
TESI DI DOTTORATO

Alfredo Donno

Gelfand Pairs: from self-similar Groups to Markov chains

Dottorato in Matematica, Roma «La Sapienza» (2007).

<http://www.bdim.eu/item?id=tesi_2007_DonnoAlfredo_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non
è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2007_DonnoAlfredo_1
http://www.bdim.eu/
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Facoltà di Scienze Matematiche Fisiche e Naturali

Dottorato di Ricerca in Matematica

XIX Ciclo

Gelfand Pairs:
from

self-similar Groups

to
Markov chains

Dottorando Relatori
Alfredo Donno Prof. Tullio Ceccherini-Silberstein

Prof. Fabio Scarabotti



Introduction

This work is a collection of the main interests that I developed
during my doctoral studies, that began on November 2003, and it
presents the more interesting results that I got, mostly in joint works
with Daniele D’Angeli, in my research activity.

As the title shows, the main subject of this thesis is constituted
by the notion of Gelfand pair. In particular, I study here the finite
Gelfand pairs arising from the action of automorphisms groups on the
rooted homogeneous tree, but also on more general structures, namely
the poset block structures.

Given a finite group G and a subgroup K ≤ G of G, then (G,K)
is a Gelfand pair if the permutation representation of G on the space
of complex functions L(X) defined on the homogeneous space

X = G/K = {gK : g ∈ G}
is multiplicity-free, i.e. it decomposes into irreducible subrepresenta-
tions which are pairwise non isomorphic.

The finite Gelfand pairs theory is very fashinating because it is re-
lated to group theory, representation theory, harmonic analysis, combi-
natorics and to probability and statistics. There exists also a big liter-
ature for infinite Gelfand pairs: for instance the fundamental works by
Faraut ([30]) and Helgason ([41]) and, more recently, by Grigorchuk
([35]) in connection with the theory of branch groups.

Moreover Persi Diaconis (see [23] and [24]) used Gelfand pairs in
order to determine the rate of convergence to the stationary distribu-
tion of finite Markov chains. More precisely, given a Markov chain
which is invariant under the action of a group G, its transition oper-
ator can be expressed as a convolution operator whose kernel can be
written as a “Fourier series” where the classical exponentials exp(inx)
are replaced by the irreducible representations of the group G.

I must mention also the names of Letac ([42], [43]), Delsarte ([22]),
Dunkl ([27], [28], [29]) and Figà-Talamanca ([32]) for their contribu-
tions to the theory of finite Gelfand pairs.

Finally, in [16] T.Ceccherini-Silberstein, F.Scarabotti and F.Tolli
largely develop the finite Gelfand pairs theory and investigate its con-
nections with representation theory, but also with probability and sta-
tistics: this book really was a fundamental source in my studies.

In the first chapter of this thesis I study many examples of groups
acting on the rooted homogeneous tree. Given a positive integer q ≥ 2,
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2 INTRODUCTION

I will denote by Tq the rooted homogeneous tree of degree q, i.e. the
rooted tree in which each vertex has q children.

If X = {0, 1, . . . , q − 1} is an alphabet of q elements and X∗ is the
set of all finite words in X, then each vertex in the n−th level Ln of Tq
can be identified with a word of length n in the alphabet X. Moreover,
the set of infinite words in X can be identified with the elements of the
boundary ∂Tq of Tq.

For every n ≥ 1, the set Ln is an ultrametric space, in particular
a metric space, on which the full automorphisms group Aut(Tq) acts
isometrically.

A fundamental class of groups acting on Tq is the class of self-similar
groups. A group G acting on Tq is self-similar if, for any g ∈ G and
x ∈ X, there exist h ∈ G and y ∈ X such that

g(xw) = yh(w),

for all w ∈ X∗.
Self-similarity was related in most cases with geometrical objects

and only recently the notion of self-similar group appeared. The success
of the development of the theory of self-similar group is due to the fact
that many interesting examples of groups can be studied using their
self-similar action on a rooted tree (see, for instance, [35] and [37]).
Some examples of self-similar groups belong to the class of branch
groups as, for example, the Grigorchuk group (see [44]).

An important class of examples are the iterated monodromy groups
of postcritically finite rational functions, whose theory was largely de-
veloped by V. Nekrashevich ([44]). A fundamental example is given by
the Basilica group, which is the iterated monodromy group associated
with the complex polynomial z2 − 1 and which has very interesting
properties: it has exponential growth and it is the first example of an
amenable group which cannot be constructed from groups of subexpo-
nential growth by using extensions and direct limits. Its amenability
was proved by L.Bartholdi and B.Virág ([10]) using self-similarity of
the random walk on it.

The groups that I study are the Adding Machine on the binary tree,
the Basilica group, the group IMG(z2 + i) and the Baumslag-Solitar
group BSq =< s, t : t−1st = sq >.

Let G be any of these groups. Fix n ≥ 1 and consider the action of
G on the level Ln of the tree, by setting

Gn = G/StabG(n),

where StabG(n) is the subgroup of G constituted by the automorphisms
acting trivially on Ln. Fix a vertex x0 ∈ Ln and let Kn be the subgroup
of Gn stabilizing x0, so that the quotient Gn/Kn can be identified with
Ln.

For each example that I consider, I show that (Gn, Kn) is a Gelfand
pair. The strategy used to prove that uses, in some cases, the fact that
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the action of Gn on Ln is 2−points homogeneous or, equivalently, that
the subgroup Kn acts transitively on each sphere of radius r centered
at x0, for r = 0, 1, . . . , n.

Also the investigation of the structure of the rigid vertex stabilizers
can be a useful criterion to get Gelfand pairs, as the example of the
Basilica group shows.

In the second part of the first chapter I extend this study to the case
of the generalized wreath products of permutations groups, introduced
in [5], acting on the so-called poset block structures. These structures
contain, as a particular case, the rooted tree. For these groups, one
still gets Gelfand pair. More precisely, by using Gelfand’s condition,
one can prove that they give rise to symmetric Gelfand pairs.

In the second chapter of the thesis I leave the group theory and
I change my point of view. More precisely, I study some reversible
Markov chains which are defined on the cartesian product

X = X1 × · · · ×Xn

of n finite sets, whose elements can be regarded as the leaves of a rooted
tree of depth n with branch indices (m1, . . . ,mn), where |Xi| = mi.

In particular, I introduce the crested product of Markov chains (see
[18]), which contains the crossed and nested product as particular cases
and whose definition is inspired by the combinatoric theory of Associ-
ation schemes ([3], [4]), to whom a section of this chapter is devoted.

The spectral analysis of the associated Markov operator is per-
formed. The interesting fact is that the eigenspaces that one gets for
the crossed and the nested product coincide, under some hypothesis,
with the irreducible submodules of the action of the direct product and
of the permutational wreath product of symmetric groups, respectively.

A particular example of nested product gives rise to the “Insect
Markov chain” on the rooted homogeneous tree. This is a Markov
chain defined on the n−th level of the tree, introduced by A. Figà-
Talamanca in [32].

I study the Insect Markov chain also in relation with the cut-off
phenomenon. This term was introduced in [1] by D. Aldous and P.
Diaconis. The cut-off phenomenon occurs when the difference between
the value of the probability measure m(k) given by the k−steps tran-
sition probability and the stationary distribution π is close to 0 only
after a fixed number k0 of steps, and it is large (close to 1) before k0
steps.

In particular, I prove that the cut-off does not occur in the Insect
Markov chain, using the spectral theory of the associated Markov op-
erator and the Fourier analysis to get an expression for the k−steps
transition probability m(k)(x) = p(k)(x0, x). This is possible since the
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Markov chain considered is invariant with respect to the action of the
full automorphisms group of the tree and then one can apply the Fourier
analysis to the corresponding Gelfand pair.

Finally, the Insect Markov chain is generalized to the block orthog-
onal structures, which contain, as a particular case, the poset block
structures. If one restricts the attention to the poset block structures,
the spectral analysis shows that the eigenspaces associated with the
corresponding Markov operator coincide with the irreducible submod-
ules of the regular representation of the generalized wreath product of
symmetric groups on the space of complex functions defined on the
poset block structure.
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I also would like to thank Prof. Alessandro Figà-Talamanca and
Antonio Mach̀ı for the precious discussions I often had with them
around several topics of my research.

I also want to thank Prof. Marialuisa J. de Resmini, the advisor
of my degree thesis, who encouraged me so many times during my
doctoral studies.



CHAPTER 1

Finite Gelfand Pairs

In this chapter the finite Gelfand Pairs theory is developed: we
present the definition and the main properties. We consider then sev-
eral examples of Gelfand pairs obtained considering the action of self-
similar groups on homogeneous rooted trees. It is interesting to observe
that some of these groups can also be regarded as iterated monodromy
groups of complex polynomials. Finally, we study the Gelfand pairs ob-
tained from the action of the generalized permutation wreath product
on poset block structures.

1. Finite Gelfand Pairs

In this section the definition of finite Gelfand pairs and associated
spherical functions is given. We present some basic results in Gelfand
pairs theory. Our main source is [16].

1.1. Definition and main properties. Let G be a finite group
and let K ≤ G a subgroup of G. Denote

X = G/K = {gK : g ∈ G}
the associated homogeneous space of right cosets ofK inG. Set L(G) =
{f : G → C}. Then the space L(X) of all complex valued functions
defined on X can be regarded as the subspace of K−invariant (on the

right) functions of L(G). The isomorphism is given by the map f 7→ f̃ ,

where f ∈ L(X) and f̃ is the right−K−invariant function of L(G)

defined as f̃(g) = f(gx0), where x0 ∈ X is the point stabilized by K.
A function f ∈ L(G) is said bi−K−invariant if f(kgk′) = f(g), for

all g ∈ G and k, k′ ∈ K. The space of bi−K−invariant functions can
be identified with the space L(K\G/K) = {f : K\G/K → C} of all
complex valued functions defined on the set of double cosets KgK, for
g ∈ G. It can also be regarded as the subspace L(X)K = {f ∈ L(X) :
f(kx) = f(x), ∀x ∈ X, k ∈ K} of K−invariant functions on X.

The space L(G) is an algebra with respect to the convolution prod-
uct defined as

(f1 ∗ f2)(g) =
∑

h∈G
f1(gh)f2(h

−1).

It is easy to verify that L(G) is commutative if and only if the group
G is abelian. Moreover, both its subspaces L(X) and L(K\G/K) are
subalgebras of L(G).

5



6 1. FINITE GELFAND PAIRS

L(G) can be endowed with a Hilbert space structure by setting, for
f1, f2 ∈ L(G),

〈f1, f2〉 =
∑

g∈G
f1(g)f2(g);

analogously, the space L(X) can be endowed with a Hilbert space struc-
ture by setting, for f1, f2 ∈ L(X),

〈f1, f2〉 =
∑

x∈X
f1(x)f2(x).

Note that if f1, f2 ∈ L(X) and f̃i are the associated right−K−invariant
functions in L(G), then

〈f̃1, f̃2〉L(G) = |K|〈f1, f2〉L(X).

The left regular representation of G on L(G) is given by the homo-
morphism λ : G → U(L(G)) into the unitary group of L(G) defined
as

(λ(g)f)(h) = f(g−1h), for h, g ∈ G, f ∈ L(G).

The left regular representation of G on L(X) is given by the homo-
morphism λ : G → U(L(X)) into the unitary group of L(X) defined
as

(λ(g)f)(x) = f(g−1x), for g ∈ G, x ∈ X and f ∈ L(X).

To indicate the left regular representation λ(g)f of an element g ∈ G
on a function f ∈ L(X) we will often use the notation f g or g(f).

Definition 1.1. Let G be a finite group and K ≤ G a subgroup of
G. The pair (G,K) is a Gelfand pair if the algebra L(K\G/K) is
commutative.

More generally, if G is a group acting transitively on a finite set
X, then this action defines a Gelfand pair if (G,K) is a Gelfand pair,
where K is the subgroup stabilizing a point x0 ∈ X. Moreover, if
gx0 = x, then K ′ = gKg−1 stabilizes x and (G,K) is a Gelfand pair if
and only if (G,K ′) is a Gelfand pair.

A particular example of a Gelfand pair is given by the symmetric
Gelfand pairs : this is the case if, for every g ∈ G, one has g−1 ∈ KgK.
In fact, under this hypothesis, it is possible to show that the algebra
L(K\G/K) is commutative. If f ∈ L(K\G/K), then we have f(g) =
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f(g−1). So, for f1, f2 ∈ L(K\G/K), we have:

(f1 ∗ f2)(g) =
∑

h∈G
f1(gh)f2(h

−1)

=
∑

h∈G
f1(gh)f2(h)

=
∑

t∈G
f1(t)f2(g

−1t)

=
∑

t∈G
f2(g

−1t)f1(t
−1)

= (f2 ∗ f1)(g−1) = (f2 ∗ f1)(g),
where we set gh = t.

If G acts on a finite set X, then the diagonal action of G on X×X
is defined by

g(x, x′) = (gx, gx′), for all g ∈ G, x, x′ ∈ X.

Theorem 1.2. Consider the action of G on X = G/K. Let x0 be
the point stabilized by K and let X = Ω0

∐
Ω1 . . .

∐
Ωn be the decom-

position of X into K−orbits, with Ω0 = {x0}. For each i = 0, 1, . . . , n,
choose xi ∈ Ωi. Then the sets G(xi, x0) are the orbits of the diagonal
action of G on X ×X.

Proof. Note that, for all (x, y) ∈ X ×X, there exist g ∈ G, k ∈ K
and i ∈ {0, 1, . . . , n} such that

(x, y) = (x, gx0) = (gg−1x, gx0) = (gkxi, gkx0) ∈ G(xi, x0),

where we used that G is transitive on X and we denoted Kxi = Ωi the
K−orbit containing g−1x. This shows that X × X =

⋃n
i=0G(xi, x0).

Moreover, it is easy to verify that this is a disjoint union, what gives
the assertion. �

The following lemma is straightforward (see [16]). If x, y ∈ X and
G acts on X, we will use the notation x ∼ y to say that x and y are in
the same G−orbit.

Lemma 1.3 (Gelfand’s Condition). Let G be a group acting transi-
tively on a finite set X and set K = {k ∈ G : kx0 = x0}, with x0 ∈ X.
Then the following are equivalent:

(1) for all x, y ∈ X, one has (x, y) ∼ (y, x) with respect to the
diagonal action of G on X ×X;

(2) g−1 ∈ KgK for all g ∈ G.

Now suppose that (X, d) is a finite metric space and that G isomet-
rically acts on X. We say that this action is 2−points homogeneous if,
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for all (x, y), (x′, y′) ∈ X ×X such that d(x, y) = d(x′, y′), there exists
g ∈ G such that gx = x′ e gy = y′. If K is the stabilizer of an element
x0 ∈ X, then Lemma 1.3 easily implies that, under these conditions,
(G,K) is a symmetric Gelfand pair.

We can observe that the K−orbits under this action are the spheres
centered at x0 with radius j, for j = 0, 1, . . .. Hence, a function f ∈
L(X) is K−invariant if and only if it is constant on these spheres.

We want to give now a characterization of a Gelfand pair (G,K) in
terms of the representation of the group G on L(X), with X = G/K.

Definition 1.4. A representation (ρ, V ) of a group G is multiplicity-
free is all its irreducible subrepresentations are pairwise non-equivalent.

Given two representations (ρ1, V1) and (ρ2, V2) of G, we denote

HomG(V1, V2) = {T : V1 → V2 : ρ2(g)(Tv) = T (ρ1(g)v) for all

g ∈ G, v ∈ V1}
the space of operators intertwining the representations (ρ1, V1) and
(ρ2, V2). We will say that T is G−equivariant. It is known that if
V1 = V2 = V , then HomG(V, V ) is an algebra. The proof of the follow-
ing proposition can be found in [16].

Proposition 1.5. The following isomorphism holds:

HomG(L(X), L(X)) ∼= L(K\G/K)

The following lemma can be proven by using character theory.

Lemma 1.6 (Wielandt’s Lemma). Let G be a finite group and K ≤
G a subgroup of G. Set X = G/K. Let L(X) =

⊕N
i=0miVi a de-

composition of L(X) into irreducible G−subrepresentations, where mi

denotes the multiplicity of Vi. Then

N∑

i=0

m2
i = number of G−orbits on X×X = number of K−orbits on X.

Theorem 1.7. Let G be a finite group and K ≤ G. Set X = G/K.
Then the following are equivalent:

(1) (G,K) is a Gelfand pair, i.e. L(K\G/K) is commutative;
(2) HomG(L(X), L(X)) is commutative;
(3) the decomposition of L(X) into irreducible G−subrepresentations

is multiplicity-free.

Proof. The equivalence between (1) and (2) is given by Proposition
1.5.

(3)⇒(2) Suppose that the decomposition L(X) =
⊕N

i=0 Vi into ir-
reducible subrepresentations is multiplicity-free.

Let T ∈ HomG(L(X), L(X)) and denote Ti the restriction of T to
Vi. If Ti is not trivial, then Ti is injective since Vi is irreducible and so
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{Tv : v ∈ Vi} is a subspace isomorphic to Vi. Hence it coincides with
Vi and by Schur’s Lemma (see, for instance, [33]) there exists λi ∈ C
such that Tv = λiv, for all v ∈ Vi.

Since every f ∈ L(X) decomposes uniquely in the form f =
∑N

i=0 vi,
with vi ∈ Vi, we have that for every T ∈ HomG(L(X), L(X)) there
exist λ0, λ1, . . . , λN ∈ C such that

Tf =
N∑

i=0

λivi.

If S ∈ HomG(L(X), L(X)) is such that Sf =
∑N

i=0 µivi, then

STf =
N∑

i=0

µiλivi = TSf,

for all f ∈ L(X) and so HomG(L(X), L(X)) is commutative.
(2)⇒(3) Suppose that L(X) is not multiplicity-free, so that there

exist two orthogonal irreducible isomorphic subrepresentations V and
W in L(X). Let ϕ : V → W be such an isomorphism. Define U the
orthogonal complement such that L(X) = V ⊕W ⊕ U . We define two
linear operators S, T : L(X) → L(X) by setting

T (v + w + u) = ϕv and S(v + w + u) = ϕ−1w,

for all v ∈ V,w ∈ W and u ∈ U . It is easy to check that S and T
are G−equivariant, but ST 6= TS since, for instance, (ST )|W = 0 and
(TS)|W = IW . This implies that HomG(L(X), L(X)) is not commuta-
tive. �

Consider the space CN+1 with the coordinatewise product

(α0, α1, . . . , αN) · (β0, β1, . . . , βN) = (α0β0, α1β1, . . . , αNβN),

for any (α0, α1, . . . , αN), (β0, β1, . . . , βN) ∈ CN . This is an algebra of
dimension N + 1. From the proof of Theorem 1.7 we get the following
corollary.

Corollary 1.8. Let (G,K) be a Gelfand pair and L(X) =
⊕N

i=0 Vi
the decomposition of L(X) into irreducible inequivalent subrepresenta-
tions. Then

(1) if T ∈ HomG(L(X), L(X)), then any Vi is an eigenspace of T ;
(2) if T ∈ HomG(L(X), L(X)) and λi is the eigenvalue of the

restriction of T to Vi, then the map

T 7→ (λ0, λ1, . . . , λN)

is an isomorphism between HomG(L(X), L(X)) and CN+1;
(3) N + 1 = dim(HomG(L(X), L(X))) = dim(L(K\G/K)) =

number of K−orbits of X.

The following proposition gives a useful criterion for Gelfand pairs.
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Proposition 1.9. Let G be a finite group, K a subgroup of G and
set X = G/K. If we have a decomposition L(X) =

⊕h
t=0 Zt into

pairwise inequivalent G−subrepresentations with h + 1 = number of
K−orbits of X. Then the Zt’s are irreducible and (G,K) is a Gelfand
pair.

Proof. We can refine, if necessary, the decomposition with the Zt’s
into irreducibles as in the statement of Lemma 1.6. So we have

h+ 1 ≤
N∑

i=0

mi ≤
N∑

i=0

m2
i

and Lemma 1.6 forces h = N and mi = 1 for each i = 0, 1, . . . , N . This
gives the assertion. �

1.2. Spherical functions. From now on suppose that (G,K) is
a Gelfand pair.

Definition 1.10. A bi−K−invariant function φ is called spher-
ical if it has the following properties:

(1) for all f ∈ L(K\G/K), there exists λf ∈ C such that φ ∗ f =
λfφ;

(2) φ(1G) = 1.

The constant function φ(g) ≡ 1 is clearly spherical. The condition
(1) tells us that φ is an eigenfunction for every convolution operator
with a bi−K−invariant kernel, equivalently, by Proposition 1.5, for
every T ∈ HomG(L(X), L(X)). The condition (2) tells us that the
corresponding eigenvalue is the number λf = (φ ∗ f)(1G) ≡ T (φ)(1G).

Lemma 1.11. Let φ a spherical function and let Φ be the linear
functional on L(G) defined by

Φ(f) =
∑

g∈G
f(g)φ(g−1).(1)

Then Φ is multiplicative on L(K\G/K), that is, for any f1, f2 ∈ L(K\G/K),

Φ(f1 ∗ f2) = Φ(f1)Φ(f2).

Viceversa every nontrivial multiplicative linear functional on L(K\G/K)
is determined by a spherical function as in (1).

Corollary 1.12. Let (G,K) a Gelfand pair. Then the number
of distinct spherical functions equals the number of distinct irreducible
subrepresentations in L(X).

Proof. Let N + 1 the number of irreducible subrepresentations in
L(X). Then, by Corollary 1.8, L(K\G/K) and CN+1 are isomorphic
as algebras. A linear multiplicative functional on CN+1 is always of the
form

Ψ(α0, α1, . . . , αN) = αj,
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for some j. Therefore L(K\G/K) and CN+1 have exactly N + 1 mul-
tiplicative linear functionals. By Lemma 1.11, the number of spherical
functions is N + 1. �

From the definition, the following properties of the spherical func-
tions easily follow.

Proposition 1.13. Let φ and ψ be two distinct spherical functions.
Then

(1) φ(g−1) = φ(g) for all g ∈ G;
(2) φ ∗ ψ = 0;
(3) 〈λ(g1)φ, λ(g2)ψ〉 = 0 for all g1, g2 ∈ G;
(4) φ and ψ are orthogonal, i.e. 〈φ, ψ〉 = 0.

Denote Vn =< λ(g)φn : g ∈ G > the subspace of L(X) spanned by
the G−translates of φn, for n = 0, 1, . . . , N .

Theorem 1.14. L(X) =
⊕N

n=0 Vn is the decomposition of L(X)
into irreducible subrepresentations.

Proof. By definition, each Vn is G−invariant and, by Proposition
1.13, Vn is orthogonal to Vm if n 6= m. The V ′

i s are distinct and they
exhaust L(X). This gives the assertion. �

The representation Vn is called spherical representation associated
with the spherical function φn. In particular, V0 is the trivial represen-
tation.

Let (ρ, V ) a representation of G. If K ≤ G, denote

V K = {v ∈ V : ρ(k)v = v, for all k ∈ K}
the space of K−invariant vectors in V .

Theorem 1.15. (G,K) is a Gelfand pair if and only if dim(V K) ≤
1 for each irreducible G−representation V . Moreover, V is spherical if
and only if dim(V K) = 1.

Proof. Let (G,K) be a Gelfand pair and let (ρ, V ) a representation
of G, with dim(V K) ≥ 1. Fix a nontrivial vector u ∈ V K . Let T :
V → L(X) be the operator defined by Tv(g) = 〈v, ρ(g)u〉V . Then
T ∈ HomG(V, L(X)). Indeed Tv is a right K−invariant function and

(Tρ(h)v)(g) = 〈ρ(h)v, ρ(g)u〉V
= 〈v, ρ(h−1g)u〉V
= (λ(h)(Tv))(g),

for all v ∈ V and h, g ∈ G. By Schur’s Lemma, V ∼= Vn for some
spherical representation Vn.
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But Corollary 1.8 tells us that N + 1 equals the dimension of the
space L(X)K , which must be equal to ⊕N

m=0V
K
m . Since, for every m,

dim(V K
m ) ≥ 1 because every spherical function φm ∈ V K

m , we have
dim(V K

m ) = 1 for all m so that dim(V K) = dim(V K
n ) = 1.

Conversely, suppose dim(V K) ≤ 1 for all irreducible subrepresenta-

tions V . If L(X) =
⊕H

h=0mhWh is the decomposition into irreducible
subrepresentations and N + 1 denotes the number of K−orbits of X,
then Lemma 1.6 gives

H∑

h=0

m2
h = N + 1 =

H∑

h=0

mh dimWK
h ≤

H∑

h=0

mh,

where the inequality follows from the hypothesis. This forces mh = 1
for all h, so that L(X) is multiplicity-free. �

Since L(X)K =
⊕N

i=0 V
K
i , we deduce that the spherical functions

constitute a basis for the space of bi−K−invariant functions in L(G).
The following theorem (see [16] for the proof) will be useful in what

follows.

Theorem 1.16 (Garsia’s Theorem). A Gelfand pair is symmetric
if and only if the associated spherical functions are real valued.

2. Groups of automorphisms of homogeneous rooted trees

In this section we will study the Gelfand pairs associated with the
action of groups of automorphisms of the homogeneous rooted tree. In
particular, we focus our attention on the action of an automorphisms
group G on the n−th level Ln of the tree. To do this, we consider the
quotient group Gn of G modulo the stabilizer of Ln and we study the
pair (Gn, Kn), where Kn denotes the subgroup of Gn stabilizing a leaf
of Ln.

