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Introduction

This Ph.D. Thesis is devoted to the study of some classes of elliptic boundary value

problems, associated with an anisotropic operator, in a bounded domain Ω of RN , N ≥ 3.

The interest in these problems relies on the fact that they are nonlinear. Indeed the

anisotropic operator which we consider in our studies, weighs partial derivatives with

different powers, pi > 1, that is

(I.1) −
N∑

i=1

∂i[|∂iu|pi−2∂iu],

where ∂i = ∂/∂xi, for i = 1, ..., N . Moreover it is non homogeneous. Therefore in

order to obtain existence, nonexistence and regularity results for both weak and dis-

tributional solutions, we need to perform some essential modifications of the classic

methods developed by several authors in the study of partial differential equations with

Dirichlet boundary conditions. We note that if pi = 2 for all i, then (I.1) reduces to the

well-known linear operator, the laplacian and if pi = p for all i we obtain the pseudo

p-laplacian.

In the first chapter of the Thesis we study existence and regularity of the solutions

for Dirichlet problems, such as,

(I.2)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] = f in Ω,

u = 0 on ∂Ω,

where f is a given function belonging to either a Lebesgue space Lm(Ω) or a Mar-

cienkiewicz spaceMm(Ω), m ≥ 1. Moreover, we consider the case of the datum in diver-

gence form, that is f =
∑N

i=1 ∂ifi, with fi in some Lebesgue spaces for any i = 1, ..., N .

We need to consider a different functional setting from the classical Sobolev spaces, in

order to develop our theory for both weak and distributional solutions for (I.2), namely

V
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the anisotropic Sobolev spaces, to which the solutions for our problems naturally belong:

(I.3)




W 1,(pi)(Ω) = {v ∈ W 1,1(Ω) : ∂iv ∈ Lpi(Ω)},
W

1,(pi)
0 (Ω) =W 1,(pi)(Ω) ∩W 1,1

0 (Ω).

We refer to [54], [68] and [79] for the theory of these spaces. Let us define

(I.4) p∞ = max{pmax, p
∗}, pmax = max

i
{pi}, p∗ =

pN

N − p
, p < N

and

(I.5)
1

p
=

1

N

N∑

i=1

1

pi
,

where p∗ is the “usual” critical exponent of the embedding theorems, related to the

harmonic mean p of pi’s. The existence of weak solutions ((1.2.3) in Section 1.2) for

problem (I.2), if f ∈ Lm(Ω), with m ≥ p′∞ = p∞/(p∞−1), is a consequence of the classic

Leray-Lions theorem (see [57] and [59]) and suitable embedding theorems (Section 1.2).

J. Leray and J.-L. Lions have showed that it is possible to extend the existence theory

for monotone operators to (I.1) and to more general anisotropic operators (see (I.19)

below). The same result is also obtained if f =
∑N

i=1 ∂ifi, with fi ∈ Lmi(Ω), mi ≥ p′i,

for every i = 1, ..., N (Section 1.4). Since the following inclusion between Marcinkiewicz

and Lebesgue spaces holds

(I.6) Mm(Ω) ⊂ Lm−ε(Ω) ∀ m > 1 and 0 < ε ≤ m− 1,

we also obtain the existence of at least a weak solution for (I.2) if f ∈ Mm(Ω) with

m > p′∞, see Section 1.3.

The principal and more interesting subject of the first chapter of this Thesis concerns

the regularity of solutions. If m ≥ p′∞ (resp. m > p′∞) we show that the weak solutions,

a priori only belonging to the energy space W
1,(pi)
0 (Ω), have an extra summability, that

is u ∈ Ls(Ω) (resp. M s(Ω)) for some s depending on the summability of the datum

f . If f ∈ Lm(Ω), 1 ≤ m < p′∞ (resp. f ∈ Mm(Ω), 1 < m ≤ p′∞), we prove that

the distributional solutions belong to some anisotropic Sobolev spaces, not finite energy

spaces but better than W 1,1
0 (Ω), to which u a priori belongs, as well as its existence

(using an approximation method, a priori estimates and compactness results in suitable

spaces).

We recall that problems as (I.2) have been studied by several authors. In [26], the

global L∞-boundedness of solutions for some differential problems including (I.2) has
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been studied with f in a divergence form, that is f =
∑N

i=1 ∂ifi, fi ∈ Lmi(Ω), mi ≥ p′i,

for i = 1, ..., N and

(I.7)
p∗

pmax

min
i

{
1− p′i

mi

}
> 1,

with p∗ and pmax as in (I.4). Moreover similar results for minimizers of some functionals

of the Calculus of Variations are proved. Subsequently, the result of [26] has been

improved in [76], replacing the assumption (I.7) with the more general condition

(I.8)
p∗

p
min

i

{
1− p′i

mi

}
> 1.

The case

(I.9)
p∗

p
min

i

{
1− p′i

mi

}
< 1,

has been studied in [25] for minimizers of some functionals, always with datum f in

divergence form. To be complete we also report these results in Section 1.4 but we will

give slightly different proofs (see Theorems 1.29 and 1.31 in Section 1.5). In particular

to prove Theorem 1.31 we will use a new inequality: a weighted anisotropic Sobolev

inequality (Lemma 1.2, proved in Section 1.1).

Finally in [19] (I.2) has been considered, on the right hand side, a bounded Radon

measure. The existence of a solution is shown in the anisotropic Sobolev spaceW
1,(si)
0 (Ω),

as in (I.3), with si such that

1 ≤ si <
N(p− 1)

p(N − 1)
pi ∀ i = 1, ..., N,

p as in (I.5) and with the additional assumption 2−1/N < p < N . It is well known that

in the classic case, i.e. pi = p for all i, if p ∈ (1, 2− 1/N ] one cannot expect solutions to

belong toW 1,1
0 (Ω) and hence, the notion of weak derivatives and distributional solutions

breaks down. This problem is dealt with in literature using, for example, the notion

of entropy solutions and of “approximated gradient”, that has been introduced in [11]

(see also [21]). So, for an anisotropic problem as (I.2), we cannot expect solutions to

belong to W 1,1
0 (Ω) as long as p ∈ (1, 2− 1/N ], but we can extend the notion of entropy

solutions (see Section 1.6). This kind of solution is stronger than the distributional one.

They do not belong to W
1,(pi)
0 (Ω) but their truncations to any level k > 0, Tk(s) =

max{−k,min{k, s}} (see also (1.1.7) in Section 1.1), are in the energy space. Moreover
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an entropy solution verifies the following inequality

(I.10)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iTk(u− ϕ) ≤
∫

Ω

fTk(u− ϕ)

∀ k > 0 and ∀ ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω).

This definition also allows us to obtain an existence result without further assumptions

on p, also for p ∈ (1, 2 − 1/N ] and to prove a uniqueness result. We show that the

solution, obtained using approximation techniques (as in [19]) is an entropy one (see

Theorem 1.14 and Theorem 1.17).

As already mentioned, the aim of the first chapter is to complete the framework of

regularity, covering all the possible data f . We wish to call to the reader’s attention the

known results about the regularity of solutions for the problems

(I.11)





−∆pu = f in Ω,

u = 0 on ∂Ω.

It is well known, that, if f ∈ Lm(Ω), then

1a) m > N/p implies u ∈ W 1,p
0 (Ω) ∩ L∞(Ω);

2a) m = N/p implies u ∈ W 1,p
0 (Ω) and
∫

Ω

eβ|u| < +∞,

for some constant β > 0;

3a) ( pN
N−p

)′ = (p∗)′ ≤ m < N/p implies u ∈ W 1,p
0 (Ω) ∩ Ls(Ω), s = mN(p−1)

N−mp
;

4a) 1 < m < (p∗)′ implies u ∈ W 1,s
0 (Ω), s = mN(p−1)

N−m
, with p > 1/m∗ + 1;

5a) m = 1 implies u ∈ W 1,s
0 (Ω), for all 1 < s < N(p−1)

N−1
and 2− 1

N
< p < N .

Let f ∈Mm(Ω), then

1b) m > N/p implies u ∈ W 1,p
0 (Ω) ∩ L∞(Ω);

2b) m = N/p implies u ∈ W 1,p
0 (Ω) and
∫

Ω

eβ|u| < +∞,

for some constants β > 0;

3b) ( pN
N−p

)′ = (p∗)′ < m < N/p implies u ∈ W 1,p
0 (Ω) ∩M s(Ω), s = mN(p−1)

N−mp
;

4b) 1 < m ≤ (p∗)′ implies u ∈ W 1,1
0 (Ω) ∩M s(Ω), s = mN(p−1)

N−mp
and ∇u ∈ M s(Ω),

s = mN(p−1)
N−m

, always for 2− 1
N
< p < N .
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For linear operators, that is if p = 2 in (I.11), 1a), 2a), 3a), 1b), 2b), 3b) were proved for

the first time by G. Stampacchia (see [75]). For the nonlinear operators the techniques,

introduced by G. Stampacchia, can be adapted to prove 1b), 2b), 3b). Hence, also 1a)

and 2a) hold, because of the following inclusion

(I.12) Lm(Ω) ⊂Mm(Ω), ∀ m > 1.

A different proof is necessary for 3a), see [23] and [24]. If f ∈ Lm(Ω), with 1 ≤ m <

(p∗)′, the existence and the regularity of the distributional solutions for problem (I.11),

(or more in general for a Leray-Lions type operator), have been proved in [16] and [17],

and in the case f belonging in a Marcinkiewicz space in the recent paper [14].

For anisotropic problems such as (I.2), we need to distinguish two cases: p∞ = p∗

and p∞ = pmax, as in (I.4). It is well known that both the theory of existence and the

regularity results for elliptic problems are strongly affected by the embedding results

concerning the spaces in which we look for solutions. For anisotropic Sobolev spaces the

critical embedding exponent depends on the type of anisotropy. Said exponent is p∗,

if the anisotropy is concentrated, while it is pmax, if the anisotropy is not concentrated

(see [45]). So if p∞ = p∗ ≥ pmax, roughly speaking, we prove the same results of (I.11),

by substituting p with the harmonic mean p of the pi’s, as in (I.5), and by substituting

the “standard” Sobolev spaces with the anisotropic Sobolev spaces (I.3). Moreover,

we obtain new regularity results for some choices of m and pmax close to p∗, namely

pmax ∈ ((N − 1)p∗/N, p∗) (see Remark 1.16). If p∞ = pmax > p∗ we obtain new results

concerning both regularity and existence. As a matter of fact, if p′max ≤ m < (p∗)′ we

obtain weak solutions, not distributional ones and in particular finite energy solutions

(see Theorems 1.7, 1.17, 1.20, 1.26 and 1.25).

The plan of Chapter 1 is the following: we start dealing with f belonging to

a Lebesgue space Lm(Ω) (Section 1.2) and then we study the new case of f in a

Marcinkiewicz space Mm(Ω) (Section 1.3). In Section 1.4 we consider a datum f in

divergence form. In Section 1.5 we give the proofs of the main results and in the last

section of Chapter 1 we deal with the uniqueness problem. For weak solutions, unique-

ness is a direct consequence of the monotone property of the operator (I.1) (see Remark

1.12). In order to obtain uniqueness for distributional solutions, we introduce the no-

tion of entropy solutions (Section 1.6). The main results presented in this chapter are

contained in [34].

In Chapter 2 we consider nonlinear elliptic problems as (I.2) but with additional

lower order terms, that play the role of perturbations terms. These have a so called
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natural growth with respect to the gradient, that means growths of the same order of the

operator (I.1), because they naturally appear if we write the Euler-Lagrange equations

of suitable functionals of Calculus of Variations. With no hope of being complete, in

the isotropic case, i.e. pi = 2 or pi = p for all i, we mention some papers regarding

the study of these problems with natural growth terms, and the references therein [12],

[13], [18], [20], [22], [28], [29], [30] and [33].

In Section 2.1 we study the following problem

(I.13)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] + µ0u =

∑N
i=1 bi(x, u,∇u) + f on Ω,

u = 0 on ∂Ω.

where µ0 > 0,

f ∈ Lm(Ω), m >
p∗

p∗ − pmax

and p∗ > pmax,

bi(x, s, ξ) : Ω× R× RN → R,

is a Carathéodory function, for all i = 1, ..., N and there exists γ > 0 such that the

following inequality is true for all (s, ξ) ∈ R× RN and a.e. x ∈ Ω

(I.14) |bi(x, s, ξ)| ≤ γ|ξi|pi , ∀ i = 1, ..., N.

In this problem we do not have any information about the sign of bi, for all i, and so we

must add the zero-th term µ0u to prove the existence of a weak solution. As a matter

of fact, it is well known, as in the special case pi = 2 or pi = p for all i, that the sign

condition has a strong regularity effect that allows us to easily obtain a priori estimates

from the equation. On the other hand, if the sign condition is not satisfied, the problem

(I.13) may not even have solutions. In fact, also if µ0 = 0, a solution for problem (I.13)

exists only if we assume that the norm of the datum f is small. We present an existence

result following the techniques in [30] and [13].

In Section 2.2 we analyse the following problem

(I.15)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] +

∑N
i=1 gi(x, u,∇u) = f in Ω,

u ∈ W
1,(pi)
0 (Ω) gi(x, u,∇u) ∈ L1(Ω) ∀ i = 1, ..., N.

where gi : Ω × R × RN −→ R are Carathéodory functions such that for almost every

x ∈ Ω and for all s ∈ R and ξ ∈ RN

(I.16) gi(x, s, ξ)s ≥ 0, ∀ i = 1, ..., N,
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(I.17) |gi(x, s, ξ)| ≤ b(|s|)|ξi|pi , ∀ i = 1, ..., N,

where b : R → R is a continuous and nondecreasing function. Hence in this case we

assume the sign condition (I.16). Moreover we also suppose, as well as (I.17), one of the

following two assumptions: either f belongs to the dual space ofW
1,(pi)
0 (Ω) or f ∈ L1(Ω),

but we also require a sort of coercivity, namely that σ > 0 and γ > 0 exist such that

(I.18) |gi(x, s, ξ)| ≥ γ|ξi|pi when |s| > σ, ∀ i = 1, ..., N.

We prove the existence of weak solutions for problem (I.15) belonging to the finite

energy space W
1,(pi)
0 (Ω), also in the case f only in L1(Ω). This fact depends on the

extra assumption on gi, (I.18). So the presence of the terms gi’s turns out to provide

more regular solutions. The role of (I.18) is to give an a priori estimate in energy space

W
1,(pi)
0 (Ω) which allows us to deal with the lower order term.

Both (I.13) and (I.15) do not correspond to the Euler-Lagrange equation of any

functional of Calculus of Variations. So we will use, as in Chapter 1, direct methods to

deal with them. Namely we build approximating problems, we derive from the equations

a priori estimates and then we use compact results for anisotropic Sobolev spaces.

We highlight that all the results in Chapter 1 and 2, are still valid if we substitute

the operator (I.1) with a more general one, namely as

(I.19)





−∑N
i=1 ∂i[ai(x,∇u)] = f in Ω,

u = 0 on ∂Ω,

with ai(x, ξ) : Ω × RN → RN , Carathéodory functions that satisfy, for some constants

α, β > 0, for a.e. x ∈ Ω, and for every ξ, η ∈ RN with ξ 6= η,

(I.20)
N∑

i=1

(ai(x, ξ)− ai(x, η))(ξi − ηi) > 0,

(I.21)
N∑

i=1

ai(x, ξ)ξi ≥ α
N∑

i=1

|ξi|pi

and

(I.22) |ai(x, ξ)| ≤ β

(
N∑

j=1

|ξj|pj
)1− 1

pi

, ∀ i = 1, ..., N.
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Note that the last growth condition is satisfied (see [61]) for example if ai(x, ξ) =

∂ξiA(x, ξ), with A(x, ξ) a Carathéodory function, convex with respect to ξ and such

that

|A(x, ξ)| ≤ C

(
N∑

i=1

|ξi|pi
)
.

This kind of equation belongs to a more general class

(I.23) −
N∑

i=1

∂i[ai(x,∇u)] = f,

where ai(x, ξ) satisfies the so called (p, q)-growth conditions (in our case q = pmax and

p = pmin = mini{pi}), that is for every ξ ∈ RN and for a.e. x ∈ Ω, for some α, β > 0

and q ≥ p > 1,

(I.24)
N∑

i=1

ai(x, ξ)ξi ≥ α|ξ|p

and

(I.25) |ai(x, ξ)| ≤ β(1 + |ξ|q−1), ∀ i = 1, ..., N.

The interest in the study of this type of problem is rather recent and it has been

increasing in the last few years. After sporadic papers (see for instance [81] and related

references) a systematic study of regularity of solutions for these kinds of equations (or

minima of functionals), with growth of (p, q)-type, was initiated by P. Marcellini, (see

[61], [62], [63]). He pointed out that suitable smoothness assumptions assure existence

and regularity of solutions for equations of type (I.23), and of minima of functionals,

since a related notion can be introduced for functionals. We do not deal with them in the

first part of this Thesis. We also recall some interesting papers about the regularity of

minimizers of functionals of Calculus of Variations with non standard growth conditions:

[1], [2], [46], [47], [48] and [73]. All of these papers focus principally on local and

higher regularity, such as boundedness of ∇u, Hölder continuity, Lipschitz regularity,

without assuming Dirichet boundary conditions. As we will see later, Dirichlet boundary

conditions allow us to avoid restricting the interval covered by p′is. In fact Marcellini’s

approach works if the ratio q/p does not differ too much from 1, depending on the

dimension N ; which, roughly speaking, means that the numbers q and p cannot be

too far apart. If we take (I.20), (I.21) and (I.22) into consideration, we obtain better

results than the ones obtained assuming the (p, q)-growth condition, since the functions

ai are bounded from above and from below by the same quantity. Another relevant
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class of anisotropic operators, for which a general and almost complete theory is now

available, is without doubt one of the equations with the so called p(x)-growth, i.e. the

p(x)-Laplacian equation, that is

(I.26) −div(|∇u|p(x)−2∇u) = f,

with p : Ω → (1,∞) a bounded and continuous function. We recall some papers (and

references therein), in which this theory is developed: [36], [37], [38], [39], [43], [52],

[55], [71] and [72].

In Chapter 3, whose main results are contained in a joint work with Eugenio Mon-

tefusco (see [35]), we study the question of existence, nonexistence and multiplicity of

positive solutions for a class of semilinear elliptic problems, associated to the operator

(I.1),

(I.27)





−
N∑

i=1

∂i
[
|∂iu|pi−2 ∂iu

]
= λ|u|q−2u in Ω

u = 0 on ∂Ω

where Ω is always a bounded subset of RN , but N ≥ 2. Moreover λ > 0 is a real

parameter. In particular we are interested in the case

(I.28) pmin = min
i
{pi} < q < pmax = max

i
{pi}.

In this chapter we exploit the methods of Calculus of Variations, that is, we consider

the functional associated to our equation

(I.29) Jλ(v) =
N∑

i=1

1

pi

∫

Ω

|∂iv|pi −
λ

q

∫

Ω

|v+|q,

where v+ = max{v, 0} is the positive part of the function v, and we try to determine

critical levels for it. The study of semilinear elliptic equations has produced a large

amount of functionals, topological and variational techniques (and results) about exis-

tence and nonexistence of solutions for the Dirichlet problem (see for example [7], [53],

[77]). Much less is known about anisotropic elliptic problems like (I.27), let us recall

some recent works only [4], [43], [44], [58], [64], [65], [67]. Many of these articles con-

cern the p(x)-operators. Recently two interesting papers on anisotropic elliptic problems

appeared, connected to the problem (I.27): [45] and [78]. In [45] many existence and

nonexistence results of positive solutions are proved. In particular, using variational

methods, the case q > pmax is thoroughly investigated. In [78] a more general problem
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than (I.27) is handled: with respect to our problem the authors prove the existence of

a solution, also for q positive and subcritical, using approximation methods.

