u, that is

L = −∆− f ′(x, u)

where f ′ denotes the derivative of f(x, s) with respect to s.
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We denote by λ1(L,D) be the first eigenvalue of L in a subdomain

D ⊂ Ω with zero Dirichlet boundary conditions. We can now recall

Proposition 1.1 of [31]:

Proposition 2.13. Suppose f(x, s) and g(x) are even in x1, f is

strictly convex in s and suppose that λ1(L,Ω
−) and λ1(L,Ω

+) are both

non-negative. Then u is symmetric with respect to the x1-variable i.e.

u(x1, .., xN) = u(−x1, .., xN). The same result holds if f is only convex

but λ1(L,Ω
−) and λ1(L,Ω

+) are both positive.

Proof: Let us denote by v− and v+ the reflected functions of u in the

domains Ω− and Ω+ respectively:

v−(x) = u(−x1, x2, .., xN), x ∈ Ω−

v+(x) = u(−x1, x2, .., xN), x ∈ Ω+

Assume f is strictly convex. In this case we have

f(x, v−(x))− f(x, u(x)) ≥ f ′(x, u(x))(v−(x)− u(x)) in Ω−

f(x, v+(x))− f(x, u(x)) ≥ f ′(x, u(x))(v+(x)− u(x)) in Ω+

and the strict inequality holds whenever v−(x) 6= u(x) (respectively

v+(x) 6= u(x)).

Hence by (2), using the symmetry of f and g in the x1-variable and

considering the functions w− = v− − u and w+ = v+ − u we have

−∆w− − f ′(x, u)w− ≥ 0(2.2.2)

−∆w+ − f ′(x, u)w+ ≥ 0(2.2.3)

with the strict inequality whenever w−(x) 6= 0 or w+(x) 6= 0 and

(2.2.4) w−(x) = 0 (resp. w+(x) = 0) on ∂Ω− (resp. ∂Ω+)

If w− and w+ are both nonnegative in the respective domains Ω− and

Ω+ then w− ≡ w+ ≡ 0 by the very definition, and hence u is symmetric

with respect to x1.
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Therefore arguing by contradiction, we can assume that one among the

two functions, say w+, is negative somewhere in Ω+. Then, considering

a connected component D in Ω+ of the set where w+ < 0, multiplying

the equation (2.2.3) by w+, integrating and using (2.2.4) and the strict

convexity of f we get

∫

D

|∇w+|2 −
∫

D

f ′(x, u)(w+)2 < 0

which implies that λ1(L,Ω
+) < 0 against the hypothesis. Hence u is

symmetric.

Now we assume that f is only convex but λ1(L,Ω
−) > 0 and λ1(L,Ω

+) >

0. Then the maximum principle holds both in Ω− and Ω+. Therefore

by (2.2.2)-(2.2.4) we immediately get w− ≥ 0 and w+ ≥ 0 which imply

the symmetry of u.

In our partial symmetry results we will actually use a slight variation

of the previous proposition which is the following

Proposition 2.14. If either λ1(L,Ω
−
ν ) or λ1(L,Ω

+
ν ) is non-negative

and u has a critical point on Tν ∩ Ω then u is symmetric with respect

to the hyperplane Tν.

Proof: Assume that ν is the direction of the x1-axis in RN and that

λ1(L,Ω
−
ν ) ≥ 0. Denote by v− the reflection of the function u in the

domain Ω−
ν , that is v

−(x) = u(−x1, x2, ..., xN) for x ∈ Ω−
ν .

Hence the function w− = v− − u satisfies

(2.2.5)




L(w−) ≥ 0 (> 0 if w−(x) 6= 0) in Ω−

ν

w− ≡ 0 on ∂Ω−
ν

by the strict convexity of the function f(s).

Since λ1(L,Ω
−
ν ) ≥ 0, by (2.2.5) we have that w− ≥ 0 in Ω−

ν .

If w− 6= 0 in Ω−
ν , by the strong maximum principle we would have

w− > 0 in Ω−
ν .
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Then, applying Hopf Lemma to any point of Tν ∩ Ω we would have
∂w−
∂x1

< 0 on Tν∩Ω, which would imply |∇u| > 0 on Tν∩Ω, contradicting
the hypothesis that u has a critical point on Tν ∩ Ω.



CHAPTER 3

The almost critical problem in an annulus - Part I

1. Introduction

In this chapter we will discuss the results contained in [15]. We consider

the problem

(3.1.6)





−∆u = N(N − 2)up−ε in A

u > 0 in A

u = 0 on ∂A

where A is an annulus centered at the origin in RN , N ≥ 3, p+1 = 2N
N−2

is the critical Sobolev exponent and ε > 0 is a small parameter.

It is well known that the study of (3.1.6) is strictly related to the

limiting problem (ε = 0) which exhibits a lack of compactness and

gives rise to solutions of (3.1.6) which blow up as ε → 0.

Several authors have studied the existence and the behaviour of solu-

tions of (3.1.6) which blow-up in a general bounded domain Ω ( [7],

[10], [19], [21], [27], [29], [33], [34]).

A deep analysis of solutions of (3.1.6) which blow up at k points has

been done in [7] and [34]. In [7] the authors completely characterize

the blow-up points of solutions of (3.1.6) (as ε → 0) in terms of the

critical points of some functions which naturally arise in the study of

these problems.

We are interested in the geometrical properties of the solutions of

(3.1.6) which blow-up and, more precisely, on their symmetry and on

the location of their blow-up points, as ε → 0.

It is obvious that solutions of (3.1.6) which concentrate in a finite num-

ber of points cannot be radially symmetric. Nevertheless it is natural

21
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to expect a partial symmetry of the solutions, as well as a symmetric

location of the concentration points.

In order to state precisely our result we need some notations.

We say that a family of solutions {uε} of (3.1.6) has k ≥ 1 concentration

points at {P 1
ε , P

2
ε , .., P

k
ε } ⊂ A if the following holds

(3.1.7) P i
ε 6= P j

ε , i 6= j and each P i
ε is a strict local maximum for uε

(3.1.8) uε → 0 as ε → 0 locally uniformly in A \ {P 1
ε , P

2
ε , .., P

k
ε }

Notice that in this first definition we do not require that uε(P
i
ε) → ∞

as ε → 0.

Theorem 3.1. Let uε be a family of solutions of (3.1.6) with one con-

centration point Pε ∈ A. Then, for ε small, uε is symmetric with

respect to any hyperplane passing through the axis r connecting the ori-

gin with the point Pε. Moreover, all the critical points of uε belong to

the symmetry axis r and

(3.1.9)
∂uε

∂νT
(x) > 0 ∀x ∈ T ∩ A

where T is any hyperplane passing through the origin but not containing

Pε and νT is the normal to T, oriented towards the half space containing

Pε. The same holds if uε has k > 1 concentration points, all located on

the same half line passing through the origin.

Remark 1. If the solution uε has Morse index one then its axial sym-

metry, for any ε > 0, is a consequence of a general result of [31].

However, if uε has more then one concentration point then its Morse

index must be greater than one ([19]). Finally, even if uε has only one

concentration point, its Morse index could be larger than one since it

is related to the index of the critical points of the auxiliary function

considered in [7].

Remark 2. Though for solutions of (3.1.6) we have that uε(P
i
ε) → ∞,

as ε → 0, whenever uε concentrates at P i
ε , we have stated Theorem

3.1 requiring only (3.1.7), (3.1.8) (and not (3.1.10) as below), because
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the result of Theorem 3.1, with exactly the same proof, holds for any

solution uε of a problem of the type





−∆u = fε(u) in A

u > 0 inA

u = 0 on ∂A

with fε ∈ C1(R) strictly convex and which concentrates at k points all

located on the same half line passing through the origin as ε → 0. For

example fε could be fε =
1
ε
uε + uq

ε with 1 < q < N+2
N−2

and in this case

uε does not blow up at the concentration points.

Now we add the condition that solutions blow-up at their concentration

points

(3.1.10) uε(P
i
ε) → ∞ as ε → 0

For solutions which blow up at two points we have the following result

Theorem 3.2. Let {uε} be a family of solutions to (3.1.6) with two

blow-up points, P 1
ε and P 2

ε , belonging to A. Then, for ε small, the

points P i
ε lay on the same line passing through the origin and uε is

axially symmetric with respect to this line.

The proof of the above theorems is based on the procedure developped

in [31] to prove the axial symmetry of solutions of index one in the

presence of a strictly convex nonlinearity. As already mentioned in

Chapter 2, the main idea is to evaluate the sign of the first eigenvalue

of the linearized operator in the half domains determined by the sym-

metry hyperplanes. This procedure is not too difficult in the case of

solutions with one concentration point (Theorem 3.1) but requires a

careful analysis of the limiting problem in the case of more blow-up

points. To do this some results of [7] and [29] are also used.

Let us conclude by observing that the same results hold, with the same

proofs, for positive solutions of −∆u = up−ε − λu in A, u = 0 on ∂A

for any λ > 0.
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The outline of this chapter is the following: in section 2 we recall some

preliminary results, section 3 is devoted to the proof ot Theorem 3.1

and in section 4 we prove Theorem 3.2.

2. Preliminaries and notations

Let A be the annulus defined as A ≡ {x ∈ RN : 0 < R1 < |x| < R2}
and Tν be the hyperplane passing through the origin defined by Tν ≡
{x ∈ RN : x · ν = 0}, ν being a direction in RN . We denote by A−

ν and

A+
ν the caps in A determined by Tν : A−

ν ≡ {x ∈ A : x · ν < 0} and

A+
ν ≡ {x ∈ A : x · ν > 0}.

In A we consider problem (3.1.6) and denote by Lε the linearized op-

erator at a solution uε of (3.1.6):

(3.2.11) Lε = −∆−N(N − 2)(p− ε)up−ε−1
ε

Let λ1(Lε, D) be the first eigenvalue of Lε in a subdomain D ⊂ A with

zero Dirichlet boundary conditions. By Proposition 1.1 of [31] we have

the following

Proposition 3.3. If λ1(Lε, A
−
ν ) and λ1(Lε, A

+
ν ) are both non-negative,

then uε is symmetric with respect to the hyperplane Tν.

A slight variation of the previous result is the following

Proposition 3.4. If either λ1(Lε, A
−
ν ) or λ1(Lε, A

+
ν ) is non-negative

and uε has a critical point on Tν ∩A then uε is symmetric with respect

to the hyperplane Tν.

The proof of both propositions has been discussed in Section 2

Let {uε} be a family of solutions of (3.1.6) with k blow up points P i
ε ,

i = 1, .., k. Then we have

Proposition 3.5. There exist constants α0 > 0 and αij > 0, i, j =

1, .., k such that as ε → 0

(3.2.12) |P i
ε − P j

ε | > α0 i 6= j
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(3.2.13)
uε(P

i
ε)

uε(P
j
ε )

→ αij for any i, j ∈ {1, .., k}

Moreover

(3.2.14) (uε(P
i
ε))

ε → 1

Proof: Formulas (3.2.12), (3.2.13) are due to Schoen and can be found

in [29] (see also [7]). For (3.2.14) see again [29].

In the sequel we will often use the classical result that for N ≥ 3 the

problem

(3.2.15)




−∆u = N(N − 2)up in RN

u(0) = 1

has a unique classical solution which is

U(y) =
1

(1 + |y|2)N−2
2

Moreover, all non trivial solutions of the linearized problem of (3.2.15)

at the solution U , i.e.

(3.2.16) −∆v = N(N − 2)pUp−1v in RN

are linear combinations of the functions

(3.2.17) V0 =
1− |y|2

(1 + |y|2)N
2

, Vi =
∂U

∂yi
, i = 1, .., N

In particular the only non-trivial solutions of the problem
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(3.2.18)


−∆v = N(N − 2)pUp−1v in RN

− = {x = (x1, .., xN) ∈ RN : x1 < 0}
v = 0 on ∂RN

− = {x = (x1, .., xN) ∈ RN : x1 = 0}

are the functions kV1 = k ∂U
∂y1

, k ∈ R.

3. Proof of Theorem 3.1

First we consider the case of one concentration point.