Let q be a positive integer, with q ≥ 2. The case of the full auto-
morphisms group Aut(Tq) of the q−ary rooted tree Tq is studied, for
instance, in [16]. The authors give there the decomposition of the space
L(Ln) into irreducible subrepresentations, together with the associated
spherical functions.
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Fig.1. The ternary rooted tree of depth 3.

If X = {0, 1, . . . , q − 1} is an alphabet of q elements and X∗ is the
set of all finite words in X, then each vertex in the n−th level Ln of Tq
can be identified with a word of length n in the alphabet X. Moreover,
we can identify the set of infinite words in X with the elements of the
boundary ∂Tq of Tq.

The set Ln can be endowed with an ultrametric distance d, defined
in the following way: if x = x1 . . . xn and y = y1 . . . yn, then

d(x, y) = n−max{i : xk = yk, ∀k ≤ i}.

We observe that d = d′/2, where d′ denotes the usual geodesic distance.
In this way (Ln, d) becomes an ultrametric space, in particular a

metric space, on which the automorphisms group Aut(Tq) isometrically
acts. Note that the diameter of (Ln, d) is exactly n.

Fix n ∈ N and restrict our attention to the action of Aut(Tq) on
the level Ln. To indicate the action of an automorphism g ∈ Aut(Tq)
on a vertex x, we will use the notation g(x) or xg. Moreover, denote
Sq the symmetric group on q elements.

Set

Aut(Tq)n = Aut(Tq)/StabAut(Tq)(n),
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where StabAut(Tq)(n) denotes the subgroup of Aut(Tq) stabilizing Ln.
It is known that the following isomorphism holds:

Aut(Tq)n ∼= Sq o Sq o · · · o Sq︸ ︷︷ ︸
n times

.

If one considers the action of Aut(Tq)n on Ln one gets, for every n,
a 2−points homogeneous action, giving rise to the symmetric Gelfand
pair (Aut(Tq)n, Kn), with Kn = StabAut(Tq)n(0

n), where 0n is the left-
most leaf of Ln. In fact, the following theorem holds.

Theorem 2.1. The action of Aut(Tq)n on (Ln, d) is 2−points ho-
mogeneous.

Proof. We use induction on the depth n of the tree Tq.
n = 1. The assertion follows from the 2−transitivity of the group

Sq.
n > 1. Let (x, y) and (x′, y′) be pairs of vertices in Ln with d(x, y) =

d(x′, y′). If d(x, y) < n, then vertices x and y belong to the same subtree
of T and so x1 = y1. Analogously for x′ and y′. Applying, if necessary,
the transposition (x1x

′
1) ∈ Sq, we can suppose x1 = y1 = x′1 = y′1, so

that x, x′, y and y′ belong to the same subtree of depth less or equal to
n− 1, and then induction works.

Finally, consider the case d(x, y) = d(x′, y′) = n. Consider the au-
tomorphism g ∈ Aut(Tq) such that g(x1) = x′1 and g(y1) = y′1 and
which acts trivially on the other vertices of L1. Now we have that x
and x′ belong to the same subtree T ′. Analogously y and y′ belong
to the same subtree T ′′, with T ′ 6= T ′′. The restriction of Aut(Tq)n to
T ′ and T ′′ respectively acts transitively on each level. So there is an
automorphism g′ of T ′ carrying x to x′ and acting trivially on T ′′ and
analogously there is an automorphism g′′ of T ′′ carrying y to y′ and
trivial on T ′. The assertion is proved. �

Corollary 2.2. For all n ≥ 1, (Aut(Tq)n, Kn) is a symmetric
Gelfand pair.

The decomposition of the space L(Ln) under the action of Aut(Tq)n
is known.

DenoteW0
∼= C the trivial representation and for every j = 1, . . . , n,

define the following subspace

Wj = {f ∈ L(Ln) : f = f(x1, . . . , xj),

q−1∑

x=0

f(x1, x2, . . . , xj−1, x) ≡ 0},

of dimension qj−1(q − 1). One can verify that the Wj’s are Aut(Tq)n−
invariant, pairwise orthogonal and that the following decomposition
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holds

L(Ln) =
n⊕

j=0

Wj.(2)

Since the spheres centered at x0 := 0n (and so the Kn−orbits) are
exactly n + 1, we have from Proposition 1.9 that the subspaces Wj’s
are irreducible.

There exists a complete description of the corresponding spherical
functions. For every j = 0, . . . , n we get

φj(x) =





1, d(x, x0) < n− j + 1;
1

1−q
, d(x, x0) = n− j + 1;

0, d(x, x0) > n− j + 1.
(3)

If we consider a countable subgroup of Aut(Tq) and the relative action
on Ln, we can ask if it is possible to find the same results about Gelfand
pairs obtained for the full automorphisms group. In some cases the
answer is positive.

In the next sections, we will consider the action of special finitely
generated subgroups of Aut(Tq), which belong to the class of self-similar
groups and, in some cases, of iterated monodromy groups.

Remark. In [14] the authors consider a more general construction,
namely they study the case of the action of the automorphisms group
of the tree on the variety of special substructures of the tree.

Given an n−tuple m= (m1, . . . ,mn) of integers ≥ 2, a finite rooted
tree T is of typem if each vertex at distance k from the root has exactly
mk+1 sons, for every k = 0, 1, . . . , n− 1 (we also say that (m1, . . . ,mn)
are the branch indices of T ).

If r= (r1, . . . , rn) is another n−tuple of integers such that 1 ≤ ri ≤
mi for every i = 1, . . . , n, one can consider the variety of subtrees of
T whose branch indices are (r1, . . . , rn). It is easy to check that the
substructures of type r in a rooted tree of type m are exactly

(
m1

r1

)
·

n∏

i=2

(
mi

ri

)r1r2···ri−1

.

Note that, if r =(1, . . . , 1), then a subtree of type r can be identified
with a leaf of the n−th level of the tree of type m.
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Fig.2 A tree of type (3,3,3) with a subtree of type (2,2,1).

The authors prove that the group Aut(T ) ∼= Smn o · · · o Sm1 tran-
sitively acts on this variety and then, using Gelfand’s Condition, they
show that the pair (Aut(T ), K(m, r)) is a Gelfand pair, where K(m, r)
denotes the stabilizer of a fixed substructure T ′.

2.1. Self-similar Groups. Denote Tq the rooted q−ary tree. Ev-
ery automorphism g ∈ Aut(Tq) can be represented by its labelling.
The labelling of g ∈ Aut(Tq) is realized as follows: given a vertex
x = x0x1 . . . xn−1 ∈ Ln, we associate with x a permutation gx ∈ Sq

giving the action of g on the q children of x. Formally, the action of g
on the vertex labelled with the word x = x0x1 . . . xn−1 is

xg = x
g∅
0 x

gx0
1 . . . x

gx0...xn−2

n−1 .

Definition 2.3. A group G acting on Tq is self-similar if, for
any g ∈ G and x ∈ X, there exist h ∈ G and y ∈ X such that

g(xw) = yh(w),(4)

for all w ∈ X∗.

The rule (4) tells us that a self-similar group G can be embedded
into the permutational wreath product

G o Sq = GX o Sq.

In particular if, for every i = 0, 1, . . . , q − 1, one has g(xiw) = yigi(w)
for all w ∈ X∗, then g can be written as

g = (g0, g1, . . . , gq−1)σ,(5)
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where σ ∈ Sq is the permutation such that σ(xi) = yi.
So the elements gi are the restrictions of g to the subtree Ti rooted

at the vertex xi ∈ L1, which is clearly isomorphic to the entire tree Tq.
The iteration of this procedure leads to the notion of restriction gv of
g to each vertex v of Tq.

For an automorphisms group G ≤ Aut(Tq), the vertex stabilizer
of x ∈ Tq is the subgroup of G defined as

StabG(x) = {g ∈ G : g(x) = x};
the level stabilizer of Ln is given by

StabG(n) =
⋂

x∈Ln

StabG(x).

Observe that StabG(n) is a normal subgroup of G of finite index for all
n ≥ 1. In particular, an automorphism g ∈ StabG(1) can be identified
with its restrictions gi, i = 0, 1, . . . , q − 1 to the respective subtrees Ti.
So we get the following embedding

ϕ : StabG(1) −→ Aut(Tq)× Aut(Tq)× · · · × Aut(Tq)︸ ︷︷ ︸
q times

(6)

that associates with g the q−ple (g0, g1, . . . , gq−1).

Definition 2.4. G is spherically transitive if its action on Ln

is transitive, for all n ∈ N.

Definition 2.5. G is fractal if, for every vertex x ∈ Tq, one has
StabG(x)|Tx

∼= G, where the isomorphism is given by identification of
Tq with its subtree Tx rooted at x.

Lemma 2.6. G is fractal if and only if the embedding ϕ defined in
(6) is a subdirect embedding into G× · · · ×G, i.e. if it is surjective on
each factor.

Proof. One implication is obvious. So we can suppose that ϕ is
a subdirect embedding. We want to prove, by induction on |x|, that
StabG(x)|Tx

∼= G for all x ∈ Tq. The induction basis |x| = 1 is equiv-

alent to the hypothesis. Now, by induction, G → Gqn−1
is a subdirect

embedding and each factor G maps to Gq by ϕ. Since the composition
of two subdirect embeddings is still subdirect, we get the assertion.
�

Observe that, if G is fractal, then it is spherically transitive if and
only if its action on the first level of the tree is transitive.
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In the next sections we will use the notion of rigid stabilizer to
get Gelfand pairs. If G acts on Tq and x ∈ Tq, the rigid vertex
stabilizer RistG(x) is the subgroup of StabG(x) consisting of those
automorphisms of Tq that fix all vertices not having x as a prefix.
Equivalently, the automorphisms in RistG(x) have a trivial labelling
at each vertex outside Tx. The rigid level stabilizer of Ln is defined
as

RistG(n) =
∏

x∈Ln

RistG(x).

The rigid level stabilizer RistG(n) is normal in Aut(Tq). In contrast to
the level stabilizers, the rigid level stabilizers may have infinite index
and may even be trivial. We observe that if the action of G on Tq
is spherically transitive, then the subgroups StabG(x), x ∈ Ln are all
conjugate, as well as the subgroups RistG(x).

The following definitions hold for spherically transitive groups (see,
for more details, [8]).

Definition 2.7. G is regular weakly branch on K if there exists
a normal subgroup K 6= {1} in G, with K ≤ StabG(1), such that
ϕ(K) > K ×K × · · · ×K. In particular, G is regular branch on K
if it is regular weakly branch on K and K has finite index in G.

We observe that this property for the subgroup K is stronger than
fractalness, since the map ϕ is surjective on the whole product K ×
K × · · · ×K.

Definition 2.8. G is weakly branch if RistG(x) 6= {1}, for every
x ∈ Tq (this automatically implies |RistG(x)| = ∞ for every x). In
particular, G is branch if [G : RistG(n)] <∞ for every n ≥ 1.

2.1.1. Example. Consider the group G acting on the binary tree,
generated by the automorphism having the following self-similar form:

a = (1, a)ε,

where ε is the nontrivial permutation of S2.
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Fig.3. Labelling of a.

The group G =< a > is isomorphic to Z. It is called Adding Ma-
chine (Odometer) and it is defined also in the more general case (see
[37] or [39]) of a k−ary tree as the group generated by the automor-
phism a = (1, . . . , 1, a)σ, where σ = (0, 1, 2, . . . , q − 1) is the standard
cycle that cyclically permutes the symbols in X. The automorphism a
is called the odometer because of the way in which it acts on X∗. In
particular, if we regard the word w = x1 . . . xn ∈ Xn as the number∑n

i=1 xik
i, then:

• a(w) = w + 1, for w 6= (k − 1) . . . (k − 1);
• a((k − 1) . . . (k − 1)) = 0 . . . 0.

Consider now the binary case. It is easy to check that the following
identities hold:

a2k = (ak, ak), a2k+1 = (ak, ak+1)ε.(7)

In particular, the first level stabilizer is given by StabG(1) =< a2 >,
with a2 = (a, a). So G is a fractal group and its action on the binary
tree is spherically transitive.

From (7) it follows that

StabG(n) =< a2
n

> .

Moreover, since G is abelian, one has StabG(n) = StabG(x) for all
x ∈ Ln. Formulas (7) tells us that the element a2

n
has the labelling

gx = ε at each vertex x ∈ Ln and the labelling gy = 1 at each vertex
y ∈ Li, for i < n. Therefore a2

n 6∈ RistG(n) and all its powers do
not belong to RistG(n) too. So RistG(n) = {1} for every n ≥ 1. So
this is an example where the subgroups StabG(n) and RistG(n) do not
coincide, showing that RistG(n) can also be trivial.
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2.1.2. Automaton Groups.

Definition 2.9. An automaton is a quadruple A = (S,X, λ, π),
where:

(1) S is a set, called set of states;
(2) X is an alphabet;
(3) π : S ×X → S is the transition map;
(4) λ : S ×X → X is the output map.

The automaton A is said finite if S is finite and it is said invertible
if, for all s ∈ S, the transformation λ(s, ·) : X → X is a permutation
of X.

An automaton A can be represented by its Moore diagram: this
is a directed labeled graph whose vertices are identified with the states
of A. For every state s ∈ S and every letter x ∈ X, the diagram has
an arrow from s to π(s, x) labeled by x|λ(s, x).

A natural action on the words over X is induced, so that the maps
π and λ can be extended to S ×X∗ as:

π(s, xw) = π(π(s, x), w)(8)

λ(s, xw) = λ(s, x)λ(π(s, x), w),(9)

by setting π(s, ∅) = s and λ(s, ∅) = ∅, for all s ∈ S, x ∈ X and w ∈ X∗.
Moreover, the Equation (9) defines uniquely a map λ : S ×Xω →

Xω, where Xω denotes the set of infinite words over X.
If we fix an initial state s in an automaton A, then a transformation

λ(s, ·) on the set X∗∪Xω is defined: it is denoted by As. The image of
a word x1x2 . . . can be easily found by using the Moore diagram. One
has to consider the directed path starting at the state s with consecu-
tive labels x1|y1, x2|y2 and so on, so that the image of the word x1x2 . . .
under the transformation As will be equal to y1y2 . . ..

Now if X = {0, 1, . . . , q − 1} is an alphabet of q letters and G is
a self-similar group on Xω, then its action defines an automaton over
the alphabet X whose states are the elements of G and such that the
output and the transition maps λ and π are defined in such a way that

g(xw) = λ(g, x)wπ(g,x),

for all w ∈ Xω.
The automaton A that one gets has the property that the transfor-

mation Ag coincides with the action of g and it is called the complete
automaton of the self-similar group G.
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Since the complete automaton is infinite for infinite groups, it is
more convenient to define the group generated by an automaton in the
following way.

Given an invertible automaton A = (S,X, λ, π), the group gener-
ated by the transformations As, for s ∈ S, is called the automaton
group generated by A and is denoted by G(A).

The following proposition holds.

Proposition 2.10. The action of a group on the set Xω is self-
similar if and only if it is generated by an automaton.

The automaton groups G(A), where A is a finite automaton, are
are the most interesting. In Section 2.2.1 of this chapter a fundamental
example will be presented.

2.2. Iterated Monodromy Groups. A particular class of self-
similar groups is given by the so called itarated monodromy groups.

The Iterated Monodromy Groups theory has been mostly developed
by V. Nekrashevych in [44]. See also [38] and [9].

In order to introduce the iterated monodromy groups, we need the
following definition.

Definition 2.11. Let M be an arcwise connected and locally ar-
cwise connected topological space. A d−fold partial self-covering
map on the space M is a d−fold covering map f : M1 −→ M , where
M1 is an open arcwise connected subset of M .

It is known that a map f : M1 −→ M2 is a d−fold covering map
if it is surjective and every point x ∈ M2 has a neighborhood U such
that the preimage f−1(U) is the disjoint union of d subsets Ui ⊆ M1

such that f : Ui −→ U is a homeomorphism.

So suppose we have a d−fold partial covering map f : M1 −→ M
and let π1(M, t) be the fundamental group of M with base point t. It
is clear that the set of iterated preimages of t naturally constitutes a
d−ary rooted tree T , whose root is t and such that each point x has
exactly d preimages x1, . . . , xd which are declared to be adjacent to
x in T . In this way, the n−th level of the tree consists of dn points
belonging to f−n(t). Although the intersection of f−n(t) and f−m(t)
can be non empty for n 6= m, the tree T has to be regarded as the
disjoint union of the sets f−n, for all n ≥ 0.

There exists a natural action of the fundamental group π1(M, t) on
T . Given a loop γ based at t, for each point s ∈ f−n(t) there exists
a unique preimage γ[s] of γ starting at s and ending in some point
s′ ∈ f−n(t). The action of γ on T is defined as

(10) γ(s) = s′,
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so it induces a permutation of f−n(t). The group of all permutations
of f−n(t) induced by the action of π1(M, t) is called the n−th mon-
odromy group of f . Moreover, γ acts on T as a tree automorphism.
In fact, if γ(s) = s′, then γ(f(s)) = f(s′), since f(γ[s]) = γ[f(s)].

Definition 2.12. The Iterated Monodromy Group of f is de-
fined as the group

IMG(f) = π1(M, t)/N,

where N denotes the kernel of the action defined in (10).

One can show that, up to isomorphism, the group IMG(f) does
not depend from the base point t.

In order to better characterize the action of π1(M, t) on T , one can
introduce an alphabet X = {0, 1, . . . , d− 1} and consider the set X∗ of
all finite words over X, which also has a d−ary rooted tree structure
such that the word w is declared to be adjacent to wx, if w ∈ X∗ and
x ∈ X.

In fact, it is possible to define an isomorphism Λ : X∗ −→ T in
such a way that the action of π1(M, t) on X∗ is self-similar.

The isomorphism Λ can be defined inductively. We set Λ(∅) = t.
For every word w ∈ Xn, we construct a path lw in M from t to a point
sw ∈ f−n(t) and define Λ(w) = sw. In this way, for each x ∈ X the
point t is connected by the path lx to a point sx ∈ M belonging to
f−1(t), with sx 6= sx′ for x 6= x′. We define Λ(x) to be the endpoint of
the path lx.

Suppose we have already defined Λ(w) for all w ∈ Xm, with m ≤ n
and that it is an isomorphism between the first n levels of T and X∗.
Let xw be a word of Xn+1, with w ∈ Xn and x ∈ X. Define

lxw = lwf
−n
[w] (lx),

where f−n
[w] (lx) is the unique preimage of the path lx under f−n starting

at w. Define Λ(xw) to be the end of the path lxw.

Proposition 2.13. The map Λ : X∗ −→ T defined above is an
isomorphism.

Proof. It suffices to prove that f(Λ(xvx′)) = Λ(xv), for all x, x′ ∈
X and v ∈ X∗. In fact,

f(lxvx′) = f(lvx′)f(f−n
[vx′](lx)) = f(lvx′)f

−(n−1)
[v] (lx).

By definition, f
−(n−1)
[v] (lx) is a path going from Λ(v) to Λ(xv), so f maps

the end Λ(xvx′) of the path lxvx′ to Λ(xv). �

Definition 2.14. The action of IMG(f) on X∗ induced by the
isomorphism Λ is called the standard action of IMG(f).
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Theorem 2.15. The standard action of IMG(f) is self-similar. In
particular, the restriction γx of γ ∈ IMG(f) at x ∈ X is given by

(11) γx = lxγ[x](lγ(x))
−1.

Proof. Let v ∈ Xn and suppose γ(xv) = x′u, with x′ ∈ X and
u ∈ Xn. Then the vertices v and u are connected by the path

α = f−n
[v] (lx) · γ[xv] · (f−n

[u] (lx′))−1,

which goes through the vertices v → xv → x′u → u. So the loop
l = lxγ[x]l

−1
x′ based at t is the element of IMG(f) moving v to u and it

is independent of v and u. This gives γx = lxγ[x](lγ(x))
−1. �

A fundamental example is given by Iterated Monodromy Groups
associated with rational functions f ∈ C(z). We need the following
definition.

Definition 2.16. Let M̂ be a topological space. A map f : M̂ −→
M̂ is a branched covering if there exists a set R ⊂ M̂ of branching

points such that f is a local homeomorphism in each point x ∈ M̂ \R.
The set P =

⋃∞
n=0 f

n(R) is called the postcritical set. If the set

M = M̂ \ P is arcwise connected and locally arcwise connected, then
f : M1 −→ M is a partial self-covering of the set M , with M1 =
f−1(M).

In particular, let f(z) = p(z)
q(z)

∈ C(z) a non-constant rational func-

tion, with p, q co-prime. Then we have deg(f) = max{deg(p), deg(q)}.
The function f defines a branched deg(f)−fold self-covering of the Rie-

mann sphere Ĉ = C∪ {∞}. A point z ∈ Ĉ is critical if f is not a local
homeomorphism on any neighborhood of z, i.e. if f ′(z) = 0.

Let Cf be the set of the critical points of f . We denote by Pf the
set of the post-critical points, i.e. Pf =

⋃∞
n=0 f

n(Cf ). If Pf is such that

M = Ĉ \Pf is arcwise connected, then f defines a deg(f)−fold partial

self-covering f :M1 −→M , with M1 = Ĉ \ f−1(Pf ).
In particular, if Pf if finite, f is called post-critically finite. If

this is the case, M andM1 are punctured spheres and the fundamental
group π1(M) is the free group of rank |Pf | − 1.

It is known (see [44]) that iterated monodromy groups of post-
critically finite polynomials are amenable. Many problems about iter-
ated monodromy groups are still open ([7]).

(1) When is the iterated monodromy group of a rational function
torsion free?

(2) Can any be non amenable? Or contain a free subgroup of rank
k ≥ 2?
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(3) Which rational functions have iterated monodromy groups of
exponential growth?

2.2.1. The Basilica Group. The Basilica group, that we will denote
B, was introduced by R. I. Grigorchuk and A. Żuk in [40] as the group
of automorphisms of the binary tree generated by the three-state au-
tomaton having the following Moore diagram:

a��
��

b��
��

1��
��R

1|1

�

1|0

}
0|0, 1|1

w

0|0

o

0|1

Fig.4. The automaton defining the Basilica group.

This is the first example of an amenable group (a highly non–trivial
and deep result of Bartholdi and Virág [10]) not belonging to the class
SG of subexponentially amenable groups, which is the smallest class
containing all groups of subexponential growth and closed after taking
subgroups, quotients, extensions and direct unions.

Studying the automaton above, we deduce that the Basilica group
B is generated by the automorphisms a and b having the following
self-similar form:

a = (b, 1)(12)

and

b = (a, 1)ε,(13)

where ε denotes the nontrivial permutation of S2. In the following
figure the labelling of generators a and b are presented. Observe that
the nontrivial labellings are only in the leftmost branch of the tree.
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Fig.5. Labelling of the generators a and b.

One can easily verify that the first level stabilizer StabB(1) is given
by StabB(1) =< a, ab, b2 >. Since

a = (b, 1), ab = (1, ba) and b2 = (a, a),

we can deduce from Lemma 2.6 that B is fractal.
It is obvious that the action of the Basilica group on the first level

of T2 is transitive. Since this group is fractal, it easily follows that the
action is also spherically transitive, i.e. transitive on each level of the
tree. Moreover, the Basilica group is weakly regular branch over its
commutator subgroup B′. In fact, one can easily verify that

[a, b2] = ([b, a], 1).

Using the fractalness of B, we get

B′ ≥ 〈[a, b2]〉B ≥ 〈[b, a]〉B × {1} = B′ × {1}.
Moreover (B′ × {1})b = {1} × B′. So B′ contains B′ × B′ and, since
B′ 6= {1}, the group B is regular weakly branch over B′.

It is a remarkable fact due to Nekrashevych [44] that this group can
be described as the iterated monodromy group IMG(z2 − 1) of the
complex polynomial z2 − 1.

In fact, if we consider the complex polynomial f(z) = z2 − 1,

then it defines a 2−fold self-covering of the Riemann sphere Ĉ. Us-
ing notation of section 2.2, the set of critical points of f is given by
Cf = {0,∞}, so that the set of post-critical points Pf =

⋃∞
n=0 f

n(Cf )

is Pf = {−1, 0,∞}. So we have M = Ĉ \ Pf = C \ {−1, 0} and

M1 = Ĉ \ f−1(Pf ) = C \ {−1, 0, 1}. In particular, f defines a 2−fold
partial self-covering f : M1 → M and the fundamental group π1(M)
is the free group of rank 2. If a is a loop around 0 in M based, for
instance, at −1

2
, and b is a loop around −1 in M based at the same

point −1
2
, then it is easy verify that one gets the relations (12) and
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(13), where the alphabet X = {0, 1} has to be regarded as the set of

preimages of −1
2
, with −

√
2
2

identified with 0 and
√
2
2

identified with 1.

2.3. Gelfand Pairs associated with groups of automorphisms
of a homogeneous rooted tree. A first example of Gelfand pairs is
given by the Adding Machine. In this context, denote this group by A.
We already saw that this group is isomorphic to the group Z of integer
numbers and so it is abelian. This implies that, considering its action
on the n−th level Ln of the binary tree, setting An = A/StabA(n) and
Kn = StabAn(x0), with x0 = 0n, then (An, Kn) is a Gelfand pair for
every n ∈ N. In particular, we have

An
∼= Z/2nZ,

with generator a and such that a2
n
= 1 in An. Since the group is

abelian, we have StabA(x0) = StabA(n) and so Kn = {1}.
The space L(Ln) clearly has dimension 2n. Since its decomposition

into irreducible subrepresentations has to be multiplicity-free (see The-
orem 1.7), then all irreducible (of dimension 1) representations of An

occur in L(Ln).
Denote Vh the representation of An corresponding to the character

χh, defined as

χh(a) = ωh = e
2πih
2n , for h = 0, . . . , 2n − 1.