In both the previous papers the case pmin < q < pmax is not investigated in order to

study a new situation. Indeed if (I.28) holds then the reaction term (that is the right

hand side in the equation) has an “intermediate” growth with respect to the differential

operator and the problem (I.27) looks in some sense like an eigenvalue problem. More

precisely we are able to prove the existence of at least two positive solutions for suf-

ficiently large values of λ (Theorems 3.9 and 3.13) and nonexistence (see Proposition

3.7), for small positive λ.

We point out to the reader the papers [15], [5], [6], [9] (see also the references

therein) where some isotropic elliptic problems with convex-concave nonlinearities are

considered. The nonlinearity produces some multiplicity results of positive solutions for

small values of the parameter λ > 0 and nonexistence results for large λ. These results

are to a certain degree, contrary to ours. We think that the nonlinearity of the reaction

term produces a “superlinear” (or convex) effect interacting with the small growths

of the operator (I.1), and a “sublinear” (or concave) effect with the higher exponents

which appear in the differential operator. The key point in all of our arguments is

the presence of different homogeneities. Clearly, such a situation does not hold if the

operator is of an isotropic type, but it appears if the reaction term is the sum of different

nonlinearities. As we have already mentioned, all the results we obtain are due to the

variational structure of the problem. We want to stress that any critical point of Jλ is

a weak non-negative solution of (I.27) (see (3.0.3)).

The plan of Chapter 3 is the following: first, in Section 3.1, we recall some known

results, and we give a more possibly complete image of the actual stage of research on

this topic.

• q > pmax: the Mountain-Pass theorem can be applied in order to show that for

any λ > 0 a weak solution of problem (I.27) exists.

• q < pmin: the Ekeland Variational Principle can be used in order to prove

the existence of λ∗ such that, for any λ ∈ (0, λ∗) there is a nontrivial positive

weak solution of (I.27). Moreover, the energy functional, Jλ, has a nontrivial

minimum for any positive λ large enough. So for any λ ∈ (0, λ∗) ∪ (λ∗∗,+∞)

at least one weak solution of (I.27) exists.

In the first case the result is due to [45], (for more general case pi = pi(x) for i = 1, ..., N ,

see [64] and [65]) while in the case q < pmin to [64] and [65]. In Section 3.2 we begin with
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the new results. We prove that a weak solution of problem (I.27) does not exist, different

from zero, for λ small (Proposition 3.7) and that there exists a global minimum for Jλ,

which is a weak non-negative solution of problem (I.27), (Theorem 3.9). In Section 3.3

we show (under suitable assumptions) that the functional Jλ also possesses a Mountain-

Pass critical point, that is a second non-negative solution of (I.27) (Theorem 3.13). In

Section 3.4 we prove a maximum principle for anisotropic operators which implies that

the weak solutions found in the preceding sections are positive. Finally, in Section 3.5

we study some global properties of the branch of positive solutions of (I.27) and we

present some open problems connected with our studies.





CHAPTER 1

Existence and regularity in the monotone case

1.1. Notations and basic tools

We briefly recall the functional analytic framework of the differential operator which

we are going to study. We assume Ω to be an open, bounded domain of RN , N ≥ 3.

Let

(1.1.1) pi > 1 for i = 1, ..., N, pmax = max
i

{pi}, and pmin = min
i
{pi}.

Without loss of generality, we can assume

p1 ≤ p2 ≤ ... ≤ pN ,

so that pmax = pN and pmin = p1. We will see that the “natural” spaces in which

we search for solutions to Dirichlet elliptic problems (I.2), are the anisotropic Sobolev

spaces

(1.1.2)




W 1,(pi)(Ω) = {v ∈ W 1,1(Ω) : ∂iv ∈ Lpi(Ω)},
W

1,(pi)
0 (Ω) =W 1,(pi)(Ω) ∩W 1,1

0 (Ω).

W
1,(pi)
0 (Ω) can also be defined as the closure of C∞

0 (Ω) with respect to the norm

‖v‖
W

1,(pi)
0 (Ω)

=
N∑

i=1

‖∂iv‖Lpi (Ω).

In [45], [54], [68], [79], the theory of these spaces is developed and in particular the

corresponding Sobolev embedding theorems are studied. Let

(1.1.3) p∗ =
Np

N − p
, for p < N,

1

p
=

1

N

N∑

i=1

1

pi
and p∞ = max{pN , p∗}.

In [79] it is proved that if p < N , then

(1.1.4) W
1,(pi)
0 (Ω) ↪→ Lr(Ω), ∀ r ∈ [1, p∗].

1



2 1. EXISTENCE AND REGULARITY IN THE MONOTONE CASE

This embedding is continuous and also compact if r < p∗. The following Sobolev type

inequality is also proved: there exists a positive constant C, depending only on Ω, such

that

(1.1.5) ‖v‖Lr(Ω) ≤ C
N∏

i=1

‖∂iv‖
1
N

Lpi (Ω), ∀ r ∈ [1, p∗],

for any v ∈ C1
0(Ω) where pi > 1 for i = 1, 2, ..., N , and p∗ as above. By density, (1.1.5)

also holds for any v ∈ W
1,(pi)
0 (Ω). The inequality (1.1.5) then implies that

(1.1.6) ‖v‖Lr(Ω) ≤ C

N∑

i=1

‖∂iv‖Lpi (Ω), ∀ r ∈ [1, p∗].

If p ≥ N , then (1.1.4) holds for any r ≥ 1. Subsequently in [45] it is proved that

the critical exponent depends on the kind of anisotropy. If the pi’s are not “too far

apart” (i.e. the anisotropy is concentrated) the critical exponent is p∗, like in [79], that

is the “usual” critical exponent related to the harmonic mean p of the pi’s. While if the

pi’s are “too spread out” it coincides with the maximum of the pi’s, i.e. pN . Hence

the effective critical exponent is p∞, as in (1.1.3). This fact produces some technical

difficulties as we will see later.

We consider the composition of functions in W
1,(pi)
0 (Ω) with some useful auxiliary

functions of real variable. One of the most used, in the following, is the truncation

function at level k > 0, Tk, that is

(1.1.7) Tk(s) =




k
s

|s| if |s| > k ,

s if |s| ≤ k ;

-

6

�
�

�
�
�

�

−k

k

k

−k

s

Tk(s)
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Moreover, let

(1.1.8) Gk(s) = s− Tk(s), with k ≥ 0,

-

6

�
�

�
�

�

�
�
�

�
�

−k

k s

Gk(s)

Now we recall some known lemmas we need in the following.

Lemma 1.1. Let p1, pi, pN and p∗ be as in (1.1.1) and (1.1.3), and let B ≥ 1. Then

the following inequality holds

(1.1.9) ‖v‖pN
Lp∗ (Ω)

≤ CpNNpN−1BpN−p1

N∑

i=1

‖∂iv‖piLpi (Ω),

for all v ∈ W 1,1
0 (Ω) such that

‖∂iv‖Lpi (Ω) ≤ B, ∀ i = 1, 2, ..., N.

Proof. See [26].

We remember also this Poincaré type inequality, valid for all v ∈ W
1,(pi)
0 (Ω),

(1.1.10) ‖v‖Lr(Ω) ≤
ar

2
‖∂iv‖Lr(Ω), ∀ r ≥ 1,

where a = diam(Ω) (see [45]).

Now we prove a new technical Lemma that plays an important role in showing some

results presented in the following sections, and in extending some techniques used in the

isotropic case. It is a weighted Sobolev type inequality.

Lemma 1.2. Let v ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω), with the pi’s as above and suppose that∑N

i=1 1/pi > 1, that is p < N . Then it results

(1.1.11)

(∫

Ω

|v|r
)N

p
−1

≤ C
N∏

i=1

(∫

Ω

|∂iv|pi|v|ti pi
) 1

pi

,
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for every r and ti ≥ 0 satisfying

(1.1.12)





1

r
=
γi(N − 1)− 1 + 1/pi

ti + 1
> 0, ∀ i = 1, ..., N,

∑N
i=1 γi = 1, γi ≥ 0, ∀ i = 1, ..., N.

The constant C depends only on pi, i = 1, ..., N and N . Moreover, (1.1.11) holds also

if ti < 0, γi and r as above, but we must already know that the integrals, which appear

in the right side hand of (1.1.11), are finite.

Proof. Using the techniques introduced by Troisi (see Theorem 1.2 of [79]), we

obtain
(∫

Ω

|v|r
)N−1

=

(∫

Ω

|v|rγ1+...+rγN

)N−1

≤
N∏

i=1

∫

Si

sup
xi

|v|γir(N−1)dSi,

where Si, for every i = 1, ..., N , is the intersection between Ω and the hyperplane xi = 0

and γi ≥ 0 for all i such that
∑N

i=1 γi = 1. On the other hand we have

|v(x)|γir(N−1) ≤ γir(N − 1)

∫ +∞

−∞
|v|γir(N−1)−1|∂iv|dxi.

Hence it results

(1.1.13)

(∫

Ω

|v|r
)N−1

≤ C
N∏

i=1

∫

Ω

|v|γir(N−1)−1|∂iv| = C
N∏

i=1

∫

Ω

|∂iv||v|ti|v|βi ,

where ti ≥ 0 and βi > 0 are chosen in such a way that

ti + βi = γir(N − 1)− 1, ∀ i = 1, ..., N,

that is

βi = −ti + γir(N − 1)− 1,

and C = r(N − 1). By applying Hölder inequality with exponents pi and p′i to each

term of the product which appears in (1.1.13), we obtain

(∫

Ω

|v|r
)N−1

≤ C

N∏

i=1

(∫

Ω

|∂iv|pi|v|tipi
) 1

pi

(∫

Ω

|v|βip
′
i

) 1
p′
i
.

Now we define r = βip
′
i, for every i = 1, ..., N . We get

(∫

Ω

|v|r
)N−1

≤ C

(∫

Ω

|v|r
)∑N

i=1
1
p′
i

N∏

i=1

(∫

Ω

|∂iv|pi|v|ti pi
) 1

pi

.
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Observing that
N∑

i=1

1

p′i
< N − 1 ⇔ p < N,

(1.1.11) then follows.

Remark 1.3. We note that if p ≥ N , then (1.1.11) holds for every r ≥ 1, γi ≥ 0,

such that
∑N

i=1 γi = 1, and ti ≥ 0, where i = 1, ..., N . Moreover in this case C also

depends on the measure of the set Ω.

Finally, let us devote a few words to positive constants. We will write C to denote

positive constants, possibly different depending on the data, that is they are fixed in

the assumptions we make, as the dimension N , the bounded open set Ω, etc. During

the proofs of our results, similar constants will also be indicated by Ci, i = 0, 1, 2, ... to

distinguish possibly different values. In any case the constants are always meant to not

depend on n.

1.2. Data in Lebesgue spaces

In this and in the following sections, we present some results contained in [34]. We

consider the following problem

(1.2.1)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] = f in Ω,

u = 0 on ∂Ω.

We will give some results concerning existence and regularity of weak or distributional

solutions of (1.2.1), where f is a given function belonging to a Lebesgue space.

Now and in the following, we assume that p < N , otherwise the problem is more

simple, because (1.1.4) holds for any r ≥ 1.

We know, by a simple modification of the classic Leray-Lions theorem (see [57] and

also [26]), thanks to the anisotropic Sobolev embeddings, that if f ∈ Lm(Ω), with

m ≥ p′∞ and

(1.2.2) p∞ = max{pN , p∗}, pN = max
i

{pi}, p∗ =
pN

N − p
and

1

p
=

1

N

N∑

i=1

1

pi
,

there exists a weak solution to our problem, that is u ∈ W
1,(pi)
0 (Ω) such that

(1.2.3)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iv =

∫

Ω

fv, ∀ v ∈ W
1,(pi)
0 (Ω).
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Since

(1.2.4) Mm(Ω) ⊂ Lm−ε(Ω), ∀ m > 1 and 0 < ε ≤ m− 1,

we also obtain the existence of at least a weak solution of (1.2.1) when f ∈Mm(Ω) with

m > p′∞, defined in (1.2.2).

Now we consider p∞ = p∗, as in (1.2.2). We have the following result.

Theorem 1.4. Let f ∈ Lm(Ω).

i) If m > N
p
, then there exists a bounded weak solution u for the problem (1.2.1),

as in (1.2.3).

ii) If m = N
p
, then there exists a weak solution u for the problem (1.2.1) and a

constant β > 0 such that

(1.2.5)

∫

Ω

eβ|u| <∞.

iii) If (p∗)′ ≤ m < N
p
, then there exists a weak solution u for the problem (1.2.1),

belonging to Ls(Ω), with

s =
mp∗(p− 1)

mp+ p∗ −mp∗
=
mN(p− 1)

N −mp
.

Remark 1.5. i) and ii) are a direct consequence of i) and ii) of Theorem 1.19, in

the following section, thanks to the following property of Lebesgue spaces

(1.2.6) Lm(Ω) ⊂Mm(Ω), ∀ m > 1.

Remark 1.6. We note that the result ii) implies that the weak solution u of (1.2.1),

that we obtain, belongs to Ls(Ω), ∀ 1 ≤ s < +∞.

In the case p∞ = pN = maxi{pi} we obtain this theorem.

Theorem 1.7. Let f ∈ Lm(Ω). i) and ii) of Theorem 1.4 hold true. Moreover

iii) if N(pN−p)
p(pN−1)

≤ m < N
p
then there exists a weak solution for the problem (1.2.1),

belonging to Ls(Ω), with

s =
mp∗(p− 1)

mp+ p∗ −mp∗
=
mN(p− 1)

N −mp
.

iv) If p′N ≤ m < N(pN−p)
p(pN−1)

, then there exists a weak solution for the problem (1.2.1),

belonging to Ls̃(Ω), with s̃ = m(pN − 1).
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Remark 1.8. We note that, since pN > p∗,

N(pN − p)

p(pN − 1)
> (p∗)′ > p′N ,

and

(1.2.7) s̃ = m(pN − 1) > s =
mN(p− 1)

N −mp
⇔ m <

N(pN − p)

p(pN − 1)
,

so that we have obtained a better summability of u, if (p∗)′ < m < N(pN−p)
p(pN−1)

and a new

result if p′N < m < (p∗)′. While if (p∗)′ < m < p′N < N/p, (pN < p∗), (1.2.7) never

holds, so we do not improve the summability of u, obtained in Theorem 1.4.

Remark 1.9. We note that s̃ = m(pN − 1) > pN , since m > p′N . Hence we improve

the regularity, already known by the embeddings, of the weak solution of our problem.

Remark 1.10. We highlight that there is a continuity in our summability results.

As a matter of fact, if pN = p∗, m = (p∗)′, we have

s̃ = (p∗)′(p∗ − 1) = p∗

and this is the same exponent which appears in iii) of Theorem 1.4, with m = (p∗)′.

Remark 1.11. Obviously the case iv) of Theorem 1.7 is new because our operator

is anisotropic. If it is isotropic, pN = p = p and p < p∗. Moreover

N(pN − p)

p(pN − 1)
= 0,

as we expect.

Remark 1.12. It is easy to prove that if f ∈ Lm(Ω), withm ≥ p′∞, the weak solution

of the problem (1.2.1) is unique due to the monotone property of anisotropic operators

as (I.1). If we suppose that two solutions u1 and u2 exist, we have

N∑

i=1

∫

Ω

|∂iu1|pi−2∂iu1∂iv =

∫

Ω

fv ∀ v ∈ W
1,(pi)
0 (Ω)

and
N∑

i=1

∫

Ω

|∂iu2|pi−2∂iu2∂iv =

∫

Ω

fv ∀ v ∈ W
1,(pi)
0 (Ω).
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Now we take as a test function v = u1−u2 in both of them. We note that such a choice

is possible since u1, u2 ∈ W
1,(pi)
0 (Ω). Then, subtracting the two expressions, we obtain

N∑

i=1

∫

Ω

[|∂iu1|pi−2∂iu1 − |∂iu2|pi−2∂iu2]∂i(u1 − u2) = 0.

Then, if pi ≥ 2 for all i = 1, ..., N ,

[|∂iu1|pi−2∂iu1 − |∂iu2|pi−2∂iu2]∂i(u1 − u2) ≥ C0|∂i(u1 − u2)|pi , ∀ i.

Hence
N∑

i=1

∫

Ω

|∂i(u1 − u2)|pi ≤ 0,

that implies u1 = u2. A slight modification is needed to obtain the same result with

pi < 2.

Remark 1.13. We note that in our results we do not need to suppose that p∗ > pN ,

thanks to the embeddings proved in [45]. This fact does not contradict the counterex-

ample in [60] (see also [49]). As a matter of fact, in the cited paper, it is shown that

(1.2.1) with f = 0 may have unbounded weak solutions, but the counterexample is not

in the case of homogeneous Dirichlet boundary conditions.

Now we consider always the same Dirichlet problem (1.2.1) but if m < p′∞. We prove

the existence of a distributional solution, that is u ∈ W 1,1
0 (Ω), such that,

(1.2.8)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iφ =

∫

Ω

fφ, ∀ φ ∈ C1
0(Ω).

If p∞ = p∗, we have the following theorem.

Theorem 1.14. Let f ∈ Lm(Ω).

i) If m = 1, then there exists a distributional solution u for (1.2.1), belonging to

W
1,(si)
0 (Ω), for all

1 < si < pi
N(p− 1)

p(N − 1)
, ∀ i = 1, ..., N.

ii) If 1 < m < (p∗)′, then there exists a distributional solution u for (1.2.1),

belonging to W
1,(si)
0 (Ω), with

1 < si = pi
mN(p− 1)

p(N −m)
,

for all i = 1, ..., N .
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Remark 1.15. Since si > 1, for any i = 1, ..., N , we deduce that

p > 2− 1

N

in i), and in ii)

p > 1 +
1

m∗ ,

as we expect recalling the classic case, i.e. pi = p for all i.

Remark 1.16. Also in this case, we note that, since p∗ ≥ pN ,

N(pN − p)

p(pN − 1)
< (p∗)′

and
N(pN − p)

p(pN − 1)
> 1 ⇔ pN >

p(N − 1)

N − p
=
N − 1

N
p∗.

Hence we can improve the previous theorem if p(N−1)
N−p

< pN ≤ p∗ and 1 < m < N(pN−p)
p(pN−1)

.

As a matter of fact we have a distributional solution of (1.2.1) belonging to W
1,(s̃i)
0 (Ω),

with 1 < s̃i = pi
m
p′N

for all i = 1, ..., N and by the restriction on m, it holds

(1.2.9) pi
m

p′N
> pi

mN(p− 1)

p(N −m)
, ∀ i = 1, ..., N ⇔ m <

N(pN − p)

p(pN − 1)
.

Also in this case, since s̃i > 1, we have the following condition on p

p >
p′N
m
.

Moreover if f ∈ L1(Ω), u ∈ W
1,(s̃i)
0 (Ω), for all

s̃i <
pi
p′N

and p > p′N , ∀ i = 1, ..., N.

In the case p∞ = pN , we have the theorem below.

Theorem 1.17. Let f ∈ Lm(Ω).

i) If m = 1, then there exists a distributional solution u for (1.2.1), belonging to

W
1,(s̃i)
0 (Ω), for all

s̃i <
pi
p′N

and p > p′N ,

∀ i = 1, ..., N .

ii) If 1 < m < (p∗)′, then there exists a distributional solution u for (1.2.1),

belonging to W
1,(s̃i)
0 (Ω), with s̃i = pi

m
p′N

for all i = 1, ..., N .
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Remark 1.18. We note that, if 1 ≤ m < p′∞, the distributional solution may not be

unique. In fact already in the isotropic and linear case the solution is not unique (see

the counterexample presented in [74]). But it is possible to extend, in a natural way

(see [11]), the definition of entropy solutions for the problem (1.2.1), see Section 1.6,

to achieve an existence result without further assumptions on p and to have a unique

solution.

1.3. Data in Marcinkiewicz spaces

In this section we present some results concerning the case of f belonging to a

Marcinkiewicz space, Mm(Ω). As we have already mentioned, we know, by a simple

modification of the classic Leray-Lions theorem, that if f ∈Mm(Ω), with m > p′∞ there

exists a weak solution, as in (1.2.3), of problem (1.2.1), due to (1.2.4). We begin to

consider the case p∞ = p∗, where p∞ and p∗ are as in (1.2.2). We have the following

result.