Since the solutions can be rotated, without loss of generality, we can

assume that the concentration points Pε belong to the same semi-axis

passing through the origin, say the xN -axis, so that Pε = (0, .., 0, tε)

with tε > 0. Let us fix a hyperplane T passing through the xN -axis and

denote by A− and A+ the two open caps determined by T. To prove

the symmetry of uε with respect to T, using Proposition 3.4, we have

to show that λ1(Lε, A
−) ≥ 0 for any ε sufficiently small.

For sake of simplicity suppose that T is the hyperplane T = {x =

(x1, .., xN) ∈ RN : x1 = 0} and let T0 be the hyperplane defined as

T0 = {x = (x1, .., xN) ∈ RN : xN = 0}.
We claim that

(3.3.19) λ1(Lε, A
−
0 ) > 0 for ε small

where A−
0 = {x ∈ RN : xN < 0} ∩ A.

Indeed, since uε concentrates at Pε and |Pε − x| ≥ R1 > 0 for any

x ∈ A−
0 , we have that uε → 0 uniformly in A−

0 . Therefore the term

(p − ε)up−ε−1
ε in the expression (3.2.11) of the linearized operator Lε

can be made as small as we like as ε → 0.

In particular, for ε sufficiently small, we have that (p − ε)up−ε−1
ε <

λ1(−∆, A−
0 ), which is the first eigenvalue of the Laplace operator in

A−
0 with zero boundary conditions. This implies (3.3.19).

Let us denote by Tϑ the hyperplane Tϑ = {x ∈ RN : x1 sinϑ +

xN cosϑ = 0}, with ϑ ∈ [0, π
2
]. For ϑ = 0 this hyperplane is T0 while

for ϑ = π
2
it coincides with T .
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As before, we set A−
ϑ = {x ∈ RN : x1 sinϑ + xN cosϑ < 0} and

A+
ϑ = {x ∈ RN : x1 sinϑ + xN cosϑ > 0}. Because of (3.3.19), for any

fixed ε sufficiently small, we can define

ϑ̃ = sup{ϑ ∈ [0,
π

2
] : λ1(Lε, A

−
ϑ ) ≥ 0}

We would like to prove that ϑ̃ = π
2
.

If ϑ̃ < π
2
then Pε /∈ A−

ϑ̃
and λ1(Lε, A

−
ϑ̃
) = 0, by the definition of ϑ̃.

Thus, arguing as in Proposition 3.4, we have that

wε,ϑ̃(x) = vε,ϑ̃(x)− uε(x) ≥ 0 in A−
ϑ̃

where vε,ϑ̃ is defined as the reflection of uε with respect to Tϑ̃. Since

uε(Pε) > uε(x) for any x ∈ A−
ϑ̃

we have, by the strong maximum

principle, that wε,ϑ̃ > 0 in A−
ϑ̃
.

Hence, denoting by P ′
ε the point in A−

ϑ̃
which is given by the reflection

of Pε with respect to Tϑ̃, we have that

(3.3.20) wε,ϑ̃(x) > η > 0 for x ∈ B(P ′
ε, δ) ⊂ A−

ϑ̃

where B(P ′
ε, δ) is the ball with center in P ′

ε and radius δ > 0 suitably

chosen. Thus

(3.3.21) wε,ϑ̃+σ(x) >
η

2
> 0 for x ∈ B(P ′′

ε , δ) ⊂ A−
ϑ̃+σ

for σ > 0 sufficiently small, where P ′′
ε is the reflection of Pε with respect

to Tϑ̃+σ.

On the other side, by the monotonicity of the eigenvalues with re-

spect to the domain, we have that λ1(Lε, A
−
ϑ̃
\B(P ′

ε, δ)) > 0 and hence

λ1(Lε, A
−
ϑ̃+σ

\B(P ′
ε, δ)) > 0, for σ sufficiently small.

This implies, by the maximum principle and (3.3.21), that

(3.3.22) wε,ϑ̃+σ(x) > 0 for x ∈ A−
ϑ̃+σ
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Since Lε(wε,ϑ̃+σ) ≥ 0 in A−
ϑ̃+σ

(by the convexity of the function up−ε
ε ),

the inequality (3.3.22) implies that λ1(Lε, D) > 0 in any subdomain D

of A−
ϑ̃+σ

, and so λ1(Lε, A
−
ϑ̃+σ

) ≥ 0 for σ positive and sufficiently small.

Obviously this contradicts the definition of ϑ̃ and proves that ϑ̃ = π
2
,

i.e. λ1(Lε, A
−) ≥ 0 as we wanted to show.

We have thus established the symmetry of uε with respect to any hyper-

plane passing through the xN -axis. The second part of the statement

of Theorem 3.1 is merely a consequence of Hopf’s lemma.

Indeed, the previous proof shows that λ1(Lε, A
−
ϑ ) ≥ 0 for any ϑ ∈[

0, π
2

)
.This readily implies that the function wε,ϑ = vε,ϑ−uε, vε,ϑ being

the reflection with respect to Tϑ, is positive in A−
ϑ , since Pε /∈ A−

ϑ .

Thus, applying Hopf’s lemma to wε,ϑ (which solves a linear elliptic

equation) at any point on Tϑ ∩ A we get (3.1.9).

Finally it is easy to see that the same proof applies if uε has k > 1

concentration points all located on the same half-line passing through

the origin.

4. Proof of Theorem 3.2

In this section we consider solutions of (3.1.6) with two blow-up points,

P 1
ε and P 2

ε .

Lemma 3.6. Let {uε} be a family of solutions of (3.1.6) with two blow-

up points P 1
ε and P 2

ε . Then, for ε small, both points P i
ε , i = 1, 2, lay

on the same line passing through the origin.

The proof of this lemma is rather long and will be given later.

Proof of Theorem 3.2 : The first part of the statement is exactly

Lemma 3.6. Hence we only have to prove that uε is symmetric with

respect to any hyperplane passing through the axis containing P 1
ε and

P 2
ε . Assume that this axis is the xN -axis and that P 1

ε and P 2
ε lay on

different sides of this axis with respect to the origin, otherwise the proof

is the same as in Theorem 3.1.

First of all let us observe that because the solutions have two blow-up

points we have (see [7], [29], [34])
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(3.4.23)

∫
A
|∇uε|2

(∫
A
up−ε+1
ε

) 2
p−ε+1

−→
ε→0

2
2
N S

where S is the best Sobolev constant for the embedding of H1
0 (RN) in

Lp+1(RN).

Let us fix a hyperplane T passing through the xN -axis and, for sim-

plicity, assume that T = {x = (x1, .., xN) ∈ RN : x1 = 0}, so that

A− = {x ∈ A : x1 < 0} and A+ = {x ∈ A : x1 > 0}.
Let us consider in A− the function

wε(x) = vε(x)− uε(x), x ∈ A−

where vε is the reflection of uε, i.e. vε(x1, .., xN) = uε(−x1, .., xN).

We would like to prove that wε ≡ 0 in A−, for ε small.

Assume, by contradiction, that for a sequence εn → 0, wεn = wn 6≡ 0.

Let us consider the rescaled functions around P 1
n = P 1

εn and P 2
n = P 2

εn :

(3.4.24) w̃1
n(y) ≡

1

β1
n

wn(P
1
n + δny) w̃2

n(y) ≡
1

β2
n

wn(P
2
n + δny)

defined on the rescaled domains A−
i,n = A−−P i

n

δn
, with δn = (un(P

1
n))

1−pn
2 ,

pn = p− εn and βi
n = ‖w̄i

n‖L2∗ (A−
i,n)

, w̄i
n = wn(P

i
n + δny), i = 1, 2.

Notice that, by (3.2.13), both functions are rescaled by the same factor

δn.

We claim that w̃i
n converge in C2

loc to a function w satisfying

(3.4.25)



−∆w = N(N − 2)pUp−1w in RN
− = {y = (y1, .., yN) ∈ RN : y1 < 0}

w = 0 on {y = (y1, .., yN) ∈ RN : y1 = 0}
‖w‖L2∗ ≤ 1

where U is the solution of (3.2.15).

Let us prove the claim for w̃1
n, the same proof will apply to w̃2

n, because

of (3.2.13).
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We have that the functions w̃1
n solve the following problem:

(3.4.26)




−∆w̃1

n = cnw̃
1
n in A−

1,n

w̃1
n = 0 on ∂A−

1,n

where

cn(y) = N(N − 2)pn

∫ 1

0

[
t

(
1

un(P 1
n)

un(P
1
n + δny)

)
+

(1− t)

(
1

un(P 1
n)

vn(P
1
n + δny)

)]pn−1

dt

One can observe that the functions ũ1
n = 1

un(P 1
n)
un(P

1
n + δny) and ṽ1n =

1
un(P 1

n)
vn(P

1
n+δny) which appear in the definition of cn(y) are uniformly

bounded by (3.2.13) and hence cn(y) is uniformly bounded too. Thus

cn is locally in any Lq space (in particular q > N
2
) and hence w̃1

n is

locally uniformly bounded.

Then, by standard elliptic estimates and by the convergence in C2
loc(RN)

of ũ1
n, ṽ

1
n to the solution U of (3.2.15), we get the C2

loc(R̄N
− )-convergence

of w̃1
n to a solution w of (3.4.25).

Let us evaluate the L
N
2 -norm of cn:

∫

A−
1,n

|cn(y)|
N
2 dy ≤ CN

[∫

A−
1,n

∣∣∣∣
1

un(P 1
n)

un(P
1
n + δny)

∣∣∣∣
(pn−1)N

2

dy

]
+

CN

[∫

A−
1,n

∣∣∣∣
1

un(P 1
n)

vn(P
1
n + δny)

∣∣∣∣
(pn−1)N

2

dy

]

where CN is a constant which depends only on N .

For the first integral in the previous formula we have

∫

A−
1,n

∣∣∣∣
1

un(P 1
n)

un(P
1
n + δny)

∣∣∣∣
(pn−1)N

2

dy =

∫

A−
|un(x)|2

∗−Nεn
2 dx ≤ BN

by (3.4.23) and (3.1.6), BN being a constant depending only on N .

An analogous estimate holds for the second integral.
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Hence the L
N
2 -norm of cn is uniformly bounded and we have

(3.4.27)

∫

A−
1,n

|cn(y)|
N
2 dy ≤ 2CNBN

Then multiplying (3.4.26) by w̃1
n and integrating we have that

∫

A−
1,n

|∇w̃1
n|2 dy =

∫

A−
1,n

cn(w̃
1
n)

2 dy ≤

≤
(∫

A−
1,n

|cn|
N
2 dy

) 2
N
(∫

A−
1,n

|w̃1
n|2

∗
dy

) 2
2∗

≤ (2CNBN)
2
N(3.4.28)

Then by (3.2.16) - (3.2.18) we get w = kV1 = k ∂U
∂y1

, k ∈ R, since, by
(3.4.28) w ∈ D1,2(RN

− ) = {ϕ ∈ L2∗(RN
− ) : |∇ϕ| ∈ L2(RN

− )}.
Let us first assume that for one of the two sequences {w̃i

n}, say {w̃1
n},

the limit is w = k ∂U
∂y1

with k 6= 0.

Then, since the points P 1
n are on the reflection hyperplane T and

∇un(P
1
n) = 0 we have that ∂w̃1

n

∂y1
(0) = 0. This implies that ∂w

∂y1
(0) =

k ∂2U
∂y21

(0) = 0 with k 6= 0, which is a contradiction since for the function

U(y) = 1

(1+|y|2)
N−2

2
we have ∂2U

∂y21
(0) < 0.

So we are left with the case when both sequences w̃i
n converge to zero

in C2
loc.

Then, for any fixed R and for n sufficiently large in the domains

Ei,n(R) = B(0, R) ∩ A−
i,n we have the following estimates

(3.4.29) |w̃i
n(y)| ≤

S

4(2CNBN)2|B(0, R)| 2
2∗

i = 1, 2

where |B(0, R)| is the measure of the ball B(0, R).