So we get

L(Ln) =
2n−1⊕

h=0

Vh.

For every h = 0, 1, . . . , 2n − 1, the corresponding spherical function φh

coincides with the character χ2n−h. In fact, we have

φa
h(a

l) = χa
2n−h(a

l) = χ2n−h(a
l−1)

= e
2πi(2n−h)(l−1)

2n = e
2πi(−hl+h)

2n

= χh(a) · χ2n−h(a
l) = ωh · φh(a

l)

and so φh ∈ Vh. Since the spherical functions coincide, in this case,
with the characters of the cyclic group Z/2nZ, Theorem 1.16 implies
that the Gelfand pair (An, 1) is not symmetric for n ≥ 3.

This shows that the hypothesis of fractalness is not sufficient to
get a 2−points homogeneous action on Ln. A counterexample, in the
case n = 3, is given by the pairs (000, 101) and (101, 011). We have
d(000, 101) = d(101, 011) = 3. The vertex 000 is mapped into 101 by
the automorphism a5, but a5 maps 101 into 010 and so the action is
not 2−points homogeneous.
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In [17] I proved with Daniele D’Angeli that the action of the Basilica
group B on the n−th level Ln of the rooted binary tree T2 gives rise to
symmetric Gelfand pairs.

As usual, for every n ≥ 1, we can regard each vertex of the n−th
level of T2 as a word of length n in the alphabet X = {0, 1}. Denote
x0 the vertex 00 . . . 0︸ ︷︷ ︸

n times

of Ln and set

Bn = B/StabB(n).

Let Kn the parabolic subgroup of Bn stabilizing x0. The following
general lemma holds.

Lemma 2.17. Let G act spherically transitively on Tq. Denote Gn

the quotient group G/StabG(n) and Kn the stabilizer in Gn of a fixed
leaf x0 ∈ Ln. Then the action on Ln is 2−points homogeneous if and
only if Kn acts transitively on each sphere of Ln.

Proof. Suppose that Kn acts transitively on each sphere of Ln and
consider the elements x, y, x′ and y′ such that d(x, y) = d(x′, y′). Since
the action of Gn is transitive, there exists an automorphism g ∈ Gn

such that g(x) = x′. Now d(x′, g(y)) = d(x′, y′) and so g(y) and y′

are in the same sphere of center x′ and radius d(x′, y′). But Kn is
conjugate with StabGn(x

′) and so there exists an automorphism g′ ∈
StabGn(x

′) carrying g(y) to y′. The composition of g and g′ is the
required automorphism.

Suppose now that the action of Gn on Ln is 2−points homoge-
neous and consider two elements x and y in the sphere of center x0
and radius i. Then d(x0, x) = d(x0, y) = i. So there exists an automor-
phism g ∈ StabGn(x0) such that g(x) = y. This completes the proof. �

We have the following theorem.

Theorem 2.18. The action of the Basilica group B on Ln is 2−points
homogeneous, for all n ∈ N.

Proof. From Lemma 2.17 it suffices to show that the action of the
parabolic subgroup Kn = StabBn(0

n) is transitive on each sphere.
Denote by uj the vertex 0j−11 for every j = 1, . . . , n. Observe that

the automorphisms

(b2)a = a−1b2a = (b−1, 1)(a, a)(b, 1) = (ab, a) = ((1, ba), a)

and
bab−1a = (b−1, 1)(a, 1)ε(b, 1)(1, a−1)ε(b, 1) = (1, b)

belong to Kn for each n. Moreover, using the fractalness of B, it is
possible to find elements gj ∈ Kn such that the restriction gj|T0j−1 is
(b2)a = ((1, ba), a) or bab−1a = (1, b). So, the action of such automor-
phisms on the subtree Tuj

corresponds to the action of the whole group
B =< a, b > on T . We can regard this action as the action ofKn on the
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spheres centered at x0 and so we get that Kn acts transitively on these
spheres. This implies that the action of B is 2−points homogeneous
on Ln. �
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Fig.6. The 2−points homogeneous action of B.

Corollary 2.19. For every n ≥ 1, (Bn, Kn) is a symmetric Gelfand
pair.

We know that the number of Kn−orbits in L(n) is exactly the
number of the irreducible subrepresentations occurring in the decom-
position of L(Ln) under the action of Bn. Since the submodules Wj’s
described in the previous section are n+1 as the Kn−orbits, it follows
that the Basilica group admits the same decomposition into irreducible
subrepresentations and the same spherical functions that we gave for
Aut(T2)n in (3).

A similar argument can be used in the case of the Grigorchuk
group, that we denote G. This group was introduced for the first time
in [34] and it is the group of automorphisms of the rooted binary tree
whose generators have the following self-similar form:

a = (1, 1)ε, b = (a, c), c = (a, d), d = (1, b),

where ε denotes, as usual, the nontrivial permutation in S2. It is the
first example of group with intermediate growth (in particular, it is
amenable). It is a group belonging to SG\EG, where EG denotes the
smallest class containing all abelian and finite groups and closed after
taking subgroups, quotients, extensions and direct unions.

It is a fractal group acting spherically transitively on T2 and it is
regular branch on its subgroup K =< (ab)2 >G. For more details see,
for instance, [36].
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The action of the Grigorchuk group on the binary rooted tree is
2−points homogeneous (see [12]) on the level Ln, for all n ≥ 1. As a
consequence, the decomposition of L(Ln) under the action of this group
into irreducible subrepresentations is still L(Ln) =

⊕n
j=0Wj, where the

Wj’s are the subspaces introduced for Aut(T2).

Now consider the proof of Theorem 2.1 in the case q = 2. One
can observe that the fundamental fact is that the automorphisms g′

and g′′ act transitively on the subtrees T ′ and T ′′, respectively, and
trivially elsewhere. Moreover, the only hypothesis of fractalness does
not guarantee that the action is 2−points homogeneous, as we have
seen in the case of the Adding Machine, for which one gets symmetric
Gelfand pairs only for n = 1, 2. On the other hand, if a fractal group
G acts 2−transitively on L1 and if it has the property that the rigid
stabilizers of the vertices of the first level RistG(i), i = 0, 1, . . . , q−1 are
spherically transitive for each i, the proof of Theorem 2.1 works again
by taking the automorphisms g′ and g′′ in the rigid vertex stabilizers.
But this is not a necessary condition, as the example of the Grigorchuk
group shows.

In fact, one can verify (see [6]) that, in this case, RistG(0) =<
da, dac >, with da = (b, 1) and dac = (ba, 1). So RistG(0) fixes the
vertices 00 and 01, and then it does not act transitively on the subtree
T0. This shows, for instance, that a fractal regular branch group does
not need to have this property, which appears to be very strong.

On the other hand, a direct computation shows that the Basilica
group has this property, what gives another proof that the action on
each level Ln is 2−points homogeneous.

Theorem 2.20. Let B be the Basilica group. Then the rigid vertex
stabilizers RistB(i), i = 0, 1, act spherically transitively on the corre-
sponding subtrees Ti.

Proof. SinceB is spherically transitive and soRistB(0) ' RistB(1),
it suffices to prove the assertion only for RistB(0). Consider the auto-

morphisms a = (b, 1) and ab
2
= (ba, 1) in RistB(0). We want to show

that the subgroup < a, ab
2
> is spherically transitive on T0, equiva-

lently we will prove that the group < b, ba > is spherically transitive
on T .

The latter is clearly transitive on the first level. To complete it
suffices to prove its fractalness. We have

b−1ba = (1, a−1)ε(b−1, 1)(a, 1)ε(b, 1) = (1, a−1b−1)ε(a, b)ε = (b, (b−1)a)

and

(b−1ba)b
2

= (a−1, a−1)(b, (b−1)a)(a, a) = (ba, (b−1)a
2

),
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and so the projection on the first factor gives both the generators b and
ba. The elements

(b−1ba)−1 = (b−1, ba), ((b−1ba)−1)b
−2

= ((b−1)a
−1

, b)

fulfill the requirements for the projection on the second factor and this
completes the proof. �

In [17] we also studied the case of the group I = IMG(z2 + i),
i.e. the iterated monodromy group defined by the complex polynomial
f(z) = z2 + i. This group has been introduced in [7] and later studied
by K. U. Bux and R. Pérez ([13]), who proved that it has intermediate
growth and so it is amenable.

The generators of I have the following self-similar form:

a = (1, 1)ε, b = (a, c), c = (b, 1),

where ε denotes, as usual, the nontrivial permutation in S2. The cor-
responding labellings are:
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Fig.7. Labelling of the generators a, b and c of I.

By a direct computation one gets the following relations:

a2 = b2 = c2 = (ac)4 = (ab)8 = (bc)8 = 1.

Moreover, the first level stabilizer of I is StabI(1) =< b, c, ba, ca >. In
particular, since

ba = (c, a), ca = (1, b),

we deduce that I is a fractal group. It is clear that I transitively acts
on the first level of the rooted binary tree. Since I is fractal, it follows
that this action is also spherically transitive.

Moreover, it is known (see [38]) that I is a regular branch group
over its subgroup N defined by

N =< [a, b], [b, c] >I .
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For the group I it is possible to prove the same result proven for the
Basilica group in Theorem 2.18. So set In = I/StabI(n). In order to get
an easy computation, this time we choose the vertex x0 as x0 = 1n ∈ Ln

and we set Kn = StabIn(1
n). In the following theorem we will prove

that the action of the parabolic subgroup Kn is transitive on each
sphere.

Theorem 2.21. The action of the group I on Ln is 2−points ho-
mogeneous for all n ≥ 1.

Proof. Denote by uj the vertex 1j−10 for every j = 1, . . . , n. Us-
ing the fractalness of I, it is possible to find an element gj ∈ Kn

such that the restriction gj|T1j−1 is b and an element hj ∈ Kn such
that the restriction hj|T1j−1 is c. Consider now the automorphism
babba = (c, a)(a, c)(c, a) = (ac, ca). By fractalness it is possible to find
an element kj ∈ Kn such that the restriction kj|T1j−1 is babba. The ac-
tion of the subgroup generated by the automorphisms gj, hj, kj on the
subtree Tuj

corresponds to the action of the subgroup H =< a, b, ac >
on T . It is easy to prove that this action is spherically transitive. In
fact it is clear that H acts transitively on the first level, so it suffices
to show that H is fractal. To show this consider, for instance, the
elements

b = (a, c), aca = (b, b), babba = (ac, ca)

and

ba = (c, a), aca = (b, b), bbab = (ca, ac).

Now, the action of H on Tuj
can be regarded as the action of Kn on

the spheres of center x0, and so we get that Kn acts transitively on
these spheres. This implies that the action of I on Ln is 2−points
homogeneous, as required. �
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Fig.8. The 2−points homogeneous action of I.
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Corollary 2.22. For every n ≥ 1, (In, Kn) is a symmetric Gelfand
pair.

As in the case of the Basilica group, it follows that the group In
admits the same decomposition into irreducible subrepresentations and
the same spherical functions given in (3).

Remark. The interesting fact is that, in the case of IMG(z2 + i),
the rigid stabilizers of the vertices of the first level of the tree do not
act spherically transitively on the corresponding subtrees T0 and T1. In
fact, the rigid stabilizer of the first level is RistI(1) =< c >G, so every
automorphism in RistI(1) is the product of elements of the form cg,
where g = w(a, b, c) is a word in a, b and c, and of their inverses. Set
ϕ(cg) = (g0, g1). We want to show, by induction on the length of the
word w(a, b, c), that we suppose reduced, that in both g0 and g1 the
number of occurrences of a is even. This will imply that the action of
RistI(1) on the first level of the subtrees T0 and T1 cannot be transitive
and will prove the assertion.

If |w(a, b, c)| = 0, then cg = c = (b, 1). If |w(a, b, c)| = 1, then we
can have ca = (1, b), cb = (ba, 1) or cc = c = (b, 1). Let us suppose
the result to be true for |w′(a, b, c)| = n − 1. Then we have cw(a,b,c) =
cw

′(a,b,c)x, with x ∈ {a, b, c} and cw
′(a,b,c) = (g′0, g

′
1) such that in both g′0

and g′1 the number of occurrences of a is even. If x = a, we get cw(a,b,c) =
(g′1, g

′
0), if x = b, we get cw(a,b,c) = ((g′0)

a, (g′1)
b) and if x = c then we

get cw(a,b,c) = ((g′0)
b, g′1). In all cases, we get a pair (g0, g1) satisfying

the condition that in both g0 and g1 the number of occurrences of a is
even, as we wanted.

So the group I does not have the “rigid property” that Basilica
group has, what shows that this property is not necessary to get sym-
metric Gelfand pairs.

In [19], I studied with D. D’Angeli a particular group of automor-
phisms of the rooted dyadic tree and the associated Gelfand pairs. In
this context, we regard the binary rooted tree T2 in the following way:
the root of T2 is identified with the group of integers Z; each vertex,
say at level Ln, can be regarded as a coset of 2nZ in Z. Finally, the
boundary ∂T2 corresponds to the ring of dyadic integers Z2 (for more
details see [31]).
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Fig.9. The dyadic tree.

We study the group G of automorphisms of T2 generated by the
sum of 1 and by the multiplication by an odd integer q for each vertex
in T2. Denote by a and b such automorphisms, respectively. The action
of G on T2 is self-similar: we directly prove that these automorphisms
admit the following self-similar form:

a = (1, a)ε, b = (b, bah),

with q = 2h+1 (observe that a is exactly the automorphism generating
the Adding Machine). By using the self-similarity, we deduce that G is
isomorphic to the Baumslag-Solitar group BSq =< s, t : t−1st = sq >,
introduced in [11]. Observe that, for q = −1, this group becomes the
infinite dihedral group D∞ =< s, t : t−1st = s−1 >.

Denoting, as usual, Gn the finite homomorphic image of G acting
faithfully on Ln and Kn ≤ Gn the parabolic subgroup stabilizing a
fixed vertex in Ln, we prove there that (Gn, Kn) is a Gelfand pair for
every n ≥ 1. In particular, we show, by direct computations involving
characters, that the decomposition of the corresponding permutation
representation into irreducible G−representations is multiplicity-free
and we give the relative spherical functions. Actually, the result can
also be obtained from the general theory of representations of semidi-
rect products developed in [14].
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3. Groups of automorphisms of poset block structures

In this section we will study the Gelfand pairs associated with
the action of groups on different structures, namely the poset block
structures. These structures contain, as a particular case, the rooted
binary trees that we considered in the previous sections. Moreover,
they constitute a subclass of a more general class, given by the or-
thogonal block structures ([3] and [4]). We give here the definition
of orthogonal block structure.

Let Ω be a finite set. Given a partition F of Ω, let RF be the
relation matrix of F , i.e.

RF (α, β) =

{
1 if α and β are in the same part of F

0 otherwise.

If RF (α, β) = 1, we usually write α ∼F β.

Definition 3.1. A partition F of Ω is uniform if all its parts
have the same size. This number is denoted kF .

The trivial partitions of Ω are the universal partition U , which
has a single part and whose relation matrix is JΩ, and the equality
partition E, all of whose parts are singletons and whose relation ma-
trix is IΩ. We denote JΩ the matrix of size |Ω| all of whose entries are
1 and IΩ the identity matrix of size |Ω|.

The partitions of Ω constitute a poset with respect to the relation
4, where F 4 G if every part of F is contained in a part of G. Given
any two partitions F and G, their infimum is denoted F ∧ G and is
the partition whose parts are intersections of F−parts with G−parts;
their supremum is denoted F ∨G and is the partition whose parts are
minimal subject to being unions of F−parts and G−parts.

Definition 3.2. A set F of uniform partitions of Ω is an orthog-
onal block structure if:

(1) F contains U and E;
(2) for all F and G ∈ F, F contains F ∧G and F ∨G;
(3) for all F and G ∈ F, the matrices RF and RG commute with

each other.

The groups that naturally act on the poset block structures are
the generalized wreath products of permutation groups, introduced in
[5]. We will show that they contain, as a particular case, the classical
direct product and wreath product of permutation groups. In the next
sections, we will give the definition and we will study the associated
Gelfand pairs.

3.1. The generalized wreath product of permutation groups.
Let (I,≤) be a finite poset, with |I| = n. First of all, we need some
definitions.
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Definition 3.3. A subset J ⊆ I is said

• ancestral if, whenever i > j and j ∈ J , then i ∈ J ;
• hereditary if, whenever i < j and j ∈ J , then i ∈ J ;
• a chain if, whenever i, j ∈ J , then either i ≤ j or j ≤ i;
• an antichain if, whenever i, j ∈ J and i 6= j, then neither
i ≤ j nor j ≤ i.

In particular, for every i ∈ I, the following subsets of I are ancestral:

A(i) = {j ∈ I : j > i} and A[i] = {j ∈ I : j ≥ i},
and the following subsets of I are hereditary:

H(i) = {j ∈ I : j < i} and H[i] = {j ∈ I : j ≤ i}.
Given a subset J ⊆ I, we set

• A(J) = ⋃i∈J A(i);
• A[J ] = ⋃i∈J A[i];
• H(J) =

⋃
i∈J H(i);

• H[J ] =
⋃

i∈J H[i].

In what follows we will use the notation in [5].
For each i ∈ I, let ∆i = {δi0, . . . , δim−1} be a finite set, with m ≥ 2.

For J ⊆ I, put ∆J =
∏

i∈J ∆i. In particular, we put ∆ = ∆I .
If K ⊆ J ⊆ I, let πJ

K denote the natural projection from ∆J onto
∆K . In particular, we put πJ = πI

J . Moreover, we will use ∆i for ∆A(i)

and πi for πA(i).
For each i ∈ I, let Gi be a permutation group on ∆i and let Fi be

the set of all functions from ∆i into Gi. For J ⊆ I, we put FJ =
∏

i∈J Fi

and set F = FI . An element of F will be denoted f = (fi), with fi ∈ Fi.

Definition 3.4. For each f ∈ F , the action of f on ∆ is defined
as follows: if δ = (δi) ∈ ∆, then

δf = ε, where ε = (εi) ∈ ∆ and εi = δi(δπ
ifi).(14)

It is easy to verify that this is a faithful action of F on ∆, i.e. if
f, h ∈ F and if δf = δh for all δ ∈ ∆, then f = h.

In [5] it is proven that (F,∆) is a permutation group with respect
to the action defined in (14). This group is called the generalized
wreath product of the permutation groups (Gi,∆i)i∈I and it is de-
noted

∏
(I,≤)(Gi,∆i).

The following theorem is given in [5]. We denote Sym(∆i) the sym-
metric group acting on the set ∆i. We also use the notation Sym(m)
if |∆i| = m.

Theorem 3.5. The generalized wreath product of the permutation
groups (Gi,∆i)i∈I is transitive on ∆ if and only if (Gi,∆i) is transitive
for each i ∈ I.
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In order to give the definition of poset block structure, we need to
introduce some equivalence relations on ∆, that we will call ancestral
relations.

Let A be the set of ancestral subsets of I. If J ∈ A, then the
equivalence relation ∼J on ∆ associated with J is defined as

δ ∼J ε ⇔ δπJ = επJ ,

for each δ, ε ∈ ∆.

Definition 3.6. A poset block structure is a pair (∆,∼A),
where

(1) ∆ =
∏

(I,≤) ∆i, with (I,≤) a finite poset and |∆i| ≥ 2, for
each i ∈ I;

(2) ∼A denotes the set of equivalence relations on ∆ defined by
the ancestral subsets of I.

Note that the set ∼A defines an orthogonal block structure on ∆.

Definition 3.7. An automorphism of a poset block structure
(∆,∼A) is a permutation σ of ∆ such that, for every equivalence ∼J

in ∼A,

δ ∼J ε ⇔ (δσ) ∼J (εσ),

for all δ, ε ∈ ∆.

The following theorem is proven in [5].

Theorem 3.8. Let (∆,∼A) be the poset block structure associ-
ated with the poset (I,≤). Let F be the generalized wreath product∏

(I,≤) Sym(∆i). Then F is the group of automorphisms of (∆, S).

Remark. We want to present an example of orthogonal block struc-
ture which cannot be obtained as the set ∼A of ancestral relations
associated with a poset (I,≤).

Consider the quaternion group Q = {1,−1, i,−i, j,−j, k,−k}. It
has four (all normal) proper subgroups, three of them isomorphic to
the Klein group and one isomorphic to the cyclic group Z/2Z. They
are:

I = {1, i,−1,−i}, J = {1, j,−1,−j}, K = {1, k,−1,−k}

and Z = {1,−1}.
Each subgroup R ≤ Q defines a uniform partition ∼R of Q into its
cosets. Since in this group all subgroups commute pairwise, these par-
titions form an orthogonal block structure of height 3 that can be
represented as
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Fig.10. The orthogonal block structure associated with Q.

On the other hand, it is easy to check that this structure cannot be
obtained as the ancestral poset of any poset (I,≤) with |I| = 3.

3.1.1. The permutation direct product. If (I,≤) is a finite poset,
with ≤ the identity relation, then the generalized wreath product be-
comes the permutation direct product.

r r r p p p p r
1 2 3 n

Fig.11. The poset I in the case of the permutation direct product.

In this case, we have A(i) = ∅ for each i ∈ I and so an element f
of F is given by f = (fi)i∈I , where fi is a function from a singleton
{∗} into Gi and so its action on δi does not depend from any other
component of δ.

To fix our ideas, consider the case n = 3, with ∆1 = ∆2 = ∆3 =
{0, 1}. The elements of ∆ can be represented as the leaves of a rooted
binary tree of depth three and so as words of length three in the alpha-
bet {0, 1}.

The partitions of ∆ given by the equivalences ∼J , with J ⊆ I
ancestral, are:

• ∆ = {000, 001, 010, 011, 100, 101, 110, 111} by the equivalence
∼∅;

• ∆ = {000, 001, 010, 011}∐{100, 101, 110, 111} by the equiva-
lence ∼{1};

• ∆ = {000, 001, 100, 101}∐{010, 011, 110, 111} by the equiva-
lence ∼{2};

• ∆ = {000, 010, 100, 110}∐{001, 011, 101, 111} by the equiva-
lence ∼{3};
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• ∆ = {000, 001}∐{010, 011}∐{100, 101}∐{110, 111} by the
equivalence ∼{1,2};

• ∆ = {000, 010}∐{001, 011}∐{100, 110}∐{101, 111} by the
equivalence ∼{1,3};

• ∆ = {000, 100}∐{001, 101}∐{010, 110}∐{011, 111} by the
equivalence ∼{2,3};

• ∆ = {000}∐{001}∐{010}∐{011}∐{100}∐{101}∐{110}∐{111} by the equivalence ∼I ;

The labelling in the picture describe the components of an automor-
phism f ∈ F acting on ∆, where f1(∗) = g1 ∈ G1, f2(∗) = g2 ∈ G2 and
f3(∗) = g3 ∈ G3.
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000 001 010 011 100 101 110 111

g1

g2 g2

g3 g3 g3 g3

Fig.12. The labelling of an automorphism f ∈ F acting on ∆.

3.1.2. The permutation wreath product. If (I,≤) is a finite chain as
in the following picture, r

r
rppppr
r

1

2

3

n− 1

n

Fig.13. The poset I in the case of the permutation wreath product.

then the generalized wreath product becomes the permutation wreath
product

(Gn,∆n) o (Gn−1,∆n−1) o · · · o (G1,∆1).

In this case, we have A(i) = {1, 2, . . . , i − 1} for each i ∈ I and so
an element f of F is given by f = (fi)i∈I , with

fi : ∆1 × · · · ×∆i−1 −→ Gi
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and so its action on δi depends on all the previous components of δ.

The partitions of ∆ given by the equivalences ∼J , with J ⊆ I
ancestral, are:

• ∆ = {000, 001, 010, 011, 100, 101, 110, 111} by the equivalence
∼∅;

• ∆ = {000, 001, 010, 011}∐{100, 101, 110, 111} by the equiva-
lence ∼{1};

• ∆ = {000, 001}∐{010, 011}∐{100, 101}∐{110, 111} by the
equivalence ∼{1,2};

• ∆ = {000}∐{001}∐{010}∐{011}∐{100}∐{101}∐{110}∐{111} by the equivalence ∼I ;

The labelling in the following picture describe the components of an au-
tomorphism f ∈ F acting on ∆, where f1(∗) = g1 ∈ G1 and f2(0), f2(1)
are elements of G2 and f3(00), f3(01), f3(10), f3(11) are elements of G3.
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f3(00) f3(01) f3(10) f3(11)

Fig.14. The labelling of an automorphism f ∈ F acting on ∆.

The representation of ∆ by a rooted tree of depth n is not the best
one. In [21] we give a better construction to represent a poset block
structure (∆,∼A), using the notion of ancestral poset. To understand
it, let us introduce in A a partial order relation ≤ defined as

J1 ≤ J2 ⇔ J1 ⊇ J2,

for all J1, J2 ∈ A. In particular, we write J1 l J2 if J1 ⊇ J2 and
J1 ⊇ J3 ⊇ J2 implies J1 = J3 or J2 = J3.

