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1. Introduction

In the operator framework of quantum mechanics we define a dynamical system by
the triple (A,Φ, ϕ) , where A is a C∗-algebra, Φ is an unital completely positive map and
ϕ is a state on A. In particular, if this map Φ is a *-automorphism, (A,Φ, ϕ) is said be
a conservative dynamical system.
The dilation problem for dynamical system (A,Φ, ϕ) is related with question wheter it
is possible to interpret an irrevesible evolution of a physical system as the projection of

a unitary reversible evolution of a larger system
³bA, bΦ, bϕ´ [9].

In [26] we find a good description of what we intend for dilation of a dynamical system:
The idea of dilation is to understand the dynamics Φ of A as projection from the dy-

namics bΦ of bA. In statistical physic the algebras A and bA may be considered as algebras
of quantum mechanical observable so that A models the description of a small system

embedded into a big one modelled by bA. In the classical example A is the algebra of ran-
dom variables describing a brownian particle moving on a liquid in thermal equilibrium

and bA is the algebra of random variables describing both the molecules of the liquid and
particle.
Many authors in the last years have studied the dilatative problem, we cite the pioneer
works of Arveson [1], Evans and Lewis [7], [8], and Vincent-Smith [31]. In absence of
an invariant faithful state, Arveson, Evans and Lewis have verified that the dilations
have been constructed for every completely positive map defined on W ∗-algebra, while
Vincent-Smith using a particular definition of dilation, shows that every W ∗-dynamical
system admits a reversible dilation. In our work we will assume the concept of dilation
given by Kümmerer and Maassen in [12] and [13]. It is our opinion that this definition
is that that describes better the physical processes.
The statement of the problem is the following:
Given a dynamical system (A,Φ, ϕ), to construct a conservative dynamical system³bA, bΦ, bϕ´ containing it in the following sense. there is an injective linear *-multiplicative
map i : A→ bA and a projection E of norm one of bA onto i (A) such that the diagram

bA bΦn−→ bAbϕ
&

bϕ
.

i ↑ C ↓ E
ϕ
%

ϕ
-

A
Φn−→ bA

commutes for each n ∈ N.
The

³bA, bΦ, bϕ, i, E´ is said to be a reversible dilation of the dynamical system (A,Φ, ϕ),

furthermore an dilation is unital if the injective map i : A→ bA is unital.
Kummer in [12] estabilishes that the existence of a reversible dilation depends on the
existence of adjoint map in this sense:
A completely positive map Φ+ : A → A is a ϕ−adjoint of the completely positive map
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Φ if for each a, b belongs to A we obtain that ϕ (b (Φ (a))) = ϕ (Φ+ (b) a).
The principal purpose of our work is to establish under which condition is possible to
costruct a reversible dilation that keeps the ergodic and weakly mixing properties of the
original dynamical system. An found difficulty has been that to determine the existence
of the expectation conditioned as described in the preceding scheme (In fact generally,
the exisistence of a conditional expectation between C*-algebras is fairly exceptional 1.)
and the presence of an invariant state subsequently complicates the matters.
This thesis is organized as follow.
In chapter 1 we introduce some preliminaries concept and we show the following gener-
alization of the theorem of Stinespring:
Gives an unital completely positive map Φ : A → A on C*-algebra with unit A, there
is a representation (H, π) of A and an isometry V on the Hilbert space H such that
π (Φ (a)) = Vπ (a)V∗ for each element a belong to A. Subsequently we have used re-
sults contained in the paper [20] to show that all W ∗-dynamical systems for which the
dinamic Φ is a *-homomorphism with ϕ−adjoint, admit an unital reversible dilation.
In chapter 2 using the generalized Stinespring theorem and Nagy-Foias dilation theory for
the linear contraction on Hilbert space, we proof that every dynamical system (A,Φ, ϕ)

has a multiplicative dilations
³bA, bΦ, bϕ, i, E´, that is a dilation in which the dynamicbΦ : bA→ bA is not a *-automorphism of algebras, but an injective *-homomorphism. This

dilation keeps ergodic and weakly mixing properties of the original dynamic system. We
also recover a results on the existence of dilation for W ∗-dynamical systems determined
by Muhly-Solel their paper [16]. We make to notice that our proof differs for the method
and the approach to that of the two preceding authors. For the methodologies applied
by the authors, and relative results, the reader can see the further jobs [15] and [17].
In chapter 3 we apply Hilbert module methods to show the existence of a particular

dilations
³cM, bΦ, bϕ, i, E´ of W*-dynamical system (M,Φ, ϕ) where the dynamic bΦ is a

completely positive map such that M is included in the multiplicative domains D
³bΦ´

of bΦ. Also ³cM, bΦ, bϕ, i, E´ keeps the ergodic and mixing properties of the C*-dynamical
system (M,Φ, ϕ).

1For the existence of expectation conditioned the reader can see Takesaki [29] .



CHAPTER 1

Dynamical systems and their dilations

In this chapter using the results of Niculescu, Ströh and Zsido contained in their
paper [20], we have show that a dynamical system with dynamics described by a ho-
momorphism that admits adjoint as defined by Kummerer in [12], can be dilated to a
minimal reversible dynamical system. Moreover this reversible system take the ergodic
property of the original dynamical system. Fundamental ingredient of the proof is the
the theory of the dilation of Nagy-Foias for the linear contractions on the Hilbert space

1. Preliminaries

In this first section, we shortly introduce some results on the completely positive
maps1. For further details on the subject, the reader can see the Paulsen’s books cited
in the bibliography.
A self-adjoint subspace S of a C*-algebra A that contains the unit of A is called operator
system of A, while a linear map Φ : S → B between the operator system S and the
C*-algebra B is positive if it maps positive elements of S in positive elements of B.
The set of all n× n matrices, with entries from S, is denoted with Mn (S). We define a
new linear map Φn :Mn (S)→Mn (A) thus defined:

Φn

³
|xi,j |i,j

´
= |Φ (xi,j)|i,j , xi,j ∈ S, i, j = 1, 2...n.

The linear map Φ is said be n-positive if the linear map Φn is positive and we call Φ
completely positive if Φ is n-positive for all n ∈ N.
We observe that if A and B are C*-algebra, a linear map Φ : A → B is cp-map if and
only if P

i,j
b∗iΦ (a

∗
i aj) bj ≥ 0

for each a1, a2, ...an ∈ A and b1, b2....bn ∈ B.

Proposition 1.1. If Φ : S → B is a cp-map, then

kΦk = kΦ (1)k
Proof. See [22] proposition 3.5. ¤
If Φ : A→ B is an unital cp map between C*-algebras, we have that Φ has norm 1.

A fundamental result in the theory of the cp-maps is given by the extension theorem of
Arveson [1]:

Proposition 1.2. Let S be an operator system of the C*-algebra A, and Φ : S →
B (H) a cp-map. Then there is a cp-map, Φar : A→ B (H), extending Φ.

1Briefly cp-map.

1
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Proof. See [22] proposition 6.5. ¤

Let us recall the fundamental definition of conditional expectation.
Let B be a Banach algebra (in generally without unit) and let A be a subalgebra of
Banach of B. We recal that a projection P is a continuous linear map from B onto
A satisfying P (a) = a for each a ∈ A, while a quasi-conditional expectation Q is a
projection from B onto A satisfying Q (xby) = xQ (b) y for each x, y ∈ A, and b ∈ B.
An conditional expectation is a quasi-conditional expectation of norm 1.
In the case that A and B are C*-algebras there is the following result of the 1957 of
Tomiyama:

Proposition 1.3. The linear map E : B → A is a conditional expectation if and
only if is a projection of norm 1.

Proof. See [2], proposition 6.10. ¤

We observe that every conditional expectation is a cp-map.
In fact for each a1, a2, ...an ∈ A and b1, b2....bn ∈ B, we obtain:P

i,j
a∗i E (b∗i bj) aj = E

ÃP
i,j
a∗i b

∗
i bjaj

!
≥ 0.

The multiplicative domains of the cp map Φ : A→ B is the set

D (Φ) = {a ∈ A : Φ (a∗)Φ (a) = Φ (a∗a) and Φ (a)Φ (a∗) = Φ (aa∗)} , (1)

furthermore we have the following relation (cfr.[22]):

a ∈ D (Φ) if and only if Φ (a)Φ (b) = Φ (ab) , Φ (b)Φ (a) = Φ (ba) for all b ∈ A.

2. Stinespring Dilations for the cp map

We examine a concrete C*-algebra A of B (H) with unit and an unital cp-map
Φ : A → A. By the Stinespring theorem for the cp-map Φ, we can deduce a triple
(VΦ, σΦ,LΦ) constituted by a Hilbert space LΦ, of the reprensentation σΦ : A→ B (LΦ)
and a linear contraction VΦ : H→ LΦ such that

Φ (a) = V∗ΦσΦ (a)VΦ, a∈A. (2)

We recall to the reader2 that the Hilbert space LΦ is the quotient space of A⊗Φ H by
the equivalence relation given by the linear space {a⊗Φ Ψ : ka⊗Ψk = 0}, where

ha1 ⊗Φ Ψ1; a2 ⊗Φ Ψ2iLΦ = hΨ1;Φ (a
∗
1a2)Ψ2iH

and σΦ (a)x⊗ΦΨ = ax⊗ΦΨ, for each x⊗ΦΨ ∈ LΦ with VΦΨ = 1⊗ΦΨ for each Ψ ∈ H.
Since Φ is unital map the linear operator VΦ is an isometry whit adjoint V

∗
Φ defined by

V∗Φa⊗Φ Ψ = Φ (a)Ψ,

for each a ∈ A and Ψ ∈ H.

2For further details cfr.[22] and [23].
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Proposition 1.4. The unital cp-map Φ is a multiplicative if and only if VΦ is an
unitary.
Moreover for each x ∈ D (Φ) we have

σΦ (x)VΦV
∗
Φ = VΦV

∗
ΦσΦ (x) = σΦ (x) .

Proof. For each Ψ ∈ H we obtain the follow implication:

a⊗Φ Ψ = 1⊗Φ Φ (a)Ψ ⇐⇒ Φ (a∗a) = Φ (a∗)Φ (a) ,

since
ka⊗Φ Ψ− 1⊗Φ Ψ (a)Ψk = hΨ,Φ (a∗a)Ψi− hΨ,Φ (a∗)Φ (a)Ψi .

Furthermore, for each a ∈ A and Ψ ∈ H we have VΦV
∗
Φa⊗Φ Ψ = 1⊗Φ Φ (a)Ψ. ¤

Let Φ : A → B an unital cp map between C*-algebra A and B, for each a ∈ A we
have:

Φ (a∗a) = V∗ΦσΦ (a
∗)σΦ (a∗)VΦ ≥ V∗ΦσΦ (a∗)VΦV

∗
ΦσΦ (a

∗)VΦ = Φ (a
∗)Φ (a) ,

this shows that the Kadison inequality:

Φ (a∗)Φ (a) ≤ Φ (a∗a) (3)

is satisfied.
We now need a simple lemma:

Lemma 1.1. LetMi ⊂ B (Hi) with i = 1, 2, are von Neumann algebra and the linear
positive map Φ :M1 →M2 is wo− continuous, then is w∗-continuous.

Proof. Let {xα} an increasing net in M+
1 with least upper bound x, we have that

xα converges σ−continuous to x, it follow that xα converges wo-continuous to x and
since for hypothesis Φ (xα) ≤ Φ (x) in M+

2 and Φ (xα) → Φ (x) in wo-continuous, we
have Φ (x) = lubΦ (xα), then Φ is w

∗-continuous. ¤
A simple consequence of the lemma is the following proposition:

Proposition 1.5. If M ⊂ B (H) is a von Neumann algebra and Φ : M → M is
normal cp map, then the Stinespring representation σΦ :M→ B (LΦ) is normal.

Proof. Let {xα} an increasing net in M+ with least upper bound x, for each a⊗Φ

Ψ ∈ LΦ we obtain:
ha⊗Φ Ψ;σΦ (xα) a⊗Φ Ψi = hΨ;Φ (axαa)Ψi→ hΨ;Φ (axa)Ψi and
hΨ;Φ (axa)Ψi = ha⊗Φ Ψ;σΦ (x) a⊗Φ Ψi .
Therefore σΦ (xα)→ σΦ (x) in wo-topology. ¤

The Stinespring theorem admit the following extension:

Theorem 1.1. Let A be a C*-algebra with unit and Φ : A → A an unital cp-map,
then there exists a faithful representation (π∞,H∞) of A and an isometry V∞ on Hilbert
Space H∞ such that:

V∗∞π∞ (a)V∞ = π∞ (Φ (a)) a ∈ A, (4)

where
σ0 = id, Φn = σn ◦ Φ
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and (Vn, σn+1,Hn+1) is the Stinespring dilation of Φn for every n ≥ 0,

H∞ =
∞L
j=0
Hj , Hj = A⊗Φj−1 Hj−1, for j ≥ 1 and H0 = H; (5)

and

V∞(Ψ0,Ψ1,Ψ2, ...) = (0,V0Ψ0, V1Ψ1, ...)
for each (Ψ0,Ψ1,Ψ2, ...) ∈ H∞.
Furthermore the map Φ is a homomorphism if and only if V∞V∗∞ ∈ π∞ (A)

0
.

Proof. By the Stinespring theorem there is triple (V0, σ1,H1) such that for each
a ∈ A we have Φ (a) = V∗0σ1 (a)V0. The application a ∈ A → σ1 (Φ (a)) ∈ B (H1)
is composition of cp-maps therefore also it is cp map. Set Φ1 (a) = σ1 (Φ (a)). By
appling the Stinespring theorem to Φ1, we have a new triple (V1, σ2,H2) such that
Φ1 (a) = V

∗
1σ2 (a)V1. By induction for n ≥ 1 define Φn (a) = σn (Φ (a)) we have a triple

(Vn, σn+1,Hn+1) such that Vn : Hn → Hn+1 and Φn (a) = V
∗
nσn+1 (a)Vn.

We get the Hilbert space H∞ defined in 5 and the injective reppresentation of the C*-
algebra A on H∞ :

π∞ (a) =
L
n≥0

σn (a) (6)

with σ0 (a) = a, for each a ∈ A.
Let V∞ : H∞ → H∞ be the isometry defined by

V∞ (Ψ0,Ψ1....Ψn...) = (0,V0Ψ0,V1Ψ1....VnΨn...) , Ψi ∈ Hi. (7)

The adjoint operator of V∞ is

V∗∞ (Ψ0,Ψ1....Ψn...) =
¡
V∗0Ψ1,V

∗
1Ψ2....V

∗
n−1Ψn...

¢
, Ψi ∈ Hi, (8)

therefore

V∗∞π∞ (a)V∞
L
n≥0
Ψn =

L
n≥0
V∗nσn+1 (a)VnΨn =

L
n≥0
Φn (a)Ψn =

=
L
n≥0

σn (Φ (a))Ψn = π∞ (Φ (a))
L
n≥0
Ψn.

We notice that let En = VnV
∗
n be the orthogonal projection of B (Hn−1), we have:

E (Ψ0,Ψ1...Ψn..) = (0,E0Ψ1,E1Ψ2, ...EnΨn+1...) .

Let Φ be a multiplicative map then for each (Ψ0,Ψ1...Ψn.....) ∈ H∞ we get:

V∞V∗∞ (Ψ0,Ψ1...Ψn..) = (0,Ψ1,Ψ2, ...Ψn+1...) , (9)

then

V∞V∗∞π∞ (a) = π∞ (a)V∞V∗∞,
while for the vice-versa for each a, b ∈ A we obtain:

π∞ (Φ (a))π∞ (Φ (b)) = V∗∞π∞ (a)V∞V
∗
∞π∞ (b)V∞ = V∗∞π∞ (a)π∞ (b)V∞ =

= V∗∞π∞ (ab)V∞ = π∞ (Φ (ab)) .

¤
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Remark 1.1. Let M be a von Neumann algebra and Φ is normal, then the rep-
resentation (π∞,H∞) of M on H∞ is normal, since the Stinespring representations
(Vn, σn+1,Hn+1) of the cp-maps Φn =M→ B (Hn) , are normal representations.

We observe that V∞ /∈ π∞ (A) and V∞V∗∞ /∈ π∞ (A) .
Indeed if x is an element x ∈ A such that π∞ (x) = V∞, we have for definition that for
every (Ψ0,Ψ1, ...Ψn...) ∈ H∞

(xΨ0, σ1 (x)Ψ1, ...σn (x)Ψn...) = (0,V0Ψ0,V1Ψ1,...VnΨn...) ,

therefore x = 0.
If exists a ∈ A such that V∞V∗∞ = π∞ (a) then for each (Ψ0,Ψ1...Ψn..) ∈ H∞ we have

π∞ (a) (Ψ0,Ψ1,...Ψn...) = (0,V0V
∗
0Ψ0,V1V

∗
1Ψ1,...VnV

∗
nΨn...)

it follows that a = 0.

Remark 1.2. If x belong to multiplicative domains D (Φ) we have
π∞ (x)V∞V∗∞ = V∞V∗∞π∞ (x) = π∞ (x) .

Moreover let F = I−V∞V∗∞, we have Fπ∞ (A)V = 0 if and only if the cp map Φ is
multplicative. In fact for each a, b ∈ A we get

(Fπ∞ (a)V)∗Fπ∞ (b)V = π∞ (Φ (ab)− Φ (a)Φ (b)) .
We study some simple property of the linear contraction V∗∞.

Proposition 1.6. The linear contraction V∞ satisfies the relation

ker (I −V∞) = ker (I −V∗∞) = 0.
Moreover for each Ψ ∈ H∞, we have

lim
n→∞

1

n+ 1

nP
k=0

Vk
∞Ψ = lim

n→∞
1

n+ 1

nP
k=0

Vk∗
∞Ψ = 0,

with
lim
n→∞

D
Ψ,Vk

∞Ψ
E
= 0.

Moreover for each A ∈ B (H∞) we obtain:
lim
n→∞V

k
∞A

∗AVk∗
∞Ψ = 0.

Proof. Let (Ψ0,Ψ1, ...Ψn...) ∈ H∞ with V∞ (Ψ0,Ψ1, ...Ψn...) = (Ψ0,Ψ1, ...Ψn...) .
For definition

(0, V0Ψ0, V1Ψ1, VnΨn...) = (Ψ0,Ψ1, ...Ψn...)

it follow that (Ψ0,Ψ1, ...Ψn...) = (0, 0, ...0....) .
It is well known that the relation ker (I−V∞) = ker (I−V∗∞) is always true for linear
contraction on the Hilbert spaces3.

