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Introduction

This work is a collection of the main interests that I developed
during my doctoral studies, that began on November 2003, and it
presents the more interesting results that I got, mostly in joint works
with Daniele D’Angeli, in my research activity.

As the title shows, the main subject of this thesis is constituted
by the notion of Gelfand pair. In particular, I study here the finite
Gelfand pairs arising from the action of automorphisms groups on the
rooted homogeneous tree, but also on more general structures, namely
the poset block structures.

Given a finite group G and a subgroup K < G of G, then (G, K)
is a Gelfand pair if the permutation representation of G on the space
of complex functions L(X) defined on the homogeneous space

X =G/K ={gK :g€G}

is multiplicity-free, i.e. it decomposes into irreducible subrepresenta-
tions which are pairwise non isomorphic.

The finite Gelfand pairs theory is very fashinating because it is re-
lated to group theory, representation theory, harmonic analysis, combi-
natorics and to probability and statistics. There exists also a big liter-
ature for infinite Gelfand pairs: for instance the fundamental works by
Faraut ([30]) and Helgason ([41]) and, more recently, by Grigorchuk
([35]) in connection with the theory of branch groups.

Moreover Persi Diaconis (see [23] and [24]) used Gelfand pairs in
order to determine the rate of convergence to the stationary distribu-
tion of finite Markov chains. More precisely, given a Markov chain
which is invariant under the action of a group G, its transition oper-
ator can be expressed as a convolution operator whose kernel can be
written as a “Fourier series” where the classical exponentials exp(inx)
are replaced by the irreducible representations of the group G.

I must mention also the names of Letac ([42], [43]), Delsarte ([22]),
Dunkl ([27], [28], [29]) and Figa-Talamanca ([32]) for their contribu-
tions to the theory of finite Gelfand pairs.

Finally, in [16] T.Ceccherini-Silberstein, F.Scarabotti and F.Tolli
largely develop the finite Gelfand pairs theory and investigate its con-
nections with representation theory, but also with probability and sta-
tistics: this book really was a fundamental source in my studies.

In the first chapter of this thesis I study many examples of groups
acting on the rooted homogeneous tree. Given a positive integer ¢ > 2,
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2 INTRODUCTION

I will denote by 7}, the rooted homogeneous tree of degree ¢, i.e. the
rooted tree in which each vertex has ¢ children.

If X ={0,1,...,¢— 1} is an alphabet of ¢ elements and X* is the
set of all finite words in X, then each vertex in the n—th level L,, of T},
can be identified with a word of length n in the alphabet X. Moreover,
the set of infinite words in X can be identified with the elements of the
boundary 07T, of Tj,.

For every n > 1, the set L, is an ultrametric space, in particular
a metric space, on which the full automorphisms group Aut(T}) acts
isometrically.

A fundamental class of groups acting on 7}, is the class of self-similar
groups. A group G acting on 7j is self-similar if, for any g € G and
x € X, there exist h € G and y € X such that

g(zw) = yh(w),
for all w € X*.

Self-similarity was related in most cases with geometrical objects
and only recently the notion of self-similar group appeared. The success
of the development of the theory of self-similar group is due to the fact
that many interesting examples of groups can be studied using their
self-similar action on a rooted tree (see, for instance, [35] and [37]).
Some examples of self-similar groups belong to the class of branch
groups as, for example, the Grigorchuk group (see [44]).

An important class of examples are the iterated monodromy groups
of postcritically finite rational functions, whose theory was largely de-
veloped by V. Nekrashevich ([44]). A fundamental example is given by
the Basilica group, which is the iterated monodromy group associated
with the complex polynomial 22 — 1 and which has very interesting
properties: it has exponential growth and it is the first example of an
amenable group which cannot be constructed from groups of subexpo-
nential growth by using extensions and direct limits. Its amenability
was proved by L.Bartholdi and B.Virdg (|10]) using self-similarity of
the random walk on it.

The groups that I study are the Adding Machine on the binary tree,
the Basilica group, the group IMG(z? + i) and the Baumslag-Solitar
group BSq =< s,t : t st = 59 >.

Let GG be any of these groups. Fix n > 1 and consider the action of
G on the level L, of the tree, by setting

G, = G/Stabg(n),

where Stabg(n) is the subgroup of G constituted by the automorphisms
acting trivially on L,. Fix a vertex xy € L,, and let K, be the subgroup
of G,, stabilizing xg, so that the quotient G,/ K,, can be identified with
L,.

For each example that I consider, I show that (G, K,,) is a Gelfand
pair. The strategy used to prove that uses, in some cases, the fact that
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the action of G, on L,, is 2—points homogeneous or, equivalently, that
the subgroup K, acts transitively on each sphere of radius r centered
at xg, forr=0,1,...,n.

Also the investigation of the structure of the rigid vertex stabilizers
can be a useful criterion to get Gelfand pairs, as the example of the
Basilica group shows.

In the second part of the first chapter I extend this study to the case
of the generalized wreath products of permutations groups, introduced
in [5], acting on the so-called poset block structures. These structures
contain, as a particular case, the rooted tree. For these groups, one
still gets Gelfand pair. More precisely, by using Gelfand’s condition,
one can prove that they give rise to symmetric Gelfand pairs.

In the second chapter of the thesis I leave the group theory and
I change my point of view. More precisely, I study some reversible
Markov chains which are defined on the cartesian product

X=Xy x---xX,

of n finite sets, whose elements can be regarded as the leaves of a rooted
tree of depth n with branch indices (my, ..., m,), where | X;| = m;.

In particular, I introduce the crested product of Markov chains (see
[18]), which contains the crossed and nested product as particular cases
and whose definition is inspired by the combinatoric theory of Associ-
ation schemes ([3], [4]), to whom a section of this chapter is devoted.

The spectral analysis of the associated Markov operator is per-
formed. The interesting fact is that the eigenspaces that one gets for
the crossed and the nested product coincide, under some hypothesis,
with the irreducible submodules of the action of the direct product and
of the permutational wreath product of symmetric groups, respectively.

A particular example of nested product gives rise to the “Insect
Markov chain” on the rooted homogeneous tree. This is a Markov
chain defined on the n—th level of the tree, introduced by A. Figa-
Talamanca in [32].

I study the Insect Markov chain also in relation with the cut-off
phenomenon. This term was introduced in [1] by D. Aldous and P.
Diaconis. The cut-off phenomenon occurs when the difference between
the value of the probability measure m®*) given by the k—steps tran-
sition probability and the stationary distribution 7 is close to 0 only
after a fixed number kg of steps, and it is large (close to 1) before kg
steps.

In particular, I prove that the cut-off does not occur in the Insect
Markov chain, using the spectral theory of the associated Markov op-
erator and the Fourier analysis to get an expression for the k—steps
transition probability m® (x) = p*¥)(z¢,z). This is possible since the
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Markov chain considered is invariant with respect to the action of the
full automorphisms group of the tree and then one can apply the Fourier
analysis to the corresponding Gelfand pair.

Finally, the Insect Markov chain is generalized to the block orthog-
onal structures, which contain, as a particular case, the poset block
structures. If one restricts the attention to the poset block structures,
the spectral analysis shows that the eigenspaces associated with the
corresponding Markov operator coincide with the irreducible submod-
ules of the regular representation of the generalized wreath product of
symmetric groups on the space of complex functions defined on the
poset block structure.
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I also would like to thank Prof. Alessandro Figa-Talamanca and
Antonio Machi for the precious discussions I often had with them
around several topics of my research.

I also want to thank Prof. Marialuisa J. de Resmini, the advisor
of my degree thesis, who encouraged me so many times during my
doctoral studies.



CHAPTER 1

Finite Gelfand Pairs

In this chapter the finite Gelfand Pairs theory is developed: we
present the definition and the main properties. We consider then sev-
eral examples of Gelfand pairs obtained considering the action of self-
similar groups on homogeneous rooted trees. It is interesting to observe
that some of these groups can also be regarded as iterated monodromy
groups of complex polynomials. Finally, we study the Gelfand pairs ob-
tained from the action of the generalized permutation wreath product
on poset block structures.

1. Finite Gelfand Pairs

In this section the definition of finite Gelfand pairs and associated
spherical functions is given. We present some basic results in Gelfand
pairs theory. Our main source is [16].

1.1. Definition and main properties. Let G be a finite group
and let K < G a subgroup of GG. Denote

X =G/K ={gK : g€ G}

the associated homogeneous space of right cosets of K in G. Set L(G) =
{f : G — C}. Then the space L(X) of all complex valued functions
defined on X can be regarded as the subspace of K —invariant (on the
right) functions of L(G). The isomorphism is given by the map f — f,
where f € L(X) and f is the right— K —invariant function of L(G)
defined as f(g) = f(gxo), where xy € X is the point stabilized by K.

A function f € L(G) is said bi— K —invariant if f(kgk') = f(g), for
all g € G and k, k" € K. The space of bi— K —invariant functions can
be identified with the space L(K\G/K) = {f : K\G/K — C} of all
complex valued functions defined on the set of double cosets K¢gK, for
g € G. Tt can also be regarded as the subspace L(X)¥ = {f € L(X) :
f(kx) = f(z), Vo € X,k € K} of K—invariant functions on X.

The space L(G) is an algebra with respect to the convolution prod-

uct defined as
(= f2)(9) =D filgh) fa(h7).

heG

It is easy to verify that L(G) is commutative if and only if the group
G is abelian. Moreover, both its subspaces L(X) and L(K\G/K) are
subalgebras of L(G).
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L(G) can be endowed with a Hilbert space structure by setting, for
fi, f2 € L(G),

(fi.f2) =D fi9)fa(g)

geG

analogously, the space L(X) can be endowed with a Hilbert space struc-
ture by setting, for fi, fo € L(X),

(fi. f2) = filz) fol2)

zeX

Note that if fi, fo € L(X) and ﬁ are the associated right— K —invariant
functions in L(G), then

(i Fo)rey = |K1(f1, o) pex)

The left regular representation of G on L(G) is given by the homo-
morphism A : G — U(L(G)) into the unitary group of L(G) defined
as

(Ma)f)(h) = f(g~*h), for h.g € G, f € L(G).

The left regular representation of G on L(X) is given by the homo-
morphism A : G — U(L(X)) into the unitary group of L(X) defined
as

Mg f)(x) = f(g7'z), forge G, € X and f € L(X).

To indicate the left regular representation A(g)f of an element g € G
on a function f € L(X) we will often use the notation f? or g(f).

DEFINITION 1.1. Let G be a finite group and K < G a subgroup of
G. The pair (G, K) is a Gelfand pair if the algebra L(K\G/K) is

commutative.

More generally, if G is a group acting transitively on a finite set
X, then this action defines a Gelfand pair if (G, K) is a Gelfand pair,
where K is the subgroup stabilizing a point zy € X. Moreover, if
gro = x, then K’ = gKg~! stabilizes z and (G, K) is a Gelfand pair if
and only if (G, K') is a Gelfand pair.

A particular example of a Gelfand pair is given by the symmetric
Gelfand pairs: this is the case if, for every g € G, one has g7 € KgK.
In fact, under this hypothesis, it is possible to show that the algebra
L(K\G/K) is commutative. If f € L(K\G/K), then we have f(g) =
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f(g™). So, for fi, f» € L(K\G/K), we have:
(frxfo)(g) = > filgh)fa(h™")

heG

= > filgh)fa(h)

heG

— S AW

teG

= > hlgHAET

teG

= (foxflg) = (f2% fi)(9),

where we set gh = t.

If G acts on a finite set X, then the diagonal action of G on X x X
is defined by

g(x,2') = (gx,g2’), forall g€ G,x,2’' € X.

THEOREM 1.2. Consider the action of G on X = G/K. Let zo be
the point stabilized by K and let X = Qo [[ Q... ][, be the decom-
position of X into K—orbits, with Qo = {xo}. For eachi=0,1,...,n,
choose x; € ;. Then the sets G(x;,zo) are the orbits of the diagonal
action of G on X x X.

Proof. Note that, for all (z,y) € X x X, thereexist g € G, k € K
and i € {0,1,...,n} such that

(ﬂf,y) - (ilf,g.’ll'o) = (gg_lxang) - (gk‘xl,gk’xo) € G(xiva:O)?
where we used that G is transitive on X and we denoted Kx; = €2; the
K—orbit containing g~*z. This shows that X x X = [J;_, G(x;, xo).
Moreover, it is easy to verify that this is a disjoint union, what gives
the assertion. U

The following lemma is straightforward (see [16]). If z,y € X and
G acts on X, we will use the notation x ~ y to say that x and y are in
the same G—orbit.

LEMMA 1.3 (Gelfand’s Condition). Let G be a group acting transi-
tively on a finite set X and set K ={k € G : kxg = xo}, with zo € X .
Then the following are equivalent:

(1) for all xz,y € X, one has (x,y) ~ (y,z) with respect to the
diagonal action of G on X X X;
(2) g7t € KgK for all g € G.

Now suppose that (X, d) is a finite metric space and that G isomet-
rically acts on X. We say that this action is 2—points homogeneous if,
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for all (z,y), (2',y') € X x X such that d(z,y) = d(z',y'), there exists
g € G such that gr =2’ e gy = /. If K is the stabilizer of an element
xo € X, then Lemma 1.3 easily implies that, under these conditions,
(G, K) is a symmetric Gelfand pair.

We can observe that the K —orbits under this action are the spheres
centered at zy with radius j, for j = 0,1,.... Hence, a function f €
L(X) is K—invariant if and only if it is constant on these spheres.

We want to give now a characterization of a Gelfand pair (G, K) in
terms of the representation of the group G on L(X), with X = G/K.

DEFINITION 1.4. A representation (p, V') of a group G is multiplicity-
free is all its irreducible subrepresentations are pairwise non-equivalent.

Given two representations (p1, V1) and (p2, V2) of G, we denote
Homg(V1,Va) = {T:Vi = Vo 1 pa(g)(Tv) = T(p1(g)v) for all
geGveV}
the space of operators intertwining the representations (p;, V) and
(p2,Va). We will say that T is G—equivariant. It is known that if

Vi =V, =V, then Homg(V,V) is an algebra. The proof of the follow-
ing proposition can be found in [16].

PROPOSITION 1.5. The following isomorphism holds:
Homeg(L(X), L(X)) = L(K\G/K)
The following lemma can be proven by using character theory.

LEMMA 1.6 (Wielandt’s Lemma). Let G be a finite group and K <
G a subgroup of G. Set X = G/K. Let L(X) = @ﬁiomivi a de-
composition of L(X) into irreducible G—subrepresentations, where m;
denotes the multiplicity of V;. Then

N
me = number of G—orbits on X XX = number of K—orbits on X.
=0

THEOREM 1.7. Let G be a finite group and K < G. Set X = G/K.
Then the following are equivalent:
(1) (G, K) is a Gelfand pair, i.e. L(K\G/K) is commutative;
(2) Homg(L(X), L(X)) is commutative;
(3) the decomposition of L(X) into irreducible G—subrepresentations
18 multiplicity-free.

Proof. The equivalence between (1) and (2) is given by Proposition
1.5.

(3)=-(2) Suppose that the decomposition L(X) = @?LO V; into ir-
reducible subrepresentations is multiplicity-free.

Let T € Homg(L(X), L(X)) and denote T; the restriction of T" to
V;. If T; is not trivial, then T; is injective since V; is irreducible and so
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{Tv : v € V;} is a subspace isomorphic to V;. Hence it coincides with
V; and by Schur’s Lemma (see, for instance, [33]) there exists \; € C
such that Tv = \v, for all v € V.

Since every f € L(X) decomposes uniquely in the form f = Zi\;o v,
with v; € V;, we have that for every T' € Homg(L(X), L(X)) there
exist Ag, A\1,...,An € C such that

N
1=0

If Se€ Homg(L(X), L(X)) is such that Sf = Zfio ;v;, then

N
STf = Zﬂi)\ivi =TS/,
=0
for all f € L(X) and so Homg(L(X), L(X)) is commutative.

(2)=(3) Suppose that L(X) is not multiplicity-free, so that there
exist two orthogonal irreducible isomorphic subrepresentations V' and
W in L(X). Let ¢ : V. — W be such an isomorphism. Define U the
orthogonal complement such that L(X) =V @ W @& U. We define two
linear operators S, 7 : L(X) — L(X) by setting

Tw+w+u)=pv and S(v+w+u) = ¢ w,
for all v € V,w € W and v € U. It is easy to check that S and T
are G—equivariant, but ST # T'S since, for instance, (ST)|w = 0 and

(T'S)|w = Iw. This implies that Homg(L(X), L(X)) is not commuta-
tive. U

Consider the space CN*! with the coordinatewise product

(a[))ala s 7aN) ' (/BOaﬁla T 7BN) = (O-/Oﬁ()aalﬂla s 7aNﬁN)a
for any (g, a1, ...,an), (Bo, B1,--.,Bn) € CN. This is an algebra of
dimension N + 1. From the proof of Theorem 1.7 we get the following
corollary.

COROLLARY 1.8. Let (G, K) be a Gelfand pair and L(X) = @fvzo Vi
the decomposition of L(X) into irreducible inequivalent subrepresenta-
tions. Then

(1) if T'€ Homeg(L(X), L(X)), then any V; is an eigenspace of T';
(2) if T € Homg(L(X),L(X)) and X; is the eigenvalue of the
restriction of T to V;, then the map
T ()\0,)\1,...,)\]\7)
is an isomorphism between Homg(L(X), L(X)) and CNT1;
(3) N +1 = dim(Homg(L(X),L(X))) = dim(L(K\G/K)) =
number of K—orbits of X.

The following proposition gives a useful criterion for Gelfand pairs.
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PROPOSITION 1.9. Let G be a finite group, K a subgroup of G and
set X = G/K. If we have a decomposition L(X) = @?:0 Zy into
pairwise inequivalent G—subrepresentations with h + 1 = number of

K—orbits of X. Then the Z;’s are irreducible and (G, K) is a Gelfand
pair.

Proof. We can refine, if necessary, the decomposition with the Z;’s
into irreducibles as in the statement of Lemma 1.6. So we have

N N
h+1 mei < me
i=0 i=0

and Lemma 1.6 forces h = N and m; = 1 foreach i =0,1,..., N. This
gives the assertion. 0

1.2. Spherical functions. From now on suppose that (G, K) is
a Gelfand pair.

DEFINITION 1.10. A bi— K—invariant function ¢ is called spher-
ical if it has the following properties:

(1) for all f € L(K\G/K), there exists A\ € C such that ¢ x f =

o5
(2) ¢(1g) = 1.

The constant function ¢(g) = 1 is clearly spherical. The condition
(1) tells us that ¢ is an eigenfunction for every convolution operator
with a bi—K—invariant kernel, equivalently, by Proposition 1.5, for
every T € Homg(L(X),L(X)). The condition (2) tells us that the
corresponding eigenvalue is the number Ay = (¢ * f)(1e) = T(¢)(1e).

LEMMA 1.11. Let ¢ a spherical function and let ® be the linear
functional on L(G) defined by

(1) O(f) =Y fl9)dlg ™).
geG
Then ® is multiplicative on L(K\G/K), that is, for any fi, fo € L(K\G/K),

O(f1+ f2) = ©(f1)2(f2).

Viceversa every nontrivial multiplicative linear functional on L(K\G/K)
is determined by a spherical function as in (1).

COROLLARY 1.12. Let (G, K) a Gelfand pair. Then the number
of distinct spherical functions equals the number of distinct irreducible
subrepresentations in L(X).

Proof. Let N + 1 the number of irreducible subrepresentations in
L(X). Then, by Corollary 1.8, L(K\G/K) and C¥*! are isomorphic
as algebras. A linear multiplicative functional on CV*! is always of the
form

\I’(Oéo, Ay, .. ,OéN) = Qy,
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for some j. Therefore L(K\G/K) and C¥*! have exactly N + 1 mul-
tiplicative linear functionals. By Lemma 1.11, the number of spherical
functions is N + 1. OJ

From the definition, the following properties of the spherical func-
tions easily follow.

PROPOSITION 1.13. Let ¢ and 1) be two distinct spherical functions.
Then

(1) d(g7") = (g) for all g € G;

(2) ¢x1p=0;

(3) (Mg1)d, Mg2)¥) =0 for all g1, g2 € G;
(4) ¢ and 1 are orthogonal, i.e. {p,1)) = 0.

Denote V,, =< A(¢)¢y, : g € G > the subspace of L(X) spanned by
the G—translates of ¢,,, forn =0,1,..., N.

THEOREM 1.14. L(X) = @Y _,V, is the decomposition of L(X)
into irreducible subrepresentations.

Proof. By definition, each V,, is G—invariant and, by Proposition
1.13, V,, is orthogonal to V,, if n # m. The Vs are distinct and they
exhaust L(X). This gives the assertion. O

The representation V,, is called spherical representation associated
with the spherical function ¢,. In particular, Vj is the trivial represen-
tation.

Let (p, V') a representation of G. If K < G, denote

VE={veV:pkv=uv, forall ke K}
the space of K —invariant vectors in V.

THEOREM 1.15. (G, K) is a Gelfand pair if and only if diim(VE) <
1 for each wrreducible G—representation V. Moreover, V' is spherical if

and only if dim(VE) = 1.

Proof. Let (G, K) be a Gelfand pair and let (p, V') a representation
of G, with dim(V*) > 1. Fix a nontrivial vector u € V&. Let T :
V' — L(X) be the operator defined by Tw(g) = (v,p(g)u)y. Then
T € Homg(V, L(X)). Indeed T is a right K —invariant function and

(Tp(h)v)(g) = (p(h)v,p(g)u)v
= (v, p(h™ " g)upv
= (A(h)(Tv))(9),

for all v € V and h,g € GG. By Schur’s Lemma, V' = V,, for some
spherical representation V,.
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But Corollary 1.8 tells us that N + 1 equals the dimension of the
space L(X)%X, which must be equal to ®Y_ VX Since, for every m,
dim(V,X) > 1 because every spherical function ¢, € VmK , we have
dim(VX) =1 for all m so that dim(V¥) = dim(V,X) = 1.

Conversely, suppose dim(V %) < 1 for all irreducible subrepresenta-
tions V. If L(X) = @, myW,, is the decomposition into irreducible
subrepresentations and N + 1 denotes the number of K —orbits of X,

then Lemma 1.6 gives

H
Z —l—l—thdlmWh <th,

h=0

where the inequality follows from the hypothesis. This forces m; = 1
for all h, so that L(X) is multiplicity-free. O

Since L(X)X = @Y, VX, we deduce that the spherical functions
constitute a basis for the space of bi—K —invariant functions in L(G).

The following theorem (see [16] for the proof) will be useful in what
follows.

THEOREM 1.16 (Garsia’s Theorem). A Gelfand pair is symmetric
if and only if the associated spherical functions are real valued.

2. Groups of automorphisms of homogeneous rooted trees

In this section we will study the Gelfand pairs associated with the
action of groups of automorphisms of the homogeneous rooted tree. In
particular, we focus our attention on the action of an automorphisms
group G on the n—th level L,, of the tree. To do this, we consider the
quotient group G, of G modulo the stabilizer of L,, and we study the
pair (G, K,), where K,, denotes the subgroup of G,, stabilizing a leaf
of L,.