Now we focus only on the rescaling around P 1
n and observe that the

domains E2,n(R), under the rescaling around P 1
n , correspond to do-

mains F2,n(R) contained in A−
1,n which are translations of E1,n(R) by

the vector P 2
n−P 1

n

δn
and also the function w̃2

n is the translation of w̃1
n by

the same vector, indeed w̃2
n = w̃1

n

(
y + P 2

n−P 1
n

δn

)
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Hence from (3.4.29) we have

(3.4.30) |w̃1
n(y)| ≤

S

4(2CNBN)2|B(0, R)| 2
2∗

in (E1,n(R) ∪ F2,n(R))

Now let us choose R sufficiently large such that

(3.4.31)

∫

B(0,R)

|U |2∗ >
(
15

16
S

)N
2

where U is the solution of (3.2.15). Then, since both functions ũi
n

(i = 1, 2) which appear in the definition of cn converge to the function

U and the function ũ1
n is just the translation of the function ũ2

n =
1

un(P 1
n)
un(P

2
n + δny) by the vector P 2

n−P 1
n

δn
, we have by (3.4.31)

(3.4.32)

∫

B(0,R)∪B(
P2
n−P1

n
δn

,R)

|ũ1
n|pn+1 >

(
7

4
S

)N
2

for n sufficiently large. This implies, by (3.4.23)

(3.4.33)

∫

A−
1,n\(E1,n(R)∪F2,n(R))

|cn|
N
2 <

(
1

4
S

)N
2

Since the functions w̃1
n solve (3.4.26), multiplying (3.4.26) by w̃1

n and

integrating we get

∫

A−
1,n

|∇w̃1
n|2 dy =

∫

A−
1,n

cn(w̃
1
n)

2 dy =

∫

A−
1,n\(E1,n(R)∪F2,n(R))

cn(w̃
1
n)

2 dy +

∫

(E1,n(R)∪F2,n(R))

cn(w̃
1
n)

2 dy ≤

(∫

A−
1,n\(E1,n(R)∪F2,n(R))

|cn|
N
2 dy

) 2
N
(∫

A−
1,n\(E1,n(R)∪F2,n(R))

|w̃1
n|2

∗
dy

) 2
2∗

+

+

(∫

(E1,n(R)∪F2,n(R))

|cn|
N
2 dy

) 2
N
(∫

(E1,n(R)∪F2,n(R))

|w̃1
n|2

∗
dy

) 2
2∗

≤ S

2
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because ‖w̃1
n‖L2∗ (A−

1,n)
= 1, the L

N
2 -norm of cn is uniformly bounded by

(3.4.27), (3.4.33) and (3.4.30) hold.

On the other hand, by the Sobolev inequality, we have

∫

A−
1,n

|∇w̃1
n|2 dy > S

which gives a contradiction.

Hence the sequences w̃i
n cannot converge both to zero, so that wε ≡ 0

for ε small, as we wanted to prove.

Finally we prove Lemma 3.6 in several steps

Proof of Lemma 3.6: Let us assume that the line connecting P 1
ε with

the origin is the xN -axis. We would like to show that also the point

P 2
ε belongs to the same axis. So we assume by contradiction that for a

sequence εn → 0 the points P 2
εn = P 2

n are given by P 2
n = (αn, x

n
2 , .., x

n
N),

αn > 0, where the first coordinate αn represents the distance of P 2
n from

the xN -axis. As before we define δn = (un(P
1
n))

1−pn
2 where pn = p− εn.

Claim 1 It is not possible that

(3.4.34)
αn

δn
−→
n→∞

∞

Assume that (3.4.34) holds and consider the hyperplane T = {x =

(x1, .., xN) ∈ RN : x1 = 0} which obviously passes through the xN -axis

and does not contain the point P 2
n . We claim that, for n sufficiently

large,

(3.4.35) λ1(Ln, A
−) ≥ 0

where, as before, Ln ≡ Lεn denotes the linearized operator and A− =

{x = (x1, .., xN) ∈ A : x1 < 0}. To prove (3.4.35) let us take the two

balls B(P i
n, Rδn) centered at the two points P i

n and with radius Rδn,

R > 1 to be fixed later.
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By (3.4.34) and (3.2.13) we have that B(P 2
n , Rδn) does not intersect

A−, for large n. Morover if we take ϑ0 ∈ [0, π
2
] and we consider the

hyperplane Tϑ0 = {x = (x1, .., xN) : x1 sinϑ0 + xN cosϑ0 = 0}, by

(3.4.34), (3.2.13) and the fact that P 1
n belongs to T = Tπ

2
we can

choose ϑ0,n < π
2
and close to π

2
such that both balls B(P i

n, Rδn) do not

intersect the cap A−
ϑ0,n

= {x = (x1, .., xN) : x1 sinϑ0,n+xN cosϑ0,n < 0}
for n large enough.

Then, arguing as in [23] (see also [19]), it is easy to see that it is

possible to choose R such that λ1(Ln, A
−
ϑ0,n

) > 0 for n large, because

B(P i
n, Rδn) ∩ A−

ϑ0,n
= ∅, i = 1, 2 and un concentrates only at P i

n.

Hence, fixing n sufficiently large, we set

ϑ̃n ≡ sup{ϑ ∈ [ϑ0,n,
π

2
] : λ1(Ln, A

−
ϑ ) ≥ 0}

and, repeating the same procedure as in the proof of Theorem 3.1, we

get that ϑ̃n = π
2
and hence (3.4.35) holds.

So, by Proposition 3.4, since P 1
n ∈ T = Tπ

2
, we get that un is symmetric

with respect to the hyperplane T, which is not possible, since P 2
n does

not belong to T. Hence (3.4.34) cannot hold.

Claim 2 It is not possible that

(3.4.36)
αn

δn
−→
n→∞

l > 0

Assume that (3.4.36) holds and, as before, denote by T the hyperplane

T = {x = (x1, .., xN) ∈ RN : x1 = 0} to which P 1
n belongs while

P 2
n /∈ T .

We would like to prove as in Claim 1 that

(3.4.37) λ1(Ln, A
−) ≥ 0

If the points P 1
n and P 2

n have the N-th coordinate of the same sign, i.e.

they lay on the same side with respect to the hyperplane {xN = 0},
then it is obvious that we can argue exactly as for the first claim and
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choose ϑ0 ∈ [0, π
2
] such that both balls B(P i

n, Rδn), R as before, do not

intersect the cap A−
ϑ0
. Then the proof is the same as before.

Hence we assume that P 1
n and P 2

n lay on different sides with respect

to the hyperplane {xN = 0}. Let us then consider ϑn ∈ [0, π
2
] such

that the points P 1
n and P 2

n have the same distance dn > 0 from the

hyperplane

Tϑn = {x = (x1, .., xN) ∈ RN : x1 sinϑn + xN cosϑn = 0}

Of course, because of (3.4.36), we have

(3.4.38)
dn
δn

−→
n→∞

l1 > 0

Then, choosing R > 0 such that λ1(Ln, D
R
n ) > 0, for n large, DR

n =

A \ [B(P 1
n , Rδn) ∪B(P 2

n , Rδn)] (see [23]), either both balls B(P i
n, Rδn)

do not intersect che cap A−
ϑn
, for n large enough, or they do. In the

first case we argue as for the first claim. In the second case we observe

that in each set En,i
ϑn

= A−
ϑn

∩B(P i
n, Rδn), i = 1, 2, we have, for n large

(3.4.39) un(x) ≤ vϑn
n (x) x ∈ En,i

ϑn
i = 1, 2

where vϑn
n (x) = un(x

ϑn), xϑn being the reflection of x with respect to

T n
ϑn
.

In fact if (3.4.39) were not true we could construct a sequence of points

xnk
∈ Enk,i

ϑnk
, i = 1 or 2, such that

(3.4.40) unk
(xnk

) > v
ϑnk
n (xnk

)

Then there would exist a sequence of points ξnk
∈ Enk,i

ϑnk
such that

(3.4.41)
∂unk

∂ϑnk

(ξnk
) < 0

Thus, by rescaling unk
in the usual way around P 1

nk
or P 2

nk
, and using

(3.4.38) we would get a point ξ ∈
(
El1

ϑ0

)−
= {x = (x1, .., xN) ∈ RN :
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x1 sinϑ0 + xN cosϑ0 < −l1 < 0} such that ∂U
∂ϑ0

(ξ) ≤ 0 while ∂U
∂ϑ0

> 0 in(
El1

ϑ0

)−
, ϑ0 being the limit of ϑnk

.

Hence (3.4.39) holds.

Now, arguing again as in [23] and [19], in the set
(
F n
ϑn

)−
= A−

ϑn
\

(B(P 1
n , Rδn) ∪B(P 2

n , Rδn)) we have that λ1(Ln,
(
F n
ϑn

)−
) ≥ 0.

Hence, by (3.4.39), applying the maximum principle, we have that

wn,ϑn(x) ≥ 0 in
(
F n
ϑn

)−
, and, again by (3.4.39) and the strong maximum

principle

(3.4.42) wn,ϑn(x) > 0 in A−
ϑn

As in the proof of Theorem 3.2, this implies that λ1(Ln, A
−
ϑn
) ≥ 0.

Then, arguing as for the first claim we get (3.4.37), which gives the

same kind of contradiction because P 2
n does not belong to T.

Claim 3 It is not possible that

(3.4.43)
αn

δn
−→
n→∞

0

Let us argue by contradiction and assume that (3.4.43) holds. As before

we denote by T the hyperplane T = {x = (x1, .., xN) ∈ RN : x1 = 0}.
Since the points P 2

n are in the domain A+
n = {x = (x1, .., xN) ∈ A :

x1 > 0}, we have that the function

wn(x) = vn(x)− un(x), x ∈ A+
n

where vn is the reflection of un, i.e. vn(x1, .., xN) = un(−x1, x2, .., xN),

is not identically zero.

Then, as in the proof of Theorem 3.2, rescaling the function wn around

P 1
n or P 2

n and using (3.2.13) we have that the functions

(3.4.44) w̃i
n(y) ≡

1

βi
n

wn(P
i
n + δny) , i = 1, 2
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defined in the rescaled domain A+
i,n = A+−P i

n

δn
, converge both, by (3.4.43)

and standard elliptic estimates, in C2
loc to a function wi satisfying

(3.4.25) but in the half space RN
+ = {x = (x1, .., xN) ∈ RN : x1 > 0}.

Again by (3.2.16) - (3.2.18) we have that wi = ki
∂U
∂y1

, ki ∈ R, where U

is the solution of (3.2.15).

Exactly as in the proof of Theorem 3.2 we can exclude the case that

both sequences w̃i
n converge to zero in C2

loc.

Hence for at least one of the two sequences w̃i
n we have that the limit

is wi = ki
∂U
∂y1

with ki 6= 0.

If this happens for w̃1
n then, since the points P 1

n are on the reflection

hyperplane T , arguing exactly as in the proof of Theorem 3.2, we get

a contradiction.

So we are left with the case when w̃1
n → k1

∂U
∂y1

, k1 = 0 and w̃2
n → k2

∂U
∂y1

with k2 6= 0 in C2
loc.

At the points P 2
n , obviously we have that ∂un

∂y1
(P 2

n) = 0.

Let us denote by P̃ 2
n the reflection of P 2

n with respect to T .

Hence, for the function w̃2
n we have, applying the mean value theorem

∂w̃2
n

∂y1
(0) =

δ
2

1−pn
n

β2
n

(
∂ũn

∂y1
(0) +

∂ũn

∂y1

(
P̃ 2
n − P 2

n

δn

))
=

=
δ

2
1−pn
n

β2
n

(
∂ũn

∂y1

(
P̃ 2
n − P 2

n

δn

)
− ∂ũn

∂y1
(0)

)
=

= −δ
2

1−pn
n

β2
n

∂2ũn

∂y21
(ξn)

2αn

δn

where ũn(y) = δ
2

pn−1
n un(P

2
n+δny) and ξn belongs to the segment joining

the origin with the point P̃ 2
n−P 2

n

δn
in the rescaled domain A+

2,n.

Since ∂w̃2
n

∂y1
(0) → k2

∂2U
∂y21

(0) and ∂2ũn

∂y21
(ξn) → ∂2U

∂y21
(0), with k2 6= 0 and

∂2U
∂y21

(0) < 0 we get

(3.4.45)
αnδ

2
1−pn
n

β2
nδn

→ γ 6= 0
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Our aim is now to prove that (3.4.45) implies that k1 6= 0 which will

give a contradiction.