Its Hasse diagram is a poset (A,≤). Observe that the empty set
is always ancestral in I. A singleton {i} constituted by a maximal
element in I is still an ancestral set. Inductively, if J is an ancestral
set, then J t {i} is an ancestral set if i is a maximal element in I \ J .
So the length of a maximal chain in (A,≤) is n. We will call (A,≤)
the ancestral poset.
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As an example, consider the poset (I,≤) given by
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So we have

A = {∅, {1}, {3}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}}

and the poset (A,≤) is given by
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∅

{1} {3}

{1, 2} {1, 3}

{1, 2, 3} {1, 3, 4}

{1, 2, 3, 4}

Let C = {I = J0, J1, . . . , Jn = ∅} be a maximal chain in A, so that
|Jk| = |Jk−1| − 1 for all k = 1, . . . , n. In particular, let

Jk−1 = Jk
∐

{ik},

for all k = 1, . . . , n.
Let us design a rooted tree of depth n associated with C as follows:

the n−th level is constituted by |∆| vertices (each of these vertices
constitutes a class of the equivalence ∼I); the (n− 1)−st level is con-

stituted by |∆|
k∼J1

vertices. Each of these vertices is a father of k∼J1
sons

that are in the same class of the equivalence ∼J1 . Inductively, at the

i−th level there are |∆|
k∼Jn−i

vertices which are fathers of k∼Jn−i
vertices

of the (i + 1)−st level belonging to the same class of the equivalence
∼Jn−i

.
We can perform the same construction for every maximal chain C in

(A,≤). The next step is to assemble the different structures identifying
the vertices associated with the same relations. The resulting structure
is a poset P , that represents the poset block structure (∆,∼A).
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3.1.3. Example. Consider the case of the following poset (I,≤):
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One can easily check that, in this case, the ancestral poset (A,≤) is
the following:
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Supposem = 2 and ∆1 = ∆2 = ∆3 = {0, 1}, so that we can think of
∆ as the set of words of length 3 in the alphabet {0, 1}. The partitions
of ∆ given by the equivalences ∼J , with J ⊆ I ancestral, are:

• ∆ = {000, 001, 010, 011, 100, 101, 110, 111} by the equivalence
∼∅;

• ∆ = {000, 001, 010, 011}∐{100, 101, 110, 111} by the equiva-
lence ∼{1};

• ∆ = {000, 001}∐{010, 011}∐{100, 101}∐{110, 111} by the
equivalence ∼{1,2};

• ∆ = {000, 010}∐{001, 011}∐{100, 110}∐{101, 111} by the
equivalence ∼{1,3};

• ∆ = {000}∐{001}∐{010}∐{011}∐{100}∐{101}∐{110}∐{111} by the equivalence ∼I .

Consider the chains C1 = {I, {1, 2}, {1}, ∅} and C2 = {I, {1, 3}, {1}, ∅}
in A. The associated trees T1 and T2 are, respectively,
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Assembling these trees, we get the following poset block structure.q
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3.2. Gelfand pairs associated with groups of automorphisms
of a poset block structure. In what follows we will suppose Gi =
Sym(m), where |∆i| = m for all i ∈ I. Fix an element δ0 = (δ10, . . . , δ

n
0 )

in ∆. Then the stabilizer StabF (δ0) is the subgroup of F acting triv-
ially on δ0. We can think of an automorphism f ∈ F as the n−tuple
(f1, . . . , fn), with fi : ∆

i −→ Sym(m). Set ∆i
0 =

∏
j∈A(i) δ

j
0. We have

the following lemma.

Lemma 3.9. The stabilizer of δ0 = (δ10, . . . , δ
n
0 ) ∈ ∆ in F is the

subgroup

K := StabF (δ0) = {f = (f1, . . . , fn) ∈ F : fi|∆i
0
∈ StabSym(m)(δ

i
0)

whenever ∆i = ∆i
0 or A(i) = ∅}.

Proof. One can easily verify that K is a subgroup of F . If i ∈ I is
such that A(i) = ∅ then, by definition of generalized wreath product,
it must be fi(∗) ∈ StabSym(m)(δ

i
0). For the remaining indices i ∈ I we
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have

δi0f = δi0 ⇐⇒ δi0(δ
A(i)
0 )fi = δi0

⇐⇒ (δ
A(i)
0 )fi ∈ StabSym(m)(δ

i
0)

⇐⇒ fi|∆i
0
∈ StabSym(m)(δ

i
0).

This proves the lemma. �

In the following lemma the K−orbits on ∆ are described. We recall
that the action of Sym(m− 1) ∼= StabSym(m)(δ

i
0) on ∆i has two orbits,

i.e. ∆i = {δi0}
∐
(∆i \ {δi0}). Set ∆0

i = {δi0} and ∆1
i = ∆i \ {δi0}.

Lemma 3.10. The K−orbits on ∆ have the following form:

 ∏

i∈I\H[S]

∆0
i


×

(∏

i∈S
∆1

i

)
×


 ∏

i∈H(S)

∆i


 ,

where S is any antichain in I.

Proof. First of all suppose that δ, ε ∈
(∏

i∈I\H[S] ∆
0
i

)
×
(∏

i∈S ∆
1
i

)
×

(∏
i∈H(S) ∆i

)
, for some antichain S. Then δI\H[S] = εI\H[S] = δ

I\H[S]
0 . If

s ∈ S we haveA(s) ⊆ I\H[S] and this implies (A(s))fs ∈ StabSym(m)(δ
s
0).

So εs = δs(δ
A(s)
0 fs). If i ∈ H(S) then A(i) 6= ∅ and ∆i 6= ∆i

0. This

implies (A(i))fi ∈ Sym(m) and so εi = δi(δ
A(i)
0 fi). This shows that K

acts transitively on each orbit.
On the other hand, let S 6= S ′ be two distinct antichains and δ ∈(∏
i∈I\H[S] ∆

0
i

)
×
(∏

i∈S ∆
1
i

)
×
(∏

i∈H(S) ∆i

)
and ε ∈

(∏
i∈I\H[S′] ∆

0
i

)
×

(∏
i∈S′ ∆1

i

)
×
(∏

i∈H(S′) ∆i

)
. Suppose s ∈ S \ (S ∩ S ′) and so I \

H[S] 6= I \H[S ′]. If s ∈ I \H[S ′] then δs 6= δs0 = εs. But (A(S))fs ∈
StabSym(m)(δ

s
0) and so δs(A(S)fs) 6= εs. If s ∈ H(S ′) there exists

s′ ∈ S ′ \ (S ∩ S ′) such that s < s′. This implies that s′ ∈ I \H[S] and
we can proceed as above.

The proof follows from the fact that the orbits are effectively a par-
tition of ∆. �

Using Gelfand’s condition (Lemma 1.3), the next proposition will
prove that the generalized wreath product F =

∏
(I,≤)(Sym(∆i),∆i)

acting on ∆ and the stabilizer K of the element δ0 = (δ10, . . . , δ
n
0 ) con-

stitute a Gelfand pair.

Proposition 3.11. Given (δ, ε) ∈ ∆ ×∆, there exists an element
g ∈ F such that g(δ, ε) = (ε, δ).
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Proof. Set δ = (δi)i∈I and ε = (εi)i∈I . Let i ∈ I such that A(i) =
∅. Then, by the m−transitivity of the symmetric group Sym(m) ∼=
Sym(∆i), there exists gi ∈ Sym(∆i) such that δigi = εi and εigi = δi.
For every index i such that A(i) 6= ∅ define fi : ∆

i −→ Sym(∆i) as
δπifi = επifi = σi where σi ∈ Sym(∆i) is a permutation such that
δiσi = εi and εiσi = δi. The element g ∈ F that we get is the requested
automorphism. �

Corollary 3.12. (F,K) is a symmetric Gelfand pair.

Now set L(∆) = {f : ∆ −→ C}. In [5] the authors give the decom-
position of L(∆) into F−irreducible subrepresentations. In particular,
one has

L(∆) =
⊕

S⊆I antichain

WS(15)

with

WS =


 ⊗

i∈A(S)

L(∆i)


⊗

(⊗

i∈S
V 1
i

)
⊗


 ⊗

i∈I\A[S]

V 0
i


 ,(16)

where, for each i = 1, . . . , n, L(∆i) is the space of the complex functions
on ∆i, whose decomposition into Gi−irreducible subrepresentations is

L(∆i) = V 0
i

⊕
V 1
i ,

where V 0
i
∼= C is the subspace of constant functions on ∆i and V

1
i =

{f : ∆i → C :
∑

x∈∆i
f(x) = 0}. Moreover, one has WS = WS′ if

and only if S = S ′. In particular, this gives an alternative proof of
the fact that (F,K) is a Gelfand pair, since the decomposition (15) is
multiplicity-free.

Actually, the authors do not mention about Gelfand pairs theory, so
in [21] we preferred to give a different proof, which appears in Propo-
sition 3.11. On the other hand, the multiplicity-free decomposition of
L(∆) is not a sufficient condition to get a symmetric Gelfand pair.

In the next proposition we present the spherical functions associated
with the symmetric Gelfand pair (F,K).

Proposition 3.13. For every antichain S ⊆ I, the spherical func-
tion φS belonging to the subspace WS is

φS =
⊗

i∈A(S)

ϕi

⊗

i∈S
ψi

⊗

i∈I\A[S]

ρi,(17)

where ϕi is the function defined on ∆i as

ϕi(x) =

{
1 x = δi0
0 otherwise
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and ψi is the function defined on ∆i as

ψi(x) =

{
1 x = δi0
− 1

m−1
otherwise

and ρi is the function on ∆i such that ρi(x) = 1 for every x ∈ ∆i.

Proof. It is clear that φS ∈ WS and that φS(δ0) = 1, so it remains
to show that each φS is K−invariant.

Set B1 = {i ∈ A(S) : A(i) = ∅}. If there exists i ∈ B1 such
that δi 6= δi0 then φS(δ) = φk

S(δ) = 0 for every k ∈ K, since δiϕi =
(δik

−1)ϕi = 0 because ki ∈ StabGi
(δi0). Hence φ and φk coincide on

the elements δ ∈ ∆ satisfying this property. So we can suppose that
δi = δi0 for each i ∈ B1.

Let B2 be the set of maximal elements in A(S) \B1. If there exists
j ∈ B2 such that δj 6= δj0 then one has φS(δ) = φk

S(δ) = 0 for every
k ∈ K, since δjϕj = (δjk

−1)ϕj = 0 because ki ∈ StabGi
(δi0). Hence φ

and φk coincide on δ ∈ ∆ satisfying this property. So we can suppose
that δj = δj0 for each j ∈ B2. Iterating this argument, we can restrict

our attention to the elements such that δA(S) = δ
A(S)
0 . We have to prove

that φS(δ) = φk
S(δ), what means (δi)ψi = (δi)ψ

k
i for every i ∈ S. This

easily follows from the definition of K and of the function ψi. �

3.3. The substructures of a poset block structures. As in
the case of the rooted tree of type m and its subtrees of type r, also in
the case of the poset block structures it is possible to define some sub-
structures and to consider the action of the generalized wreath product
on the variety constituted by these substructures.

Consider the poset block structure associated with the poset (I,≤),
with |I| = n.

For each i ∈ I, let ∆i = {δi0, . . . , δimi−1} be a finite set, with mi ≥ 2
for all i = 1, . . . , n.

In order to understand how a substructure is done, we consider
again the representation of ∆ by a rooted tree of depth n and whose
branch indices are m = (m1, . . . ,mn).

We want to define a substructure with branch indices r= (r1, . . . , rn).
If i ∈ {1, . . . , n} is an index such that A(i) = ∅, then the choice of ri
elements in ∆i does not depend from any other index.

If i ∈ {1, . . . , n} is an index such that ∅ 6= A(i) = {i1, . . . , ik},
then the choice of ri elements in ∆i depends on the choices performed
for the indices i1, . . . , ik. We suppose here that il < i in N, for every
l = 1, . . . , k. In other words, the i−th choice is the same for those
substructures that coincide on the indices belonging to A(i).

So the main difference that we have with respect to the case of the
subtrees of a rooted tree is that, this time, the subtrees are not free and
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they have to be chosen following the conditions given by the ancestral
sets A(i).

Example. Consider the poset (I,≤) in the following figure:

r
r r
1

2

3

We have A(1) = A(3) = ∅ and A(2) = {1}. Put now m = (3, 3, 3) and
r = (2, 2, 2). A substructure can be represented as a subtree of type
r of the rooted tree of depth 3 of type m, with the condition that the
choice of 2 elements in ∆1 (first level) is free, the choice of 2 elements
in ∆2 (second level) depends on the first level and the choice of 2 ele-
ments of ∆3 does not depend from any previous choice, so it must by
the same starting from each vertex of the second level. For example,
we can get the following substructure:
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Fig.15. A substructure of type (2, 2, 2).

If the poset (I,≤) is the chain in Figure 13, then we have A(i) =
{1, . . . , i − 1}. This implies that, for each i ≥ 2, the choice of mi ele-
ments in ∆i is a function of all the previous coordinates and so it can
be different starting from every vertex of the (i − 1)−st level (that is
the case of the usual subtrees of a rooted trees).
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It is easy to check that the number of the substructures defined
above is exactly

∏

i∈I:A(i)=∅

(
mi

ri

)
·

∏

i∈I:A(i) 6=∅

(
mi

ri

)∏
j∈A(i) rj

.

In fact, for those indices i ∈ I such that A(i) = ∅, we have
(
mi

ri

)
possible

choices; for those indices i ∈ I such that A(i) 6= ∅, we have
(
mi

ri

)
possible

choices for each of the
∏

j∈A(i) rj vertices corresponding to (eventually)

different choices for the coordinates in A(i).

It is not difficult to verify that the generalized wreath product F
of the symmetric groups of the sets ∆i transitively acts on the variety
of the substructures of a poset block structure.

We can also prove, using Gelfand’s Condition, that (F,K) is a sym-
metric Gelfand pair, where K denotes the stabilizer of a fixed substruc-
ture. In fact, the following theorem holds.

Theorem 3.14. Let (I,≤) be a finite poset and let ∆ be the asso-
ciated poset block structure. Let F be the generalized wreath product of
the symmetric groups Sym(∆i), with |∆i| = mi ≥ 2 for all i ∈ I. Let
r be an n−tuple of integers such that 1 ≤ ri ≤ mi. If A and B are two
substructures of type r in ∆, then there exists an automorphism f ∈ F
of ∆ such that f(A) = B and f(B) = A.

Proof. We can suppose, without loss of generality, that A(1) = ∅.
We want to get an automorphism f = (fi)i∈I ∈ F such that f(A) = B
and f(B) = A. We will proceed by induction on the depth of the
substructure.

Set π1(A) = {iA1 , . . . , iAr1} and π1(B) = {iB1 , . . . , iBr1}.
By the m1−transitivity of Sym(∆1), we can choose a permutation
f1 ∈ Sym(∆1) fixing π1(A) ∩ π1(B) such that f1(π1(A) \ (π1(A) ∩
π1(B))) = π1(B) \ (π1(A) ∩ π1(B)) and f1(π1(B) \ (π1(A) ∩ π1(B))) =
π1(A) \ (π1(A) ∩ π1(B)).

Now let 2 ≤ j ≤ n and A(j) = {j1, . . . , jk}, with j1 < . . . <
jk < j in N. Suppose that we have found an automorphism f ′ ∈
F such that f ′(π{1,...,j−1}(A)) = π{1,...,j−1}(B) and f ′(π{1,...,j−1}(B)) =
π{1,...,j−1}(A). We want to show that this result can be extended to
the j−th level. For both A and B, the vertices at the (j − 1)−st level
are exactly r1r2 · · · rj−1. Moreover f ′ maps vertices of the (j − 1)−st
level having the same choices for the coordinates in A(j) into vertices
that still have the same choices for the coordinates in A(j), since f ′ is
an automorphism of the poset block structure. Now for each possible
ancestral situation aj ∈ ∆j for the vertices of the (j − 1)−st level of
A, we put fj(aj) = gAj ∈ Sym(∆j), where g

A
j maps the rj elements
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starting from those vertices into the rj elements in B starting from the
image of those vertices by f ′.

Analogously for each possible ancestral situation bj ∈ ∆j for the
vertices of the (j − 1)−st level of B.

If aj = bj, then fj has to be defined has fj(aj) = gAB
j ∈ Sym(∆j),

where gAB
j maps the rj elements in A into the rj elements of B and

viceversa.
If we put f ′′ = (1, . . . , 1, fj, 1, . . . , 1), then the composition of f ′

and f ′′ gives the automorphism f required. �

Now let K be the stabilizer of a fixed substructure. We get the follow-
ing corollary.

Corollary 3.15. (F,K) is a symmetric Gelfand pair.



CHAPTER 2

Markov Chains

In this second chapter, we will change our point of view: we will
leave the Group Theory to get a probabilistic approach. In particular,
we will introduce some special Markov chains defined on finite sets:
the associated spectral analysis will give interesting results, since the
eigenspaces obtained will coincide with the irreducible submodules that
one gets considering the action of a particular group on the space of
the functions defined on the same set.

1. Reversible Markov Chains: general properties

In this section we recall some fundamental facts about finite Markov
chains, that we will frequently use later. Our main source is [16].

Consider a finite set X, with |X| = m. Let P = (p(x, y))x,y∈X be
a stochastic matrix of size m whose rows and columns are indexed by
the elements of X, so that

∑

x∈X
p(x0, x) = 1,

for every x0 ∈ X. Consider the Markov chain on X with transition
matrix P . We will use the notation P to indicate the Markov chain
too.

Definition 1.1. A probability measure (or distribution) on X
is a function ν : X → [0, 1] such that

∑
x∈X ν(x) = 1. It is called strict

if ν(x) > 0 for every x ∈ X.

Definition 1.2. The Markov chain P is reversible if there exists
a strict probability measure π on X such that

π(x)p(x, y) = π(y)p(y, x),

for all x, y ∈ X.

We will say that P and π are in detailed balance. For a complete
treatment about these topics see [2].

Define a scalar product on L(X) = {f : X −→ C} in the following
way:

〈f1, f2〉π =
∑

x∈X
f1(x)f2(x)π(x),(18)

49
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for all f1, f2 ∈ L(X). Moreover, let P be the linear operator on L(X)
defined as:

(Pf)(x) =
∑

y∈X
p(x, y)f(y).(19)

Proposition 1.3. P and π are in detailed balance if and only if P
is self-adjoint with respect to the scalar product 〈·, ·〉π.

Proof. Suppose that P and π are in detailed balance and let
f1, f2 ∈ L(X). One has:

〈Pf1, f2〉π =
∑

x∈X

(∑

y∈X
p(x, y)f1(y)

)
f2(x)π(x)

=
∑

x∈X

∑

y∈X
π(x)p(x, y)f1(y)f2(x)

=
∑

x∈X

∑

y∈X
π(y)p(y, x)f1(y)f2(x)

= 〈f1, Pf2〉π.
Conversely, if we suppose that P is self-adjoint with respect to the
scalar product 〈·, ·〉π, we get:

π(x)p(x, y) = 〈Pδy, δx〉π = 〈δy, P δx〉π = π(y)p(y, x),

where, for every x ∈ X, the Dirac function δx is defined as:

δx(y) =

{
1 if y = x

0 otherwise.

�

The following lemma gives a fundamental characterization of the spec-
trum of stochastic matrices.

Lemma 1.4. Let P be a stochastic matrix. Then 1 is always an
eigenvalue of P . Moreover, if λ is another eigenvalue, then |λ| ≤ 1.

Proof. Let 1X the function such that 1X(x) = 1, for all x ∈ X.
Then P1X = 1X and so 1 is an eigenvalue. Now let λ be another
eigenvalue of P . Choose x ∈ X such that |f(x)| ≥ |f(y)| for all y ∈ X
(it is possible since X is a finite set). Then

|λf(x)| = |Pf(x)| = |
∑

y∈X
p(x, y)f(y)| ≤

∑

y∈X
p(x, y)|f(y)|

≤ |f(x)|
∑

y∈X
p(x, y) = |f(x)|,

which implies the assertion. �
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Moreover it is known that, under the hypothesis that P is in detailed
balance with π, it can be diagonalized over the reals.

Let λz be the eigenvalues of the matrix P , for every z ∈ X, with
λz0 = 1. Then there exists an invertible unitary real matrix U =
(u(x, y))x,y∈X such that PU = U∆, where ∆ = (λxδx(y))x,y∈X is the
diagonal matrix whose entries are the eigenvalues of P . This equation
gives, for all x, z ∈ X,

(20)
∑

y∈X
p(x, y)u(y, z) = u(x, z)λz.

Moreover, we have UTDU = I, where D = (π(x)δx(y))x,y∈X is the
diagonal matrix of coefficients of π. This second equation gives, for all
y, z ∈ X,

(21)
∑

x∈X
u(x, y)u(x, z)π(x) = δy(z).

Hence, the first equation tells us that each column of U is an eigen-
vector of P , the second one tells us that these columns are orthogonal
with respect to the product 〈·, ·〉π.

If the spectral analysis is given, one can deduce the k−step tran-
sition probability, following the next proposition.

Proposition 1.5. The k−th step transition probability is given by

(22) p(k)(x, y) = π(y)
∑

z∈X
u(x, z)λkzu(y, z),

for all x, y ∈ X.

Proof. The proof is a consequence of (20) and (21). In fact, the
matrix UTD is the inverse of U , so that UUTD = I. This means

∑

y∈X
u(x, y)u(z, y) =

1

π(z)
∆z(x).

From the equation PU = U∆ we get P = U∆UTD, which gives

p(x, y) = π(y)
∑

z∈X
u(x, z)λzu(y, z).

Iterating this argument we get

P k = U∆kUTD,

which is the assertion. �

Definition 1.6. Let P be a stochastic matrix. P is ergodic if
there exists n0 ∈ N such that

p(n0)(x, y) > 0, for all x, y ∈ X.
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In order to study the ergodicity property, it is useful to recall that
there exists a correspondence between reversible Markov chains and
weighted graphs.

Definition 1.7. A weight on a graph G = (X,E) is a function
w : X ×X −→ [0,+∞) such that

(1) w(x, y) = w(y, x);
(2) w(x, y) > 0 if and only if x ∼ y.

If G is a weighted graph, a stochastic matrix P = (P (x, y))x,y∈X on
X can be associated with w by setting

p(x, y) =
w(x, y)

W (x)
,

with W (x) =
∑

z∈X w(x, z). The corresponding Markov chain is called
the random walk on G. It is easy to prove that the matrix P is in
detailed balance with the distribution π defined, for every x ∈ X, as

π(x) =
W (x)

W
,

with W =
∑

z∈X W (z). Moreover, π is strictly positive if X does not
contain isolated vertices.

The inverse construction can be performed. Namely, if we have a
transition matrix P on X which is in detailed balance with the proba-
bility π, then we can define a weight w as w(x, y) = π(x)p(x, y). This
definition guarantees the symmetry of w and one gets a weighted graph
by setting E = {{x, y} : w(x, y) > 0}.

There exist some interesting relations between the weighted graph
associated with a transition matrix P and its spectrum. In fact, it
is easy to prove that the multiplicity of the eigenvalue 1 of P equals
the number of connected components of G, as the following proposition
shows.

Proposition 1.8. Let G = (X,E,w) be a finite weighted graph.
Then the multiplicity of the eigenvalue 1 of the transition matrix P
equals the number of connected components of G.

Proof. By definition of the Markov operator P , it is obvious that
if a function f ∈ L(X) is constant in each connected component, then
Pf = f .

Conversely, suppose Pf = f , with f real valued and non identically
zero. Let X0 ⊂ X a connected component of G and let x0 ∈ X0 be
such that |f(x0)| ≥ |f(y)|, for all y ∈ X0. Up to replace f by −f , we
can suppose f(x0) ≥ 0. We have f(x0) =

∑
y∈X0

p(x0, y)f(y). Since∑
y∈X0

p(x0, y) = 1, we get
∑

y∈X0

p(x0, y)(f(x0)− f(y)) = 0.
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Since p(x0, y) ≥ 0 and f(x0) ≥ f(y) for all y ∈ X0, we deduce f(y) =
f(x0) for all y ∼ x0. Consider now any vertex z ∈ X0: by definition of
X0, there exists a path p = (x0, x1, . . . , xn = z) connecting x0 to z.

We have proven above that f(x1) = f(x0) ≥ f(y) for all y ∈ X0.
Iterating the same argument one gets

f(x0) = f(x1) = · · · = f(xn) = f(z)

and so f is constant on the connected components of G, what completes
the proof. �

Definition 1.9. A graph G = (X,E) is bipartite if there exists
a nontrivial partition X = X1

∐
X2 of its vertices such that E ⊆

{{x1, x2} : x1 ∈ X1, x2 ∈ X2}, i.e. every edge joins a vertex in
X1 with a vertex in X2.

The following propositions hold (see [16] for the proof).

Proposition 1.10. Let G = (X,E,w) be a finite connected weighted
graph and denote by P the corresponding transition matrix. Then the
following are equivalent:

(1) G is bipartite;
(2) the spectrum σ(P ) is symmetric, i.e. λ ∈ σ(P ) if and only if

−λ ∈ σ(P );
(3) −1 ∈ σ(P ).

Proposition 1.11. Let G = (X,E) be a finite graph. Then the
following conditions are equivalent:

(1) G is connected and not bipartite;
(2) for every weight function on X, the associated transition ma-

trix P is ergodic.

So we can conclude that a reversible transition matrix P is ergodic
if and only if the eigenvalue 1 has multiplicity one and −1 is not an
eigenvalue.

2. Crested product of Markov Chains

In this section (see also [18]) we introduce a particular product of
Markov chains defined on different sets. This idea is inspired to the
definition of crested product for association schemes (see Section 4 of
this chapter) given in [4]. In [18], we refer to it as the first crested
product.

We need the following definition.