Let ¢ be a positive integer, with ¢ > 2. The case of the full auto-
morphisms group Aut(7,) of the g—ary rooted tree T} is studied, for
instance, in [16]. The authors give there the decomposition of the space
L(L,) into irreducible subrepresentations, together with the associated
spherical functions.
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L,

Fig.1. The ternary rooted tree of depth 3.

If X=4{0,1,...,¢ — 1} is an alphabet of ¢ elements and X* is the
set of all finite words in X, then each vertex in the n—th level L,, of T,
can be identified with a word of length n in the alphabet X. Moreover,
we can identify the set of infinite words in X with the elements of the
boundary 07}, of Tj,.

The set L,, can be endowed with an ultrametric distance d, defined
in the following way: if x =21 ...x, and y = y; ... y,, then

d(xz,y) =n—max{i: zx =y, Yk <i}.

We observe that d = d’/2, where d’ denotes the usual geodesic distance.

In this way (L,,d) becomes an ultrametric space, in particular a
metric space, on which the automorphisms group Aut(7,) isometrically
acts. Note that the diameter of (L,, d) is exactly n.

Fix n € N and restrict our attention to the action of Aut(7}) on
the level L,. To indicate the action of an automorphism g € Aut(T,)
on a vertex x, we will use the notation g(z) or z9. Moreover, denote
Sy the symmetric group on ¢ elements.

Set

Aut(T5), = Aut(T,)/Stabau(r,)(n),
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where Stabaur,)(n) denotes the subgroup of Aut(T}) stabilizing L,,.
It is known that the following isomorphism holds:

Aut(T,),, = 505,015,

A
n tlmes

If one considers the action of Aut(1,), on L, one gets, for every n,
a 2—points homogeneous action, giving rise to the symmetric Gelfand
pair (Aut(T,),, Ky), with K,, = Stabaur,),(0"), where 0" is the left-
most leaf of L,,. In fact, the following theorem holds.

THEOREM 2.1. The action of Aut(T,), on (L,,d) is 2—points ho-
mogeneous.

Proof. We use induction on the depth n of the tree 7.

n = 1. The assertion follows from the 2—transitivity of the group
Sy-

n > 1. Let (z,y) and (2/,y’) be pairs of vertices in L,, with d(z,y) =
d(2',y). If d(x,y) < n, then vertices x and y belong to the same subtree
of T and so z1 = y;. Analogously for 2’ and 3'. Applying, if necessary,
the transposition (z12}) € S,, we can suppose z1 = y; = &} = ¥y}, so
that x, 2’, y and 1y’ belong to the same subtree of depth less or equal to
n — 1, and then induction works.

Finally, consider the case d(x,y) = d(2’,y') = n. Consider the au-
tomorphism ¢g € Aut(7,) such that g(z,) = 2} and g(y1) = y; and
which acts trivially on the other vertices of L;. Now we have that x
and 2’ belong to the same subtree T’. Analogously y and y’ belong
to the same subtree 7", with 7" # T". The restriction of Aut(T}), to
T’ and T"” respectively acts transitively on each level. So there is an
automorphism ¢’ of 7" carrying x to z’ and acting trivially on 7" and
analogously there is an automorphism ¢” of T” carrying y to ¢ and
trivial on T”. The assertion is proved. [J

COROLLARY 2.2. For all n > 1, (Aut(T})n, K,) is a symmetric
Gelfand pair.

The decomposition of the space L(L,,) under the action of Aut(T),,
is known.

Denote Wy =2 C the trivial representation and for every j = 1,...,n,
define the following subspace

i
X

VVJ' = {f € L(Ln) : f = f(xla - ,33]‘>, f(IL‘l,ZL’Q, . ,{L‘j_l,:L‘) = 0}7

T

i
o

of dimension ¢/~*(¢ — 1). One can verify that the W;’s are Aut(T,),—
invariant, pairwise orthogonal and that the following decomposition
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holds
(2) L(L,) = W;.
=0
Since the spheres centered at zy := 0" (and so the K, —orbits) are

exactly n + 1, we have from Proposition 1.9 that the subspaces W;’s
are irreducible.

There exists a complete description of the corresponding spherical
functions. For every j =0,...,n we get

1, d(xz,x0) <n—j+1;
(3) ¢i(x) =3 1o d(x,20) =1 —j+1;
0, d(x,z9) >n—j+ 1.

If we consider a countable subgroup of Aut(7},) and the relative action
on L,, we can ask if it is possible to find the same results about Gelfand
pairs obtained for the full automorphisms group. In some cases the
answer is positive.

In the next sections, we will consider the action of special finitely
generated subgroups of Aut(71,), which belong to the class of self-similar
groups and, in some cases, of iterated monodromy groups.

Remark. In [14] the authors consider a more general construction,
namely they study the case of the action of the automorphisms group
of the tree on the variety of special substructures of the tree.

Given an n—tuple m= (my, ..., m,) of integers > 2, a finite rooted
tree T'is of type m if each vertex at distance k from the root has exactly
my1 sons, for every k =0,1,...,n— 1 (we also say that (mq,...,m,)
are the branch indices of T').

If r= (ry,...,7,) is another n—tuple of integers such that 1 < r; <
m; for every ¢ = 1,...,n, one can consider the variety of subtrees of
T whose branch indices are (r1,...,7,). It is easy to check that the

substructures of type r in a rooted tree of type m are exactly

n TIT T
(ml) (mz) 172 i—1
r II r; )
1 =9 [

Note that, if r =(1,...,1), then a subtree of type r can be identified
with a leaf of the n—th level of the tree of type m.
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Fig.2 A tree of type (3,3,3) with a subtree of type (2,2,1).

The authors prove that the group Aut(T) = S,,, -1 Sp,, tran-
sitively acts on this variety and then, using Gelfand’s Condition, they
show that the pair (Aut(T), K (m,r)) is a Gelfand pair, where K (m,r)
denotes the stabilizer of a fixed substructure 7”.

2.1. Self-similar Groups. Denote T; the rooted g—ary tree. Ev-
ery automorphism g € Aut(1}) can be represented by its labelling.
The labelling of g € Aut(1,) is realized as follows: given a vertex
T = Zoxi...Tp—1 € L,, we associate with x a permutation g, € S,
giving the action of g on the ¢ children of x. Formally, the action of g
on the vertex labelled with the word x = zoxy ... 2,—1 is

29 = afai . :ciz_o'l“z””.

DEFINITION 2.3. A group G acting on T, is self-similar if, for

any g € G and x € X, there exist h € G and y € X such that

(4) g(zw) = yh(w),
for all w € X*.

The rule (4) tells us that a self-similar group G' can be embedded
into the permutational wreath product

G1S, =G xS,

In particular if, for every i = 0,1,...,q — 1, one has g(z;w) = y;g;(w)
for all w € X*, then g can be written as

(5) g = (907917"'7gq71)0'7
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where o € S, is the permutation such that o(x;) = y;.

So the elements g; are the restrictions of g to the subtree T; rooted
at the vertex z; € Ly, which is clearly isomorphic to the entire tree Tj,.
The iteration of this procedure leads to the notion of restriction g, of
g to each vertex v of Tj,.

For an automorphisms group G < Aut(T},), the vertex stabilizer
of x € T}, is the subgroup of G defined as

Stabg(x) ={g € G : g(x) = x};
the level stabilizer of L, is given by
Stabg(n) = ﬂ Stabg(z).
x€Ly

Observe that Stabg(n) is a normal subgroup of G of finite index for all
n > 1. In particular, an automorphism g € Stabs(1) can be identified
with its restrictions ¢;,2 = 0,1,...,q — 1 to the respective subtrees T;.
So we get the following embedding

(6) ¢ : Stabg(l) — i‘lut(Tq) X Aut(T,) X « -+ x Aut(qu

q t?mes
that associates with g the g—ple (go, g1, - - -, gg—1)-

DEFINITION 2.4. G is spherically transitive if its action on L,
is transitive, for all n € N.

DEFINITION 2.5. G is fractal if, for every vertex v € T,, one has
Stabg(x)|r, = G, where the isomorphism is given by identification of
T, with its subtree T, rooted at x.

LEMMA 2.6. G s fractal if and only if the embedding ¢ defined in
(6) is a subdirect embedding into G X --- X G, i.e. if it is surjective on
each factor.

Proof. One implication is obvious. So we can suppose that ¢ is
a subdirect embedding. We want to prove, by induction on |z|, that
Stabg(x)|r, = G for all © € T,. The induction basis |z| = 1 is equiv-
alent to the hypothesis. Now, by induction, G — G4 is a subdirect
embedding and each factor G maps to G¢ by . Since the composition
of two subdirect embeddings is still subdirect, we get the assertion.
OJ

Observe that, if G is fractal, then it is spherically transitive if and
only if its action on the first level of the tree is transitive.
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In the next sections we will use the notion of rigid stabilizer to
get Gelfand pairs. If G acts on T, and = € T,, the rigid vertex
stabilizer Ristg(z) is the subgroup of Stabg(x) consisting of those
automorphisms of 7} that fix all vertices not having = as a prefix.
Equivalently, the automorphisms in Ristg(z) have a trivial labelling
at each vertex outside T,. The rigid level stabilizer of L,, is defined
as

The rigid level stabilizer Rist;(n) is normal in Aut(T;). In contrast to
the level stabilizers, the rigid level stabilizers may have infinite index
and may even be trivial. We observe that if the action of G on T},
is spherically transitive, then the subgroups Stabg(x), x € L, are all
conjugate, as well as the subgroups Ristg(x).

The following definitions hold for spherically transitive groups (see,
for more details, [8]).

DEFINITION 2.7. G is regular weakly branch on K if there exists
a normal subgroup K # {1} in G, with K < Stabg(1l), such that
o(K)> K x K x---x K. In particular, G is regular branch on K
iof it is reqular weakly branch on K and K has finite index in G.

We observe that this property for the subgroup K is stronger than
fractalness, since the map ¢ is surjective on the whole product K x
Kx- - x K.

DEFINITION 2.8. G is weakly branch if Ristg(x) # {1}, for every
x € T, (this automatically implies |Ristg(x)| = oo for every x). In
particular, G is branch if |G : Ristg(n)] < oo for everyn > 1.

2.1.1. Example. Consider the group GG acting on the binary tree,
generated by the automorphism having the following self-similar form:

a=(1,a)e,

where ¢ is the nontrivial permutation of S,.
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Fig.3. Labelling of a.

The group G =< a > is isomorphic to Z. It is called Adding Ma-
chine (Odometer) and it is defined also in the more general case (see
[37] or [39]) of a k—ary tree as the group generated by the automor-
phism a = (1,...,1,a)0, where 0 = (0,1,2,...,q — 1) is the standard
cycle that cyclically permutes the symbols in X. The automorphism «a
is called the odometer because of the way in which it acts on X*. In
particular, if we regard the word w = xy...x, € X" as the number
Sor, xik', then:

o a(w)=w+1, forw# (k—1)...(k—1);
ea((k—1)...(k—=1))=0...0.

Consider now the binary case. It is easy to check that the following
identities hold:

(7) a2k — (ak,ak), a2k+1 — (ak,akJrl)g_

In particular, the first level stabilizer is given by Stabg(1) =< a? >,
with a®> = (a,a). So G is a fractal group and its action on the binary
tree is spherically transitive.

From (7) it follows that

Stabg(n) =< a*" > .

Moreover, since G is abelian, one has Stabg(n) = Stabg(z) for all
r € L,. Formulas (7) tells us that the element a®" has the labelling
9. = € at each vertex € L,, and the labelling g, = 1 at each vertex
y € L;, for i < n. Therefore a*" ¢ Ristg(n) and all its powers do
not belong to Ristg(n) too. So Ristg(n) = {1} for every n > 1. So
this is an example where the subgroups Stabg(n) and Ristg(n) do not
coincide, showing that Ristg(n) can also be trivial.
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2.1.2. Automaton Groups.

DEFINITION 2.9. An automaton is a quadruple A = (S, X, \,7),
where:

(1) S is a set, called set of states;

(2) X is an alphabet;

(3) m:8 x X — S is the transition map;
(4) NS x X — X is the output map.

The automaton A is said finite if S is finite and it is said invertible
if, for all s € S, the transformation A(s,-) : X — X is a permutation
of X.

An automaton A can be represented by its Moore diagram: this
is a directed labeled graph whose vertices are identified with the states
of A. For every state s € S and every letter x € X, the diagram has
an arrow from s to 7(s, z) labeled by z|\(s, z).

A natural action on the words over X is induced, so that the maps
m and A can be extended to S x X* as:

(8) (s, zw) = 7(n(s, x),w)

9) A(s, zw) = A(s, )\ (7 (s, ), w),

by setting (s, ) = s and A(s,0) =0, forall s € S,z € X and w € X*.

Moreover, the Equation (9) defines uniquely a map A : § x X¥ —
X% where X“ denotes the set of infinite words over X.

If we fix an initial state s in an automaton A, then a transformation
A(s,-) on the set X*U X% is defined: it is denoted by A,. The image of
a word x1z5 ... can be easily found by using the Moore diagram. One
has to consider the directed path starting at the state s with consecu-
tive labels z1|y;, x2|y2 and so on, so that the image of the word x1z5 . ..
under the transformation A, will be equal to y1ys .. ..

Now if X = {0,1,...,¢g — 1} is an alphabet of ¢ letters and G is
a self-similar group on X“, then its action defines an automaton over
the alphabet X whose states are the elements of G and such that the
output and the transition maps A\ and 7 are defined in such a way that

g(zw) = A(g, x)w”(g’x),

for all w € X¥.

The automaton A that one gets has the property that the transfor-
mation A, coincides with the action of g and it is called the complete
automaton of the self-similar group G.
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Since the complete automaton is infinite for infinite groups, it is
more convenient to define the group generated by an automaton in the
following way.

Given an invertible automaton A = (S, X, A\, 1), the group gener-
ated by the transformations A, for s € S, is called the automaton
group generated by A and is denoted by G(A).

The following proposition holds.

ProPOSITION 2.10. The action of a group on the set X% s self-
similar if and only if it is generated by an automaton.

The automaton groups G(A), where A is a finite automaton, are
are the most interesting. In Section 2.2.1 of this chapter a fundamental
example will be presented.

2.2. Iterated Monodromy Groups. A particular class of self-
similar groups is given by the so called itarated monodromy groups.

The Iterated Monodromy Groups theory has been mostly developed
by V. Nekrashevych in [44]. See also [38] and [9].

In order to introduce the iterated monodromy groups, we need the
following definition.

DEFINITION 2.11. Let M be an arcwise connected and locally ar-
cwise connected topological space. A d—fold partial self-covering
map on the space M is a d—fold covering map f : My — M, where
My is an open arcwise connected subset of M.

It is known that a map f : My — M, is a d—fold covering map
if it is surjective and every point x € M, has a neighborhood U such
that the preimage f~(U) is the disjoint union of d subsets U; C M,
such that f : U; — U is a homeomorphism.

So suppose we have a d—fold partial covering map f : M; — M
and let 71(M,t) be the fundamental group of M with base point ¢. It
is clear that the set of iterated preimages of ¢ naturally constitutes a
d—ary rooted tree T', whose root is ¢ and such that each point x has
exactly d preimages xy,...,xy which are declared to be adjacent to
x in T. In this way, the n—th level of the tree consists of d" points
belonging to f~"(¢). Although the intersection of f~"(t) and f~"(¢)
can be non empty for n # m, the tree T has to be regarded as the
disjoint union of the sets f=", for all n > 0.

There exists a natural action of the fundamental group (M, t) on
T. Given a loop v based at t, for each point s € f~"(t) there exists
a unique preimage 7|y of 7 starting at s and ending in some point
s € f7™(t). The action of v on T is defined as

(10) v(s) =+,
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so it induces a permutation of f~"(t). The group of all permutations
of f~™(t) induced by the action of 7 (M,t) is called the n—th mon-
odromy group of f. Moreover, v acts on 7" as a tree automorphism.

In fact, if y(s) = &', then y(f(s)) = f(s'), since f(vs) = Vfs)-

DEFINITION 2.12. The Iterated Monodromy Group of f is de-
fined as the group

IMG(f) =m(M,t)/N,
where N denotes the kernel of the action defined in (10).

One can show that, up to isomorphism, the group IMG(f) does
not depend from the base point t.

In order to better characterize the action of w1 (M, t) on T, one can
introduce an alphabet X = {0,1,...,d— 1} and consider the set X* of
all finite words over X, which also has a d—ary rooted tree structure
such that the word w is declared to be adjacent to wz, if w € X* and
reX.

In fact, it is possible to define an isomorphism A : X* — T in
such a way that the action of w1 (M,t) on X* is self-similar.

The isomorphism A can be defined inductively. We set A(0) = t.
For every word w € X", we construct a path [, in M from ¢ to a point
Sw € f7™(t) and define A(w) = s,. In this way, for each x € X the
point t is connected by the path [, to a point s, € M belonging to
f7Ht), with s, # s, for x # 2. We define A(zx) to be the endpoint of
the path [,.

Suppose we have already defined A(w) for all w € X™, with m <n
and that it is an isomorphism between the first n levels of T" and X*.
Let 2w be a word of X", with w € X™ and x € X. Define

la:w = lwf[;?(l:v);

where f[;?(lx) is the unique preimage of the path [, under f~" starting
at w. Define A(zw) to be the end of the path l,,,.

PRrROPOSITION 2.13. The map A : X* — T defined above is an
isomorphism.

Proof. It suffices to prove that f(A(zvz’)) = A(zv), for all z,2" €
X and v € X*. In fact,

By definition, f[;]("_l)(lx) is a path going from A(v) to A(zv), so f maps
the end A(zvz’) of the path I, to A(zv). O

DEFINITION 2.14. The action of IMG(f) on X* induced by the
isomorphism A is called the standard action of IMG(f).
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THEOREM 2.15. The standard action of IMG(f) is self-similar. In
particular, the restriction , of v € IMG(f) at x € X is given by

Proof. Let v € X" and suppose v(zv) = x'u, with 2/ € X and
u € X™. Then the vertices v and u are connected by the path

a = f[;}n(loc) * V] (f[;}n(l:c/))_la

which goes through the vertices v — zv — z'u — wu. So the loop
I = l,Ywl,," based at t is the element of IMG(f) moving v to u and it
is 1ndependent of v and u. This gives v, = lx'y[m}(lv(x))_l. 0

A fundamental example is given by Iterated Monodromy Groups
associated with rational functions f € C(z). We need the following
definition.

DEFINITION 2.16. Let M be a topological space. A map f: M —
M is a branched covering if there exists a set R C M of bmnchmg

points such that f is a local homeomorphism in each point x € M \ R.
The set P = |J.—, ["(R) is called the postcritical set. If the set

M=M \ P is arcwise connected and locally arcwise connected, then
f My — M is a partial self-covering of the set M, with M, =

fHM).

In particular, let f(z) = 2% € C(z) a non-constant rational func-

tion, with p, ¢ co-prime. Then we have deg(f) = max{deg(p), deg(q)}.
The function f defines a branched deg( f)—fold self-covering of the Rie-
mann sphere C = C U {o0}. A point z € C is critical if f is not a local
homeomorphism on any neighborhood of z, i.e. if f/(z) = 0.

Let C} be the set of the critical points of f. We denote by Py the
set of the post-critical points, i.e. Py = )", f*(Cy). If Py is such that
M=C \ P is arcwise connected, then f defines a deg(f)—fold partial
self-covering f : M; —» M, with M; = C \ fHPy).

In particular, if Py if finite, f is called post-critically finite. If
this is the case, M and M; are punctured spheres and the fundamental
group m1(M) is the free group of rank |Py| — 1.

It is known (see [44]) that iterated monodromy groups of post-
critically finite polynomials are amenable. Many problems about iter-
ated monodromy groups are still open ([7]).

(1) When is the iterated monodromy group of a rational function
torsion free?

(2) Can any be non amenable? Or contain a free subgroup of rank
k> 27
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(3) Which rational functions have iterated monodromy groups of
exponential growth?

2.2.1. The Basilica Group. The Basilica group, that we will denote
B, was introduced by R. I. Grigorchuk and A. Zuk in [40] as the group
of automorphisms of the binary tree generated by the three-state au-
tomaton having the following Moore diagram:

(s

0[0 0|0, 11
(i

Fig.4. The automaton defining the Basilica group.

This is the first example of an amenable group (a highly non—trivial
and deep result of Bartholdi and Virdg [10]) not belonging to the class
SG of subexponentially amenable groups, which is the smallest class
containing all groups of subexponential growth and closed after taking
subgroups, quotients, extensions and direct unions.

Studying the automaton above, we deduce that the Basilica group
B is generated by the automorphisms a and b having the following
self-similar form:

(12) a=(b1)
and
(13) b= (a,l)e,

where ¢ denotes the nontrivial permutation of S;. In the following
figure the labelling of generators a and b are presented. Observe that
the nontrivial labellings are only in the leftmost branch of the tree.
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€ 1

Fig.5. Labelling of the generators a and b.

One can easily verify that the first level stabilizer Stabg(1) is given
by Stabp(1) =< a,a’ b* >. Since

a=(b1), a®*=(1,b") and b* = (a,a),

we can deduce from Lemma 2.6 that B is fractal.

It is obvious that the action of the Basilica group on the first level
of Ty is transitive. Since this group is fractal, it easily follows that the
action is also spherically transitive, i.e. transitive on each level of the
tree. Moreover, the Basilica group is weakly regular branch over its
commutator subgroup B’. In fact, one can easily verify that

[a,b?] = ([b,a], 1).
Using the fractalness of B, we get
B' > ([a,0])" = ([b,a])” x {1} = B' x {1}.

Moreover (B’ x {1})® = {1} x B’. So B’ contains B’ x B’ and, since
B’ # {1}, the group B is regular weakly branch over B’.

It is a remarkable fact due to Nekrashevych [44] that this group can
be described as the iterated monodromy group IMG(z* — 1) of the
complex polynomial 22 — 1.

In fact, if we consider the complex polynomial f(z) = 2% — 1,
then it defines a 2—fold self-covering of the Riemann sphere C. Us
ing notation of section 2.2, the set of critical points of f is given by
Cy = {0, 00}, so that the set of post-critical points Py = J,—, f"(Cy)
is P = {—1,0,00}. So we have M = @\Ff = C\ {-1,0} and
M, =C \ f7Y(Pf) = C\ {-1,0,1}. In particular, f defines a 2—fold
partial self-covering f : My — M and the fundamental group m (M)
is the free group of rank 2. If a is a loop around 0 in M based, for

1

instance, at —3, and b is a loop around —1 in M based at the same

point —%, then it is easy verify that one gets the relations (12) and
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(13), where the alphabet X = {0,1} has to be regarded as the set of
preimages of —%, with —*/75 identified with 0 and ‘/75 identified with 1.