Theorem 1.19. Let f ∈Mm(Ω).

i) If m > N
p
, then there exists a bounded weak solution u for the problem (1.2.1).

ii) If m = N
p
, then there exists a weak solution u for the problem (1.2.1) and a

constant β > 0 such that

(1.3.1)

∫

Ω

eβ|u| <∞.

iii) If (p∗)′ < m < N
p
, then there exists a weak solution u for the problem (1.2.1),

belonging to M s(Ω) with

s =
mp∗(p− 1)

mp+ p∗ −mp∗
=
mN(p− 1)

N −mp
.

If p∞ = pN > p∗, we have the theorem below.

Theorem 1.20. Let f ∈Mm(Ω). i) and ii) of Theorem 1.19 hold true. Moreover

iii) if N(pN−p)
p(pN−1)

≤ m < N
p
then there exists a weak solution u for the problem (1.2.1),

belonging to M s(Ω), with

s =
mp∗(p− 1)

mp+ p∗ −mp∗
=
mN(p− 1)

N −mp
.

iv) If p′N < m < N(pN−p)
p(pN−1)

, then there exists a weak solution u for the problem

(1.2.1), belonging to M s̃(Ω), with s̃ = m(pN − 1).
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Remarks 1.6, 1.8, 1.9, 1.10 and 1.11 hold true also in this case.

Remark 1.21. We note that if, in the previous theorems, we let m tend to N/p, we

obtain s → +∞. Moreover the values of s and s̃ obtained in Theorems 1.19 and 1.20

are the same of Theorems 1.4 and 1.7, as we expected.

Remark 1.22. By (1.2.4), also if f belongs to Mm(Ω), with m > p′∞, the weak

solution of (1.2.1) is unique.

For the case 1 < m ≤ p′∞ we prove the existence of a distributional solution for the

problem (1.2.1), as in (1.2.8).

As before, we distinguish between p∞ = p∗ and p∞ = pN . In the first case we have

the following result.

Theorem 1.23. If f belongs to Mm(Ω), with 1 < m ≤ (p∗)′, then there exists a

distributional solution u for (1.2.1), belonging to M s(Ω), with

s =
mp∗(p− 1)

mp+ p∗ −mp∗
=
mN(p− 1)

N −mp

and ∂iu ∈M si(Ω), with

1 < si = pi
mN(p− 1)

p(N −m)
,

for all i = 1, ..., N .

Remark 1.24. So si > 1, for every i = 1, ..., N , on the condition that

p > 1 +
1

m∗ .

Remark 1.25. We note that since p∗ ≥ pN ,

N(pN − p)

p(pN − 1)
< (p∗)′

and
N(pN − p)

p(pN − 1)
> 1 ⇔ pN >

p(N − 1)

N − p
.

So we can improve the previous theorem if p(N−1)
N−p

< pN ≤ p∗ and 1 < m < N(pN−p)
p(pN−1)

,

by (1.2.7). As a matter of fact, we have a distributional solution for (1.2.1) belonging

to M s̃(Ω), with s̃ = m(pN − 1). Moreover ∂iu ∈ M s̃i(Ω), with 1 < s̃i = pi
m
p′N

for all

i = 1, ..., N , since it also holds (1.2.9). We note that, in order to have s̃i > 1, we assume

p >
p′N
m
.
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In the second case, p∞ = pN , we get the following result.

Theorem 1.26. If f belongs to Mm(Ω), with 1 < m ≤ p′N , then there exists a

distributional solution u for (1.2.1), belonging to M s̃(Ω), with s̃ = m(pN − 1) and

∂iu ∈M s̃i(Ω), with s̃i = pi
m
p′N

, for all i = 1, ..., N . We also suppose that

p >
p′N
m
.

Remark 1.27. Under the assumption pN > p∗, it holds

N(pN − p)

p(pN − 1)
> (p∗)′ > p′N

and if

m <
N(pN − p)

p(pN − 1)
,

(1.2.7) and (1.2.9) are true.

Remark 1.28. We recall, as already mentioned in the introduction, that if we choose

pi = 2, for any i = 1, ..., N , (or equivalently pi = p, for any i = 1, ..., N), we obtain the

classic regularity results.

1.4. Data in divergence form

In this section we consider the problem (1.2.1), with datum f in divergence form,

namely

(1.4.2)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] = −∑N

i=1 ∂ifi in Ω,

u = 0 on ∂Ω,

with fi ∈ Lmi(Ω), mi ≥ p′i, for all i = 1, ..., N .

This problem has already been studied by several authors, see [19], [25] and [26].

For due diligence we report these results, but we give slightly different proofs. In [26]

it was proved that if

(1.4.3)
p∗

pN
min

i

{
1− p′i

mi

}
> 1,
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that is

(1.4.4)





p∗ > pN ,

mi >
p∗

p∗ − pN
p′i , ∀ i = 1, ..., N,

then any weak solution of (1.4.2) is bounded. This result can be proved without the

assumption p∗ > pN and under the following weaker regularity assumption on the data

(1.4.5) min
i

{
1− p′i

mi

}
p∗

p
> 1,

(see [76]). We have the following theorem.

Theorem 1.29. If fi ∈ Lmi(Ω), such that (1.4.5) holds, then there exists a bounded

weak solution u for the problem (1.4.2).

Remark 1.30. The assumption (1.4.5) is equivalent to require that

(1.4.6) mi >
N

p
p′i, ∀ i = 1, ..., N.

Moreover
p∗

p∗ − pN
p′i >

N

p
p′i.

Hence the boundedness of a weak solution u also holds true if fi’s are less regular and

if p∗ < pN .

For the case

(1.4.7) min
i

{
1− p′i

mi

}
p∗

p
< 1,

see [25], in which the following result is presented for minima of some functionals.

Theorem 1.31. If fi ∈ Lmi(Ω), with

(1.4.8) min
i

{
1− p′i

mi

}
p∗

p
= min

i

{
1− p′i

mi

}
N

N − p
< 1,

then there exists a weak solution u for the problem (1.4.2) and it is belongs to Ls(Ω),

where

s =
pNµ

N − pµ
and µ = min

i

{
mi

p′i

}
.
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Remark 1.32. We note that if mini

{
1− p′i

mi

}
N

N−p
goes to 1, s goes to infinity.

Moreover if f ∈ Lm(Ω) and pi = 2, for all i = 1, ..., N (or equivalently pi = p, ∀
i = 1, ..., N) we obtain the known classic results, that is if

m− 2

m
· 2

∗

2
> 1 ⇔ m > N,

then there exists a bounded weak solution for the isotropic problem, corresponding to

(1.4.2) and if m < N a weak solution belongs to Ls(Ω) with s = m∗.

Remark 1.33. All the results, except the uniqueness results, presented in these

sections also hold if our anisotropic operator is exchanged by a more general one, i.e.,

A a non linear differential operator from W
1,(pi)
0 (Ω) into its dual of the form

A(u) = −div(a(x, u,∇u)),

where a(x, s, ξ) = (ai(x, s, ξ)) is a Carathéodory vector valued function on Ω×R×RN

such that, for some constant β ≥ α > 0

N∑

i=1

ai(x, s, ξ)ξi ≥ α
N∑

i=1

|ξi|pi ,

|ai(x, s, ξ)| ≤ β

(
N∑

j=1

|ξj|pj
)1−1/pi

, ∀ i = 1, .., N

and for a.e. x ∈ Ω and ∀ s ∈ R, ξ, η ∈ RN , ξ 6= η

N∑

i=1

(ai(x, s, ξ)− ai(x, s, η))(ξi − ηi) > 0.

1.5. Proofs of the results

Now we wish to prove the results presented in the previous sections.

1.5.1. Proofs of Theorem 1.4 iii) and Theorem 1.7. We only prove the part

iii) of Theorem 1.4, because i) and ii) are a direct consequence of i) and ii) of Theorem

1.19, shown in the following, since

(1.5.9) Lm(Ω) ⊂Mm(Ω), ∀ m ≥ 1.
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We take as a test function in (1.2.3) v = |Tk(u)|tj pjTk(u), where j = 1, ..., N , Tk is as in

(1.1.7) and tj’s are positive real numbers which we will fix later. We have

(1.5.10)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂i(|Tk(u)|tj pjTk(u)) =
∫

Ω

f |Tk(u)|tj pjTk(u),

∀ j = 1, ..., N . For the first term in (1.5.10) we have

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂i(|Tk(u)|tj pjTk(u)) ≥ C0

∫

Ω

|∂jTk(u)|pj |Tk(u)|tj pj ,

∀ j = 1, ..., N . For the second term of (1.5.10), by applying Hölder inequality with

exponents m and m′, we obtain

∫

Ω

f |Tk(u)|tj pjTk(u) ≤
(∫

Ω

|f |m
) 1

m
(∫

Ω

|Tk(u)|(tj pj+1)m′
) 1

m′

, j = 1, ..., N.

From the previous inequalities, by multiplying on j, we deduce

(1.5.11)
N∏

j=1

(∫

Ω

|∂jTk(u)|pj |Tk(u)|tj pj
) 1

pj ≤ C1

N∏

j=1

(∫

Ω

|Tk(u)|(tj pj+1)m′
) 1

m′ pj
.

By (1.1.11) of Lemma 1.2, with v = Tk(u) and r = s, and (1.5.11), we have

(1.5.12)

(∫

Ω

|Tk(u)|s
)N

p
−1

≤ C2

N∏

j=1

(∫

Ω

|Tk(u)|(tj pj+1)m′
) 1

m′ pj
.

Since we also want s = (tj pj + 1)m′ in (1.5.12), for any j = 1, ..., N , we have to solve

the following system




s =
1+tj

γj(N−1)−1+1/pj
, ∀ j = 1, ..., N,

s = (tj pj + 1)m′, ∀ j = 1, ..., N,

∑N
j=1 γj = 1, γj ≥ 0 and tj ≥ 0 ∀ j = 1, ..., N.

From the first two equations in the previous system, after some lengthy but easy calcu-

lations, we have

(1.5.13) tj =
2mpj −m− pj −mpj γj(N − 1)

pj(mpj γj(N − 1)− pj m+ 1)
, ∀ j = 1, ..., N,
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and

(1.5.14) γj =

(
1− 1

pj

)
N −mp

N(p− 1)m(N − 1)
+

(
1− 1

mpj

)
1

N − 1
, ∀ j = 1, ..., N.

It is easy to prove that γj’s satisfy the condition
∑N

j=1 γj = 1. Moreover γj ≥ 0, since

m > 1 and pj > 1, for all j = 1, ..., N . Also by (1.5.13) and (1.5.14), we have

tj =
(pj − 1)[Np(m− 1)−m(N − p)]

pj(pj − 1)(N −mp)
=
Np(m− 1)−m(N − p)

pj(N −mp)
.

Hence tj ≥ 0, for all j = 1, ..., N , by the assumptions on m. As a matter of fact

N −mp > 0 ⇔ m <
N

p
,

and

Np(m− 1)−m(N − p) ≥ 0 ⇔ m ≥ Np

Np−N + p
= (p∗)′.

Moreover, by the choice of tj and γj, we have

s =
mN(p− 1)

N −mp
,

as in iii) of Theorem 1.4. Therefore, thanks to (1.5.12), by noting thatN/p−1 > N/m′ p,

since m < N/p,

‖Tk(u)‖Ls(Ω) ≤ C3, ∀ k ∈ N.

Using Fatou Lemma we can pass to the limit as k → +∞ to obtain

‖u‖Ls(Ω) ≤ C4,

as desired.

Remark 1.34. The proof of iv) of Theorem 1.7, is very similar to the previous one.

For the sake of simplicity, we omit it, by remarking that we must only use Poincaré

type inequality (1.1.10), with r = pN and i = N , instead of the Sobolev type. This is

the same reason for which we do not prove Remark 1.16, Theorem 1.17, iv) of Theorem

1.20, Remark 1.25 and Theorem 1.26.

Now we prove the existence and regularity results if f ∈ Lm(Ω), with 1 ≤ m < (p∗)′.

We use the techniques of [19], introduced for the first time in [16] and [17].
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1.5.2. Proof of Theorem 1.14. We begin with the case m = 1, i). We consider

a sequence {fn} ⊂ L∞(Ω), such that

fn → f in L1(Ω) and ‖fn‖L1(Ω) ≤ ‖f‖L1(Ω)

and let un be the solutions to the following problems

(1.5.15) un ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω) : −

N∑

i=1

∂i[|∂iun|pi−2∂iun] = fn,

which exist due to the previous results. We take as a test function in the weak formula-

tion of problems (1.5.15), v = T1(Gk(un)), where T1 and Gk are defined in Section 1.1.

We have
N∑

i=1

∫

Bk,n

|∂iun|pi ≤ ‖f‖L1(Ω),

with Bk,n = {x ∈ Ω : k < |un(x)| ≤ k + 1}. So,

(1.5.16)

∫

Bk,n

|∂iun|pi ≤ ‖f‖L1(Ω), ∀ i = 1, ..., N.

Let si = θpi, β = (1−θ)s∗

θ
and θ ∈

(
0, N(p−1)

p(N−1)

)
. By using Hölder inequality with exponents

pi/si and (pi/si)
′, we obtain
∫

Ω

|∂iun|si =
∫

Ω

|∂iun|si(1 + |un|)−β
si
pi (1 + |un|)β

si
pi ≤

≤
( ∞∑

k=0

∫

Bk,n

|∂iun|pi(1 + |un|)−β

) si
pi
(∫

Ω

(1 + |un|)
βsi

pi−si

)1− si
pi

.

Since on Bk,n

1

1 + |un|
<

1

k + 1
,

we have

(1.5.17)

∫

Ω

|∂iun|si ≤
( ∞∑

k=0

1

(1 + k)β

∫

Bk,n

|∂iun|pi
) si

pi
(∫

Ω

(1 + |un|)
βsi

pi−si

)1− si
pi

.

By (1.5.16) and since β > 1 we obtain

∞∑

k=0

1

(1 + k)β

∫

Bk,n

|∂iun|pi ≤ C0,
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hence

(1.5.18)

(∫

Ω

|∂iun|si
) 1

Nsi ≤ C1

(∫

Ω

(1 + |un|)
βsi

pi−si

)( 1
si
− 1

pi

)
1
N

.

Now we apply the anisotropic Sobolev inequality (1.1.5), with r = s∗, to obtain, thanks

to the choice of β,

(1.5.19) ‖un‖Ls∗ ≤ C2

(∫

Ω

(1 + |un|)s
∗
)( 1

θ
−1) 1

p

.

By (1.5.19) and (1.5.18), we get that ∂iun is bounded in Lsi(Ω) uniformly in n. So we

can assume that, for some u and for some subsequence, which we still denote by un,

that

(1.5.20) ∂iun → ∂iu weakly in Lsi(Ω), ∀ i = 1, ..., N,

(1.5.21) un → u strongly in Ls(Ω),

s, the harmonic mean of the si’s. It is not enough to pass to the limit, but we can claim

that

(1.5.22) ∂iun → ∂iu strongly in Lri(Ω), ∀ ri < si,

i = 1, ..., N . In fact we have, for all η > 0 and for all i = 1, ..., N ,
∫

{|un−uh|≤η}

(
|∂iun|pi−2∂iun − |∂iuh|pi−2∂iuh

)
∂i(un − uh) ≤ 2η‖f‖L1(Ω).

If we fix i and pi ≥ 2, we deduce that
∫

{|un−uh|≤η}
|∂i(un − uh)|pi ≤ C3η

and so by Hölder inequality with exponents pi/ri and (pi/ri)
′ and by simple calculations,

we have ∫

Ω

|∂i(un − uh)|ri ≤ C4η
ri
pi + C5 meas({|un − uh| > η})1−

ri
si .

We obtain the same result also for pi < 2 by a slight modification. We recall that un
converges to u in measure because un → u in Ls(Ω). So, since the above inequality

holds true for any η > 0, we obtain that ∂iun is a Cauchy sequence in Lri(Ω). So, by

(1.5.22), we have

|∂iun|pi−2∂iun → |∂iu|pi−2∂iu in L1(Ω).

now we can pass to the limit for n → +∞ in the weak formulation of (1.5.15) and we

obtain that u is a distributional solution for the equation (1.2.1).
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Now we deal with the case 1 < m < (p∗)′, part ii) of Theorem 1.14. As above we

consider a sequence {fn} ⊂ L∞(Ω), such that

fn → f in Lm(Ω) and ‖fn‖Lm(Ω) ≤ ‖f‖Lm(Ω)

and let un be the solutions of the problems (1.5.15). We use, as a test function in the

weak formulation of (1.5.15), v = T1(Gk(un)), to obtain

N∑

i=1

∫

Bk,n

|∂iun|pi ≤
∫

Ak,n

|fn|,

with Ak,n = {|un| > k}. We get

(1.5.23)

∫

Bk,n

|∂iun|pi ≤
∫

Ak,n

|fn|, ∀ i = 1, ..., N.

If we go on as in the case m = 1, we have

∫

Ω

|∂iun|si ≤
( ∞∑

j=0

∫

Bj,n

|fn|
j∑

k=0

1

(1 + k)β

) si
pi
(∫

Ω

(1 + |un|)
βsi

pi−si

)1− si
pi

.

Since
j∑

k=0

1

(1 + k)β
≤ C0(1 + j1−β),

we obtain, by some calculations and by using Hölder inequality with exponents m and

m′,

∫

Ω

|∂iun|si ≤ C1

[
‖fn‖Lm(Ω)

(∫

Ω

(1 + |un|)(1−β)m′
) 1

m′
] si

pi
(∫

Ω

(1 + |un|)
βsi

pi−si

)1− si
pi

,

for all i = 1, ..., N . Now we take si = θpi, with θ ∈ [0, 1), such that

βsi
pi − si

=
βθ

1− θ
, ∀ i = 1, ..., N

and we choose β, such that

βθ

1− θ
= (1− β)m′ ⇔ β =

m(1− θ)

m− θ
.

We obtain

(1− β)m′ =
θm

m− θ
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and therefore

(∫

Ω

|∂iun|si
) 1

siN ≤ C2

(∫

Ω

(1 + |un|)
θm
m−θ

)( 1
θ
− 1

m)
1

piN

, ∀ i = 1, ..., N.

By Sobolev type inequality, we have

(1.5.24) ‖un‖Ls∗ ≤ C3

(∫

Ω

(1 + |un|)
mθ
m−θ

)( 1
θ
− 1

m)
1

Np

,

with

s∗ =
θpN

N − θp
.

Now we take θ, such that

θpN

N − θp
=

θm

m− θ
⇔ θ =

mN(p− 1)

p(N −m)
,

and hence

si =
mN(p− 1)

p(N −m)
pi, ∀ i = 1, ..., N.

We remark that the value of θ, which we obtain, is smaller than 1, since m < (p∗)′.

Besides
1

s∗
>

(
1

θ
− 1

m

)
1

p
⇔ m <

N

p
.

Then, if we proceed as in the case m = 1, we can pass to the limit in the approximating

problems (1.5.15) to obtain the desired result.

1.5.3. Proof of Theorem 1.19. We take v = Gk(u) in (1.2.3). We have

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iGk(u) =

∫

Ω

fGk(u),

it implies
(∫

Ω

|∂iGk(u)|pi
) 1

piN ≤
(∫

Ω

fGk(u)

) 1
piN

.

Therefore, by (1.1.5), with r = p∗, we get

‖Gk(u)‖Lp∗ (Ω) ≤ C0

N∏

i=1

(∫

Ω

|fGk(u)|
) 1

piN

= C0

(∫

Ω

|fGk(u)|
) 1

p

.
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By applying Hölder inequality with exponents p∗ and (p∗)′, due to the fact that f ∈
L(p∗)′(Ω) by (1.2.4), we obtain

C0

(∫

Ω

|fGk(u)|
) 1

p

≤ C0

(∫

Ω

|Gk(u)|p
∗
) 1

p∗p
(∫

Ak

|f |(p∗)′
)(1− 1

p∗ )
1
p

,

where Ak = {|u| > k}. Hence
(∫

Ω

|Gk(u)|p
∗
) 1

p∗−
1

p∗p
≤ C0

(∫

Ak

|f |(p∗)′
) 1

p
− 1

p∗p
.