Definition 2.1. A stochastic matrix P on a set X is irreducible
if, for every x1, x2 ∈ X, there exists n = n(x1, x2) such that p(n)(x1, x2)
> 0.
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In particular, it is clear that the irreducibility is equivalent to re-
quire that the graph associated with the probability P is connected, so
that the eigenvalue 1 has multiplicity one.

Now for every i = 1, . . . , n let Xi be a finite set, with |Xi| = mi, so
that we can identify Xi with the set {0, 1, . . . ,mi − 1}. Let Pi be an
irreducible Markov chain on Xi and let pi be the transition probability
associated with Pi. Moreover, assume that pi is in detailed balance
with the strict probability measure σi on Xi, so that

σi(x)pi(x, y) = σi(y)pi(y, x),

for all x, y ∈ Xi.
Consider the cartesian product X1 × · · · × Xn. Let {1, . . . , n} =

C
∐
N be a partition of the set {1, . . . , n} and let p01, p

0
2, . . . , p

0
n be real

numbers such that p0i > 0 for every i = 1, . . . , n and
∑n

i=1 p
0
i = 1.

Definition 2.2. The crested product of Markov chains Pi’s with
respect to the partition {1, . . . , n} = C

∐
N is the Markov chain on the

product X1 × · · · ×Xn whose transition matrix is

P =
∑

i∈C
p0i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ii+1 ⊗ · · · ⊗ In)(23)

+
∑

i∈N
p0i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ji+1 ⊗ · · · ⊗ Jn) ,

where Ii denotes the identity matrix of size mi and Ji denotes the uni-
form matrix on Xi, i.e. the matrix of size mi all of whose entries are
1
mi
, so that

Ji =
1

mi




1 1 · · · 1

1
. . .

...
...

. . .
...

1 · · · · · · 1


 .

In other words, we choose an index i ∈ {1, . . . , n} with probability
p0i . If i ∈ C, then P acts on the i−th coordinate by the matrix Pi and
fixes the remaining coordinates; if i ∈ N , then P fixes the coordinates
corresponding to the indices {1, . . . , i−1}, acts on the i−th coordinate
by the matrix Pi and changes uniformly the remaining ones.

From (23) it follows that, for all (x1, . . . , xn), (y1, . . . , yn) ∈ X1 ×
· · · ×Xn, the transition probability p associated with P is given by

p((x1, . . . , xn), (y1, . . . , yn)) =

∑

i∈C
p0i (δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)δi+1(xi+1, yi+1) · · · δn(xn, yn))
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+
∑

i∈N
p0i

(
δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)∏n

j=i+1mj

)
,

where δi is defined by

δi(xi, yi) =

{
1 if xi = yi,

0 otherwise.

We want to investigate the spectral analysis of the operator P . We
recall that the following isomorphism holds:

L(X1 × · · · ×Xn) ∼=
n⊗

i=1

L(Xi),

where (f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) := f1(x1)f2(x2) · · · fn(xn), with fi ∈
L(Xi) and xi ∈ Xi, for every i = 1, . . . , n.

Assume that, for every i = 1, . . . , n, the following spectral decom-
position holds:

L(Xi) =

ri⊕

ji=0

V i
ji
,

where V i
ji

is an eigenspace for Pi with associated eigenvalue λji and
whose dimension is mji . Observe that the hypothesis of reversibility
implies that λji is real and that the hypothesis of irreducibility implies
that the multiplicity of 1 as eigenvalue is one.

Now set N = {i1, . . . , il} and C = {c1, . . . , ch}, with h+ l = n and
such that i1 < . . . < il and c1 < . . . < ch.

Theorem 2.3. The probability P defined above is reversible if and
only if Pk is symmetric for every k > i1. If this is the case, P is in
detailed balance with the strict probability measure π on X1 × · · · ×Xn

given by

π(x1, . . . , xn) =
σ1(x1)σ2(x2) · · ·σi1(xi1)

mi1+1 · · ·mn

.

Proof. Consider the elements x = (x1, . . . , xn) and y = (y1, . . . , yn)
belonging to X1×· · ·×Xn. First, we want to prove that the condition
σk = 1

mk
, for every k > i1, is sufficient. Let k ∈ {1, . . . , n} such that

xi = yi for every i = 1, . . . , k − 1 and xk 6= yk. Suppose k < i1. Then
we have

p(x, y) = p0k (pk(xk, yk)δk+1(xk+1, yk+1) · · · δn(xn, yn)) .
If xi = yi for every i = k + 1, . . . , n, we get

π(x)p(x, y) = σ1(x1) · · ·σk(xk) · · ·σi1(xi1)p0k
pk(xk, yk)

mi1+1 · · ·mn

= σ1(y1) · · ·σk(yk) · · ·σi1(yi1)p0k
pk(yk, xk)

mi1+1 · · ·mn

= π(y)p(y, x),
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since σk(xk)pk(xk, yk) = σk(yk)pk(yk, xk). If the condition xi = yi is
not satisfied for every i = k+1, . . . , n, then the equality π(x)p(x, y) =
π(y)p(y, x) = 0 easily follows.

If k = i1, then we get

p(x, y) = p0i1

(
pi1(xi1 , yi1)

1

mi1+1 · · ·mn

)

and so

π(x)p(x, y) = σ1(x1) · · ·σi1(xi1)p0i1
pi1(xi1 , yi1)

m2
i1+1 · · ·m2

n

= σ1(y1) · · · · · ·σi1(yi1)p0i1
pi1(yi1 , xi1)

m2
i1+1 · · ·m2

n

= π(y)p(y, x),

since σi1(xi1)pi1(xi1 , yi1) = σi1(yi1)pi1(yi1 , xi1).
In the case k > i1, we have

p(x, y) =
∑

i∈N,i≤k

p0i
pi(xi, yi)

mi+1 · · ·mn

and so

π(x)p(x, y) =
σ1(x1) · · ·σi1(xi1)
mi1+1 · · ·mn

∑

i∈N,i≤k

p0i
pi(xi, yi)

mi+1 · · ·mn

=
σ1(y1) · · ·σi1(yi1)
mi1+1 · · ·mn

∑

i∈N,i≤k

p0i
pi(yi, xi)

mi+1 · · ·mn

= π(y)p(y, x).

In fact, the terms corresponding to an index i < k satisfy pi(xi, yi) =
pi(yi, xi) since xi = yi, the term corresponding to the index k satisfies
pk(xk, yk) = pk(yk, xk) since the equality

pk(xk, yk) = pk(yk, xk)

holds by hypothesis.
Now we want to prove that the condition σk =

1
mk

, for every k > i1,

is also necessary. Suppose that the equality π(x)p(x, y) = π(y)p(y, x)
holds. By hypothesis of irreducibility we can consider two elements
x0, y0 ∈ X1 × · · · ×Xn such that x0i1 6= y0i1 and with the property that
pi1(x

0
i1
, y0i1) 6= 0. Now we have

π(x0)p(x0, y0) = π(y0)p(y0, x0) ⇔ π(x0)pi1(x
0
i1
, y0i1) = π(y0)pi1(y

0
i1
, x0i1).

This gives

π(x0)

π(y0)
=
pi1(y

0
i1
, x0i1)

pi1(x
0
i1
, y0i1)

=
σi1(x

0
i1
)

σi1(y
0
i1
)
.
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Consider now the element x = (x01, . . . , x
0
i1
, y0i1+1, . . . , y

0
n). The equality

π(x)p(x, y0) = π(y0)p(y0, x) implies

π(x)

π(y0)
=
pi1(y

0
i1
, x0i1)

pi1(x
0
i1
, y0i1)

=
σi1(x

0
i1
)

σi1(y
0
i1
)
.

So we get π(x0) = π(x), i.e. the probability π does not depend from the
coordinates i1+1, . . . , n. Set now x′ = (x01, . . . , x

0
i1
, . . . , x0k−1, xk, . . . , xn).

The equality π(x0)p(x0, x′) = π(x′)p(x′, x0) gives

π(x0)

( ∑

j∈N,j≤k

p0j(pj(x
0
j , x

′
j))

)
= π(x′)

( ∑

j∈N,j≤k

p0j(pj(x
′
j, x

0
j))

)
.

Since the probability π does not depend from the coordinates i1 +
1, . . . , n, we get pk(x

0
k, x

′
k) = pk(x

′
k, x

0
k). This implies σk(x

′
k) = σk(x

0
k)

and so the hypothesis of irreducibility guarantees that σk is uniform on
Xk. This completes the proof. �

From now on, suppose that the matrix Pk is symmetric for every k > i1.
The following theorem describes the eigenspaces of P .

Theorem 2.4. The eigenspaces of the operator P are given by

• W 1 ⊗ · · · ⊗W k−1 ⊗ V k
jk
⊗ V k+1

0 ⊗ V k+2
0 ⊗ · · · ⊗ V n

0 ,
with jk 6= 0, for k ∈ {i1 + 1, . . . , n} and where

W i =

{
L(Xi) if i ∈ N,

V i
ji
, ji = 0, . . . , ri if i ∈ C,

with eigenvalue
∑

i∈C:i<k

p0iλji + p0kλjk +
∑

i>k

p0i .

• V 1
j1
⊗ · · · ⊗ V i1−1

ji1−1
⊗ V i1

ji1
⊗ V i1+1

0 ⊗ · · · ⊗ V n
0 ,

with jt = 0, . . . , rt, for every t = 1, . . . , i1, with eigenvalue

i1∑

i=1

p0iλji +
n∑

i=i1+1

p0i .

Proof. Fix an index k ∈ {i1 + 1, i1 + 2, . . . , n} and consider the
function ϕ in the space

W 1 ⊗ · · · ⊗W k−1 ⊗ V k
jk
⊗ V k+1

0 ⊗ V k+2
0 ⊗ · · · ⊗ V n

0 ,

with jk 6= 0 and

W i =

{
L(Xi) if i ∈ N,

V i
ji
, ji = 0, . . . , ri if i ∈ C,
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so that ϕ = ϕ1 ⊗ · · · ⊗ ϕk−1 ⊗ ϕk ⊗ ϕk+1 ⊗ · · · ⊗ ϕn with ϕi ∈ W i

for i = 1, . . . , k − 1, ϕk ∈ V k
jk

and ϕl ∈ V l
0 for l = k + 1, . . . , n. Set

x = (x1, . . . , xn) and y = (y1, . . . , yn), then

(Pϕ)(x) =
∑

y

p(x, y)ϕ(y)

=
∑

y

(∑

i∈C
p0i δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)δi+1(xi+1, yi+1) · · · δn(xn, yn)

+
∑

i∈N
p0i δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)

1

mi+1

· · · 1

mn

)

× ϕ1(y1) · · ·ϕk−1(yk−1)ϕk(yk)ϕk+1(yk+1) · · ·ϕn(yn)

=
∑

i∈C, i≤k

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈C, i>k

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈N, i>k

( ∑

yi,...,yn

p0i pi(xi, yi)
1

mi+1

· · · 1

mn

ϕi(yi) · · ·ϕn(yn)

)
ϕ1(x1) · · ·ϕi−1(xi−1)

+ χN(k)
∑

yk,...,yn

p0kpk(xk, yk)
1

mk+1

· · · 1

mn

ϕ1(x1) · · ·ϕk−1(xk−1)ϕk(yk) · · ·ϕn(yn)

=
∑

i∈C, i≤k

p0iλjiϕ(x) +
∑

i∈C, i>k

p0i · 1 · ϕ(x)

+
∑

i∈N, i>k

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ χN(k)
∑

yk

p0kpk(xk, yk)ϕ1(x1) · · ·ϕk−1(xk−1)ϕk(yk)ϕk+1(xk+1) · · ·ϕn(xn)

=
∑

i∈C, i≤k

p0iλjiϕ(x) +
∑

i∈C, i>k

p0iϕ(x) +
∑

i∈N, i>k

p0iϕ(x) + χN(k)p
0
kλjkϕ(x)

=

( ∑

i∈C, i<k

p0iλji + p0kλjk +
∑

i>k

p0i

)
ϕ(x),

where χN is the characteristic function of N . Note that in this case
the summands corresponding to the indices i < k, i ∈ N , are equal to
0 since we have supposed jk 6= 0.

Consider now the function ϕ in the space

V 1
j1
⊗ · · ·V i1−1

ji1−1
⊗ V i1

ji1
⊗ V i1+1

0 ⊗ · · · ⊗ V n
0 ,
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with jt = 0, . . . , rt, for every t = 1, . . . , i1. In this case we have

(Pϕ)(x) =
∑

y

p(x, y)ϕ(y)

=
∑

i∈C, i<i1

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈C, i>i1

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈N, i>i1

( ∑

yi,...,yn

p0i pi(xi, yi)
1

mi+1

· · · 1

mn

ϕi(yi) · · ·ϕn(xn)

)
ϕ1(x1) · · ·ϕi−1(xi−1)

+
∑

yi1 ,...,yn

(
p0i1pi1(xi1 , yi1)

1

mi1+1

· · · 1

mn

ϕi1(yi1) · · ·ϕn(xn)

)
ϕ1(x1) · · ·ϕi1−1(xi1−1)

=
∑

i∈C, i<i1

p0iλjiϕ(x) +
∑

i∈C, i>i1

p0iϕ(x) +
∑

i∈N, i>i1

p0iϕ(x) + p0i1λji1ϕ(x)

=

(
i1∑

i=1

p0iλji +
n∑

i=i1+1

p0i

)
ϕ(x).

Observe that, by computing the sum of the dimensions of these eigenspaces,
one gets

n∑

k=i1+1

m1 · · ·mk−1(mk − 1) +m1m2 · · ·mi1 = m1m2 · · ·mn,

which is just the dimension of the space X1 × · · · ×Xn. �

Remark. The expression of the eigenvalues of P given in the pre-
vious theorem tells us that if Pi is ergodic for every i = 1, . . . , n, then
also P is ergodic, since the eigenvalue 1 is obtained with multiplicity
one and the eigenvalue −1 can never be obtained.

Now we can show the matrices U,D and ∆ associated with P .
For every i, let Ui, Di and ∆i be the matrices of eigenvectors, of the
coefficients of σi and of eigenvalues for the probability Pi, respectively.
The following proposition holds.

Proposition 2.5. Let P be the crested product defined in (23).
Then we have:
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• U =
∑n

k=i1+1M1 ⊗ · · · ⊗Mk−1 ⊗ (Uk −Ak)⊗Ak+1 ⊗ · · · ⊗An

+U1 ⊗ U2 ⊗ · · · ⊗ Ui1 ⊗ Ai1+1 ⊗ · · · ⊗ An, with

Mi =

{
Iσi−norm
i if i ∈ N

Ui if i ∈ C

where

Iσi−norm
i =




1√
σi(0)

1√
σi(1)

. . .
1√

σi(mi−1)



.

We denote Ai the matrix of size mi whose entries on the first
column are all 1 and the remaining ones are 0.

• D =
⊗n

i=1Di.
• ∆ =

∑
i∈C p

0
i (I1 ⊗ · · · ⊗ Ii−1 ⊗∆i ⊗ Ii+1 ⊗ · · · ⊗ In)

+
∑

i∈N p
0
i

(
I1 ⊗ · · · ⊗ Ii−1 ⊗∆i ⊗ Jdiag

i+1 ⊗ · · · ⊗ Jdiag
n

)
, where

Jdiag
i is the diagonal matrix of size mi given by

Jdiag
i =




1
0

. . .
0


 .

Proof. The expression of the matrix U , whose columns are an or-
thonormal basis of eigenvectors for P , is a consequence of Theorem 2.4.
In order to get the diagonal matrix D, whose entries are the coefficients
of π, it suffices to consider the tensor product of the corresponding ma-
trices associated with the distribution σi, for every i = 1, . . . , n, as it
follows from Theorem 2.3. Finally, to get the matrix ∆ of eigenvalues
of P it suffices to replace, in the expression of the matrix P in (23),
the matrix Pi by ∆i and the matrix Ji by the corresponding diagonal
matrix Jdiag

i . �

Remark. Observe that another matrix U ′ of eigenvectors for P is
given by U ′ =

⊗n
i=1 Ui. The matrix U that we have given above seems

to be more useful whenever one wants to compute the k−th step transi-
tion probability p(k)(0, x) using Formula (22), since it contains a greater
number of 0 in the first row with respect to U ′ and so a small num-
ber of terms in the sum is nonzero. Here we denote 0 the element of
X1 × · · · ×Xn given by the n−tuple (0, . . . , n).

Consider x = (x1, . . . , xn) and y = (y1, . . . , yn) in X, where we set
X = X1 × · · · ×Xn. From (22) and Proposition 2.5, we get
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p(k)(x, y) = π(y)

[∑

z∈X

(
n∑

r=i1+1

m1(x1, z1) · · ·mr−1(xr−1, zr−1)(ur − ar)(xr, zr)

× ar+1(xr+1, zr+1) · · · an(xn, zn)
+ u1(x1, z1) · · ·ui1(xi1 , zi1)ai1+1(xi1+1, zi1+1) · · · an(xn, zn))λkz

×
(

n∑

r=i1+1

m1(y1, z1) · · ·mr−1(yr−1, zr−1)(ur − ar)(yr, zr)

× ar+1(yr+1, zr+1) · · · an(yn, zn)
+ u1(y1, z1) · · ·ui1(yi1 , zi1)ai1+1(yi1+1, zi1+1) · · · an(yn, zn))] ,

where mi, ui, ai are the probabilities associated, respectively, with the
matrices Mi, Ui, Ai occurring in Proposition 2.5.

2.1. The crossed product. The crossed product of the Markov
chains Pi’s can be obtained as a particular case of the crested product,
by choosing a special partition of {1, . . . , n}, namely C = {1, . . . , n}
and N = ∅. It is also called direct product. The analogous case for
product of groups has been studied in [25].

In this case, we have

P =
n∑

i=1

p0i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ii+1 ⊗ · · · ⊗ In) ;(24)

the corresponding transition probability is

p((x1, . . . , xn), (y1, . . . , yn)) =
n∑

i=1

p0i δ1(x1, y1) · · · pi(xi, yi) · · · δn(xn, yn),

for all (x1, . . . , xn), (y1, . . . , yn) ∈ X1 × · · · × Xn. This is equivalent
to choose the i−th coordinate with probability p0i and to change it
according with the probability transition Pi. In particular, we get

p((x1, . . . , xn), (y1, . . . , yn)) =

{
p0i pi(xi, yi) if xj = yj for all j 6= i
0 otherwise.

In the particular case X1 = · · · = Xn = X, with p10 = · · · = p0n = 1
n
,

the probability p defines an analogous of the Ehrenfest model (see, for
instance, [15]), where n is the number of balls and |X| = m is the
number of urns. In order to obtain a new configuration, we choose a
ball with probability 1/n (let it be the i−th ball in the urn xi) and
with probability pi(xi, yi) we put it in the urn yi.
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As a consequence of Theorem 2.3, we get that if Pi is in detailed
balance with πi, then P is in detailed balance with the strict probability
measure π on X1 × · · · ×Xn defined as

π(x1, . . . , xn) = π1(x1)π2(x2) · · ·πn(xn).
The following proposition studies the spectral theory of the operator
P and it is a straightforward consequence of Theorem 2.4.

Proposition 2.6. Let ϕi
0 = 1Xi

, ϕi
1, . . . , ϕ

i
mi−1 be the eigenfunc-

tions of Pi associated with the (not necessarily distinct) eigenvalues
λi0 = 1, λi1, · · · , λimi−1, respectively. Then the eigenvalues of P are the
numbers

λI =
n∑

k=1

p0kλ
k
ik
,

with I = (i1, . . . , in) ∈ {0, . . . ,m1 − 1} × · · · × {0, . . . ,mn − 1}. The
corresponding eigenfunctions are defined as

ϕI((x1, . . . , xn)) = ϕ1
i1
(x1) · · ·ϕn

in(xn).

Moreover, the eigenspaces described in Theorem 2.4 become, in the
case of the crossed product,

V 1
j1
⊗ · · · ⊗ V n

jn ,(25)

where ji ∈ {0, . . . , ri} for every i = 1, . . . , n.
As a consequence of Proposition 2.5, in order to get the matrices

U,D and ∆ associated with P , it suffices to consider the tensor prod-
uct of the corresponding matrices associated with the probability Pi,
for every i = 1, . . . , n. If, for every i, we denote Ui, Di and ∆i the
matrices of eigenvectors, of the coefficients of πi and of eigenvalues for
the probability Pi, respectively, then we get the following corollary.

Corollary 2.7. Let P be the probability defined in (24). Then we
have {

PU = U∆

UTDU = I,

where U =
⊗n

i=1 Ui, ∆ =
⊗n

i=1 ∆i and D =
⊗n

i=1Di.

In particular, we can express the k−th step transition probability
matrix as

P k =

(
n⊗

i=1

Ui

)(
n⊗

i=1

∆i

)k( n⊗

i=1

Ui

)T ( n⊗

i=1

Di

)
.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Then we get

p(k)(x, y) = π(y)
∑

I

ϕI(x)λ
k
IϕI(y) =
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π1(y1) · · ·πn(yn)
∑

I

ϕ1
i1
(x1) · · ·ϕn

in(xn)
(
p01λ

1
i1
+ · · ·+ p0nλ

n
in

)k
ϕ1
i1
(y1) · · ·ϕn

in(yn),

with I = (i1, . . . , in).

If the matrix Pi is ergodic for every i = 1, . . . , n, then also the
matrix P is ergodic, since the eigenvalue 1 can be obtained only by
choosing I = (0, . . . , 0) and the eigenvalue −1 can never be obtained.

Consider now the action of the symmetric group Sm on the set
X = {0, 1, 2, . . . ,m − 1}. Suppose m ≥ 2. Choose the element 0 ∈ X
and consider the subgroup K of Sm stabilizing 0. It is well known that
the subgroup K is isomorphic to the symmetric group Sm−1, so that
we have

X ∼= Sm/Sm−1.

Set L(X) = {f : X → C} and, as usual, consider the action of Sm on
L(X) given by

(πf)(i) = f(π−1i),

for all π ∈ Sm, f ∈ L(X) and i ∈ X. It is well known (see, for
instance, [33]) that the representation of Sm on L(X) decomposes into
two Sm−irreducible subrepresentations as

L(X) = V0 ⊕ V1,(26)

where V0 ∼= C is the space of constant functions on X and V1 = {f :
X −→ C :

∑m−1
i=0 f(i) = 0}. In particular, we have dim(V0) = 1 and

dim(V1) = m− 1.
Since the decomposition in (26) is multiplicity-free, it is clear that

(Sm, Sm−1) is a Gelfand pair. The associated spherical functions are:

• φ0 ∈ V0, defined as φ0(x) ≡ 1 for all i ∈ X;
• φ1 ∈ V1, defined as

φ1(i) =

{
1 if i = 0

1
1−m

otherwise.

In particular, Theorem 1.16 implies that (Sm, Sm−1) is a symmetric
Gelfand pair.

Observe that this is a particular case of the action of Aut(Tq) on
the q−ary rooted tree, studied in Chapter 1 of this work. The decom-
position given in (26) is a particular case of (2), with q = m and n = 1.

Consider the cartesian product X1 × · · · × Xn. To avoid confusion,
suppose X1 = · · · = Xn = X, with |X| = m. The symmetric group
Sm acts on each factor X and on the space L(X) as described above.
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A natural action of the direct product Sm × · · · × Sm︸ ︷︷ ︸
n times

on the product

Xn = X × · · · ×X︸ ︷︷ ︸
n times

is defined by

(π1, . . . , πn)(i1, . . . , in) = (π1(i1), . . . , πn(in)),

with πi ∈ Sm and ik ∈ Xk. If L(X) = V0
⊕

V1 is the decomposition
of the space L(X) into Sm−irreducible subrepresentations, then the
decomposition of L(X × · · · ×X) into (Sm)

n−irreducible subrepresen-
tations is given by

L(Xn) ∼= L(X)⊗
n ∼=

⊕

li∈{0,1}

(
n⊗

i=1

V i
li

)
.

The interesting fact is that the same decomposition can be obtained
by the spectral analysis of the operator P defined in (24), by choosing
Pi = Ji, for every i = 1, . . . , n. In fact, the eigenspaces given in (25)
become, in this case,

V 1
j1
⊗ · · · ⊗ V n

jn ,(27)

where ji ∈ {0, 1} for every i = 1, . . . , n, since the operator Ji acting on
L(Xi) has two eigenspaces, given by the space of constant function V i

0

and the space V i
1 = {f : Xi → C :

∑m−1
k=0 f(k) = 0}, whose eigenvalues

are 1 and 0, respectively.
This particularity will be remarked also in the next section devoted

to the nested product: this time, the group which we will refer to will
be the wreath product of symmetric groups.

2.2. The nested product. The nested product of the Markov
chains Pi’s is obtained as a particular case of the crested product,
with respect to the partition {1, . . . , n} = C

∐
N , with C = ∅ and

N = {1, . . . , n}. The term nested comes from the association schemes
theory (see, for example, [3] and [4]).

The formula (23) becomes, in this case,

(28) P =
n∑

i=1

p0i (I1 ⊗ · · · ⊗ Pi ⊗ Ji+1 ⊗ Ji+2 ⊗ · · · ⊗ Jn) .

Theorem 2.3 tells us that P is reversible if and only if Pk is sym-
metric, for every k > 1, i.e. σi ≡ 1

mi
for every i = 2, . . . , n. In this

case, P is in detailed balance with the strict probability measure π on
X1 × · · · ×Xn given by

π(x1 . . . , xn) =
σ1(x1)∏n
i=2mi

.
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Let us assume σi to be uniform, for every i = 2, . . . , n. The transition
probability associated with P is

p((x1, . . . , xn), (y1, . . . , yn)) =
p01p1(x1, y1)

m2m3 · · ·mn

+
n−1∑

j=2

δ((x1, . . . , xj−1), (y1, . . . , yj−1))p
0
jpj(xj, yj)

mj+1 · · ·mn

+ δ((x1, . . . , xn−1), (y1, . . . , yn−1))p
0
npn(xn, yn).