2.3. Gelfand Pairs associated with groups of automorphisms
of a homogeneous rooted tree. A first example of Gelfand pairs is
given by the Adding Machine. In this context, denote this group by A.
We already saw that this group is isomorphic to the group Z of integer
numbers and so it is abelian. This implies that, considering its action
on the n—th level L,, of the binary tree, setting A,, = A/Stabs(n) and
K, = Staba,(zo), with xy = 0", then (A,, K,,) is a Gelfand pair for
every n € N. In particular, we have

A, 2 7)2"Z,

with generator a and such that a>" = 1 in A,. Since the group is
abelian, we have Stabs(zo) = Stabs(n) and so K,, = {1}.

The space L(L,,) clearly has dimension 2". Since its decomposition
into irreducible subrepresentations has to be multiplicity-free (see The-
orem 1.7), then all irreducible (of dimension 1) representations of A,
occur in L(L,,).

Denote V), the representation of A, corresponding to the character
Xn, defined as

2mih

xn(a) = wy = e, forh=0,...,2" — 1.

So we get
2n—1
L(L,) = P Vi
h=0
For every h =0,1,...,2" — 1, the corresponding spherical function ¢y,

coincides with the character yon_j. In fact, we have

dhla) = X p(a') = xzron(d'™)

27i(2" —h)(1-1) 27i(—hl+h)
PIg PIg

= xn(a) - xor—n(a') = wp - Pp(a’)

and so ¢, € V},. Since the spherical functions coincide, in this case,
with the characters of the cyclic group Z/2"Z, Theorem 1.16 implies
that the Gelfand pair (A,, 1) is not symmetric for n > 3.

This shows that the hypothesis of fractalness is not sufficient to
get a 2—points homogeneous action on L,. A counterexample, in the
case n = 3, is given by the pairs (000,101) and (101,011). We have
d(000,101) = d(101,011) = 3. The vertex 000 is mapped into 101 by
the automorphism a°, but a® maps 101 into 010 and so the action is
not 2—points homogeneous.
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In [17] I proved with Daniele D’Angeli that the action of the Basilica
group B on the n—th level L, of the rooted binary tree T5 gives rise to
symmetric Gelfand pairs.

As usual, for every n > 1, we can regard each vertex of the n—th
level of T, as a word of length n in the alphabet X = {0,1}. Denote
xq the vertex 00...0 of L, and set

—

n times
B, = B/Stabg(n).

Let K, the parabolic subgroup of B, stabilizing zy. The following
general lemma holds.

LEMMA 2.17. Let G act spherically transitively on T,. Denote G,
the quotient group G/Stabg(n) and K, the stabilizer in G, of a fixed
leaf xg € L,,. Then the action on L, is 2—points homogeneous if and
only if K,, acts transitively on each sphere of L,.

Proof. Suppose that K, acts transitively on each sphere of L,, and
consider the elements z,y, 2’ and 3’ such that d(z,y) = d(2’,y’). Since
the action of G,, is transitive, there exists an automorphism g € G,
such that g(z) = 2’. Now d(2/,¢9(y)) = d(2’,y’) and so ¢g(y) and 7/
are in the same sphere of center 2’ and radius d(z’,y'). But K, is
conjugate with Stabg, (') and so there exists an automorphism ¢ €
Stabg, (x') carrying g(y) to 3. The composition of g and ¢ is the
required automorphism.

Suppose now that the action of G,, on L, is 2—points homoge-
neous and consider two elements x and y in the sphere of center g
and radius i. Then d(zg, z) = d(xo,y) = i. So there exists an automor-
phism g € Stabg, (x) such that g(x) = y. This completes the proof. [J

We have the following theorem.

THEOREM 2.18. The action of the Basilica group B on L, is 2—points
homogeneous, for all n € N.

Proof. From Lemma 2.17 it suffices to show that the action of the
parabolic subgroup K, = Stabp, (0") is transitive on each sphere.

Denote by u; the vertex 0°~'1 for every j = 1,...,n. Observe that
the automorphisms

(1) =a "?a = (b7",1)(a,a)(b,1) = (a’, a) = ((1,b%), a)
and
b*bra = (b1, 1)(a,1)e(b,1)(1,a 1)e(b, 1) = (1,b)

belong to K, for each n. Moreover, using the fractalness of B, it is
possible to find elements g; € K, such that the restriction g;|7p-1 is
(b*)* = ((1,b%),a) or b*~ta = (1,b). So, the action of such automor-
phisms on the subtree T,; corresponds to the action of the whole group
B =< a,b>onT. We can regard this action as the action of K, on the
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spheres centered at xy and so we get that K, acts transitively on these
spheres. This implies that the action of B is 2—points homogeneous
on L,. O

07!

O’n

Fig.6. The 2—points homogeneous action of B.

COROLLARY 2.19. For everyn > 1, (B,, K,) is a symmetric Gelfand
paiT.

We know that the number of K,—orbits in L(n) is exactly the
number of the irreducible subrepresentations occurring in the decom-
position of L(L,) under the action of B,,. Since the submodules W;’s
described in the previous section are n+ 1 as the K,,—orbits, it follows
that the Basilica group admits the same decomposition into irreducible

subrepresentations and the same spherical functions that we gave for
Aut(T),, in (3).

A similar argument can be used in the case of the Grigorchuk
group, that we denote G. This group was introduced for the first time
in [34] and it is the group of automorphisms of the rooted binary tree
whose generators have the following self-similar form:

a= (1,1, b=(a,c), c=(a,d), d=(1,b),

where ¢ denotes, as usual, the nontrivial permutation in S. It is the
first example of group with intermediate growth (in particular, it is
amenable). It is a group belonging to SG \ EG, where EG denotes the
smallest class containing all abelian and finite groups and closed after
taking subgroups, quotients, extensions and direct unions.

It is a fractal group acting spherically transitively on 75 and it is
regular branch on its subgroup K =< (ab)? >%. For more details see,
for instance, [36].
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The action of the Grigorchuk group on the binary rooted tree is
2—points homogeneous (see [12]) on the level L,,, for all n > 1. As a
consequence, the decomposition of L(L, ) under the action of this group
into irreducible subrepresentations is still L(L,) = Bj_, W;, where the
W;’s are the subspaces introduced for Aut(75).

Now consider the proof of Theorem 2.1 in the case ¢ = 2. One
can observe that the fundamental fact is that the automorphisms ¢
and ¢” act transitively on the subtrees 7" and T, respectively, and
trivially elsewhere. Moreover, the only hypothesis of fractalness does
not guarantee that the action is 2—points homogeneous, as we have
seen in the case of the Adding Machine, for which one gets symmetric
Gelfand pairs only for n = 1,2. On the other hand, if a fractal group
G acts 2—transitively on Ly and if it has the property that the rigid
stabilizers of the vertices of the first level Rists(i),i =0,1,...,g—1 are
spherically transitive for each ¢, the proof of Theorem 2.1 works again
by taking the automorphisms ¢’ and ¢” in the rigid vertex stabilizers.
But this is not a necessary condition, as the example of the Grigorchuk
group shows.

In fact, one can verify (see [6]) that, in this case, Rist;(0) =<
d*,d* >, with d* = (b,1) and d* = (b*,1). So Rists(0) fixes the
vertices 00 and 01, and then it does not act transitively on the subtree
Ty. This shows, for instance, that a fractal regular branch group does
not need to have this property, which appears to be very strong.

On the other hand, a direct computation shows that the Basilica
group has this property, what gives another proof that the action on
each level L,, is 2—points homogeneous.

THEOREM 2.20. Let B be the Basilica group. Then the rigid vertex
stabilizers Ristg(i), i = 0,1, act spherically transitively on the corre-
sponding subtrees T;.

Proof. Since B is spherically transitive and so Ristg(0) ~ Ristp(1),
it suffices to prove the assertion only for Ristp(0). Consider the auto-
morphisms a = (b,1) and a” = (b*,1) in Ristp(0). We want to show
that the subgroup < a,ab2 > is spherically transitive on Ty, equiva-
lently we will prove that the group < b,b* > is spherically transitive
onT.

The latter is clearly transitive on the first level. To complete it
suffices to prove its fractalness. We have

b 0" = (1,ae(b™!,1)(a, 1)e(b, 1) = (1,a b )e(a, b)e = (b, (b))

and
2

(7" = (a™'a™ ) (B, (7)) (a,a) = (07, (571",
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and so the projection on the first factor gives both the generators b and
b*. The elements

() = L), (7)) = ()"

fulfill the requirements for the projection on the second factor and this
completes the proof. 0

—1

b)

In [17] we also studied the case of the group I = IMG(2? + i),
i.e. the iterated monodromy group defined by the complex polynomial
f(z) = 2% + 1. This group has been introduced in [7] and later studied
by K. U. Bux and R. Pérez ([13]), who proved that it has intermediate
growth and so it is amenable.

The generators of I have the following self-similar form:

a=(1,1)e, b=(a,c), c=(b1),

where € denotes, as usual, the nontrivial permutation in S5. The cor-
responding labellings are:

€ 1 1

N SEZEN

Fig.7. Labelling of the generators a,b and ¢ of I.

By a direct computation one gets the following relations:
@ =1 =& = (ac)" = (ab)® = (be)* = L.

Moreover, the first level stabilizer of I is Stab;(1) =< b,¢,b% ¢* >. In
particular, since

b = (c,a), = (1,b),

we deduce that [ is a fractal group. It is clear that I transitively acts
on the first level of the rooted binary tree. Since [ is fractal, it follows
that this action is also spherically transitive.

Moreover, it is known (see [38]) that [ is a regular branch group
over its subgroup N defined by

N =< [a,b],[b,c] >T.
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For the group I it is possible to prove the same result proven for the
Basilica group in Theorem 2.18. So set I,, = I /Stab;(n). In order to get
an easy computation, this time we choose the vertex xy as ro = 1" € L,
and we set K,, = Staby, (1"). In the following theorem we will prove
that the action of the parabolic subgroup K, is transitive on each
sphere.

THEOREM 2.21. The action of the group I on L, is 2—points ho-
mogeneous for alln > 1.

Proof. Denote by u; the vertex 17710 for every j = 1,...,n. Us-
ing the fractalness of I, it is possible to find an element g, € K,
such that the restriction g;|77;-1 is b and an element h; € K, such
that the restriction h;|Tj-1 is ¢. Consider now the automorphism
bbb = (c,a)(a,c)(c,a) = (a° c¢*). By fractalness it is possible to find
an element k; € K, such that the restriction k;|71,-1 is b°bb*. The ac-
tion of the subgroup generated by the automorphisms g;, h;, k; on the
subtree T,,; corresponds to the action of the subgroup H =< a,b,a® >
on T'. It is easy to prove that this action is spherically transitive. In
fact it is clear that H acts transitively on the first level, so it suffices
to show that H is fractal. To show this consider, for instance, the
elements

b= (a,c), a‘a=(bb), b*bb* = (a’ )
and

b* = (¢,a), a‘a=(b,b), bbb = (c* a°).
Now, the action of H on T,, can be regarded as the action of K, on
the spheres of center z(, and so we get that K, acts transitively on
these spheres. This implies that the action of I on L, is 2—points
homogeneous, as required. ]

11

1TL

Fig.8. The 2—points homogeneous action of I.
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COROLLARY 2.22. For everyn > 1, (I, K,,) is a symmetric Gelfand
DaIT.

As in the case of the Basilica group, it follows that the group I,
admits the same decomposition into irreducible subrepresentations and
the same spherical functions given in (3).

Remark. The interesting fact is that, in the case of IMG(2% + 1),
the rigid stabilizers of the vertices of the first level of the tree do not
act spherically transitively on the corresponding subtrees Ty and 77. In
fact, the rigid stabilizer of the first level is Rist;(1) =< ¢ >Y, so every
automorphism in Ristr(1) is the product of elements of the form ¢,
where g = w(a,b,c) is a word in a,b and ¢, and of their inverses. Set
o(c?) = (9o, 91). We want to show, by induction on the length of the
word w(a, b, ), that we suppose reduced, that in both gy and g; the
number of occurrences of a is even. This will imply that the action of
Ristr(1) on the first level of the subtrees Tj and T cannot be transitive
and will prove the assertion.

If lw(a,b,c)| =0, then ¢ = ¢ = (b,1). If |w(a,b,c)| = 1, then we
can have ¢ = (1,b), ¢® = (b%,1) or ¢¢ = ¢ = (b,1). Let us suppose
the result to be true for |w(a,b,c)| = n — 1. Then we have ¢*(@>¢) =
V(@97 with o € {a,b,c} and (@4 = (gh g}) such that in both g,
and g} the number of occurrences of a is even. If x = a, we get c*(@>¢) =
(g1, 90), if © = b, we get c¥(@9) = ((g))%, (g})") and if = ¢ then we
get @b = ((g1) g1). In all cases, we get a pair (go, g1) satisfying
the condition that in both gy and ¢; the number of occurrences of a is
even, as we wanted.

So the group I does not have the “rigid property” that Basilica
group has, what shows that this property is not necessary to get sym-
metric Gelfand pairs.

In [19], I studied with D. D’Angeli a particular group of automor-
phisms of the rooted dyadic tree and the associated Gelfand pairs. In
this context, we regard the binary rooted tree T, in the following way:
the root of Ty is identified with the group of integers 7Z; each vertex,
say at level L,, can be regarded as a coset of 2"Z in Z. Finally, the
boundary 07, corresponds to the ring of dyadic integers Z, (for more
details see [31]).
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V)

8Z 8Z+4 8Z+2 8Z+6 8Z+1 8Z+5 8Z+3 8Z+7
Fig.9. The dyadic tree.

We study the group G of automorphisms of T, generated by the
sum of 1 and by the multiplication by an odd integer ¢ for each vertex
in T5. Denote by a and b such automorphisms, respectively. The action
of G on Tj is self-similar: we directly prove that these automorphisms
admit the following self-similar form:

a=(1,a)s, b= (b ba"),

with ¢ = 2h+1 (observe that a is exactly the automorphism generating
the Adding Machine). By using the self-similarity, we deduce that G is
isomorphic to the Baumslag-Solitar group BS, =< s,t : t tst = s7 >,
introduced in [11]. Observe that, for ¢ = —1, this group becomes the
infinite dihedral group Do =< s,t:t 1st = 57! >.

Denoting, as usual, GG,, the finite homomorphic image of G acting
faithfully on L, and K, < G, the parabolic subgroup stabilizing a
fixed vertex in L,,, we prove there that (G, K,) is a Gelfand pair for
every n > 1. In particular, we show, by direct computations involving
characters, that the decomposition of the corresponding permutation
representation into irreducible G—representations is multiplicity-free
and we give the relative spherical functions. Actually, the result can
also be obtained from the general theory of representations of semidi-
rect products developed in [14].
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3. Groups of automorphisms of poset block structures

In this section we will study the Gelfand pairs associated with
the action of groups on different structures, namely the poset block
structures. These structures contain, as a particular case, the rooted
binary trees that we considered in the previous sections. Moreover,
they constitute a subclass of a more general class, given by the or-
thogonal block structures ([3] and [4]). We give here the definition
of orthogonal block structure.

Let Q be a finite set. Given a partition F' of €, let Rp be the
relation matrix of F', i.e.

RF(Q75) = {

1 if @ and (8 are in the same part of F'
0 otherwise.

If Rp(a, B) =1, we usually write a ~p f.

DEFINITION 3.1. A partition F' of Q is uniform if all its parts
have the same size. This number is denoted k.

The trivial partitions of ) are the universal partition U, which
has a single part and whose relation matrix is Jo, and the equality
partition F, all of whose parts are singletons and whose relation ma-
trix is I. We denote Jg the matrix of size |2 all of whose entries are
1 and I the identity matrix of size |Q.

The partitions of ) constitute a poset with respect to the relation
<, where F' < G if every part of I is contained in a part of G. Given
any two partitions F' and G, their infimum is denoted F' A G and is
the partition whose parts are intersections of F'—parts with G—parts;
their supremum is denoted F'V GG and is the partition whose parts are
minimal subject to being unions of F'—parts and G—parts.

DEFINITION 3.2. A set F of uniform partitions of €2 is an orthog-
onal block structure if:

(1) F contains U and E;

(2) for all F and G € F, F contains F NG and F'V G;

(3) for all F and G € F, the matrices Rp and Rg commute with
each other.

The groups that naturally act on the poset block structures are
the generalized wreath products of permutation groups, introduced in
[5]. We will show that they contain, as a particular case, the classical
direct product and wreath product of permutation groups. In the next
sections, we will give the definition and we will study the associated
Gelfand pairs.

3.1. The generalized wreath product of permutation groups.
Let (I,<) be a finite poset, with |I| = n. First of all, we need some
definitions.
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DEFINITION 3.3. A subset J C I is said

ancestral if, wheneveri > j and j € J, theni € J;
hereditary if, whenever ¢ < j and j € J, theni € J;

a chain if, whenever i,j € J, then either 1 < j or j < i;

an antichain if, whenever 1,57 € J and i # j, then neither
1< g norj <i.

In particular, for every ¢ € I, the following subsets of I are ancestral:
A())={jel:j>i} and Ali|={jel:j>i},
and the following subsets of I are hereditary:
H(i)={jel:j<i} and H[i|={jel:j<i}.
Given a subset J C I, we set
o A(J) = Uy, Ali);
e ALJ] = Uy Alil:
e H(J) = Uz‘eJH(.Z);
o H[J] = Use, Hli]-

In what follows we will use the notation in [5].

For each i € I, let A; = {4},...,0: 1} be a finite set, with m > 2.
For J C I, put A; =[];c; As. In particular, we put A = Aj.

If K C J C I, let  denote the natural projection from A; onto
Ag. In particular, we put 7; = 7. Moreover, we will use A’ for A4
and 7" for ma).

For each ¢ € I, let G; be a permutation group on A; and let F; be

the set of all functions from A’ into G;. For J C I, we put F; = HZ.EJ F;
and set F' = F7. An element of F' will be denoted f = (f;), with f; € F}.

DEFINITION 3.4. For each f € F, the action of f on A is defined
as follows: if 6 = (6;) € A, then

(14) §f =¢e, wheree = (g;) €A and g; = §;(67" f;).

It is easy to verify that this is a faithful action of F' on A, i.e. if
f,he Fandif 6f =0h forall ) € A, then f = h.

In [5] it is proven that (F,A) is a permutation group with respect
to the action defined in (14). This group is called the generalized
wreath product of the permutation groups (G;, A;);cr and it is de-
noted []; o)(Gi, Ay).

The following theorem is given in [5]. We denote Sym(A;) the sym-
metric group acting on the set A;. We also use the notation Sym/(m)

THEOREM 3.5. The generalized wreath product of the permutation
groups (G, A;)ier is transitive on A if and only if (G;, A;) is transitive
for each i € I.
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In order to give the definition of poset block structure, we need to
introduce some equivalence relations on A, that we will call ancestral

relations.
Let A be the set of ancestral subsets of I. If J € A, then the
equivalence relation ~; on A associated with J is defined as

dr~je & O0mmy=emy,
for each 6,e € A.

DEFINITION 3.6. A poset block structure is a pair (A, ~4),
where

1) A = A;, with (I,<) a finite poset and |A;| > 2, for
(L,<)
each i € I;
(2) ~4 denotes the set of equivalence relations on A defined by
the ancestral subsets of I.

Note that the set ~ 4 defines an orthogonal block structure on A.

DEFINITION 3.7. An automorphism of a poset block structure
(A, ~4) is a permutation o of A such that, for every equivalence ~
imn ~A,

(SNJE = (50’) ~7 (60’),
for all d,e € A.

The following theorem is proven in [5].

THEOREM 3.8. Let (A,~4) be the poset block structure associ-
ated with the poset (I,<). Let F be the generalized wreath product
[Ti1.<) Sym(A;). Then F is the group of automorphisms of (A, S).

Remark. We want to present an example of orthogonal block struc-
ture which cannot be obtained as the set ~4 of ancestral relations
associated with a poset (I, <).

Consider the quaternion group @ = {1, —1,4, —i,7, —j, k,—k}. It
has four (all normal) proper subgroups, three of them isomorphic to
the Klein group and one isomorphic to the cyclic group Z/27Z. They
are:

I={1,i,—1,—i}, J={1,j,-1,—5}, K={1k —1,—k}

and Z = {1,—1}.

Each subgroup R < @ defines a uniform partition ~g of () into its
cosets. Since in this group all subgroups commute pairwise, these par-
titions form an orthogonal block structure of height 3 that can be
represented as
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~Q

~{1}
Fig.10. The orthogonal block structure associated with Q.

On the other hand, it is easy to check that this structure cannot be
obtained as the ancestral poset of any poset (I, <) with |[/| = 3.

3.1.1. The permutation direct product. If (I,<) is a finite poset,
with < the identity relation, then the generalized wreath product be-
comes the permutation direct product.

L]
1 2 3 n
Fig.11. The poset I in the case of the permutation direct product.

In this case, we have A(i) = () for each i € I and so an element f
of F'is given by f = (f;)icr, where f; is a function from a singleton
{*} into G; and so its action on ¢; does not depend from any other
component of 4.

To fix our ideas, consider the case n = 3, with A; = Ay = Az =
{0,1}. The elements of A can be represented as the leaves of a rooted
binary tree of depth three and so as words of length three in the alpha-
bet {0, 1}.

The partitions of A given by the equivalences ~;, with J C [
ancestral, are:

e A = {000,001,010,011,100, 101,110,111} by the equivalence
~0;

e A = {000,001,010,011} [[{100, 101,110,111} by the equiva-
lence ~1y;

e A = {000,001,100,101} [J{010,011,110,111} by the equiva-
lence ~y;

e A = {000,010,100,110} J{001,011, 101, 111} by the equiva-
lence ~y3y;
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e A = {000,001} JJ{010,011} {100,101} [J{110,111} by the
equivalence ~yj oy;

e A = {000,010} JJ{001,011} {100,110} [T{101,111} by the
equivalence ~y 3};

e A = {000,100} JJ{001,101} {010,110} JJ{011,111} by the

equivalence ~y 3y;

e A = {000} {001} JT{010} JT{011} JJ{100} [J{101} [J{110}
[T{111} by the equivalence ~r;

The labelling in the picture describe the components of an automor-
phism f € F acting on A, where fi(x) = g1 € Gy, fa(%) = g2 € G and
f3(x) = g3 € Gs.

g1

92 g2

g3 g3 g3 g3

000 001 010 011 100 101 110 111

Fig.12. The labelling of an automorphism f € F' acting on A.

3.1.2. The permutation wreath product. If (I, <) is a finite chain as

in the following picture,
1

Fig.13. The poset I in the case of the permutation wreath product.

then the generalized wreath product becomes the permutation wreath
product

(er An) ! (anlv Anfl) RN (Gla Al)

In this case, we have A(i) = {1,2,...,i — 1} for each ¢ € I and so
an element f of F'is given by f = (f;)ier, with

fi:Alx---xAi,lﬁGi
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and so its action on d; depends on all the previous components of §.