Let us observe that if the function wn does not change sign near P 1
n ,

then, since wn 6≡ 0, we would get a contradiction, applying Hopf’s

lemma to wn (which solves a linear elliptic equation) at the point P 1
n ,

because ∇un(P
1
n) = 0.

Then in any ball B(P 1
n , αn), αn as in (3.4.43), there are points Q1

n such

that ∂un

∂y1
(Q1

n) = 0 and Q1
n /∈ T . Indeed, since wn changes sign near P 1

n ,

in any set B(P 1
n , αn) ∩ A+ there are points where wn is zero, i.e. un

coincides with the reflection vn. This implies that there exist points

Q1
n in B(P 1

n , αn) where
∂un

∂y1
(Q1

n) = 0, and by Hopf’s lemma applied to

the points of the hyperplane T we have that Q1
n /∈ T . Let us denote by

Q̃1
n the reflection of Q1

n with respect to T .

Assume that Q1
n ∈ A− (the argument is the same if Q1

n ∈ A+). Then

as before we have

∂w̃1
n

∂y1

(
Q1

n − P 1
n

δn

)
=

δ
2

1−pn
n

β1
n

(
∂ũn

∂y1

(
Q̃1

n − P 1
n

δn

)
− ∂ũn

∂y1

(
Q1

n − P 1
n

δn

))
=

= −δ
2

1−pn
n

β1
n

∂2ũn

∂y21
(ξn)

2αn

δn

where ξn belongs to the segment joining Q̃1
n−P 1

n

δn
and Q1

n−P 1
n

δn
in the

rescaled domain A+
1,n.

Since ∂w̃1
n

∂y1

(
Q̃1

n−P 1
n

δn

)
→ k1

∂2U
∂y21

(0), ∂2ũn

∂y21
(ξn) → ∂2U

∂y21
(0) < 0 and using

(3.4.45), we get k1 6= 0 and hence a contradiction.

So also the third claim is true and the proof of Lemma 3.6 is complete.



CHAPTER 4

The almost critical problem in an annulus - Part II

1. Introduction

In this chapter we will discuss the results contained in [16]. We con-

tinue the study of the symmetry of solutions of the problem

(4.1.46)





−∆u = N(N − 2)up−ε in A

u > 0 in A

u = 0 on ∂A

where A is an annulus centered at the origin in RN , N ≥ 3, p + 1 =
2N
N−2

is the critical Sobolev exponent for the embedding of H1
0 (A) into

Lp+1(A) and ε > 0 is a small parameter.

In Chapter 3 we analyzed the symmetry of solutions to (3.1.6) which

concentrate at one or two points, as ε → 0. Indeed it is well known

that the study of (4.1.46) is strictly related to the limiting problem

(ε = 0) which exhibits a lack of compactness and gives rise to solutions

of (4.1.46) which concentrate and blow up as ε → 0 ( [7], [10], [27],

[33], [34]). Obviously, solutions of (4.1.46) which blow-up at a finite

number of points cannot be radially symmetric. Nevertheless in [15] we

proved that solutions that concentrate at one or two points are axially

symmetric with respect to an axis passing through the origin which

contains the concentration points.

In this chapter we consider the case of solutions which concentrate at

k ≥ 3, k ≤ N , points in A and prove a partial symmetry result.

To be more precise we need some notations.

We say that a family of solutions {uε} of (4.1.46) has k ≥ 1 concentra-

tion points at {P 1
ε , P

2
ε , .., P

k
ε } ⊂ A if the following holds

39
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(4.1.47) P i
ε 6= P j

ε , i 6= j and each P i
ε is a strict local maximum for uε

(4.1.48) uε → 0 as ε → 0 locally uniformly in Ω \ {P 1
ε , P

2
ε , .., P

k
ε }

(4.1.49) uε(P
i
ε) → ∞ as ε → 0

Our result is the following

Theorem 4.1. Let {uε} be a family of solutions to (4.1.46) which

concentrate at k points P j
ε ∈ A, j = 1, .., k, k ≥ 3 and k ≤ N . Then,

for ε small, the points P j
ε lie on the same (k-1)-dimensional hyperplane

Πk passing through the origin and uε is symmetric with respect to any

(N-1)-dimensional hyperplane containing Πk.

As in [15] the proof of the above theorem is based on the procedure

developped in [31] to prove the symmetry of solutions of semilinear

elliptic equations in the presence of a strictly convex nonlinearity. The

main idea is to evaluate the sign of the first eigenvalue of the linearized

operator in the half domains determined by the symmetry hyperplanes.

To carry out this procedure we also use results of [7] and [29].

The outline of the chapter is the following: in Section 2 we recall some

preliminary results and prove a geometrical lemma, while in Section 3

we prove Theorem 4.1.

2. Preliminaries

Let A be the annulus defined as A ≡ {x ∈ RN : 0 < R1 < |x| < R2}
and Tν be the hyperplane passing through the origin defined by Tν ≡
{x ∈ RN : x · ν = 0}, ν being a direction in RN . We denote by A−

ν and

A+
ν the caps in A determined by Tν : A−

ν ≡ {x ∈ A : x · ν < 0} and

A+
ν ≡ {x ∈ A : x · ν > 0}.

In A we consider problem (4.1.46) and denote by Lε the linearized

operator at a solution uε of (4.1.46):

(4.2.50) Lε = −∆−N(N − 2)(p− ε)up−ε−1
ε
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Let λ1(Lε, D) be the first eigenvalue of Lε in a subdomain D ⊂ A with

zero Dirichlet boundary conditions.

In [15] the following proposition, which is a variant of a result of [31],

was proved

Proposition 4.2. If either λ1(Lε, A
−
ν ) or λ1(Lε, A

+
ν ) is non-negative

and uε has a critical point on Tν ∩A then uε is symmetric with respect

to the hyperplane Tν.

Let us recall some results about solutions of (4.1.46), proved in [29]

and [7].

Let {uε} be a family of solutions of (4.1.46) with k blow up points P i
ε ,

i = 1, .., k. Then we have

Proposition 4.3. There exist constants α0 > 0 and αij > 0, i, j =

1, .., k such that as ε → 0

(4.2.51) |P i
ε − P j

ε | > α0 i 6= j

(4.2.52)
uε(P

i
ε)

uε(P
j
ε )

→ αij for any i, j ∈ {1, .., k}

Moreover

(4.2.53) (uε(P
i
ε))

ε → 1

In the sequel we will often use the classical result that for N ≥ 3 the

problem

(4.2.54)




−∆u = N(N − 2)up in RN

u(0) = 1

has a unique classical solution which is

(4.2.55) U(y) =
1

(1 + |y|2)N−2
2
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Moreover, all non trivial solutions of the linearized problem of (4.2.54)

at the solution U , i.e.

(4.2.56) −∆v = N(N − 2)pUp−1v in RN

are linear combinations of the functions

(4.2.57) V0 =
1− |y|2

(1 + |y|2)N
2

, Vi =
∂U

∂yi
, i = 1, .., N

In particular the only non-trivial solutions of the problem

(4.2.58)


−∆v = N(N − 2)pUp−1v in RN

− = {x = (x1, .., xN) ∈ RN : x1 < 0}
v = 0 on ∂RN

− = {x = (x1, .., xN) ∈ RN : x1 = 0}

are the functions kV1 = k ∂U
∂y1

, k ∈ R.

We conclude this section with a geometrical lemma that will be used

in the proof of Theorem 4.1.

Lemma 4.4. Let {P1, .., Pk}, 2 ≤ k ≤ N , be k points in RN , Pi 6= 0 ∈
RN . Then

(i) if the line passing through 0 and P1 does not contain any Pi, i 6= 1,

then there exist two (N-1)-dimensional parallel hyperplanes T and Σ

with T passing through the origin 0 such that P1 ∈ T and Pi ∈ Σ, for

any i ∈ {2, .., k};
(ii) if the line passing through 0 and P1 contains some Pi’s, i 6= 1,

then there exists a (k-1)-dimensional hyperplane Π passing through the

origin containing all points Pi, i = 1, .., k.

Proof: In the case (i) let us consider the vectors v1 = P1 − 0, v2 =

P2 − P3,..,vk−1 = Pk−1 − Pk, vk = Pk − 0.

The vectors {v1, .., vk−1} obviously span a (k-1)-dimensional vector

space. Let us consider any (N-1)-dimensional subspace V contain-

ing {v1, .., vk−1} and not containing vk and let us define T = V and

Σ = vk + V . Then the first assertion is proved.
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In the case (ii) {v1, .., vk} are linearly dependent and so they are con-

tained in a (k-1)-dimensional hyperplane Π passing through the origin.

3. Proof of Theorem 4.1

We start by stating a lemma, whose proof will be given later

Lemma 4.5. Let {uε} be a family of solutions of (4.1.46) with k blow-

up points P i
ε , i = 1, .., k, 3 ≤ k ≤ N . Then, for ε small, all points P i

ε ,

i = 1, .., k, lie on the same (k-1)-dimensional hyperplane Πk passing

through the origin.

Proof of Theorem 4.1: The proof is similar to that of Theorem 2 of

[15], we will write the details for the reader’s convenience. The first

part of the statement is exactly Lemma 4.5. Hence we only have to

prove that uε is symmetric with respect to any hyperplane containing

Πk. For simplicity let us assume that Πk = {x = (x1, .., xN) ∈ RN :

x1 = 0, .., xN−(k−1) = 0}.
Let us observe that because the solutions have k blow-up points we

have (see [7], [29], [34])

(4.3.59)

∫
A
|∇uε|2

(∫
A
up−ε+1
ε

) 2
p−ε+1

−→
ε→0

k
2
N S

where S is the best Sobolev constant for the embedding of H1
0 (RN) in

Lp+1(RN).

Let us fix a (N-1)-hyperplane T containing Πk and, for simplicity, as-

sume that T = {x = (x1, .., xN) ∈ RN : x1 = 0}, so that A− = {x ∈
A : x1 < 0} and A+ = {x ∈ A : x1 > 0}.
Let us consider in A− the function

wε(x) = vε(x)− uε(x), x ∈ A−

where vε is the reflection of uε, i.e. vε(x1, .., xN) = uε(−x1, .., xN).

We would like to prove that wε ≡ 0 in A−, for ε small.
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Assume, by contradiction, that for a sequence εn → 0, wεn = wn 6≡ 0.

Let us consider the rescaled functions around P i
n = P i

εn , i = 1, .., k:

(4.3.60) w̃i
n(y) ≡

1

βi
n

wn(P
i
n + δny)

defined on the rescaled domains A−
i,n = A−−P i

n

δn
, with δn = (un(P

1
n))

1−pn
2 ,

pn = p− εn and βi
n = ‖w̄i

n‖L2∗ (A−
i,n)

, w̄i
n = wn(P

i
n + δny), i = 1, .., k.

Notice that, by (4.2.52), all functions are rescaled by the same factor

δn.

We claim that w̃i
n converge in C2

loc to a function w satisfying

(4.3.61)



−∆w = N(N − 2)pUp−1w in RN
− = {y = (y1, .., yN) ∈ RN : y1 < 0}

w = 0 on ∂RN
−{y = (y1, .., yN) ∈ RN : y1 = 0}

‖w‖L2∗ ≤ 1

where U is defined in (4.2.55).

Let us prove the claim for w̃1
n, the same proof will apply to any w̃i

n,

because of (4.2.52).

We have that the functions w̃1
n solve the following problem:

(4.3.62)




−∆w̃1

n = cnw̃
1
n in A−

1,n

w̃1
n = 0 on ∂A−

1,n

where

cn(y) = N(N − 2)pn

∫ 1

0

[
t

(
1

un(P 1
n)

un(P
1
n + δny)

)
+

(1− t)

(
1

un(P 1
n)

vn(P
1
n + δny)

)]pn−1

dt

One can observe that the functions ũ1
n = 1

un(P 1
n)
un(P

1
n + δny) and ṽ1n =

1
un(P 1

n)
vn(P

1
n+δny) which appear in the definition of cn(y) are uniformly

bounded by (4.2.52) and hence cn(y) is uniformly bounded too. Thus
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cn is locally in any Lq space (in particular q > N
2
) and hence w̃1

n is

locally uniformly bounded.