The relation lim
n→∞

1
n+1

nP
k=0

Vk∞Ψ = 0 follow by the mean ergodic theory of von Neumann.

For the second relation we get:

Vk∞Vk∗∞Ψ =
³
0, , 0......0,Jk−1,0J∗k−1,0Ψk,Jk,1J

∗
k,1Ψk+1,Jk+1,2J

∗
k+1,2Ψk+2...

´
3See [19] proposition 1.3.1.
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where for each h, k ∈ N with h > k we set:
Jk,h = VhVh+1 ◦ ◦ ◦ Vk.°°Vk∞Vk∗∞Ψ

°°2 = nP
α=k

°°°Jk−1+α,k−αJ∗k−1+α,k−αΨα

°°°2 ≤ nP
α=k

kΨαk2

since
°°°Jk−1+α,k−αJ∗k−1+α,k−α°°° ≤ 1

Then lim
n→∞

nP
α=k

kΨαk2 = 0 it follow that lim
n→∞

°°Vk∞Vk∗∞Ψ
°° = 0.

Furthermore we get:­
Ψ,Vk∞A∗AVk∗∞Ψ

®
≤ kAk2

­
Ψ,Vk∞Vk∗∞Ψ

®
.

Since 1
n+1

nP
k=0

­
Ψ,Vk∞Ψ

®
→ 0 we have D − lim

n→∞
­
Ψ,Vk∞Ψ

®
= 04 but we get¯̄­

Ψ,Vk∞Ψ
®¯̄
=

nP
α=k

|hΨα,Jk−1+α,k−αΨαi| ≤
nP

α=k

kΨαk2

then lim
n→∞

­
Ψ,Vk∞Ψ

®
= 0. ¤

∗ ∗ ∗
Proposition 1.1 leads to the following definition:

Definition 1.1. Let Φ : A→ A be a cp-map, a triple (π,H,V) costitued by a faithful
representation π : A→ B (H) on the Hilbert space H and by a linear isometry V, such
that for each a ∈ A we get:

π (Φ (a)) = V∗π (a)V (10)

is a isometric covariant representation of the cp map Φ.

For our purposes it will be necessary to find an isometric covariant representation of
appropriate dimensions, this is possible for the following theorem:

Proposition 1.7. Let Φ : A→ A be cp-map with isometric representation (π,H,V),
if Φ isn’t an automorphism, for each cardinal number c there exist an isometric covariant
representation (πc,Hc,Vc) with the following property:
Representation π∞ is an equivalent subrepresentation of πc with dimHc ≥ dim (H) and
dimker (V∗c ) ≥ c;
Moreover there is a cp map Eo : B (Hc) → B (H) such that for each a ∈ A, T ∈ B (Hc)
we have

Eo (πc (a)T ) = π (a) Eo (T ) ,
with

Eo (V∗cTVc) = V∗Eo (T )V; (11)

Proof. Let c be a cardinal number and L a Hilbert space with dim (L) = c, since
Φ isn’t automorphism we have dim (kerV∗) ≥ 1, then there is a vector ξ_ ∈ kerV∗ of
one norm.
We set with Hc the Hilbert space Hc = H⊗L and with Vc the linear isometry

Vc = V⊗ IL.

4Cfr. appendix.
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Let {ei}i∈J be a orthonormal base of the Hilbert space L, we have card(J ) = c and

ξ_ ⊗ ej ∈ kerV∗c j ∈ J .

Since for each j ∈ J we obtain:

V∗c (ξ_ ⊗ ej) = (V
∗ ⊗ IL) (ξ_ ⊗ ej) = V

∗ξ_ ⊗ ej = 0⊗ ej = 0,

it follow that dim (kerV∗c ) ≥ c.
The faithfull *-representation πc : A→ B (Hc) defined by

πc (a) = π (a)⊗ IL, a ∈ A

satisfies the relation 10.
In fact for each a ∈ A we obtain:

V∗cπc (a)Vc = (V
∗ ⊗ IL) (π (a)⊗ IL) (V⊗ IL) = V∗π (a)V ⊗ IL =

= π (Φ (a))⊗ IL = πc (Φ (a)) .

Let lo ∈ L vector of one norm and Πlo : Hc → H the linear isometry

Πloh = h⊗ lo, h ∈ H,

with adjoint

Π∗loh⊗ l = hl, loih, h ∈ H, l ∈ L.
The cp map Eo : B (Hc)→ B (H) so defined:

Eo (T ) = Π∗loTΠlo , T ∈ B (Hc) (12)

for each a ∈ A, T ∈ B (Hc) enjoys of the following property:

Eo (πc (a)T ) = π (a) Eo (T ) .

In fact for each h1, h2 ∈ H∞ we obtain
hh2, Eo (πc (a)T )h1i = hπc (a∗)Πloh2, TΠloh1i = hπ (a∗)h2 ⊗ lo, TΠloh1i =
= hπ (a∗)h2,ΠloTΠloh1i = hπ (a∗)h2, Eo (T )h1i = hh2, π (a) Eo (T )h1i .
We now verify the relation 11.
For each h1, h2 ∈ H we have:
hh2, Eo (V∗cTVc)h1i = hVcΠloh2, TVcΠloh1i = hVh2 ⊗ lo, TVh1 ⊗ loi =
= hΠloVh2, TΠloVh1i =

­
Vh2,Π

∗
lo
TΠloVh1

®
= hVh2, Eo (T )Vh1i =

= hh2,V∗Eo (T )Vh1i . ¤

Lemma 1.2. Let A be an unit C*-algebra and θo : A→ B (Ho) representation of A,
then for every infinite cardinal number c ≥ dim (Ho) there is a representation θ : A →
B (H) such that

θ (a) =
L
j∈J

θo (a)

with

H =
L
j∈J
Ho

and card(J) = c.
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Proof. Let H be an any Hilbert space with dim (H) = c with {ei}i∈I and {fj}j∈J
orthonormal bases of Ho and of L respectively. For definition we have that card {J} = c
while card {I} = dim (Ho) .
The cardinal number c isn’t finte then for the notes rules of the cardinal arithmetic it
results that card {I × J} = card {J} . Then we can write that

J =
·
∪ {I × j : j ∈ J} =

·
∪ {Ij : j ∈ J}

with card (Ij) = dim (Ho).
In fact for every j ∈ J the norm closure of the span {fk : k ∈ Ij} is isomorphic to the
Hilbert space Ho.
We get

H =
L
j∈J

span {fk : k ∈ Ij} =
L
j∈J
Ho,

and for each a ∈ A, Ψj ∈ Ho we define

θ (a)
L
j∈J
Ψj =

L
j∈J

θo (a)Ψj .

¤

We now have a further generalization of the theorem 1.1:

Corollary 1.1. Let Φ : A → A be a cp-map. if Φ isn’t an automorphism, there
exists an isometric covariant representation (π,H,V) and a representation θ : A →
B (ker (V∗)) such that

θ (a) =
L
j∈J

π∞ (a) , a ∈ A,

where J is a set of cardinalty

dim (H) ≥ card (J) ≥ dim (H∞) ,
and H∞ is the Hilbert space 5.

Proof. Let c be the infinite cardinal number with c ≥dimH∞, for the proposition
1.7 there is an isometric covariant representation (πc,Hc,Vc) subequivalent to π∞ with
dim (kerVc) ≥ c. Then for the preceding lemma there is a *-representation θ =

L
j∈J

π∞

with card(J) = dim (kerVc) . ¤

3. Nagy-Foiaş Dilations Theory

Let T and S be operators on the Hilbert spaces H and K respectively. We call S
a dilation of T if H is a subspace of K and the following condition is satisfied for each
n ∈ N:

TnΨ = PHSnΨ, Ψ ∈ H,
where PH denotes the orthogonal projection from K onto H.
Given a contraction operator T on the Hilbert spaceH, the defect operatorDT is defined
by

DT =
2
√
I−T∗T.
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Moreover we define the following operator bT on the Hilbert space K = H⊕ l2
¡
DTH

¢
5:

bT = ¯̄̄̄ T 0
CT W

¯̄̄̄
, (13)

where the operators W : l2
¡
DTH

¢
→ l2

¡
DTH

¢
and CT : H → l2

¡
DTH

¢
are so

defined:

W (ξ0, ξ1...ξn..) = (0, ξ0, ξ1....ξn..) , ξ ∈ l2
¡
DTH

¢
and

CTh = (DTh, 0, ...0...) , h ∈ H,
DT is the defect operator of T. Moreover for each (ξ0, ξ1, ..ξn...) ∈ l2

¡
DTH

¢
we have:

C∗T (ξ0, ξ1, ...ξn...) = DTξ0,

and

C∗TCT = I−T∗T.
We observe that for each ξ ∈ l2

¡
DTH

¢
:

W∗ (ξ0, ξ1...ξn..) = (ξ1....ξn..) ,

and

DW∗ (ξ0, ξ1...ξn..) = (ξ0, 0, 0, ....0..)

whereDW∗ is the defect operator of the contractionW∗, thereforeDW∗ is the orthogonal

projection of the space DTH. Obviously bT is a dilation of T and a simple calculation

shows that bT is an isometric, therefore bT is an isometric dilation of T. An isometric

dilation bT on K of T is minimal if H is cyclic for T; that is

K =
_
n∈N

bTnH,

moreover it is shown that the 13 is the only, up to unitary equivalences, minimal dilation
of T.
The dilations

³bT1,K1´ and ³bT2,K2´ of T are equivalent if exists an unitary operator

U : K1 → K2 such that UbT1 = bT2U and U|H = id.
We recall the following proposition:

Proposition 1.8. Every contraction operator T on the Hilbert space H has a unitary
dilation bT on a Hilbert space K such that (minimal property)

K =
_
n∈Z

bTnH.

The operator bT is then determined by T uniquely (up to unitary equivalences).

Proof. See [18] theorem 1.1. ¤

5For further details cfr.[18] and [19]
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4. Dilations Theory for Dynamical Systems

We define a C∗-dynamical systems a couple (A,Φ) constituted by an unital C*-
algebra A and an unital cp-map Φ : A→ A.
A state ϕ on A is say be Φ−invariant if for each a ∈ A we have

ϕ (Φ (a)) = ϕ (a) . (14)

The C∗−dynamical systems with invariant state ϕ is a triple (A,Φ, ϕ) where ϕ is a
Φ−invariant state on A.
A W ∗−dynamical systems is a couple (M,Φ) constituted by a von Neumann Algebra
M and an unital normal cp-map Φ :M→M.
The W ∗−dynamical systems with invariant state ϕ is a triple (M,Φ, ϕ) where ϕ is a
faithful normal Φ−invariant state on M.
A C∗−dynamical systems (A,Φ) is say be multiplicative if Φ is a homomorphism, while
is say be invertible if the cp-map Φ is invertible. We have a reversible C∗-dynamical
systems (A,Φ) if Φ is an automorphism of C∗−algebras.

Remark 1.3. We observe that from the Kadison inequality 3, for every a ∈ A we
have:

ϕ (Φ (a∗)Φ (a)) ≤ ϕ (a∗a) .

Let (A,Φ, ϕ) be a C∗-dynamical systems with invariant state ϕ and (Hϕ, πϕ,Ωϕ) its
GNS. We define for each a ∈ A, the following operator of B (Hϕ):

Uϕπϕ (a)Ωϕ = πϕ (Φ (a))Ωϕ. (15)

For definition, for each a ∈ A we have
kπϕ (Φ (a))Ωϕk2 = ϕ (Φ (a∗)Φ (a)) ≤ ϕ (a∗a) = kπϕ (a)Ωϕk2 .

Then Uϕ : Hϕ → Hϕ is linear contraction of Hilbert spaces.

Example 1 (Commutative case). Let (M, ϕ,Φ) be a abelian W ∗- dynamical system,
as well known, the commutative algebra M can be represented in the form L∞ (X) for
some classic probability space (X,Σ, µ) where ϕ (f) =

R
f dµ for each f ∈ L∞ (X) . The

GNS of ϕ is costitued by
¡
L2 (X) , πϕ,Ωϕ

¢
whit πϕ (f)Ψ = f · Ψ for each f ∈ L∞ (X)

and Ψ ∈ L2 (X). Moreover for the linear contraction Uϕ we get UϕΨ = Φ (f) · Ψ for
each f ∈ L∞ (X) and Ψ ∈ L2 (X) .

We have the following result for the ergodic theory:

Proposition 1.9. Let (A,Φ, ϕ) be a dynamical system and (Hϕ, πϕ,Ωϕ) the GNS
of the state ϕ. There exists a unique linear contraction UΦ on the Hϕ where the rela-
tion 15 holds and denoting the orthogonal projection on the linear space ker (I−Uϕ) =
ker
¡
I−U∗ϕ

¢
by Pϕ, we have

UϕPϕ = PϕUϕ = Pϕ and
1

n+ 1

nX
k=0ϕ

Uk
ϕ → Pϕ in so-topology. (16)

If the application Φ is homomorphism, then Uϕ is an isometry on Hϕ such that

UϕU
∗
ϕ ∈ πϕ (Φ (A))

0 ⊂ B (Hϕ) (17)
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and
Uϕπϕ (a) = πϕ (Φ (a))Uϕ, a ∈ A. (18)

Proof. See [20] lemma 2.1. ¤

4.1. Dilations for Dynamical Systems. We now give the fundamental definition
of dilation of a dynamical system.

Definition 1.2. Let (A,Φ, ϕ) be a C*-dynamical system. The 5-tuple
³bA, bΦ, bϕ, i, E´

composed by a C*-dynamical system
³bA, bΦ, bϕ´ and cp-maps E : bA → A, i : A → bA, is

say be a dilation of (A,Φ, ϕ) if for each a ∈ A and n ∈ N we have

E
³bΦn (i (a))´ = Φn ((a)) ,

and for each x ∈ bA bϕ (x) = ϕ (E (x)) .

Two dilations
³bA1, bΦ1, bϕ1, i1, E1´ and ³bA2, bΦ2, bϕ2, i2, E2´ of the C∗-dynamical system

(A,Φ, ϕ) are equivalent if exists an automorphism Λ : bA1 → bA2 such that
Λ ◦ bΦ1 = bΦ2 ◦ Λ, bϕ2 = bϕ1 ◦ Λ and E2 ◦ Λ = E1, Λ ◦ i1 = i2. (19)

The dilation
³bA, bΦ, bϕ, i, E´ of the C*-dynamical system (A, ϕ,Φ), is say be a re-

versible [multiplicative] dilation if
³bA, bΦ, bϕ´ is a reversible [multiplicative] C*-dynamical

system.

The dilation
³bA, bΦ, bϕ, i, E´ of the C*-dynamical system (A, ϕ,Φ), is say be a unital

dilation if the cp-map i is unital, i.e. i (1A) = 1bA.
Remark 1.4. Let

³bA, bΦ, bϕ, i, E´ be a reversible dilation of (A, ϕ,Φ), for definition
we have that E ◦ i = idA where i is injective map while E is surjective map.

We have a first proposition that affirms that the map E is a conditional expectation.

Proposition 1.10. Let
³bA, bΦ, bϕ, i, E´ be a reversible dilation of (A, ϕ,Φ), for each

a, b ∈ A, x ∈ bA we have:
E (i (a)xi (b)) = aE (x) b.

Proof. For each a ∈ A we obtain
E (i (a∗) i (a)) = a∗a,

since a∗a = E (i (a∗a)) ≥ E (i (a∗) i (a)) ≥ E (i (a∗)) E (i (a)) = a∗a. Then for each a ∈ A,
the element i (a) is in the multiplicative domains of E , it follow by the relation 1 that
E (i (a)X) = E (i (a)) E (X) and E (Xi (a)) = E (X) E (i (a)) for each X ∈ bA. ¤

We observe that if
³bA, bΦ, bϕ, i, E´ be a reversible dilation of (A, ϕ,Φ) we have
E (i (a1) i (a2) · · · i (an)) = a1a2 · · · an
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for each a1, a2, ...an ∈ A, since
E (i (a1) i (a2) · · · i (an)) = a1E (i (a2) · · · i (an)) .

Then
E ((i (a) i (b)− i (ab))∗ (i (a) i (b)− i (ab))) = 0

and bϕ ((i (a) i (b)− i (ab))∗ (i (a) i (b)− i (ab))) = 0.

From this last relation we have the following remark:

Remark 1.5. Let
³cM, bϕ, bΦ, i, E´ be a reversible dilation of the W*-dynamical system

(M,Φ, ϕ) , then the map i is multiplicative (but is not necessarily unital) and i◦E :cM→cM is (unique) conditional expectation on von Neumann algebra i (M)006.

We have now an important definition:

Definition 1.3. The reversible dilation
³bA, bΦ, bϕ, i, E´ of the C∗-dynamical system

(A,Φ, ϕ) is to said be minimal if

bA = C∗
Ã[
k∈Z

bΦk (i (A))!
while is to said be Markov if

bA = C∗
Ã[
k∈N

bΦk (i (A))! .

We study now the relation between the representations GNS of the C*-dynamical

system (A,Φ, ϕ) and one its possible dilation
³bA, bΦ, bϕ, i, E´.

Let Z : Hϕ → Hbϕ be the linear operator thus defined:
Zπϕ (a)Ωϕ = πbϕ (i (a))Ωbϕ, a ∈ A (20)

The operator is an isometry since

kZ πϕ (a)Ωϕk2 = bϕ (i (a∗) i (a)) = bϕ (i (a∗a)) = ϕ (a∗A) = kπϕ (a)Ωϕk2 .

Moreover for each x ∈ bA we have:­
Z∗πbϕ (x)Ωbϕπϕ (a)Ωϕ® = bϕ (x∗i (a)) = ϕ (E (x∗) a) =

­
πϕ (E (x))Ωbϕ,πϕ (a)Ωϕ® .