The partitions of A given by the equivalences ~;, with J C [
ancestral, are:

e A = {000,001,010,011,100, 101,110,111} by the equivalence

~0;
e A = {000,001,010,011} [J{100, 101,110,111} by the equiva-
lence ~qy;

e A = {000,001} JT{010,011} {100, 101} J[{110, 111} by the

equivalence ~ 9};

o A = {000} [T{001} [T{010} [T{011} [T{100} [T{101} []{110}

[J{111} by the equivalence ~;

The labelling in the following picture describe the components of an au-
tomorphism f € F acting on A, where fi(x) = g1 € Gy and f5(0), fo(1)
are elements of Gy and f3(00), f3(01), f3(10), f3(11) are elements of G's.

g1

000 001 010 011 100 101 110 111

Fig.14. The labelling of an automorphism f € F' acting on A.

The representation of A by a rooted tree of depth n is not the best
one. In [21] we give a better construction to represent a poset block
structure (A, ~4), using the notion of ancestral poset. To understand
it, let us introduce in A a partial order relation < defined as

J1 < Jy & J 2 Jy,

for all Ji,Jo € A. In particular, we write J; < Jy if J; O Jy and
Jl 2 Jg 2 Jg implies J1 = Jg or JQ = J3.

Its Hasse diagram is a poset (A, <). Observe that the empty set
is always ancestral in I. A singleton {i} constituted by a maximal
element in [ is still an ancestral set. Inductively, if J is an ancestral
set, then J LU {i} is an ancestral set if 7 is a maximal element in I\ J.
So the length of a maximal chain in (A, <) is n. We will call (A, <)
the ancestral poset.



40 1. FINITE GELFAND PAIRS

As an example, consider the poset (I, <) given by
1 3

[\)
S

So we have

A={0,{1},{3},{1,2},{1,3},{1,2,3},{1,3,4},{1,2,3,4}}

and the poset (A, <) is given by

{1} {3}
{1,2} {1,3}

{1,2,3} {1,3,4}

{1,2,3,4}

Let C ={I =Jy, J1,...,J, = 0} be a maximal chain in A, so that
|Jk| = |Jk—1] — 1 for all k =1,...,n. In particular, let

Jp1 = Ji H{’lk},

forall k=1,...,n.

Let us design a rooted tree of depth n associated with C' as follows:
the n—th level is constituted by |A| vertices (each of these vertices
constitutes a class of the equivalence ~j); the (n — 1)—st level is con-

stituted by kIAI

~J
that are in the same class of the equivalence ~ . Inductively, at the
1AL yertices which are fathers of k. ;. vertices

vertices. Each of these vertices is a father of k., sons

i—th level there are

k~, -

of the (i + 1)—st level belonging to the same class of the equivalence
NJn—i :

We can perform the same construction for every maximal chain C' in
(A, <). The next step is to assemble the different structures identifying
the vertices associated with the same relations. The resulting structure
is a poset P, that represents the poset block structure (A, ~4).
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3.1.3. Ezample. Consider the case of the following poset (I, <):

2 3
One can easily check that, in this case, the ancestral poset (A, <) is
the following:

{1}

{1,2} {1,3}

{1,2,3}

Suppose m = 2 and Ay = Ay = Az = {0, 1}, so that we can think of
A as the set of words of length 3 in the alphabet {0, 1}. The partitions
of A given by the equivalences ~;, with J C I ancestral, are:

e A = {000,001,010,011,100, 101,110,111} by the equivalence

~0;
e A = {000,001,010,011} [J{100, 101,110,111} by the equiva-
lence ~1y;

e A = {000,001} JJ{010,011} {100,101} JJ{110,111} by the
equivalence ~yq 9y;

e A = {000,010} JJ{001,011} {100,110} [J{101,111} by the
equivalence ~yj 3;

o A = {000} [T{001} JT{010} [[{011} [T{100} [T{101} J[{110}

[I{111} by the equivalence ~;.

Consider the chains C = {I,{1,2},{1},0} and Cy = {I,{1, 3}, {1}, 0}
in A. The associated trees T7 and T; are, respectively,
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LD AR

001 010 011 100 101 110 111 001 010 011 100 101 110 111

Assembling these trees, we get the following poset block structure.

000 001 010 011 100 101 110 111

3.2. Gelfand pairs associated with groups of automorphisms
of a poset block structure. In what follows we will suppose G; =
Sym(m), where |A;] = m for all i € I. Fix an element dy = (o5, . . ., %)
in A. Then the stabilizer Stabg(dp) is the subgroup of F' acting triv-
ially on dp. We can think of an automorphism f € F' as the n—tuple
(f1, -y fn), with f; : A" — Sym(m). Set A} = [Tjca0) % We have
the following lemma.

LEMMA 3.9. The stabilizer of 69 = (05,...,08) € A in F is the
subgroup

K := Stabp(d0) = {f=(fi,..-, fo) €F = filai € Stabgymm)(5))
whenever A" = Al or A(i) = 0}.
Proof. One can easily verify that K is a subgroup of F'. Ifi € I is

such that A(i) = 0 then, by definition of generalized wreath product,
it must be f;(x) € Stabsymm)(55). For the remaining indices i € I we
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have
0 =8 = 56" fi=3
= (65)fi € Stabsymim(3h)
> filai € Stabgym(m)(éé).
This proves the lemma. 0

In the following lemma the K —orbits on A are described. We recall
that the action of Sym(m — 1) = Stabgymm)(d;) on A; has two orbits,
ie. Ay = {6 FTI(A\{05}). Set A? = {5i} and A} = A\ {68}

LEMMA 3.10. The K—orbits on A have the following form.:

II &’ X(HA}>>< H)Ai ,

1eI\H([S] i€S i€H(S

where S is any antichain in I.

Proof. First of all suppose that d, e € (HiGI\H[S] A?) X ([Ties A}) x

<HieH(S) Ai>, for some antichain S. Then 07\ g(s) = €n\m(s) = 6(1)\H[S}. If
s € S we have A(s) C I\ H[S] and this implies (A(s)) fs € Stabgym(m) ()
So €, = 6,65 f,). If i € H(S) then A(i) # 0 and A’ # Ai. This
implies (A(7))f; € Sym(m) and so ¢; = 5i(50A(i)fl-). This shows that K
acts transitively on each orbit.

On the other hand, let S # S’ be two distinct antichains and § €

<Hiel\H[s} A?) X (Hz‘es Azl) X <HieH(S) Ai) and € € (HieI\H[Sq A?) X
([Ticsr A}) % (HieH(S’) Ai). Suppose s € S\ (SNY’) and so I\
H[S| # I\ H[Y]. If s € I\ H[S'] then 5 # 0§ = €5. But (A(S))fs €
Stabgymm)(05) and so 0,(A(S)fs) # €. If s € H(S') there exists
s e S\ (SN S’ such that s < s'. This implies that s € I'\ H[S] and
we can proceed as above.

The proof follows from the fact that the orbits are effectively a par-
tition of A. O

Using Gelfand’s condition (Lemma 1.3), the next proposition will
prove that the generalized wreath product I = []; ,(Sym(A;), A;)
acting on A and the stabilizer K of the element §y = (8}, ...,8%) con-
stitute a Gelfand pair.

PROPOSITION 3.11. Given (0,€) € A x A, there exists an element
g € F such that g(0,¢) = (€,9).
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Proof. Set § = (8;)ier and € = (¢;);er. Let ¢ € I such that A(7)
(). Then, by the m—transitivity of the symmetric group Sym(m)
Sym(A;), there exists g; € Sym(4;) such that §;9; = ¢; and €;9; = J;.
For every index i such that A(i) # (0 define f; : A" — Sym(4A;) as
or'f; = en'f; = o; where o; € Sym(4;) is a permutation such that
0;0; = ¢; and €;0; = §;. The element g € F that we get is the requested
automorphism. O

i i

COROLLARY 3.12. (F, K) is a symmetric Gelfand pair.

Now set L(A) ={f: A — C}. In [5] the authors give the decom-
position of L(A) into F'—irreducible subrepresentations. In particular,
one has

(15) L= pH ws

SCI antichain

with
(16) Ws=| @ L(A) | @ (@ v;) 2 & W,
i€A(S) i€s i€I\A[S]
where, for each i = 1,...,n, L(A;) is the space of the complex functions

on A;, whose decomposition into G;—irreducible subrepresentations is
L&) =V PV,

where V” 2 C is the subspace of constant functions on A; and V;! =
{f+Ai = C: Y ca f(x) = 0}. Moreover, one has Ws = Wy if
and only if S = §’. In particular, this gives an alternative proof of
the fact that (F, K) is a Gelfand pair, since the decomposition (15) is
multiplicity-free.

Actually, the authors do not mention about Gelfand pairs theory, so
in [21] we preferred to give a different proof, which appears in Propo-
sition 3.11. On the other hand, the multiplicity-free decomposition of
L(A) is not a sufficient condition to get a symmetric Gelfand pair.

In the next proposition we present the spherical functions associated
with the symmetric Gelfand pair (F, K).

PROPOSITION 3.13. For every antichain S C I, the spherical func-
tion ¢g belonging to the subspace Wy s

(17) bs = ® %’®¢z‘ ® Pi
i€A(S)  i€S  iel\A[S]
where ; is the function defined on A; as

oi() = {1 T =0}

0 otherwise



3. GROUPS OF AUTOMORPHISMS OF POSET BLOCK STRUCTURES 45

and 1; is the function defined on A; as

%’(w):{l 1 ” = 0%

———  otherwise
m—1

and p; is the function on A; such that p;(x) =1 for every x € A,.

Proof. It is clear that ¢ € Ws and that ¢g(do) = 1, so it remains
to show that each ¢g is K —invariant.

Set By = {i € A(S) : A(i) = 0}. If there exists i € B; such
that &; # 6} then ¢g(d) = ¢%(5) = 0 for every k € K, since §;p0; =
(8;k71)p; = 0 because k; € Stabg,(5)). Hence ¢ and ¢* coincide on
the elements § € A satisfying this property. So we can suppose that
o; = 0) for each i € By.

Let By be the set of maximal elements in A(S) \ By. If there exists
J € By such that §; # 56 then one has ¢5(6) = ¢%(5) = 0 for every
k € K, since 0;¢0; = (0;k71)p; = 0 because k; € Stabg,(6;). Hence ¢
and ¢F coincide on 0 € A satisfying this property. So we can suppose
that §; = ¢ for each j € Bs. Iterating this argument, we can restrict

our attention to the elements such that 4.y = 564 %) We have to prove
that ¢g(0) = ¢%(0), what means (8;)¢; = (6;)¢F for every i € S. This
easily follows from the definition of K and of the function ;. O

3.3. The substructures of a poset block structures. As in
the case of the rooted tree of type m and its subtrees of type r, also in
the case of the poset block structures it is possible to define some sub-
structures and to consider the action of the generalized wreath product
on the variety constituted by these substructures.

Consider the poset block structure associated with the poset (1, <),
with |I| = n.

For each i € I, let A; = {4, ..., 0}, 1} be a finite set, with m; > 2
foralle=1,...,n.

In order to understand how a substructure is done, we consider
again the representation of A by a rooted tree of depth n and whose
branch indices are m = (my,...,my).

We want to define a substructure with branch indicesr = (rq, ..., 7).
If i € {1,...,n} is an index such that A(:) = (), then the choice of r;
elements in A; does not depend from any other index.

If i € {1,...,n} is an index such that O # A(i) = {iy,..., i},
then the choice of r; elements in A; depends on the choices performed
for the indices i1, ...,4. We suppose here that 7; < ¢ in N, for every
[ =1,...,k. In other words, the i—th choice is the same for those
substructures that coincide on the indices belonging to A(7).

So the main difference that we have with respect to the case of the
subtrees of a rooted tree is that, this time, the subtrees are not free and
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they have to be chosen following the conditions given by the ancestral
sets A(7).

Ezample. Consider the poset (I, <) in the following figure:
1

o8

2

We have A(1) = A(3) = 0 and A(2) = {1}. Put now m = (3,3,3) and
r = (2,2,2). A substructure can be represented as a subtree of type
r of the rooted tree of depth 3 of type m, with the condition that the
choice of 2 elements in A; (first level) is free, the choice of 2 elements
in Ay (second level) depends on the first level and the choice of 2 ele-
ments of A3 does not depend from any previous choice, so it must by
the same starting from each vertex of the second level. For example,
we can get the following substructure:

bo
Fig.15. A substructure of type (2,2, 2).

If the poset (I, <) is the chain in Figure 13, then we have A(i) =
{1,...,7—1}. This implies that, for each i > 2, the choice of m; ele-
ments in A; is a function of all the previous coordinates and so it can
be different starting from every vertex of the (i — 1)—st level (that is
the case of the usual subtrees of a rooted trees).
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It is easy to check that the number of the substructures defined

above is exactly
) ) HjeA(i)TJ‘
m; m;
i () m ()

i€l A>i)=0 Ti i€l A(i)£0

In fact, for those indices i € I such that A(i) = (), we have (") possible
choices; for those indices i € I such that A(i) # 0, we have (T) possible
choices for each of the [, 4, r; vertices corresponding to (eventually)

different choices for the coordinates in A(i).

It is not difficult to verify that the generalized wreath product F
of the symmetric groups of the sets A; transitively acts on the variety
of the substructures of a poset block structure.

We can also prove, using Gelfand’s Condition, that (F, K) is a sym-
metric Gelfand pair, where K denotes the stabilizer of a fixed substruc-
ture. In fact, the following theorem holds.

THEOREM 3.14. Let (I,<) be a finite poset and let A be the asso-
ciated poset block structure. Let F' be the generalized wreath product of
the symmetric groups Sym(A;), with |A;| =m; > 2 for alli € I. Let
r be an n—tuple of integers such that 1 < r; < m;. If A and B are two
substructures of type r in A, then there exists an automorphism f € F

of A such that f(A) = B and f(B) = A.

Proof. We can suppose, without loss of generality, that A(1) = 0.
We want to get an automorphism f = (f;)ie; € F such that f(A) = B
and f(B) = A. We will proceed by induction on the depth of the
substructure.

Set m(A) = {47, ...,i0 } and m(B) = {if,... i

2 %r1 )
By the mj—transitivity of Sym(A;), we can choose a permutation

f1 € Sym(A,) fixing m(A) N m(B) such that fi(m(A) \ (m(A) N
m(B)) = m(B) \ (m(A) N m(B)) and fi(m(B)\ (ma(A) N mi(B))) =
m(A)\ (m(A) N i (B)).

Now let 2 < j < n and A(j) = {j1,..., 7k}, With j; < ... <
jr < j in N. Suppose that we have found an automorphism f’ €
F such that f/(’ﬂ'{l j—l}(A)) = T{1 j—l}(B) and f’(ﬂ'{l j_1}<B)) =

...............

-----

the j—th level. For both A and B, the vertices at the (j — 1)—st level
are exactly riry---7;_;. Moreover f’ maps vertices of the (j — 1)—st
level having the same choices for the coordinates in A(j) into vertices
that still have the same choices for the coordinates in A(j), since f’ is
an automorphism of the poset block structure. Now for each possible
ancestral situation a; € AJ for the vertices of the (j — 1)—st level of
A, we put fi(a;) = gJA e Sym(4;), where g]A maps the r; elements
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starting from those vertices into the r; elements in B starting from the
image of those vertices by f'.

Analogously for each possible ancestral situation b; € AJ for the
vertices of the (j — 1)—st level of B.

If a; = b;, then f; has to be defined has f;(a;) = g;'¥ € Sym(4;),
where ng maps the r; elements in A into the r; elements of B and
viceversa.

If we put f” = (1,...,1, f;,1,...,1), then the composition of f’
and f” gives the automorphism f required. O

Now let K be the stabilizer of a fixed substructure. We get the follow-
ing corollary.

COROLLARY 3.15. (F, K) is a symmetric Gelfand pair.



CHAPTER 2

Markov Chains

In this second chapter, we will change our point of view: we will
leave the Group Theory to get a probabilistic approach. In particular,
we will introduce some special Markov chains defined on finite sets:
the associated spectral analysis will give interesting results, since the
eigenspaces obtained will coincide with the irreducible submodules that
one gets considering the action of a particular group on the space of
the functions defined on the same set.

1. Reversible Markov Chains: general properties

In this section we recall some fundamental facts about finite Markov
chains, that we will frequently use later. Our main source is [16].

Consider a finite set X, with |X| = m. Let P = (p(x,y))syex be
a stochastic matrix of size m whose rows and columns are indexed by
the elements of X, so that

> plag,x) =1,
zeX

for every xg € X. Consider the Markov chain on X with transition
matrix P. We will use the notation P to indicate the Markov chain
too.

DEFINITION 1.1. A probability measure (or distribution) on X
is a function v : X — [0,1] such that ) . v(z) = 1. It is called strict
if v(z) > 0 for every z € X.

DEFINITION 1.2. The Markov chain P is reverstible if there exists
a strict probability measure ™ on X such that

m(@)p(, y) = 7(y)p(y, ©),
forall z,y € X.
We will say that P and 7 are in detailed balance. For a complete
treatment about these topics see [2].

Define a scalar product on L(X) = {f : X — C} in the following
way:

(18) (frs fodn = ) i) fol)m (),

zeX
49
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for all fi, fo € L(X). Moreover, let P be the linear operator on L(X)
defined as:

(19) (P)(x) =D plx,y)f(y)
yeX
PROPOSITION 1.3. P and 7 are in detailed balance if and only if P
is self-adjoint with respect to the scalar product (-, ).

Proof. Suppose that P and m are in detailed balance and let
f1, f2 € L(X). One has:

(Pfi, f)r = Z <Zp(x,y)f1(y)) folz)m(x)

zeX \yeX

= D> m@)p@y) i) fa(z)

rzeX yeX

= ZZ (y) f2(z)

zeX yeX
= <f17 P.f2>7r'

Conversely, if we suppose that P is self-adjoint with respect to the
scalar product (-, )., we get:

m(x)p(x,y) = (Pdy, 0z)x = (8y, Poz)r = w(y)p(y, ),
where, for every = € X, the Dirac function ¢, is defined as:

5$<y>:{1 iy =z

0 otherwise.

O

The following lemma gives a fundamental characterization of the spec-
trum of stochastic matrices.

LEMMA 1.4. Let P be a stochastic matrix. Then 1 is always an
eigenvalue of P. Moreover, if X is another eigenvalue, then |A| < 1.

Proof. Let 1y the function such that 1x(z) = 1, for all z € X.
Then Plx = 1x and so 1 is an eigenvalue. Now let A be another
eigenvalue of P. Choose x € X such that |f(x)| > |f(y)| for all y € X
(it is possible since X is a finite set). Then

(@) = [Pf@)] =1 p)fW)] <D pl,y)lf(y)

yeX yeX

< @)D pla,y) = 1f (@),

yeX

which implies the assertion. 0]
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Moreover it is known that, under the hypothesis that P is in detailed
balance with 7, it can be diagonalized over the reals.

Let A, be the eigenvalues of the matrix P, for every z € X, with
Az, = 1. Then there exists an invertible unitary real matrix U =
(w(x,y))zyex such that PU = UA, where A = (A\;0,(y))zyex 1Is the
diagonal matrix whose entries are the eigenvalues of P. This equation
gives, for all z,z € X,

(20) > p,y)uly, 2) = ulw, 2)\..

Moreover, we have UT'DU = I, where D = (m(2)0.(y))zyex is the
diagonal matrix of coefficients of 7. This second equation gives, for all
Y,z € X,

(21) Z uw(z, y)u(z, 2)m(z) = 0,(2).

Hence, the first equation tells us that each column of U is an eigen-
vector of P, the second one tells us that these columns are orthogonal
with respect to the product (-, ).

If the spectral analysis is given, one can deduce the k—step tran-
sition probability, following the next proposition.

PROPOSITION 1.5. The k—th step transition probability is given by
(22) p®(z,y) = m(y) Y ulz, 2)Muly, 2),

zeX
forall z,y € X.
Proof. The proof is a consequence of (20) and (21). In fact, the
matrix UT D is the inverse of U, so that UUT D = I. This means
1
Z U(Q?, y>U(Z, y) = _Az<x>

m(2)
yeX
From the equation PU = UA we get P = UAUT D, which gives
p(z.y) =7(y) > ulz,2)A\u(y, ).

zeX

[terating this argument we get
P"=UA*UTD,

which is the assertion. O

DEFINITION 1.6. Let P be a stochastic matriz. P is ergodic if
there exists ng € N such that

PN (z,y) >0, forall z,y e X.
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In order to study the ergodicity property, it is useful to recall that
there exists a correspondence between reversible Markov chains and
weighted graphs.

DEFINITION 1.7. A weight on a graph § = (X, E) is a function
w: X x X —[0,+00) such that

(1) w(z,y) = w(y,x);
(2) w(z,y) > 0 if and only if x ~y.

If G is a weighted graph, a stochastic matrix P = (P(,y))syex on
X can be associated with w by setting

w(z,y)
Wi(z)
with W(z) = >,y w(z, z). The corresponding Markov chain is called

the random walk on G. It is easy to prove that the matrix P is in
detailed balance with the distribution 7 defined, for every x € X, as

p(r,y) =

with W = %" _ W(z). Moreover, 7 is strictly positive if X does not
contain isolated vertices.

The inverse construction can be performed. Namely, if we have a
transition matrix P on X which is in detailed balance with the proba-
bility 7, then we can define a weight w as w(z,y) = n(z)p(z,y). This
definition guarantees the symmetry of w and one gets a weighted graph
by setting £ = {{z,y} : w(z,y) > 0}.

There exist some interesting relations between the weighted graph
associated with a transition matrix P and its spectrum. In fact, it
is easy to prove that the multiplicity of the eigenvalue 1 of P equals
the number of connected components of G, as the following proposition
shows.

PROPOSITION 1.8. Let § = (X, E,w) be a finite weighted graph.
Then the multiplicity of the eigenvalue 1 of the transition matriz P
equals the number of connected components of G.

Proof. By definition of the Markov operator P, it is obvious that
if a function f € L(X) is constant in each connected component, then

Pf=1f.

Conversely, suppose Pf = f, with f real valued and non identically
zero. Let Xy C X a connected component of § and let zy € X be
such that |f(zo)| > |f(y)|, for all y € Xo. Up to replace f by —f, we
can suppose f(zo) > 0. We have f(zo) = >_ cx, (w0, y)f(y). Since
ZyGXo p(‘r07 y) = 1a we get

> plwo,y)(f(w0) — f(y)) = 0.

y€Xo
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Since p(xg,y) > 0 and f(zg) > f(y) for all y € Xo, we deduce f(y) =
f(zo) for all y ~ xy. Consider now any vertex z € Xy: by definition of
X, there exists a path p = (zg, x1, ..., 2z, = z) connecting o to z.

We have proven above that f(z1) = f(x¢) > f(y) for all y € X.
[terating the same argument one gets

f(wo) = f(x1) = -+ = f(an) = f(2)

and so f is constant on the connected components of G, what completes
the proof. O

DEFINITION 1.9. A graph § = (X, E) is bipartite if there exists
a nontrivial partition X = Xy [[Xo of its vertices such that E C
{{z1, 22} = &1 € Xy, 22 € X}, i.e. every edge joins a vertex in
X, with a vertex in Xs.