Also in this case we can study the spectral theory of the operator
P defined in (28).

Let

L(Xi) =

ri⊕

ji=0

V i
ji

be the spectral decomposition of L(Xi), for all i = 1, . . . , n and let
λi0 = 1, λi1, . . . , λ

i
ri
the distinct eigenvalues of Pi associated with these

eigenspaces. From Theorem 2.4 we get the following proposition.

Proposition 2.8. The eigenspaces of L(X1 × · · · ×Xn) are

• L(X1) ⊗ · · · ⊗ L(Xn−1) ⊗ V n
jn, of eigenvalue p0nλ

n
jn, for jn =

1, . . . , rn, with multiplicity m1 · · ·mn−1 · dim(V n
jn);

• L(X1)⊗ · · · ⊗L(Xk)⊗ V k+1
jk+1

⊗ V k+2
0 ⊗ · · · ⊗ V n

0 , of eigenvalue

p0k+1λ
k+1
jk+1

+ p0k+2 + · · · + p0n, with jk+1 = 1, . . . , rk+1 and for

k = 1, . . . , n− 2, with multiplicity m1 · · ·mk · dim(V k+1
jk+1

);

• V 1
j1
⊗ V 2

0 ⊗ · · · ⊗ V n
0 , of eigenvalue p

0
1λ

1
j1
+ p02 + · · · + p0n, for

j1 = 0, 1, . . . , r1, with multiplicity dim(V 1
j1
).

Moreover, as in the general case, one can verify that, under the
hypothesis that the operators Pi are ergodic, for i = 1, . . . , n, then also
the operator P is ergodic.

Finally, Proposition 2.5 in the case of the nested product yields the
following corollary.

Corollary 2.9. Let P be the nested product of the probabilities
Pi, with i = 1, . . . , n. Then we have:

• U = U1 ⊗ A2 ⊗ · · · ⊗ An

+
∑n

k=2 I
σ1−norm
1 ⊗· · ·⊗Iσk−1−norm

k−1 ⊗(Uk−Ak)⊗Ak+1⊗· · ·⊗An.
• D =

⊗n
i=1Di.

• ∆ =
∑n

i=1 p
0
i

(
I1 ⊗ · · · ⊗ Ii−1 ⊗∆i ⊗ Jdiag

i+1 ⊗ · · · ⊗ Jdiag
n

)
.

Also in this case the interesting fact is that, for a particular choice
of the matrices Pi’s, the spectral decomposition given in Proposition
2.8 is the same that one gets by considering the action of a particular
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group on the space L(X1×· · ·×Xn): this group is the iterated wreath
product of the symmetric groups acting on the sets Xi.

For simplicity, suppose X := X1 = · · · = Xn, with |X| = m. So
the elements of the cartesian product X × · · · × X can be regarded
as the leaves of the rooted m−ary tree Tm of depth n. The group
Sm o · · · o Sm︸ ︷︷ ︸

n times

is the group of the automorphism of this tree and its action

on X × · · · ×X is described in Chapter 1, Section 2.
If we set Pi = Ji, for all i = 1, . . . , n, then the irreducible subrep-

resentations in (2) are just the eigenspaces listed in Proposition 2.8:
in particular, the space W0 is the space of constant functions and, for
every j = 1, . . . , n, the space Wj in (2) coincides with the space

L(X1)⊗ · · · ⊗ L(Xj−1)⊗ V j
1 ⊗ V j+1

0 ⊗ · · · ⊗ V n
0 ,

where, as usual, L(Xi) = V i
0 ⊕ V i

1 is the decomposition of L(Xi) into
irreducible Sm−subrepresentations, with V0 ∼= C and V1 = {f : Xi −→
C :
∑m−1

k=0 f(k) = 0}.

2.2.1. k−steps transition probability. The formula that describes
the transition probability after k steps in the case of nested product
can be simplified using the base of eigenvectors given in Corollary 2.9
and supposing that the starting point is 0 = (0, . . . , 0).

From the general formula, with the usual notations, we get

p(k)(0, y) = π(y)

[∑

z∈X

(
n∑

r=2

δσ1(0, z1) · · · δσr−1(0, zr−1)(ur − ar)(0, zr)

× ar+1(0, zr+1) · · · an(0, zn) + u1(0, z1)a2(0, z2) · · · an(0, zn))λkz

×
(

n∑

r=2

δσ1(y1, z1) · · · δσr−1(yr−1, zr−1)(ur − ar)(yr, zr)

× ar+1(yr+1, zr+1) · · · an(yn, zn)
+ u1(y1, z1)a2(y2, z2) · · · an(yn, zn))]

= π(y)



1 +

n∑

j=2

∑

zj 6=0

zi=0, i6=j

(
n∑

r=j

1√
σ1(0) · · ·

√
σr−1(0)

(ur − ar)(0, zr)

)
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×
(
p0rλ

r
zr +

∑

m>r

p0m

)k( n∑

r=j

δσ1(y1, 0)δσ2(y2, z2) · · · δσr−1(yr−1, zr−1)

× (ur − ar)(yr, zr)ar+1(yr+1, zr+1) · · · an(yn, zn))

+
∑

z1 6=0

zi=0, i>1

u1(0, z1)

(
p01λ

1
z1
+

n∑

m=2

p0m

)k

u1(y1, z1)



.

Observe that in this case the sum consists of no more than

|X1|+
n∑

i=2

(|Xi| − 1) =
n∑

i=1

|Xi| − n+ 1

nonzero terms.

Example. We want to express the k−th step transition probabil-
ity in the case n = 2. So consider the product X × Y , with X =
{0, 1, . . . ,m} and Y = {0, 1, . . . , n}. Let

L(X) =
r⊕

j=0

Vj and L(Y ) =
s⊕

i=0

Wi

be the spectral decomposition of the spaces L(X) and L(Y ), respec-
tively. Let λ0 = 1, λ1, . . . , λr and µ0 = 1, µ1, . . . , µs be the distinct
eigenvalues of PX and PY , respectively. Then the eigenspaces of L(X×
Y ) are L(X) ⊗Wi, for i = 1, . . . , s, with dimension (m + 1) dim(Wi)
and associated eigenvalue p0Y µi, and Vj ⊗ W0, for j = 0, . . . , r, with
dimension dim(Vj) and associated eigenvalue p0Xλj + p0Y .

The expression of U becomes

U = IσX−norm
X ⊗ (UY − AY ) + UX ⊗ AY .

In particular, let {v0, v11, . . . , v1dim(V1)
, . . . , vr1, . . . , v

r
dim(Vr)

} and

{w0, w1
1, . . . , w

1
dim(W1)

, . . . , ws
1, . . . , w

s
dim(Ws)

} be the eigenvectors of PX

and PY , respectively, i.e. they represent the columns of the matrices
UX and UY .

Then, the columns of the matrix U corresponding to the elements
(i, 0) ∈ {0, . . . ,m}×{0, . . . , n} are the eigenvectors vi⊗ (1, . . . , 1) with
eigenvalue p0Xλi + p0Y . On the other hand, the columns corresponding
to the elements (i, j) ∈ {0, . . . ,m} × {0, . . . , n}, with j = 1, . . . , n, are

the eigenvectors (0, . . . , 0,
1√
σX(i)︸ ︷︷ ︸

i−th place

, 0, . . . , 0) ⊗ wj whose eigenvalue is

p0Y µj. As a consequence, only m + 1 + n of these eigenvectors can be
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nonzero in the first coordinate, so the probability p(k)((0, 0), (x, y)) can
be expressed as a sum of m + 1 + n nonzero terms: moreover, these
terms become m+ 1 if x 6= 0. We have

p(k)((0, 0), (x, y)) = π((x, y))

(
m∑

i=0

vi(0)vi(x)(p0Xλi + p0Y )
k

+
1√

σX(0)σX(x)

n∑

j=1

wj(0)δ0(x)w
j(y)(p0Y µj)

k

)

=
σX(x)

n+ 1




r∑

i=0




dim(Vi)∑

a=1

via(0)v
i
a(x)


 (p0Xλi + p0Y )

k

+
s∑

j=1


 1√

σX(0)σX(x)

dim(Wj)∑

b=1

wj
b(0)δ0(x)w

j
b(y)


 (p0Y µj)

k


 .

2.3. The Insect. We describe here a particular Markov chain de-
fined on the n − th level of the rooted tree, introduced by A. Figà-
Talamanca in [32] and called the “Insect” in [18], [20] and [21].

We already said above that if |Xi| = mi, with Xi = {0, 1, . . . ,mi −
1}, then the elements of the cartesian product X1×· · ·×Xn can be re-
garded as the set of the leaves of the rooted tree T of depth n, such that
the root has degree m1, each vertex of the first level has m2 children
and in general each vertex of the i−th level of the tree has mi+1 chil-
dren, for every i = 1, . . . , n− 1. As usual, we denote the i−th level of
the tree by Li. We recall that the group Aut(T ) of all automorphisms
of T is given by the iterated wreath product

Smn o Smn−1 o · · · o Sm1 .

Moreover, Aut(T ) is also the group of isometries of T , with respect to
the usual ultrametric distance.

The Insect is a Markov chain P on the level Ln of the tree, defined
from the simple random walk on T starting in a vertex x ∈ Ln. In fact,
it is possible to define a probability distribution µx on Ln such that,
for every y ∈ Ln, µx(y) is the probability that y is the first point in
Ln visited by the random walk. If we put p(x, y) = µx(y), then we get
a stochastic matrix P = (p(x, y))x,y∈Ln . Moreover, since the random
walk is Aut(T )−invariant, we can suppose that the random walk starts
at the leftmost leaf, that we will call x0 = (0, . . . , 0).

We use the notation of [16] in a more general context: the authors
consider there the particular case m1 = · · ·mn = q.

Set ξn = ∅ and ξi = 00 . . . 0︸ ︷︷ ︸
n−i times

. For j ≥ 0, let αj be the probability of

ever reaching ξj+1 given that ξj is reached at least once. This definition
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implies

α0 = 1 and α1 =
1

mn + 1
.

In fact, with probability 1, the vertex ξ1 is reached at the first step
and, starting from ξ1, with probability 1

mn+1
it reaches ξ2, while with

probability mn

mn+1
it returns to some vertex of Ln. Finally, one has

αn = 0.
For 1 < j < n, the following recursive relation holds:

αj =
1

mn+1−j + 1
+ αj−1αj

mn+1−j

mn+1−j + 1
.(29)

In fact, starting at ξj, with probability 1
mn+1−j+1

the insect reaches in

one step ξj+1, otherwise with probability
mn+1−j

mn+1−j+1
it reaches ξj−1 or

one of its brothers; then, with probability αj−1 it reaches again ξj and
one starts the recursive argument.

The solution of (29), for 1 ≤ j ≤ n− 1, is given by

αj =
1 +mn +mnmn−1 +mnmn−1mn−2 + · · ·+mnmn−1mn−2 · · ·mn−j+2

1 +mn +mnmn−1 +mnmn−1mn−2 + · · ·+mnmn−1mn−2 · · ·mn−j+1

= 1− mnmn−1mn−2 · · ·mn−j+1

1 +mn +mnmn−1 +mnmn−1mn−2 + · · ·+mnmn−1mn−2 · · ·mn−j+1

.

We already remarked that the random walk, and so the Insect
Markov chain, is invariant with respect to the action of Aut(T ), which
is the group of isometries of the tree. This implies that the probability
p(x0, x), for x ∈ Ln, only depends on the ultrametric distance d(x0, x).

We get

p(x0, x0) =
1

mn

(1− α1) +
1

mnmn−1

α1(1− α2) + · · ·

+
1

mnmn−1 · · ·m2

α1α2 · · ·αn−2(1− αn−1) +
1

mn · · ·m1

α1 · · ·αn−1.

In particular, the j−th summand is the probability of returning
back to x0 if the corresponding random walk in T reaches ξj but not
ξj+1.

It is easy to compute p(x0, x), where x is a point at distance j from
x0. For j = 1, we clearly have p(x0, x0) = p(x0, x). We observe that,
for j > 1, to reach x one is forced to first reach ξj, so that we have

p(x0, x) =
1

mn · · ·mn−j+1

α1α2 · · ·αj−1(1− αj) + · · ·

+
1

mn · · ·m2

α1α2 · · ·αn−2(1− αn−1) +
1

mn · · ·m1

α1α2 · · ·αn−1.

Actually, the Insect Markov chain is a particular case of the nested
product defined in (28), as the following proposition shows.
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Proposition 2.10. The transition probability

p((x1, . . . , xn), (y1, . . . , yn)) =
p01p1(x1, y1)

m2m3 · · ·mn

+
n−1∑

j=2

δ((x1, . . . , xj−1), (y1, . . . , yj−1))p
0
jpj(xj, yj)

mj+1 · · ·mn

+ δ((x1, . . . , xn−1), (y1, . . . , yn−1))p
0
npn(xn, yn),

associated with the Markov chain in (28), gives rise to the Insect Markov
chain defined on Ln, regarded as the sets of elements of the product
X1×· · ·×Xn, choosing p

0
i = α1α2 · · ·αn−i(1−αn−i+1) for i = 1, . . . , n−1

and p0n = 1−α1 and the transitions probabilities pj’s to be uniform for
all j = 1, . . . , n.

Proof. Set, for every i = 1, . . . , n− 1,

p0i = α1α2 · · ·αn−i(1− αn−i+1)

and p0n = 1 − α1. Moreover, assume that the probability pi on Xi is
uniform, i.e.

Pi = Ji.

If d(x0, x) = n, then we get

p(x0, x) =
α1α2 · · ·αn−1

m1m2 · · ·mn

.

If d(x0, x) = j > 1, i.e. x0i = xi for all i = 1, . . . , n− j, then

p(x0, x) =
α1α2 · · ·αn−1

m1m2 · · ·mn

+

n−j∑

i=1

α1 · · ·αn−i−1(1− αn−i)

mn · · ·mi+2mi+1

.

Finally, if x = x0, we get

p(x0, x0) =
α1α2 · · ·αn−1

m1m2 · · ·mn

+
n−2∑

i=1

α1 · · ·αn−i−1(1− αn−i)

mn · · ·mi+2mi+1

+
(1− α1)

mn

.

This completes the proof. �

Following the remark given after Corollary 2.9, we deduce that the
eigenspaces of the operator P associated with the Insect Markov chain
are exactly the Wj’s of (2).

This fact can also be obtained as a consequence of Corollary 1.8,
since the Markov operator P on L(Ln) associated with the Insect
Markov chain is Aut(T )−invariant, i.e. P ∈ HomAut(T )(L(Ln), L(Ln)).
This follows from the fact that the probability p(x0, x) only depends
on the ultrametric distance d(x0, x). In formulae, we have

g(Pf) = P (g(f)),
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for every f ∈ L(Ln) and g ∈ Aut(T ). In fact, for x ∈ Ln, we have

(g(Pf))(x) = (Pf)(g−1x) =
∑

y∈Ln

p(g−1x, y)f(y)

and

(P (g(f)))(x) =
∑

y∈Ln

p(x, y)(g(f))(y) =
∑

y∈Ln

p(x, y)f(g−1y)

=
∑

t∈Ln

p(x, gt)f(t),

where we set g−1y = t. Using that p(g−1x, y) = p(x, gy) since g is an
isometry, we get the assertion.

In order to compute the corresponding eigenvalues we can use the
formulas given in Proposition 2.8 for the eigenvalues of the nested prod-
uct by setting:

• λi0 = 1 and λi1 = 0, for all i = 1, . . . , n;
• p0i = α1α2 · · ·αn−i(1− αn−i+1), for i = 1, . . . , n− 1;
• p0n = 1− α1.

We get:

• λ0 =
∑n

i=1 p
0
i = 1;

• λj =
∑n

i=j+1 p
0
i , for every j = 1, . . . , n− 1;

• λn = 0.

It is easy to prove by induction on j that, for every j = 1, . . . , n−1,
the eigenvalue λj is equal to 1− α1α2 · · ·αn−j.

If j = 1, we have λ1 =
∑n

i=2 p
0
i = 1 − p01 = 1 − α1 · · ·αn−1. Now

suppose the assertion to be true for j and show that it holds also for
j + 1. We get

λj+1 =
n∑

i=j+2

p0i =
n∑

i=j+1

p0i − p0j+1

= λj − p0j+1 = 1− α1α2 · · ·αn−j − α1 · · ·αn−j−1(1− αn−j)

= 1− α1 · · ·αjαn−j−1.

2.3.1. Example. Let us give an example in the case n = 3 with
m1 = m2 = m3 = 2 and

P1 = P2 = P3 =

(
1/2 1/2
1/2 1/2

)
.

The tree associated with the product X1 ×X2 ×X3 is the following:
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Fig.16. The rooted binary tree of depth 3.

Set

L(X1) = V 1
0 ⊕ V 1

1 , L(X2) = V 2
0 ⊕ V 2

1 , and L(X3) = V 3
0 ⊕ V 3

1 .

The eigenspaces of P are:

• W0 = V 1
0 ⊗ V 2

0 ⊗ V 3
0 , of dimension 1;

• W1 = V 1
1 ⊗ V 2

0 ⊗ V 3
0 , of dimension 1;

• W2 = L(X1)⊗ V 2
1 ⊗ V 3

0 , of dimension 2;
• W3 = L(X1)⊗ L(X2)⊗ V 3

1 , of dimension 4.

We have α0 = 1, α1 = 1
3
, α2 = 3

7
, α3 = 0 and so p01 = 1

7
, p02 = 4

21

and p03 =
2
3
.

The eigenvalues of P are the following:

• λ0 = 1, with multiplicity 1;
• λ1 = 6

7
with multiplicity 1;

• λ2 = 2
3
with multiplicity 2;

• λ3 = 0, with multiplicity 4.

The matrix P is given by

P = p01(J1 ⊗ J2 ⊗ J3) + p02(I1 ⊗ J2 ⊗ J3) + p03(I1 ⊗ I2 ⊗ J3) =

=
1

168




67 67 11 11 3 3 3 3
67 67 11 11 3 3 3 3
11 11 67 67 3 3 3 3
11 11 67 67 3 3 3 3
3 3 3 3 67 67 11 11
3 3 3 3 67 67 11 11
3 3 3 3 11 11 67 67
3 3 3 3 11 11 67 67




.
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3. The cut-off phenomenon

The rate of convergence of an ergodic Markov chain to the sta-
tionary distribution has been studied by Diaconis in relation with the
following question: “How much does it take to converge to the sta-
tionary distribution π?”. This is motivated by the fact that in many
Markov chains the difference between the value of the probability mea-
sure m(k) given by the k−steps transition probability and π is close to
0 only after a fixed number k0 of steps, and it is large (close to 1) be-
fore k0 steps. So the distance exponentially fast breaks down in a small
range. This phenomenon has been called “cut-off phenomenon”. Actu-
ally, this term was introduced in [1]. Many applications are presented
in the survey [24].

In [20] the cut-off phenomenon for the Insect Markov chain is inves-
tigated, using the spectral analysis of the associated Markov operator.
In particular, we study the homogeneous case m1 = · · · = mn = q and
we show that the cut-off phenomenon does not occur.

First of all, we need some definitions.

Definition 3.1. Let P = (p(x, y))x,y∈X be a stochastic matrix.
Then a stationary distribution for P is a probability measure π on
X such that

π(y) =
∑

x∈X
π(x)p(x, y),(30)

for all y ∈ X.

The following theorem gives a relation between stationary distri-
butions and ergodicity. For a proof see, for example, Chapter 1 in
[16].

Theorem 3.2. Let P be a stochastic matrix on X. Then P is
ergodic if and only if there exists a strict probability distribution on X
such that

lim
k→∞

p(k)(x, y) = π(y) for all x, y ∈ X.

This implies that the limits above exist, they are independent of x and
they form a strict probability distribution. Moreover, π is the unique
stationary distribution for P .

Note that if P is ergodic and in detailed balance with π, then its
stationary distribution coincides with π. To show that, it suffices to
sum over x ∈ X the identity

π(x)p(x, y) = π(y)p(y, x),

what gives
∑

x∈X π(x)p(x, y) = π(y), which is just (30).
Theorem 3.2 can be easily proven under the hypothesis of reversibil-

ity of the Markov chain P . In particular, we get the following theorem.
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Theorem 3.3. Let P be a Markov chain in detailed balance with
the distribution π. Suppose that P is ergodic. Then

lim
k→∞

p(k)(x, y) = π(y),(31)

for all x, y ∈ X.

Proof. From Proposition 1.5, we have

p(k)(x, y) = π(y)
∑

z∈X
u(x, z)λkzu(y, z).

Since P is ergodic, the eigenvalue 1 has multiplicity one, so there exists
z0 ∈ X such that λz < λz0 = 1, for all z 6= z0. Moreover, one has
u(x, z0) = 1 for all x ∈ X. The hypothesis of ergodicity implies λz >
−1, for all z ∈ X, so that (31) can be rewritten as

p(k)(x, y) = π(y) + π(y)
∑

z 6=z0

u(x, z)λkzu(y, z).

Since −1 < λz < 1 for all z 6= z0, we get limk→∞ p(k)(x, y) = π(y).
�

The next definition will be useful later, because it introduces the
notion of difference of two probability measures on X.

Definition 3.4. Let µ and ν two probability measures on X. Then
their total variation distance is defined as

‖µ− ν‖TV = max
A⊆X

∣∣∣∣∣
∑

x∈A
µ(x)− ν(x)

∣∣∣∣∣ ≡ max
A⊆X

|µ(A)− ν(A)|.

It is easy to prove that ‖µ− ν‖TV = 1
2
‖µ− ν‖L1(X), where ‖ · ‖L1(X)

is the standard L1(X) distance given by

‖µ− ν‖L1(X) =
∑

x∈X
|µ(x)− ν(x)|.

3.1. The cut-off phenomenon. Let m
(k)
x (y) = p(k)(x, y) the dis-

tribution probability after k steps. The total variation distance defined
in Definition 3.4 allows to estimate how m(k) converges to the station-
ary distribution π.

There are interesting cases in which the total variation distance
remains close to 1 for a long time and then tends to 0 in a very fast
way (see, for some examples, [24] and [26]). This suggests the following
definition (see [16]).

Suppose that Xn is a sequence of finite sets. Let mn and pn be
a probability measure on Xn and an ergodic transition probability on
Xn, respectively. Moreover, denote by πn the stationary measure of pn
and by m

(k)
n the distribution of (Xn,mn, pn) after k steps.
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Now let (an)n∈N and (bn)n∈N be two sequences of positive real num-
bers such that

lim
n→∞

bn
an

= 0.

Definition 3.5. The sequence of Markov chains (Xn,mn, pn) has
a (an, bn)−cut-off if there exist two functions f1, f2 : [0,+∞) −→ R
with

• limc→+∞ f1(c) = 0
• limc→+∞ f2(c) = 1

such that, for any fixed c > 0, one has

‖m(an+cbn)
n − πn‖TV ≤ f1(c) and ‖m(an−cbn)

n − πn‖TV ≥ f2(c)

for a sufficiently large n.

The following proposition gives a necessary condition for the cut-off
phenomenon.

Proposition 3.6. If (Xn,mn, pn) has an (an, bn)−cut-off, then for
any 0 < ε1 < ε2 < 1 there exist k2(n) ≤ k1(n) such that

(1) k2(n) ≤ an ≤ k1(n);

(2) for n large, k ≥ k1(n) ⇒ ‖m(k)
n − πn‖TV ≤ ε1;

(3) for n large, k ≤ k2(n) ⇒ ‖m(k)
n − πn‖TV ≥ ε2;

(4) limn→∞
k1(n)−k2(n)

an
= 0.

Proof. By hypothesis there exist c1 and c2 such that f2(c) ≥ ε2 for
c ≥ c2 and f1(c) ≤ ε1 for c ≥ c1. So it suffices to take k1(n) = an+ c1bn
and k2(n) = an − c2bn to get the assertion. �

3.2. The case of Insect Markov chain. Consider now the Insect
Markov chain in the homogeneous case m1 = · · · = mn = q. The
indices αi are the following:

α0 = 1, α1 =
1

q + 1
and αn = 0.

The recursive formula (29) becomes, in this case,

αj =
1

q + 1
+ αj−1αj

1

q + 1
,

for every j = 1, . . . , n− 1. The solution of this equation is given by

αj =
qj − 1

qj+1 − 1
.

Fix the vertex x0 = 0n. Using the αj’s, for every x ∈ Ln, we can
express the probability that x is the first vertex in Ln reached from x0
in the Insect Markov chain. In particular, we have:

p(x0, x0) = q−1(1− α1) + q−2α1(1− α2) + · · ·+
+ q−n+1α1α2 · · ·αn−2(1− αn−1) + q−nα1α2 · · ·αn−1.
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It is clear that, if d(x0, x) = 1, then p(x0, x) = p(x0, x0).
More generally, if d(x0, x) = j > 1, one has:

p(x0, x) = q−jα1α2 · · ·αj−1(1− αj) + · · ·+
+ q−n+1α1α2 · · ·αn−2(1− αn−1) + q−nα1α2 · · ·αn−1.

The associated eigenvalues are:

λ0 = 1, λn = 0;

more in general, for 1 ≤ j < n, we have

λj = 1− q − 1

qn−j+1 − 1
.(32)

We already know that the Insect Markov chain is ergodic (it is the
nested product of ergodic Markov chains).