We note that
1

p∗
− 1

p∗p
> 0 ⇔ p > 1,

which is true, since pi > 1 for every i = 1, ..., N . Since f ∈ Mm(Ω) and m > (p∗)′, we

have ∫

Ak

|f |(p∗)′ ≤ Cf meas(Ak)
1− (p∗)′

m .

Hence by applying Hölder inequality with exponents p∗ and (p∗)′ to
∫
Ω
|Gk(u)| and by

simplifying, we obtain

(1.5.25)

∫

Ω

|Gk(u)| ≤ C1 meas(Ak)

(
1− (p∗)′

m

)
(1− 1

p∗ )
1

p−1
+1− 1

p∗ .

We define g(k) =
∫
Ω
|Gk(u)| and we recall that g′(k) = −meas(Ak), for almost every k

(see [51], [56]). We obtain, from (1.5.25), that

g(k)
1
γ ≤ −C2 g

′(k),

with γ =
(
1− (p∗)′

m

)(
1− 1

p∗

)
1

p−1
+ 1− 1

p∗ . Therefore

(1.5.26) 1 ≤ −C2 g
′(k)g(k)−

1
γ = − C2

1− 1
γ

(g(k)1−
1
γ )′.

If we are in case i) of Theorem 1.19, we note that

1− 1

γ
> 0.

Therefore, by integrating (1.5.26) from 0 to k, we get

k ≤ −C3[g(k)
1− 1

γ − g(0)1−
1
γ ],

i.e.

C3g(k)
1− 1

γ ≤ −k + C3‖u‖
1− 1

γ

L1(Ω).
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Since g(k) is a non-negative and decreasing function, from the latter inequality we

deduce that there exists k0, such that g(k0) = 0, and so u ∈ L∞(Ω). In case ii) of

Theorem 1.19, since m = N/p, γ = 1, we have

1 ≤ −C2
g′(k)

g(k)
.

By integrating from 0 to k, we have

k

C2

≤ log

[‖u‖L1(Ω)

g(k)

]
,

and since the function t→ et increases, we obtain

e
k
C2 ≤ ‖u‖L1(Ω)

g(k)
⇒ g(k)e

k
C2 ≤ ‖u‖L1(Ω).

So, recalling that

(1.5.27) g(k) =

∫

Ω

|Gk(u)| ≥
∫

A2k

|Gk(u)| ≥ kmeas(A2k),

if k ≥ 1, we have

g(k) ≥ meas(A2k) ⇒ meas(A2k)e
k
C2 ≤ ‖u‖L1(Ω).

Hence, if k ≥ 2, we get

(1.5.28) meas(Ak)e
k

2C2 ≤ ‖u‖L1(Ω).

We prove now that the previous inequality implies that

+∞∑

k=0

ekβmeas(Ak) <∞,

with 0 < β < 1
2C2

. Indeed, by (1.5.28),

+∞∑

k=0

ekβmeas(Ak) ≤ (1 + e)meas(Ω) +
+∞∑

k=2

‖u‖L1(Ω)

ek(1/2C2−β)
<∞.

Since
+∞∑

k=0

eβkmeas(Ak) < +∞ ⇔
∫

Ω

eβ|u| < +∞,

ii) is proved.

To conclude, we consider case iii). In this case we have

1− 1

γ
< 0.
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Therefore,

1 ≤ C4(g(k)
1− 1

γ )′.

By integration from 0 to k, we obtain

k ≤ C4[g(k)
1− 1

γ − g(0)1−
1
γ ] ≤ C4g(k)

1− 1
γ

and so

g(k)−1+ 1
γ ≤ C4

k
⇒ g(k) ≤ C5

k
γ

1−γ

.

Therefore, by (1.5.27), it holds true that

meas(A2k) ≤
g(k)

k
≤ C5

k
γ

1−γ k
=

C5

k
1

1−γ

.

By recalling the definition of γ, we obtain

1

1− γ
=
mN(p− 1)

N −mp
= s,

so that u ∈M s(Ω).

Now we use an idea, presented in a recent paper (see [14]), to prove the Theorem

1.23, namely the case f ∈Mm(Ω), with 1 < m ≤ p′∞.

1.5.4. Proof of Theorem 1.23. We consider a sequence {fn} ⊂ L∞(Ω), such that

fn → f in Mm(Ω) and ‖fn‖Mm(Ω) ≤ ‖f‖Mm(Ω),

with 1 < m ≤ (p∗)′ and let un be the solutions of the following problems, which exist

by the previous results,

(1.5.29) un ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω) : −

N∑

i=1

∂i[|∂iun|pi−2∂iun] = fn.

If ε > 0, and if

(1.5.30) σi = (pi − 1) +
N(r − 1)(p− 1)

N − rp
, ∀ i = 1, ..., N,

and r < m, we take as a test function in the weak formulation of the problems (1.5.29)

vε,n = [(ε+|Gk(un)|)σi−(pi−1)−εσi−(pi−1)]sgn(un), where Gk(s) has been recalled in (1.1.8)

and σi as in (1.5.30), to obtain

(1.5.31)

[σi − (pi − 1)]

∫

Ω

|∂iGk(un)|pi(ε+ |Gk(un)|)σi−pi ≤
∫

Ω

|fn||vε,n|, ∀ i = 1, ..., N.
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We know, by the assumptions on m, that

(1.5.32) pi − 1 < σi ≤ pi , ∀ i = 1, ..., N.

We note that if we pass to the limit for ε → 0 in (1.5.31), we have, by Fatou Lemma,

and for every k, n ∈ N,

(1.5.33) [σi − (pi − 1)]

∫

Ω

|∂iGk(un)|pi|Gk(un)|σi−pi ≤ ‖fn‖L∞(Ω) ‖un‖L∞(Ω) <∞,

∀ i = 1, ..., N . So even if σi − pi < 0, by (1.5.33), we can apply Lemma 1.2 with

v = Gk(un), r = s and ti = σi/pi − 1, to obtain

(1.5.34)

(∫

Ω

|Gk(un)|s
)N

p
−1

≤ C0

N∏

i=1

(∫

Ω

|fn||Gk(un)|σi−(pi−1)

) 1
pi

,

with

(1.5.35)





s = σi

pi γi(N−1)−(pi−1)
, ∀ i = 1, ..., N,

∑N
i=1 γi = 1, γi ≥ 0, ∀ i = 1, ..., N.

If we use Hölder inequality with exponents r < m and r′ in (1.5.34) and since f ∈
Mm(Ω), we have

(1.5.36)(∫

Ω

|Gk(un)|s
)N

p
−1

≤ C1Cfmeas(Ak,n)
(1− q

m)
N
rp

N∏

i=1

(∫

Ω

|Gk(un)|[σi−(pi−1)]r′
) 1

r′ pi
,

Ak,n = {|un| > k}. Hence we have to solve the following system

(1.5.37)





s = σi

pi γi(N−1)−(pi−1)
, ∀ i = 1, ..., N,

s = [σi − (pi − 1)]r′, ∀ i = 1, ..., N,

∑N
i=1 γi = 1, γi ≥ 0, ∀ i = 1, ..., N.

If σi is as in (1.5.30) and

(1.5.38) γi =

(
1− 1

pi

)
N − rp

N(p− 1)r(N − 1)
+

(
1− 1

pi

)
1

N − 1
+

1

pi

r − 1

r(N − 1)
,
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it is easy to prove that

N∑

i=1

γi = 1 and γi ≥ 0, ∀ i = 1, ..., N.

Moreover

s =
rN(p− 1)

N − rp
.

Therefore, we obtain

(1.5.39)

(∫

Ω

|Gk(un)|s
) 1

s

≤ C2 meas(Ak,n)
(1− r

m)
N

N−rp
1
s .

By applying Hölder inequality, with exponents s and s′ to
∫
Ω
|Gk(un)|, from (1.5.39),

we have ∫

Ω

|Gk(un)| ≤ C2 meas(Ak,n)
1− N−mp

mN(p−1) .

If we define γ = 1− N−mp
mN(p−1)

and gn(k) =
∫
Ω
|Gk(un)|, and we proceed as in the proof of

Theorem 1.19, we get

(1.5.40) 1 ≤ − C3

1− 1
γ

(gn(k)
1− 1

γ )′.

By the assumptions on m, we have 1 − 1/γ < 0. By integrating, from 0 to k, the

inequality (1.5.40), we obtain

k ≤ C4[gn(k)
1− 1

γ − gn(0)
1− 1

γ ] ≤ C4

gn(k)
1
γ
−1
,

it implies

gn(k) ≤
C5

k
γ

1−γ

.

Using (1.5.27) again, we have

meas(Ak,n) ≤
C5

k
γ

1−γ
+1

and
γ

1− γ
+ 1 =

mN(p− 1)

N −mp
= s.

Hence the sequence {un} is uniformly bounded in M s(Ω). For ∂iun, we proceed as

follows. We use as a test function v = T1(Gk(un)) in the weak formulation of problems

(1.5.29), and we have

N∑

i=1

∫

Ω

|∂iT1(Gk(un))|pi ≤
∫

Ω

|fn||T1(Gk(un))| ≤
∫

Ak,n

|fn|.
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Now we use the assumptions on fn and the fact that un is uniformly bounded inM s(Ω),

and we obtain

(1.5.41)
N∑

i=1

∫

Bk,n

|∂iun|pi ≤ Cfmeas(Ak,n)
1− 1

m ≤ C6
1

ks(1−
1
m)
,

with Bk,n = {k < |un| ≤ k + 1}. We note that

0 < s

(
1− 1

m

)
≤ 1 ⇔ 1 < m ≤ (p∗)′,

and that for 0 < θ < 1, we have that

(k − 1)1−θ

1− θ
>

k−1∑

j=1

1

jθ
.

For k ≥ 1, we have, by (1.5.41) and the definition of Bk,n,

N∑

i=1

∫

Ω

|∂iTk(un)|pi ≤ Nmeas(Ω) + C7

k−1∑

j=1

1

js(1−
1
m)

≤ C8 k
1−s(1− 1

m).

It implies ∫

Ω

|∂iTk(un)|pi ≤ C8 k
1−s(1− 1

m).

So we obtain

tpimeas({|un| ≤ k} ∩ {|∂iun| > t}) ≤

≤
∫

{|un|≤k}∩{|∂iun|>t}
|∂iun|pi ≤

∫

{|un|≤k}
|∂iun|pi ≤ C8 k

1−s(1− 1
m), ∀ i = 1, ..., N.

Since we also have

meas({|∂iun| > t}) ≤ meas({|∂iun| > t, |un| ≤ k})+

+meas({|un| > k}) ≤ C8 k
1−s(1− 1

m) · 1

tpi
+ C9

1

ks
, ∀ i = 1, ..., N.

If we minimize on k, we find k = k∗(t), such that

meas({|∂iun| > t}) ≤ C10

t
pims

s+m
=si

, ∀ i = 1, ..., N,

with

si = pi
mN(p− 1)

p(N −m)
, ∀ i = 1, ..., N.

Hence {∂iun} is uniformly bounded in M si(Ω) for all i = 1, ..., N . To pass to the limit

in (1.5.29), we proceed as in Theorem 1.14, by the property of Mm(Ω) and so we can

conclude the proof of Theorem 1.23.
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Now we prove the results concerning the regularity of the weak solution of problem

(1.4.2). This Theorem has been showed in [76]. In order to be complete we report the

proof of this result but here we give a little different proof.

1.5.5. Proof of Theorem 1.29. We use as a test function in the weak formulation

of the problem (1.4.2), v = Gk(u), as in (1.1.8), we obtain

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iGk(u) =
N∑

i=1

∫

Ω

fi∂iGk(u)

⇓
N∑

i=1

∫

Ω

|∂iGk(u)|pi ≤
N∑

i=1

∫

Ω

|fi∂iGk(u)|.

We apply Hölder inequality, with exponents pi and p
′
i, to each term of the sum which

appears to the second member of the previous inequality, we get

N∑

i=1

∫

Ω

|∂iGk(u)|pi ≤
N∑

i=1

(∫

Ak

|fi|p
′
i

) 1
p′
i

(∫

Ω

|∂iGk(u)|pi
) 1

pi

,

where Ak = {x ∈ Ω : |u(x)| > k}. Now we use Young inequality, for any i = 1, ..., N ,

we obtain
N∑

i=1

∫

Ω

|∂iGk(u)|pi ≤ Cε

N∑

i=1

∫

Ak

|fi|p
′
i +

ε

p1

N∑

i=1

∫

Ω

|∂iGk(u)|pi .

By simplifying, we obtain
(
1− ε

p1

) N∑

i=1

∫

Ω

|∂iGk(u)|pi ≤ C0

N∑

i=1

∫

Ak

|fi|p
′
i .

By choosing ε : 1− ε/p1 > 0, we get

∫

Ω

|∂iGk(u)|pi ≤ C1

N∑

i=1

∫

Ak

|fi|p
′
i

⇓
(∫

Ω

|∂iGk(u)|pi
) 1

piN ≤
(
C1

N∑

i=1

∫

Ak

|fi|p
′
i

) 1
piN

, ∀ i = 1, ..., N.

Therefore, by Sobolev inequality (1.1.5) with r = p∗, we get

‖Gk(u)‖Lp∗ (Ω) ≤ C2

N∏

i=1

(∫

Ω

|∂iGk(u)|pi
) 1

piN ≤
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≤ C2

N∏

i=1

(
C1

N∑

i=1

∫

Ak

|fi|p
′
i

) 1
piN

= C3

(
N∑

i=1

∫

Ak

|fi|p
′
i

) 1
p

.

By Hölder inequality with exponents mi/p
′
i and (mi/p

′
i)
′, for any i = 1, ..., N , we obtain

‖Gk(u)‖Lp∗ (Ω) ≤ C3

(
N∑

i=1

‖fi‖p
′
i

Lmi (Ω)meas(Ak)
1−p′i/mi

) 1
p

.

Finally, for

(1.5.42) γ = min
i

{
1− p′i

mi

}
,

k ≥ k0 and k0 such that meas(Ak0) ≤ 1,

(1.5.43) ‖Gk(u)‖Lp∗ (Ω) ≤ C4 meas(Ak)
γ
p .

If we apply again Hölder inequality with exponent p∗ and (p∗)′ to
∫
Ω
|Gk(u)| we get

∫

Ω

|Gk(u)| ≤
(∫

Ω

|Gk(u)|p
∗
) 1

p∗

meas(Ak)
1− 1

p∗ .

Therefore, by (1.5.43) we have
∫

Ω

|Gk(u)| ≤ C4 meas(Ak)
γ
p
+1− 1

p∗ .

We put g(k) =
∫
Ω
|Gk(u)|, then g′(k) = −meas(Ak) (see [51], [56]). We obtain

g(k)
p p∗

γp∗+p p∗−p ≤ −C5 g
′(k).

We define

α =
p p∗

γp∗ + p p∗ − p
,

then

(1.5.44) 1 ≤ −C5 g
′(k)g(k)−α = − C5

1− α
(g(k)1−α)′.

We remark that

1− α > 0 ⇔ min
i

{
1− p′i

mi

}
N

N − p
> 1,

as in (1.4.3). By integration from 0 to k of (1.5.44), we have

k ≤ −C5[g(k)
1−α − g(0)1−α]

⇓
C5 g(k)

1−α ≤ −k + C5‖u‖1−α
L1(Ω).
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Since g(k) is a non-negative and decreasing function there exists k such that g(k) = 0

and so u ∈ L∞(Ω).

By using the same techniques of Theorem 1.4 iii), by Lemma 1.2, we prove also the

Theorem 1.31. This problem has been already studied in [25], but we present a more

simple proof using the new Lemma 1.2, presented in Section 1.1.

1.5.6. Proof of Theorem 1.31. Also in this case we use as a test function v =

|Tk(u)|tj pjTk(u), for all j = 1, ..., N , in the weak formulation of problem (1.4.2), where

Tk is as in (1.1.7) and tj’s are positive real numbers that we will choose later. We obtain

C0

N∑

i=1

∫

Ω

|Tk(u)|pj tj |∂iTk(u)|pi ≤ C1

N∑

i=1

∫

Ω

|fi||Tk(u)|
pj tj

p′
i |Tk(u)|

pj tj
pi |∂iTk(u)|,

∀ j = 1, ..., N . By applying Young inequality, it holds true

N∑

i=1

(
C0 − C1

εpi

pi

)∫

Ω

|Tk(u)|pj tj |∂iTk(u)|pi ≤ Cε

N∑

i=1

∫

Ω

|fi|p
′
i|Tk(u)|pj tj ,

∀ j = 1, ..., N . Now we choose ε such that C0 − C1
εpi
pi
> 0, for all i = 1, ..., N , we have

∫

Ω

|Tk(u)|pj tj |∂jTk(u)|pj ≤ C2

N∑

i=1

∫

Ω

|fi|p
′
i|Tk(u)|pj tj , ∀ j = 1, ..., N.

By Hölder inequality, with exponents mi/p
′
i and (mi/p

′
i)
′, it holds

(∫

Ω

|Tk(u)|pj tj |∂jTk(u)|pj
) 1

pj ≤ C3




N∑

i=1

(∫

Ω

|fi|mi

) p′i
mi

(∫

Ω

(1 + |Tk(u)|)pj tj(mi/p
′
i)

′
)1− p′i

mi




1
pj

,

∀ j = 1, ..., N . Recalling that µ = mini{mi/p
′
i}, we arrive to the following inequality

N∏

j=1

(∫

Ω

|Tk(u)|pj tj |∂jTk(u)|pj
) 1

pj ≤ C4




N∑

i=1

(∫

Ω

(1 + |Tk(u)|)
pj tj µ

µ−1

)1− p′i
mi




N
p

.

Now we can use Lemma 1.2, we obtain

(1.5.45)

(∫

Ω

|Tk(u)|s
)N

p
−1

≤ C5




N∑

i=1

(∫

Ω

(1 + |Tk(u)|)
tj pjµ

µ−1

)1− p′i
mi




N
p

,
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with

(1.5.46)





s =
1+tj

γj(N−1)−1+1/pj
for all j = 1, ..., N,

∑N
j=1 γj = 1, γj ≥ 0, for all j = 1, ..., N.

We also want in (1.5.45) s =
tj pjµ

µ−1
, for any j = 1, ..., N . So we must solve the following

system 



s =
1+tj

γj(N−1)−1+1/pj
, ∀ j = 1, ..., N,

s =
tj pjµ

µ−1
, ∀ j = 1, ..., N,

∑N
j=1 γj = 1, γj ≥ 0 and tj ≥ 0, ∀ j = 1, ..., N.

By the first two equations in the previous system, after some lengthy but easy calcula-

tions, we get

(1.5.47) tj =
µ− 1

µ[pj γj(N − 1)− (pj − 1)]− (µ− 1)
, ∀ j = 1, ..., N.

and

(1.5.48) γj =
pj − 1

pj(N − 1)
+

µ− 1

µpj(N − 1)
+

N − pµ

pNµ(N − 1)
, ∀ j = 1, ..., N.

It is simple to show that
∑N

j=1 γj = 1, γj ≥ 0 and tj ≥ 0, by our assumptions of mj’s.

Moreover, by the choice of tj and γj, we obtain

s =
Npµ

N − µp
.

Therefore

‖Tk(u)‖Ls(Ω) ≤ C6, ∀ k ∈ N.

By Fatou Lemma we can pass to the limit as k → +∞, we obtain

‖u‖Ls(Ω) ≤ C7.
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1.6. Entropic solutions

In this section we want to extend a definition of solution, introduced for the first

time in [11], which allows us to prove a uniqueness result and a existence result for

1 < p < 2− 1/N . In the previous pages we have seen that there exists a distributional

solution for the problem (1.2.1), namely u belongs to W 1,1
0 (Ω), such that

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iφ =

∫

Ω

fφ, ∀ φ ∈ C1
0(Ω),

if f ∈ Lm(Ω) with m < p′∞. Before all it is necessary to introduce functional spaces on

Ω.