Then, by standard elliptic estimates and by the convergence in C2
loc(RN)

of ũ1
n, ṽ

1
n to the solution U of (4.2.54), we get the C2

loc(R̄N
− )-convergence

of w̃1
n to a solution w of (4.3.61).

Let us evaluate the L
N
2 -norm of cn:

∫

A−
1,n

|cn(y)|
N
2 dy ≤ CN

[∫

A−
1,n

∣∣∣∣
1

un(P 1
n)

un(P
1
n + δny)

∣∣∣∣
(pn−1)N

2

dy

]
+

CN

[∫

A−
1,n

∣∣∣∣
1

un(P 1
n)

vn(P
1
n + δny)

∣∣∣∣
(pn−1)N

2

dy

]

where CN is a constant which depends only on N .

For the first integral in the previous formula we have

∫

A−
1,n

∣∣∣∣
1

un(P 1
n)

un(P
1
n + δny)

∣∣∣∣
(pn−1)N

2

dy =

∫

A−
|un(x)|2

∗−Nεn
2 dx ≤ BN

by (4.3.59) and (4.1.46), BN being a constant depending only on N .

An analogous estimate holds for the second integral.

Hence the L
N
2 -norm of cn is uniformly bounded and we have

(4.3.63)

∫

A−
1,n

|cn(y)|
N
2 dy ≤ 2CNBN

Then multiplying (4.3.62) by w̃1
n and integrating we have that

∫

A−
1,n

|∇w̃1
n|2 dy =

∫

A−
1,n

cn(w̃
1
n)

2 dy ≤

≤
(∫

A−
1,n

|cn|
N
2 dy

) 2
N
(∫

A−
1,n

|w̃1
n|2

∗
dy

) 2
2∗

≤ (2CNBN)
2
N(4.3.64)

Then by (4.2.56) - (4.2.58) we get w = kV1 = k ∂U
∂y1

, k ∈ R, since, by
(4.3.64) w ∈ D1,2(RN

− ) = {ϕ ∈ L2∗(RN
− ) : |∇ϕ| ∈ L2(RN

− )}.
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Let us first assume that for one of the sequences {w̃i
n}, say {w̃1

n}, the
limit is w = k ∂U

∂y1
with k 6= 0.

Then, since the points P 1
n are on the reflection hyperplane T and

∇un(P
1
n) = 0 we have that ∂w̃1

n

∂y1
(0) = 0. This implies that ∂w

∂y1
(0) =

k ∂2U
∂y21

(0) = 0 with k 6= 0, which is a contradiction since for the function

U(y) = 1

(1+|y|2)
N−2

2
we have ∂2U

∂y21
(0) < 0.

So we are left with the case when all sequences w̃i
n converge to zero in

C2
loc.

Then, for any fixed R and for n sufficiently large in the domains

Ei,n(R) = B(0, R) ∩ A−
i,n we have the following estimates

(4.3.65) |w̃i
n(y)| ≤

S

4(2CNBN)2|B(0, R)| 2
2∗

i = 1, .., k

where |B(0, R)| is the measure of the ball B(0, R).

Now we focus only on the rescaling around P 1
n and observe that the

domains Ei,n(R), i ≥ 2, under the rescaling around P 1
n , correspond to

domains Fi,n(R) contained in A−
1,n which are translations of E1,n(R) by

the vector P i
n−P 1

n

δn
and also the functions w̃i

n are the translation of w̃1
n

by the same vector, indeed w̃i
n = w̃1

n

(
y + P i

n−P 1
n

δn

)

Hence from (4.3.65) we have

(4.3.66)

|w̃1
n(y)| ≤

S

4(2CNBN)2|B(0, R)| 2
2∗

in (E1,n(R) ∪ (∪i≥2Fi,n(R)))

Now let us choose R sufficiently large such that

(4.3.67)

∫

B(0,R)

|U |2∗ >
(
4k − 1

4k
S

)N
2

where U is, as usual, the function defined in (4.2.55). Then, since

both functions which appear in the definition of cn converge to the

function U and the function ũ1
n is just the translation of the function

ũi
n = 1

un(P 1
n)
un(P

i
n + δny) by the vector P i

n−P 1
n

δn
, we have by (3.4.31)
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(4.3.68)

∫

B(0,R)∪(∪i≥2B(
Pi
n−P1

n
δn

,R))

|ũ1
n|pn+1 >

(
4k − 1

4
S

)N
2

for n sufficiently large. This implies, by (4.3.59)

(4.3.69)

∫

A−
1,n\(E1,n(R)∪(∪i≥2F2,n(R)))

|cn|
N
2 <

(
1

4
S

)N
2

Since the functions w̃1
n solve (4.3.62), multiplying (4.3.62) by w̃1

n and

integrating we get

∫

A−
1,n

|∇w̃1
n|2 dy =

∫

A−
1,n

cn(w̃
1
n)

2 dy =

∫

A−
1,n\(E1,n(R)∪(∪i≥2Fi,n(R)))

cn(w̃
1
n)

2 dy+

∫

(E1,n(R)∪(∪i≥2Fi,n(R)))

cn(w̃
1
n)

2 dy ≤

(∫

A−
1,n\(E1,n∪(∪i≥2Fi,n))

|cn|
N
2 dy

) 2
N
(∫

A−
1,n\(E1,n∪(∪i≥2Fi,n))

|w̃1
n|2

∗
dy

) 2
2∗

+

+

(∫

(E1,n∪(∪i≥2Fi,n))

|cn|
N
2 dy

) 2
N
(∫

(E1,n∪(∪i≥2Fi,n))

|w̃1
n|2

∗
dy

) 2
2∗

≤ S

2

because ‖w̃1
n‖L2∗ (A−

1,n)
= 1, the L

N
2 -norm of cn is uniformly bounded by

(4.3.63), (4.3.69) and (4.3.66) hold.

On the other hand, by the Sobolev inequality, we have

∫

A−
1,n

|∇w̃1
n|2 dy > S

which gives a contradiction.

Hence the sequences w̃i
n cannot all converge to zero, so that wε ≡ 0 for

ε small, as we wanted to prove.

Finally we prove Lemma 4.5.

Proof of Lemma 4.5: As for the proof of Theorem 4.1 we adapt

the proof of Lemma 6 of [15] to the case of k blow-up points, k ≥ 3.

Let us consider the line rε connecting P 1
ε with the origin. By the
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second statement of Lemma 4.4 if, for ε small, rε contains any other

point P i
ε , i 6= 1, then all points P i

ε , i = 1, .., k, belong to the same (k-

1)-dimensional hyperplane Π passing through the origin and hence the

assertion is proved. Therefore let us assume that for a sequence εn → 0

the line rn = rεn does not contain any point P i
n = P i

εn , i 6= 1. Then,

again by Lemma 4.4, we have that there exist two (N-1)-dimensional

parallel hyperplanes Tn and Σn, with Tn passing through the origin,

such that P 1
n ∈ Tn and P i

n ∈ Σn, for any i ∈ {2, .., k}. By rotating we

can always assume that Tn = T = {x = (x1, .., xN) ∈ RN : x1 = 0}
and Σn = {x = (x1, .., xN) ∈ RN : x1 = αn} with αn > 0. In this way

P 1
n = (0, yn2 , .., y

n
N) while P i

n = (αn, x
n
i,2, .., x

n
i,N) for i = 2, .., k.

As before we define δn = (un(P
1
n))

1−pn
2 where pn = p− εn.

Claim 1 It is not possible that

(4.3.70)
αn

δn
−→
n→∞

∞

Assume, by contradiction, that (4.3.70) holds. We claim that, for n

sufficiently large,

(4.3.71) λ1(Ln, A
−) ≥ 0

where Ln ≡ Lεn denotes the linearized operator and, as before, A− =

{x = (x1, .., xN) ∈ A : x1 < 0}. To prove (4.3.71) let us take the balls

B(P i
n, Rδn) centered at the points P i

n, i = 1, .., k, and with radius Rδn,

R > 1 to be fixed later.

By (4.3.70) and (4.2.52) we have that B(P i
n, Rδn) does not intersect A

−

for i ≥ 2 and for large n. Morover if we take ϑ0 ∈ [0, π
2
] and we consider

the hyperplane Tϑ0 = {x = (x1, .., xN) : x1 sinϑ0 + xN cosϑ0 = 0}, by
(4.3.70), (4.2.52) and the fact that P 1

n belongs to T = Tπ
2
we can choose

ϑ0,n < π
2
and close to π

2
such that all balls B(P i

n, Rδn) do not intersect

the cap A−
ϑ0,n

= {x = (x1, .., xN) : x1 sinϑ0,n + xN cosϑ0,n < 0} for n

large enough.

Then, arguing as in [23] (see also [19]), it is easy to see that it is

possible to choose R such that λ1(Ln, A
−
ϑ0,n

) > 0 for n large, because

un concentrates only at the points P i
n, i = 1, .., k.
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Then, fixing n sufficiently large, we set

ϑ̃n ≡ sup{ϑ ∈ [ϑ0,n,
π

2
] : λ1(Ln, A

−
ϑ ) ≥ 0}

We would like to prove that ϑ̃n = π
2
.

If ϑ̃n < π
2
then P i

n /∈ A−
ϑ̃n
, i = 1, .., k, and λ1(Ln, A

−
ϑ̃n
) = 0, by the

definition of ϑ̃n.

Thus considering the functions

wn,ϑ̃n
(x) = vn,ϑ̃n

(x)− un(x) in A−
ϑ̃n

where vn,ϑ̃n
is defined as the reflection of un with respect to Tϑ̃n

, we

have, by the strict convexity of f , that




Ln(wn,ϑ̃n

) ≥ 0 (> 0 if wn,ϑ̃n
(x) 6= 0) in A−

ϑ̃n

wn,ϑ̃n
≡ 0 on ∂A−

ϑ̃n

Since λ1(Ln, A
−
ϑ̃n
) = 0, by the maximum principle, we have that wn,ϑ̃n

≥
0 in A−

ϑ̃n
and, since un(P

1
n) > un(x) for any x ∈ A−

ϑ̃n
we have, by the

strong maximum principle, that wn,ϑ̃n
> 0 in A−

ϑ̃n
.

Hence, denoting by (P 1
n)

′ the point in A−
ϑ̃
which is given by the reflec-

tion of P 1
n with respect to Tϑ̃n

, we have that

(4.3.72) wn,ϑ̃n
(x) > η > 0 for x ∈ B((P 1

n)
′, δ) ⊂ A−

ϑ̃n

where B((P 1
n)

′, δ) is the ball with center in (P 1
n)

′ and radius δ > 0

suitably chosen. Thus

(4.3.73) wn,ϑ̃n+σ(x) >
η

2
> 0 for x ∈ B((P 1

n)
′′, δ) ⊂ A−

ϑ̃n+σ

for σ > 0 sufficiently small, where (P 1
n)

′′ is the reflection of P 1
n with

respect to Tϑ̃n+σ.

On the other side, by the monotonicity of the eigenvalues with respect

to the domain, we have that λ1(Ln, A
−
ϑ̃n

\ B((P 1
n)

′, δ)) > 0 and hence

λ1(Ln, A
−
ϑ̃n+σ

\B((P 1
n)

′′, δ)) > 0, for σ sufficiently small.
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This implies, by the maximum principle and (4.3.73), that

(4.3.74) wn,ϑ̃n+σ(x) > 0 for x ∈ A−
ϑ̃n+σ

Since Ln(wn,ϑ̃n+σ) ≥ 0 in A−
ϑ̃n+σ

(by the convexity of the function up−ε
ε ),

the inequality (4.3.74) implies that λ1(Ln, D) > 0 in any subdomain

D of A−
ϑ̃n+σ

, and so λ1(Ln, A
−
ϑ̃n+σ

) ≥ 0 for σ positive and sufficiently

small. Obviously this contradicts the definition of ϑ̃n and proves that

ϑ̃n = π
2
, i.e. (4.3.71) holds.