Moreover, it is clear that P is in detailed balance with the uniform
distribution π on Ln given by π(x) = 1

qn
for all x ∈ Ln.

An expression for m(k)(x) = p(k)(x0, x) can be easily obtained using
the Fourier analysis. In [16], Chapter 4, it is proven that, if P is a
G−invariant stochastic matrix on X, i.e. a stochastic matrix satisfying
the condition

p(gx, gy) = p(x, y), ∀x, y ∈ X, g ∈ G

and if (G,K) is a Gelfand pair, where K is the stabilizer of x0, then

(33) p(k)(x0, x) =
1

|X|
n∑

i=0

diλ
k
i φi(x),

where λi is the eigenvalue associated with the spherical function φi and
di is the dimension of the corresponding spherical representation.

In our case, G is the full automorphisms group of the rooted q−ary
tree of depth n and the φi’s are the spherical functions given in (3).

Suppose now n ≥ 2. In the following theorem, the cut-off phenom-
enon is detected thanks to a careful spectral analysis.

Theorem 3.7. The probability measure associated with the Insect
Markov chain converges to the stationary distribution without a cut-off
behavior.

Proof. From (33) we get

• If x = x0, then

m(k)(x0) =
1

qn

{
1 +

n∑

j=1

qj−1(q − 1)

[
1− q − 1

qn−j+1 − 1

]k}
.
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• If d(x0, x) = h, with 1 ≤ h ≤ n− 1, then

m(k)(x) =
1

qn

{
1 +

n−h+1∑

j=1

qj−1(q − 1)

[
1− q − 1

qn−j+1 − 1

]k
φj(x)

}

=
1

qn

{
1 +

n−h∑

j=1

qj−1(q − 1)

[
1− q − 1

qn−j+1 − 1

]k
− qn−h

[
1− q − 1

qh − 1

]k}

• If d(x0, x) = n, then

m(k)(x) =
1

qn

{
1−

[
1− q − 1

qn − 1

]k}
.

Let π be the uniform distribution on Ln. Then we have

‖m(k) − π‖L1(Ln) =
1

qn

{
n∑

j=1

qj−1(q − 1)λkj

+
n−1∑

h=1

(qh − qh−1)

∣∣∣∣∣
n−h∑

j=1

qj−1(q − 1)λkj − qn−hλkn−h+1

∣∣∣∣∣

+ qn−1(q − 1)λk1
}
.

Now observe that

1

qn

n−1∑

h=1

(qh − qh−1)
n−h∑

j=1

qj−1(q − 1)λkj +
1

qn

n∑

j=1

qj−1(q − 1)λkj =

1

qn

n−1∑

j=1

[
1 + (q − 1) + (q2 − q) + · · ·+ (qn−j − qn−j−1)

]
·qj−1(q−1)λkj =

1

qn

n−1∑

j=1

qn−1(q − 1)λkj =
q − 1

q

n−1∑

j=1

λkj

and

1

qn

n−1∑

h=1

(qh − qh−1)qn−hλkn−h+1 +
1

qn
(qn − qn−1)λk1 =

q − 1

q

n−1∑

j=1

λkj .

Using the trivial fact that
∑

j |aj−bj| ≤
∑

j(|aj|+|bj|), we conclude

‖m(k) − π‖L1(Ln) ≤
2(q − 1)

q

n−1∑

j=1

λkj .

On the other hand

‖m(k) − π‖L1(Ln) ≥
∑

x:d(x0,x)=n

|m(k)(x)− π(x)|

=
1

qn
(qn − qn−1)λk1 =

q − 1

q
λk1.



78 2. MARKOV CHAINS

So we get the following estimate:

q − 1

q
λk1 ≤ ‖m(k) − π‖L1(Ln) ≤

2(q − 1)

q

n−1∑

j=1

λkj ,

or, equivalently,

q − 1

2q
λk1 ≤ ‖m(k) − π‖TV ≤ (q − 1)

q

n−1∑

j=1

λkj .

In what follows the following inequalities will be used:

(1) (1− x)k ≤ exp(−kx) if x ≤ 1.
(2) qn−1

qn−j+1−1
≥ qj−1, for j ≥ 1.

(3) qj−1 ≥ j, for q ≥ 2 and j ≥ 1.

Choose k2(n) =
qn−1
q−1

, then

q − 1

q

n−1∑

j=1

λkj ≤ q − 1

q

n−1∑

j=1

exp

(
− q − 1

qn−j+1 − 1
k

)
≤ ( if k ≥ k2(n))

≤ q − 1

q

n−1∑

j=1

exp

(
− q − 1

qn−j+1 − 1
k2(n)

)

≤ q − 1

q

n−1∑

j=1

exp(−qj−1) ≤ (q − 1)

q

n−1∑

j=1

(e−j)

≤ (q − 1)

q

∞∑

j=1

(e−1)j =
q − 1

q
· 1

e− 1
:= ε2.

On the other hand, if k1(n) = 2 qn−1
q−1

, we get

q − 1

2q
λk1 =

q − 1

2q

[
1− q − 1

qn − 1

]k
≥ ( if k ≤ k1(n))

≥ q − 1

2q

[
1− q − 1

qn − 1

]2 qn−1
q−1

:= ε1.

Now k1(n) > k2(n), ε1 < ε2 and

• for k ≥ k2(n) we have ‖m(k) − π‖TV ≤ ε2,
• for k ≤ k1(n) we have ‖m(k) − π‖TV ≥ ε1.

This implies that cut-off phenomenon does not occur in this case by
Proposition 3.6. In fact, the sequences k1(n) and k2(n) cannot satisfy
condition (4) of Proposition 3.6. This gives the assertion. �
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3.2.1. Remark. Using the same strategy of Theorem 3.7 one can
easily check that cut-off phenomenon does not occur also if we fix n
and let q → +∞.

3.2.2. Remark. If n = 1 we get the simple random walk on the
complete graph Kq on q vertices, in which each vertex has a loop. It
is straightforward that it is performed choosing equiprobably one of
the q vertices and so the probability measure m(1) equals the uniform
distribution π on the set of the vertices.

4. Association Schemes

The definition of crested product given in Section 2 of this chapter
for Markov chain is inspired to the definition of crested product of
Association schemes introduced in [4]. Also the particular cases of
crossed and nested products are inspired to the theory of association
schemes (largely developed in [3]).

In this section we will present the definition of association scheme
together with the main properties. Moreover, some particular examples
on the rooted homogeneous tree will be described.

4.1. Definition and main properties. Association schemes are
defined about relations between pairs of elements of a set Ω, supposed
finite. Many equivalent definitions of association scheme can be given
(see [3]): we want to give the definitions using partitions and matrices.

4.1.1. A first definition.

Definition 4.1. An association scheme with s associate classes
on a finite set Ω is a partition of Ω×Ω into nonempty sets C0,C1, . . . ,Cs,
called the associate classes, such that

(1) C0 = Diag(Ω) = {(ω, ω) : ω ∈ Ω}.
(2) Ci is symmetric for every i = 1, . . . , s, i.e. Ci = C′

i, where C′
i

denotes the dual of Ci defined as C′
i = {(β, α) : (α, β) ∈ Ci}.

(3) For all i, j, k ∈ {0, 1, . . . , s} there exists an integer pkij such
that, for all (α, β) ∈ Ck,

|{γ ∈ Ω : (α, γ) ∈ Ci and (γ, β) ∈ Cj}| = pkij.

We will say that the rank of this association scheme is s+1. Observe
that the conditions (2) and (3) imply pkij = pkji. The elements α and β
are called i−th associates if (α, β) ∈ Ci. In particular, the set of i−th
associates of α is denoted by

Ci(α) = {β ∈ Ω : (α, β) ∈ Ci}.
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Condition (2) implies p0ij = 0 if i 6= j. Similarly, pk0j = 0 if j 6= k and

pki0 = 0 if i 6= k, while pj0j = pii0 = 1. Moreover, the condition (3)

implies that each element of Ω has p0ii = ai i−th associates.

Example. Let Ω be a finite set, with |Ω| = n. Let C0 be the diagonal
subset and set

C1 = {(α, β) ∈ Ω× Ω : α 6= β} = (Ω× Ω) \ C0.

This is the trivial association scheme, the only scheme on Ω having
only one associate class. It has a1 = n− 1 and it is denoted by n.

Example. Let Ω an m× n rectangular array, with m,n ≥ 2. Set

• C1 = {(α, β) : α, β are in the same row but α 6= β};
• C2 = {(α, β) : α, β are in the same column but α 6= β};
• C3 = {(α, β) : α, β are in different rows and columns}.

It is clear that C3 = (Ω × Ω) \ C0 \ C1 \ C2. This is an associa-
tion scheme with three associate classes and a1 = n − 1, a2 = m − 1,
a3 = (m − 1)(n − 1). It is called the rectangular association scheme
R(m,n) and is also denoted by m× n.

Example. Consider the partition Ω = ∆1 t . . . t ∆m of the set Ω
into m subsets of size n. These subsets are traditionally called groups.
We declare α and β to be:

• first associates if they are in the same groups but α 6= β;
• second associates if they are in different groups.

It is easy to verify that, if ω ∈ Ω, then it has n − 1 first associates
and (m− 1)n second associates. So this is an association scheme with
s = 2 and a1 = n− 1, a2 = (m− 1)n. It is called the group-divisible
association scheme, denoted by GD(m,n) or also m/n.

4.1.2. A second definition. Given an association scheme with as-
sociate classes C0,C1, . . . ,Cs, we can associate with each class Ci its
adjacency matrix Ai, i.e. the matrix of size |Ω| defined as

(Ai)αβ =

{
1 if (α, β) ∈ Ci

0 otherwise.

The following lemma holds.
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Lemma 4.2. Given an association scheme with associate classes
C0,C1, . . . ,Cs, let Ai be the corresponding adjacency matrices. Then

(34) AiAj =
s∑

k=0

pkijAk.

Proof. Suppose (α, β) ∈ Ck. Then the (α, β)−entry of the right-
hand side of (34) is equal to pkij, while the (α, β)−entry of the left-hand
side is equal to

(AiAj)(α, β) =
∑

γ∈Ω
Ai(α, γ)Aj(γ, β)

= |{γ : (α, γ) ∈ Ci and (γ, β) ∈ Cj}|
= pkij,

because the product Ai(α, γ)Aj(γ, β) is zero unless (α, γ) ∈ Ci and
(γ, β) ∈ Cj, in which case it is 1. �

This lemma leads us to a new definition of association scheme, in
terms of adjacency matrices.

Definition 4.3. An association scheme with s associate classes on
a finite set Ω is a set of nonzero matrices A0, A1, . . . , As, with rows and
columns indexed by Ω, whose entries are equal to 0 or 1 and such that:

(1) A0 = IΩ, where IΩ denotes the identity matrix of size |Ω|;
(2) Ai is symmetric for every i = 1, . . . , s;
(3) for all i, j ∈ {1, . . . , s}, the product AiAj is a linear combina-

tion of A0, A1, . . . , As;
(4)

∑s
i=0Ai = JΩ, where JΩ denotes the all−1 matrix of size |Ω|.

Observe that the condition (4) of this definition gives an analogue of
the fact that the subsets C0,C1, . . . ,Cs constitute a partition of Ω×Ω.

Proposition 4.4. If A0, A1, . . . , As are the adjacency matrices of
an association scheme, then AiAj = AjAi for all i, j ∈ {0, 1, . . . , s}.
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Proof. We have

AjAi = AT
j A

T
i , because the adjacency matrices are symmetric,

= (AiAj)
T

=

(∑

k

pkijAk

)T

, by Equation (34),

=
∑

k

pkijA
T
k

=
∑

k

pkijAk, because the adjacency matrices are symmetric,

= AiAj. �

Example. Let
∏

be a Latin square of size n, i.e. an n × n array
filled with n letters in such a way that each letter occurs once in each
row and once in each column.

a d b c

c a d b

b c a d

d b c a

Fig.17. A Latin square of size 4.

Let Ω be the set of n2 cells of the array. Consider α, β ∈ Ω, with
α 6= β. We declare α and β to be first associates if they are in the same
row or in the same column or have the same letter. Otherwise, they
are second associates. It is easy to check that so we get an association
scheme on Ω, with two associate classes.

4.1.3. The Bose-Mesner algebra. Consider an association scheme
with adjacency matrices A0, A1 . . . , As. Let A be the space of all real
linear combinations of these matrices. This is a real vector space of
dimension s+ 1. In fact, the matrices A0, A1, . . . , As are linearly inde-
pendent because, given α and β in Ω, there exists only one index i such
that Ai(α, β) 6= 0. It follows from Lemma 4.2 that A is closed under
multiplication and so it is an algebra. Proposition 4.4 tells us that A
is a commutative algebra, called the Bose-Mesner algebra.
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Since every adjacency matrix is symmetric, a matrix M ∈ A is
symmetric and so it is diagonalizable on R, i.e. it has distinct real
eigenvalues λ1, . . . , λr such that:

• L(Ω) =
⊕r

i=1 Vi, where Vi is the eigenspace associated with
the eigenvalue λi;

• the eigenspaces Vi and Vj are orthogonal, for i 6= j.

Here we denote L(ω) the space of the real functions defined on the
set Ω.

The orthogonality of eigenspaces is with respect to the inner prod-
uct on L(Ω) defined as

〈f, g〉 =
∑

ω∈Ω
f(ω)g(ω), for all f, g ∈ L(Ω).

Definition 4.5. The orthogonal projector P on a subspace W is
the map P : L(Ω) −→ L(Ω) defined by

Pv ∈ W and v − Pv ∈ W⊥.

Now put

P1 =
(M − λ2I) · · · (M − λrI)

(λ1 − λ2) · · · (λ1 − λr)
.

It is easy to check that, if v ∈ V1, then P1v = v, while if Mv = λiv
for i > 1, then P1v = 0. So P1 is the orthogonal projector onto V1.
Analogously for Vi, with i > 1.

Now let M1 and M2 be two matrices in A and let P1, . . . , Pr and
Q1, . . . , Qm be the respective eigenprojectors. They commute with each
other, since they are polynomials in M1 and M2, respectively. The
following properties of PiQj’s hold:

• they are orthogonal, in fact PiQjPi′Qj′ = PiPi′QjQj′ , which is
zero unless i = i′ and j = j′;

• they are idempotents, in fact PiQjPiQj = PiPiQjQj = PiQj;
• ∑i

∑
j PiQj = (

∑
i Pi)(

∑
j Qj) = I2 = I;

• the subspaces which they project onto are contained in eigenspaces
of both M1 and M2.

If we apply this argument to A0, A1, . . . , As, we deduce that there exist
mutually orthogonal subspaces W0,W1, . . . ,Wr, with orthogonal pro-
jectors S0, S1, . . . , Sr, such that

• L(Ω) =W0 ⊕W1 ⊕ · · · ⊕Wr;
• each Wi is contained in an eigenspace of every Aj;
• each Si is a polynomial in A1, . . . , As and so in A.

Thus there are unique constant D(e, i) such that

Se =
∑

i

D(e, i)Ai.
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On the other hand, if C(i, e) is the eigenvalue of Ai on We, then

Ai =
r∑

e=0

C(i, e)Se.

Moreover, the projectors S0, . . . , Sr are linearly independent because
SeSf = δefSe and so they constitute another basis for A. Therefore we
have r = s and D = C−1.

The subspacesWe are called strata, while the matrices Se are called
stratum projectors. The matrix C is the character table of the
association scheme.

4.1.4. Crossed and nested product of association schemes.

Definition 4.6. Let Q1 be an association scheme on Ω1 with classes
Ci, for i ∈ K1 and let Q2 be an association scheme on Ω2 with classes
Dj, for j ∈ K2. Then Q1 is isomorphic to Q2 if there exist bijections

φ : Ω1 −→ Ω2 and π : K1 −→ K2

such that

(α, β) ∈ Ci ⇔ (φ(α), φ(β)) ∈ Dπ(i).

In this case, we say that the pair (φ, π) is an isomorphism between
association schemes and write Q1

∼= Q2.

We can now introduce two special products of association schemes,
called the crossed product and the nested product, respectively.

So let Q1 be an association scheme on the finite set Ω1 with adja-
cency matrices A0, A1, . . . , Am, and let Q2 be an association scheme on
the finite set Ω2 with adjacency matrices B0, B1, . . . , Br.

Definition 4.7. The crossed product of Q1 and Q2 is the asso-
ciation scheme Q1 × Q2 on Ω1 × Ω2 whose adjacency matrices are

Ai ⊗Bj,

for i = 0, . . . ,m and j = 0, . . . , r.

The crossed product of two association schemes is also called direct
product. For example, one can easily verify that the rectangular asso-
ciation scheme R(m,n) can be obtained as the crossed product of the
schemes m and n.

Definition 4.8. The nested product of Q1 and Q2 is the associ-
ation scheme Q1/Q2 on Ω1 × Ω2 whose adjacency matrices are

• Ai ⊗ JΩ2, with i 6= 0;
• IΩ1 ⊗Bj, for every j = 0, 1, . . . , r.
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The nested product of two association schemes is also called wreath
product. For example, one can easily verify that the group-divisible
association scheme GD(m,n) can be obtained as the nested product of
the schemes m and n.

Proposition 4.9. The following properties of crossed and nested
product hold:

(1) crossing is commutative, in the sense that Q1 ×Q2
∼= Q2 ×Q1;

(2) crossing is associative, in the sense that Q1 × (Q2 × Q3) ∼=
(Q1 × Q2)× Q3;

(3) nesting is associative, in the sense that Q1/(Q2/Q3) ∼= (Q1/Q2)/Q3.

Remarks. It is interesting to observe that the adjacency matrices
of the nested product of association schemes remind the transition ma-
trices occurring in the nested product of Markov chains (see Formula
(28)). A similar consideration can be done for crossed product.

As in the case of reversible Markov chains, the crested product
of association schemes, described in the following section, is a more
general construction containing, as particular cases, the crossed and
the nested product.

4.2. Crested product of association schemes. We introduce
here the crested product of two association schemes Q1 and Q2, giv-
ing a new association scheme on the space Ω1 ×Ω2 that contains both
crossed and nested products as special cases. Our main source is [4].

4.2.1. Preliminaries. Consider the definition of orthogonal block
structures given in Definition 3.2 of Chapter 1. With a partition F
belonging to an orthogonal block structure F on Ω, one can associate
the adjacency matrix AF defined as

AF (α, β) =

{
1 if F =

∧{G ∈ F : RG(α, β) = 1}
0 otherwise.

It is not difficult to verify that the set {AF : F ∈ F, AF 6= 0} is an
association scheme on Ω (see [3]).

Given two partitions F and G of two sets Ω1 and Ω2, respectively,
denote F×G the partition of Ω1×Ω2 whose relation matrix is RF⊗RG.

Now let F and G be two orthogonal block structures on Ω1 and Ω2,
respectively. Then their crossed product is given by

F × G = {F ×G : F ∈ F, G ∈ G}
and their nested product is given by

F/G = {F × U2 : F ∈ F} ∪ {E1 ×G : G ∈ G},
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where Ei and Ui are the trivial partitions of Ωi. One can show that
the operation of deriving the association scheme from the orthogonal
block structure commutes with both crossing and nesting.

Definition 4.10. For i = 1, 2, let Fi be an orthogonal block struc-
ture on a set Ωi and choose Fi ∈ Fi. The crested product of F1 and
F2 with respect to F1 and F2 is the set G of partitions of Ω1 ×Ω2 given
by

(35) G = {G1 ×G2 : G1 ∈ F1, G2 ∈ F2, G1 4 F1 or G2 < F2}.
In [4] it is proven that the crested product of orthogonal block

structures defined above is an orthogonal block structure on Ω1 × Ω2.

Remarks.

• If F1 = U1 or F2 = E2, then G is the crossed product F1 × F2.
• If F1 = E1 and F2 = U2, then G is the nested product F1/F2.

Definition 4.11. Let Q be an association scheme on Ω with adja-
cency matrices Ai, for i ∈ K. Then a partition F of Ω is inherent in
Q if its relation matrix RF is in the Bose-Mesner algebra of Q, i.e. if
there exists a subset L of K such that RF =

∑
i∈LAi.

It is easy to check that the trivial partitions E and U are inherent
in every association scheme.

Example. Consider the 12 edges of the cube and define an associa-
tion scheme on the set Ω of these edges in the following way:

• two edges α and β are 1−st associates if they meet at a vertex;
• two edges α and β are 2−nd associates if they are diagonally
opposite;

• two edges α and β are 3−rd associates if they are parallel but
not opposite;

• two edges α and β are 4−th associates if they are skew.

The partitions inherent in this scheme have relation matrices A0 = IΩ,
A0 + A2, A0 + A2 + A3 and A0 + A1 + A2 + A3 + A4 = JΩ.

Theorem 4.12. If Q is an association scheme on Ω, then the set
F of partitions of Ω which are inherent in Q is an orthogonal block
structure on Ω.

See [4] for the proof.
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Now let P be a partition of Ω×Ω and let V (P) be the real span of
the adjacency matrices of its classes. It is clear that

Q 4 P ⇐⇒ V (P) ≤ A,

where A is the Bose-Mesner algebra of Q.

Definition 4.13. Let Q be an association scheme on Ω. A partition
P of Ω×Ω is ideal for Q if V (P) is an ideal of A, i.e. V (P) ≤ A and
AD ∈ V (P) whenever A ∈ A and D ∈ V (P).

Theorem 4.14. Let Q be an association scheme with adjacency
matrices Ai, for i ∈ K. If Q has an inherent partition F with rela-
tion matrix RF , then there exists an ideal partition ϑ(F ) of Q whose
adjacency matrices are scalar multiples of AiR, for i ∈ K.

Proof. (Sketch) Let L be the subset of K such that RF =
∑

i∈LAi.
So there exist positive integers mij such that

RFAi = AiRF =
∑

j∈K
mijAj.

It follows from the definition that

mij = (AiRF )(α, β) = |Ci(α) ∩ F (β)|,
where F (β) denotes the F−class containing β. Put i ∼ j if mij 6= 0.
One can check that ∼ is an equivalence relation. Define [i] = {j ∈ K :
j ∼ i} and B[i] =

∑
j∼iAj. Then the distinct B[i] are the adjacency

matrices of a partition P of Ω × Ω such that Q 4 P. Moreover, it is
easy to verify that AjB[i] ∈ V (P). �

Indeed, the inverse construction can be done, as the following theo-
rem shows (see [4]).

Theorem 4.15. Let P be an ideal partition for Q. Let Ai be the
adjacency matrices of Q, for i ∈ K, and let Dm be the adjacency ma-
trices of P, for m ∈ M. Denote by σ the surjection from K to M such
that class i of Q is contained in class σ(i) of P. Put R = Dσ(0). Then
R is the relation matrix of an inherent partition in Q. Moreover, for
all i ∈ K, the matrix AiR is an integer multiple of Dσ(i).

4.2.2. Crested product of association schemes. Let F be a partition
in an orthogonal block structure F, so that RF =

∑
G∈LAG, where

L = {G ∈ F : G 4 F}. This implies that F is inherent in the
association scheme derived from F. Then {AG : G ∈ L} and {RG :
G ∈ L} span the same subspace A|F of A, which is closed under matrix
multiplication.

Let P be the ideal partition ϑ(F ). For G ∈ F, RG is in the ideal
of A generated by RF if and only if F 4 G, so V (P) is the span of
{RG : G ∈ F, G < F}. We denote V (ϑ(F )) by A|F .
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Consider now the crested product G of the orthogonal block struc-
tures F1 and F2 with respect to the partitions F1 and F2. The span of
the relation matrices of the partitions in G is

(A1|F1 ⊗A2) + (A1 ⊗A2|F2),

whereA1 andA2 are the Bose-Mesner algebra of the association schemes
derived by F1 and F2, respectively. The adjacency matrices of the as-
sociation scheme derived by G are:

• AG ⊗ AH , for G ∈ L and H ∈ F2;
• AG ⊗D, for G ∈ F1 \ L and D an adjacency matrix of P,

where L = {G ∈ F1 : G 4 F1} and P = ϑ(F2). This leads to the
following definition.

Definition 4.16. For r = 1, 2, let Qr be an association scheme on
a set Ωr and let Fr be an inherent partition in Qr. Put P = ϑ(F2) and
Ω = Ω1 × Ω2. Let the adjacency matrices of Q1,Q2 and P be Ai, for
i ∈ K1, Bj, for j ∈ K2 and Dm, for m ∈ M, respectively. Let L be
the subset of K1 such that RF1 =

∑
i∈LAi. The crested product of

Q1 and Q2 with respect to F1 and F2 is the association scheme Q on Ω
whose adjacency matrices are

• Ai ⊗Bj, for i ∈ L and j ∈ K2;
• Ai ⊗Dm, for i ∈ K1 \ L and m ∈ M.

Observe that the crested product reduces to the crossed product
if F1 = U1 or F2 = E2 (in which case P = Q2) and it reduces to the
nested product if F1 = E1 and F2 = U2 (in which case P = UΩ2×Ω2).

Finally, the character table of the crested product Q can be de-
scribed using the character table of the schemes Q1 and Q2. See [4] for
more details.

4.2.3. Some examples. Let Q be an association scheme on a finite
set Ω and let A0 = IΩ, A1, . . . , Am be the adjacency matrices associated
with Q. Consider also an association scheme Q′ on a second finite set
Ω′, whose adjacency matrices are A′

0 = IΩ′ , A′
1, . . . , A

′
m′ .