The following propositions hold (see [16] for the proof).

PROPOSITION 1.10. Let G = (X, E,w) be a finite connected weighted
graph and denote by P the corresponding transition matriz. Then the
following are equivalent:

(1) G is bipartite;

(2) the spectrum o(P) is symmetric, i.e. X € o(P) if and only if
—N€a(P);

(3) —1 € a(P).

ProproOSITION 1.11. Let § = (X, E) be a finite graph. Then the
following conditions are equivalent:

(1) G is connected and not bipartite;
(2) for every weight function on X, the associated transition ma-
trix P 1s ergodic.

So we can conclude that a reversible transition matrix P is ergodic
if and only if the eigenvalue 1 has multiplicity one and —1 is not an
eigenvalue.

2. Crested product of Markov Chains

In this section (see also [18]) we introduce a particular product of
Markov chains defined on different sets. This idea is inspired to the
definition of crested product for association schemes (see Section 4 of
this chapter) given in [4]. In [18], we refer to it as the first crested
product.

We need the following definition.

DEFINITION 2.1. A stochastic matriz P on a set X is irreducible
if, for every x1,xo € X, there exists n = n(x1, o) such that p™ (a1, x5)
> 0.
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In particular, it is clear that the irreducibility is equivalent to re-
quire that the graph associated with the probability P is connected, so
that the eigenvalue 1 has multiplicity one.

Now for every i = 1,...,n let X; be a finite set, with |X;| = m,, so
that we can identify X; with the set {0,1,...,m; — 1}. Let P; be an
irreducible Markov chain on X; and let p; be the transition probability
associated with P;. Moreover, assume that p; is in detailed balance
with the strict probability measure o; on X;, so that

oi(x)pi(x,y) = 0i(y)pi(y, ),

for all z,y € X;.

Consider the cartesian product X; X --- x X,,. Let {1,...,n} =
C]] N be a partition of the set {1,...,n} and let p9,p9, ..., p% be real
numbers such that pf > 0 for every i =1,...,n and Y, p} = 1.

DEFINITION 2.2. The crested product of Markov chains P;’s with
respect to the partition {1,...,n} = C[[ N is the Markov chain on the
product Xy x --- x X,, whose transition matrix is

(23) P = ZP?(]1®"'®IZ‘—1®PZ‘®IZ‘+1®"-®In)
ieC
+ Zp?(h@---@[¢71®B‘®Ji+1®---®Jn),
ieEN
where I; denotes the identity matrixz of size m; and J; denotes the uni-

form matrix on X;, i.e. the matrix of size m; all of whose entries are
L 50 that
m;

1 1 1
1
Ji=— !
my; : .
1 e e 1
In other words, we choose an index i € {1,...,n} with probability

p?. If i € C, then P acts on the i—th coordinate by the matrix P; and
fixes the remaining coordinates; if i € N, then P fixes the coordinates
corresponding to the indices {1,...,7—1}, acts on the i—th coordinate
by the matrix P; and changes uniformly the remaining ones.

From (23) it follows that, for all (x1,...,z,), (Y1,...,yn) € X1 X
-+ x X, the transition probability p associated with P is given by

p(($1, oo 71}”)? (yh S 7yN)) -

ZP?(@ (331, yl) o '5171(5131‘717 yifl)pz(ilfia yi)5i+1(xi+17 Z/z’+1) T 5n(513n7 Z/n))
ieC
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01 (951, 3/1) T 5%1(901;1, 3/%1)2%(33@‘, yi)
+> 1 ( - :

iEN Hj:i—H m;
where ¢; is defined by
i, yi) = {

0 otherwise.

We want to investigate the spectral analysis of the operator P. We
recall that the following isomorphism holds:

L(Xy x - x X,) =2 R) L(X)),
=1

where (fl X fn)(l'l, c. ,l’n) = fl(l'l)fg(l'Q) cee fn(ﬂfn), with fz <
L(X;) and z; € X, for every i = 1,... n.

Assume that, for every ¢ = 1,...,n, the following spectral decom-
position holds:

LX) =V},
Ji=0

where VJZ is an eigenspace for P; with associated eigenvalue A; and
whose dimension is mj. Observe that the hypothesis of reversibility
implies that )\, is real and that the hypothesis of irreducibility implies
that the multiplicity of 1 as eigenvalue is one.

Now set N = {iy,...,4} and C' = {¢1,...,¢p}, with A +1 = n and
such that 7; < ... <4 and ¢; < ... < ¢.

THEOREM 2.3. The probability P defined above is reversible if and
only if Py is symmetric for every k > iy. If this is the case, P is in
detailed balance with the strict probability measure m on X1 X --- x X,
given by

o1(x1)oa(@2) - - - 0y, (2

m(xy,. .., x,) = R :
i1 n

Proof. Consider the elements z = (xy,...,2,) and y = (y1,...,Yn)
belonging to X; x --- x X,,. First, we want to prove that the condition
op = m%y for every k > iy, is sufficient. Let k € {1,...,n} such that
x; =y; forevery i =1,...,k — 1 and z; # y,. Suppose k < i;. Then
we have

p(,y) = D (Pr(Th, Yr) Okt (Tt 1, Yar1) -+ O (2 Yn)) -
If x; =y, foreveryt=k+1,...,n, we get

Pe Tk, Yk
H@)p(y) = 1) op(wn) - - o (s )p0 TR
Myjy41 My

_ oo (Y0P T)
= o1(y) - on(ye) 0'21(yz1)pkmi1+l.“mn

= 7w(y)p(y, ),
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since og(zg)pr(Tk, Yr) = ok (Yr)Pr(Yg, xx). If the condition z; = y; is
not satisfied for every i = k+1,...,n, then the equality m(z)p(z,y) =
7(y)p(y, x) = 0 easily follows.

If £ =1, then we get

1
— 20 ) ) o
p(l‘, y) y2H (pzl (mzl ) yz1>mi1+1 . mn>

and so

0 p’il (xilﬂy’il)
m(x)plx = 01\T1) " 0u\Tiy )iy =5 5
( )p( ,y) 1( 1) 1( 1)p 1m?1+1 . m%

Piy \Yiy, Ti
— al(yl) ...... 011(?/11)29?1 1( 1 ?711)2
11+1 n

= 7(y)p(y, ),

since 04y (xh )pi1 (xiu yi1) = 04 (yil )pil (yil y Liy )
In the case k > i1, we have
Z po pz Ly, yz
-m

i€EN,i<k n

and so

m(z)p(r,y) =

01(371)"'%(%1) Z pQ Pi(l"i,yz‘)
My 417 M IEN i<k Mg

_ o) 00 (vi) 3 pi(yi, i)
my

(2
M1 My

e
irtl iENi<k

= w(y)p(y, ).
In fact, the terms corresponding to an index i < k satisfy p;(z;, y;) =

pi(yi, ;) since x; = y;, the term corresponding to the index k satisfies
Pr(Zr; Y) = pr(Yr, Tx) since the equality

pk(xk;yk) = Pk(yk,ﬂck)

holds by hypothesis.

Now we want to prove that the condition o, = mik, for every k > iy,
is also necessary. Suppose that the equality 7(x)p(x,y) = 7(y)p(y, z)
holds. By hypothesis of irreducibility we can consider two elements
2% y° € Xy x --- x X, such that 29 # y? and with the property that
piy (@, 4)) # 0. Now we have

m(x)p(x°, y°) = 7(y°)p(y°, 2°) < 7(@)pi, (23, y5)) = 7(y")pi, (45, 77).
This gives
ﬂ-(‘ro) _ pil (y?px?l) . O-’il (fL’?l)

ﬂ-(yo) B pil (Q:?l, ylol) N O-Z'l (y’?l) .
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Consider now the element = = (29,..., 27 .40 1,...,42). The equality

m(@)p(z, ") = (y")p(y°, ) implies
Tr(x) — pil (ylol Y Ilol) — Uil (1’91)
ﬂ—(yo) pil (x?17 ygl) O—il (ylol)

So we get 7(z°) = m(z), i.e. the probability 7 does not depend from the

coordinates iy +1,...,n. Setnow &’ = (29, ..., 20, ... a)_ , xp, ... @)

The equality 7(z%)p(2°, 2") = 7 (2")p(z’, 2°) gives

7T(ﬂco)( > Pps(af, 3))) Zﬂ(x’)< > P, ?)))-

JEN,j<k JEN,j<k

Since the probability 7 does not depend from the coordinates i, +
1,...,n, we get pp(x, x}) = pr(x},x?). This implies oy (x}) = op(z))
and so the hypothesis of irreducibility guarantees that oy, is uniform on
Xg. This completes the proof. [J

From now on, suppose that the matrix Py is symmetric for every k > i;.
The following theorem describes the eigenspaces of P.

THEOREM 2.4. The eigenspaces of the operator P are given by
° W1®__‘®Wl€—1®‘/]i®‘/E)k+1®‘/0k+2®__.®%’n7
with ji. # 0, for k € {iy +1,...,n} and where

Vi, gi=0,...m ifieC,

with eigenvalue

> PN AP DD

ieC:i<k Z>k
° {/}i@...@{/j?l*}(g)vji; ®‘/07:1+1®_“®%n7
11— 'Ll
with j; =0, ...,1¢, for everyt =1,... 41, with eigenvalue
Zp?)\]z + Z p@
1=i1+1

Proof. Fix an index k € {i; + 1,4y + 2,...,n} and consider the
function ¢ in the space

We -eW'leVie el oV,
with jx # 0 and

— L(X;) if i € N,
S \VE gi=0,...,r ifieC,

Ji?
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so that ¢ =

fori =1,..

x = (1,...

(Pe)(x) =
+
X
_|_
_|_
_.I_
+
+
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P1® @ Pp1 ® Pp @ Pra1 ® -+ @ oy with ; € W?
k) 1,<pkEVjiand<plE\/Olforl:k+1,...,n. Set

and y = (y1,...,Yn), then

> p(x,y)e(y)

Y
Z <Z p0v(xr, y1) - S (i, Y )i (@0, ¥i) i1 (Tog, Vi) - - 0@, Un)
Y ieC

1 1
ZP?51($1, Y1) Gia (@i, i1 )pi(i, y@-)m e —>

iEN i+l
©1(y1) - Or—1(Ye—1) 0k (i) Prt1(Wrr1) - - o0 (Yn)

Z (Z pipi(i, yi)%‘(yi)) p1(21) -+ Pim1(Tim1)Pir1(Tit1) - - - Pn(@n)

ieC, i<k Yi
Z (Z pipi(i; yi)@i(yi)) e1(z1) - pic1(@im1) i1 (Tisr) - - on(Tn)
i€C, i>k Ui
0 1 1
Z Z P Di(@i, Yi) v —0i(Yi)  on(yn) | e1(x1) i1 (i)
' Mit1 My,
iEN, i>k T
1 1
0
X k pp x’y ce e —— €T o _ 1T y . ny’n,
n( )ykgn 1Pk (T k)mk+1 mn%( 1) k-1 (Tr—1)0e(Yk) - - - ©n(Yn)
Z pg/\jigo(x) + Z pg .1 (,0(.1‘)
i€C, i<k i€C, i>k

| Z (Zpgpi(%yz‘)%(yz')) p1(71) - i1 (Tim1) i1 (Tiga) - - on(Tn)

k)Y pion(@e, y)er (@) - o (1) or () prsa (@) - - paln)

Yk
S o)+ Y e+ Y plex) + xn(k)pid,e(x)
ieC, i<k ieC, i>k iEN, ik
( Yo Jz+pm+2pz>
i€C, i<k i>k

where xn is the characteristic function of N. Note that in this case
the summands corresponding to the indices ¢ < k, 1 € N, are equal to
0 since we have supposed j; # 0.

Consider now the function ¢ in the space

Vi@ ViLeVi e e e,
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with 5, =0,...,7, for every t = 1,...,4;. In this case we have

(Po)(x) = > plz.y)ey)

Y

= Z <Zp?pz(xz,yz)%(yz)> @1(x1) - @ic1(@im1) i1 (Tig1) - - Pn(Tn)
1€C, i<iy Yi

+ Z (Zp?pi(wi,yi)éﬁi(yi)) e1(1) - pi1(@ic1) i1 (Tisn) - - on(Tn)
1€C, i>11 Yi

1 1

+ Y > pini Tiy Yi) ---m—%(yi)mson(:cn) e1(z1) - pi1 (i)
iEN, i>i1 \Yir-Yn "

+ Z P Pis (i, i )L"'i% Wir) -+ pnl(n) | pr(@1) - - iy -1 (@i, -1)
) ; 11 1 1 1 mi1+1 mn 1 1 1 1
S

= D e+ > e+ Y plel@)+ A, e(x)
i€C, i<iy i€C, i>i iEN, i>i1

- (T 3 ) eto

1=i1+1

Observe that, by computing the sum of the dimensions of these eigenspaces,
one gets

E my - -mp_1(mg — 1) +myma - my, = mamg -+ -my,
k=i1+1

which is just the dimension of the space X; x --- x X,,. 0

Remark. The expression of the eigenvalues of P given in the pre-
vious theorem tells us that if P; is ergodic for every ¢ = 1,...,n, then
also P is ergodic, since the eigenvalue 1 is obtained with multiplicity
one and the eigenvalue —1 can never be obtained.

Now we can show the matrices U, D and A associated with P.
For every i, let U;, D; and A; be the matrices of eigenvectors, of the
coefficients of o; and of eigenvalues for the probability P;, respectively.
The following proposition holds.

PROPOSITION 2.5. Let P be the crested product defined in (23).
Then we have:
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e U=31 M@ - @M_1®Up—Ap) A1 ®---® A,
+U @U@+ QU @ Ajj 1 @+ @ Ay, with

o f1 ey
U; ifieC

where

1
oi(m;—1)

We denote A; the matrix of size m; whose entries on the first
column are all 1 and the remaining ones are 0.
e D=, D
o A:ZieCp?(Il®"'®Iz‘—1®Ai®Ii+1®"'®]n)
+ Zz’eNp? <Il R QL1 QA® Jfﬂg Q& Jffmg), where
JY s the diagonal matriz of size m; given by
1

diag
Jiies =

0

Proof. The expression of the matrix U, whose columns are an or-
thonormal basis of eigenvectors for P, is a consequence of Theorem 2.4.
In order to get the diagonal matrix D, whose entries are the coefficients
of 7, it suffices to consider the tensor product of the corresponding ma-
trices associated with the distribution o;, for every i = 1,...,n, as it
follows from Theorem 2.3. Finally, to get the matrix A of eigenvalues
of P it suffices to replace, in the expression of the matrix P in (23),
the matrix P; by A; and the matrix J; by the corresponding diagonal
matrix J&, O

Remark. Observe that another matrix U’ of eigenvectors for P is
given by U’ = @, U;. The matrix U that we have given above seems
to be more useful whenever one wants to compute the k—th step transi-
tion probability p*) (0, z) using Formula (22), since it contains a greater
number of 0 in the first row with respect to U’ and so a small num-
ber of terms in the sum is nonzero. Here we denote 0 the element of
X; X -++ x X, given by the n—tuple (0,...,n).

Consider x = (x1,...,2,) and y = (y1,...,yn) in X, where we set
X = X; x--- x X,,. From (22) and Proposition 2.5, we get



2. CRESTED PRODUCT OF MARKOV CHAINS 61

P(k)(%y) = 7(y) [Z ( Z ma(z1, 21) - My (Tr1, 201) (U — @) (T, 20)

zeX \r=i1+1
X Qr41 (x’l‘-i-la zr+1) e an(xna Zn)

uy (71, Zl) e 'Uz‘l(fﬁm Zil)az‘1+1($i1+17 Zi1+1) T an(«’ﬂm Zn)) )\5

X ( Z ml(yh 21) T mr—l(yr—h Zr—l)(ur - aT’)(yrv ZT)

r=i1+1
X OQpyq (errla ZT+1) Tt an(yrw Zn)
+ ul(ylv Zl) T UGy (yin Zil)ail+1(yi1+17 Zi1+1) o an(ym Zn))] )

where my;, u;, a; are the probabilities associated, respectively, with the
matrices M;, U;, A; occurring in Proposition 2.5.

2.1. The crossed product. The crossed product of the Markov
chains P;’s can be obtained as a particular case of the crested product,
by choosing a special partition of {1,...,n}, namely C = {1,...,n}
and N = (). It is also called direct product. The analogous case for
product of groups has been studied in [25].

In this case, we have

(24) P=Zp?(h®---®I¢_1®B®I¢+1®---®fn);
i=1
the corresponding transition probability is

p((xb s 7*7;”)7 (yh <o 7yn>> = Zp?51(:€1,y1) o pl(xlvyl> e 6”(1:%7:%1)7
=1

for all (z1,...,2,), (Y1,---,yn) € X1 X -+ x X,,. This is equivalent
to choose the i—th coordinate with probability p? and to change it
according with the probability transition P;. In particular, we get

p(($1, cee axn)a (yh cee vyn)) =

{ ppi(xs,y;) ifay =y; forall j #1i

0 otherwise.
In the particular case X; = --- = X,, = X, with p} = --- = p = %,
the probability p defines an analogous of the Ehrenfest model (see, for
instance, [15]), where n is the number of balls and |X| = m is the

number of urns. In order to obtain a new configuration, we choose a
ball with probability 1/n (let it be the i—th ball in the urn ;) and
with probability p;(x;,y;) we put it in the urn y;.
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As a consequence of Theorem 2.3, we get that if P; is in detailed
balance with 7;, then P is in detailed balance with the strict probability
measure m on X; X --- x X, defined as

(w1, ., @) = T (@1)To(22) - - T ().
The following proposition studies the spectral theory of the operator

P and it is a straightforward consequence of Theorem 2.4.

PROPOSITION 2.6. Let @} = lx,,¢4,..., ¢, 1 be the eigenfunc-
tions of P; associated with the (not mecessarily distinct) eigenvalues
No= 1, - X mi—1, respectively. Then the eigenvalues of P are the

numbers
Z Py : )‘fk ’

with I = (iy,...,1,) € {O,...,ml — 1} x---x{0,...,m, —1}. The
corresponding eigenfunctions are defined as

er((z1,.. . m0)) = @i, (21) - 97, ().
Moreover, the eigenspaces described in Theorem 2.4 become, in the
case of the crossed product,
1 n
(25) le®"'®vjn7

where j; € {0,...,r;} for every i =1,... n.

As a consequence of Proposition 2.5, in order to get the matrices
U, D and A associated with P, it suffices to consider the tensor prod-
uct of the corresponding matrices associated with the probability P;,
for every ¢ = 1,...,n. If, for every i, we denote U;, D; and A; the
matrices of eigenvectors, of the coefficients of m; and of eigenvalues for
the probability P;, respectively, then we get the following corollary.

COROLLARY 2.7. Let P be the probability defined in (24). Then we
have

UTDU = I,
where U = Q- Ui, A=Q);_; A; and D = Q7| D;.

{PU:UA

In particular, we can express the k—th step transition probability

& alialg

Let x = (x1,...,x,) and y = (yl, .+, Yn). Then we get

p(x Z pr()Xer(y
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n n k n
m(yn) - mnlyn) Dok (1) - 0F (wn) (AL, + -+ DOAL) 0k (1) -+ 7 (),
I

with I = (i1, ..., in).

If the matrix P; is ergodic for every ¢ = 1,...,n, then also the
matrix P is ergodic, since the eigenvalue 1 can be obtained only by
choosing I = (0,...,0) and the eigenvalue —1 can never be obtained.

Consider now the action of the symmetric group S, on the set
X =40,1,2,...,m — 1}. Suppose m > 2. Choose the element 0 € X
and consider the subgroup K of .S, stabilizing 0. It is well known that
the subgroup K is isomorphic to the symmetric group S5,,_1, so that
we have

X 28, /8.

Set L(X) = {f : X — C} and, as usual, consider the action of S,, on
L(X) given by

(7 f) (@) = f(7~"0),
forall m € S,,, f € L(X) and ¢ € X. It is well known (see, for

instance, [33]) that the representation of S,, on L(X) decomposes into
two S,,, —irreducible subrepresentations as

(26) LX) =Vy& Vi,

where V) = C is the space of constant functions on X and V; = {f :
X — C: Y7 f(@) = 0}. In particular, we have dim(V;) = 1 and
dim(Vy) =m — 1.

Since the decomposition in (26) is multiplicity-free, it is clear that
(Sm, Sm—1) is a Gelfand pair. The associated spherical functions are:

o ¢y € Vp, defined as ¢o(x) =1 for all i € X;
e ¢, € V1, defined as

¢1(@'):{11 ifi=0

T otherwise.
—m

In particular, Theorem 1.16 implies that (S,,, S,,—1) is a symmetric
Gelfand pair.

Observe that this is a particular case of the action of Aut(T;) on
the g—ary rooted tree, studied in Chapter 1 of this work. The decom-
position given in (26) is a particular case of (2), with ¢ = m and n = 1.

Consider the cartesian product X; x --- x X,,. To avoid confusion,
suppose X7 = --- = X,, = X, with |X| = m. The symmetric group
Sm acts on each factor X and on the space L(X) as described above.
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A natural action of the direct product S, x --- x S, on the product
—_——

n times
X" =X x--- x X is defined by
—_——
n times
(T e )ity o yin) = (11 (i1)s oy 0 (i),

with m; € S, and i, € Xy. If L(X) = Vo @ V; is the decomposition
of the space L(X) into S,,—irreducible subrepresentations, then the
decomposition of L(X X --- x X) into (S,,)"—irreducible subrepresen-
tations is given by

LX" = LX) = (é) v;j) .

L;e{0,1} \i=1

The interesting fact is that the same decomposition can be obtained
by the spectral analysis of the operator P defined in (24), by choosing
P, = J;, for every i = 1,...,n. In fact, the eigenspaces given in (25)
become, in this case,

1 n
(27) ‘/;1®‘..®‘/}n7

where j; € {0,1} for every ¢ = 1,...,n, since the operator J; acting on
L(X;) has two eigenspaces, given by the space of constant function Vj
and the space Vi = {f : X; — C: 37} f(k) = 0}, whose eigenvalues
are 1 and 0, respectively.

This particularity will be remarked also in the next section devoted
to the nested product: this time, the group which we will refer to will
be the wreath product of symmetric groups.

2.2. The nested product. The nested product of the Markov
chains P;’s is obtained as a particular case of the crested product,
with respect to the partition {1,...,n} = C][ N, with C = ) and
N ={1,...,n}. The term nested comes from the association schemes
theory (see, for example, [3] and [4]).