Then
Z∗πbϕ (x)Ωbϕ = πϕ (E (x))Ωϕ, (21)

and a simple calculation shows that for each a ∈ A and x ∈ bA we obtain:
Zπϕ (a) = πbϕ (i (a))Z (22)

and
Z∗πbϕ (x)Z = πϕ (E (x)) . (23)

6Cfr.[22] Proposition 3.5.
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We notice that the operator Q = ZZ∗ is the ortogonal projection on the Hilbert space
generated by the vectors

©
πbϕ (i (a))Ωbϕ : a ∈ Aª with

Qπbϕ (x)Ωbϕ = πbϕ (i (E (x)))Ωbϕ, x ∈ bA. (24)

For all n ∈ N we have
Un

ϕ = Z
∗UnbϕZ, (25)

since for each a ∈ A :
Z∗UnbϕZπϕ (a)Ωϕ = Z∗πbϕ

³bΦn (i (a))´Ωbϕ = πbϕ ³E ³bΦn (i (a))´´Ωbϕ =
= πbϕ (Φn (a))Ωϕ = Un

ϕπϕ (a)Ωϕ.
We study now the relation between the orthogonal projections Pϕ = [ker (I−Uϕ)] and
Pbϕ = £ker ¡I−Ubϕ¢¤ .
From the relation 25 for each N ∈ N we have the relation

1

N + 1

NX
k=0

Uk
ϕ = Z

∗
Ã

1

N + 1

NX
k=0

Ukbϕ
!
Z

it follow that
Pϕ = Z

∗PbϕZ. (26)

Proposition 1.11. Let
³bA, bΦ, bϕ, i, E´ be a dilation of the C∗-dynamical system

(A, ϕ,Φ) the unitary operator Ubϕ is a dilation of the contraction ZUϕZ
∗.

Moreover to equivalent dilations of the C∗-dynamical system corresponds equivalent di-
lations of the linear contraction Uϕ.

Proof. We observe that for each a ∈ A and n ∈ N we have:
(ZUϕZ

∗)n πbϕ (a)Ωbϕ = QUnbϕZπbϕ (a)Ωbϕ = Qπbϕ ³bΦn (i (a))´Ωbϕ =
= πbϕ (i (Φn (a)))Ωbϕ = ZUn

ϕπbϕ (a)Ωbϕ = (ZUϕZ
∗)nZπbϕ (a)Ωbϕ,

consequently for each Ψ ∈ Hϕ we have

QUnbϕZh=(ZUΦZ
∗)nΨ.

Let
³bA1, bΦ1, bϕ1, i1, E1´ and ³bA2, bΦ2, bϕ2, i2, E2´ are two equivalent dilations of the C*-

dynamical system (A,Φ, ϕ) with automorphism Λ : bA1 → bA2 defined in 19.
We set for each a ∈ A

Λ_πbϕ1 (a)Ωbϕ1 = πbϕ2 (Λ (a))Ωbϕ2 ,
we have an unitary operator Λ_ : Hbϕ1 → Hbϕ2 such that

Λ_ ◦Ubϕ1 = Ubϕ2 ◦ Λ_.
¤

We have the following remark:

Remark 1.6. If
³bA, bΦ, bϕ´ is a minimal dilation, in general, it is not said that the

operator Ubϕ is minimal unitary dilation of Uϕ.
In fact the Hilbert space Hbϕ is the norm closed linear space generate by the set of elementsn

Un1bϕ πbϕ (i (a1)) · · ·Unkbϕ πbϕ (i (ak))Ωbϕ : ai ∈ A, ni ∈ N
o
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while the space
W
n∈NU

nbϕZHϕ is generate by the set of elementsn
Unbϕπbϕ (i (a))Ωbϕ : a ∈ A, n ∈ Z

o
.

We see now an example of as the Nagy dilation for the contraction on the Hilbert
space is applied to the dilation theory of dynamical systems.

Example 2. Let H be a Hilbert space and V an isometry on H, we get the unital
cp-map Φ : B (H)→ B (H)

Φ (A) = V∗AV, A ∈B (H) ,
and ϕ is a Φ-invariant state of B (H) . In this way we get the C*-dynamic system
(B (H) ,Φ, ϕ).
Let

³
K, bV´ be the Nagy dilation of the isometry V∗:

bV= ¯̄̄̄ V∗ 0
C W

¯̄̄̄
,

and Hilbert space K = H⊕ l2 (I) .
We have an auntomorphims bΦ : B (K)→ B (K)bΦ (X) = bVXbV∗, X ∈B (H) ,
such that for each A ∈B (H) we have:

J∗bΦn (JAJ∗)J = Φ (A) .
The C*-dynamical systems

³
B (K) , bΦ, bϕ´ with
bϕ (X) = ϕ (J∗XJ) , X ∈B (K)

is a reversible dilation of (B (H) ,Φ, ϕ) , since

B (K)
bΦn−→ B (K)

i ↑ ↓ E
B (H) Φn−→ B (H)

is a commutative diagram, where:
the application E : B (K)→ B (H) is the unital cp-map

E (X) = J∗XJ, X ∈B (K)
while i : B (H)→ B (K) is the *-multiplicative map (non unital)

i (A) = JAJ∗, X ∈B (K) .

We observe that bϕ is a bΦ−invariant state, since
bϕ³bΦ (X)´ = ϕ

³
J∗bΦ (X)J´ = ϕ

³
J∗ bVXbV∗J´ = ϕ (V∗J∗XJV) = ϕ (J∗XJ) = bϕ (X)

for all X ∈B (K) .

∗ ∗ ∗
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We now study the problem list that we have with the dilations of composition.
Let (A,Φ, ϕ) be a C*-dynamical system and (Ao,Φo, ϕo, Eo, io) a its Markov multiplica-
tive dilation.
If the C*-dynamical system (Ao,Φo, ϕo) admits a minimal reversible dilation
(A×,Φ×, ϕ×, E×, i×), we have the follow diagram:

A×
Φnoo−→ A×

i× ↑ ↓ E×
Ao

Φno−→ Ao
io ↑ ↓ Eo
A

Φn−→ A

Ao = C∗
Ã[
k∈N
Φko (io (A))

!
, ϕo = ϕ ◦ Eo

A× = C∗
Ã[
k∈Z
Φk× (i× (A))

!
, ϕ× = ϕo ◦ E×

Then the 5-tuple (A×, bϕ,Φ×, E , i) with E = Eo ◦ E× and i = i× ◦ io with bϕ = bϕ ◦ E ,
is a reversible dilation of the C*-dynamical system (A,Φ, ϕ), but in generally it is not
minimal.
We observe that if ϕ is faithful state on A then ϕo is faithful state on A if and only if Eo
is a faithful cp-map.

4.2. The ϕ−Adjoint of morphism. Let (A,Φ, ϕ) be C*-algebra dynamical sys-
tem, a cp map Φ+ : A→ A is said to be ϕ-adjoint of Φ, if for each a ∈ a we have

ϕ (Φ (a) b) = ϕ
¡
aΦ+ (b)

¢
.

We observe that (Φ+)
+
= Φ.

Moreover every reversible C*-dynamical system admits a ϕ-adjoint where Φ+ = Φ−1.
If Φ admits a ϕ-adjoint, for each a ∈ A we have

U∗ϕπϕ (a)Ωϕ = πϕ
¡
Φ+ (a)

¢
Ωϕ,

since for each a, b ∈ A, we get:­
U∗ϕπϕ (b)Ωϕ, πϕ (a)Ωϕ

®
= ϕ (b∗Φ (a)) = ϕ

¡
Φ+ (b∗) a

¢
=
­
πϕ
¡
Φ+ (b)

¢
Ω,πϕ (a)Ωϕ

®
.

We introduce a necessary condition for the existence of a reversible dilation (cfr.[12]
proposition 2.1.8).

Proposition 1.12. Let (A,Φ, ϕ) be a C*-dynamical system with a reversible dilation³bA, bΦ, bϕ, E , i´. Then Φ has a ϕ−adjoint Φ+ and
³bA, bΦ−1, bϕ, E , i´ is a dilation of the

C*-dynamical system (A,Φ+, ϕ).

Proof. For a, b ∈ A and n ∈ N we have:

ϕ (aΦn (b)) = ϕ
³
aE
³bΦn (i (b))´´ = ϕ

³
E
³
abΦn (i (b))´´ = bϕ³i (a) bΦn (i (b))´ =

= bϕ³bΦ−n (i (a)) i (b)´ = ϕ
³
E
³bΦ−n (i (a))´ b´ .

Then the ϕ−adjoint of Φ results to be Φ+ = E ◦ bΦ−1 ◦ i. ¤
Remark 1.7. Let (A,Φ, ϕ) be a C*-dynamical system with a ϕ-adjont Φ+. If Φ+ is

a multiplivative map we have

UϕU
∗
ϕ = I.
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Furthermore, if ϕ is a faithful state we have

Φ
¡
Φ+ (a)

¢
= a

for each a ∈ A.

We have now the follow proposition:

Proposition 1.13. Let (A,Φ, ϕ) be a C*-dynamical system with a ϕ-adjont Φ+, we
have
1-

U∗ϕπϕ (a)Uϕ = πϕ
¡
Φ+ (a)

¢
if and only if for each a, b, c ∈ A :

ϕ
¡
bΦ+ (a) c

¢
= ϕ (Φ (b) aΦ (c)) . (27)

2-

Uϕπϕ (a)U
∗
ϕ = πϕ (Φ (a))

if and only if for each a, b, c ∈ A :
ϕ (bΦ (a) c) = ϕ

¡
Φ+ (b) aΦ+ (c)

¢
(28)

Proof. We have:
hπϕ (b∗)Ωϕ, πϕ (Φ+ (a))πϕ (c)Ωϕi = ϕ (bΦ+ (a) c) = ϕ (Φ (b) aΦ (c)) =
= hUϕπϕ (b

∗)Ωϕ, πϕ ((a))Uϕπϕ (c)Ωϕi =
­
πϕ (a

∗)Ωϕ,U∗ϕπϕ ((a))Uϕπϕ (c)Ωϕ
®
,

while for the second relation we obtain:­
πϕ (b

∗)Ωϕ,Uϕπϕ (a)U
∗
ϕπϕ (c)Ωϕ

®
= hπϕ (Φ+ (b∗))Ωϕ, πϕ (a)πϕ (Φ+ (c))Ωϕi =

= ϕ (Φ+ (b∗) aΦ+ (c)) = ϕ (b∗Φ (a) c) = hπϕ (b)Ωϕ, πϕ (Φ (a))πϕ (c)Ωϕi . ¤

4.3. The (ϕ, n)-multiplicative maps. Let ϕ be a state on a C*-algebra A and
Φ : A→ A Cp- map, if there is a n ∈ N such that for each a1,a2...an ∈ A we get

ϕ

Ã
nQ

j=0
Φ (aj)

!
= ϕ

Ã
Φ

Ã
nQ

j=0
aj

!!
, (29)

then the Φ is said to be (ϕ, n)-multiplicative.
The next proposition characterizes the (ϕ, 2)-multiplicative maps:

Remark 1.8. Let ϕ be a faithful state on a C*-algebra A, every (ϕ, 2)-multiplicative
map Φ : A→ A is a *-homomorphism.

Proof. Cfr. [6] lemma III-2 ¤

A simple consequence of the definition is given by the following proposition:

Proposition 1.14. Let (A, ϕ,Φ) a C*-dynamical system, then the dynamic Φ is
(ϕ, 2)-multiplicative if and only if Uϕ is isometric.

Proof. For definition for each a, b ∈ A we have:
hUΦπϕ (b)Ωϕ,UΦπϕ (a)Ωϕi = hπϕ (Φ (b))Ωϕ, πϕ (Φ (a))Ωϕi =
= ϕ (Φ (b∗)Φ (a)) = ϕ (Φ (b∗a)) = ϕ (Φ (b∗a)) = ϕ (b∗a) =
= hπϕ (b)Ωϕ, πϕ (a)Ωϕi . ¤
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5. Spatial Morphism

Let (A,Φ, ϕ) be a C*-dynamical system and (Hϕ, πϕ,Ωϕ) the GNS of the state ϕ.
We set withM = πϕ (A)

00the von Neumann subalgebra of B (Hϕ) and ω the defined state
on M as

ω (X) = hΩϕ,XΩϕi , X ∈M.

We say that the cp map Φ is spatial7 if there exists an unique normal, unital cp map
Φ` :M→M such that for each a ∈ A, we obtain:

Φ` (πϕ (a)) = πϕ (Φ (a)) .

We have a W ∗-dynamical system (M,Φ`, ω) since ω is Φ`−invariant.
C*-dynamical system (A,Φ, ϕ) is said to be a separating if Ωϕ is cyclic for πϕ (A)

0.

Proposition 1.15. Let (A,Φ, ϕ) be a separating C*-dynamical system. Then Φ is
spatial morphism, and for each X ∈M we have:

Φ` (X)Ωϕ = UϕXΩϕ.

If Φ is omomorphism the Φ` is an automorphism of von Neumann algebra.

Proof. It’s a trivial consequence of the proposition 3.1 of [20]. ¤

An important characterization for the dilations of W ∗−dynamical systems is given
by the following proposition:

Proposition 1.16. Let (A,Φ, ϕ) be a separating C∗−dynamical systems , the fol-
lowing conditions are equivalent:
• Φ commutes with the automorphism modular group σϕt of (Mϕ, ϕ):

σϕt (Φ` (πϕ (a))) = Φ` (σ
ϕ
t (πϕ (a))) , t ∈ R, a ∈ A;

• Uϕ∆
it = ∆itUϕ for all t ∈ R, where ∆ is the modular operator of ϕ;

• Uϕ commutes with modular coniugation Jϕ of ϕ;
• There exists an unique cp-map Φ+ :Mϕ →Mϕ such that for each a ∈M we have

πϕ
¡
Φ+ (a)

¢
Ωϕ = U

∗
ϕπϕ (a)Ωϕ.

Proof. It’s a consequence of the proposition 3.3 of [20]. ¤

We obtain a necessary condition for the existence of dilations of W ∗-dynamical sys-
tems (see [12] and [14]):

Remark 1.9. The morphism Φ commutes with the automorphism modular group σϕt
of (M, ϕ) if and only if the Φ admit ϕ-adjoint.

∗ ∗ ∗
Let (V,H) be isometry on the Hilbert space H, we set with

³bV, bH´ the minimal
unitary dilation of (V,H) and Z : H→ bH isometry operator such that

ZV =bVZ.
7Cfr. [3] par.4.
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Let F the set of the operator net {Tj}j∈N of B (H) with the follow property:
I - sup {kTjk : j ∈ N} ≤ ∞
I - VT0 = T1V
I - VV∗Tj = TjVV

∗ j ≥ 1
For every net t = {Tj}j∈N belong to F we define

Sn (t) = ZT0Z
∗ +

nP
j=1

bV−jZTjFZ
∗ bVj

where F =I−VV∗ is orthogonal projection on the space ker (V∗) .
We have another fundamental proposition:

Proposition 1.17. For every element t = {Tj}j∈N belong to F, the net {Sn (t)}n∈N
converges respect to the strong operator topology and

S (t) = So− lim
n→∞

nP
j=2

h bV−(j−1)Z (Tj−1 −V∗TjV)Z
∗ bV(j−1) + bV−nZTnZ

∗ bVn
i

Moreover for each t = {Tj}j∈N and r = {Rj}j∈N belongs to F we have

S (t)S (r) = S (t · r)
where t · r = {Tj ◦Rj}j∈N .

Proof. Cfr [20] section 6. ¤

A simple consequence of the preceding proposition is the following theorem, it is a
first important result in the dilation theory of the dynamic systems:

Proposition 1.18. Let (A,Φ, ϕ) be a multiplicative C*-dynamical system, we set

with
³bUϕ, bHϕ,Zϕ

´
the minimal unitary dilation of the linear isometry Uϕ defined in

15:

Uϕπϕ (a)Ωϕ = πϕ (Φ (a))Ωϕ.

Let Zϕ : Hϕ → bHϕ be the linear isometry satisfying ZϕUϕ = bUϕZϕ.

Then exist a representation bπ : A→ B
³ bHϕ

´
such that for each a ∈ A we have

bπ (a)Zϕ = Zϕπϕ (a) (30)

and bπ (Φ (a)) = bUϕbπ (a) bU∗ϕ, (31)

with

bπ (a) = Zϕπϕ (a)Z∗ϕ + ∞X
k=1

bU−kϕ Zϕπϕ

³
Φk (a)

´
FZ∗ϕ bUk

ϕ = (32)

= So− lim
n→∞

h bU−nϕ Zϕπϕ (Φ
n (a))Z∗ϕ bUn

ϕ

i
, (33)

where F is the projection I−UϕU
∗
ϕ ∈ πϕ (Φ (A))

0
and the series converges respect to the

strong operator topology of B
³ bHϕ

´
.
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Furthemore, the so-topology closure of the * subalgebra generate by the set:

B =
[
k∈Z

bUk
ϕbπ (A) bU−kϕ =

[
k∈N

bU−kϕ bπ (A) bUk
ϕ (34)

of B
³ bHϕ

´
is a von Neumann algebraM and bΩ = ZϕΩϕ is a cyclic vector forM satisfyingbUϕ

bΩ = bΩ and for each a ∈ A we have:

ϕ (a) =
DbΩ, bπ (a) bΩE .

Proof. See [20] proposition 6.1. ¤

Next proposition certifies that for the multiplicative C*-dynamical system the ϕ-
adjunction is a sufficient condition for the existence of a reversible dilation.

Theorem 1.2. Let (A,Φ, ϕ) be multiplicative C*-dynamical system with ϕ faith-
ful state. If Φ admit a ϕ-adjoint Φ+ then there exists a minimal reversible dilation³bA, bΦ, bϕ, i, E´ where:
• The C*-algebra bA is the norm closed of the algebra B defined in 34;
• The cp map i is the representation bπ defined in 30 8;
• The automorphism bΦ : bA→ bA is thus defined:bΦ (X) = bUϕX bU∗ϕ; X ∈ bA; (35)

• The conditional expectation E : bA→ A is defined through the expression:

E
³bU−kϕ bπ (a) bUk

ϕ

´
= πϕ

³
Φ+k (a)

´
, a ∈ A, .k ∈ N, (36)

while for the state we have bϕ (X) = ϕ (E (X)) X ∈ bA.
Proof. We get the following inclusions for each n ≥ 0 :

πT (A) ⊂ bU∗ϕπT (A) bUϕ ⊂ bU−2ϕ πT (A) bU2
ϕ ⊂ · · · ⊂ bU−nϕ πT (A) bUn

ϕ ⊂ · · ·
since we have bUϕbπ (A) bU∗ϕ = bπ (Φ (A)) ⊂ bπ (A) ,
then bπ (A) ⊂ bU−1ϕ bπ (A) bUΦ.