So, by Proposition 4.2, since P 1
n ∈ T = Tπ

2
, we get that un is symmetric

with respect to the hyperplane T, which is not possible, since P i
n do

not belong to T, for i = 2, .., k. Hence (4.3.70) cannot hold.

Claim 2 It is not possible that

(4.3.75)
αn

δn
−→
n→∞

l > 0

Assume that (4.3.75) holds and, as before, denote by T the hyperplane

T = {x = (x1, .., xN) ∈ RN : x1 = 0} to which P 1
n belongs while

P i
n /∈ T , i ≥ 2.

We would like to prove as in Claim 1 that

(4.3.76) λ1(Ln, A
−) ≥ 0

If the points P 1
n and all the P i

n have the N-th coordinate of the same

sign, i.e. they lie on the same side with respect to the hyperplane

{xN = 0}, then it is obvious that we can argue exactly as for the first

claim and choose ϑ0 ∈ [0, π
2
] such that all the balls B(P i

n, Rδn), R as

before, do not intersect the cap A−
ϑ0
. Then the proof is the same as

before.

Hence we assume that P 1
n and some P i

n, i 6= 1, lie on different sides with

respect to the hyperplane {xN = 0}. Let us then consider ϑn ∈ [0, π
2
]

such that the points P 1
n and some of the P i

n, say P 2
n , .., P

j
n, j ≤ k, have

the same distance dn > 0 from the hyperplane Tϑn
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Tϑn = {x = (x1, .., xN) ∈ RN : x1 sinϑn + xN cosϑn = 0}

while the other points P j+1
n , .., P k

n have distance bigger than dn from

Tϑn .

Of course, because of (4.3.75), we have

(4.3.77)
dn
δn

−→
n→∞

l1 > 0

Then, choosing R > 0 such that λ1(Ln, D
R
n ) > 0, for n large, where

DR
n = A \ [B(P 1

n , Rδn) ∪ (∪i≥2B(P i
n, Rδn))] (see [23]), either all balls

B(P i
n, Rδn), i = 1, .., k do not intersect the cap A−

ϑn
, for n large enough,

or they do. In the first case we argue as for the first claim. In the second

case we observe that in each set En,i
ϑn

= A−
ϑn

∩ B(P i
n, Rδn), i = 1, .., k,

we have, for n large, and whenever the intersection is not empty,

(4.3.78) un(x) ≤ vϑn
n (x) x ∈ En,i

ϑn
i = 1, .., k

where vϑn
n (x) = un(x

ϑn), xϑn being the reflection of x with respect to

T n
ϑn
.

In fact if (4.3.78) were not true we could construct a sequence of points

xnk
∈ Enk,i

ϑnk
, for some i = 1, .., k, such that

(4.3.79) unk
(xnk

) > v
ϑnk
n (xnk

)

Then there would exist a sequence of points ξnk
∈ Enk,i

ϑnk
such that

(4.3.80)
∂unk

∂ϑnk

(ξnk
) < 0

Thus, by rescaling unk
in the usual way around the P i

nk
and using

(4.3.77) we would get a point ξ ∈
(
El1

ϑ0

)−
= {x = (x1, .., xN) ∈ RN :

x1 sinϑ0 + xN cosϑ0 < −l1 < 0} such that ∂U
∂ϑ0

(ξ) ≤ 0 while ∂U
∂ϑ0

> 0 in(
El1

ϑ0

)−
, ϑ0 being the limit of ϑnk

.

Hence (4.3.78) holds.
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Now, arguing again as in [23] and [19], in the set
(
F n
ϑn

)−
= A−

ϑn
\

(∪i≥1B(P i
n, Rδn)) we have that λ1(Ln,

(
F n
ϑn

)−
) ≥ 0.

Hence, by (4.3.78), applying the maximum principle, we have that

wn,ϑn(x) ≥ 0 in
(
F n
ϑn

)−
, and, again by (4.3.78) and the strong maximum

principle

(4.3.81) wn,ϑn(x) > 0 in A−
ϑn

As in the proof of Claim 1, this implies that λ1(Ln, A
−
ϑn
) ≥ 0.

Then, arguing again as for the first claim we get (4.3.76), which gives

the same kind of contradiction because P i
n, i ≥ 2, do not belong to T.

Claim 3 It is not possible that

(4.3.82)
αn

δn
−→
n→∞

0

Let us argue by contradiction and assume that (4.3.82) holds. As before

we denote by T the hyperplane T = {x = (x1, .., xN) ∈ RN : x1 = 0}.
Since the points P i

n, i ≥ 2, are in the domain A+
n = {x = (x1, .., xN) ∈

A : x1 > 0}, we have that the function

wn(x) = vn(x)− un(x), x ∈ A+
n

where vn is the reflection of un, i.e. vn(x1, .., xN) = un(−x1, x2, .., xN),

is not identically zero.

Then, as in the proof of Theorem 4.1, rescaling the function wn around

P 1
n or P i

n, i ≥ 2, and using (4.2.52) we have that the functions

(4.3.83) w̃i
n(y) ≡

1

βi
n

wn(P
i
n + δny) , i = 1, .., k

defined in the rescaled domain A+
i,n = A+−P i

n

δn
, converge both, by (4.3.82)

and standard elliptic estimates, in C2
loc to a function wi satisfying

(4.3.61) but in the half space RN
+ = {x = (x1, .., xN) ∈ RN : x1 > 0}.
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Again by (4.2.56) - (4.2.58) we have that wi = ki
∂U
∂y1

, ki ∈ R, where U

is the function defined by (4.2.54).

Exactly as in the proof of Theorem 4.1 we can exclude the case that

all sequences w̃i
n converge to zero in C2

loc.

Hence for at least one of the sequences w̃i
n we have that the limit is

wi = ki
∂U
∂y1

with ki 6= 0.

If this happens for w̃1
n then, since the points P 1

n are on the reflection

hyperplane T , arguing exactly as in the proof of Theorem 4.1, we get

a contradiction.

So we are left with the case when w̃1
n → k1

∂U
∂y1

, k1 = 0 and w̃i
n → ki

∂U
∂y1

with ki 6= 0 for some i ≥ 2 in C2
loc. For the sake of simplicity let us

suppose that i = 2.

At the points P 2
n , obviously we have that ∂un

∂y1
(P 2

n) = 0.

Let us denote by P̃ 2
n the reflection of P 2

n with respect to T .

Hence, for the function w̃2
n we have, applying the mean value theorem

∂w̃2
n

∂y1
(0) =

δ
2

1−pn
n

β2
n

(
∂ũn

∂y1
(0) +

∂ũn

∂y1

(
P̃ 2
n − P 2

n

δn

))
=

=
δ

2
1−pn
n

β2
n

(
∂ũn

∂y1

(
P̃ 2
n − P 2

n

δn

)
− ∂ũn

∂y1
(0)

)
=

= −δ
2

1−pn
n

β2
n

∂2ũn

∂y21
(ξn)

2αn

δn

where ũn(y) = δ
2

pn−1
n un(P

2
n+δny) and ξn belongs to the segment joining

the origin with the point P̃ 2
n−P 2

n

δn
in the rescaled domain A+

2,n.

Since ∂w̃2
n

∂y1
(0) → k2

∂2U
∂y21

(0) and ∂2ũn

∂y21
(ξn) → ∂2U

∂y21
(0), with k2 6= 0 and

∂2U
∂y21

(0) < 0 we get

(4.3.84)
αnδ

2
1−pn
n

β2
nδn

→ γ 6= 0

Our aim is now to prove that (4.3.84) implies that k1 6= 0 which will

give a contradiction.
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Let us observe that if the function wn does not change sign near P 1
n ,

then, since wn 6≡ 0, we would get a contradiction, applying Hopf’s

lemma to wn (which solves a linear elliptic equation) at the point P 1
n ,

because ∇un(P
1
n) = 0.

Then in any ball B(P 1
n , αn), αn as in (4.3.82), there are points Q1

n such

that ∂un

∂y1
(Q1

n) = 0 and Q1
n /∈ T . Indeed, since wn changes sign near P 1

n ,

in any set B(P 1
n , αn) ∩ A+ there are points where wn is zero, i.e. un

coincides with the reflection vn. This implies that there exist points

Q1
n in B(P 1

n , αn) where
∂un

∂y1
(Q1

n) = 0, and by Hopf’s lemma applied to

the points of the hyperplane T we have that Q1
n /∈ T . Let us denote by

Q̃1
n the reflection of Q1

n with respect to T .

Assume that Q1
n ∈ A− (the argument is the same if Q1

n ∈ A+). Then

as before we have

∂w̃1
n

∂y1

(
Q1

n − P 1
n

δn

)
=

δ
2

1−pn
n

β1
n

(
∂ũn

∂y1

(
Q̃1

n − P 1
n

δn

)
− ∂ũn

∂y1

(
Q1

n − P 1
n

δn

))
=

= −δ
2

1−pn
n

β1
n

∂2ũn

∂y21
(ξn)

2αn

δn

where ξn belongs to the segment joining Q̃1
n−P 1

n

δn
and Q1

n−P 1
n

δn
in the

rescaled domain A+
1,n.

Since ∂w̃1
n

∂y1

(
Q̃1

n−P 1
n

δn

)
→ k1

∂2U
∂y21

(0), ∂2ũn

∂y21
(ξn) → ∂2U

∂y21
(0) < 0 and using

(4.3.84), we get k1 6= 0 and hence a contradiction.

So also the third claim is true and the proof of Lemma 4.5 is complete.



CHAPTER 5

The singularly perturbed critical problem

1. Introduction

In this chapter we will discuss the results contained in [14]. Let Ω be

a smooth bounded domain in RN , N ≥ 3, λ ≥ 0. We consider the

problem

(D)λ





−∆u+ λu = up x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ ∂Ω

where p = N+2
N−2

= 2∗ − 1 is the critical Sobolev exponent. In case

Ω is starshaped (D)λ has no solutions: an obstruction to existence is

given by the well known Pohozaev identity. However, (D)λ might have

solutions for any λ: this is the case if Ω is an annulus.

In [17], Druet-Hebey-Vaugon, investigating the role of Pohozaev type

identities in a Riemannian context, discovered that such identities still

provide some kind of obstruction to existence: if uj solve (D)λj
on some

compact (conformally flat) Riemannian manifold M and λj → +∞,

then
∫
M
up+1
j → +∞ (see [20] for extensions to fourth order elliptic

PDE’s and [26] for more questions).

In other words, there are no positive solutions with energy below some

given bound, if λ is too large.

This result does not carry over to manifolds with boundary under gen-

eral boundary conditions (e.g. homogeneous Neumann boundary con-

ditions, see [1], [2] for this non trivial fact.)

The main purpose of this chapter is to show that the result quoted

above is indeed true for the homogeneous Dirichlet B.V.P. (Dλ); see

Theorem 5.1 below.

55
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Our approach is as in [17]: to show that a sequence of solutions cannot

blow-up at a finite number of points (as it should be assuming a bound

on the energy). The obstruction found in [17] is given by local L2

estimates. In turn, these estimates are based on inequalities obtained

localizing the standard Pohozaev identity on balls centered at blow-up

points (see 5.3.97 below).

Now, differently from [17], where there is no boundary, we have to

take into account possible blow-up at boundary points. Since Pohozaev

type inequalities on balls centered at boundary points do not hold, in

general, the main issue here is to get local L2 estimates at boundary

points.

Notice that a more or less straightforward application of arguments

from [17] would only lead to the statement: bounded energy solutions

have to blow up at least at one boundary point, which is the (quite

interesting in itself) correct statement for the Neumann problem (see

Theorem 5.2 below) but which is not the result we are looking for in

the Dirichlet problem.

Since it does not seem easy to rule out blow up at boundary points,

we stick to the approach in [17], but we have to deal with the new

difficulty coming from possible blow up at boundary points.

To handle this difficulty, we will establish Pohozaev-type inequalities

suitably localized at interior points (see Lemma 5.6 below), which, used

in a clever way, will allow to obtain estimates up to boundary points

(see Lemma 5.7, which also provides a simple adaptation and a self

contained exposition of the main arguments in [17]).

This is the main technical contribution of the paper [14], and we believe

that such estimates might be of interest by themselves.