The formula (23) becomes, in this case,

(28) P:Zpg(ll®"‘®P2‘®Ji+1®Jz‘+2®"'®<]n).
i=1

Theorem 2.3 tells us that P is reversible if and only if P is sym-
metric, for every k > 1, i.e. 0; = mi for every ¢ = 2,...,n. In this
case, P is in detailed balance with the strict probability measure 7 on

Xy x --- x X, given by
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Let us assume ¢; to be uniform, for every ¢ = 2, ..., n. The transition
probability associated with P is

p?p1(9€17y1)
m2m3 “ e mn

n—1
> O((21, s mjo0), (Y- y-1))0505 (24, 5)
Mjy1- My

p((z1s s n), (Y- Un)) =

+
j=2
+ 5((I1, e 7xn—1)7 (yla S 7yn—1))p2pn(xna yn)
Also in this case we can study the spectral theory of the operator

P defined in (28).
Let

L(X;) = @ v
7i=0

be the spectral decomposition of L(X;), for all i = 1,...,n and let
Ay =1, AL, ..., AL the distinct eigenvalues of P; associated with these
eigenspaces. From Theorem 2.4 we get the following proposition.

PROPOSITION 2.8. The eigenspaces of L(X; x -+ x X,,) are

o L(X))® @ L(X,_1) @ V", of eigenvalue p’\? | for j, =

In’ n"Jn’
L, ..., rn, with multiplicity my - - - my,_y - dim(V}");
o L(X)®- - @ LX) Vi @V @ @ Vi, of eigenvalue
pgﬂ)\f::l + D)o 4+ P2, with ey = 1,...,rpq1 and for
kE=1,...,n—2, with multiplicity my - --my, - dlm(lezill),

° I/x QVE® - @ Vy, of eigenvalue p(l))\]ll + P9+ -+ 0, for
J1="0,1,... 1, with multiplicity dim(V}}).

Moreover, as in the general case, one can verify that, under the
hypothesis that the operators P; are ergodic, for ¢ = 1,...,n, then also
the operator P is ergodic.

Finally, Proposition 2.5 in the case of the nested product yields the
following corollary.

COROLLARY 2.9. Let P be the nested product of the probabilities
P, withi=1,...,n. Then we have:
e U=U1®A0 -®A4,
+ ZZ:Q [in—norm@_ A .®[z'iilfnorm®<Uk_Ak)®Ak+1®. . ®An
e D=Q;_, D
o A=30p (h @@L ®A,-®iji9®---®Jgia9>.
Also in this case the interesting fact is that, for a particular choice

of the matrices P;’s, the spectral decomposition given in Proposition
2.8 is the same that one gets by considering the action of a particular
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group on the space L(X; X - -+ x X,,): this group is the iterated wreath
product of the symmetric groups acting on the sets X;.

For simplicity, suppose X = X; = --- = X,,, with |X| = m. So
the elements of the cartesian product X x --- x X can be regarded
as the leaves of the rooted m—ary tree T,, of depth n. The group
Sm U+ 1Sy, is the group of the automorphism of this tree and its action
—_——

n times
on X X --- x X is described in Chapter 1, Section 2.

If we set P, = J;, for all © = 1,...,n, then the irreducible subrep-
resentations in (2) are just the eigenspaces listed in Proposition 2.8:
in particular, the space W, is the space of constant functions and, for
every j =1,...,n, the space W, in (2) coincides with the space

LX)® LX)V eVite eV,

where, as usual, L(X;) = Vi & V{ is the decomposition of L(X;) into
irreducible S, —subrepresentations, with V5, = C and V; = {f : X; —

C: Yy f(k) =0},

2.2.1. k—steps transition probability. The formula that describes
the transition probability after £ steps in the case of nested product
can be simplified using the base of eigenvectors given in Corollary 2.9
and supposing that the starting point is 0 = (0, ..., 0).

From the general formula, with the usual notations, we get

p(k)(o’ y) = 7(y) [Z (Z 05, (0,21) -+ 05,_, (0, 2p—1) (1 — @,)(0, 2,.)

zeX r=2

X ari1(0, 2041) - an (0, 20) + (0, 21)a2(0, 22) - - - an (0, 2,)) /\];

X <Z 501 (yla Zl) e 507—1(:%“—17 Zr—l)(ur - ar)(yra zr)
r=2

X Qg (yr+17 Zr+1) e an(?/ny Zn)

+ w (?/1, 21)a2(?/2, 22) T an(ym Zn))]

) 1+Z % (Z

2;=0, i£j

Url

—a,)(0, zr)>
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k n
X (p(r))‘;r + Z p?n) (Z 501 (yla 0)602 (92, 22) s 50%1 (yT—la 27’—1)
r=j

m>r

X (ur - ar)(yra Zr)ar-l—l(yr—i-la Zr+1) T an(yna Zn))

n k
+ Z u1(0, 21) (p?kil + ZP%) uy (Y1, 21)
m=2

2170
2;=0, i>1

Observe that in this case the sum consists of no more than
n

| X1 | + Z(|Xz‘ —-1)= Z | X;| —n+1
i=2 i=1
nonzero terms.

Ezrample. We want to express the k—th step transition probabil-
ity in the case n = 2. So consider the product X x Y, with X =
{0,1,...,m}and Y ={0,1,...,n}. Let

be the spectral decomposition of the spaces L(X) and L(Y), respec-
tively. Let A\g = 1, A1,..., A\, and pg = 1, puq, ..., us be the distinct
eigenvalues of Px and Py, respectively. Then the eigenspaces of L(X x
V) are L(X) @ W;, for i = 1,...,s, with dimension (m + 1) dim(W;)
and associated eigenvalue pdp;, and V; @ W, for j = 0,...,r, with
dimension dim(V;) and associated eigenvalue p%\; + pY-.

The expression of U becomes

U=IX"""g Uy — Ay) + Ux ® Ay.

In particular, let {v° v1,... ,véim(vl), co Ul ,vgim(w)} and

{w® wi, ... ,wéim(wl), Wi ,wfhm(WS)} be the eigenvectors of Py
and Py, respectively, i.e. they represent the columns of the matrices
Ux and Uy.

Then, the columns of the matrix U corresponding to the elements
(,0) € {0,...,m} x {0,...,n} are the eigenvectors v ® (1, ..., 1) with
eigenvalue p&\; + p%. On the other hand, the columns corresponding
to the elements (i,7) € {0,...,m} x {0,...,n}, with j =1,...,n, are

the eigenvectors (0,...,0, ———,0,...,0) ® w’ whose eigenvalue is

i—th place
pYu;. As a consequence, only m + 1+ n of these eigenvectors can be
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nonzero in the first coordinate, so the probability p*)((0,0), (x,%)) can
be expressed as a sum of m + 1 + n nonzero terms: moreover, these
terms become m + 1 if x # 0. We have

pM((0,0), (z,y)) = (Zv 2) (% + pv)"

+ \/170_)(210‘7 (50 ( )(pY:U’J> )
_ ox(@) > Z v (0)0 () | (%N + p%)*

dim (W)

- \/70)( Z wb 0)do (@ b() (pg)/ﬂj)k

2.3. The Insect. We describe here a particular Markov chain de-
fined on the n — th level of the rooted tree, introduced by A. Figa-
Talamanca in [32] and called the “Insect” in [18], [20] and [21].

We already said above that if | X;| = m;, with X; ={0,1,...,m; —
1}, then the elements of the cartesian product X; x - - - x X,, can be re-
garded as the set of the leaves of the rooted tree T  of depth n, such that
the root has degree m;, each vertex of the first level has my children
and in general each vertex of the :—th level of the tree has m;, chil-
dren, for every ¢ = 1,...,n — 1. As usual, we denote the i—th level of
the tree by L;. We recall that the group Aut(T') of all automorphisms
of T' is given by the iterated wreath product

Sin USmpy 1 U= S, -

Moreover, Aut(T) is also the group of isometries of 7', with respect to
the usual ultrametric distance.

The Insect is a Markov chain P on the level L,, of the tree, defined
from the simple random walk on 7" starting in a vertex x € L,,. In fact,
it is possible to define a probability distribution p, on L, such that,
for every y € L, p.(y) is the probability that y is the first point in
L,, visited by the random walk. If we put p(z,y) = p.(y), then we get
a stochastic matrix P = (p(2,y))syeL,. Moreover, since the random
walk is Aut(7T")—invariant, we can suppose that the random walk starts
at the leftmost leaf, that we will call zq = (0,...,0).

+

We use the notation of [16] in a more general context: the authors

consider there the particular case m; = ---m, = q.
Set {, =0and & = 00...0 . For j > 0, let a; be the probability of
n—i times

ever reaching &;, given that ; is reached at least once. This definition
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implies

1 d !

oy = an oy = :

0 e

In fact, with probability 1, the vertex &; is reached at the first step

and, starting from &, with probability —— it reaches &,, while with

man+1
probability 2= it returns to some vertex of L,. Finally, one has
a, = 0.
For 1 < j < n, the following recursive relation holds:
1 Mp41—
(29) = ey

In fact, starting at &;, with probability m the insect reaches in
n+1—j

one step &;4+1, otherwise with probability %
nt+l—j
one of its brothers; then, with probability a;_; it reaches again &; and

one starts the recursive argument.

it reaches §;_; or

The solution of (29), for 1 < j <n —1, is given by

Qj

I+ My + MMy 1 + MMy 1My 2+ -+ + MMy 1My -+ Mp—j+2

I+ My + MMy + My My 1My + -+ + MMy 1My -+ Mp—j+1
MpMp—1Mp—2 - Mp_j41

I+ My + MpMp—1 + MMy 1 M2 + ===+ MMy 1My 2+ * Mp—j+1

We already remarked that the random walk, and so the Insect
Markov chain, is invariant with respect to the action of Aut(T"), which
is the group of isometries of the tree. This implies that the probability
p(zo, x), for z € L, only depends on the ultrametric distance d(xg, x).

We get

1 1
- —(1— - (1=
p(l'o,iCo) mn( Oél) -+ mnmn_l()q( 062) +
1
+ a1a2"'an—2(1_an—1)+—a1"'an—1-
My Mypy_1 * + * Mo My -+ -My

In particular, the j—th summand is the probability of returning
back to zg if the corresponding random walk in 7" reaches &; but not
i1

It is easy to compute p(zg, x), where x is a point at distance j from
xg. For j = 1, we clearly have p(xg,zq) = p(xo,z). We observe that,
for j > 1, to reach z one is forced to first reach &;, so that we have

1
p(xg, ) = —————ajag---ojq(l—ay) +---
mn DY mn—]+1
1 1
+ ————ajae oy o(l—ay )+ —————aqag .
mn-a-m2 mn---ml

Actually, the Insect Markov chain is a particular case of the nested
product defined in (28), as the following proposition shows.
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ProPOSITION 2.10. The transition probability

p?p1(1’17?/1)

m2m3 PR mn

n—1

Z o((z1y ey mjoa), (Y- >yj—1))29?pj($j7 Y;)

ijrl"'mn

p((xb s ,l‘n), (yla R 7yn)) =

+

j=2
+ 5((1‘1, o 7l'n—1)7 (?/1, o 7yn—1))p91pn($n7 yn)v

associated with the Markov chain in (28), gives rise to the Insect Markov
chain defined on L,, regarded as the sets of elements of the product
X%+ x Xy, choosing pi = arag -+ i(1—a_i11) fori=1,...,n—1
and p? = 1 — ay and the transitions probabilities p;’s to be uniform for
allj=1,....n

Proof. Set, for every i =1,...,n —1,
p? = a1y (1 — apiya)

and p? = 1 — a;. Moreover, assume that the probability p; on X is
uniform, i.e.

If d(xg,z) = n, then we get

Q10 - - Qp_1

p(zo, x) = )
MiMms + = My,
If d(xg,z) =7 >1,1e 2 =xz; foralli=1,...,n— j, then
U - Qg ap a1 (1 — o)
plxo,x) = + .
( ‘ ) mims - Z Crr MMy

Finally, if x = ¢, we get

2
Q109+ Oty a1 i1 (1 — s 11—«
102 1+Z 1 1( )+( 1)'

p(‘r07 xO) -
mimsg - - -My My, = My42M541 mp,

This completes the proof. OJ

Following the remark given after Corollary 2.9, we deduce that the
eigenspaces of the operator P associated with the Insect Markov chain
are exactly the W;’s of (2).

This fact can also be obtained as a consequence of Corollary 1.8,
since the Markov operator P on L(L,) associated with the Insect
Markov chain is Aut(T")—invariant, i.e. P € Hom awr)(L(Ly), L(Ly)).
This follows from the fact that the probability p(zg,x) only depends
on the ultrametric distance d(zg, z). In formulae, we have

9(Pf) = P(g(f)),
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for every f € L(L,) and g € Aut(T). In fact, for x € L,,, we have

(G(PH))x) = (PFlg™"z) =D plg~"z,y)f(y)

yeLy,

(Pla(Px) = D pla,y)g(MN) =D pla,y)flg'y)

= 3" plagt) (1),

teLn

1

where we set g~'y = t. Using that p(¢~'z,y) = p(x, gy) since g is an

isometry, we get the assertion.

In order to compute the corresponding eigenvalues we can use the
formulas given in Proposition 2.8 for the eigenvalues of the nested prod-
uct by setting:

e N =1land X =0, foralli=1,...,n;

e p) =ajay - a, (1 —a, i), fori=1,...,n—1;
e =1—aq.
We get

It is easy to prove by induction on j that, for every j =1,...,n—1,
the eigenvalue \; is equal to 1 — aqag -+ - oy,

Ifj=1 wehave \; = > " ,p) =1—p) =1—a; - a,_1. Now
suppose the assertion to be true for j and show that it holds also for
7+ 1. We get

Ajy1 = Z P = Z p?—P?H

i=j+2 i=j+1
0

= N-—pig=l-oayap gy —aran (1= a, )

= 1- Q- Q0 _j1.

2.3.1. Ezample. Let us give an example in the case n = 3 with
mp = mo = ms = 2 and

nnen- (U3 1)

The tree associated with the product X; x X, x X3 is the following;:
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€s

&2

&1

)
Fig.16. The rooted binary tree of depth 3.

Set
LX) =Vg @V, L(X)=Via@V, andL(Xs)=V7® V.
The eigenspaces of P are:
o Wy =V ®@VZ® Vg, of dimension 1;
o W, =V @V ® Vg, of dimension 1;
o Wy =L(X;)®VZ®VJ, of dimension 2;
o W3 =L(X;,)® L(X,) ® V2, of dimension 4.
We have g =1, a1 = 3, ap = 2, a3 = 0 and so p = 1, p
and p = 2.
The eigenvalues of P are the following:

0o _ 4
2

e )\ = 1, with multiplicity 1;

° )\ = g with multiplicity 1;
o)\ = % with multiplicity 2;
e )3 = 0, with multiplicity 4.

The matrix P is given by

P=p)(Ji® @) +p5([ @ J, @ J3) + ps([1 ® [, ® J3) =
67 67 11 11 3 3 3 3
67 67 11 11 3 3 3 3
11 11 67 67 3 3 3 3

1 |11 11 67 67 3 3 3 3

“16813 3 3 3 67 67 11 11
3 3 3 3 67 67 11 11
3 3 3 3 11 11 67 67
3 3 3 3 11 11 67 67
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3. The cut-off phenomenon

The rate of convergence of an ergodic Markov chain to the sta-
tionary distribution has been studied by Diaconis in relation with the
following question: “How much does it take to converge to the sta-
tionary distribution 77?”. This is motivated by the fact that in many
Markov chains the difference between the value of the probability mea-
sure m®) given by the k—steps transition probability and = is close to
0 only after a fixed number kg of steps, and it is large (close to 1) be-
fore kg steps. So the distance exponentially fast breaks down in a small
range. This phenomenon has been called “cut-off phenomenon”. Actu-
ally, this term was introduced in [1]. Many applications are presented
in the survey [24].

In [20] the cut-off phenomenon for the Insect Markov chain is inves-
tigated, using the spectral analysis of the associated Markov operator.
In particular, we study the homogeneous case m; = --- =m, = ¢ and
we show that the cut-off phenomenon does not occur.

First of all, we need some definitions.

DEFINITION 3.1. Let P = (p(x,y))syex be a stochastic matriz.

Then a stationary distribution for P is a probability measure m on
X such that

(30) w(y) =Y w(@)p(z,y),

zeX

forally e X.

The following theorem gives a relation between stationary distri-

butions and ergodicity. For a proof see, for example, Chapter 1 in
[16].

THEOREM 3.2. Let P be a stochastic matriz on X. Then P 1is
ergodic if and only if there exists a strict probability distribution on X
such that

klim P8z, y) =7(y) forall z,y € X.
—00

This implies that the limits above exist, they are independent of x and
they form a strict probability distribution. Moreover, m is the unique
stationary distribution for P.

Note that if P is ergodic and in detailed balance with 7, then its
stationary distribution coincides with 7. To show that, it suffices to
sum over x € X the identity

m(z)p(z,y) = 7(y)p(y, ),

what gives ) m(z)p(x,y) = 7(y), which is just (30).
Theorem 3.2 can be easily proven under the hypothesis of reversibil-
ity of the Markov chain P. In particular, we get the following theorem.
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THEOREM 3.3. Let P be a Markov chain in detailed balance with
the distribution m. Suppose that P is ergodic. Then
(31) lim p"(z,y) = 7(y),
k—o00
forall z,y € X.

Proof. From Proposition 1.5, we have
P (w,y) = w(y) Y ulz, 2)Muly, ).
zeX
Since P is ergodic, the eigenvalue 1 has multiplicity one, so there exists
2o € X such that A\, < \,, = 1, for all z # z;. Moreover, one has
u(x,zg) = 1 for all z € X. The hypothesis of ergodicity implies A, >
—1, for all z € X, so that (31) can be rewritten as

p® (. y) = w(y) + 7y) D ulw, 2)Nouly, 2).
220

Since —1 < A, < 1 for all z # 2, we get limy_,o p®¥(z,y) = 7(y).
0J

The next definition will be useful later, because it introduces the
notion of difference of two probability measures on X.

DEFINITION 3.4. Let p and v two probability measures on X. Then
their total variation distance is defined as

> nlz) —vix)

z€EA

= max |u(A) — v(A)].

I = vllry = max max

ACX

It is easy to prove that ||u—v|rv = 3|l — v|lLi(x), where ||« ||11(x)
is the standard L'(X) distance given by

= vl = Y lu(@) —v(z)].

zeX

3.1. The cut-off phenomenon. Let m{" (y) = p®(2,) the dis-
tribution probability after k steps. The total variation distance defined
in Definition 3.4 allows to estimate how m®*) converges to the station-
ary distribution .

There are interesting cases in which the total variation distance
remains close to 1 for a long time and then tends to 0 in a very fast
way (see, for some examples, [24] and [26]). This suggests the following
definition (see [16]).

Suppose that X, is a sequence of finite sets. Let m, and p, be
a probability measure on X,, and an ergodic transition probability on
X, respectively. Moreover, denote by 7, the stationary measure of p,
and by m% the distribution of (X, My, pp) after k steps.
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Now let (ay,)neny and (by,)nen be two sequences of positive real num-
bers such that .
lim = = 0.
n—oo an
DEFINITION 3.5. The sequence of Markov chains (X, my,,p,) has
a (an, by)—cut-off if there exist two functions fi, fo : [0,+00) — R
with
o lim. ., o fi(c) =0
o lim., o fo(c) =1
such that, for any fized ¢ > 0, one has

i) — v < file) and Im=) = ml|ley > fo(e)
for a sufficiently large n.

The following proposition gives a necessary condition for the cut-off
phenomenon.

PROPOSITION 3.6. If (X,,, mp, pn) has an (a,,b,)— cut-off, then for
any 0 < €1 < €2 < 1 there exist ko(n) < ki(n) such that

(1) ka(n) < an < ki(n);

(2) forn large, k > ki(n) = ||mn — Tpllrv < €1
(3) for n large, k < ka(n) = |m — m|lrv > €o;
(4) Tim,, o =2l — g,

n

Proof. By hypothesis there exist ¢; and ¢y such that fo(c) > €, for
¢ > ¢y and fi(c) < € for ¢ > ¢1. So it suffices to take ki(n) = a, + c1b,
and ko(n) = a, — cob, to get the assertion. [J

3.2. The case of Insect Markov chain. Consider now the Insect
Markov chain in the homogeneous case m; = --- = m,, = q. The
indices «; are the following:

ag =1, alzL and «, =0.
q+1
The recursive formula (29) becomes, in this case,
1 1
A P
for every j = 1,...,n — 1. The solution of this equation is given by
¢ —1

aj = @i —1
Fix the vertex zy = 0". Using the «;’s, for every x € L,, we can

express the probability that z is the first vertex in L,, reached from xg
in the Insect Markov chain. In particular, we have:

p(ﬂfO;xO) = C]_l(l — 041) + q_2a1(1 — a2) 4+
+ qinJrlOélaQ e Oéan(l - Oénfl) + qfnozlozg cr Q1.
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It is clear that, if d(xg,x) = 1, then p(zo, x) = p(xo, o).
More generally, if d(xg,z) = j > 1, one has:

p(:cg,x) = qijOélOég <. Oéj,1<1 — aj) + .+

+ q_nHOquz ool — 1) + g " gy
The associated eigenvalues are:
Ao =1, An = 0;
more in general, for 1 < j < n, we have

g—1

We already know that the Insect Markov chain is ergodic (it is the
nested product of ergodic Markov chains).

Moreover, it is clear that P is in detailed balance with the uniform
distribution 7 on L,, given by 7(x) = qin for all z € L,.

An expression for m® (z) = p¥)(zy, ) can be easily obtained using
the Fourier analysis. In [16], Chapter 4, it is proven that, if P is a
G —invariant stochastic matrix on X, i.e. a stochastic matrix satisfying
the condition

pgz, 9y) = p(z,y), Vz,y€ X, g€G
and if (G, K) is a Gelfand pair, where K is the stabilizer of z, then

(33) ™ (0, ) |X\ Z di\f ()

where ); is the eigenvalue associated with the spherical function ¢; and
d; is the dimension of the corresponding spherical representation.
In our case, G is the full automorphisms group of the rooted g—ary
tree of depth n and the ¢;’s are the spherical functions given in (3).
Suppose now n > 2. In the following theorem, the cut-off phenom-
enon is detected thanks to a careful spectral analysis.

THEOREM 3.7. The probability measure associated with the Insect
Markov chain converges to the stationary distribution without a cut-off
behavior.

Proof. From (33) we get

o If x =z, then

1 i . q_1 k
m(k)(%):—n{HZq] g—1) {“m} }
q e q
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o If d(zg,z) = h, with 1 <h <n—1, then

n—h+1 q—l k
m®(z) = {1+ Z ¢ Y ll_qn—ﬂ—l—l} qu(:z:)}

1 j—1 q_]- g n—h q_]-
j=1

o If d(xg,z) = n, then

) = q1 {1_ {1_ qq”_—llr}'

Let 7 be the uniform distribution on L,,. Then we have

1~
Hm(k)_ﬁHLl(Ln) = q_n{ij g — 1Ak

n—1
+Zq—q qu_l _nh)‘th+1
h=1
+ ¢"g— 1)A’“}
Now observe that
il (qh_qh D) 7 q 1))\;§+_qu Hg — 1Ak =
7= j=1 5=
1 n—1
7 L+ + (=) + -+ ("7 =" ] g-1Aj =
j=1
n—1 n—1
1 n— q— 1
FDIUANUERIVEE ) P
1 J=1 q j=1
and
1 2 1 q— 1 n—1
— D (@ = "N (@ = DA = = YA
= " 7 =
Using the trivial fact that 3, a; —b;| <3~ (|a]|—|—|b ), we conclude

2(¢q—1)
[m® — 7| 1 < Y Z Ak,

On the other hand
Im® =7,y = Y Im(k)(l’) — ()]
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So we get the following estimate:

n—1
qg—1 2(g—1
=Lk < m® — il prry < 24D S0
q ¢

or, equivalently,

-1

qg—1 (k) (Q—l)n k
2—qugnm — 7|y < - DAk

j=1
In what follows the following inequalities will be used:
(1) (1 —2)* <exp(—kz)if z <1.
(2) py 2 ), for j 2 1
(8) ¢~' = j, for ¢ > 2 and j > L.