We observe that every element X belong to algebra B defined in 34 has this writing:

X = bU−nϕ πT (x) bUn
ϕ

for some x ∈ A and n ∈ N.
We define the application E : B→ πϕ (A) in the following way:

E
³bU−kϕ bπ (a) bUk

ϕ

´
= πϕ

³
Φ+k (a)

´
, a ∈ A. (37)

8Then i is a unital homomorphism.
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We now verify that the application E is well defined.
Let bU−kϕ bπ (a) bUk

ϕ =
bU−hϕ bπ (b) bUh

ϕ,

we obtain for each c ∈ A the following equalities:D
πϕ (c)Ωϕ, πϕ

³
Φ+k (a)

´
Ωϕ

E
= ϕ

³
c∗Φ+k (a)

´
= ϕ

³
Φk (c∗) a

´
=

=
Dbπ ³Φk (c)´Ωbϕ, bπ (a)ΩbϕE = DbUk

ϕbπ (c)Ωbϕ, bπ (a)ΩbϕE =
=
Dbπ (c)Ωbϕ, bU−kϕ bπ (a) bUk

ϕΩbϕE = Dbπ (c)Ωbϕ, bU−hΦ bπ (b) bUh
ΦΩbϕE =

= ϕ
³
Φh (c∗) b

´
= ϕ

³
Φh (c∗) b

´
=
D
πϕ (c)Ωϕ, πϕ

³
Φ+h (b)

´
Ωϕ

E
.

Then

πϕ

³
Φ+k (a)

´
Ωϕ = πϕ

³
Φ+h (b)

´
Ωϕ

and since the vector Ωϕ is separating, for π (A) we have πϕ
¡
Φ+k (a)

¢
= πϕ

¡
Φ+h (b)

¢
.

The linear application E : B→ πϕ (A) is a positive continuous map, since for each a ∈ A
we have °°°E ³bU−kϕ bπ (a) bUk

ϕ

´°°° = °°°πϕ ³Φ+k (a)´°°° ≤ kak = °°°bU−kϕ bπ (a) bUk
ϕ

°°° ,
and

E
³³bU−kϕ bπ (a) bUk

ϕ

´∗ ³bU−kϕ bπ (a) bUk
ϕ

´´
= πϕ

³
Φ+k (a∗a)

´
≥ 0,

moreover for each a ∈ A and X ∈ B we have

E (bπ (a)X) = πϕ (a) E (X) . (38)

In fact, if X = bU−kϕ bπ (x) bUk
ϕ and bπ (a) = bU−kϕ bπ (y) bUk

ϕ with x, y ∈ A, we have for each
b ∈ A that
hπϕ (b)Ωϕ, πϕ (a) E (X)Ωϕi =

D
πϕ (b)Ωϕ, πϕ (a)πϕ

³
Φ+k (x)

´
Ωϕ

E
=

= ϕ
³
b∗aΦ+k (x)

´
= ϕ

³
Φk (b∗a)x

´
=
Dbπ ³Φk (a∗b)´Ωbϕ, bπ (x)ΩbϕE =

=
Dbπ (b)Ωbϕ, bπ (a) bUk∗

ϕ bπ (x) bUk
ϕΩbϕE = Dbπ (b)Ωbϕ, bU−kϕ bπ (yx) bUk

ϕΩbϕE =
= ϕ

³
Φk (b∗) yx

´
= ϕ

³
b∗Φ+k (yx)

´
=
D
πϕ (b)Ωϕ, πϕ

³
Φ+k (yx)

´
Ωϕ

E
.

It follow that

πϕ (a) E (X)Ωϕ = E (bπ (a)X)Ωϕ = πϕ

³
Φ+k (yx)

´
Ωϕ,

again, the vector Ωϕ is separating for π (A) then the relation 38 it’s hold.
Then for each a, b ∈ A and X ∈ B we have:

E (bπ (a)Xbπ (b)) = πϕ (a) E (X)πϕ (b) ,
moreover for each ai ∈ A and Xi ∈ B, i = 1, 2, ..m, we obtain:X

i,j

πϕ (a
∗
i ) E (X∗

i Xj)πϕ (aj) =
X
i,j

E (bπ (a∗i )X∗
i Xjbπ (aj)) ≥ 0,
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it follow that the map E : B → πϕ (A) is a cp-map and it is extended for continuity to

all the C*-algebra bA.
We define the following state bϕ on the C*-algebra bAbϕ (X) = ϕ (E (x)) .
In conclusion, we have the following commutative diagram:bA bΦn−→ bA

πϕ ↑ ↓ E
A

Φn−→ A

with bϕ³bΦ (X)´ = bϕ (X) ,
for each X ∈ bA, since:
bϕ³bΦ (X)´ = bϕ³bU−k+1ϕ bπ (x) bUk+1

ϕ

´
= ϕ

³
Φ+(k+1) (x)

´
= ϕ

³
Φ+k (x)

´
= bϕ (E (X)) .

¤
We analyze the ergodic properties of the dilation determined by the preceding the-

orem.

Theorem 1.3. If the state ϕ of (A,Φ, ϕ) is ergodic [weakly mixing] then the state bϕ
of the dilation

³bA, bΦ, bϕ, i, E´ is ergodic [weakly mixing].
Proof. Let X,Y ∈ bA with X = bU−nϕ bπ (x) bUn

ϕ and Y = bU−mϕ bπ (y) bUm
ϕ . We deter-

mine the following limit:

lim
N→∞

1

N + 1

NP
k=0

hbϕ³XbΦk (Y )´− bϕ (X) bϕ (Y )i .
.For each k ≥ m we have:

bϕ³XbΦk (Y )´ = bϕ³bU−nϕ bπ (x) bUn
ϕ
bU(−m+k)
ϕ bπ (y) bU(m−k)

ϕ

´
=

= bϕ³bU−nϕ bπ (x) bUn
ϕbπ ³Φ(k−m) (y)´´ =

= ϕ
³
E
³bU−nϕ bπ (x) bUn

ϕbπ ³Φ(k−m) (y)´´´ =
= ϕ

³
Φ+n (x)

³
Φk−m (y)

´´
= ϕ

³
x
³
Φk−m+n (y)

´´
.

Thenbϕ³XbΦk (Y )´− bϕ (X) bϕ (Y ) = ϕ
³
x
³
Φ(k−m+n) (y)

´´
− ϕ

¡
Φ+n (x)

¢
ϕ
¡
Φ+m (y)

¢
=

= ϕ
³
x
³
Φ(k−m+n) (y)

´´
− ϕ (x)ϕ (y)

It follows that

lim
N→∞

1

N + 1

NP
k=0

hbϕ³XbΦk (Y )´− bϕ (X) bϕ (Y )i =
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= lim
N→∞

1

N + 1

NP
k=m

h
ϕ
³
x
³
Φ(k−m+n) (y)

´´
− ϕ (x)ϕ (y)

i
=

= lim
N→∞

1

N + 1

NP
k=0

h
ϕ
³
x
³
Φk (y)

´´
− ϕ (x)ϕ (y)

i
= 0.

The proof of the weakly mixing is performed in the same way. ¤
We conclude this section with the following remark

Remark 1.10. Let (A,Φ, ϕ) be C*-dynamical system with faithful state ϕ. If the
dynamic Φ admit a multiplicative ϕ-adjoint Φ+ the operator U∗ϕ is isometric. Then
exchanging the roles, in the precedent theorem, of Φ with Φ+ and of Uϕ with U

∗
ϕ, it

is easy to verify that also in this case the dynamic system (A,Φ, ϕ) admits a revesible
dilation with ”good” ergodic properties.



CHAPTER 2

Towards the reversible dilations

We will use the generalization of the Stinespring theorem of the precedent chapter
to establish the existence of a Markov multiplicative dilation for a generic C*-dynamical
system. The proof founds it on the property of particular operator system associated
to our system. In this section we also recover a results on the existence of dilation for
W ∗-dynamical systems determined by Muhly and Solel in [16].

1. Multiplicative dilation

Let (A,Φ, ϕ) be a C*-dynamical system with A a C*-subalgebra of B (H) and
(π∞,H∞,V∞) its Stinespring representation of theorem 4.
Let U be the Nagy Foiaş dilation of the the linear contraction V∗∞ :

U =

¯̄̄̄
V∗∞ 0
C1 W

¯̄̄̄
, (39)

it is the minimal isometric dilation of V∗∞.
The defectes operator DV∗ = 2

p
I−V∞V∗∞ of V∗∞ coincides with the orthogonal pro-

jection F = I−V∞V∗∞ on kerV∗∞, therefore

K = H⊕ l2 (kerV∗∞)

and for each h ∈ H we have

C1h = (Fh, 0, ...0...) .

Moreover for each (ξ0, ξ1, ξ2......) ∈ l2 (kerV∗∞) we get:

(C1C
∗
1 +WW∗) (ξ0, ξ1, ξ2...0...) = (ξ0, 0, ...0...) + (0, ξ1, ξ2...0...) = (ξ0, ξ1, ξ2...0...)

then C1C
∗
1 = I−WW∗ it follows that the operator U is an unitary.

Remark 2.1. The operator U∗ is the minimal unitary dilation of the isometry V∞.

We observe that for each n ∈ N the operator Un is of the type

Un =

¯̄̄̄
V∗n∞ 0
Cn Wn

¯̄̄̄
, (40)

while for the operator Cn : H∞ → l2 (kerV∗∞) we obtain

Cn =
n−1X
j=0

W(n−1)−jC1Vj∗
∞ (41)

23
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with C0 = 0.
In fact we give

UnU =

¯̄̄̄
V
(n+1)∗
∞ 0

CnV
∗ +WnC1 Wn+1

¯̄̄̄
=

¯̄̄̄
V
(n+1)∗
∞ 0
Cn+1 Wn+1

¯̄̄̄
Un+1

and for induction follow that
Cn+1 = CnV

∗∞ +WnC1 =
³Pn−1

j=0W
(n−1)−jC1Vj∗∞

´
V∗∞ +WnC1 =

=
nP

j=0
W(n−1)−jC1Vj∗∞.

For each Ψ ∈ H and n > 0 we obtain:

CnΨ =

Ã
FV(n−1)∗

∞ Ψ,FV(n−2)∗
∞ h, ...

(n−1) step
FΨ ,0, ..0..

!
. (42)

while for each
∞L
j=0

ξj ∈ l2 (kerV∗∞) we have:

C∗n
∞L
j=0

ξj =
nP

j=1
V(n−j)
∞ Fξj−1. (43)

In fact we have

C∗n
∞L
i=0

ξi =
n−1P
j=0
VjC∗1W(n−1)−j∗ ∞L

i=0
ξi =

n−1P
j=0
Vj∞C∗1 (ξn−1−j , ξn−j , ξn+1−j , ...) =

=
n−1P
j=0
Vj∞Fξn−1−j =

nP
j=1
V
(n−j)
∞ Fξj−1.

By the unitary property of the operator U, we have the following relations:

C∗mCn =
h
Vn∗
∞ ;V

m
∞
i
= Vn∗

∞V
m
∞ −Vm

∞V
n∗
∞ (44)

while
CmC

∗
n =

h
Wn∗ ;Wm

i
=Wn∗Wm −WmWn∗ . (45)

Furthermore

CnV
m
∞ =

½
Cn−m n > m
0 n ≤ m

; and C∗mW
n =

½
0 n ≥ m

C∗n−m n < m
;

We observe that for n ∈ N we have: CnV
n =Wn∗Cn = 0.

For unitary operator U we have the follow property:

Proposition 2.1. The unitary operator U satisfies the relation

ker (I −U) = ker (I −U∗) = 0.
Furthermore for each Ψ ∈ K, we have

lim
n→∞

1

n+ 1

nP
k=0

UkΨ = lim
n→∞

1

n+ 1

nP
k=0

Uk∗Ψ = 0

and

lim
n→∞

1

n+ 1

nP
k=0

hξ, CkΨi = 0,

for each ξ ∈ l2 (kerV∗∞) Υ ∈ H∞.
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Proof. Let Ψ = Υ⊕ ξ ∈ H∞ ⊕ l2 (kerV∗∞) with UΥ⊕ ξ = Υ⊕ ξ.
For definition ¯̄̄̄

V∗∞ 0
C1 W

¯̄̄̄ ¯̄̄̄
Υ
ξ

¯̄̄̄
=

¯̄̄̄
V∗∞Υ

C1Υ+Wξ

¯̄̄̄
=

¯̄̄̄
Υ
ξ

¯̄̄̄
and ker (I−V∗∞) = {0} it follow that Υ = 0 andWξ = ξ then ξ = 0 since

(0, ξ0, ξ1, ξn...) = (ξ0, ξ1, ...ξn...) .

The relation lim
n→∞

1
n+1

nP
k=0

UkΨ = 0 follow by the mean ergodic theory of von Neumann.

We observe that D- lim
k→∞

­
Ψ,UkΨ

®
= 01.

For the second relation for each Ψ = Υ⊕ ξ ∈ K we get:D
Ψ,UkΨ

E
=
D
Υ,Vk∗

∞Υ
E
+ hξ,CkΥi+

D
ξ,Wkξ

E
,

where lim
k→∞

¯̄­
ξ,Wkξ

®¯̄2
= lim

k→∞

k−1P
j=0

kξjk2 = 0 and lim
k→∞

­
Υ,Vk∗∞Υ

®
= 0 by the proposition

1.6.
Then D- lim

k→∞
­
Ψ,UkΨ

®
= D- lim

k→∞
hξ,CkΥi = 0 it follow that

lim
n→∞

1

n+ 1

nP
k=0

hξ,CkΥi = 0.

¤

We have a simple proposition:

Proposition 2.2. Let (A,Φ, ϕ) be a C*-dynamical system with A ⊂ B (H). There
exist an injective representation (K, bπ) of the C*algebra A and a isometry J : H → K
such that for each a ∈ A and natural number n ≥ 0, we have:

J∗ (Unπ (a)Un∗)J = π (Φn (a)) .

Proof. From the corollary 1.1 there exists an isometric covariant representation
(π,H,V) of Φ and an unital homomorphism θ : A→ B (ker (V∗)).
For each a ∈ A we define the representation

bπ (a) = ¯̄̄̄ π (a) 0
0 Θ (a)

¯̄̄̄
, (46)

where for each ξj ∈ kerV∗ with j ∈ N:

Θ (a)
∞L
j=0

ξj =
∞L
j=0

θ (a) ξj ,

The representation bπ is injective map and for each natural number n ≥ 0 we have:
Unbπ (a)Un∗ =

¯̄̄̄
π (Φn (a)) ; Vn∗π (a)C∗n
Cnπ (a)V

n; Cnπ (a)C
∗
n +W

nΘ (a)Wn∗

¯̄̄̄
. (47)

If J is defined by Jh = h⊕ 0 for every h ∈ H, we have the thesis. ¤
1Cfr. appendix.
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For each X ∈ B (K) we define
E1,1 (X) = J∗XJ. (48)

The map E1,1 : B (K)→ B (H) is a normal cp-map and for each X ∈ B (K), and a, b ∈ A
we obtain

E1,1 (bπ (a)Xbπ (b)) = π (a) E1,1 (X)π (b) .
Since if X = |Xi,j |i,j=1,2 we have:¯̄̄̄

π (a) 0
0 Θ (a)

¯̄̄̄ ¯̄̄̄
X1,1 X1,2

X2,1 X2,2

¯̄̄̄ ¯̄̄̄
π (b) 0
0 Θ (b)

¯̄̄̄
=

¯̄̄̄
π (a)X1,1π (b) ∗

∗ ∗

¯̄̄̄
.

∗ ∗ ∗
Theorem 2.1. Let (A,Φ, ϕ) be a C*-dynamical system with A ⊂ B (H).

There is a C*-dynamical system
³bA, bΦ, bϕ´, where bA is the C∗-subalgebra of B (K) thus

definied: bA = C∗
Ã S
n≥0
Unbπ (A)Un∗

!
; (49)

while the injective *-homorphism bΦ : bA→ bA is defined by:bΦ (X) = UXU∗, X ∈ bA; (50)

and the state bϕ on bA is bϕ (X) = ϕ` (EX) , X ∈ bA,
where ϕ` is a state on B (H) that extends ϕ;
such that for each n ∈ N bA bΦn−→ bAbπ ↑ ↓ E1,1

A
Φn−→ B (H)

is a commutative diagram:

E1,1
³bΦn (bπ (a))´ = Φn (a) , a ∈ A;

where the cp map bπ : A→ bA is the representation defined in 46 while E : bA→ B (H) is
the unital cp-map defined by the relation 48;

Proof. We have for each a ∈ A :

E1,1
³bΦn (bπ (A))´ = J∗bΦn (bπ (a))J = J∗µ¯̄̄̄ Vn∗π (a)Vn ∗

∗ ∗

¯̄̄̄¶
J = Φn (a) .

Let Φo : B (H)→ B (H) the unital cp-map defined by
Φo (A) = V

n∗AVn, A ∈ B (H)
and ϕo Hahn-Banach extension of ϕ on B (H).
We set

ϕn =
1

n+ 1

nX
k≥0ω

ϕo ◦Φko
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the set {ϕn}n∈N is a net of the unital ball B (H)
∗
1 of the fuctional on B (H) . It is well

known that the set B (H)∗1 is w∗−compact. Then our net admits at least a point limit
ϕ` that belong to B (H)∗1 :

ϕ` = w∗ − lim
i
ϕni (51)

Moreover ϕ` is Φo−invariant and for each a ∈ A we have that ϕ` (a) = ϕ (a).
Since for each N ∈ N we obtain:

ϕN (a) =
1

n+ 1

nX
k≥0ω

ϕo

³
Φko (a)

´ 1

n+ 1

nX
k≥0ω

ϕ
³
Φk (a)

´
= ϕ (a) .

The state bϕ is a bΦ-invariant since for definition, for each X ∈ bA, we get
bϕ³bΦ (X)´ = ϕ`

³
EbΦ (X)´ = ϕ` (V

∗X1,1V) = ϕ` (X1,1) = bϕ (X) ,
in fact bΦ (X) = U ¯̄̄̄ X1,1; X1,2

X2,1; X2,2

¯̄̄̄
U∗ =

¯̄̄̄
V∗π (a)V ∗
∗ ∗

¯̄̄̄
. (52)

¤

The preceding theorem leads to a result that it approaches of very to our definition
of Markov dilation for a C*-dynamic system. To get a dilation in our sense, we have to
determine a good algebra B of B (K) with the following property:

bπ (A) ⊂ B with E1,1 (B)⊂ A and UBU∗⊂B.