Our first result is

Theorem 5.1. Let N ≥ 3. Let uj be solutions of (D)λj
, with λj →

+∞. Then
∫
Ω
up+1
j → +∞.

Remark: Such a result is quite obvious if p is subcritical, i.e. p <
N+2
N−2

: a simple scaling argument implies
∫
Ω
up+1
j blows (at least) like

λγ
j , γ = p+1

p−1
− N

2
as λj → +∞. In this case, in contrast with the critical

case, it holds true also for the homogeneous Neumann B.V.P. (see [30]
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for an explicit lower bound on the energy of ground state solutions).

A second question we address in [14] is concerned with the mixed

boundary value problem

(M)λ





−∆u+ λu = u
N+2
N−2 x ∈ Ω

u > 0 x ∈ Ω

u = 0 x ∈ Γ0

∂u
∂ν

= 0 x ∈ Γ1

Here ∂Ω = Γ0 ∪ Γ1 with Γi disjoint components.

As for the Neumann problem, (M)λ possesses low energy solutions

for any λ positive, at least if the mean curvature of Γ1 is somewhere

positive, and hence non existence of bounded energy solutions for λ

large is false, in general. Indeed, several existence results for (bounded

energy) solutions blowing up at (one or several) boundary points are

known (see [35] for an extensive bibliography).

Nothing is known, to our best knowledge, about existence of solutions

blowing up both at interior and at boundary points. On the other

hand, the extreme case of purely interior blow-up has been widely

investigated:

(Q) Are there solutions which blow up only at interior points?

Let us review the known results, all of them actually concerning the

homogeneous Neumann problem (i.e. Γ0 = ∅).

A first, negative, answer has been given in [13] for N ≥ 5: (M)λ has

no solutions of the form

uλ = wλ +
k∑

j=1

Uµj
λ,y

j
λ
, wλ → 0 in H1(Ω)

with µj
λ → +∞, yjλ → yj ∈ Ω as λ goes to infinity and yi 6= yj for any

i 6= j. Here U(x) = [N(N−2)]
N−2

4

(1+|x|2)
N−2

2
and Uµ,y = µ

N−2
2 U (µ(x− y)) .
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Now, bounded energy solutions uλ (with λ going to infinity) are known

to be of the form given above, apart from the property yi 6= yj for all

i 6= j, which has to be regarded as a ”no multiple concentration at a

single point” assumption.

Under the even more restrictive assumption k = 1, a corresponding

nonexistence result has been proved in [22] in any dimension N ≥ 3.

To our best knowledge, the only result fully answering (Q) is due to

Rey [35], but it is limited to the dimension N = 3. According to Rey,

”the main difficulty is to eliminate the possibility of multiple interior

peaks”, and he accomplishes this task through a very careful expan-

sion of solutions blowing up at interior points: this is the basic tool to

obtain a negative answer to (Q) in dimension N = 3.

It is henceforth remarkable that, as a by-product of our L2 estimates,

we can bypass this difficulty and easily prove

Theorem 5.2. Let N ≥ 3. Let uj be solutions of (M)λj
, with λj →

+∞. If supj

∫
Ω
up+1
j < ∞, then uj has at least one concentration point

which lies on the Neumann component Γ1.

Actually, we expect that solutions for the mixed problem, with a uni-

form bound on the energy, should not even exist for λ large, if the

mean curvature of the Neumann component is strictly negative. This

is fairly obvious in the case of one peak solutions, which, by the above,

should blow-up at one boundary point. However, in such a point the

mean curvature should be non negative (see [3], [4] or [36]).

We would like to mention a very interesting result due to Esposito (see

[18]), who was able to answer the full question (Q) in high dimension.

The result is the following

Theorem 5.3. Let N > 6. Suppose λn → ∞ and let un be a sequence

of solutions to





−∆un + λnun = u
N+2
N−2
n x ∈ Ω

un > 0 x ∈ Ω

∂u
∂ν

= 0 x ∈ ∂Ω
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with uniformly bounded energy

sup
n∈N

∫

Ω

u
2N
N−2
n < ∞

Then, for any compact set K in Ω there exist CK such that:

max
x∈K

un(x) ≤ CK

for any n ∈ N.

The proof of this theorem is based on a local description of possible

compactness loss which makes use of inequality 5.3.98 and does not

need any boundary condition. In fact, this theorem is a particular case

of a general interior compactness result: Esposito proved that blow-up

solutions with bounded energy remain bounded in L∞
loc(Ω) for λ → ∞

without any boundary condition. Thus in the Neumann case all the

blow-up points have to lie on the boundary ∂Ω.

The outline of this chapter is the following: in section 2 we recall some

well known facts and prove the L2 global concentration of the solutions,

in section 3 we prove Theorem 5.1 and 5.2 by contradiction through a

localized Pohozaev identity and a ”reverse” L2 concentration.

2. L2 global concentration

To be self contained, we review in this section some essentially well

known facts. Let un be solutions of (D)λn (but also homogeneous

Neumann, or mixed, boundary conditions might be allowed, with minor

changes, here). Multiplying the equation by un , integrating by parts

and using Sobolev inequality, we see that

(5.2.85)

∫

Ω

|∇un|2 ≥ S
N
2 ,

∫

Ω

up+1
n ≥ S

N
2

where S denotes the best Sobolev constant. We start recalling concen-

tration properties of un, assuming un ⇀ 0 in H1
0 .
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Lemma 5.4. Let un be solutions of (D)λn. Assume un ⇀ 0 in H1
0 .

Then there is a finite set C ⊂ Ω such that un → 0 in H1
loc(Ω \ C) and

in C0
loc(Ω \ C) .

Proof: Let C := {x ∈ Ω : lim supn→∞
∫
Br(x)∩Ω |∇un|2 > 0, ∀r > 0}.

Because of (5.2.85) and compactness of Ω, C cannot be empty. We

claim that

(5.2.86) ∀x ∈ C, ∀r > 0, lim sup
n→∞

∫

Br(x)∩Ω
up+1
n ≥ S

N
2

To prove the claim, let ϕ ∈ C∞
0 (B2r(x)), ϕ ≡ 1 on Br(x), 0 ≤ ϕ ≤ 1.

Notice that −
∫
Ω
unϕ

2∆un =
∫
Ω
|∇un|2ϕ2 + ◦(1) =

∫
Ω
|∇unϕ|2 + ◦(1)

because un ⇀ 0

From the equation, using Holder and Sobolev inequalities, we get

(5.2.87)∫
|∇unϕ|2 + ◦(1) ≤

∫
u

4
N−2
n (unϕ)

2 ≤ 1

S
(

∫

B2r(x)

u
2N
N−2
n )

2
N

∫
|∇unϕ|2

For x ∈ C,
∫
|∇unϕ|2 is bounded away from zero along some subse-

quence, and then (5.2.86) follows by (5.2.87). Also, if x1, . . . , xk ∈ C,

choosing Br(xj) disjoint balls, and eventually passing to a subsequence,

we get by (5.2.86)

k S
N
2 ≤

∑

j

∫

Br(xj)∩Ω
up+1
n ≤ sup

n

∫

Ω

up+1
n < +∞

Thus C is finite. Also, from the very definition of C, it follows that

∇un → 0 in L2
loc(Ω\C), and, by Sobolev inequality, un → 0 in Lp+1

loc (Ω\
C) as well.

Finally, C0
loc(Ω \C) convergence will follow by standard elliptic theory

once one has proved that un → 0 in Lq
loc(Ω \ C) ∀q. In turn, this fact

readily follows iterating the (Moser type) scheme

(5.2.88)

q ≥ 2,

∫

B2r(x)

up+1 ≤ (
S

q
)
N
2 ⇒ (

∫

Br(x)

usq)
1
s ≤ 8

Sr2

∫

B2r(x)

uq, s :=
p+ 1

2
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To prove (5.2.88), we can proceed as for (5.2.87), choosing now as test

function ϕ2uq−1, ||∇ϕ||∞ ≤ 2
r
. We now obtain

(5.2.89)∫
∇u∇(uq−1ϕ2) ≤

∫
up−1(ϕu

q
2 )2 ≤ 1

S
(

∫

B2r(x)

up+1)
2
N

∫
|∇ϕu

q
2 |2

On the other hand

(5.2.90)

∫
∇u∇(uq−1ϕ2) =

∫
(q − 1) ϕ2uq−2|∇u|2 + 2 uq−1ϕ∇u∇ϕ

(5.2.91)
2

q

∫
|∇(ϕu

q
2 )|2 =

∫
q

2
ϕ2uq−2|∇u|2 + 2uq−1ϕ∇u∇ϕ+

2

q
|∇ϕ|2uq

Substracting (5.2.90) from (5.2.91) and then using (5.2.89), we obtain

2

q

∫
|∇(ϕu

q
2 )|2 ≤

∫
∇u∇(uq−1ϕ2) +

2

q

∫
|∇ϕ|2uq ≤

(5.2.92) ≤ 1

S
(

∫

B2r(x)

up+1)
2
N

∫
|∇(ϕu

q
2 )|2 + 8

qr2

∫

B2r(x)

uq

Hence, using the assumption
∫
B2r(x)

up+1 ≤ (S
q
)
N
2 and Sobolev inequal-

ity, we get (5.2.88). Now, iterating (5.2.88) with x ∈ Ω\Cδ, 2r < δ, u =

un and using elliptic estimates ([25], page 194), we obtain

(5.2.93) sup
Ω\Cδ

un ≤ cN

δ
N
2

(

∫

Ω\C δ
2

u2
n)

1
2 → 0

Points in C are called ”geometrical” concentration points and C is the

concentration set. A crucial observation is that L2 norm concentrates

around C (see [17]):

Lemma 5.5. Let un be solutions of (D)λn. Assume un ⇀ 0, and let

C := {x1, . . . , xm} be its concentration set. Let Cδ := ∪m
j=1Bδ(xj), Bδ(xj)

disjoint closed balls. Then, for n large,
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∫

Ω\Cδ

u2
n ≤ 16

δ2 λn

∫

Ω

u2
n

In particular, if λn → +∞, then

(5.2.94)

∫
Ω\Cδ

u2
n∫

Cδ
u2
n

→ 0

Proof: Let ϕ ∈ C∞(RN), 0 ≤ ϕ ≤ 1, ϕ ≡ 0 in C δ
2
, ϕ ≡ 1 in RN \Cδ,

||∇ϕ||∞ < 4
δ
. Multiplying the equation by unϕ

2 and integrating, we

get

(5.2.95)

∫
|∇un|2ϕ2 + 2

∫
unϕ∇un∇ϕ + λn

∫
u2
nϕ

2 = ◦(1)
∫

u2
nϕ

2

because up−1
n (x) → 0 uniformly in Ω\C δ

2
by Lemma 5.4. After setting

γ2
n :=

∫
|∇un|2ϕ2
∫
Ω\Cδ

2

u2
n

we get from (5.2.95) the desired inequality

λn

∫
Ω\Cδ

u2
n∫

Ω\C δ
2

u2
n

≤ ◦(1) + 2||∇ϕ||∞γn − γ2
n ≤ ◦(1) + ||∇ϕ||2∞ ≤ 16

δ2

3. Pohozaev identity and ”reverse” L2 concentration

In this Section, after briefly recalling the Pohozaev identity, we first

derive suitably localized Pohozaev inequalities which will allow to get

uniform L2− local estimates up to boundary points. These up-to-the-

boundary estimates are the main novelty with respect to [17]: com-

bined with the L2 global concentration reviewed in Section 2, they will

readily imply Theorems 5.1 and 5.2.