Choose ky(n) = q;%ll, then

n—1 n—1
q—1§: q—1§: q—1 :
J:

INA
<
\|
—_
3
M1
@
>
o
/T
Q
3
J e
R
|)—‘
—_
[\&}
—~
3
S~—
~_

j=1
n—1 n—1
—1 -1
< TN gy < U S )
J=1 4 J=1
—1) & . -1 1
¢ = q e—1

1 -1 —11"
9?—§ %?P—;__]>Um<mm»
_ EEREE=
S S PR — e
2q qn — 1

Now ki(n) > ka(n),e; < €3 and
o for k > ky(n) we have |m® — 7|7y < e,
e for k < ky(n) we have [|[m® — x||rv > €.
This implies that cut-off phenomenon does not occur in this case by

Proposition 3.6. In fact, the sequences ki(n) and kq(n) cannot satisfy
condition (4) of Proposition 3.6. This gives the assertion. O
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3.2.1. Remark. Using the same strategy of Theorem 3.7 one can
easily check that cut-off phenomenon does not occur also if we fix n
and let ¢ — +o00.

3.2.2. Remark. If n = 1 we get the simple random walk on the
complete graph K, on ¢ vertices, in which each vertex has a loop. It
is straightforward that it is performed choosing equiprobably one of
the ¢ vertices and so the probability measure m? equals the uniform
distribution 7 on the set of the vertices.

4. Association Schemes

The definition of crested product given in Section 2 of this chapter
for Markov chain is inspired to the definition of crested product of
Association schemes introduced in [4]. Also the particular cases of
crossed and nested products are inspired to the theory of association
schemes (largely developed in [3]).

In this section we will present the definition of association scheme
together with the main properties. Moreover, some particular examples
on the rooted homogeneous tree will be described.

4.1. Definition and main properties. Association schemes are
defined about relations between pairs of elements of a set €2, supposed
finite. Many equivalent definitions of association scheme can be given
(see [3]): we want to give the definitions using partitions and matrices.

4.1.1. A first definition.

DEFINITION 4.1. An association scheme with s associate classes
on a finite set Q) is a partition of Qx €2 into nonempty sets Cy, Cq, ..., Cq,
called the associate classes, such that

(1) Cy = Diag(R2) = {(w,w) : w € Q}.

(2) C; is symmetric for every i = 1,...,s, i.e. C; = C., where C;
denotes the dual of C; defined as C; = {(5,a) : (o, 8) € C;}.

(8) For all i,j,k € {0,1,...,s} there exists an integer pfj such
that, for all (o, B) € Cy,

{y€Q:(a,7) €€ and (v,5) € €}| = pl.

We will say that the rank of this association scheme is s+1. Observe
that the conditions (2) and (3) imply pf; = p¥;. The elements o and 3
are called i—th associates if (o, 5) € C;. In particular, the set of i—th
associates of « is denoted by

Ci(a) ={p e (e, ) € C}.
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Condition (2) implies p% = 0if i # j. Similarly, p’(‘jj =0if j # k and
ply = 0if @ # k, while pj; = ply = 1. Moreover, the condition (3)
implies that each element of 2 has p{; = a; i—th associates.

Ezample. Let Q be a finite set, with |Q2] = n. Let €y be the diagonal
subset and set

Cr={(a,p) e QUxQ:a#p}=(Q2x02)\Co.

This is the trivial association scheme, the only scheme on ) having
only one associate class. It has a; =n — 1 and it is denoted by n.

Example. Let  an m x n rectangular array, with m,n > 2. Set

e C ={(a, ) : a, f are in the same row but a # };
e C ={(a, ) : a, f are in the same column but « # };
e C3 = {(o, ) : a, B are in different rows and columns}.

It is clear that C3 = (2 x Q) \ Gy \ €; \ C2. This is an associa-
tion scheme with three associate classes and a; = n — 1, as = m — 1,
a3 = (m —1)(n —1). It is called the rectangular association scheme
R(m,n) and is also denoted by m X n.

Example. Consider the partition = A; L ... U A,, of the set ()
into m subsets of size n. These subsets are traditionally called groups.
We declare a and 3 to be:

o first associates if they are in the same groups but a # f;
e second associates if they are in different groups.

It is easy to verify that, if w € €2, then it has n — 1 first associates
and (m — 1)n second associates. So this is an association scheme with
s=2and a; =n—1, ay = (m—1)n. It is called the group-divisible
association scheme, denoted by GD(m,n) or also m/n.

4.1.2. A second definition. Given an association scheme with as-
sociate classes Gy, Cq,...,Cs, we can associate with each class C; its
adjacency matrix A;, i.e. the matrix of size || defined as

() = {1 if (o, B) € €

0 otherwise.

The following lemma holds.
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LEMMA 4.2. Given an association scheme with associate classes

Co, Cy,...,Cs, let A; be the corresponding adjacency matrices. Then
(34) AiA; = A
k=0

Proof. Suppose (o, ) € C;. Then the («, 5)—entry of the right-
hand side of (34) is equal to pfj, while the («, 8)—entry of the left-hand
side is equal to

(Aidj) (. B) = D Ai(e,7)A;(7,8)

veQ
= [{v:(a,7) € € and (v, ) € C;}]

k
Pijs

because the product A;(a,vy)A;(7v, ) is zero unless (a,7y) € €; and
(7, B) € €;, in which case it is 1. O

This lemma leads us to a new definition of association scheme, in
terms of adjacency matrices.

DEFINITION 4.3. An association scheme with s associate classes on
a finite set §2 is a set of nonzero matrices Ay, A1, ..., As, with rows and
columns indexed by ), whose entries are equal to 0 or 1 and such that:

(1) Ao = I, where Ig denotes the identity matriz of size |€|;

(2) A; is symmetric for everyi=1,...,s;

(3) for alli,j € {1,...,s}, the product A;A; is a linear combina-
tion of Ag, Ay, ..., As;

(4) >_7_o Ai = Ja, where Jo denotes the all-1 matriz of size |].

Observe that the condition (4) of this definition gives an analogue of
the fact that the subsets Cq, Cq, ..., C, constitute a partition of €2 x €.

PROPOSITION 4.4. If Ay, Ay, ..., As are the adjacency matrices of
an association scheme, then A;A; = A;A; for alli,j € {0,1,...,s}.
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Proof. We have

AjA; = AJTAZ-T, because the adjacency matrices are symmetric,
= (Ai4)"

T
= (Z p%/‘%) , by Equation (34),
k
= D pdi
k
= Z pfjAk, because the adjacency matrices are symmetric,
k

Ezample. Let [] be a Latin square of size n, i.e. an n X n array
filled with n letters in such a way that each letter occurs once in each
row and once in each column.

S Qe |
0| ||

c
b
d
a

ST RS QR S

Fig.17. A Latin square of size 4.

Let © be the set of n? cells of the array. Consider «, 3 € €, with
a # 3. We declare o and 5 to be first associates if they are in the same
row or in the same column or have the same letter. Otherwise, they
are second associates. It is easy to check that so we get an association
scheme on (), with two associate classes.

4.1.3. The Bose-Mesner algebra. Consider an association scheme
with adjacency matrices Ag, Ay ..., As. Let A be the space of all real
linear combinations of these matrices. This is a real vector space of
dimension s + 1. In fact, the matrices Ag, Ay, ..., A, are linearly inde-
pendent because, given o and [ in €2, there exists only one index i such
that A;(a, B) # 0. It follows from Lemma 4.2 that A is closed under
multiplication and so it is an algebra. Proposition 4.4 tells us that A
is a commutative algebra, called the Bose-Mesner algebra.
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Since every adjacency matrix is symmetric, a matrix M € A is
symmetric and so it is diagonalizable on R, i.e. it has distinct real
eigenvalues Ay, ..., A, such that:

e L(Q) = P,_, Vi, where V; is the eigenspace associated with
the eigenvalue \;;
e the eigenspaces V; and V; are orthogonal, for 7 # j.

Here we denote L(w) the space of the real functions defined on the
set €.

The orthogonality of eigenspaces is with respect to the inner prod-
uct on L(2) defined as

(f,9) =) flwyg(w), forall f,ge L(SQ).

we

DEFINITION 4.5. The orthogonal projector P on a subspace W 1is
the map P : L(Q2) — L(Q) defined by

PveW and v— Pve W,

Now put
(M = XoI) -+ (M — \T)
(A1 = Ag) (A1 — A)

It is easy to check that, if v € Vj, then Piv = v, while if Mv = \jov
for ¢ > 1, then Pijv = 0. So P; is the orthogonal projector onto V;.
Analogously for V;, with ¢ > 1.

Now let M; and M, be two matrices in A and let P;,..., P. and
Q1,...,Q, bethe respective eigenprojectors. They commute with each
other, since they are polynomials in M; and Ms, respectively. The
following properties of F;();’s hold:

e they are orthogonal, in fact P,Q;PyQj = P;PyQ;Q;, which is
zero unless i = i’ and j = j';

e they are idempotents, in fact F,Q);P;Q; = PP,Q;Q; = PiQ;;

°* > Zj PQ; = (ZzR)(zj Q) = =1

e the subspaces which they project onto are contained in eigenspaces
of both M; and M.

If we apply this argument to Ay, Ay, ..., As, we deduce that there exist
mutually orthogonal subspaces Wy, Wy, ..., W,, with orthogonal pro-
jectors Sg, St,...,S,, such that

L) =Wod W1 &--- & W,y

e cach W is contained in an eigenspace of every A;;

e cach S; is a polynomial in Ay,..., A; and so in A.

P =

Thus there are unique constant D(e, i) such that

Se =Y _ Dl(e,i)A;.
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On the other hand, if C(i, e) is the eigenvalue of A; on W,, then

Ai = io C(Z, G)Se.

Moreover, the projectors Sy, ...,.S, are linearly independent because
SeSt = de5Se and so they constitute another basis for A. Therefore we
have r = s and D = C L.

The subspaces W, are called strata, while the matrices S, are called
stratum projectors. The matrix C' is the character table of the
association scheme.

4.1.4. Crossed and nested product of association schemes.

DEFINITION 4.6. Let Q; be an association scheme on Q) with classes
C;, for 1 € Ky and let Qy be an association scheme on €y with classes
D, for j € Ky. Then Qq is isomorphic to Qq if there exist bijections

¢SQl—>QQ and m: K — Ko

such that
(o, 8) € € & (¢(a),d(B)) € Dagiy-

In this case, we say that the pair (¢, 7) is an isomorphism between
association schemes and write Q; = Q,.

We can now introduce two special products of association schemes,
called the crossed product and the nested product, respectively.

So let Q; be an association scheme on the finite set €2; with adja-
cency matrices Ag, Ay, ..., A,,, and let Qo be an association scheme on
the finite set {2, with adjacency matrices By, By, ..., B,.

DEFINITION 4.7. The crossed product of Q; and Qy is the asso-
ciation scheme Qp x Qo on 0y X Qo whose adjacency matrices are

fori=0,....mandj=0,...,r.
The crossed product of two association schemes is also called direct
product. For example, one can easily verify that the rectangular asso-

ciation scheme R(m,n) can be obtained as the crossed product of the
schemes m and n.

DEFINITION 4.8. The nested product of Q; and Qs is the associ-
ation scheme Q1/Qy on Qy x Qo whose adjacency matrices are
L] AZ & JQ2, with © 7é 0,’
o Ig, ® By, for every j =0,1,...,7.
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The nested product of two association schemes is also called wreath
product. For example, one can easily verify that the group-divisible
association scheme G D(m,n) can be obtained as the nested product of
the schemes m and n.

PROPOSITION 4.9. The following properties of crossed and nested
product hold:

(1) crossing is commutative, in the sense that Q; X Qg = Qg x Qy;

(2) crossing is associative, in the sense that Q; x (Qy X Q3) =
(Q1 X Qg) X Qg,’

(3) nesting is associative, in the sense that Q1 /(Q2/Q3) = (Q1/92)/Qs.

Remarks. It is interesting to observe that the adjacency matrices
of the nested product of association schemes remind the transition ma-
trices occurring in the nested product of Markov chains (see Formula
(28)). A similar consideration can be done for crossed product.

As in the case of reversible Markov chains, the crested product
of association schemes, described in the following section, is a more
general construction containing, as particular cases, the crossed and
the nested product.

4.2. Crested product of association schemes. We introduce
here the crested product of two association schemes Q; and Q,, giv-
ing a new association scheme on the space €2 x {25 that contains both
crossed and nested products as special cases. Our main source is [4].

4.2.1. Preliminaries. Consider the definition of orthogonal block
structures given in Definition 3.2 of Chapter 1. With a partition F
belonging to an orthogonal block structure F on €2, one can associate
the adjacency matrix Ap defined as

1 f F=AN{GeTF:Rg(a,p) =1}
0 otherwise.

AF<O‘76) = {

It is not difficult to verify that the set {Ap : F' € F, Ap # 0} is an
association scheme on 2 (see [3]).
Given two partitions F' and G of two sets €2; and €2y, respectively,
denote F'x G the partition of €21 x 25 whose relation matrix is Rp® Rg.
Now let & and G be two orthogonal block structures on 2; and €,
respectively. Then their crossed product is given by

FxG={FxG:Fe¥F Geg}
and their nested product is given by

F/G={F xUy: FeFyU{E xG:G € g},
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where E; and U; are the trivial partitions of €2;. One can show that
the operation of deriving the association scheme from the orthogonal
block structure commutes with both crossing and nesting.

DEFINITION 4.10. For: = 1,2, let F; be an orthogonal block struc-
ture on a set §; and choose F; € F;. The crested product of ¥, and
Fo with respect to Fy and Fy is the set G of partitions of (21 x Qs given
by

(35) 9:{G1XGQZGlEgl,GQE?Q,G1$F1 0’/’G2>;F2}.

In [4] it is proven that the crested product of orthogonal block
structures defined above is an orthogonal block structure on €2; x 2.

Remarks.

o If I} =U; or F, = E», then G is the crossed product F; x Fs.
o If F} = Ey and Fy = Us, then § is the nested product F;/Fs.

DEFINITION 4.11. Let Q be an association scheme on ) with adja-
cency matrices A;, for i1 € K. Then a partition F of () is inherent in

Q if its relation matrix Rg is in the Bose-Mesner algebra of Q, i.e. if
there exists a subset L of X such that Rp =), A;.

=
It is easy to check that the trivial partitions £ and U are inherent
in every association scheme.

FExample. Consider the 12 edges of the cube and define an associa-
tion scheme on the set ) of these edges in the following way:

e two edges o and [ are 1—st associates if they meet at a vertex;

e two edges a and f are 2—nd associates if they are diagonally
opposite;

e two edges o and [ are 3—rd associates if they are parallel but
not opposite;

e two edges o and 3 are 4—th associates if they are skew.

The partitions inherent in this scheme have relation matrices Ag = I,

A0+A2, A0+A2—|—A3 andA0+A1+A2+A3—|—A4:JQ.

THEOREM 4.12. If Q is an association scheme on (), then the set
F of partitions of €2 which are inherent in Q is an orthogonal block
structure on 2.

See [4] for the proof.
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Now let P be a partition of €2 x 2 and let V' (P) be the real span of
the adjacency matrices of its classes. It is clear that

Q<LP < V(P) < A,
where A is the Bose-Mesner algebra of Q.
DEFINITION 4.13. Let Q be an association scheme on §2. A partition

P of Q x Q is ideal for Q if V(P) is an ideal of A, i.e. V(P) <A and
AD € V(P) whenever A € A and D € V(P).

THEOREM 4.14. Let Q be an association scheme with adjacency
matrices A;, for i € K. If Q has an inherent partition F with rela-
tion matriz Rp, then there exists an ideal partition 9(F) of Q whose
adjacency matrices are scalar multiples of A;R, fori € K.

Proof. (Sketch) Let £ be the subset of K such that Rp = )
So there exist positive integers m,;; such that

jeX

A;.

i€l

It follows from the definition that
mi; = (AiRp)(a, B) = [Ci(a) N F(B)],

where F'(f) denotes the F'—class containing 5. Put i ~ j if m;; # 0.
One can check that ~ is an equivalence relation. Define [i] = {j € X :
j ~ i} and By = >, ;A;. Then the distinct By are the adjacency
matrices of a partition P of  x € such that Q < P. Moreover, it is
easy to verify that A; By € V/(P). O

Indeed, the inverse construction can be done, as the following theo-
rem shows (see [4]).

THEOREM 4.15. Let P be an ideal partition for Q. Let A; be the
adjacency matrices of Q, fori € K, and let D,, be the adjacency ma-
trices of P, for m € M. Denote by o the surjection from X to M such
that class i of Q is contained in class o(i) of P. Put R = Dyy. Then
R is the relation matriz of an inherent partition in Q. Moreover, for
all i € K, the matriz A;R is an integer multiple of D).

4.2.2. Crested product of association schemes. Let F' be a partition
in an orthogonal block structure F, so that Rp = > ... Ag, where
L ={G € F: G < F}. This implies that F' is inherent in the
association scheme derived from F. Then {Ag : G € £} and {Rg :
G € L} span the same subspace A|p of A, which is closed under matrix
multiplication.

Let P be the ideal partition ¥(F'). For G € F, Rg is in the ideal
of A generated by Rp if and only if F 5 G, so V(P) is the span of
{Rqg:G €T, Gi=F}. Wedenote V(J(F)) by AlF.
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Consider now the crested product G of the orthogonal block struc-
tures F; and Fy with respect to the partitions F; and F5. The span of
the relation matrices of the partitions in § is

(Ailp ® A2) + (A ®-A2‘F2)>

where A, and A, are the Bose-Mesner algebra of the association schemes
derived by J; and Ty, respectively. The adjacency matrices of the as-
sociation scheme derived by G are:

e Ag ® Ay, for G € L and H € Fy;
e Ac ® D, for G € F; \ £ and D an adjacency matrix of P,

where L = {G € F} : G < Fi} and P = ¢(F3y). This leads to the
following definition.

DEFINITION 4.16. Forr = 1,2, let Q, be an association scheme on

a set Q. and let F, be an inherent partition in Q,.. Put P = 9(F,) and
Q = Qy x Q. Let the adjacency matrices of Q1,9s and P be A;, for
i € Ky, By, for j € Ky and D,,, for m € M, respectively. Let L be
the subset of Ky such that Rp, = ZieL A;. The crested product of
Q1 and Qy with respect to Fy and Fy is the association scheme Q on {2
whose adjacency matrices are

o A, ®Bj, fori € L and j € Ky;

e A, ® Dy, fori e Xy \ L and m € M.

Observe that the crested product reduces to the crossed product
if 1 = U, or Fy = Fy (in which case P = Q) and it reduces to the
nested product if F; = Ey and Fy = U, (in which case P = Uq,xq,)-

Finally, the character table of the crested product Q can be de-
scribed using the character table of the schemes Q; and Q. See [4] for
more details.

4.2.3. Some examples. Let () be an association scheme on a finite
set Q and let Ag = I, Ay, ..., A,, be the adjacency matrices associated
with ). Consider also an association scheme @)’ on a second finite set
(Y, whose adjacency matrices are A = Iy, A}, ..., Al ..

We know that the nested product Q/Q’ of the schemes @ and Q' is
the association scheme on the set 2 x " whose adjacency matrices are

o A; ® Jo, for i #£ 0;
o o Al for j=0,1,...,m"

Consider now the inherent partition F of Q x Q' whose relation
matrix is

m/

Rp=) (Io®A) =Io® Jo,
§=0
i.e. the partition Q x Q' =| | o{(a, ) : &/ € 2}, We can ask which
is the ideal partition associated with F'.
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Theorem 4.14 tells us that the adjacency matrices of the ideal par-
tition P of X x X associated with F' are D; = >, ;A; (we will use
also the notation A; ~ A; to indicate ¢ ~ j).

In our case we have Ig ® A’ ~ Iq ® Aj for every j,k=0,1,...,m/.
Moreover, it is easy to verify that, for 7,5 # 0, one has A; ® Jo +#
A; ® Jo for i # j. So the adjacency matrices of the ideal partition P
associated with F' are

A ®Jy, fori=0,1,...,m.

Consider now an association scheme S on a finite set © with adja-
cency matrices By = lg, By, ..., B, and an association scheme S’ on a
finite set ©’ whose adjacency matrices are B = lo/, BY, ..., B),. Take
again the nested product S/S" on © x ©’, whose adjacency matrices
are

[ ] Bl & J@/, fOI' 1 7£ O,

o lo® B}, for j =0,1,...,n"
We can consider the inherent partition G of © x ©' whose relation
matrix is

Re=)Y Io®B)=1Io® Jo,
=0
which corresponds to the partition © x 0" = [[,.o{(0,0') : 0 € ©'}.
We can now consider the crested product of the schemes S/S” and

@ /@’ with respect to the inherent partitions G and F' defined above.
So we get a new association scheme on the set

OxO xOx

whose adjacency matrices are
[ ] ([@@B;) (%9 <A2®JQ/), Wlthj = 0,1,...,n’ and 1 7é 0;
o (lo®B))®(In®A}), with j =0,1,...,n and k =0,1,...,m’;
o (BZ®J@/) ®(A]®JQ/), Wlth 7 7é0 andj:(),l,,m
Moreover, by choosing the inherent partition G for © x ©" and the
universal partition Uqyqos for € x V', i.e. the partition whose relation
matrix is Ry, ., = Jo ® Jor, we can get a different crested product of
the schemes S/S" and Q/Q’. Observe that the only adjacency matrix of
the ideal partition P associated with Ugyqr is Jo®Jo. So the adjacency
matrices of the crested product of the schemes S/S” and Q/Q" are
e (lo ® Bj) ® (A; ® Jor), with j = 0,1,...,n" and i # 0;
o (lo®B))®([a®A}), with j =0,1,...,n and k =0,1,...,m’;
Finally, by choosing the identity partition Fgyer for © x ©” and the
inherent partition F' for Q x @', we can get again a different crested
product of the schemes S/S” and Q/Q’, whose adjacency matrices are

o (lo®Ie) ® (A; ® Jor), with i # 0;



90 2. MARKOV CHAINS

[ ([@ ® [@/) ® ([Q ® A;c>7 Wlth k = O, 1, Ce ,m’;
e (Io®B,)® (A ®Jy), withi=0,1,...,m and k # 0;
o (Bj®Jo)® (A @ Joy), with j #0 and i =0,1,...,m.