In this way we get that the cp-map E1,1 : bA→ B (H) is a conditional expectation betweenbA and bπ (A) .
This will be the purpose of the next paragraph.

1.1. The construction of multiplicative dilations. Let Φ : A→ A be a cp map
with A ⊂ B (H), the triple (π∞,H∞,V∞) is the isometric covariant representation 4 of
Φ and U be Nagy isometry dilation of V∗ on the Hilbert space K = H⊕ l2 (kerV∗) .
Let Γ : l2 (kerV∗)→ H the linear operator so defined:

Γ =
nX

k≥0
V(k+1)∗π∞ (ak)C∗1W

k∗ , ak ∈ A, k = 1, 2...n. (53)

The operator Γ is say be a (U,Φ)-associated operator.
With a simple calculus for each ξi ∈ kerV∗, we obtain that

Γ
∞L
i=0

ξi =
nX

k=0

V(k+1)∗π∞ (ak)Fξk (54)

while for each h ∈ H :

Γ∗h =
¡
Fπ∞ (a∗0)Vh,Fπ∞ (a∗1)V

2h, .......Fπ∞ (a∗n)V
n+1h, 0....

¢
. (55)
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Remark 2.2. If the elements ak belong to the multiplicative domains of Φ, we get
that

Γ =
nX

k≥0
V(k+1)∗π∞ (ak)C∗1W

k∗ = 0.

In fact for each k = 1, 2..n we obtain:

π∞ (ak)C∗1
∞L
i=0

ξi = π∞ (ak)Fl0 = Fπ∞ (ak) ξ0.

Therefore in the multiplicative case the only (U,Φ)-associated operator are the void op-
erators.

We have a first fundamental proposition:

Proposition 2.3. For every (U,Φ)-associated operators Γ1 and Γ2, we have the
following result:

Γ1Γ
∗
2 ∈ π∞ (A)

in particulary if Γi =
niP
k≥1

Vk∗π∞ (ai,k)C∗1W(k−1)∗ i = 1, .2 we have:

Γ1Γ
∗
2 = π∞

Φk−1
 nX

k≥1

£
Φ
¡
a1,ka

∗
2,k

¢
− Φ (a1,k)Φ

¡
a∗2,k

¢¤ .

Proof. We have:

Γ1Γ
∗
2 =

nX
k≥0

V(k+1)∗π∞ (a1,k)C∗1W
k∗ ·

nX
j≥0

WjC1π∞
¡
a∗2,k

¢
Vj+1 =

=
nX

k,j≥0
V(k+1)∗π∞ (a1,k)C∗1W

k∗WjC1π∞
¡
a∗2,k

¢
Vj+1;

and for the relations 45 we obtain:

C∗1W
(k−1)∗Wj−1C1 = C∗1C1δi,j where δi,j =

½
I k = j
0 k 6= j

It follow that:

Γ1Γ
∗
2 =

nP
k≥1

Vk∗π∞ (a1,k)C∗1C1π∞
³
a∗2,k

´
Vk =

=
nP

k≥1
Vk∗π∞ (a1,k) (I−VV∗)π∞

³
a∗2,k

´
Vk =

= π∞

Ã
nP

k≥1

h
Φk
³
a1,ka

∗
2,k

´
− Φk−1

³
Φ (a1,k)Φ

³
a∗2,k

´´i!
. ¤

We have a new operator systems So of B
¡
l2 (kerV∗)

¢
thus defined:

So =
©
T ∈ B

¡
l2 (kerV∗)

¢
: Γ1TΓ

∗
2 ∈ π∞ (A) for every (U,Φ) -ass. op. Γ1,Γ2

ª
.
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By the preceding proposition, we have that I ∈ So.
If Πk : l

2 (kerV∗)→ kerV∗ is the linear operator defined for each
∞L
i=0

ξi ∈ l2 (kerV∗) by

Πj
∞L
i=0

ξi = ξj , j ∈ N,

and we set for every T ∈ B
¡
l2 (kerV∗)

¢

T =

¯̄̄̄
¯̄̄̄
¯̄
T0,0 T0,1 · · T0,n ·
T1,0 T1,1 · · T1,n ·
· · · · · ·

Tm,0 Tm,1 · · Tm,n ·
· · · · · ·

¯̄̄̄
¯̄̄̄
¯̄ ,

where Ti,j = ΠiTΠ
∗
j for all i, j ∈ N:

T
∞L
i=0

ξi =
∞L
i=0

∞P
j=0

Ti,jξj .

We study some simple property of the operator systems So.

Proposition 2.4. If T ∈ So for each Γ1 and Γ2 (U,Φ)-associated operators we have:

Γ1TΓ
∗
2 =

n1P
i=0

n2P
j=0
V∗k+1π∞ (a1,i)FTi,jFπ∞

¡
a∗2,j

¢
Vj+1,

whit

Γi =

niX
k≥1

Vk∗π∞ (ai,k)C∗1W
(k−1)∗ for i = 1, 2.

Then the linear operator T of B
¡
l2 (kerV∗)

¢
belong to So if and only if for each a, b ∈ A

and i, j ∈ N, we get

V(i+1)∗π∞ (a)FTi,jFπ∞ (b)V(j+1) ∈ π∞ (A) .

Proof. From the relations 54 and 55, for each h ∈ H we have:

Γ1TΓ
∗
2h = Γ1T

L
i∈N
Fπ∞

¡
a∗2,i
¢
V(i+1)h = Γ1

L
i∈N

n2P
j=0

Ti,jFπ∞
¡
a∗2,i
¢
V(j+1)h =

=
n1P
i=0

n2P
j=0
V(i+1)∗π∞ (a1,i)FTi,jFπ∞

¡
a∗2,i
¢
V(j+1)h.

¤

We now analyze the existing relations between operator system So and unitary op-
erator U of B

¡
H⊕ l2 (kerV∗)

¢
.

Lemma 2.1. For every a ∈ A and (U,Φ)-associated operator Γ, we have

C1π∞ (a)C∗1∈So, C1ΓW
∗∈So.
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Proof. Let Γi =
niP
k≥0

V(k+1)∗π∞ (ai,k)C∗1Wk∗ i = 1, 2, the (U,Φ)-associated oper-

ators, since for each n > 0 we haveWn∗C1 = 0 we obtain:

Γ1C1 = V
∗π∞ (a1,1)C∗1C1

then:
Γ1C1π∞ (a)C∗1Γ∗2 = V∗π∞ (a1,1)C∗1C∗1π∞ (a)C∗1C1π∞

¡
a∗2,1

¢
V =

= V∗π∞ (a1,1)FF1π∞
¡
a∗2,1

¢
V =

= π∞ (Φ (a1,1aa2,1)− Φ (a1,1a)Φ (a2,1)− Φ (a1,1)Φ (aa2,1)−Φ (a1,1)Φ (a)Φ (a2,1))
For the second relation we have:
Γ1C1ΓW

∗Γ∗2 = V∗π∞ (a1,1)C∗1C1ΓW∗Γ+2
and if Γ =

nP
j≥0

V∗j+1π∞ (aj)C∗1W∗j we get:

ΓW∗Γ∗2 =
nX

k≥0
V(k+1)∗π∞ (ak)C∗1C1π∞ (a2,k+1)V

(k+2)

therefore

Γ1 (C1ΓW
∗)Γ∗2 =

nX
k≥0

V∗π∞ (a1,1)C∗1C1V
(k+1)∗π∞ (ak)C∗1C1π∞ (a2,k+1)V

(k+2),

and with a simple algebric calculus we get:
V∗π∞ (a1,1)C∗1C1V(k+1)∗π∞ (ak)C∗1C1π∞ (a2,k+1)V(k+2) =

= V∗π∞ (a1,1) (I−VV∗)V(k+1)∗π∞ (ak) (I−VV∗)π∞ (a2,k+1)V(k+2) =

= Φ
¡
a1,1 · Φ(k+1) (aa2,k+1)

¢
− Φ

¡
a1,1 · Φk (Φ (ak) · Φ (a2,k+1))

¢
−

−Φ (a1,1) · Φ(k+2) (aka2,k+1) +Φ (a1,1)
¡
Φk (ak) · Φ (a2,k+1)

¢
. ¤

The set

S =
½¯̄̄̄

π∞ (a) Γ
Γ∗ T

¯̄̄̄
: a ∈ A, Γ is a (U,Φ) -ass. op. and T ∈ So

¾
(56)

is a operator systems of B (K) with the following properties:

Proposition 2.5. The operator system S is a U-invariant set:
USU∗ ⊂ S.

Proof. If S =

¯̄̄̄
π∞ (a) Γ
Γ∗ T

¯̄̄̄
is an element of S, we obtain

USU∗ =
¯̄̄̄

V∗π∞ (a)V; V∗π∞ (a)C∗1 +V∗ΓW∗
C1π∞ (a)V+WΓ∗V; C1π∞ (a)C∗1 +WΓ∗C∗1 +C1ΓW∗ +WTW∗

¯̄̄̄
,

where V∗ΓW∗ and V∗π∞ (a)C∗1 are (U,Φ)-associated operators.
For the lemma 2.1 we have C1π∞ (a)C∗1, WΓ∗C∗1 ∈ So.
MoreoverWTW∗ ∈ So since we have

ΓiW =

niX
k≥0

V(k+1)∗π∞ (ai,k)C∗1W
k∗W = V∗

ni−1X
k≥0

V(k+1)∗π∞ (ai,k)C∗1W
k∗ = V∗eΓi
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where C∗1W = 0 and eΓ is the (U,Φ)-associated operator

eΓ = ni−1X
k≥0

V(k+1)∗π∞ (ai,k)C∗1W
k∗ .

It follow that

Γ1 (WTW∗)Γ∗2 = V
∗
³eΓiTeΓ∗i´V,

and for hyphothesis eΓiTeΓ∗i ∈ π∞ (A). ¤

The next proposition is fundamental to establish the existence of a conditional ex-
pectation between the C*-subalgebra C∗ (S) of B (K) generated by the operator system
S and C*-algebra bπ (A).
Let X =

¯̄̄̄
X1,1 X1,2

X2,1 X2,2

¯̄̄̄
∈ B (K) we have the *-linear map Ei,j thus defined:

Ei,j (X) = Xi,j . (57)

We have a first result:

Lemma 2.2. For each S1, S2, ...Sn ∈ S we have:

E1,1

Ã
nY
i=1

Si

!
∈ A

Proof. We have these simple properties:

E1,1

Ã
nY
i=1

Si

!
= E1,1

Ã
n−1Y
i=1

Si

!
E1,1 (Sn) + E1,2

Ã
n−1Y
i=1

Si

!
E2,1 (Sn) ;

E1,2

Ã
nY
i=1

Si

!
= E1,1

Ã
n−1Y
i=1

Si

!
E1,2 (Sn) + E1,2

Ã
n−1Y
i=1

Si

!
E2,2 (Sn) .

and for induction on the length n of the elements
nQ
i=1

Si we have the thesis.

In fact if Soo is the set of operator
Soo = {π∞ (a)ΓT : a ∈ A, Γ is a (U,Φ) -associated operator and T ∈ So} ,

we have:
For n = 1 we obtain that E1,1 (S1) ∈ A and E1,2 (S1) ∈ Soo;

For n− 1 we assumed that E1,1
µ
n−1Q
i=1

Si

¶
∈ A and E1,2

µ
n−1Q
i=1

Si

¶
∈ Soo;

from the relations written above, we get that the assertion is true for each n ∈ N. ¤
Proposition 2.6. There exists a cp map E : C∗ (S)→ A such that:

E (X) = E1,1 (X) , X ∈ C∗ (S) (58)

and for each ai ∈ A, Ti ∈ So, i = 1, 2 and X ∈ C∗ (S), we have:
E ((π∞ (a1)⊕ T1)X (π∞ (a2)⊕ T2)) = π∞ (a1) E (X)π∞ (a2)
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Proof. Let E1,1 : B (K) → B (H) be the unital cp map 57, for each X ∈ C∗ (S)
we obtain E1,1 (X) ∈ A, since the elements X of C∗ (S) are sum of elements of the type
nQ
i=1

Si with Si ∈ S for all i = 1, 2...n, from the preceding lemma the thesis follows.

With a simple calculation, for each X ∈ C∗ (S) and a1, a2 ∈ A, T1,T2 ∈ So, we have¯̄̄̄
π∞ (a1) 0
0 T1

¯̄̄̄ ¯̄̄̄
X1,1 X1,2
X2,1 X2,2

¯̄̄̄ ¯̄̄̄
π∞ (a2) 0
0 T2

¯̄̄̄
=

¯̄̄̄
π∞ (a1)X1,1π∞ (a2) ∗

∗ ∗

¯̄̄̄
and

E
µ¯̄̄̄

π∞ (a1)X1,1π∞ (a2) ∗
∗ ∗

¯̄̄̄¶
= π∞ (a1) E (X)π∞ (a2) .

¤
The next proposition establishes the existence of multiplicative dilations for C*-

dynamical systems.

Theorem 2.2. Let (A,Φ, ϕ) be a C*-dynamical systems with A ⊂ B (H) and let
(π∞,H∞,V∞) be the isometric covariant representation defined in 4. If there exists a
*-multiplicative linear map

Θ : A→ B
¡
l2 (kerV∗)

¢
(59)

such that for each a ∈ A we get
π∞ (a)⊕Θ (a) ∈ C∗ (S) .

Then (A,Φ, ϕ) admit a Markov multiplicative dilation
³bA, bΦ, bϕ, E , bπ´ where:

(1) The cp map bπ : A→ C∗ (S) is thus defined:bπ (a) = π∞ (a)⊕Θ (a) , a ∈ A; (60)

(2) bA is a subalgebra with unit of C∗ (S) :
bA = C∗

Ã S
n≥0
Unbπ (A)Un∗; I

!
; (61)

(3) The injective *-homorphism bΦ : bA→ bA is defined by:bΦ (X) = UXU∗, X ∈ bA; (62)

(4) The conditional expectation E : C∗ (S) → A is defined by the relation 58 and

the state bϕ on bA is thus definedbϕ (X) = ϕ (EX) , X ∈ bA.
Proof. Since bπ (A) ⊂ S and USU∗ ⊂ S it follows that

Ubπ(A)U∗ ⊂ UC∗ (S)U∗ ⊂ C∗ (S) .

Then bA ⊂ C∗ (S) and the injective *-homorphism 62 is well defined.

For definition, the map bπ : A→ bA is injective *-multiplicative linear map:
bπ (a) = ¯̄̄̄ π∞ (a) 0

0 Θ (a)

¯̄̄̄
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and for each n ∈ N

bΦn (bπ (a)) = ¯̄̄̄ Vn∗∞π∞ (a)Vn∞; Vn∗∞π∞ (a)C∗n
Cnπ∞ (a)Vn∗∞ ; CnAC

∗
n +W

nΘ (a)Wn∗

¯̄̄̄
.

For each a, b ∈ A and X ∈ bA we obtain
E (bπ (a)Xbπ (b)) = π∞ (a) E (X)π∞ (b) ,

moreover

E
³bΦn (bπ (A))´ = E µ¯̄̄̄ Vn∗∞π∞ (a)Vn∞ ∗

∗ ∗

¯̄̄̄¶
= Φn (a) .

For each X ∈ bA we have 2:bϕ³bΦ (X)´ = ϕ (E (U∗XU)) = ϕ (V∗∞X1,1V∞) = ϕ (Φ (EX)) = ϕ (EX) = bϕ (X) .
¤

The theorem is easily adaptable to W*-dynamical systems3:

Theorem 2.3. Let (M,Φ, ϕ) be a W*-dynamical systems with M ⊂ B (H) and let
(π∞,H∞,V∞) be the normal isometric covariant representation defined in 4. If there
exists a normal *-multiplicative linear map

Θ : A→ B
¡
l2 (kerV∗)

¢
(63)

such that for each a ∈ A we get
π∞ (a)⊕Θ (a) ∈ S 00.

Then (M,Φ, ϕ) admit a Markov multiplicative dilation
³cM, bΦ, bϕ, E , bπ´ where:

(1) The cp map bπ :M→ S 00 is thus defined:bπ (a) = π∞ (a)⊕Θ (a) , a ∈M; (64)

(2) cM is a von Neumann algebra:

cM =

Ã S
n≥0
Unbπ (A)Un∗

!00
; (65)

(3) The injective *-homorphism bΦ :cM→cM is defined by:bΦ (X) = UXU∗, X ∈cM; (66)

2In fact if X = |Xi,j |i,j ∈ bA, the explicit calculation is the following:
bΦn (X) =

¯̄̄̄
¯̄ Vn∗

∞X1,1V
n
∞; Vn∗

∞X1,1C
∗
n +V

n∗
∞X1,2W

n∗

CnX1,1V
n
∞ +W

nX2,1V
n
∞;

(CnX1,1 +W
nX2,1)C

∗
n+

+(CnX1,2 +W
nX2,2)W

n∗

¯̄̄̄
¯̄ .

3Cfr. Theorem 2.24 of [16].
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(4) The normal conditional expectation E : S 00 → M is defined by the relation 58

while normal state bϕ on cM is defined bybϕ (X) = ϕ (EX) , X ∈cM.

Proof. It is a simple variation of the proof of the preceding theorem. ¤

1.2. On the existence of the multiplicative dilations. Let (A,Φ, ϕ) be a C*-
dynamical systems with A ⊂ B (H).
We study some property of the operator systems So of B

¡
l2 (kerV∗)

¢
associated to our

dynamical systems.

Proposition 2.7. Let Γ1 and Γ2 are (U,Φ)-associated operators, we have

Γ+1 π∞ (a)Γ2 ∈ So
for each a ∈ A.
Moreover the linear space A` generated by the elementsL

k∈N
Fπ∞ (A)V(k+1)π∞ (A)V(k+1)∗π∞ (A)F

is a *-subalgebra (without unit) of B (kerV∗) with So ⊂ A`.
If AV is the C*-subalgebra of B (H∞) generated by the elements

{Fπ∞ (a)Vπ∞ (b)V∗π∞ (c)F :a, b, c∈A} ∪ {F}
we obtain L

k∈N
AV ⊂ C∗ (So)

where C∗ (So) is the C*-algebra (with unit I) generated by the set So :
C∗ (So) ⊂ B

¡
l2 (kerV∗)

¢
.