We know that the nested product Q/Q′ of the schemes Q and Q′ is
the association scheme on the set Ω×Ω′ whose adjacency matrices are

• Ai ⊗ JΩ′ , for i 6= 0;
• IΩ ⊗ A′

j, for j = 0, 1, . . . ,m′.

Consider now the inherent partition F of Ω × Ω′ whose relation
matrix is

RF =
m′∑

j=0

(IΩ ⊗ A′
j) = IΩ ⊗ JΩ′ ,

i.e. the partition Ω× Ω′ =
⊔

α∈Ω{(α, α′) : α′ ∈ Ω′}. We can ask which
is the ideal partition associated with F .
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Theorem 4.14 tells us that the adjacency matrices of the ideal par-
tition P of X × X associated with F are Di =

∑
i∼j Aj (we will use

also the notation Ai ∼ Aj to indicate i ∼ j).
In our case we have IΩ ⊗A′

j ∼ IΩ ⊗A′
k for every j, k = 0, 1, . . . ,m′.

Moreover, it is easy to verify that, for i, j 6= 0, one has Ai ⊗ JΩ′ 6∼
Aj ⊗ JΩ′ for i 6= j. So the adjacency matrices of the ideal partition P

associated with F are

Ai ⊗ JΩ′ , for i = 0, 1, . . . ,m.

Consider now an association scheme S on a finite set Θ with adja-
cency matrices B0 = IΘ, B1, . . . , Bn and an association scheme S ′ on a
finite set Θ′ whose adjacency matrices are B′

0 = IΘ′ , B′
1, . . . , B

′
n. Take

again the nested product S/S ′ on Θ × Θ′, whose adjacency matrices
are

• Bi ⊗ JΘ′ , for i 6= 0;
• IΘ ⊗B′

j, for j = 0, 1, . . . , n′.

We can consider the inherent partition G of Θ × Θ′ whose relation
matrix is

RG =
n′∑

j=0

IΘ ⊗B′
j = IΘ ⊗ JΘ′ ,

which corresponds to the partition Θ×Θ′ =
∐

θ∈Θ{(θ, θ′) : θ′ ∈ Θ′}.
We can now consider the crested product of the schemes S/S ′ and

Q/Q′ with respect to the inherent partitions G and F defined above.
So we get a new association scheme on the set

Θ×Θ′ × Ω× Ω′

whose adjacency matrices are

• (IΘ ⊗B′
j)⊗ (Ai ⊗ JΩ′), with j = 0, 1, . . . , n′ and i 6= 0;

• (IΘ⊗B′
j)⊗(IΩ⊗A′

k), with j = 0, 1, . . . , n′ and k = 0, 1, . . . ,m′;
• (Bi ⊗ JΘ′)⊗ (Aj ⊗ JΩ′), with i 6= 0 and j = 0, 1, . . . ,m.

Moreover, by choosing the inherent partition G for Θ×Θ′ and the
universal partition UΩ×Ω′ for Ω × Ω′, i.e. the partition whose relation
matrix is RUΩ×Ω′ = JΩ ⊗ JΩ′ , we can get a different crested product of
the schemes S/S ′ and Q/Q′. Observe that the only adjacency matrix of
the ideal partition P associated with UΩ×Ω′ is JΩ⊗JΩ′ . So the adjacency
matrices of the crested product of the schemes S/S ′ and Q/Q′ are

• (IΘ ⊗B′
j)⊗ (Ai ⊗ JΩ′), with j = 0, 1, . . . , n′ and i 6= 0;

• (IΘ⊗B′
j)⊗(IΩ⊗A′

k), with j = 0, 1, . . . , n′ and k = 0, 1, . . . ,m′;
• (Bi ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′), with i 6= 0.

Finally, by choosing the identity partition EΘ×Θ′ for Θ×Θ′ and the
inherent partition F for Ω × Ω′, we can get again a different crested
product of the schemes S/S ′ and Q/Q′, whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (Ai ⊗ JΩ′), with i 6= 0;
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• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′
k), with k = 0, 1, . . . ,m′;

• (IΘ ⊗B′
k)⊗ (Ai ⊗ JΩ′), with i = 0, 1, . . . ,m and k 6= 0;

• (Bj ⊗ JΘ′)⊗ (Ai ⊗ JΩ′), with j 6= 0 and i = 0, 1, . . . ,m.

This completes the description of the nontrivial crested products
that we can get from the schemes S/S ′ and Q/Q′. By choosing the
identity partition EΘ×Θ′ as inherent partition of Θ × Θ′ and the uni-
versal partition UΩ×Ω′ as inherent partition of Ω×Ω′, we get the nested
product

S/S ′/Q/Q′.

This notation is correct because of the associativity of iterating the
nested product of association schemes. The adjacency matrices of the
scheme S/S ′/Q/Q′ are, in this case,

• (IΘ ⊗ IΘ′)⊗ (Ai ⊗ JΩ′), with i 6= 0;
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

k), with k = 0, 1, . . . ,m′;
• (IΘ ⊗B′

k)⊗ (JΩ ⊗ JΩ′), with k 6= 0;
• (Bj ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′), with j 6= 0.

The remaining choices for the inherent partitions of Θ × Θ′ and
Ω× Ω′ give rise to the crossed product

(S/S ′)× (Q/Q′),

i.e. the association scheme on Θ×Θ′×Ω×Ω′ whose adjacency matrices
are

• (IΘ⊗B′
j)⊗(IΩ⊗A′

k), with j = 0, 1, . . . , n′ and k = 0, 1, . . . ,m′;
• (IΘ ⊗B′

j)⊗ (Ai ⊗ JΩ′), with j = 0, 1, . . . , n′ and i 6= 0;
• (Bi ⊗ JΘ′)⊗ (IΩ ⊗ A′

k), with i 6= 0 and k = 0, 1, . . . ,m′;
• (Bi ⊗ JΘ′)⊗ (Ak ⊗ JΩ′), with i, k 6= 0.

As an easy example, we can consider the case when Θ = Θ′ = Ω =
Ω′ = {1, 2} and S = S ′ = Q = Q′ = 2. We recall that 2 denotes the
trivial association scheme on two elements, whose adjacency matrices
are

M0 =

(
1 0
0 1

)
and M1 =

(
0 1
1 0

)
.

Let us call these matrices B0 and B1 in the case of S, B′
0 and B′

1 in
the case of S ′, A0 and A1 in the case of Q, A′

0 and A′
1 in the case of

Q′, respectively.
So the adjacency matrices of the nested product Q/Q′ are

• A1 ⊗ JΩ′ ;
• IΩ ⊗ IΩ′ ;
• IΩ ⊗ A′

1.

Consider now the inherent partition F of Ω × Ω′ whose relation
matrix is

RF = IΩ ⊗ IΩ′ + IΩ ⊗ A′
1 = IΩ ⊗ JΩ′ ,
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corresponding to the partition Ω×Ω′ = {(1, 1), (1, 2)}∐{(2, 1), (2, 2)}.
The adjacency matrices of the ideal partition P associated with F

are

• IΩ ⊗ JΩ′ ;
• A1 ⊗ JΩ′ .

Analogously, the adjacency matrices associated with the nested
product S/S ′ defined on the product Θ×Θ′ are

• B1 ⊗ JΘ′ ;
• IΘ ⊗ IΘ′ ;
• IΘ ⊗B′

1.

Consider the inherent partition G of Θ × Θ′ whose relation matrix is,
as above,

RG = IΘ ⊗ IΘ′ + IΘ ⊗B′
1 = IΘ ⊗ JΘ′ .

We can now study the crested product of the schemes 2/2 and 2/2 with
respect to the inherent partitions G and F defined above. So we get
the association scheme on the set

Θ×Θ′ × Ω× Ω′

whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ A′
1);

• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (A1 ⊗ JΩ′).

By choosing the inherent partition G for Θ×Θ′ and the universal
partition UΩ×Ω′ for Ω × Ω′, i.e. the partition whose relation matrix is
RUΩ×Ω′ = JΩ⊗JΩ′ , we get a different crested product of the schemes 2/2
and 2/2. The only adjacency matrix of the ideal partition P associated
with UΩ×Ω′ is JΩ⊗JΩ′ . So the adjacency matrices of the crested product
of the schemes 2/2 and 2/2 are

• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ A′
1);

• (B1 ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′).

Finally, by choosing the identity partition EΘ×Θ′ for Θ × Θ′ and
the inherent partition F for Ω × Ω′, we get again a different crested
product of the schemes 2/2 and 2/2, whose adjacency matrices are
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• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (A1 ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (A1 ⊗ JΩ′).

This completes the description of the nontrivial crested products
that we can get from the schemes 2/2 and 2/2. By choosing the iden-
tity partition EΘ×Θ′ as inherent partition of Θ× Θ′ and the universal
partition UΩ×Ω′ as inherent partition of Ω×Ω′, we get the nested prod-
uct

2/2/2/2.

The adjacency matrices of this scheme are

• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (JΩ ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′).

The remaining choices of inherent partitions of Θ×Θ′ and Ω× Ω′

give rise to the crossed product

(2/2)× (2/2),

whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ A′
1);

• (IΘ ⊗B′
1)⊗ (A1 ⊗ JΩ′);

• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ IΩ′);
• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ A′

1);
• (B1 ⊗ JΘ′)⊗ (A1 ⊗ JΩ′).

Remark. These products have also another interpretation from the
orthogonal block structures point of view.

In fact, a ultrametric space has in a natural way an orthogonal
block structure: if we fix a level Li of the rooted tree of depth n, for
i = 1, . . . , n, then this level induces a partition in spheres on the n−th
level: in particular, for any vertex x ∈ Li, one sphere will be consti-
tuted by the vertices of Ln which have x as ancestor. Considering the
partition in spheres induced by each level, one gets an orthogonal block
structure.
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Take now two rooted trees of depth 2 with branch indices (m,n)
and (p, q), respectively. Consider the corresponding orthogonal block
structures: each block consists of three partitions with sizes 1, n,mn
and 1, q, pq, respectively. We denote these partitions by F0, F1, F2 for
the first tree and by G0, G1, G2 for the second tree. So the relation
matrices in the case of the first tree are

• R0 = Im ⊗ In;
• R1 = Im ⊗ Jn;
• R2 = Jm ⊗ Jn

and in the case of the second tree are

• S0 = Ip ⊗ Iq;
• S1 = Ip ⊗ Jq;
• S2 = Jp ⊗ Jq.

The corresponding association schemes that we can get considering the
matrices AF defined above are Q, with adjacency matrices

• A0 = Im ⊗ In;
• A1 = Im ⊗ (Jn − In);
• A2 = (Jm − Im)⊗ Jn

and Q′, with adjacency matrices

• A′
0 = Ip ⊗ Iq;

• A′
1 = Ip ⊗ (Jq − Iq);

• A′
2 = (Jp − Ip)⊗ Jq.

So we can observe that the association scheme Q is just the scheme
m/n and the association scheme Q′ is just the scheme p/q. We can

do the crested product of these schemes with respect to the possible
inherent partitions, whose relation matrices are R0 or S0 in the case of
the equality partition, then R1 or S1 and finally R2 or S2 in the case
of the universal partition.

We can also do the crested product of orthogonal block structures
and then we can associate to the block obtained a new association
scheme by using the matrices AF . Actually, we can show that the
operation of deriving the association scheme from the orthogonal block
structure commutes with cresting. Let us verify it in all cases.

The relation matrices of the block obtained by the crest product
with respect to the partition F1 and G1 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;

• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S0, with A1,0 = Im ⊗ (Jn − In)⊗ Ip ⊗ Iq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ (Jq − Iq);
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• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S1, with A2,1 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ (Jp − Ip)⊗ Jq

and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F1 and G1 as inherent partitions,
respectively.

The relation matrices of the block obtained with the crest product
with respect to the partition F1 and G2 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;

• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S0, with A1,0 = Im ⊗ (Jn − In)⊗ Ip ⊗ Iq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ (Jq − Iq);
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ Jp ⊗ Jq

and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F1 and G2 as inherent partitions,
respectively.

The relation matrices of the block obtained with the crest product
with respect to the partition F0 and G1 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;

• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ Jq;
• R2 ⊗ S1, with A2,1 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ Jq
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ (Jp − Ip)⊗ Jq

and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F0 and G1 as inherent partitions,
respectively.

The same result can be obtained by considering the crossed product
and the nested product.

In fact, the relation matrices of the block obtained with the crest
product with respect to the partition F0 and G2 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;

• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ Jp ⊗ Jq;
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• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ Jp ⊗ Jq
and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F0 and G2 as inherent partitions,
respectively. The remaining choices for the partitions give rise to the
crossed product. The relation matrices of the block obtained with the
crossed product are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;

• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S0, with A1,0 = Im ⊗ (Jn − In)⊗ Ip ⊗ Iq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ (Jq − Iq);
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S0, with A2,0 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ Iq;
• R2 ⊗ S1, with A2,1 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ (Jq − Iq);
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ (Jp − Ip)⊗ Jq.

The interesting fact is that the nested product of the two original blocks
gives an orthogonal block structure on a set withmnpq elements, which
is exactly the block of spherical partitions of the fourth level of the
rooted tree of depth 4 and branch indices (m,n, p, q). The remaining
crested product give other orthogonal block structures corresponding
to different partitions which are not induced by the spheres of the trees.

5. A Markov chain on orthogonal block structures

In this section I will define a Markov chain on orthogonal block
structures, introduced in [21], which reduces to the Insect Markov chain
presented in Chapter 2, Section 2.3, if the orthogonal block is the poset
block structure associated with a chain (I,≤).

In what follows, we will use the notation of Chapter 1.
Let F be an orthogonal block structure on a finite set Ω. We want

to associate with F a Markov chain on Ω.
The ancestral poset defined in Chapter 1 is a particular case of the

poset associated with the partitions of F, as well as the poset block is
a particular case of a poset (P,≤) that one can associate with F.

We use the notation F � G if F 4 G and F 4 H 4 G implies
H = F or H = G.

Let C = {E = F0, F1, . . . , Fn = U} be a maximal chain of partitions
of F such that Fi�Fi+1 for all i = 0, . . . , n−1. We can define a rooted
tree of depth n as follows: the n−th level is constituted by |Ω| vertices;
the (n− 1)−st by |Ω|

kF1
vertices. Each of these vertices is a father of kF1

sons that are in the same part of F1. Inductively, at the i−th level of

the tree there are |Ω|
kFn−i

vertices, each of them is the father of the kFn−i

vertices of the (i+ 1)−st level belonging to the same part of Fn−i.
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We can perform the same construction for every maximal chain C
in F. The next step is to glue the different trees identifying the vertices
associated with the same partition. The resulting structure is the poset
(P,≤).

For example, the poset block structure described in Chapter 1, Ex-
ample 3.1.3, can be regarded as the orthogonal block structure on the
set Ω = {000, 001, 010, 011, 100, 101, 110, 111} given by the set of par-
titions F = {E,F1, F2, F3, U} where, as usually, E denotes the equality
partition and U the universal partition of Ω, while the nontrivial par-
titions are defined as:

• F1 = {000, 001, 010, 011}∐{100, 101, 110, 111};
• F2 = {000, 001}∐{010, 011}∐{100, 101}∐{110, 111};
• F3 = {000, 010}∐{001, 011}∐{100, 110}∐{101, 111}.

So the orthogonal block structure F can be represented by the following
poset: q

q
q q

q

U

F1

F2 F3

E

�
�

��

@
@

@@
@

@
@@

�
�

��

Fig.18. The orthogonal block structure F = {E,F1, F2, F3, U}.

The maximal chains in F have length 3 and they are:

• C1 = {E,F2, F1, U};
• C2 = {E,F3, F1, U}.

The poset (P,≤) associated with F is
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Fig.19. The poset (P,≤) associated with F = {E,F1, F2, F3, U}.

Observe that, if F � G, then the number of F−classes contained in a
G−class is kF/kG.

5.1. Definition of the Markov chain. The Markov chain that
we want to describe is performed on the last level of the poset (P,≤)
that we have just defined. We can think of an insect which, at the
beginning of our process, lies on a fixed element ω0 of Ω (this corre-
sponds to the identity relation E, i.e. each element is in relation only
with itself). The insect randomly moves reaching an adjacent vertex in
(P,≤) (this corresponds, in the orthogonal block structure F, to move
from E to another relation F such that E�F , i.e. ω0 is identified with
all the elements in the same F−class) and so on. At each step in (P,≤)
(that does not correspond necessarily to a step in the Markov chain on
Ω) the insect could randomly move from the i−th level of (P,≤) either
to the (i − 1)−st level or to the (i + 1)−st level. Going up means to
pass in F from a partition F to a partition L such that F�L (these are
|{L ∈ F : F �L}| possibilities in (P,≤)), going down means to pass in
F to a partition J such that J�F (these are

∑
J∈F:J�F

kF
kJ

possibilities

in (P,≤)). The next step of the random walk is whenever the insect
reaches once again the last level in (P,≤). In order to formalize this
idea let us introduce the following definitions.

Let αF,G be the probability of moving from the partition F to the
partition G. So the following relation is satisfied:

αF,G =
1∑

J∈F:J�F (kF/kJ) + |{L ∈ F : F � L}|(36)

+
∑

J∈F:J�F

(kF/kJ)αJ,FαF,G∑
J∈F:J�F (kF/kJ) + |{L ∈ F : F � L}| .

In fact, the insect can directly pass from F to G with probability αF,G

or go down to any J such that J � F and then come back to F with
probability αJ,F and one starts the recursive argument. From direct
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computations one gets

αE,F =
1

|{L ∈ F : E � L}| .(37)

Moreover, if αE,F = 1 we have, for all G such that F �G

αF,G =
1∑

J∈F:J�F (kF/kJ) + |{L ∈ F : F � L}| ;(38)

if αE,F 6= 1, the coefficient αF,G is defined as in (36).

Definition 5.1. For every ω ∈ Ω, define

p(ω0, ω) =
∑

E 6=F∈F
ω0∼Fω

∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F
(
1−∑F�L αF,L

)

kF
.

The fact that p is effectively a transition probability on Ω will follow
from Theorem 5.4. First define the following numbers:

pF =
∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F

(
1−

∑

F�L

αF,L

)
.(39)

Observe that pF expresses the probability of reaching the partition F
but no partition L such that F ≺ L in F.

Lemma 5.2. The coefficients pF ’s defined in (39) satisfy the follow-
ing identity: ∑

E 6=F∈F
pF = 1.

Proof. Using the definitions we have

∑

E 6=F∈F
pF =

∑

E 6=F∈F

∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F

(
1−

∑

F�L

αF,L

)

=
∑

E�F

αE,F = 1.

In fact, for every F ∈ F such that E 6 F , given a chain C =
{E,F1, . . . , F

′, F} we get the terms αE,F1 · · ·αF ′,F
(
1−∑F�L αF,L

)
.

Since C = {E,F1, . . . , F
′, F, L} is still a term of the sum one can check

that only the summands
∑

E�F αE,F are not cancelled. The thesis fol-
lows from (37). �
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For every F ∈ F, F 6= E define MF as the Markov operator whose
transition matrix is

MF =
1

kF
RF .(40)

Definition 5.3. Let MF be the Markov operator defined in (40)
and let pF be the coefficient in (39). Set

M =
∑

E 6=F∈F
pFMF .(41)

By abuse of notation, we denote by M the stochastic matrix asso-
ciated with the Markov operator M .

Theorem 5.4. M coincides with the transition matrix of p.

Proof. By direct computation we get:

M(ω0, ω) =
∑

E 6=F∈F
pFMF (ω0, ω) =

∑

E 6=F∈F
ω0∼Fω

pF · 1

kF

=
∑

E 6=F∈F
ω0∼Fω

∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F
(
1−∑F�L αF,L

)

kF

= p(ω0, ω).

�

5.2. Spectral analysis. We present here the spectral analysis of
the operator M acting on the space L(Ω) of the complex functions
defined on the set Ω endowed with the scalar product

〈f1, f2〉 =
∑

ω∈Ω
f1(ω)f2(ω).

First of all introduce (see, for example, [3]), for every F ∈ F, the
following subspaces of L(Ω):

VF = {f ∈ L(Ω) : f(α) = f(β) if α ∼F β}.
It is easy to show that the operator MF defined in (40) is the projector
onto VF . In fact if f ∈ L(Ω), thenMFf(ω0) is the average of the values
that f takes on the elements ω such that ω ∼F ω0 and so MFf = f if
f ∈ VF and MFf = 0 if f ∈ V ⊥

F .
Set

WG = VG ∩ (
∑

G≺F

VF )
⊥.

In [3] it is proven that L(Ω) =
⊕

G∈FWG. We can deduce the following
proposition.
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Proposition 5.5. The WG’s are eigenspaces for the operator M
with associated eigenvalue

λG =
∑

E 6=F∈F
F4G

pF .(42)

Proof. By definition, WG ⊆ VG. This implies that, if f ∈ WG,

MFf =

{
f if F 4 G
0 otherwise

So, for w ∈ WG, we get

M · w =
∑

E 6=F∈F
pFMF · w

= (
∑

E 6=F∈F
F4G

pF ) · w.

Hence the eigenvalue λG associated with the eigenspace WG is

λG =
∑

E 6=F∈F
F4G

pF .

and the assertion follows. �

5.2.1. Example. We can study now the transition probability p in
the case of the orthogonal block structure F described in Fig.18. One
can easily verify that we have:

• αE,F2 = αE,F3 = αF2,F1 = αF3,F1 =
1
2
;

• αF1,U = 1
3
.

Let us compute the transition probability p on the last level of (P,≤):q
q q
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Fig.20. The poset (P,≤) associated with F = {E,F1, F2, F3, U}.
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We have:

p(000, 000) =
1

2
· 1
2
· 1
2
+

1

2
· 1
2
· 1
2
+ 2 · 1

2
· 1
2
· 2
3
· 1
4
+ 2 · 1

2
· 1
2
· 1
3
· 1
8
=

17

48
;

p(000, 001) = p(000, 010)

=
1

2
· 1
2
· 1
2
+ 2 · 1

2
· 1
2
· 2
3
· 1
4
+ 2 · 1

2
· 1
2
· 1
3
· 1
8
=

11

48
;

p(000, 011) = 2 · 1
2
· 1
2
· 2
3
· 1
4
+ 2 · 1

2
· 1
2
· 1
3
· 1
8
=

5

48
;

p(000, 100) = p(000, 101) = p(000, 110) = p(000, 111)

= 2
1

2
· 1
2
· 1
3
· 1
8
=

1

48
.

The corresponding transition matrix is given by

P =
1

48




17 11 11 5 1 1 1 1
11 17 5 11 1 1 1 1
11 5 17 11 1 1 1 1
5 11 11 17 1 1 1 1
1 1 1 1 17 11 11 5
1 1 1 1 11 17 5 11
1 1 1 1 11 5 17 11
1 1 1 1 5 11 11 17




The coefficients PF , with E 6= F , are the following (see (39)):

• pU = 2 · 1
2
· 1
2
· 1
3
= 1

6
;

• pF1 = 2 · 1
2
· 1
2
· 2
3
= 1

3
;

• pF2 =
1
2
· 1
2
= 1

4
;

• pF3 =
1
2
· 1
2
= 1

4
.

The Markov operator M is given by (see (41) and (40)):

M =
1

4
MF2 +

1

4
MF3 +

1

3
MF1 +

1

6
MU

and its eigenvalues, according with formula (42), are the following:

• λU = 1;
• λF1 =

5
6
;

• λF2 =
1
4
;

• λF3 =
1
4
;

• λE = 0.

5.2.2. Remark. One can easily check that the Markov chain intro-
duced in Definition 5.1 reduces to the Insect Markov chain presented
in Section 2 of this chapter, whenever the orthogonal block is the poset
block structure associated with a finite poset (I,≤) which is a chain.

In fact, in this case the ancestral poset is still a chain and the poset
(P,≤) is a rooted tree whose depth is the cardinality of the set I.
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5.2.3. Remark. In the case of poset block structures, the eigenspaces
of the operator M coincide with the irreducible subrepresentations of
the generalized wreath product of the groups Sym(∆i).

Actually, the subrepresentations given in (16) are indexed by the
antichains of I. Instead in Proposition 5.5 they are indexed by the
relations of the orthogonal block structure F. The correspondence is
the following.

Given a relation G ∈ F, it can be regarded as an ancestral relation
∼J , for some ancestral subset J ⊆ I. Set

S = {i ∈ J : H(i) ∩ J = ∅}.
It is clear that S is an antichain of I. From the definition it follows
that

A(S) = J \ S and I \ A[S] = I \ J.
The corresponding eigenspace WS becomes:

WS =


⊗

i∈J\S
L(∆i)


⊗

(⊗

i∈S
V 1
i

)
⊗


⊗

i∈I\J
V 0
i


 .

It is easy to check that the functions in WS are constant on the equiva-
lence classes of the relation ∼J . Moreover, these functions are orthog-
onal to the functions which are constant on the equivalence classes of
the relation ∼J ′ , with ∼J ′ � ∼J (where J ′ is obtained from J deleting
an element of S). Since the orthogonality with the functions constant
on ∼J ′ implies the orthogonality with all functions constant on ∼L,
where ∼L�∼J , then we have WS ⊆ WG. On the other hand, it is easy
to verify that

dim(WS) = dim(WG) = m|J\S| · (m− 1)|S|,

and so we have WS = WG.
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[37] R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskii, Automata, dy-
namical systems and groups, Proc. Steklov Inst. Math., Vol. 231 (2000), 128-
203.

[38] R. I. Grigorchuk, D. Savchuk and Z. Šunić, The spectral problem, substitutions
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