Definition 1.35. T 1,1
loc (Ω) is the set of measurable functions u : Ω → R such that

for any k > 0 the truncation function Tk(u), as in (1.1.7), belongs to W 1,1
loc (Ω).

Definition 1.36. Set 1 < pi < ∞, for all i = 1, ..., N . T 1,(pi)
0 (Ω) is the set of

measurable functions u : Ω → R such that for any k > 0 the truncation function Tk(u)

belongs to W
1,(pi)
0 (Ω).

Before giving the definition of the entropy solution we present the following result.

Lemma 1.37. For all u ∈ T 1,(pi)
0 (Ω), a unique, measurable function vi : Ω → R, for

every i = 1, ..., N , exists such that

∂iTk(u) = viχ{x∈Ω:|u(x)|<k} a.e.

Moreover, if u ∈ W
1,(pi)
0 (Ω), vi = ∂iu.

We do not show this result because the proof is pretty much the same of which in

[11]. Now we can define the entropy solution for the problem (1.2.1).

Definition 1.38. Set f ∈ L1(Ω). A function u ∈ T 1,(pi)
0 (Ω) is a entropy solution of

(1.2.1) if

(1.6.1)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iTk(u− ϕ) ≤
∫

Ω

fTk(u− ϕ)

∀ k > 0 and ∀ ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω).

Remark 1.39. We note that the above inequality is well defined because u ∈
T 1,(pi)
0 (Ω).
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Now we want to prove that the solution, which we have found in the previous sections

by approximation methods, is an entropy solution. We have already proved in Chapter

1 (see i) of Theorem 1.14 and its proof) that the solutions un of approximating problems

(1.5.15) converge to u in W
1,(si)
0 (Ω) with

si <
N(p− 1)

p(N − 1)
pi, ∀ i = 1, ..., N.

Moreover Tk(un) → Tk(u) weakly in W
1,(pi)
0 (Ω) and also fn → f in L1(Ω). So we have

lim
n→+∞

∫

Ω

fnTk(un − ϕ) =

∫

Ω

fTk(u− ϕ).

Now by Fatou Lemma, we have

lim inf
n→+∞

N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iTk(un − ϕ) ≥

≥ lim inf
n→+∞

N∑

i=1

∫

Ω

[|∂iun|pi−2∂iun − |∂iϕ|pi−2∂iϕ]∂iTk(un − ϕ)+

+ lim inf
n→+∞

N∑

i=1

∫

Ω

|∂iϕ|pi−2∂iϕ∂iTk(un − ϕ) ≥

≥
N∑

i=1

∫

Ω

[|∂iu|pi−2∂iu− |∂iϕ|pi−2∂iϕ]∂iTk(u− ϕ)+

+
N∑

i=1

∫

Ω

|∂iϕ|pi−2∂iϕ∂iTk(u− ϕ) =
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iTk(u− ϕ).

Hence u satisfies (1.6.1) and so it is an entropy solution.

Now we prove the following result.

Proposition 1.40. Set u an entropy solution for the problem (1.2.1). Then u be-

longs to M
N(p−1)
N−p (Ω) and ∂iu belongs to Mpi

N(p−1)
p(N−1) (Ω), for all i = 1, ..., N .

Proof. We choose ϕ = 0 as a test function in (1.6.1), we have

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iTk(u) ≤
∫

Ω

fTk(u) ≤ k‖f‖L1(Ω)

⇓
N∑

i=1

∫

Ω

|∂iTk(u)|pi ≤ k‖f‖L1(Ω).
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It implies

(1.6.2)

∫

Ω

|∂iTk(u)|pi ≤ k‖f‖L1(Ω), ∀ i = 1, ...., N.

Hence we obtain
(∫

Ω

|∂iTk(u)|pi
) 1

piN ≤ k
1

piN ‖f‖
1

piN

L1(Ω), ∀ i = 1, ..., N

⇓
N∏

i=1

(∫

Ω

|∂iTk(u)|pi
) 1

piN ≤ k
1
p‖f‖

1
p

L1(Ω).

Now we use the anisotropic Sobolev inequality (1.1.5), with r = p∗ and v = Tk(u) and

we obtain ∫

Ω

|Tk(u)|p
∗ ≤ C0‖f‖

p∗
p

L1(Ω)k
p∗
p .

So

kp
∗
meas(Ak) ≤

∫

Ak

|Tk(u)|p
∗ ≤

∫

Ω

|Tk(u)|p
∗ ≤ C0‖f‖

p∗
p

L1(Ω)k
p∗
p ,

that implies

(1.6.3) meas(Ak) ≤
C0‖f‖

p∗
p

L1(Ω)

k
p∗(p−1)

p

.

Hence

u ∈M
N(p−1)
N−p (Ω).

Now we consider (1.6.2), we have
∫

Ω

|∂iTk(u)|pi =
∫

{|u|≤k}
|∂iu|pi ≥

∫

{|u|≤k}∩{|∂iu|>β}
|∂iu|pi ≥

≥ βpimeas({|u| ≤ k} ∩ {|∂iu| > β})
and so

(1.6.4) meas({|u| ≤ k, |∂iu| > β}) ≤ k‖f‖L1(Ω)

βpi
,

for all i = 1, ..., N . Then, for all k > 0, we obtain

meas({|∂iu| > β}) = meas({|∂iu| > β, |u| ≤ k})+

+meas({|∂iu| > β, |u| > k}) ≤ meas({|∂iu| > β, |u| ≤ k}) + meas({|u| > k}) ≤
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≤ k‖f‖L1(Ω)

βpi
+
C0‖f‖

p∗
p

L1(Ω)

k
p∗(p−1)

p

, ∀ i = 1, ..., N,

by (1.6.3) and (1.6.4). We minimize on respect to k. We consider the function

ψ(k) = C1
k

βpi
+ C2

1

k
p∗(p−1)

p

.

We have

ψ′(k) =
C1

βpi
− C3k

−p∗(p−1)−p
p .

So

ψ′(k) = 0 ⇒ k0 = C4β
pip

p∗(p−1)+p∗ .

Now we get

ψ(k0) = C5β
−pip

∗(p−1)

p∗(p−1)+p + C6β
−pip

∗(p−1)

p∗(p−1)+p = C7β
−pip

∗(p−1)

p∗(p−1)+p .

Hence

meas({|∂iu| > β}) ≤ C7β
−pip

∗(p−1)

p∗(p−1)+p ,

for all i = 1, ..., N . So ∂iu ∈Mpi
N(p−1)
p(N−1) (Ω) for all i = 1, ..., N .

Remark 1.41. We observe that if pi = 2 for all i = 1, ..., N (or equivalently pi = p

for all i = 1, ..., N), we obtain the classic result (see [11]), namely u ∈ M
N

N−2 (Ω) and

∇u ∈M
N

N−1 (Ω).

Remark 1.42. We note that

pi
N(p− 1)

p(N − 1)

is the same exponent that we have found in Theorem 1.14, as we expect according to

the isotropic classic case.

Now we can prove the following result.

Theorem 1.43. The entropy solution of problem (1.2.1) is unique.

For the following proof we use techniques introduced in [69].

Proof. Let u be the entropy solution satisfying the regularity properties stated

in the previous propositions, obtained by approximation, as in Theorem 1.14. It is
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sufficient to show that every entropy solution of (1.2.1) coincides with u. Let z be a

second entropy solution, so z ∈ T 1,(pi)
0 (Ω) and

N∑

i=1

∫

Ω

|∂iz|pi−2∂iTk(z − ϕ) ≤
∫

Ω

fTk(z − ϕ)

for all k ∈ R+ \ {0} and for all ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω). Taking ϕ = un, because we

know that un ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω) (see the proof of Theorem 1.14), we get

(1.6.5)
N∑

i=1

∫

Ω

|∂iz|pi−2∂iz∂iTk(z − un) ≤
∫

Ω

fTk(z − un).

Now we choose Tk(z−un) as test function in the weak formulation of problems (1.5.15).

It is possible since un ∈ L∞(Ω) and z ∈ T 1,(pi)
0 (Ω) and hence Tk(z − un) belongs to

W
1,(pi)
0 (Ω) for all k > 0. We have

(1.6.6) −
N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iTk(z − un) = −
∫

Ω

fnTk(z − un).

Then adding (1.6.5) to (1.6.6), we obtain

N∑

i=1

∫

Ω

[|∂iz|pi−2∂iz − |∂iun|pi−2∂iun]∂iTk(z − un) ≤
∫

Ω

(f − fn)Tk(z − un).

We note that the integral in the left hand side is non-negative, and it is bounded

from above by a constant C1 k, independent on n. Moreover the integrand function,

[|∂iz|pi−2∂iz− |∂iun|pi−2∂iun]∂iTk(z− un), goes to [|∂iz|pi−2∂iz− |∂iu|pi−2∂iu]∂iTk(z− u)

a.e., for all i = 1, ..., N . Hence, by using Fatou Lemma, we can pass to the limit as

n→ +∞, we get

N∑

i=1

∫

Ω

[|∂iz|pi−2∂iz − |∂iu|pi−2∂iu]∂iTk(z − u) ≤ 0,

and so, we obtain
N∑

i=1

∫

Ω

|∂iTk(z − u)|pi ≤ 0,

if pi ≥ 2. By the arbitrary choice of k, we have z = u a.e. in Ω. It is possible to obtain

the same result, by a slight modification, also if 1 < pi < 2, but for simplicity we omit

the proof.





CHAPTER 2

Elliptic problems with natural growth terms

In this chapter we deal with some elliptic problems, as (1.2.1), studied in the first

chapter, with the presence of lower order terms, with respect to the gradient of u,

which play the role of perturbation terms. These terms are called natural growth terms

because they have the same growths of the operator (I.1), and they naturally appear if

we write the Euler-Lagrange equation, associated to some functionals of the Calculus of

Variations. But the boundary value problems, which we study may not be the Euler-

Lagrange equation of some functionals. So we will use direct methods to solve these

kinds of problems. We see that a sign condition on lower order terms plays a crucial role

in finding solutions of our problems, since it allows us to easily obtain a priori estimates

from the equation. On the other hand if this assumption fails to hold true we may not

even have solutions. Moreover we prove that an extra assumption allows us to show an

extra regularity for the solutions of the problems, presented in this chapter, even if the

datum only belongs to L1(Ω). Also this additional condition is useful to obtain a priori

estimate in the energy space W
1,(pi)
0 (Ω).

2.1. Lower order terms without sign assumptions

In this first section we prove the existence of a solution for the following problem

(2.1.1)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] + µ0u =

∑N
i=1 bi(x, u,∇u) + f on Ω,

u = 0 on ∂Ω,

where µ0 > 0,

f ∈ Lm(Ω), m >
p∗

p∗ − pN
, p∗ > pN ,

bi(x, s, ξ) : Ω× R× RN → R

is a Carathéodory function, for all i = 1, ..., N and there exists γ > 0 such that the

following inequality is true for all (s, ξ) ∈ R× RN and a.e. x ∈ Ω

(2.1.2) |bi(x, s, ξ)| ≤ γ|ξi|pi , ∀ i = 1, ..., N,

37
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or more in general

(2.1.3)
N∑

i=1

|bi(x, s, ξ)| ≤ γ

N∑

i=1

|ξi|pi .

First of all we note that it is impossible to use Leray-Lions Theorem (as in Chapter 1)

because the bi’s terms are not bounded and we do not have any information concerning

on their sign. To prove an existence result for (2.1.1) we use approximating techniques

and some results presented in Chapter 1. We also observe that the term, which appear

in left side hand of the equation in (2.1.1), allows us to achieve an existence results.

In fact if µ0 = 0 already in the isotropic case (i.e. pi = 2 for all i = 1, ..., N) we have

a simple counterexample to the existence of solutions for the problem (2.1.1). In the

following section we see that if we assume a sign condition on bi, for i = 1, .., N , we can

even choose µ0 = 0.

We highlight that it is also possible to take a unique function b instead of a sum of

bi’s, if it satisfies, ∀ (s, ξ) ∈ R× RN , a.e. x ∈ Ω, and γ > 0, the following condition

(2.1.4) |b(x, s, ξ)| ≤ γ
N∑

i=1

|ξi|pi , ∀ i = 1, ..., N.

But the first possibility is more natural always by considering the relation between these

problems and some functionals of the Calculus of Variation. As a matter of fact, if we

consider the following functional

(2.1.5) J(v) =
N∑

i=1

1

pi

∫

Ω

a(x, v)|∂iv|pi −
∫

Ω

fv,

where a is a bounded, smooth function, we obtain the following Euler-Lagrange equation

−
N∑

i=1

∂i[a(x, u)|∂iu|pi−2∂iu] +
N∑

i=1

a′(x, u)|∂iu|pi = f,

and in the right hand side a sum appears. We also note that, obviously, the problem

(2.1.1) does not correspond to the Euler-Lagrange equation of a functional, as (2.1.5).

Indeed if a(x, u) ≡ 1 then a′(x, u) ≡ 0 and so we find the problem (1.2.1) not (2.1.1).

To fix the ideas, one can consider, as a special example of (2.1.1), the Dirichlet

problem:

(2.1.6)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] + µ0u = γ

∑N
i=1 |∂iu|pi + f on Ω,

u = 0 on ∂Ω.
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Moreover we remark that since f ∈ Lm(Ω), with m > p∗/(p∗−pN), we also must assume

p∗ > pN and so p∞ = p∗. We think that this hypothesis is technical, like we will see

better in the following.

We have the result below.

Theorem 2.1. Let f ∈ Lm(Ω), m > p∗/(p∗ − pN), p
∗ > pN and

i) bi(x, s, ξ) : Ω× R× RN → R is a Carathéodory function, for all i = 1, ..., N ;

ii) there exists γ > 0, such that the following inequality is true for all (s, ξ) ∈
R× RN and a.e. x ∈ Ω

(2.1.7) |bi(x, s, ξ)| ≤ γ|ξi|pi , ∀ i = 1, ..., N.

Then there exists a function u ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω), weak solution for the problem

(2.1.1), namely

(2.1.8)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iϕ+ µ0

∫

Ω

uϕ =
N∑

i=1

∫

Ω

bi(x, u,∇u)ϕ+

∫

Ω

fϕ

for all ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω).

The idea of the proof is taken from [29] (see also [13]). We consider for any n ∈ N
the approximating problems

(2.1.9)
N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iϕ+ µ0

∫

Ω

unϕ =
N∑

i=1

∫

Ω

bni (x, un,∇un)ϕ+

∫

Ω

fnϕ

∀ ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω)

where

bni (x, s, ξ) =
bi(x, s, ξ)

1 + 1
n
|bi(x, s, ξ)|

, ∀ i = 1, ..., N

and

fn(x) =
f(x)

1 + 1
n
|f(x)| ,

so that

(2.1.10)

|bni (x, s, ξ)| ≤ |bi(x, s, ξ)| and |fn(x)| ≤ |f(x)|, ∀ i = 1, ..., N, and n ∈ N

and

(2.1.11) |bni (x, s, ξ)| ≤ n and |fn(x)| ≤ n, ∀ i = 1, ..., N, and n ∈ N.
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Then there exists a solution un ∈ W
1,(pi)
0 (Ω) of (2.1.9) by a simple modification of

classic Leray-Lions Theorem. This solution is also bounded because f ∈ Lm(Ω) with

m > p∗

p∗−pN
> N

p
, (see Theorem 1.4 i) in Section 1.2). We divide the proof in several

steps.

2.1.1. A priori estimates. We prove the following result.

Lemma 2.2. There exist β > 1 and a constant C > 0, not depending on n, such that

(2.1.12)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| ≤ C.

Proof. We use as a test function in (2.1.9), ϕ = (eβpN |un| − 1)sgn(un), where β > 1

is a real number, that we will fix later, because un ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω). We have, by

(2.1.7) and (2.1.10)

βpN

N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβpN |un| − 1) ≤

≤ γ
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| +

∫

Ω

|f |(eβpN |un| − 1).

Hence

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβpN |un| − 1) ≤
∫

Ω

|f |(eβpN |un| − 1).

By recalling that (ept − 1) ≥ (et − 1)p for every p > 1, and that for every M > 1 there

exists t∗ such that (ept − 1) ≤M(et − 1)p for t > t∗, we obtain

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤

≤
∫

Ω

|f |(eβpN |un| − 1) =

∫

{|un|> t∗
β
}
|f |(eβpN |un| − 1) +

∫

{|un|≤ t∗
β
}
|f |(eβpN |un| − 1) ≤

≤M

∫

Ω

|f |(eβ|un| − 1)pN + C0

∫

Ω

|f |.

Now we apply the Hölder inequality with exponents m and m′, to obtain

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤
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≤M‖f‖Lm(Ω)

(∫

Ω

(eβ|un| − 1)pNm′
) 1

m′

+ C0‖f‖L1(Ω).

Since pN < pNm
′ < p∗, (pNm

′ < p∗ ⇔ m > p∗

p∗−pN
with p∗ > pN), we use the

interpolation inequality to have

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤

≤M‖f‖Lm(Ω)‖eβ|un| − 1‖pN (1−θ)
LpN (Ω) ‖eβ|un| − 1‖θpN

Lp∗ (Ω)
+ C0‖f‖L1(Ω).

Now we apply Young inequality with exponents 1
θ
and θ, to obtain

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤

≤ ε(M‖f‖Lm(Ω))
1
θ

(∫

Ω

(eβ|un| − 1)p
∗
) pN

p∗

+ Cε

∫

Ω

(eβ|un| − 1)pN + C0‖f‖L1(Ω).

By Lemma 1.1, we obtain

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤

≤ ε(M‖f‖Lm(Ω))
1
θCpN

1 NpN−1BpN−p1

N∑

i=1

∫

Ω

|∂i(eβ|un| − 1)|pi+

+Cε

∫

Ω

(eβ|un| − 1)pN + C0‖f‖L1(Ω) =

= ε(M‖f‖Lm(Ω))
1
θCpN

1 NpN−1BpN−p1

N∑

i=1

∫

Ω

βpi|∂iun|pieβpi|un|+

+Cε

∫

Ω

(eβ|un| − 1)pN + C0‖f‖L1(Ω).

We choose β > 1 such that βpN − γ > 0 and, since et > 1 for any t > 0 and pi ≤ pN for

any i = 1, ..., N , we have

(βpN − γ)
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤

≤ ε(M‖f‖Lm(Ω))
1
θCpN

1 NpN−1BpN−p1βpN

N∑

i=1

∫

Ω

|∂iun|pieβpN |un|+
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+Cε

∫

Ω

(eβ|un| − 1)pN + C0‖f‖L1(Ω).

Setting C2 = (M‖f‖Lm(Ω))
1
θCpN

1 NpN−1BpN−p1βpN , we get

[(βpN − γ)− εC2]
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| + µ0

∫

Ω

|un|(eβ|un| − 1)pN ≤

≤ Cε

∫

Ω

(eβ|un| − 1)pN + C0‖f‖L1(Ω).

We take ε such that (βpN − γ)− εC2 > 0 and we note that

µ0

∫

Ω

|un|(eλ|un| − 1)pN ≥ µ0

∫

{|un|>Cε
µ0

}
|un|(eβ|un| − 1)pN ≥ Cε

∫

{|un|>Cε
µ0

}
(eβ|un| − 1)pN .

Therefore, since

Cε

∫

Ω

(eβ|un| − 1)pN = Cε

∫

{|un|>Cε
µ0

}
(eβ|un| − 1)pN + Cε

∫

{|un|≤Cε
µ0

}
(eβ|un| − 1)pN ,

we have

[(βpN − γ)− εC2]
N∑

i=1

∫

Ω

|∂iun|pieβpN |un| ≤

≤ Cε

∫

{|un|≤Cε
µ0

}
(eβ|un| − 1)pN + C0‖f‖L1(Ω) ≤ Cε

∫

Ω

(e
β Cε

µ0 − 1)pN + C0‖f‖L1(Ω).