Proof. The operator Γ+1 π∞ (A)Γ2 belong to So since
Γ3
¡
Γ+1 π∞ (A)Γ2

¢
Γ+4 ∈ So.

For every (U,Φ)-associated operators Γ3 and Γ4.
Then for each am,n, bm,n, cm,n ∈ A with m,n ∈ N we get

Tm,n = Fπ∞ (am,n)V
(m+1)π∞ (bm,n)V

(n+1)∗π∞ (cm,n)F ∈B (kerV∗)
and let T be operator of B

¡
l2 (kerV∗)

¢
thus defined T = |Tm,n|m,n∈N, we have that

T ∈ So, in particular we get:L
k∈N
Fπ∞ (A)V(k+1)π∞ (A)V(k+1)∗π∞ (A)F ⊂So.

For each ai, bi, ci ∈ A with i = 1, 2 we obtain:

Fπ∞ (a1)V(k+1)π∞ (b1)V(k+1)∗π∞ (c1)F · Fπ∞ (a2)V(k+1)π∞ (b2)V(k+1)∗π∞ (c2)F =

= Fπ∞ (a1)V(k+1)π∞
³
b1Φ

k [Φ (c1a2)− Φ (c1)Φ (a2)] b2
´
V(k+1)∗π∞ (c2)F ∈A`.

The last affirmation is of easy proof now. ¤
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Remark 2.3. We observe that if exists (U,Φ)-associated operators Γ1 and Γ2 such
that

Γ1Γ
∗
2 = 1

the operator system So is a *-subalgebra with unit of B
¡
l2 (kerV∗)

¢
.

We study the relation between the C*-algebra generated of the elements Fπ∞ (A)F
of B (kerV∗) and the C*-algebra generated of the operator system So of B

¡
l2 (kerV∗)

¢
.

For each n-pla A = (a1, a2, an) of operator Ak of A, we define the follow operator of
B
¡
l2 (kerV∗)

¢
:

TA =
L
k∈N
Fπ∞ (ak)F. (67)

Proposition 2.8. We have that TA ∈ So for each n-pla A = (a1, a2, an) of
elements of A. It follow that:L

i∈N
C∗ (Fπ∞ (A)F) ⊂ C∗ (So) .

Proof. For each b1, b2 ∈ A and k ∈ N, we have
V(k+1)∗π∞ (b1)Fπ∞ (ak)Fπ∞ (b2)V(k+1) ∈ A,

since
V(k+1)∗π∞ (b1)Fπ∞ (ak)Fπ∞ (b2)V(k+1) =

= V(k+1)∗π∞ (b1) (I−VV∗)π∞ (ak) (I−VV∗)π∞ (b2)V(k+1) =

= V(k+1)∗π∞ (b1)π∞ (ak)π∞ (b2)V(k+1)−V(k+1)∗π∞ (b1)π∞ (ak)VV∗π∞ (b2)V(k+1)−
−V(k+1)∗π∞ (b1)VV∗π∞ (ak)π∞ (b2)V(k+1)+

+V(k+1)∗π∞ (b1)VV∗π∞ (ak)VV∗π∞ (b2)V(k+1) =
= π∞

¡
Φk+1 (b1akb2)

¢
− π∞

¡
Φk (Φ (b1ak)Φ (b2))

¢
− π∞

¡
Φk (Φ (b1)Φ (akb2))

¢
+

+π∞
¡
Φk (Φ (b1)Φ (ak)Φ (b2))

¢
∈ π∞ (A). ¤

We have another claim:

π∞ (A)⊕ C∗ (So) ∈ C∗ (S) .
Indeed, if a ∈ A and Sk ∈ So we get¯̄̄̄

¯̄ π∞ (a) 0

0
nQ

k=1

Sk

¯̄̄̄
¯̄ = ¯̄̄̄ π∞ (a) 0

0 S1

¯̄̄̄ ¯̄̄̄
I 0
0 S2

¯̄̄̄
· · · ·

¯̄̄̄
I 0
0 Sn

¯̄̄̄
,

and for each k = 2, 3...n ¯̄̄̄
π∞ (a) 0
0 S1

¯̄̄̄
,

¯̄̄̄
I 0
0 Sk

¯̄̄̄
∈ S,

then ¯̄̄̄
π∞ (a) 0
0 S1

¯̄̄̄ ¯̄̄̄
I 0
0 S2

¯̄̄̄
· · · · ·

¯̄̄̄
I 0
0 Sn

¯̄̄̄
∈ C∗ (S) .

From theorem 2.2, the existence of a dilations for the dynamical system is conditioned to
the existence of *-linear multiplicatve maps Θ : A→ C∗ (So) .We denote with H (A,So)
this set of applications.
Then for every θ ∈ H (A,So) we get a multiplicative dilation for (A,Φ, ϕ).
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For zero θ = 0 we get the basic dilation of the our to dynamical system, in this case the

representation bπ : A→ bA is given from:
bπ (a) = ¯̄̄̄ π∞ (a) 0

0 0

¯̄̄̄
, a ∈ A.

An example of *-multiplicative map that belong to H (A,So) is thus defined:
θ (a) (h0, h1....hn...) = (ah0, 0, ..0...)

for each a ∈ A and (h0, h1....hn...) ∈ H∞.
We observe that for each a, b, c ∈ A we have Θ (b) ∈ So since by the proposition 2.3 we
have

Vm∗π∞ (a)Fϑ (b)Fπ∞ (c)Vm = 0,

for all m > 0.
Furthermore, if Θ is unital map we obtain an unital multiplicative dilation.
For abelian dymanical systems this last case is always possible:

Remark 2.4. If the characters space Ω (A) of the algebra A is not void (as in the
abelian case), we can take as representation θ : A→B (kerV∗) the map

θ (a) = φ (a) I, a ∈ A,
where φ is an any element of Ω (A) .

A trivial consequence of the preceding propositions is the follow remark:

Remark 2.5. If there is a *-homomorphism θ : A → C∗ (Fπ∞ (A)F) the C∗-
dynamical-system (A,Φ, ϕ) admits a unital multiplicative dilation.

We give a method to determine the elements of H (A,So) .
Proposition 2.9. Let xo ∈ A and L : π∞ (A) → π∞ (A) be a cp-map such that for

each a, b ∈ A we have:
L (a, b) = L (a)π∞ (Φ (x∗oxo)− Φ (x∗o)Φ (xo))L (b) .

Then the application
Θ (a) =

L
n∈N

θ (a) ,

where
θ (a) = Fπ∞ (xo)VL (a)V∗π∞ (x∗o)F,

is an elemen that belong to H (A,So) .
Proof. The map Θ belong to H (A,So) since

Fπ∞ (xo)VL (a)V∗π∞ (x∗o)F ∈AV
where AV is a C*-algebra defined in the preceding proposition.
The map θ is *-linear and for every a, b ∈ A we have:

θ (a) θ (b) = Fπ∞ (xo)VL (a)V∗π∞ (x∗o)Fπ∞ (xo)VL (b)V
∗π∞ (x∗o)F =

=Fπ∞ (xo)VL (ab)V∗π∞ (x∗o)F =θ (ab) ,

since
V∗π∞ (x∗o)Fπ∞ (xo)V =π∞ (Φ (x∗oxo)− Φ (x∗o)Φ (xo)) .



1. MULTIPLICATIVE DILATION 37

¤

A method to determine the applications described in the precedent proposition is
the following:
Let xo, yo are elements belongs to A such that

y∗o [Φ (x
∗
oxo)− Φ (x∗o)Φ (xo)] yo = I,

the *-linear map Lyo : A→ A

Lyo (a) = yoay
∗
o , a ∈ A

satisfies the relation:

Lyo (a) [Φ (x
∗
oxo)− Φ (x∗o)Φ (xo)]Lyo (b) = yoay

∗
o [Φ (x

∗
oxo)− Φ (x∗o)Φ (xo)] yoby∗o =

= yoaby
∗
o = Lyo (ab) .

for each a, b ∈ A.

Example 3. We consider the matrix algebraM2 (C) and unital cp map Φ :M2 (C)→
M2 (C) thus definied:

Φ (A) =
1

2

2X
i,j=1

E∗i,jAEi,j ,

where Ei,j are the matrixs:

E1,1 =

¯̄̄̄
1 0
0 0

¯̄̄̄
; E1,2 =

¯̄̄̄
0 1
0 0

¯̄̄̄
; E2,1 =

¯̄̄̄
0 0
1 0

¯̄̄̄
; E2,2 =

¯̄̄̄
0 0
0 1

¯̄̄̄
.

Then for each A ∈M2 (C) we have:

Φ (A) =
1

2

¯̄̄̄
a1,1 + a2,2 0

0 a1,1 + a2,2

¯̄̄̄
.

Let

X± =
¯̄̄̄
r 0
0 r± 2

¯̄̄̄
∈M2 (C) , r ∈ R.

we get

Φ
¡
X2±

¢
− Φ (X±)2 = I,

since

Φ (X±) =
¯̄̄̄
r± 1 0
0 r± 1

¯̄̄̄
, Φ

¡
X2±

¢
=

¯̄̄̄
r2 + 2± 2r 0

0 r2 + 2± 2r

¯̄̄̄
.

It follow that the map

θ (A) = Fπ∞ (X)Vπ∞ (A)V∗π∞ (X∗)F

is a *-linear multiplicative map (non unital) such that
L
n∈N

θ :M2 (C)→ C∗ (So) .
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1.3. Faithful dilation. Let (A,Φ, ϕ) be C*-dynamical system with dilation³bA, bΦ, bϕ, E , bπ´ of the theorem 2.2. We define a new C*-algebra with unit

bA2,2 = ½X ∈ bA : X =

¯̄̄̄
0 0
0 X2,2

¯̄̄̄¾
,

that results to be U-invariant:
UbA2,2U∗ ⊂ bA2,2.

Definition 2.1. The dilation
³bA, bΦ, bϕ, E , bπ´ is faithful if bA2,2 = {0}.

We observe that if bϕ is faithful state4 the dilation ³bA, bΦ, bϕ, E , bπ´ is faithful.
In fact let X ∈ bA2,2, for definition we getbϕ (X∗X)) = ϕ (E1,1 (X∗X)) = 0.

It follow that X = 0.
If we examine the basic dilation5 the C*-algebra bA2,2 is not zero since

I− bπ (1) ∈ bA2,2.
Then the basic dilation is never faithful.

Remark 2.6. If ϕ is faithful state with the property

ϕ (a∗a) = ϕ (aa∗) , a ∈ A,

and the dilation
³bA, bΦ, bϕ, E , bπ´ is faithful the bϕ state is faithful.

2. Ergodic property of the dilation

We study now the ergodic properties of the multiplicative dilation
³bA, bΦ, bϕ, i, E´ of

theorem 2.2 of the C*-dynamical system (A,Φ, ϕ).
Let (Hϕ, πϕ,Ωϕ) the GNS of ϕ and Uϕ the linear contraction 15 associated with C*-
dynamical systems.
We defined the set of the Φ−invariant element of A:

AΦ = {a ∈ A : Φ (a) = a} ,
since for each a ∈ A we have Φ (a∗)Φ (a) ≤ Φ (a∗a) ≤ a∗a, the set AΦ is included in the
multiplicative domains D (Φ) of Φ and it is a C*-subalgebra with unit of A.
We have the following implication:

X ∈ bAbΦ =⇒ E1,1 (X) ∈ AΦ,

and if ϕ is a faithful state we obtain

AΦ = CI ⇐⇒ dimker (I−Uϕ) = 1.

4Then ϕ is faithful state since bϕ (bπ (a∗) bπ (a))) = ϕ (a∗a)

for all a ∈ A.
5That is when θ = 0.
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We have a fundamental lemma for the study of the ergodic property of the dilation.

Lemma 2.3. We have the following implication:

AΦ = CI =⇒ bAbΦ = CI.
Proof. We set E1,1 (X) = λI with λ complex number:

X =

¯̄̄̄
λI X1,2

X2,1 X2,2

¯̄̄̄
For hypothesis, for each n ∈ N we have bΦn (X) = X then6: X1,2 = V

n∗∞X1,2W
n∗ ;

X2,1 =W
nX2,1V

n∞;
X2,2 = (λCn +W

nX2,1)C
∗
n + (CnX1,2 +W

nX2,2)W
n∗ ;

Let ξ = (ξ0, ξ1, ....ξn...) ∈ l2 (kerV∗∞) we have

X1,2ξ =
∞P
j=0

Ljξj

with Lj : kerV
∗∞ → H∞ linear operators, from the first relation we have:

∞P
j=0

Ljξj =
∞P
j=0
Vn∗
∞Ljξj+n.

Then if ξ = (0, 0, ....ξp, 0...) with p < n, we have Lpξp = 0, it follow that X1,2 = 0.
In the same way it verify that the operator X2,1 = 0.
the third relation becomes now:

X2,2 = λCnC
∗
n +W

nX2,2W
n∗ = λ

³
I−WnWn∗

´
+WnX2,2W

n∗ .

Let X2,2 = |Ti,j |i,j∈N where Ti,j : kerV
∗∞ → kerV∗∞ are linear operators, we have:Ã

λξ0, ..λξn−1,
∞P
j=0
T0,jξj+n,

∞P
j=0
T1,jξj+n, ..

!
=

Ã
∞P
j=0
T0,jξj ,

∞P
j=0
T1,jξj , ...

!
and if ξ = (0, 0, ....ξn−1,0...) we get:

(0, ..., λFξn−1, 0, ...0, ...) = (T0,n−1ξn−1, ...Tn−1,n−1ξn−1, ...) .

Then

Ti,n−1 =
½

0 i 6= n− 1
λF i = n− 1 ,

follow that X2,2 = λI.
We have verified that if E1,1 (X) ∈ CI we obtain X = λI. ¤

Proposition 2.10. If ϕ is a ergodic faithful state we havebAbΦ = CI.
Proof. It’s trivial. ¤
6We have

Vn∗
∞X1,1C

∗
n = λVn∗

∞C
∗
n = 0.
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2.1. The Zk,p Operators and ergodic properties. For the study of the ergodic
property of the dilations of dynamical systems we have to determine the value of the
followings limits:

lim
N→∞

1

N + 1

NP
k=0

hbϕ³XbΦk (Y )´− bϕ (X) bϕ (Y )i
and

lim
N→∞

1

N + 1

NP
k=0

¯̄̄ bϕ³XbΦk (Y )´− bϕ (X) bϕ (Y )¯̄̄
for all X,Y ∈ bA.
We recall that for definition thatbϕ³XbΦk (Y )´ = ϕ

³
E1,1

³
XbΦk (Y )´´ .

and

E1,1
³
XbΦk (Y )´ = E1,1 (X) E1,1 ³bΦk (Y )´+ E1,2 (X) E2,1 ³bΦk (Y )´ .

For the study of the ergodic property of the our dilations, we can consider only to the

elements of the bA of the type pQ
j=1

bΦnj (bπ (aj)) with aj ∈ A.

For definition of bA, let X ∈ bA for each ε > 0 there is Pε =
P
i

piQ
j=1

bΦni,j (bπ (ai,j)) ∈ bA such
that

kX − Pεk < ε.

We have¯̄̄̄
1

N+1

NP
k=0

hbϕ³XbΦk (Y )´− bϕ³PεbΦk (Y )´i¯̄̄̄ ≤ 1
N+1

NP
k=0

¯̄̄ bϕ³[X − Pε] bΦk (Y )´¯̄̄ ≤ ε kY k

for all Y ∈ bA.
Moreover for the von Neumann algebras we have, from the bicommutant theorem, that

let X ∈cM, for each ε > 0 there is Pε =
P
i

piQ
j=1

bΦni,j (bπ (ai,j)) ∈ bA such that
bϕ ((X − Pε)

∗ (X − Pε)) < ε.

Then¯̄̄̄
1

N + 1

NP
k=0

hbϕ³XbΦk (Y )´− bϕ³PεbΦk (Y )´i¯̄̄̄ ≤ 1

N + 1

NP
k=0

¯̄̄ bϕ³[X − Pε] bΦk (Y )´¯̄̄ ≤
≤ 1

N + 1

NP
k=0

|bϕ (X − Pε)|2
¯̄̄ bϕ³bΦk (Y )´¯̄̄2 ≤ ε kY k .

It follow that

lim
N→∞

1

N + 1

NP
k=0

bϕ³XbΦk (Y )´ = lim
N→∞

1

N + 1

NP
k=0

bϕ³PεbΦk (Y )´ .
∗ ∗ ∗

We have a fundamental lemma for the ergodic property for our dilation.
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Lemma 2.4. If the multiplicative map Θ of the theorem 2.2 is of the shape

Θ =
L
n∈N

ϑ,

for each Y ∈ bA and a ∈ A there exists no ∈ N such that for each k > no we obtain:

E1,2 (X)WkΘ (a)Y2,1V
k = 0.

Proof. If X1 = bΦn (bπ (x)) with x ∈ A, we have

E1,2
³bΦn (bπ (x))´WkΘ (a)Y2,1V

k = Vn∗π∞ (x)C∗nW
kΘ (a)Y2,1V

k

and for k > n we obtain that the operatorWk∗Cn = 0.
For induction on the length p of the string of X :

Xp =
pQ

k=1

bΦnk (bπ (xk)) , x1, x2, ...xp ∈ A,

we assume true the relation for p− 1 step, then there is a no such that for each k > no
we have:

E1,2
µ
p−1Q
k=1

bΦnk (bπ (xk))¶WkΘ (a)Y2,1V
k = 0.

For p step we have

E1,2
µ

pQ
k=1

bΦnk (bπ (xk))¶ = E1,1µp−1Q
k=1

bΦnk (bπ (xk))¶ E1,2 ³bΦnp (bπ (xp))´+
+ E1,2

µ
p−1Q
k=1

bΦnk (bπ (xk))¶ E2,2 ³bΦnp (bπ (xp))´ ,
it follow that

E1,2 (Xp)W
kΘ (a)Y2,1V

k = E1,1 (Xp−1) E1,2
³bΦnp (bπ (xp))´WkΘ (a)Y2,1V

k+

+ E1,2 (Xp−1) E2,2
³bΦnp (bπ (xp))´WkΘ (a)Y2,1V

k

where for k > m1

E1,2
³bΦnp (bπ (xp))´WkΘ (a)Y2,1V

k = 0.

then

E1,2 (Xp)W
kΘ (a)Y2,1V

k = E1,2 (Xp−1) E2,2
³bΦnp (bπ (xp))´WkΘ (a)Y2,1V

k

and

E2,2
³bΦnp (bπ (xp))´ = Cnpπ∞ (xp)C

∗
np +W

npΘ (xp)W
n∗p .