This completes the description of the nontrivial crested products
that we can get from the schemes S/S" and Q/Q'. By choosing the
identity partition Fgyer as inherent partition of ©® x ©" and the uni-
versal partition Ugy o as inherent partition of Q2 x €)', we get the nested
product

S/5'/Q/Q"
This notation is correct because of the associativity of iterating the

nested product of association schemes. The adjacency matrices of the
scheme S/S"/Q/Q’ are, in this case,

[ ] (I@ ® ]@/) ® (Az ® JQ/), Wlth Z 7& O;

[ ] (I@ & I@/) ® (IQ ® A;c)’ with k£ = O, 17 ce ,m’;

o (Io ® By},) ® (Jo ® Jor), with k # 0;

° (Bj X J@/) (29 (JQ X JQ/), with j 7& 0.

The remaining choices for the inherent partitions of ® x ©' and

Q x ' give rise to the crossed product

(S/8) x (Q/Q),
i.e. the association scheme on © x @’ x 2 x 2 whose adjacency matrices
are
¢ (loe®@B))®(Io®A}), withj =0,1,...,n"and k =0,1,...,m/;
o (lo®B)) ® (A ® Jor), with j =0,1,...,n" and i # 0;
e (Bi®Jo)® (Ig® AL), with ¢ #0 and k=0,1,...,m/;
° (Bz (039 J@/) & (Ak X JQ/), with 1, k 75 0.

As an easy example, we can consider the case when © = @' = =
' ={1,2} and S = 5" = Q = Q = 2. We recall that 2 denotes the

trivial association scheme on two elements, whose adjacency matrices

are
10 01
MO = (0 1) and M1 = (1 0) .

Let us call these matrices By and B in the case of S, B, and Bj] in
the case of S’, Ay and A; in the case of @), A and A} in the case of
@', respectively.
So the adjacency matrices of the nested product /@’ are
e A ® Jo;
o Ig® Igs;
Consider now the inherent partition F' of € x €' whose relation
matrix is
RF:[Q®[Q/+IQ®A/1 = 1o ® Jo,
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corresponding to the partition Q x Q" = {(1,1),(1,2)} [[{(2,1),(2,2)}.
The adjacency matrices of the ideal partition P associated with F
are
[ ] [Q ® JQ/’
o Al (029 JQ/.
Analogously, the adjacency matrices associated with the nested
product S/S’ defined on the product © x ©" are

[ ] Bl ® J@/;

[ ] [@ ® I@/;

[ ] [@ ® Bi
Consider the inherent partition G of © x ©" whose relation matrix is,
as above,

RG:[@®I@/+[@)®B/ =Io® Jor.

We can now study the crested product of the schemes 2/2 and 2/2 with
respect to the inherent partitions G and F defined above. So we get
the association scheme on the set

OxO xOx

whose adjacency matrices are

e (lo®ler) ® (A1 ® Jov);

e (Io ® B)) @ (A1 ® Jo);
o (Io®Io)® (Ig® Ioy);
o (lo®Io)® (Ing® A));
° (I@ ®B ) (%9} ([Q ®[Q/),
o (Io®B))® (Iog® A));
e (B1®Jeor) ® (In @ Jor);
¢ (B1®Jor) ® (A1 @ Joy).

By choosing the inherent partition G for © x ©’ and the universal
partition Uqgyq for Q x €, i.e. the partition whose relation matrix is
Ry, ., = Ja®Jor, we get a different crested product of the schemes 2 / 2
and 2/2. The only adjacency matrix of the ideal partition P associated
with Ugxcr is Jo®Jo. So the adjacency matrices of the crested product
of the schemes 2/2 and 2/2 are

° ([@@[@/) (A1®JQ/);
e (Ie ® B}) ® (A1 ® Jo);
o (Io ® Ior) ® (In ® Ioy);
o (Ie ® lor) ® (In ® AY);
o (Io ® BY) ® (Io @ Iy);
e (Io®B))® (In® A);
* (B1®Jeo)® (Ja® Jor).

Finally, by choosing the identity partition Egyxe for © x ©" and
the inherent partition I’ for Q x ', we get again a different crested
product of the schemes 2/2 and 2/2, whose adjacency matrices are
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[ J ([@ &® [@/) ® (Al & JQ/);
o (lo®lg) ® (Ig® Ioy);
o (Io® o) ® (Ig® A));
o (Io ® By) ® (In ® Jo);
o (Io ® BY) ® (A1 @ Jo);
* (B1®Jo)® (In® Jo);
¢ (B1®Jor) ® (A1 ® Joy).

This completes the description of the nontrivial crested products
that we can get from the schemes 2/2 and 2/2. By choosing the iden-
tity partition Fgxes as inherent partition of © x © and the universal
partition Uqyq as inherent partition of Q x ', we get the nested prod-

uct
2/2/2/2.

The adjacency matrices of this scheme are

[ J ([@ ® I@/) ® (Al ® JQ/);

° ([@ X I@/) X ([Q & IQ/);

e (le ®le) ® (In ® Al);

e (Io ® BY) ® (Jo ® Jor);

o (Bl & J@/) & (JQ ® JQ/).

The remaining choices of inherent partitions of © x ©" and €2 x

give rise to the crossed product

(2/2) x

whose adjacency matrices are
[ ] (I@ ® ]@/) ® (IQ ® ]Q/),

(2/2),

o (lo @ lor) ® (I ® AY);
o (Io ® o) ® (A1 ® Joy);
o (Io®B)® (In ® Iy);
o (lo®B])® (Iqg® A});

o (Io ® By) ® (A1 ® Jor);
° (Bl X J@/) X (IQ & IQ/)
° (Bl X J@/) (029 ([Q (029 All)7
[ ] (Bl ® J@/) ® (Al ® JQ/)

Remark. These products have also another interpretation from the
orthogonal block structures point of view.

In fact, a ultrametric space has in a natural way an orthogonal
block structure: if we fix a level L; of the rooted tree of depth n, for
i =1,...,n, then this level induces a partition in spheres on the n—th
level: in particular, for any vertex x € L;, one sphere will be consti-
tuted by the vertices of L,, which have x as ancestor. Considering the
partition in spheres induced by each level, one gets an orthogonal block
structure.
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Take now two rooted trees of depth 2 with branch indices (m,n)
and (p, q), respectively. Consider the corresponding orthogonal block
structures: each block consists of three partitions with sizes 1,n, mn
and 1, q, pq, respectively. We denote these partitions by Fy, F, Fs for
the first tree and by Gg, G, Gy for the second tree. So the relation
matrices in the case of the first tree are

L4 RO - Im ® ]n7
° Rl - Im ® Jna
1 R2 = Jm ® Jn
and in the case of the second tree are
e So=1,®I1;
[} Sl = [p ) Jq,
L] SQ = Jp &® Jq.

The corresponding association schemes that we can get considering the
matrices Ap defined above are (), with adjacency matrices

1 AO =In® ]na

o Ay = (Jp — 1) ® J,
and @', with adjacency matrices

o Ay =1, 1,

o Ay =1,® (J; — Ly);

o Ay =(hp— L) ® Jy
So we can observe that the association scheme () is just the scheme
m/n and the association scheme Q' is just the scheme p/q. We can

do the crested product of these schemes with respect to the possible
inherent partitions, whose relation matrices are Ry or Sy in the case of
the equality partition, then R; or S; and finally Ry or Sy in the case
of the universal partition.

We can also do the crested product of orthogonal block structures
and then we can associate to the block obtained a new association
scheme by using the matrices Ar. Actually, we can show that the
operation of deriving the association scheme from the orthogonal block
structure commutes with cresting. Let us verify it in all cases.

The relation matrices of the block obtained by the crest product
with respect to the partition F; and Gy are

o Ry ® Sy, with associated adjacency matrix Apg = 1, ® [, ®
I, ® Iy;

® R() (%9 Sl, with AQJ = ]m & In & ]p & (Jq - Iq),

[ ] RO X SQ, Wlth Aojg == [m X [n X (Jp - Ip) X Jq;

o R ® Sy, with A1 g =1, ® (Jp, — I,) @ [, ® I;;

o R1 X Sl, with A171 = Im X (Jn — In) X [p X (Jq — [q)7
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o R ® Sy, with A1o =1, @ (J, — I,) @ (Jp, — 1)) @ Jy;

[ J Rg X Sl, with Ag’l = (Jm — [m) X Jn X Ip &® Jq,

o Ry® Sy, with Aso = (Jp, — In) @ J, @ (J, — 1) ® J,
and these matrices A; ;’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
@ and @' by choosing the partitions F; and (G; as inherent partitions,
respectively.

The relation matrices of the block obtained with the crest product

with respect to the partition F; and G4 are

o Ry ® Sy, with associated adjacency matrix Aog = I, ® [, ®
I, ® I;

o Ry® Sy, with Ag1 =1, ® 1, ® 1, ® (J, — 1,);

o Ry® Sy, with Ago =1, @ L, ® (J, — I,,) @ J;

o R ® Sy, with A1 g =1, @ (Jp, — I,) @ [, ® I;;

o Ry ® 5, with A1y =1, @ (J, — 1) ® I, ® (J, — 1,);

[} Rl (24 SQ, with ALQ = [m & (Jn — [n> X (Jp — ]p) & Jq,

[ ] R2 (24 SQ, with A272 == (Jm - Im) & Jn & Jp & Jq

and these matrices A, ;’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
@ and @' by choosing the partitions F; and G5 as inherent partitions,
respectively.

The relation matrices of the block obtained with the crest product
with respect to the partition Fy and G are

e Ry ® Sy, with associated adjacency matrix Ao = 1, ® [, ®
I, ® 1

o Ry® Sy, with Agy =1, ® [, ® I, ® (J, — 1,);

[ J RO X SQ, with AO’Q = [m X In X (Jp - ]p) X Jq,

[ J Rl ® Sl, Wlth A171 = ]m ® (Jn — In) ® Ip ® Jq,

[ ] R2 & Sl, with A271 == (Jm - Im) & Jn (24 Ip & Jq

[ J R1 X SQ, with ALQ = [m X (Jn — [n) X (Jp — ]p) X Jq7

o Ry ® Sy, with Ago = (Jpy — Iny) @ J, @ (Jp, — 1) ® J

and these matrices A, ;’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
@ and @' by choosing the partitions Fj and (7 as inherent partitions,
respectively.

The same result can be obtained by considering the crossed product
and the nested product.

In fact, the relation matrices of the block obtained with the crest
product with respect to the partition F{ and G, are

o Ry ® Sy, with associated adjacency matrix Apg = 1, ® [, ®
I, ® Iy;

o Ry® Sy, with Ag1 =1, ® L, ® I, ® (J, — 1,);

o RD X SQ, with AQ’Q = Im X [n X (Jp — Ip) X Jq;

o R1 X SQ, with ALQ = Im X (Jn — In) X Jp X Jq,
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[ J Rg X SQ, with AQ’Q = (Jm — Im) X Jn X Jp X Jq
and these matrices A, ;’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
@ and Q' by choosing the partitions Fj and G5 as inherent partitions,
respectively. The remaining choices for the partitions give rise to the
crossed product. The relation matrices of the block obtained with the
crossed product are

o Ry ® Sy, with associated adjacency matrix Agg = 1, ® [, ®

I, ® 1

[} R() & Sl, with A(),l == ]m & In & ]p & (Jq — ]q)

.RO®SQ,W1thA02—[m®In®(J I)@Jq

e R ® Sy, with A10_1m®(Jn—[n)®I ® 1

o R1 X Sl, with Al,l = Im X (Jn In) ( — [q)7

o R ®Sy, with A1 s =1,,® (J, — I,,) ® (J - I ») @ Jy;

[} RQ X S(), with A2,0 = (Jm — [m) X Jn X [p &® Iq,

o Ro® Sy, with Asy = (Jpy — i) ® J, @ I, ® (Jy — 1);

[ ] RQ & SQ, with A272 == (Jm - Im) & Jn (24 (Jp — Ip> X Jq.
The interesting fact is that the nested product of the two original blocks
gives an orthogonal block structure on a set with mnpq elements, which
is exactly the block of spherical partitions of the fourth level of the
rooted tree of depth 4 and branch indices (m,n,p,q). The remaining
crested product give other orthogonal block structures corresponding
to different partitions which are not induced by the spheres of the trees.

9
)

5. A Markov chain on orthogonal block structures

In this section I will define a Markov chain on orthogonal block
structures, introduced in [21], which reduces to the Insect Markov chain
presented in Chapter 2, Section 2.3, if the orthogonal block is the poset
block structure associated with a chain (7, <).

In what follows, we will use the notation of Chapter 1.

Let JF be an orthogonal block structure on a finite set 2. We want
to associate with & a Markov chain on (2.

The ancestral poset defined in Chapter 1 is a particular case of the
poset associated with the partitions of F, as well as the poset block is
a particular case of a poset (P, <) that one can associate with .

We use the notation ' <G if F < G and FF < H < G implies
H=For H=(G.

Let C = {F = Fy, F1, ..., F,, = U} be a maximal chain of partitions
of ¥ such that F; < F;; foralli =0,...,n—1. We can define a rooted
tree of depth n as follows: the n—th level is constituted by |{2| vertices;

the (n — 1)—st by % vertices. Each of these vertices is a father of kg,
1

sons that are in the same part of F}. Inductively, at the :—th level of

the tree there are | L vertices, each of them is the father of the kg,

n—i

vertices of the (i + 1)—st level belonging to the same part of F,,_;.
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We can perform the same construction for every maximal chain C
in F. The next step is to glue the different trees identifying the vertices
associated with the same partition. The resulting structure is the poset
(P, <).

For example, the poset block structure described in Chapter 1, Ex-
ample 3.1.3, can be regarded as the orthogonal block structure on the
set 2 = {000, 001,010,011, 100,101,110, 111} given by the set of par-
titions F = {E, Fy, Fy, F3, U} where, as usually, £ denotes the equality
partition and U the universal partition of €2, while the nontrivial par-
titions are defined as:

e Fy = {000,001,010,011} {100, 101,110, 111};
o F, = {000,001} JT{010,011} {100, 101} J[{110, 111};
o Fy ={000,010} JT{001,011} J[{100, 110} J[{101, 111}.

So the orthogonal block structure J can be represented by the following

poset:
U

£
Fy 3
E

Fig.18. The orthogonal block structure F = {E, Fy, F», F3,U}.

The maximal chains in F have length 3 and they are:

L CII{E7F27F17U};
[ ] OQ == {E, F3,F1,U}.

The poset (P, <) associated with F is
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Fig.19. The poset (P, <) associated with F = {E, F}, F5, F3,U}.

Observe that, if F' <1 G, then the number of F'—classes contained in a
G—class is kp/kq.

5.1. Definition of the Markov chain. The Markov chain that
we want to describe is performed on the last level of the poset (P, <)
that we have just defined. We can think of an insect which, at the
beginning of our process, lies on a fixed element wy of Q (this corre-
sponds to the identity relation E, i.e. each element is in relation only
with itself). The insect randomly moves reaching an adjacent vertex in
(P, <) (this corresponds, in the orthogonal block structure &, to move
from FE to another relation F' such that £'<1F', i.e. wy is identified with
all the elements in the same F'—class) and so on. At each step in (P, <)
(that does not correspond necessarily to a step in the Markov chain on
Q) the insect could randomly move from the i—th level of (P, <) either
to the (i — 1)—st level or to the (i + 1)—st level. Going up means to
pass in JF from a partition F' to a partition L such that F'<qL (these are
{L € F: F < L}| possibilities in (P, <)), going down means to pass in
J to a partition J such that J < F (these are ) ;.4 _p Z—’j possibilities
in (P,<)). The next step of the random walk is whenever the insect
reaches once again the last level in (P, <). In order to formalize this
idea let us introduce the following definitions.

Let ap e be the probability of moving from the partition F' to the
partition G. So the following relation is satisfied:

1
ZJG?:JqF(kF/kJ> + ’{L €F:FQ L}’

(kp/kj)agrarc
JeFJAF ZJE?:JQF(kF/kJ) +{LeTF:F<L}

(36) aF,G

_|_

In fact, the insect can directly pass from F' to G with probability ap g
or go down to any J such that J < F' and then come back to F' with
probability «;r and one starts the recursive argument. From direct
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computations one gets

1

37 = )

(37) =L eF EQL]

Moreover, if ag p = 1 we have, for all G such that F' < @
1

(38) afp g

a Yo seryarke/ky) + {L € F: F<aL}|

if ap p # 1, the coefficient ap g is defined as in (36).

DEFINITION 5.1. For every w € (), define

Z Z QpFp " OpF (1 — > rar aFvL)

p(WQ,W) - kF

E#FeTF CCYH chain
wo~pw  C={E,Fi,.. . F' F}

The fact that p is effectively a transition probability on §2 will follow
from Theorem 5.4. First define the following numbers:

(39) PF = Z Qg Fp - Qp (1 — Z OZF,L) .

CCT chain FaL
C={E,F,...F' F}

Observe that pp expresses the probability of reaching the partition F'
but no partition L such that F' < L in J.

LEMMA 5.2. The coefficients pr’s defined in (39) satisfy the follow-
ing identity:

Proof. Using the definitions we have

S = S Y apneans (1—zam)

E£FeTF E£FET G chain FaL

C={E,F,...F',F}

In fact, for every F' € J such that £ 4 F', given a chain C' =
{E,F,....,F',F} we get the terms agp, - -app (1 —ZFQLO{F’L).
Since C' = {E, Fy,...,F', F, L} is still a term of the sum one can check

that only the summands ), <r @e,F are not cancelled. The thesis fol-
lows from (37). O
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For every F' € F, ' # E define Mg as the Markov operator whose
transition matrix is

1
(40) le - —RF
kr

DEFINITION 5.3. Let Mg be the Markov operator defined in (40)
and let pg be the coefficient in (39). Set

E+FeF

By abuse of notation, we denote by M the stochastic matrix asso-
ciated with the Markov operator M.

THEOREM 5.4. M coincides with the transition matriz of p.

Proof. By direct computation we get:

1
M (wo, w) = Z prMp(wo,w) = Z P
EAFCT ELFeF F

WO~ FW

_ Z Z Qp,p " OFF (1 - rar O‘FJZ)

kr
E+FeF CCT chain

wo~vpw  C={E,Fi,...F',F}
= p(wo,w).
O

5.2. Spectral analysis. We present here the spectral analysis of
the operator M acting on the space L(£2) of the complex functions
defined on the set 2 endowed with the scalar product

(fi, o) = D filw) fo(w):

First of all introduce (see, for example, [3]), for every F' € &, the
following subspaces of L({2):

Ve ={f € L(Q) : fla) = f(B) if @~ B}.
It is easy to show that the operator My defined in (40) is the projector
onto Vp. In fact if f € L(Q2), then Mg f(wo) is the average of the values
that f takes on the elements w such that w ~p wy and so Mpf = f if
feVrand Mpf =0if f e Vq.
Set
We=Van (> Vet
G=<F

In [3] it is proven that L(Q2) = @4 Wa. We can deduce the following
proposition.
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PROPOSITION 5.5. The Wq'’s are eigenspaces for the operator M
with associated eigenvalue

(42) Ag = Z PF-

EAFeF
F<G
Proof. By definition, W C V;. This implies that, if f € Wg,
| fitFxG
Mrpf = { 0 otherwise
So, for w € W, we get
EAFeF
= (> pr)w
EAFeF
F<G

Hence the eigenvalue \g associated with the eigenspace Wy is

Ag = Z PF-

EAFeF
F<G

and the assertion follows. O

5.2.1. Example. We can study now the transition probability p in
the case of the orthogonal block structure J described in Fig.18. One
can easily verify that we have:

® Opp, = Qpp; = Oy = Oy [y = %;
L] aFl,U = %
Let us compute the transition probability p on the last level of (P, <):

000 001 010 011 100 101 110 111
Fig.20. The poset (P, <) associated with F = {E, F}, Fy, F3,U}.



5. A MARKOV CHAIN ON ORTHOGONAL BLOCK STRUCTURES

We have:
111 111 1121 111
— .. 4 -._.- 9.-.-.2. Y -
p(000,000) 5297335745573 4793733
p(000,001) = p(000,010)
11 1 1121 1111 11
= .= .= _|_2 ....... __|_2 ....... - = —
2929 2231 2°9'3'8 48
(000,011) = 2 L2111 15
P - “'9'3'3'% 2°9°3°8 48
p(000,100) = p(000,101) = p(000, 110) = p(000, 111)
1111 1

The corresponding transition matrix is given by

1711 11 5 1 1 1 1
1 17 5 11 1 1 1 1
1 5 1711 1 1 1 1
p_ i 5 11 11 17 1 1 1 1
481 1 1 1 17 11 11 5
11 1 1 11 17 5 11
11 1 1 11 5 17 11
11 1 1 5 11 11 17
The coefficients Pp, with E # F, are the following (see (39)):
_o9.1.1.1_1.
*p=25"3"3=¢
epn=2332=7
ere=1-124
ern=1-1-1
The Markov operator M is given by (see (41) and (40)):
M = %Mp2 + iMF3 + %MF1 + %MU
and its eigenvalues, according with formula (42), are the following:
[ J )\U = 1,
o \p = %%
b )\F2 = le
o \py, = %%
L4 >\E = 0.

5.2.2. Remark. One can easily check that the Markov chain intro-
duced in Definition 5.1 reduces to the Insect Markov chain presented
in Section 2 of this chapter, whenever the orthogonal block is the poset

101

block structure associated with a finite poset (I, <) which is a chain.

In fact, in this case the ancestral poset is still a chain and the poset

(P, <) is a rooted tree whose depth is the cardinality of the set I.
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5.2.3. Remark. In the case of poset block structures, the eigenspaces
of the operator M coincide with the irreducible subrepresentations of
the generalized wreath product of the groups Sym(A;).

Actually, the subrepresentations given in (16) are indexed by the
antichains of /. Instead in Proposition 5.5 they are indexed by the
relations of the orthogonal block structure F. The correspondence is
the following.

Given a relation G € JF, it can be regarded as an ancestral relation
~ s, for some ancestral subset J C I. Set

S={ieJ:H@{i)nJ =0}
It is clear that S is an antichain of /. From the definition it follows
that
AS)=J\ Sand I\ A[S]=1\J.
The corresponding eigenspace Wg becomes:

Ws=| @ L) | ® (®VJ> | QW

1€J\S (ISh i€I\J

It is easy to check that the functions in Wy are constant on the equiva-
lence classes of the relation ~ ;. Moreover, these functions are orthog-
onal to the functions which are constant on the equivalence classes of
the relation ~j, with ~j > ~; (where J' is obtained from J deleting
an element of S). Since the orthogonality with the functions constant
on ~j implies the orthogonality with all functions constant on ~,
where ~p >~ ;, then we have Wg C W. On the other hand, it is easy
to verify that

dim(Wys) = dim(Wg) = m!”\ - (m — 1)19,

and so we have Wg = Wg.
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