At the end we get (2.1.12).

The consequence of this lemma is that

(2.1.13)
N∑

i=1

∫

Ω

|∂iun|pi ≤ C.

Now we claim the following lemma.

Lemma 2.3. There exists a constant C > 0, not depending on n such that ‖un‖L∞(Ω) ≤
C.

Proof. We proceed like in the previous Lemma. We put, as test function in (2.1.9),

ϕ = (eβpN |Gk(un)| − 1)sgn(un), where β > 1 is a real number that we will choose later.

We have

βpN

N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iGk(un)e
βpN |Gk(un)| + µ0

∫

Ω

|un|(eβpN |Gk(un)| − 1) ≤
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≤ γ
N∑

i=1

∫

Ω

|∂iun|pi(eβ|Gk(un)| − 1) +

∫

Ω

|f |(eβ|Gk(un)| − 1).

Therefore

(βpN − γ)
N∑

i=1

∫

Ω

|∂iGk(un)|pieβpN |Gk(un)| + µ0

∫

Ω

|un|(eβpN |Gk(un)| − 1) ≤

≤
∫

Ω

|f |(eβ|Gk(un)| − 1).

If we use that (ept − 1) ≥ (et − 1)p for all p > 1 and that exists M > 1 such that

(ept − 1) ≤M(et − 1)p for t > t∗, we obtain

(βpN − γ)
N∑

i=1

∫

Ω

|∂iGk(un)|pieβpN |Gk(un)| + µ0

∫

Ω

|un|(eβ|Gk(un)| − 1)pN ≤

≤ C0

∫

{|un|>k}
|f |+M

∫

Ω

|f |(eλ|Gk(un)| − 1)pN .

We apply Hölder inequality with exponents m > 1 and m′ to the second term of the

above expression, we have

(βpN − γ)
N∑

i=1

∫

Ω

|∂iGk(un)|pieβpN |Gk(un)| + µ0

∫

Ω

|un|(eβ|Gk(un)| − 1)pN ≤

≤ C0

∫

{|un|>k}
|f |+M‖f‖Lm(Ω)

(∫

Ω

(eβ|Gk(un)| − 1)pNm′
) 1

m′

.

Since pN < pNm
′ < p∗, by interpolation inequality, we get

(βpN − γ)
N∑

i=1

∫

Ω

|∂iGk(un)|pieβpN |Gk(un)| + µ0

∫

Ω

|un|(eβ|Gk(un)| − 1)pN ≤

≤ C0

∫

{|un|>k}
|f |+M‖f‖Lm(Ω)

(∫

Ω

(eβ|Gk(un)| − 1)pN
)1−θ (∫

Ω

(eβ|Gk(un)| − 1)p
∗
) pNθ

p∗

.

By Young inequality with exponents 1
θ
and θ, we obtain

(βpN − γ)
N∑

i=1

∫

Ω

|∂iGk(un)|pieβpN |Gk(un)| + µ0

∫

Ω

|un|(eβ|Gk(un)| − 1)pN ≤

≤ C0

∫

{|un|>k}
|f |+ ε(M‖f‖Lm(Ω))

1
θ

(∫

Ω

(eβ|Gk(un)| − 1)p
∗
) pN

p∗

+ Cε

∫

Ω

(eβ|Gk(un)| − 1)pN .
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We remark, since pN ≥ pi for all i = 1, ..., N and et > 1 for all t > 0,

N∑

i=1

∫

Ω

|∂iGk(un)|pieβpN |Gk(un)| ≥
N∑

i=1

∫

Ω

|∂iGk(un)|pieβpi|Gk(un)| ≥

≥
N∑

i=1

1

βpi

∫

Ω

|∂i(eβpN |Gk(un)| − 1)|pi .

We choose β > 1, such that βpN − γ > 0 and we apply Lemma 1.1, we have

N∑

i=1

1

βpi

∫

Ω

|∂i(eβpN |Gk(un)| − 1)|pi ≥ 1

βpNCpN
1 NpN−1BpN−p1

(∫

Ω

(eβpN |Gk(un)| − 1)p
∗
) pN

p∗

.

We define C2 = βpNCpN
1 NpN−1BpN−p1 , we get

[
βpN − γ

C2

− ε(M‖f‖Lm(Ω))
1
θ

](∫

Ω

(eβ|Gk(un)| − 1)p
∗
) pN

p∗

+

+(µ0k − Cε)

∫

Ω

(eβ|Gk(un)| − 1)pN ≤ C0

∫

{|un|>k}
|f |.

We take ε such that
[
βpN−γ

C2
− ε(M‖f‖Lm(Ω))

1
θ

]
> 0 and then we choose k such that

(µ0k − Cε) > 0, we have

C3‖eλ|Gk(un)| − 1‖pN
Lp∗ (Ω)

+ C4‖eλ|Gk(un)| − 1‖pNLpN (Ω) ≤ C0

∫

{|un|>k}
|f |.

Since et − 1 ≥ t for any t ≥ 0 and using Hölder inequality with exponents p∗ and (p∗)′,

we obtain

β

∫

Ω

|Gk(un)| ≤
∫

Ω

(eβ|Gk(un)| − 1) ≤ meas(Ak,n)
1− 1

p∗

(∫

Ω

(eβ|Gk(un)| − 1)p
∗
) 1

p∗

,

where Ak,n = {x ∈ Ω : |un(x)| > k}. Hence we use the previous estimate and we obtain

β

∫

Ω

|Gk(un)| ≤ meas(Ak,n)
1− 1

p∗ C5

(∫

{|un|>k}
|f |
) 1

pN

.

Now we apply Hölder inequality with exponents m and m′, we have

β

∫

Ω

|Gk(un)| ≤ meas(Ak,n)
1− 1

p∗ C5 ‖f‖
1

pN

Lm(Ω)meas(Ak,n)
1

pN
− 1

pNm =

= C5 ‖f‖
1

pN

Lm(Ω)meas(Ak,n)
1− 1

p∗+
1

pN
− 1

pNm .

We remark that

1− 1

p∗
+

1

pN
− 1

pNm
> 1 ⇔ m >

p∗

p∗ − pN
.
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We put

gn(k) =

∫

Ω

|Gk(un)|, we have g′n(k) = −meas(Ak,n),

as in many proofs of the results presented in Chapter 1. Therefore

gn(k)
p∗pNm

p∗pNm−pNm+p∗m−p∗ ≤ −C6 g
′
n(k)

1 ≤ −C6

1− p∗pNm
p∗pNm−pNm+p∗m−p∗

(gn(k)
1− p∗pNm

p∗pNm−pNm+p∗m−p∗ )′,

where

1− p∗pNm

p∗pNm− pNm+ p∗m− p∗
> 0

always due to the assumptions on m. If we integrate the previous expression from 0 to

k, we obtain

k ≤ −C6

1− p∗pNm
p∗pNm−pNm+p∗m−p∗

[gn(k)
1− p∗pNm

p∗pNm−pNm+p∗m−p∗ − ‖un‖
1− p∗pNm

p∗pNm−pNm+p∗m−p∗

L1(Ω) ].

By (2.1.13) estimate we can say that a constant C7 > 0 exists, which does not depend

on n, such that

‖un‖L1(Ω) ≤ C7.

Hence we have

C8gn(k)
1− p∗pNm

p∗pNm−pNm+p∗m−p∗ ≤ −k + C9.

If k > C9, the function gn(k) becomes negative; but it is impossible because gn(k) is a

decreasing and positive function. So there exists k0 such that gn(k0) = 0. Hence

(2.1.14) ‖un‖L∞(Ω) ≤ C,

where C does not depend on n.

If we want a solution for the problem (2.1.1) we have to pass to the limit in the

approximating problems. By (2.1.13) we have, up to subsequence, that u ∈ W
1,(pi)
0 (Ω)

exists, such that

(2.1.15) ∇un ⇀ ∇u in Lp1(Ω),

(2.1.16) un → u in Lp1(Ω)

and

(2.1.17) un → u a.e. in Ω.
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By estimate (2.1.14), we also have that g ∈ L∞(Ω) exists such that un ⇀
∗ g in L∞(Ω)

and, since Ω is a finite measure set, un ⇀ g in Lp1(Ω). Hence, by (2.1.16), g = u and

un ⇀
∗ u.

2.1.2. The strong convergence of the approximate solutions. Now we want

to prove that the sequence of the approximate solutions strong convergence inW
1,(pi)
0 (Ω).

We take as a test function in (2.1.9), ϕn = (eβpN |un−u| − 1)sgn(un − u), where β is a real

parameter that we will choose later. We get

βpN

N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂i(un − u)eβpN |un−u| + µ0

∫

Ω

unϕn =

=
N∑

i=1

∫

Ω

bni (x, un,∇un)ϕn +

∫

Ω

fnϕn.

We add and subtract the term

βpN

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂i(un − u)eβpN |un−u|,

we obtain

βpN

N∑

i=1

∫

Ω

[|∂iun|pi−2∂iun − |∂iu|pi−2∂iu]∂i(un − u)eβpN |un−u| ≤

≤ −βpN
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂i(un − u)eβpN |un−u| − µ0

∫

Ω

unϕn+

+γ
N∑

i=1

∫

Ω

|∂iun|piϕn +

∫

Ω

|fϕn|.

We note, since pi > 1 and pN ≥ pi for any i = 1, ..., N , that

N∑

i=1

∫

Ω

|∂iun|piϕn ≤ 2pN−1

N∑

i=1

∫

Ω

|∂i(un − u)|piϕn + 2pN−1

N∑

i=1

∫

Ω

|∂iu|piϕn.

Moreover, for all i, the following inequality holds, if pi ≥ 2 (it is possible to obtain the

same result also for 1 < pi < 2 for all i),

[|∂iun|pi−2∂iun − |∂iu|pi−2∂iu]∂i(un − u) ≥ C0 |∂i(un − u)|pi .
We have

(C0βpN − γ2pN−1)
N∑

i=1

∫

Ω

|∂i(un − u)|pieβpN |un−u| ≤
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≤ −βpN
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂i(un − u)eβpN |un−u|+

−µ0

∫

Ω

unϕn + γ2pN−1

N∑

i=1

∫

Ω

|∂iu|piϕn +

∫

Ω

|fϕn|.

We fix β such that C1 = C0βpN − γ2pN−1 > 0 we obtain

C1

N∑

i=1

∫

Ω

|∂i(un − u)|pieβpN |un−u| ≤ −βpN
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂i(un − u)eβpN |un−u|+

(2.1.18) −µ0

∫

Ω

unϕn + γ2pN−1

N∑

i=1

∫

Ω

|∂iu|piϕn +

∫

Ω

|fϕn|.

Now we claim that all the terms of the right hand side of the previous inequality go to

0. By (2.1.17), we get that ϕn → 0 a.e. on Ω, and we also obtain |ϕn| ≤ C2 by the

continuity of exponential function and the uniform boundedness in L∞(Ω) of un and u.

Hence

ϕn → 0 in Lp∗(Ω).

Therefore ∫

Ω

|∂iu|piϕn → 0,

∫

Ω

|fϕn| → 0,

and

−µ0

∫

Ω

unϕn → 0.

We also have that the first term in the right side hand of (2.1.18), goes to zero. So the

sequence strong converges in W
1,(pi)
0 (Ω).

2.1.3. Passing to the limit in the approximate problems. Now we can pass

to the limit in the approximate problems (2.1.9). We have

N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iϕ→
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iϕ,

∫

Ω

fnϕ→
∫

Ω

fϕ,
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since fn → f in Lm(Ω) and ϕ ∈ L∞(Ω). Moreover

µ0

∫

Ω

unϕ→ µ0

∫

Ω

uϕ,

by (2.1.16) and
∫

Ω

bin(x, un,∇un)ϕ→
∫

Ω

bi(x, u,∇u)ϕ, ∀ i = 1, ..., N,

since ∂iun → ∂iu in measure, by the strong convergence in W
1,(pi)
0 (Ω). So we also have

bin(x, un,∇un) → bi(x, u,∇u), ∀ i = 1, ..., N

in measure, since bi is a Caratheodory function for all i = 1, ..., N . Moreover, thanks to

the assumption (2.1.7) it also strongly converges in L1(Ω), for all i = 1, ..., N and hence

bin(x, un,∇un)ϕ→ bi(x, u,∇u)ϕ, in L1(Ω) ∀ i = 1, ..., N.

We get that, for all ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω),

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iϕ+ µ0

∫

Ω

uϕ =
N∑

i=1

∫

Ω

bi(x, u,∇u)ϕ+

∫

Ω

fϕ

and so we have a weak solution for the problem (2.1.9).

Remark 2.4. We note that we have used the assumptions p∗ > pN in order to apply

the interpolation inequality. Moreover we know by Theorem 1.4 that un, solutions of

approximating problems (2.1.9), belong to L∞(Ω) also if f ∈ Lm(Ω), with N/p < m ≤
p∗/(p∗ − pN). So we think that also for these values of m, we should have the same

result. Moreover if Theorem 2.1 holds for m > N
p
we do not need to assume p∗ > pN .

2.2. Lower order terms with sign conditions

In this section we prove the existence of a solution for the following problem

(2.2.1)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] +

∑N
i=1 gi(x, u,∇u) = f in Ω,

u ∈ W
1,(pi)
0 (Ω), gi(x, u,∇u) ∈ L1(Ω), ∀ i = 1, ..., N.

(
N∑

i=1

gi(x, u,∇u) ∈ L1(Ω)

)

where gi(x, u,∇u) are nonlinearities with natural growths respect to the gradient of u,

for all i = 1, ..., N , which satisfy the sign condition gi(x, s, ξ)s ≥ 0. We also assume that
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f belongs either to L(p∗)′(Ω), (or to the dual space of W
1,(pi)
0 (Ω)), or to L1(Ω). In the

second case we also suppose that |gi(x, s, ξ)| ≥ γ|ξi|pi , for all i, and for |s| sufficiently

large. Let gi : Ω× R× RN −→ R a Carathéodory function such that, for almost every

x ∈ Ω and for all s ∈ R and ξ ∈ RN ,

(2.2.2) gi(x, s, ξ)s ≥ 0, ∀ i = 1, ..., N,

(2.2.3) |gi(x, s, ξ)| ≤ b(|s|)|ξi|pi , ∀ i = 1, ..., N,

or more in general

(2.2.4)
N∑

i=1

|gi(x, s, ξ)| ≤ b(|s|)
N∑

i=1

|ξi|pi ,

where b : R → R is a continuous and nondecreasing function. Finally we assume one of

the following two assumptions:

(2.2.5) f ∈
[
W

1,(pi)
0 (Ω)

]∗
,

with ∗ we denote the dual space of W
1,(pi)
0 (Ω), or

(2.2.6)





f ∈ L1(Ω),

and there exists σ > 0 and γ > 0 such that

|gi(x, s, ξ)| ≥ γ|ξi|pi when |s| > σ, ∀ i = 1, ..., N.

We have the following result.

Theorem 2.5. Under the assumptions (2.2.2), (2.2.3) and either (2.2.5) or (2.2.6),

there exists at least a weak solution for (2.2.1), that is u ∈ W
1,(pi)
0 (Ω) such that

(2.2.7)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iϕ+
N∑

i=1

∫

Ω

gi(x, u,∇u)ϕ =

∫

Ω

fϕ,

for all ϕ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω).

To fix the ideas we can take like a model problem the following

(2.2.8)





−∑N
i=1 ∂i[|∂iu|pi−2∂iu] + u

∑N
i=1 |∂iu|pi = f on Ω,

u = 0 on ∂Ω.
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We observe that the solution of (2.2.1) is a solution of finite energy (u ∈ W
1,(pi)
0 (Ω))

even if f ∈ L1(Ω). It seems to be strange since for f ∈ L1(Ω) the solution u of




−∑N
i=1 ∂i[|∂iu|pi−2∂iu] = f in Ω,

u = 0 on ∂Ω,

is known to only belong to W
1,(si)
0 (Ω) for all 1 < si <

N(p−1)
p(N−1)

pi (see Theorem (1.14) i),

Section 1.2). But this better regularity of u is due to the second part of assumption

(2.2.6). In other words the sense of the result that we prove is that the term with natural

growth, satisfying (2.2.6), brings an extra regularity to the solutions for the problem

(2.2.1) with L1-data even implying the existence of solutions in W
1,(pi)
0 (Ω). The role of

(2.2.6) is to give an a priori estimate in the energy space W
1,(pi)
0 (Ω), which allows us

to deal with the lower order terms with natural growth. Under the assumption (2.2.5)

it is also true that ugi(x, u,∇u) ∈ L1(Ω) for all i, which in contrast is in general false

(cf Remark 3 of [18]) if we only assume the first condition in (2.2.6). The proof of this

theorem is divided in two parts, depending on (2.2.5) or (2.2.6). Each one consists in the

following steps. Before we define approximating equations. Then we prove an a priori

estimate inW
1,(pi)
0 (Ω) for the sequence {un} of the weak solutions of these approximating

equations. At the end we prove that the truncations Tk(un) are relatively compact in

the strong topology of W
1,(pi)
0 (Ω) (see [27]). The last result allows us to pass to the

limit in the approximate equations and to obtain the existence result.

Proof. of Theorem 2.5 with the assumption (2.2.5). We consider the sequence of

approximate equations

(2.2.9)





−∑N
i=1 ∂i[|∂iun|pi−2∂iun] +

∑N
i=1 g

n
i (x, un,∇un) = fn in Ω,

un ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω) gni (x, un,∇un) ∈ L1(Ω) ∀ i = 1, ..., N.

where

(2.2.10) gni (x, s, ξ) =
gi(x, s, ξ)

1 + 1
n
|gi(x, s, ξ)|

∀ i = 1, ..., N

and fn is a sequence of L∞-functions such that fn → f in [W
1,(pi)
0 (Ω)]∗. We remark that

gni (x, s, ξ)s ≥ 0, |gni (x, s, ξ)| ≤ |gi(x, s, ξ)| and |gni (x, s, ξ)| ≤ n ∀ i = 1, ..., N.

Since gni is bounded for all i, for any fixed n > 0, (2.2.9) has at least one weak solution

un by a simple modification of the result of J. Leray and J.L. Lions. Moreover by
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assumption of fn and Theorem 1.4, un ∈ L∞(Ω). As in the previous Section we divide

the proof in three parts.

2.2.1. A priori estimate with the assumption (2.2.5). We take un as test

function in the weak formulation of (2.2.9), we get

(2.2.11) ‖un‖W 1,(pi)
0 (Ω)

≤ C0

(2.2.12)

∫

Ω

ung
n
i (x, un,∇un) ≤ C1 ∀ i = 1, ..., N.

Then there exists u ∈ W
1,(pi)
0 (Ω) and a subsequence (still denoted by {un}) such that

(2.2.13) un → u weakly in W
1,(pi)
0 (Ω)

and

(2.2.14) un → u a.e.

2.2.2. Strong convergence of Tk(un) with the assumption (2.2.5). We already

know that, for any fixed k ∈ R+, Tk(un) weakly converges to Tk(u) in W
1,(pi)
0 (Ω). We

want to prove that this convergence is also strong. We choose in the weak formulation

of (2.2.9) as a test function ϕn = ψ(Tk(un)− Tk(u)) where ψ(s) = seλs
2
. It is simple to

see that if λ ≥ (b(k)/2)2 the following numerical inequality holds for all s ∈ R

(2.2.15) ψ′(s)− b(k)|ψ(s)| ≥ 1

2
.

Thanks to the previous step we already know that ϕn → 0 weakly in W
1,(pi)
0 (Ω) and

weakly∗ in L∞(Ω), we have

(2.2.16)
N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iϕn +
N∑

i=1

∫

Ω

gni (x, un,∇un)ϕn → 0.

Since gni (x, un,∇un)ϕn ≥ 0 on the set {x ∈ Ω : |un(x)| ≥ k}, we obtain by (2.2.16) that

(2.2.17)
N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iϕn +
N∑

i=1

∫

{|un|≤k}
gni (x, un,∇un)ϕn ≤ ω1(n),

where ω1(n) is a sequence of real numbers which converges to zero when n goes to infinity.