For k > np we have C
∗
npW

k = 0 and we obtain that

E2,2
³bΦnp (bπ (xp))´WkΘ (a)Y2,1V

kΨ =WnpΘ (xp)W
k−npΘ (a)Y2,1Vk.

Since Θ (a) commuteWk it follow:

E2,2
³bΦnp (bπ (xp))´WkΘ (a)Y2,1V

kΨ =WkΘ (xp)Θ (a)Y2,1V
k
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then

E1,2 (Xp)W
kΘ (a)Y2,1V

k = E1,2 (Xp−1)WkΘ (xpa)Y2,1V
k

and for inductive hypothesis there existst a natural number no such that for each k > no
we get:

E1,2
µ
p−1Q
k=1

bΦnk (bπ (xk))¶WkΘ (xpa)Y2,1V
k = 0.

Let X ∈ bA for each ε > 0 there is Pε =
P
i

piQ
j=1

bΦni,j (bπ (ai,j)) ∈ bA such that
kX − Pεk < ε.

For the continuity of the application E1,2 we have°°°E1,2 (X)WkΘ (a)Y2,1V
k
°°° ≤ ε+

°°°E1,2 (Pε)WkΘ (a)Y2,1V
k
°°°

with

E1,2 (Pε)WkΘ (a)Y2,1V
k = 0

for k > m2. ¤

Remark 2.7. In the case that the multiplicative linear map Θ : A → B (kerV∗) is
not unital, we can easily verify, through the preceding lemma, that for each X ∈ bA, there
exists a natural number no such that for each k > no we have:

E1,2 (X)WkY2,1V
k = 0.

∗ ∗ ∗
To simplify our calculations we introduce new symbol.

If X =
pQ

j=1

bΦnj (bπ (aj)) with a1, a2..ap ∈ A, we set

Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))! = E1,2Ã pQ
j=1

bΦnj (bπ (aj))! E2,1 ³bΦk (Y )´ ∈ π∞ (A)

and

Rk,p

Ã
pQ

j=1

bΦnj (bπ (aj))! = E2,2Ã pQ
j=1

bΦnj (bπ (aj))! E2,1 ³bΦk (Y )´
Then

E1,1

Ã
pQ

j=1

bΦnj (bπ (aj)) bΦk (Y )! = E1,1Ã pQ
j=1

bΦnj (bπ (aj))!π∞
³
Φk (Y1,1)

´
+

+Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))! .

It follow that

lim
N→∞

1

N + 1

NP
k=0

ϕ (Zk,p (X)) = lim
N→∞

1

N + 1

NP
k=0

hbϕ³XbΦk (Y )´− ϕ
³
X1,1

bΦk (Y1,1)´i .



2. ERGODIC PROPERTY OF THE DILATION 43

Remark 2.8. The bϕ is ergodic state if and only if
lim

N→∞
1

N + 1

NP
k=0

ϕ (Zk,p (X)) = 0.

While bϕ is weakly mixing state if and only if
lim

N→∞
1

N + 1

NP
k=0

|ϕ (Zk,p (X))| = 0.

We have the following relation for the Zp,k operators
7:

Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))! = E1,2Ã pQ
j=1

bΦnj (bπ (aj))!CkY1,1V
k

and

Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))! = π∞ (a1)Zk,p−1

Ã
pQ

j=2

bΦnj (bπ (aj))!+
+ E1,2

³bΦn1 (bπ (a1))´Rk,p−1

Ã
pQ

j=2

bΦnj (bπ (aj))! .

Proposition 2.11. Let X =
pQ

j=1

bΦnj (bπ (aj)) with a1, a2..ap ∈ A, and
nq = min {nj : j = 1, 2..p} ≥ 0.

If ϕ is a ergodic state we have:

lim
N→∞

1
N+1

NP
k=0

ϕ

Ã
Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))! = lim
N→∞

1
N+1

NP
k=0

Zk,p

Ã
pQ

j=1

bΦ(nj−nq) (bπ (aj))!!.
Moreover let ϕ be a weakly meaxing state, if

lim
N→∞

1

N + 1

NP
k=0

¯̄̄̄
¯ϕ
Ã
Zk,p

Ã
pQ

j=1

bΦ(nj−nq) (bπ (aj))!!
¯̄̄̄
¯ = 0

we have that bϕ is weakly meaxing.
Proof. We set eX =

pQ
j=1

bΦ(nj−nq) (bπ (aj)) , we have:
lim

N→∞
1

N+1

NP
k=0

ϕ (Zk,p (X)) = lim
N→∞

1
N+1

NP
k=0

hbϕ³XbΦk (Y )´− ϕ
³
X1,1

bΦk (Y1,1)´i =
= lim

N→∞
1

N+1

NP
k=0

hbϕ³bΦnq ³ eXbΦk−nq (Y )´´− ϕ (X1,1)ϕ (Y1,1)
i
=

= lim
N→∞

1
N+1

NP
k=0

hbϕ³ eXbΦk−nq (Y )´− ϕ (X1,1)ϕ (Y1,1)
i
=

7We recal that by the lemma 2.4, for all X ∈ bA we have
X1,2E2,1

³bΦk (Y )
´
= X1,2CkY1,1V

k.
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= lim
N→∞

1
N+1

NP
k=0

hbϕ³ eXbΦk−nq (Y )´− ϕ
³ eX1,1

´
ϕ (Y1,1)

i
=

= lim
N→∞

1
N+1

NP
k=0

hbϕ³ eXbΦk (Y )´− ϕ
³ eX1,1

bΦk (Y1,1)´i = lim
N→∞

1
N+1

NP
k=0

ϕ
³
Zk,p

³ eX´´ .
For the second assertion we get:

lim
N→∞

1
N+1

NP
k=0

¯̄̄̄
¯ bϕ
Ã

pQ
j=1

bΦnj (bπ (aj)) bΦk (Y )!− ϕ (X1,1)ϕ (Y1,1)

¯̄̄̄
¯ =

= lim
N→∞

1
N+1

NP
k=0

¯̄̄̄
¯ bϕ
Ã

pQ
j=1

bΦ(nj−nq) (bπ (aj)) bΦk (Y )!− ϕ
³ eX1,1

´
ϕ (Y1,1)

¯̄̄̄
¯ ≤

≤ lim
N→∞

1
N+1

NP
k=0

¯̄̄
ϕ
³ eX1,1

bΦk (Y1,1)´− ϕ
³ eX1,1´ϕ (Y1,1) + ϕ

³
Zk,p

³ eX´´¯̄̄ ≤
≤ lim

N→∞
1

N+1

NP
k=0

¯̄̄
ϕ
³
Zk,p

³ eX´´¯̄̄ + lim
N→∞

1
N+1

NP
k=0

¯̄̄
ϕ
³ eX1,1

bΦk (Y1,1)´− ϕ
³ eX1,1´ϕ (Y1,1)¯̄̄ .

¤
Remark 2.9. We have:

Zk,p

³ eX´ = E1,1Ãq−1Q
j=1

bΦ(nj−nq) (bπ (aj))!Zk,p−q

Ã
pQ

j=q

bΦ(nj−nq) (bπ (aj))!+
+E1,2

Ã
q−1Q
j=1

bΦ(nj−nq) (bπ (aj))!Θ (aq)Rk,p−q−1

Ã
pQ

j=q+1

bΦ(nj−nq) (bπ (aj))! .

We see that form they take the Zk,p operators for p = 1.
We observe that when k > m we obtain:

Zk,1

³bΦm (bπ (a))´ = π∞
³
Φm (a)Φk−m (Y1,1)

´
− π∞

³
Φm (a)Φk (Y1,1)

´
,

since

Zk,1

³bΦm (bπ (a))´ = E1,2 ³bΦm (bπ (a))´CkY1,1V
k = Vm∗π∞ (a)C∗mCkY1,1V

k.

We have a simple lemma:

Lemma 2.5. If ϕ is ergodic state for each a, d ∈ A, Y ∈ bA and m ∈ N we have:

lim
N→∞

1

N + 1

NP
k=0

ϕ
³
π∞ (d)Zk,1

³bΦm (bπ (a))´´ = 0,
while if ϕ is weakly mixing state we obtain:

lim
N→∞

1

N + 1

NP
k=0

¯̄̄
ϕ
³
π∞ (d)Zk,1

³bΦm (bπ (a))´´¯̄̄ = 0.
Proof. We have

π∞ (d)Zk,1

³bΦm (bπ (a)) bΦk (Y )´ = π∞
¡
dΦm (a)Φk−m (Y1,1)

¢
− π∞

¡
dΦm (a)Φk (Y1,1)

¢
.

Moreover

lim
N→∞

1
N+1

NP
k=0

£
ϕ
¡
dΦm (a)Φk−m (Y1,1)

¢
− ϕ

¡
dΦm (a)Φk (Y1,1)

¢¤
=

= ϕ (dΦm (a)ϕ (Y1,1))− ϕ (dΦm (a)ϕ (Y1,1)) = 0,
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while in the weakly mixing case we get:

1
N+1

NP
k=0

¯̄̄
ϕ
³
π∞ (d)Zk,1

³bΦm (bπ (a))´´¯̄̄ =
= 1

N+1

NP
k=0

¯̄
ϕ
¡
dΦm (a)Φk−m (Y1,1)

¢
− ϕ

¡
dΦm (a)Φk (Y1,1)

¢
± ϕ (dΦm (a))ϕ (Y1,1)

¯̄
≤

≤ 1
N+1

NP
k=0

¯̄
ϕ
¡
dΦm (a)Φk−m (Y1,1)

¢
− ϕ (dΦm (a))ϕ (Y1,1)

¯̄
+

+ 1
N+1

NP
k=0

¯̄
ϕ
¡
dΦm (a)Φk (Y1,1)

¢
− ϕ (dΦm (a))ϕ (Y1,1)

¯̄
. ¤

2.2. Ergodic properties for the basic dilation. We study now the ergodic prop-

erties of the multiplicative dilation
³bA, bΦ, bϕ, i, E´ of theorem 2.2 in the case that the

multplicative linear map Θ is zero.

Theorem 2.4. Let ϕ be ergodic state, if the cp map Φ admit a ϕ-adjoin for each

X =
pQ

j=1

bΦnj (bπ (aj)) ∈ bA, and b ∈ A, Y ∈ bA we have:
lim

N→∞
1

N + 1

NP
k=0

ϕ

Ã
π∞ (b)Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))!! = 0.
Then bϕ is an ergodic state.
If ϕ is weakly mixing state we obtain

lim
N→∞

1

N + 1

NP
k=0

¯̄̄̄
¯ϕ
Ã
Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))!!
¯̄̄̄
¯ = 0.

Then bϕ is weakly mixing state.
Proof. We show the affirmation for induction on the p lengt of the product.

I For p = 1 the affirmation it’s true for lemma 2.5.
Let X =

pQ
j=1

bΦnj (bπ (aj)) , with aj ∈ A, and nq = min {nj : j = 1, 2..p} ≥ 0.

We have:
Zk,p (π∞ (b)X) = bE1,2

³bΦnq ³ eX´´E2,1 ³bΦk (Y )´ ,
whereeX =

pQ
j=1

bΦnj−nq (bπ (aq)) .
Therefore
E1,2

³bΦnq ³ eX´´ E2,1 ³bΦk (Y )´ = hVn∗q eX1,1C∗nq +Vn∗q eX1,2Wn∗q
i
CkY1,1V

k =

= Vn∗q eX1,1C
∗
nqCkY1,1V

k +Vn∗q eX1,2C
∗
k−nqY1,1V

(k−nq)Vnq ,

since C∗kW
nq = Ck−nq .

it follow that.
E1,2

³bΦnq ³ eX´´ E2,1 ³bΦk (Y )´ = Vn∗q eX1,1C∗nqCkY1,1V
k + bΦnq ³ eX1,2E2,1

³bΦ(k−nq) (Y )´´ ,
since eX1,2E2,1 ³bΦ(k−nq) (Y )´ ∈ π∞ (A) . Then



2. ERGODIC PROPERTY OF THE DILATION 46

ϕ (Zk,p (π∞ (b)X)) =
= ϕ

³
bVn∗q eX1,1C∗nqCkY1,1V

k
´
+ ϕ

³bΦn+q (b) eX1,2E2,1
³bΦ(k−nq) (Y )´´ .

Now we get

Vn∗q eX1,1C
∗
nq = E1,2

³bΦnq ³bπ ³ eX1,1

´´´
while we can write thateX1,2 = E1,1

Ã
qQ

j=1

bΦnj−nq (bπ (aq))! E1,2Ã pQ
j=q+1

bΦnj−nq (bπ (aq))! .

It follow that
ϕ (π∞ (b)Zk,p (X)) =

= ϕ
³
bZ1

³bΦnq ³bπ ³ eX1,1

´´´´
+ ϕ

Ã
dZk−nq ,p−q

Ã
pQ

j=q+1

bΦnj−nq (bπ (aq))!! ,

where we set:

π∞ (d) = bΦn+q (b) E1,1Ã qQ
j=1

bΦnj−nq (bπ (aq))! .

We can finally write

1
N+1

NP
k=0

ϕ

Ã
π∞ (b)Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))!! =
= lim

N→∞
1

N+1

NP
k=0

ϕ
³
π∞ (b)Z1

³bΦnq ³bπ ³ eX1,1´´´´+
+ lim
N→∞

1
N+1

NP
k=0

ϕ

Ã
dZk,p−q

Ã
pQ

j=q+1

bΦnj−nq (bπ (aq))!! .

For the lemma 2.5 we obtain

lim
N→∞

1
N+1

NP
k=0

ϕ
³
π∞ (b)Zk,1

³bΦnq ³bπ ³ eX1,1

´´´´
= 0,

while for the inductive hypothesis

lim
N→∞

1
N+1

NP
k=0

ϕ

Ã
dZk,p−q

Ã
pQ

j=q+1

bΦnj−nq (bπ (aq))!! = 0.
I For weakly mixing we obtain that

lim
N→∞

1
N+1

NP
k=0

¯̄̄̄
¯ϕ
Ã
π∞ (b)Zk,p

Ã
pQ

j=1

bΦnj (bπ (aj))!!
¯̄̄̄
¯ =

≤ lim
N→∞

1
N+1

NP
k=0

¯̄̄
ϕ
³
bZ1

³bΦnq ³bπ ³ eX1,1´´´´¯̄̄+
+ lim

N→∞
1

N+1

NP
k=0

¯̄̄̄
¯ϕ
Ã
dZk−nq ,p−q

Ã
pQ

j=q+1

bΦnj−nq (bπ (aq))!!
¯̄̄̄
¯ .

Again for the lemma 2.5 we have

lim
N→∞

1
N+1

NP
k=0

¯̄̄
ϕ
³
bZ1

³bΦnq ³bπ ³ eX1,1´´´´¯̄̄ = 0
and for the inductive hypothesis

lim
N→∞

1
N+1

NP
k=0

¯̄̄̄
¯ϕ
Ã
dZk−nq ,p−q

Ã
pQ

j=q+1

bΦnj−nq (bπ (aq))!!
¯̄̄̄
¯ = 0. ¤



CHAPTER 3

C*-Hilbert module and dilations

In this section we apply Hilbert module methods to show the existence of a particular
dilations that include in its multiplicative domains, the C*-algebra of the observables of
the original dynamical system. The ergodic properties and the weakly mixing property
they have remained.

1. Definitions and notations

We shortly introduce some results on the C*-Hilbert module. For further details on
the subject, the reader can see the references [21] and [32].

Definition 3.1. Let A be a C* -algebra. A pre-Hilbert A -module is a complex vector
space X which is also a right A -module, compatible with the complex algebra structure,
equipped with an A-valued inner product

h·; ·i : X ×X → A

such that for each X,Y,Z ∈ X , α, β ∈ C and a ∈ A satisfies the following relations:
hX;αY + βZi = α hX;Y i+ β hX;Zi ;
hX;Y · ai = hY ;Xi · a;
hX;Y i∗ = hY ;Xi ;
hX;Xi ≥ 0; if hX;Xi = 0 then X = 0.
We say that X is a Hilbert A-module if X is complete with respect to the topology deter-
mined by the norm k·k given by

kXk =
p
khX;Xik.

If X is a Hilbert A-module, we make the following notations:
Let B (X ) be the Banach space of all bounded linear operators T :X → X , while L (X )
is the set of all maps T ∈ B (X ) for which there is a map T∗ ∈ B (X ) such that

hTX;Y i = hX;T∗Y i
for each X,Y ∈ X .
Let BA (X ) be the Banach space of all bounded module homomorphisms T :X → X that
is:

T (X · a)= T (X) · a
for each X ∈ X and a,∈ A.
Moreover we have the following inclusion:

L (X ) ⊂ BA (X )
and the set L (X ) is also a C*-algebra with unit.
In general, BA (X ) is different by L (X ) and so the theory of Hilbert C*-modules and

47
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the theory of Hilbert spaces are different.
The set X# is the Banach space of all bounded module homomorphisms from X to A
which becomes a right A-module, where the action of A on X# is defined by

(a ·Ψ)) (X) = a∗Ψ (X) ,

for each a ∈ A, Ψ ∈X#.
We say that X is self-dual if X = X# as right A-module.
Then if Ψ :X → A is an element of X# there exisist a unique vector Xo ∈ X# such that

Ψ (X) = hX;Xoi
for X∈X .

Proposition 3.1. If X is self-dual, then

BA (X ) = L (X ) .

Proof. See [21] Proposition 3.4]. ¤

We have another fundamental proposition:

Proposition 3.2. If A is a W ∗-algebra, X# becomes a self-dual Hilbert A-module.