Given any v ∈ C2(Ω), x0 ∈ RN , an elementary computation (see [40])

gives

〈x−x0,∇v〉∆v−N − 2

2
|∇v|2 = div

(
〈x− x0,∇v〉∇v − |∇v|2

2
(x− x0)

)
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If in addition v ∈ C1
0(Ω̄), so that ∇v(x) = ∂v

∂ν
ν(x) for any x ∈ ∂Ω,

where ν(x) is the exterior unit normal at x ∈ ∂Ω, an integration by

parts yields

(5.3.96)

∫

Ω

〈x−x0,∇v〉∆v+
N − 2

2
v∆v =

1

2

∫

∂Ω

〈x−x0, ν(x)〉|∇v|2 dσ

If furthermore −∆v = g(x, v), g(x, t) ≡ b(x)|t|p−1t − λa(x)t , through

another integration by parts we obtain

1

N

∫

Ω

〈x− x0, v
p+1 ∇b

p+ 1
− λ

2
v2∇a〉 − λ

N

∫

Ω

av2 =

=
1

2

∫

∂Ω

〈x− x0, ν〉|∇v|2 dσ

A straightforward and well known consequence of this identity is that

v has to be identically zero if Ω is starshaped with respect to some

x0 and 〈x − x0,∇b〉 ≤ 0 ≤ 〈x − x0,∇a〉. However, this conclusion is

false, in general. The idea, following [17], would be to localize (5.3.96)

to obtain, for every given x0 ∈ Ω and some δ = δx0 > 0 and for all

ϕ ∈ C∞
0 (B4δ(x0)) , inequalities of the form

(5.3.97)

∫

B4δ(x0)∩Ω

〈x− x0,∇(ϕv)〉∆(ϕv) +
N − 2

2
ϕv∆(ϕv) ≥ 0,

However, while this can be done at interior points (e.g. with 4δ =

d(x0, ∂Ω)), (5.3.97) is in general false, ∀ δ small, if x0 ∈ ∂Ω. So,

we have to localize (5.3.96) at interior points but in a careful way, to

cover, in some sense, also boundary points. Our basic observation is

that (5.3.97) holds true for x0 as long as d(x0, ∂Ω) ≥ δ if δ is sufficiently

small, and this will be enough to get control up to the boundary. The

first statement is the content of the following simple but crucial lemma.

Lemma 5.6. There is δ̄ = δ̄(∂Ω) such that, if 0 < δ ≤ δ̄, v ∈ C2(Ω)∩
C1(Ω), v ≡ 0 on ∂Ω and x0 ∈ Ω with d(x0, ∂Ω) ≥ δ, then (5.3.97)

holds true.

Proof: Let δ̄ be such that, for every z ∈ ∂Ω, any x ∈ ∂Ω∩B8δ(z) can

be uniquely written in the form

(i) x = z + η + γz(η)ν(z), 〈η, ν(z)〉 = 0, with |γz(η)| ≤ c(∂Ω)|η|2,
for some smooth γz , with γz(0) = 0 , ∇γz(0) = 0, |η| ≤ 8δ̄ and some
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constant c only depending on ∂Ω. We will also require

(ii) |ν(z′)− ν(z′′)| ≤ 1
8
for any z′, z′′ ∈ ∂Ω with |z′ − z′′| ≤ 8δ̄

(iii) δ̄ < 1
128c

, c = c(∂Ω).

Let 0 < δ ≤ δ̄. We are going to apply (5.3.96) with Ω replaced by

B4δ(x0) ∩ Ω and v by ϕv, ϕ ∈ C∞
0 (B4δ(x0)).

If d(x0, ∂Ω) ≥ 4δ, then equality holds in (5.3.97), so, let us assume

0 < δ ≤ d(x0, ∂Ω) ≤ 4δ.

We can write x0 = z − τν(z) for some z ∈ ∂Ω and δ ≤ τ ≤ 4δ .

For x ∈ B4δ(x0) we have |x − z| ≤ 8δ and hence, (i) holds: x =

z + η + γz(η)ν(z), |η| ≤ 8δ.

Now, using (ii) − (iii), we see that 〈x − x0, ν(x)〉 = 〈x − x0, ν(x) −
ν(z)〉+ 〈z + η + γz(η)ν(z)− (z − τν(z)), ν(z)〉 ≥ δ

2
− 64cδ2 ≥ 0.

Hence the r.h.s. in (5.3.96) (with Ω replaced by Ω ∩ B4δ(x0) and v by

ϕv) is nonnegative and the Lemma is proved.

In the Lemma 5.7 below we will show how Pohozaev inequalities lead to

”reverse L2 concentration” of solutions at any blow up point. We will

adapt arguments from [17], where, however, it is made a crucial use of

the validity of (5.3.97) at any point, which is not the case here. Still,

a clever use of Lemma 5.6, i.e. of (5.3.97) limited to points which are

δ-away from the boundary, will enable us to get the desired estimates

up to boundary points.

Lemma 5.7. There is a constant c = cN , only depending on N , such

that if uλ is a solution of (D)λ and 0 < δ ≤ δ̄(∂Ω) ≤ 1, then

(5.3.98) λ

∫

Bδ(x)

u2
λ ≤ c

δ3

∫

B4δ(x)\Bδ(x)

(
u2
λ + up+1

λ

)
, ∀x ∈ Ω

Proof: We are going to apply (5.3.97) with x0 = x if d(x, ∂Ω) ≥ δ,

while, if d(x, ∂Ω) < δ, x = z − τν(z) for some z ∈ ∂Ω and 0 ≤ τ < δ,

we will choose x0 = z − δν(z). Let, without loss of generality, x0 = 0 .

By Lemma 5 we have
∫

B4δ∩Ω
〈x,∇(ϕuλ)〉∆(ϕuλ) +

N − 2

2
ϕuλ∆(ϕuλ) ≥ 0
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i.e. (dropping subscript B4δ ∩ Ω)

∫ [
〈x,∇(ϕuλ)〉+

N − 2

2
ϕuλ

]
ϕ∆uλ + 2ϕ〈x,∇uλ〉〈∇ϕ,∇uλ〉+

(5.3.99) +R(λ) ≥ 0,

where R(λ) := R1(λ) + R2(λ), R1, R2 given by

R1(λ) :=

∫
2uλ〈x,∇ϕ〉〈∇ϕ,∇uλ〉 + 〈x,∇(ϕuλ)〉uλ∆ϕ

R2(λ) :=
N − 2

2

∫
ϕuλ [uλ∆ϕ+ 2〈∇uλ,∇ϕ〉]

In what follows we properly adapt and simplify arguments from [17].

Taking ϕ radially symmetric and radially decreasing, we have ∇ϕ =

〈 ∇ϕ, x
|x| 〉 x

|x| , with 〈 ∇ϕ(x), x 〉 ≤ 0.

In particular

〈 ∇ϕ(x), ∇uλ(x) 〉〈 x,∇uλ(x)〉 =
= 〈∇ϕ(x),

x

|x|2 〉〈x,∇uλ(x)〉2 ≤ 0

and hence (5.3.99) yields

(5.3.100) R(λ) +

∫
ϕ〈x,∇(ϕuλ)〉∆uλ +

N − 2

2

∫
ϕ2uλ∆uλ ≥ 0

Now, let us write g(t) := λt− |t|p−1t, G(t) := λ
2
u2 − up+1

p+1
. We first

rewrite, integrating by parts, the second term in (5.3.100) as follows:

∫
ϕ〈x,∇(ϕuλ)〉∆uλ =

∫
ϕ〈x,∇ϕ〉uλ g(uλ) +

N∑

j=1

∫
ϕ2xjg(uλ)

∂uλ

∂xj

=

=

∫
ϕ〈x,∇(ϕ)〉 [uλg(uλ)− 2G(uλ)]−N

∫
ϕ2G(uλ) =

(5.3.101) = − 2

N

∫
ϕup+1

λ −N

∫
ϕ2G(uλ)

because 2G(u)− ug(u) = − 2
N
up+1. Since NG(uλ)− N−2

2
uλg(uλ) =

−λu2
λ, (5.3.100) gives
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(5.3.102) R(λ)− 2

N

∫
〈x,∇ϕ〉ϕup+1

λ ≥ −λ

∫
u2
λ

Let us now transform, integrating by parts, R(λ) as an integral against

u2
λdx.

R1(λ) =

∫ N∑

j=1

[
〈x,∇ϕ〉 ∂ϕ

∂xj

+
1

2
xjϕ∆ϕ

]
∂2u2

λ

∂x2
j

+ 〈x,∇ϕ〉u2
λ ∆ϕ =

= −
∫

u2
λ

N∑

j=1

[
〈x,∇ϕ〉∂

2ϕ

∂x2
j

+
∂

∂xj

〈x,∇ϕ〉 ∂ϕ
∂xj

+
1

2
ϕ∆ϕ +

1

2
xj

∂

∂xj

(ϕ∆ϕ)

]
+

+u2
λ〈x,∇ϕ〉∆ϕ = −

∫
u2
λ

[
〈∇ϕ,∇(〈x,∇ϕ〉)〉 +

N

2
ϕ∆ϕ +

1

2
〈x,∇(ϕ∆ϕ)〉

]

R2(λ) =
N − 2

2

[∫
u2
λϕ∆ϕ− 1

2

∫
u2
λ∆ϕ2

]
= −N − 2

2

∫
u2
λ|∇ϕ|2

and thus

R(λ) = −
∫

u2
λ

[
〈∇ϕ,∇〈x,∇ϕ〉〉+ N

2
ϕ∆ϕ +

1

2
〈x,∇(ϕ∆ϕ)〉+ N − 2

2
|∇ϕ|2

]

Now, assuming ϕ ≡ 1 on B2δ, ϕ ≡ 0 outside B3δ, we obtain

R(λ) ≤ c

δ3

∫

B3δ\B2δ

u2
λ

for some c = c(N), and hence, by (5.3.102),

λ

∫

B2δ

u2
λ ≤ c

δ3

∫

B3δ\B2δ

u2
λ + up+1

λ

Since Bδ(x) ⊂ B2δ and B3δ \ B2δ ⊂ B4δ(x) \ Bδ(x), the Lemma is

proved.

Proof of Theorem 5.1. Lemma 5.5 and 5.6 provide the tools for the

proof, which, at this stage, goes like in [17] . We briefly sketch the

argument.
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We have to prove that if un are solutions of (D)λn with supn

∫
up+1
n <

+∞, then supn λn < +∞. This is clear if un has a non zero weak limit,

so we can assume un ⇀ 0.

According to Lemma 5.4, there are x1, .., xk ∈ Ω such that un → 0 in

C0
loc(RN \ C) with C ≡ {x1, .., xk}.

Let 0 < δ < min{δ(∂Ω), 1
8
d(xi, xj), i 6= j}, so that (5.3.98) in Lemma

5.7 holds for all xj ∈ C:

λn

∫

Bδ(xj)

u2
n ≤ 2cN

δ3

∫

B4δ(xj)\Bδ(xj)

u2
n ∀xj ∈ C

Since the balls B4δ(xj) are taken disjoint, we get

(5.3.103) λn

∫

Cδ

u2
n ≤ 2c

δ3

∫

Ω\Cδ

u2
n

which, jointly with (5.2.94), implies λn remains bounded.

Proof of Theorem 5.2. The proof is by contradiction: we assume

that there is a sequence uλ of bounded energy solutions with λ → +∞
and no blow-up points on Γ1. Hence, for this sequence, (5.3.98) holds

true at any blow-up point.

In addition, Lemma 5.5 holds true for the problem (M)λ. In fact,

arguments in the proof of Lemma 5.5 are not affected by the presence

of Neumann boundary conditions, and the concentration behaviour

assumed therein follows by a simple adjustment in the proof of Lemma

5.4: in (5.2.86) the term S
N
2 becomes S

N
2

2
as it follows by replacing in

(5.2.87), the Sobolev inequality with the Cherrier inequality (see [12]):

for any δ > 0 there exists C(δ) > 0 such that for any u ∈ H1(Ω)

(
S

2
2
N

− δ

)(∫

Ω

|u|p+1

) 2
p+1

≤
∫

Ω

|∇u|2 + C(δ)

∫

Ω

u2

and hence Lemma 5.4 holds for (M)λ as well, thanks to this inequality,

to the fact that
∫
Ω
u2
n → 0 (so that C(δ)|un|22 = ◦(1)) and since, because

of the null boundary conditions, there are no boundary contributions

in the estimates. We use Cherrier inequality also in the Moser-type

scheme to obtain C0
loc(Ω \ C) convergence.
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Since (5.2.94) and (5.3.98) are satisfied, the same argument as in the

proof of Theorem 5.1 applies, giving a contradiction.
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