Also in the following we will denote with ωi(n), i = 1, 2, ... this type of sequences. For
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the first term in the left hand side of (2.2.17), we have, since ∂iϕn = ψ′(Tk(un) −
Tk(u))∂i(Tk(un)− Tk(u)) and by easy calculation,

(2.2.18)
N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂ϕn ≤

≤
N∑

i=1

∫

Ω

[|∂iTk(un)|pi−2∂iTk(un)−|∂iTk(u)|pi−2∂iTk(u)]∂i(Tk(un)−Tk(u))ψ′(Tk(un)−Tk(u))+

+ω2(n).

On the other hand

(2.2.19) |
N∑

i=1

∫

{|un|≤k}
gni (x, un,∇un)ϕn| ≤

≤
N∑

i=1

∫

{|un|≤k}
b(|un|)|∂iun|pi|ϕn| ≤

≤ b(k)
N∑

i=1

∫

Ω

[|∂iTk(un)|pi−2∂iTk(un)−|∂iTk(u)|pi−2∂iTk(u)]∂i(Tk(un)−Tk(u))|ϕn|+ω3(n).

Putting together (2.2.17), (2.2.18) and (2.2.19), we obtain

N∑

i=1

∫

Ω

[|∂iTk(un)|pi−2∂iTk(un)−|∂iTk(u)|pi−2∂iTk(u)]∂i(Tk(un)−Tk(u))[ψ′−b(k)|ϕn|] ≤ ω3(n).

Recalling (2.2.15) and that if pi ≥ 2 holds true

[|∂iTk(un)|pi−2∂iTk(un)−|∂iTk(u)|pi−2∂iTk(u)]∂i(Tk(un)−Tk(u)) ≥ C4|∂i(Tk(un)−Tk(u))|pi ,

for i = 1, ..., N , we obtain

N∑

i=1

∫

Ω

|∂i(Tk(un)− Tk(u))|pi ≤ 2C4 ω3(n)

that implies

(2.2.20) Tk(un) → Tk(u) strongly in W
1,(pi)
0 (Ω).

A slight modification is needed to prove the case 1 < pi < 2.
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2.2.3. Passing to the limit with the assumption (2.2.5). The strong conver-

gence of Tk(un) implies that for some subsequence, that we still denote by un,

(2.2.21) ∂iun → ∂iu a.e. ∀ i = 1, ..., N

and so

(2.2.22) ∇un → ∇u a.e..

It yields, since gi is a Carathéodory function for any i,

(2.2.23) gni (x, un,∇un) → gi(x, u,∇u) a.e..

Now we prove that gni (x, un,∇un) is uniformly equiintegrable for i = 1, ..., N . For any

measurable E of Ω and for any m ∈ R+, we have
∫

E

|gni (x, un,∇un)| =
∫

E∩{|un|≤m}
|gni (x, un,∇un)|+

∫

E∩{|un|>m}
|gni (x, un,∇un)| ≤

≤
∫

E∩{|un|≤m}
b(m)|∂iun|pi +

∫

E∩{|un|>m}
|gni (x, un,∇un)| =

(2.2.24) =

∫

E∩{|un|≤m}
b(m)|∂iTm(un)|pi +

∫

E∩{|un|>m}
|gni (x, un,∇un)|,

for fixed m and for i = 1, ..., N . For the first term we recall that ∂iTm(un) strongly

converges to ∂iTm(u) in L
pi(Ω) for all i. For the second term in the right hand side of

(2.2.31), we have
∫

E∩{|un|>m}
|gni (x, un,∇un)| ≤

∫

{|un|>m}
|gni (x, un,∇un)| ≤

≤
∫

{|un|>m}

1

|un|
un g

n
i (x, un,∇un) ≤

1

m

∫

{|un|>m}
un g

n
i (x, un,∇un) ≤

C2

m
,

thanks to (2.2.12). This complete the uniform equintegrability of gni for any i. So thanks

to (2.2.23) we get

gni (x, un,∇un) → gi(x, u,∇u), strongly in L1(Ω), ∀ i = 1, ..., N.

By strong L1-convergence of gi and the fact that

|∂iun|pi−2∂iun → |∂iu|pi−2∂iu weakly in Lp′i(Ω), ∀ i = 1, ..., N,

it is easy to pass to the limit in (2.2.9).
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Proof. of Theorem 2.5 with the assumptions (2.2.6). We consider the sequence of

the approximating problems

(2.2.25)





−∑N
i=1 ∂i[|∂iun|pi−2∂iun] +

∑N
i=1 gi(x, un,∇un) = fn in Ω,

un ∈ W
1,(pi)
0 (Ω) gi(x, un,∇un) ∈ L1(Ω) ∀ i = 1, ..., N.

where {fn} is a sequence of L∞-functions such that fn → f in L1(Ω). The solutions of

these problems there exist by the previous part of the proof, if we suppose (2.2.5). We

proceed as before.

2.2.4. A priori estimate with the assumption (2.2.6). In this case, the use in

the weak formulation of (2.2.25) of the test function Tk(un) yields for any k > 0

(2.2.26)
N∑

i=1

∫

Ω

|∂iTk(un)|pi ≤ C2 k

(2.2.27) k

∫

{|un|>k}
|gni (x, un,∇un)| ≤

∫

Ω

|fn||Tk(un)| ≤ C3 k ∀ i = 1, ..., N.

The last inequality combined with (2.2.26) and the second part of assumption (2.2.6)

gives (2.2.11) again, that is

‖un‖W 1,(pi)
0 (Ω)

≤ C0.

Then there exist u ∈ W
1,(pi)
0 (Ω) and a subsequence (still denoted by {un}) such that un

weakly converges to u in W 1,(pi)(Ω) and a.e.

To prove the strong convergence of Tk(un) in W
1,(pi)
0 (Ω) we proceed as in subsection

2.2.2, so we can try to pass to the limit in (2.2.25).

2.2.5. Passing to the limit with the assumption (2.2.6). Obviously, as before,

the strong convergence of Tk(un) implies that for some sequence

(2.2.28) ∂iun → ∂iu a.e. ∀ i = 1, ..., N

and so

(2.2.29) ∇un → ∇u a.e.,

hence, it is also true

(2.2.30) gi(x, un,∇un) → gi(x, u,∇u) a.e..
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Now we prove that gi(x, un,∇un) is uniformly equiintegrable for i = 1, ..., N . For any

measurable E of Ω and for any m ∈ R+. As before, we have
∫

E

|gi(x, un,∇un)| =
∫

E∩{|un|≤m}
|gi(x, un,∇un)|+

∫

E∩{|un|>m}
|gi(x, un,∇un)| ≤

≤
∫

E∩{|un|≤m}
b(m)|∂iun|pi +

∫

E∩{|un|>m}
|gi(x, un,∇un)| =

(2.2.31) =

∫

E∩{|un|≤m}
b(m)|∂iTm(un)|pi +

∫

E∩{|un|>m}
|gi(x, un,∇un)|,

for fixed m and for i = 1, ..., N . The first term of the expression above is small uniformly

in n and in E, recalling that ∂iTm(un) strongly converges to ∂iTm(u) in L
pi(Ω) for all i.

For the second term in this case we use as test function in the weak formulation of the

problem (2.2.25) Tm(Gm−1(un)) we obtain

N∑

i=1

∫

Ω

|∂iun|pi−2∂iun∂iTm(Gm−1(un)) +
N∑

i=1

∫

Ω

gi(x, un,∇un)Tm(Gm−1(un)) =

=

∫

Ω

fnTm(Gm−1(un)),

it implies
N∑

i=1

∫

{|un|>m}
|gi(x, un,∇un)| ≤

∫

{|un|≤m−1}
|fn|

and hence

lim sup
n→+∞

∫

{|un|>m}
|gi(x, un,∇un)| ≤

∫

{|un|≤m−1}
|f |, ∀ i = 1, ..., N.

So also the second term, which appear in the right hand side of (2.2.31), is small

uniformly in n and in E when m is sufficiently large. Hence by (2.2.30) we obtain

gi(x, un,∇un) → gi(x, u,∇u), strongly in L1(Ω), ∀ i = 1, ..., N.

So it is simple to pass to the limit in (2.2.25). This fact concludes the proof.

Remark 2.6. We note that in both of the previous sections the anisotropic operator

which appears in the problems (2.1.1) and (2.2.1) can be substituted by more general

one, that is

A(u) = −div(a(x, u,∇u)),
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where a(x, s, ξ) = (ai(x, s, ξ)) is a Carathéodory vector valued function on Ω×R×RN

such that, for some constant β ≥ α > 0

N∑

i=1

ai(x, s, ξ)ξi ≥ α

N∑

i=1

|ξi|pi ,

|ai(x, s, ξ)| ≤ β

(
N∑

j=1

|ξj|pj
)1−1/pi

, ∀ i = 1, .., N

and for a.e. x ∈ Ω and ∀ s ∈ R, ξ, η ∈ RN , ξ 6= η

N∑

i=1

(ai(x, s, ξ)− ai(x, s, η))(ξi − ηi) > 0.



CHAPTER 3

Multiplicity and existence results for a semilinear problem

In this chapter we principally talk about some results contained in [35]. We study

the questions of existence, nonexistence and multiplicity of positive solutions for the

following class of anisotropic semilinear elliptic problems

(3.0.1)





−
N∑

i=1

∂i
[
|∂iu|pi−2 ∂iu

]
= λ|u|q−2u in Ω,

u = 0 on ∂Ω,

where

(3.0.2) p1 < q < pN .

For due diligence, we deal with also the cases

1 < q < p1 and pN < q < p∗, with p∗ =
pN

N − p
.

The previous cases have already been studied in several recent papers. We recall some

of these [4], [41], [42], [45], [64], [65], [66] and [67].

First of all we give the definition of a weak solution of (3.0.1), it is a function

belonging to W
1,(pi)
0 (Ω), such that

(3.0.3)
N∑

i=1

∫

Ω

|∂iu|pi−2 ∂iu∂iφ = λ

∫

Ω

|u|q−2uφ,

for any φ ∈ C∞
0 (Ω).

Remark 3.1. Note that any weak solution u of (3.0.1) is, actually, a strong solution

in the sense of [45], mainly u belongs to W
1,(pi)
0 (Ω) ∩ L∞(Ω). It follows from Theorem

2 in [45] and from assumption (3.0.2).

57
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All the results, in the following, are due to the variational structure of the problem.

Indeed, if we define the functional

(3.0.4) Jλ(v) =
N∑

i=1

1

pi

∫

Ω

|∂iv|pi −
λ

q

∫

Ω

|v+|q,

where v+ = max{v, 0}, then any critical point of Jλ is a weak non-negative solution of

(3.0.1).

3.1. Known results

In this first section we recall about the known results regarding our problem. We

report some results presented in [45], if q > pN . The authors of this paper obtain several

existence, nonexistence and regularity results. To be complete we give also these results.

The following theorem is valid.

Theorem 3.2. Let q < p∞, defined in (1.2.2). Then for any γ > 0 there exist λγ > 0

and uγ ∈ W
1,(pi)
0 (Ω) such that ‖uγ‖W 1,(pi)

0 (Ω)
= γ and uγ is a bounded weak solution of

problem (3.0.1) when λ = λγ.

Remark 3.3. We underline, as already said in [45], that this theorem cannot be use

to have existence of a solution to problem (3.0.1) for a given λ. This fact is due to the

lack of homogeneity of the differential operator.

Remark 3.4. Theorem 3.2 gives the existence of a continuum of pairs (λγ, uγ) ∈
(0,∞)×W

1,(pi)
0 (Ω) which solves (3.0.1), seen as eigenvalue problem. Moreover it is not

clear which exponent q yields a resonance situation, i.e. eigenvalue problem. In Problem

2 proposed in [45] the authors do a conjecture. They think that the resonance situation

occurs as soon as q ≤ pN (see also Section 8.1 [45]), but maybe there are some ”spectral

gaps”, namely some q ∈ (p1, pN) such that (3.0.1) admits a weak bounded solution for all

λ > 0. This conjecture is partial confirmed by our following results (see Proposition 3.7,

Theorem 3.9 and Theorem 3.13). Obviously if pi = p for all i = 1, ..., N , the resonance

problem corresponds to q = p, see for example [10].

To achieve an existence result for fixed λ > 0, in [45] it has been proved Theorem

3.5 below, we report its proof.

In [45] an nonexistence result is also presented. The main tool to prove this result is

a Pohoz̆aev identity. But also the weakest formulation requires solutions of class C1(Ω)

in order to have well defined boundary terms and it seems a challenging problem to
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obtain such regularity for weak solution of (3.0.1), see for example [49]. To manage this

difficulty they build a sequence of “doubly approximating ” problems, then they prove

a strong regularity result for the solution of the approximating problems (Theorem

5 in [45]). At the end they present their main nonexistence result (Theorem 6 in

[45]). It states that, in at least one critical case (3.0.1), does not admit weak solutions,

belonging to W
1,(pi)
0 (Ω) ∩ L(q−1)p′1(Ω), other than u ≡ 0. This result needs two different

assumptions. First, the domain Ω must have a particular geometrical feature, which

modifies the classic notion of starshapedness, according to the anisotropy of operator.

Second, the exponents pi’s must be sufficiently concentrated, that is

(3.1.5) pi ≥ 2 ∀ i = 1, ..., N and pN <
N + 2

N
p1.

If (3.1.5) holds we necessarily have N ≥ 3 and p∗ > pN , so p∞ = p∗. In [45] it is also

supposed q ≥ p∗ and this assumption is in according with our results (see Theorems 3.9

and 3.13). For the case pN < q < p∗ we follow [45], (see also [64] and [65] for the more

general case pi = pi(x), for all i = 1, ..., N). We have the theorem below.

Theorem 3.5. Let q such that

(3.1.6) pN < q < p∗,

then, for all λ > 0, the problem (3.0.1) possesses a nontrivial positive weak solution.

Proof. We consider the functional (3.0.4). In this case it is not possible to apply

Weiestrass Theorem, which we will use in the next Theorem, because the functional is

not coercive, but it is possible to apply a Mountain-Pass Theorem in order to obtain a

critical level for Jλ and so a weak solution for problem (3.0.1). First of all we prove that

the functional (3.0.4) satisfies the geometrical assumptions required by Mountain-Pass

Theorem.

i) Obviously Jλ(0) = 0.

ii) There exists ρ ∈ (0, 1) and α > 0 such that Jλ ≥ α > 0, for any v ∈ W
1,(pi)
0 (Ω),

with ‖v‖
W

1,(pi)
0 (Ω)

= ρ. If we apply Hölder inequality, with exponents p∗/q and

(p∗/q)′ (we recall that q < p∗), to the second term of our functional, we have

Jλ(v) ≥
N∑

i=1

1

pi

∫

Ω

|∂iv|pi −
λC0

q

(∫

Ω

|v|p∗
) q

p∗

.
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Now we apply the anisotropic Sobolev inequality (1.1.6) to the last term of

above expression, we get

Jλ(v) ≥
N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λC1

q
‖v‖q

W
1,(pi)
0 (Ω)

.

We recall the following result, there exists C > 0, that is not depend on ρ, such

that

σi > 0 ∀ i,
N∑

i=1

σi = ρ ∈ (0, 1) ⇒
N∑

i=1

σpi
i

pi
≥ C ρpN .

We take σi = ‖∂iv‖Lpi (Ω), we have

N∑

i=1

σi = ‖v‖
W

1,(pi)
0 (Ω)

= ρ ∈ (0, 1)

and so

Jλ(v) ≥ C2 ‖v‖pN
W

1,(pi)
0 (Ω)

− λC1

q
‖v‖q

W
1,(pi)
0 (Ω)

= ρpN
(
C2 −

λC1

q
ρq−pN

)
.

Since pN < q, we can find α, ρ > 0 such that

Jλ(v) ≥ α ∀ ‖v‖
W

1,(pi)
0 (Ω)

= ρ <

(
C2 q

λC1

) 1
q−pN

.

iii) There exists v ∈ W
1,(pi)
0 (Ω) and β ≥ ρ > 0 with ‖v‖

W
1,(pi)
0 (Ω)

> β such that

Jλ(v) < 0. We consider v = tz for some z ∈ W
1,(pi)
0 (Ω) \ {0} and t > 1, we

obtain

Jλ(tz) =
N∑

i=1

tp1

pi

∫

Ω

|∂iz|pi −
λ tq

q

∫

Ω

|z|q ≤
N∑

i=1

tpN

pi

∫

Ω

|∂iz|pi −
λ tq

q

∫

Ω

|vzq.

It is clear, by (3.1.6), that limt→+∞ Jλ(tz) = −∞. Then for t > 1 large enough

we can take v = tz such that ‖tz‖
W

1,(pi)
0 (Ω)

> β and Jλ(tz) < 0.

Now we prove the compactness hypothesis of the Mountain-Pass Theorem. Let {vn} a

Palais-Smale sequence, namely is such that

1) Jλ(vn) → c,

2) J ′
λ(vn) → 0,
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where c = infγ∈Γmaxt∈(0,1) Jλ(γ(t)), with Γ = {γ ∈ C0([0, 1];W
1,(pi)
0 (Ω)) : γ(0) =

0 and γ(1) = tz}, where tz has been chosen in iii). Moreover J ′
λ is a Fréchet derivative

of Jλ,

〈J ′
λ(v), φ〉 =

N∑

i=1

∫

Ω

|∂iv|pi−2∂v∂iφ− λ

∫

Ω

|v|q−2vφ.

These two conditions are equivalents to the following ones.

1′) There exists a numerical sequence {an} which converges to zero, such that

Jλ(vn) = an + c, i.e.

N∑

i=1

1

pi

∫

Ω

|∂ivn|pi −
λ

q

∫

Ω

|vn|q = an + c.

2′) There exists {yn} ⊂ [W
1,(pi)
0 (Ω)]∗ : yn → 0 in [W

1,(pi)
0 (Ω)]∗, such that

N∑

i=1

∫

Ω

|∂ivn|pi−2∂vn∂iφ = λ

∫

Ω

|vn|q−2vnφ− 〈yn, φ〉, ∀ φ ∈ W
1,(pi)
0 (Ω).

Now we choose φ = vn in 2′)

N∑

i=1

∫

Ω

|∂ivn|pi = λ

∫

Ω

|vn|q − 〈yn, vn〉.

We divide by 1
q

1

q

N∑

i=1

∫

Ω

|∂ivn|pi =
λ

q

∫

Ω

|vn|q −
1

q
〈yn, vn〉.

Then if we subtract this expression from 1′), we obtain

N∑

i=1

1

pi

∫

Ω

|∂ivn|pi −
1

q

N∑

i=1

∫

Ω

|∂ivn|pi −
λ

q

∫

Ω

|vn|q =

= an + c− λ

q

∫

Ω

|vn|q +
1

q
〈yn, vn〉

and so
N∑

i=1

(
1

pi
− 1

q

)∫

Ω

|∂ivn|pi = an + c+
1

q
〈yn, vn〉.

If we use the assumptions on yn, an and q, we have there exists M ∈ R+ independent

on n such that

‖vn‖W 1,(pi)
0 (Ω)

≤M.
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Therefore we have, up a subsequence, we still denote with vn,

vn → v, weakly in W
1,(pi)
0 (Ω).

By the anisotropic Sobolev embedding (1.1.4), we get

vn → v strong in Lr(Ω) ∀ r < p∗.

Now we choose in 2′), φ = vn − v we obtain

N∑

i=1

∫

Ω

|∂ivn|pi−2∂ivn∂i(vn − v) = λ

∫

Ω

|vn|q−2vn(vn − v)− 〈yn, vn − v〉.

We subtract from the terms of the above expression

N∑

i=1

∫

Ω

|∂iv|pi−2∂iv∂i(vn − v),

we have
N∑

i=1

∫

Ω

(|∂ivn|pi−2∂ivn − |∂iv|pi−2∂iv)∂i(vn − v) =

= −
N∑

i=1

∫

Ω

|∂iv|pi−2∂iv∂i(vn − v) + λ

∫

Ω

|vn|q−2vn(vn − v)− 〈yn, vn − v〉.