Proof. See [21] Proposition 3.2]. ¤

A *-representation of a C*-algebra B on the Hilbert A-modulo X is a *-homorphism
π : B→ L (X ) .
The representation π is non-degenerate if is π (B)X dense in X .
We recall that one rank operator |Xi hY | on the Hilbert A- module X are thus definied:

|Xi hY |Z = X · hY,ZiX
for each X,Y,Z ∈ X .
The set of compact adjointable operators on X is the closed subspace of L (X ) generated
by the maps |·i h·| :

K (X ) = span {|Xi hY | : X,Y ∈ X}.
∗ ∗ ∗

We see the existing relations between Cp-map between C*-algebras and Hilbert
modules over C*-algebras1.
Let Φ : A→ B unital cp map between C*-algebras with unit A and B.
The set XΦ = A⊗ΦB with the B-valued inner product:

hA1 ⊗Φ B1;A2 ⊗Φ B2i = B∗1Φ (A
∗
1A2)B2,

where A1, A2 ∈ A and B1, B2 ∈ B, is a Hilbert A−B-module that is:
A2 · (A1 ⊗Φ B1) ·B2 = (A2A1)⊗Φ (B1B2) .

We have the representation πΦ : A→ L (XΦ) in the following way:

πΦ (C)A⊗Φ B = CA⊗Φ B,

1For furthermore information cfr.[21] section 5].
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for each A, ,C ∈ A B ∈ B.
If ΩΦis the vector ΩΦ = 1⊗Φ 1 for each A ∈M we obtain

Φ (A) = hΩΦ;πΦ (A)ΩΦi .
The triple (L (XΦ) ;πΦ;ΩΦ) is say to be the GNS of a cp-map Φ : A→ B.

Remark 3.1. We observe that if Φ : M → M is a cp-map between von Neumann
algebra the set XΦ =M⊗ΦM is a Hilbert M-module and for the precedent proposition it
is self dual.

Proposition 3.3. Let M be a von Neumann algebra and Φ :M→M be a cp-map.
If for each A1, A2 ∈M

Φ (A1AA2) = 0,

we have

πΦ (A) = 0.

Proof. For each A1 ⊗Φ B1, A2 ⊗Φ B2 ∈ XΦ we have
hA1 ⊗Φ B1;πΦ (A)A2 ⊗Φ B2i = B∗1 · hA1 ⊗Φ 1;AA2 ⊗Φ 1i ·B2 =
= B∗1Φ (A∗1AA∗2)B2 = 0,
then hA1 ⊗Φ B1;πΦ (A)A2 ⊗Φ B2i = 0.
since XΦ is self-dual we obtain πΦ (A) = 0. ¤

2. Dilations constructed by using Hilbert modules

Let Φ : A → B be an unital cp-map between C*-algebra A and B, We have the
follow applications:
I The Stinespring representation πΦ : A→ L (XΦ), where XΦ is Hilbert A-B module
XΦ = A⊗ΦB;
I The application EΦ : L (XΦ)→ A thus defined:

EΦ (T) = hΩΦ;TΩΦiXΦ , T ∈L (XΦ)

I The application TΦ : B→ L (XΦ) defined by
2:

TΦ (b)x⊗Φ y = 1⊗Φ bΦ (x) y,

for each x⊗Φ y ∈ XΦ and b ∈ B.
TΦ (b∗)x⊗Φ y = 1⊗Φ b∗Φ (x) y.

We have a first proposition:

Proposition 3.4. The application TΦ : B→ L (XΦ) is an injective *-homomorphism.

2The operator TΦ (b) is one rank operator:
|1⊗Φ bi hΩΦ| ,

and

TΦ (1) = |ΩΦi hΩΦ| .
Furthermore we have

TΦ (1) = 1 ⇐⇒ Φ is a multiplicative.
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Proof. For each x1 ⊗Φ y1, x2 ⊗Φ y2 ∈ XΦ and b ∈ B we have:
hTΦ (b)x1 ⊗Φ y1;x2 ⊗Φ y2iXΦ = h1⊗Φ bΦ (x1) y1;x2 ⊗Φ y2iXΦ = (bΦ (x1) y1)

∗Φ (x2) y2 =
= y∗1Φ (x∗1) b∗Φ (x2) y2 = hx1 ⊗Φ y1; TΦ (b∗)x2 ⊗Φ y2iXΦ .
While
TΦ (b1)TΦ (b2)x⊗Φ y = TΦ (b1)1⊗Φ b2Φ (x) y = 1⊗Φ b1b2Φ (x) y = TΦ (b1b2)x⊗Φ y. ¤

We have the property of conditional expectation for the map EΦ :

Proposition 3.5. The application EΦ : L (XΦ)→ A is unital cp map such that

EΦ (TΦ (b1)TTΦ (b2)) = b1EΦ (T) b2
for each b1, b2 ∈ B and T ∈ L (XΦ).

Proof. For each bj ∈ B and Tj ∈ L (XΦ) with j = 1, 2...n we have

nP
i,j=1

b∗jEΦ
¡
T∗jTi

¢
bi =

nP
i,j=1

b∗j ·
­
ΩΦ;T

∗
jTiΩΦ

®
XΦ
·bi =

=
nP

i,j=1

­
1⊗Φ bj ;T

∗
jTi1⊗Φ bi

®
XΦ
=

nP
i,j=1

*
nP

j=1
Tj1⊗Φ bj ;

nP
i=1
Ti1⊗Φ bi

+
XΦ

≥ 0.

while

EΦ (TΦ (b1)TTΦ (b2)) = hΩΦ; TΦ (b1)TTΦ (b2)ΩΦiXΦ =
= h1⊗Φ b∗1;T1⊗Φ b2iXΦ = b1 · hΩΦ;TΩΦiXΦ ·b2 = b1EΦ (T) b2.

¤
We observe that

Φ = EΦ ◦ πΦ and id = EΦ ◦ TΦ.
In fact for each b ∈ B we have

b = hΩΦ; TΦ (b)ΩΦiXΦ .

Let Φ : A→ A be unital cp-map, we can define an unital cp-map eΦ : L (XΦ) → L (XΦ)
by eΦ = πΦ ◦ EΦ,
such that for each x, y ∈ A we obtaineΦ (TΦ (x)TΦ (y)) = eΦ (TΦ (x)) eΦ (TΦ (y)) .
Indeed for each a ∈ A we have eΦ (TΦ (a)) = πΦ (a) .

Moreover

L (XΦ)
eΦn−→ L (XΦ)

TΦ ↑ ↓ EΦ
A

Φn−→ A

is a commutative diagram:

EΦ
³eΦn (TΦ (a))´ = Φn (a)
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for each n ∈ N and a ∈ A.
We defined the eϕ state on L (XΦ) by:eϕ (T ) = ϕ ((EΦT ))
for each T ∈ L (XΦ) .
W have verified the following theorem of existence

Theorem 3.1. The C*-dynamical system
³
L (XΦ) , eΦ, eϕ,´ is a non unital dilation

of (A,Φ, ϕ) such that

A ⊂ D
³eΦ´

where D
³eΦ´ is multiplicative domains of the cp-map eΦ.

3. Ergodic property

For the study of the ergodic property of the dilations of dynamical systems we have
to determine the value of the followings limits:

lim
N→∞

1

N + 1

NP
k=0

heϕ³XeΦk (Y)´− bϕ (X) bϕ (Y )i ;
lim

N→∞
1

N + 1

NP
k=0

¯̄̄ bϕ³XbΦk (Y )´− bϕ (X) bϕ (Y )¯̄̄
for all X,Y ∈ L (XΦ) .
We observe that for each k ≥ 1 we geteΦk (Y) = πΦ

³
Φk−1 (EΦ (Y))

´
since for each k ≥ 1 we obtain:

eΦk (Y) = πΦ

³
Φ
³
EΦ
³eΦk−2 (Y)´´´ .

Consequently we have

lim
N→∞

1

N + 1

NP
k=0

eϕ³XeΦk (Y)´ = lim
N→∞

1

N + 1

NP
k=0

eϕ³XπΦ

³
Φk (EΦ (Y))

´´
.

Also in this circumstance the property of ϕ-adjoin it is fundamental for ergodicity:

Theorem 3.2. Let ϕ be ergodic state if Φ admit a ϕ-adjoin eϕ is an ergodic state.
While if ϕ is a weakly mixing state, eϕ is a weakly mixing state.

Proof. We haveeϕ³XπΦ

³
Φk (EΦ (Y))

´´
= ϕ

³
EΦ
³
XπΦ

³
Φk (EΦ (Y))

´´´
and
EΦ
¡
XπΦ

¡
Φk (EΦ (Y))

¢¢
=
­
X∗ΩΦ;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ
=

=
­
X∗ΩΦ;Φk (EΦ (Y))⊗Φ 1

®
XΦ

.
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For definition of the Hilbert module XΦ, for each ε > 0 there is an element polynomial
pε =

P
i,j
ai ⊗Φ bj such that

kX∗ΩΦ − pεkXΦ < ε

therefore­
pε;Φ

k (EΦ (Y))⊗Φ 1
®
XΦ
=

*P
i,j
ai ⊗Φ bj ;Φ

k (EΦ (Y))⊗Φ 1

+
XΦ

=

=
P
i,j
bjΦ

¡
a∗iΦ

k (EΦ (Y))
¢
,

and

lim
N→∞

1
N+1

NP
k=0

ϕ
³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´
=

= lim
N→∞

1
N+1

NP
k=0

ϕ

ÃP
i,j
bjΦ

¡
a∗iΦ

k (EΦ (Y))
¢!

=
P
i,j
lim

N→∞
1

N+1

NP
k=0

ϕ
¡
bjΦ

¡
a∗iΦ

k (EΦ (Y))
¢¢
,

and for hypothesis

lim
N→∞

1
N+1

NP
k=0

ϕ
¡
Φ+ (bj) a

∗
iΦ

k (EΦ (Y))
¢
= ϕ (Φ+ (bj) a

∗
i )ϕ (EΦ (Y)) ,

then

lim
N→∞

1
N+1

NP
k=0

ϕ

ÃP
i,j
bjΦ

¡
a∗iΦ

k (EΦ (Y))
¢!

= ϕ

ÃP
i,j
bjΦ (a

∗
i )

! eϕ (Y) .
We observe

ϕ

ÃP
i,j
bjΦ (a

∗
i )

! eϕ (Y) = ϕ
³
hpε;ΩΦiXΦ

´ eϕ (Y) ,
sinceP
i,j
bjΦ (a

∗
i ) = hpε;ΩΦiXΦ .

Therefore

lim
N→∞

1
N+1

NP
k=0

eϕ³XeΦk (Y)´ = lim
N→∞

1
N+1

NP
k=0

ϕ
¡­
X∗ΩΦ;Φk (EΦ (Y))⊗Φ 1

®¢
=

= ϕ
³
hpε;ΩΦiXΦ

´ eϕ (Y) ,
Furthermore we have:

lim
N→∞

1
N+1

NP
k=0

heϕ³XeΦk (Y)´− eϕ (X) eϕ (Y)i =
= lim

N→∞
1

N+1

NP
k=0

heϕ³XeΦk (Y)´− ϕ
³
hpε;ΩΦiXΦ

´ eϕ (Y)i+
+
heϕ (X) eϕ (Y)− ϕ

³
hpε;ΩΦiXΦ

´ eϕ (Y)i .
Since¯̄̄ eϕ (X)− ϕ hpε;ΩΦiXΦ

¯̄̄
= ϕ

³
hX∗ΩΦ − pε;ΩΦiXΦ

´
≤ kX∗ΩΦ − pε; kXΦ < ε.

we obtain

lim
N→∞

1
N+1

NP
k=0

heϕ³XeΦk (Y)´− eϕ (X) eϕ (Y)i =
= lim

N→∞
1

N+1

NP
k=0

heϕ³XeΦk (Y)´− ϕ
³
hpε;ΩΦiXΦ

´ eϕ (Y)i = 0.
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For the weakly mixing property we can write

1
N+1

NP
k=0

¯̄ eϕ ¡XΦk (EΦ (Y))¢− eϕ (X) eϕ (Y)¯̄ =
= 1

N+1

NP
k=0

¯̄ eϕ ¡XπΦ
¡
Φk (EΦ (Y))

¢¢
− eϕ (X) eϕ (Y)¯̄ .

Therefore we have
1

N+1

NP
k=0

¯̄ eϕ ¡XΦk (EΦ (Y))¢− eϕ (X) eϕ (Y)¯̄ ≤
≤ 1

N+1

NP
k=0

¯̄̄
ϕ
³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´
− ϕ

³
hpε;ΩΦiXΦ

´ eϕ (Y)¯̄̄+
+
¯̄̄
ϕ
³
hpε;ΩΦiXΦ

´ eϕ (Y)− eϕ (X) eϕ (Y)¯̄̄+
+ 1

N+1

NP
k=0

¯̄̄ eϕ ¡XπΦ
¡
Φk (EΦ (Y))

¢¢
− ϕ

³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´¯̄̄
.

Moreover¯̄̄ eϕ ¡XπΦ
¡
Φk (EΦ (Y))

¢¢
− ϕ

³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´¯̄̄
=

=
¯̄̄ eϕ ¡XπΦ

¡
Φk (EΦ (Y))

¢¢
− ϕ

³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´¯̄̄
=

=

¯̄̄̄
ϕ

µD
XΩΦ − pε; eΦk (EΦ (Y))ΩΦE

XΦ

¶¯̄̄̄
≤ kXΩΦ − pεkXΦ kYk .

It follow that

lim
N→∞

1
N+1

NP
k=0

¯̄ eϕ ¡XΦk (EΦ (Y))¢− eϕ (X) eϕ (Y)¯̄ =
= lim

N→∞
1

N+1

NP
k=0

¯̄̄
ϕ
³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´
− ϕ

³
hpε;ΩΦiXΦ

´ eϕ (Y)¯̄̄ .
1

N+1

NP
k=0

¯̄̄
ϕ
³­
pε;πΦ

¡
Φk (EΦ (Y))

¢
ΩΦ
®
XΦ

´
− ϕ

³
hpε;ΩΦiXΦ

´ eϕ (Y)¯̄̄ =
= 1

N+1

NP
k=0

¯̄̄̄
¯ϕ
ÃP

i,j
Φ+ (bj) a

∗
iΦ

k (EΦ (Y))
!
− ϕ

ÃP
i,j
bjΦ (a

∗
i )

! eϕ (Y)¯̄̄̄¯ =
≤
P
i,j

1
N+1

NP
k=0

¯̄
ϕ
¡
Φ+ (bj) a

∗
iΦ

k (EΦ (Y))
¢
− ϕ (Φ+ (bj) a

∗
i ) eϕ (Y)¯̄ = 0. ¤



APPENDIX A

Algebraic formalism in ergodic theory

In this appendix we shortly give some fundamental definitions of the non-commutative
ergodic theory. For further details on the subject, the reader can see the traditional works
[4] and [10] of Doplicher and Kastler and books cited in bibliography.

∗ ∗ ∗
The classical dynamic system is constituted by a space of probability (X,Σ, µ) and

measure-preserving transormation T : X → X of the probability space (X,Σ, µ) , i.e.

µ
¡
T−1 (∆)

¢
= µ (∆)

for each ∆ ∈ Σ (cfr.[11] section 1.1).
We recall the following definitions (cfr.[24] section 2.5):
The transformation T (or, more properly, the system (X,Σ, µ, T ) ) is called ergodic if
and only if

I lim
N→∞

1
N+1

PN
k=0 µ

¡
T−k∆ ∩∆o

¢
= µ (∆)µ (∆o) for each ∆,∆o ∈ Σ;

I We say that T is weakly mixing if
lim

N→∞
1

N+1

PN
k=0

¯̄
µ
¡
T−k∆ ∩∆o

¢
− µ (∆)µ (∆o)

¯̄
for each ∆,∆o ∈ Σ.

In algebraic formalism the dynamic system (X,Σ, µ, T ) is corresponds to the W ∗-
dynamical sistem (L∞ (X) ,Φ, ϕ) whereL∞ (X) is space of the bounded measurable func-
tion on (X,Σ, µ) ,the state ϕ is defined

ϕ (f) =

Z
X
f dµ, f ∈ L∞ (X)

while the dynamic Φ:L∞ (X)→ L∞ (X) is

Φ (f) = f ◦ T, f ∈ L∞ (X) .

Then in the operator framework of quantum mechanics this definition picks up the
following form:

Let (A,Φ) be a C∗-dynamical systems, a Φ-invariant state ϕ on A is ergodic if and
only if

I lim
N→∞

1
N+1

PN
k=0 ϕ

¡
bΦk (a)

¢
= ϕ (b)ϕ (a) for each a, b ∈ A;

I We say that Φ is weakly mixing if
lim

N→∞
1

N+1

PN
k=0

¯̄
ϕ
¡
bΦk (a)

¢
− ϕ (b)ϕ (a)

¯̄
= 0 for each a, b ∈ A.
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Let (A,Φ, ϕ) be a C∗-dynamical systems with invariant state ϕ and (Hϕ, πϕ,Ωϕ) its
GNS. We can define for each a ∈ A, the following operator of B (Hϕ):

Uϕπϕ (a)Ωϕ = πϕ (Φ (a))Ωϕ,

Then Uϕ : Hϕ → Hϕ is linear contraction of Hilbert spaces.
A fundamental result for the linear contraction of Hilbert space is the Mean Ergodic
Theory of von Neumann:

Theorem A.1. Let V : H → H is a linear contraction of the Hilbert space H we
have that

1

n+ 1

nP
k=0

Vk −→ P in so-topology,

where P is a orthogonal projection on the linear space ker (I−V) = ker (I−V∗).
Proof. See [24] theorem 2.1.1. ¤
We have the following result for the ergodic theory:

Proposition A.1. Let (A,Φ, ϕ) be C∗−dynamical systems with invariant state, ϕ
is ergodic state if and only if

dim (ker (I−Uϕ))= 1.

Proof. See [20] lemma 5.2. ¤
Another important definition in ergodic theory is that of set of zero density (cfr.

[20] ):
A subset ∆ of N is say to have zero density if

lim
n→∞

1

n+ 1

nP
k=0

1∆ (k) = lim
n→∞

card {[0, n] ∩∆}
n+ 1

= 0.

An sequence {xn}n∈N in a topological space X is said to convergence in density to an
element x ∈ X if there exists a subset ∆ ⊂ N of density zero such that

lim
n→∞x0n = x

where x0n = xn for each n /∈ ∆.
We will also write

D − lim
n→∞xn = x.

We recall the fundamental lemma of Koopman-von Neumann:

Lemma A.1. If {xn}n∈N is a sequence of positive real numbers, we have

lim
n→∞

1

n+ 1

nP
k=0

xk = 0 ⇐⇒ D − lim
n→∞xn = 0.

Proof. See [24] lemma 6.2 pag 65. ¤
For the property of the D − limit, we postpone the reader to the reference [34]
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