We use that
∫

Ω

(|∂ivn|pi−2∂ivn − |∂iv|pi−2∂iv)∂i(vn − v) ≥ C3

∫

Ω

|∂i(vn − v)|pi ∀ i = 1, ..., N,

and pi ≥ 2 for all i, we obtain

C3

N∑

i=1

∫

Ω

|∂i(vn−v)|pi ≤ −
N∑

i=1

∫

Ω

|∂iv|pi−2∂iv∂i(vn−v)+λ
∫

Ω

|vn|q−2vn(vn−v)−〈yn, vn−v〉.

The same result holds also if 1 < pi < 2 by a slight modification. Now

〈yn, vn − v〉 → 0,

by the strong convergence of yn in the dual space ofW
1,(pi)
0 (Ω) and the weak convergence

of vn to v in W
1,(pi)
0 (Ω). Moreover

N∑

i=1

∫

Ω

|∂iv|pi−2∂iv∂i(vn − v) → 0,



3.1. KNOWN RESULTS 63

since vn → v weakly in W
1,(pi)
0 (Ω). For the term

∫

Ω

|vn|q−2vn(vn − v),

we apply Hölder inequality with exponents p∗

q−1
and

(
p∗

q−1

)′
, we obtain

∫

Ω

|vn|q−2vn(vn − v) ≤
(∫

Ω

|vn|p
∗
) q−1

p∗
(∫

Ω

|vn − v|(
p∗
q−1

)′
)1− q−1

p∗

.

We note that (
p∗

q − 1

)′
=

p∗

p∗ − q + 1
< p∗,

since q < p∗, and that ‖vn‖Lp∗ (Ω) ≤M , we have
∫

Ω

|vn|q−2vn(vn − v) → 0.

So

‖vn − v‖
W

1,(pi)
0 (Ω)

→ 0.

Also the Palais-Smale condition is true. Hence, as consequence of Mountain-Pass The-

orem, we deduce that Jλ admits a nontrivial critical point and so we obtain a weak

nontrivial solution of problem (3.0.1).

Now we deal with the case

(3.1.7) 1 < q < p1.

This case has already been studied in [64] and [65] (see also the references therein).

The authors study the more general case pi = pi(x), for all i = 1, ..., N . To prove the

next results we follow these two papers. The following result holds.

Theorem 3.6. Let q : 1 < q < p1, then there exists λ∗∗ > 0 and λ∗ > 0 such that,

for any λ > λ∗∗ and λ ∈ (0, λ∗), problem (3.0.1) possesses a nontrivial positive weak

solution.

Proof. We prove that the functional (3.0.4) is coercive and weak lower semicon-

tinuous. We use Hölder inequality with exponents p∗/q and (p∗/q)′, and it is possible

because (3.1.7) is true. We have

Jλ(v) ≥
N∑

i=1

1

pi

∫

Ω

|∂iv|pi −
λC0

q
‖v‖q

Lp∗ (Ω)
.
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Now we apply Sobolev type inequality (1.1.6), with r = p∗, we get

Jλ(v) ≥
N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λC1

q

(
N∑

i=1

‖∂iv‖Lpi (Ω)

)q

.

For a numerical inequality, i. e.
(

N∑

i=1

‖∂iv‖Lpi (Ω)

)q

≤ C2

N∑

i=1

‖∂iv‖qLpi (Ω),

we obtain

Jλ(v) ≥
N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λC3

q

N∑

i=1

‖∂iv‖qLpi (Ω).

Since pN ≥ pi, for all i = 1, ..., N , we have

Jλ(v) ≥
1

pN

N∑

i=1

‖∂iv‖piLpi (Ω) −
λC3

q

N∑

i=1

‖∂iv‖qLpi (Ω).

Now we note that q < pi for all i, because for hypothesis q < p1, and

‖v‖
W

1,(pi)
0 (Ω)

→ +∞ ⇒ ‖∂iv‖piLpi (Ω) → +∞ for some i.

Hence we obtain the coercivity of Jλ, that is

Jλ(v) → +∞ when ‖v‖
W

1,(pi)
0 (Ω)

→ +∞.

For the weak lower semicontinuity we consider a sequence {vn} ⊂ W
1,(pi)
0 (Ω) such that

vn → v weakly in W
1,(pi)
0 (Ω).

Since the embedding (1.1.4) is compact for any r ∈ [1, p∗), we also have

vn → v in Lr(Ω) ∀ r < p∗,

it implies ∫

Ω

|vn|q →
∫

Ω

|v|q,

since q < p1 < p∗. So

lim inf
n→+∞

Jλ(vn) ≥ lim inf
n→+∞

N∑

i=1

1

pi

∫

Ω

|∂ivn|pi −
λ

q
lim

n→+∞

∫

Ω

|vn|q ≥

≥
N∑

i=1

1

pi
lim inf
n→+∞

∫

Ω

|∂ivn|pi −
λ

q

∫

Ω

|v|q ≥
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≥
N∑

i=1

1

pi

∫

Ω

|∂iv|pi −
λ

q

∫

Ω

|v|q = Jλ(v),

by the weak semicontinuity of the norm, that is

lim inf
n→+∞

‖∂ivn‖Lpi (Ω) ≥ ‖∂iv‖Lpi (Ω), ∀ i = 1, ..., N.

Now we can use a Weierstrass Theorem (see for example [77]) in order to find a global

minimizer of Jλ, uλ, that is a weak solution of problem (3.0.1). Now we show that uλ is

not trivial for λ large enough. Let t > 1, a fixed real number and Ω1 ⊂ Ω, open, with

meas(Ω1) > 0, we take a function v0 ∈ C∞
0 (Ω) ⊂ W

1,(pi)
0 (Ω) such that v0 = t0 in Ω1 and

0 ≤ v0 ≤ t0 in Ω \ Ω1. We have

Jλ(v0) =
N∑

i=1

1

pi

∫

Ω

|∂iv0|pi −
λ

q

∫

Ω

|v0|q.

Since v0 ∈ C∞
0 (Ω) we have

‖v0‖W 1,(pi)
0 (Ω)

≤ C4,

so we get, by the definition of v0,

Jλ(v0) ≤
C5

p1
− λ

q

∫

Ω1

|v0|q ≤
C5

p1
− λ

q
tq0 meas(Ω1).

Hence we can choose

λ ≥ C7 q

p1 t
q
0 meas(Ω1)

= λ∗∗,

such that Jλ(v0) < 0 for every λ ≥ λ∗∗. Since uλ is a global minimum, it follows that

Jλ(uλ) < 0 for any λ ≥ λ∗∗ and thus uλ is a nontrivial weak solution of problem (3.0.1).

So we conclude the proof of the first part of Theorem 3.6. For the second part we strictly

follow [65]. At the beginning we show that there exist ρ ∈ (0, 1) and α ≥ 0 such that

Jλ(v) ≥ α > 0 for any v ∈ W
1,(pi)
0 (Ω) with ‖v‖

W
1,(pi)
0 (Ω)

= ρ. Since q < p1, the imbedding

(1.1.4) holds. We have, for (1.1.6) with r = q,

‖v‖Lq(Ω) ≤ C7‖v‖W 1,(pi)
0 (Ω)

, ∀ v ∈ W
1,(pi)
0 (Ω).

So we get

Jλ(v) ≥
N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λC7

q
‖v‖q

W
1,(pi)
0 (Ω)

.

Now, since ‖v‖
W

1,(pi)
0 (Ω)

= ρ we get

‖∂iv‖Lpi (Ω) ≤ ‖v‖
W

1,(pi)
0 (Ω)

= ρ, ∀ i = 1, ..., N
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and since ρ ∈ (0, 1) and pN ≥ pi for any i = 1, ..., N , it holds

‖∂iv‖pNLpi (Ω) ≤ ‖∂iv‖piLpi (Ω), ∀ i = 1, ..., N.

Hence

Jλ(v) ≥ C8‖v‖pN
W

1,(pi)
0 (Ω)

− λC7

q
‖v‖q

W
1,(pi)
0 (Ω)

= ρq
(
C8 ρ

pN−q − λC7

q

)
.

Then for any

(3.1.8) 0 < λ < λ∗ <
q C8 ρ

pN−q

C7

and v ∈ W
1,(pi)
0 (Ω) with ‖v‖

W
1,(pi)
0 (Ω)

= ρ, we obtain the claim. Now we prove that there

exists z ≥ 0, z 6= 0 and Jλ(tz) < 0 for t > 0 small enough. Let z ∈ C∞
0 (Ω) such that

supp(z) ⊃ Ω2, z ≡ 1 in Ω2 and 0 ≤ z ≤ 1 in Ω. Then for any 0 < t < 1 we have

Jλ(tz) =
N∑

i=1

∫

Ω

tpi

pi
|∂iz|pi −

λ tq

q

∫

Ω

|z|q ≤

≤ tp1

p1

N∑

i=1

∫

Ω

|∂iz|pi −
λ tq

q

∫

Ω

|z|q =

= tq

(
tp1−q

p1

N∑

i=1

∫

Ω

|∂iz|pi −
λ

q

∫

Ω

|z|q
)
.

Therefore, since q < p1, Jλ(tz) < 0 if

t < min



1,

(
λ p1

∫
Ω
|z|q

q
∑N

i=1

∫
Ω
|∂iz|pi

) 1
p1−q



 .

Let λ∗ > 0, as in (3.1.8), and λ ∈ (0, λ∗). By the previous considerations there exists a

ball centered at the origin and of radius ρ inW
1,(pi)
0 (Ω), Bρ(0) such that inf∂Bρ(0) Jλ > 0.

Moreover there exists z ∈ W
1,(pi)
0 (Ω) such that Jλ(tz) < 0 for all t small enough and for

any v ∈ Bρ(0),

Jλ(v) ≥
1

pN

N∑

i=1

‖∂iv‖pNLpi (Ω) −
λC9

q

N∑

i=1

‖∂iv‖qLpi (Ω).

It follows that

−∞ < c = inf
Bρ(0)

Jλ < 0.

Let 0 < ε < inf∂Bρ(0) Jλ − infBρ(0) Jλ. By applying Ekeland variational principle (see

[40] and also [32]) to the functional Jλ : Bρ(0) → R. We find vε ∈ Bρ(0) such that
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• Jλ(vε) < infBρ(0)
Jλ + ε,

• Jλ(vε) < Jλ(v) + ε‖v − vε‖W 1,(pi)
0 (Ω)

, v 6= vε.

Since

Jλ(vε) ≤ inf
Bρ(0)

Jλ + ε < inf
∂Bρ(0)

Jλ,

vε ∈ Bρ(0). Now we define Iλ(v) = Jλ(v) + ε‖v − vε‖W 1,(pi)
0 (Ω)

. It is clear that vε is a

minimum of Iλ and thus
Iλ(vε + tz)− Iλ(vε)

t
≥ 0,

for small t > 0 and z ∈ B1(0). We obtain for Jλ

Jλ(vε + tz)− Jλ(vε)

t
+ ε‖z‖

W
1,(pi)
0 (Ω)

≥ 0.

Letting t→ 0 it follows that 〈J ′
λ(vε), z〉+ ε‖z‖

W
1,(pi)
0 (Ω)

> 0 which implies ‖J ′
λ(vε)‖ ≤ ε.

We deduce that there exists {wn} ⊂ Bρ(0) such that

(3.1.9) Jλ(wn) → c and J ′
λ(wn) → 0.

Obviously {wn} is bounded inW
1,(pi)
0 (Ω). If we proceed as in Theorem 3.5, we obtain the

strong convergence of {wn} to w in W
1,(pi)
0 (Ω). Thus for (3.1.9) we have Jλ(w) = c < 0

and J ′
λ(w) = 0, that is w is a nontrivial positive weak solution for the problem (3.0.1).

It completes the proof of Theorem 3.6.

3.2. A global minimum

Now we begin to present the results obtained in [35]. This section is devoted to

prove the first results regarding the geometry of Jλ. In particular we show that the

functional is coercive (we prove that any level set is bounded, see Theorem 3.9 below),

and it implies that the functional possesses a global minimum. Since the problem is a

variational one, any critical point of Jλ is a weak solution, as in (3.0.3). So we have

to prove that the functional has a nontrivial geometry, in order to obtain the existence

of nontrivial critical levels, and it depends on the size of λ. In fact we also prove that

the functional does not possess any nontrivial critical points, for small values of the

parameter (see Proposition 3.7 below), because in this case Jλ behaves like the norm of

W
1,(pi)
0 (Ω). We have the following result.

Proposition 3.7. There exists λ > 0 such that if λ < λ, (3.0.1) does not possess

any nontrivial weak solutions.
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Proof. By contradiction, we assume that there exists a nontrivial weak solution of

(3.0.1), u. By multiplying the equation by u and by integrating on Ω, we obtain

N∑

i=1

∫

Ω

|∂iu|pi =
N∑

i=1

‖∂iu‖piLpi (Ω) = λ‖u‖qLq(Ω) = λ

∫

Ω

|u|q.

By applying the estimate (1.1.10) with r = p1 and r = pN , it holds

(3.2.10)

(
2

ap1

)p1

‖u‖p1Lp1 (Ω) +

(
2

apN

)pN

‖u‖pNLpN (Ω) +
N−1∑

i=2

‖∂iu‖piLpi (Ω) ≤ λ‖u‖qLq(Ω).

Since p1 < q < pN , by interpolation inequality, we have

‖u‖qLq(Ω) ≤ ‖u‖θp1Lp1 (Ω)‖u‖
(1−θ)pN
LpN (Ω) ,

where θ ∈ (0, 1) is such that 1/q = θ/p1 + (1 − θ)/pN , and so, using Young inequality,

we get

‖u‖qLq(Ω) ≤ θ‖u‖p1Lp1 (Ω) + (1− θ)‖u‖pNLpN (Ω).

By the previous inequality in (3.2.10), we obtain

(
2

ap1

)p1

‖u‖p1Lp1 (Ω)+

(
2

apN

)pN

‖u‖pNLpN (Ω)+
N−1∑

i=2

‖∂iu‖piLpi (Ω) ≤ λ[θ‖u‖p1Lp1 (Ω)+(1−θ)‖u‖pNLpN (Ω)]

and it implies

(3.2.11)
N−1∑

i=2

‖∂iu‖piLpi (Ω) ≤
[
λθ −

(
2

ap1

)p1]
‖u‖p1Lp1 (Ω) +

[
λ(1− θ)−

(
2

apN

)pN
]
‖u‖pNLpN (Ω).

Now we choose λ such that

(3.2.12) λ ≤ min

{
1

θ

(
2

ap1

)p1

,
1

1− θ

(
2

apN

)pN
}
;

so by (1.1.10), with r = pj for some 1 < j < N and (3.2.11), we have

0 ≤ ‖u‖pj
Lpj (Ω)

≤
(apj

2

)pj
‖∂ju‖pjLpj (Ω)

≤
(apj

2

)pj N−1∑

i=2

‖∂iu‖piLpi (Ω) ≤

≤
(apj

2

)pj {[
λθ −

(
2

ap1

)p1]
‖u‖p1Lp1 (Ω) +

[
λ(1− θ)−

(
2

apN

)pN
]
‖u‖pNLpN (Ω)

}
.

Since the right hand of above expression is negative, we obtain a contradiction. Then

u ≡ 0 is the unique solution of (3.0.1).
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Remark 3.8. Since Jλ is a coercive functional (see the next result), if λ is suffi-

ciently small, it follows that Jλ is a small perturbation of the norm in the Sobolev space

W
1,(pi)
0 (Ω). We want to emphasize that, in this case, u ≡ 0 is the unique solution of the

equation (nonnegative or not) and 0 is the global minimum of the functional. Note that

a similar result is proved in Section 8 of [45] (see failure of the mountain-pass geometry).

Now we show the first existence result.

Theorem 3.9. If λ is sufficiently large, (3.0.1) possesses at least one non-negative

(and nontrivial) weak solution.

Proof. We begin showing that the level sets J b
λ = {v ∈ W

1,(pi)
0 (Ω) : Jλ(v) ≤ b} are

bounded. For any v ∈ J b
λ, it holds

N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λ

q
‖v‖qLq(Ω) ≤ b.

By applying Hölder inequality with exponents pN/q > 1 and (pN/q)
′ to the left hand

side of the previous expression, we obtain

N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λ

q
‖v‖qLpN (Ω)meas(Ω)

pN−q

pN ≤ b.

Now we use (1.1.10) with r = pN , we have

N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) −

λ

q
‖∂Nv‖qLpN (Ω)meas(Ω)

pN−q

pN

(apN
2

)q
≤ b,

from which it follows

N−1∑

i=1

1

pi
‖∂iv‖piLpi (Ω) + ‖∂Nv‖qLpN (Ω)

[
1

pN
‖∂Nv‖pN−q

LpN (Ω) −
λ

q
meas(Ω)

pN−q

pN

(apN
2

)q]
≤ b.

If

‖∂Nv‖LpN (Ω) ≤ 2

(
pNλ

q

) 1
pN−q

meas(Ω)
1

pN

(apN
2

) q
pN−q

,

then ‖∂Nv‖LpN (Ω) is bounded and so we also obtain from the previous inequality that

1

pi
‖∂iv‖piLpi (Ω) ≤ b+ C0,

for all i 6= N , where C0 = C(pN , λ, q, |Ω|, a).
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Instead if

‖∂Nv‖LpN (Ω) ≥ 2

(
pNλ

q

) 1
pN−q

meas(Ω)1/pN
(apN

2

) q
pN−q

,

we have proved that

1

pi
‖∂iv‖piLpi (Ω) ≤ b, ‖∂Nv‖qLpN (Ω)

[
1

pN
‖∂Nv‖pN−q

LpN (Ω) −
λ

q
meas(Ω)

pN−q

pN

(apN
2

)q]
≤ b,

where i is different from N . Since the last inequality proves the existence of a bound K

(depending on b) also for ‖∂Nv‖LpN (Ω) (this because pN > q), we have

‖v‖
W

1,(pi)
0 (Ω)

≤
N−1∑

i=1

(bpi)
1
pi +K(b).

The boundedness of level sets assures that the functional Jλ is coercive. Moreover

Jλ is weakly lower semicontinuous. In fact we consider a sequence {vn} ⊂ W
1,(pi)
0 (Ω)

such that

vn → v weakly in W
1,(pi)
0 (Ω).

Since the embedding W
1,(pi)
0 (Ω) ↪→ Lr(Ω) is compact for any r ∈ [1, p∞), it follows

vn → v in Lr(Ω), ∀ r < p∞,

and, since q < pN , it follows ∫

Ω

|vn|q →
∫

Ω

|v|q.

So we obtain

lim inf
n→+∞

Jλ(vn) = lim inf
n→+∞

N∑

i=1

1

pi

∫

Ω

|∂ivn|pi −
λ

q
lim

n→+∞

∫

Ω

|vn|q ≥

≥
N∑

i=1

1

pi
lim inf
n→+∞

∫

Ω

|∂ivn|pi −
1

q

∫

Ω

|v|q ≥

≥
N∑

i=1

1

pi

∫

Ω

|∂iv|pi −
1

q

∫

Ω

|v|q = Jλ(v),

recalling that, for any i = 1, ..., N , the norms ‖∂iv‖Lpi (Ω) are weakly lower semicontinu-

ous. So, by a Weierstrass Theorem, we obtain the existence of a global minimum.

Finally let w ∈ W
1,(pi)
0 (Ω), w 6= 0 be fixed, then, if λ is sufficiently large Jλ(w) < 0.

This assures that our minimum is nontrivial.
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Remark 3.10. Note that it is possible to show the above result using a slightly

different proof. Indeed Jλ satisfies the global Palais-Smale condition (in the follow-

ing (PS)-condition), by the compact Sobolev embeddings, and, since any minimizing

sequence is bounded, the existence of a global minimum follows.

We recall the definition of (PS)-condition: any sequence {vn} ⊂ W
1,(pi)
0 (Ω) such

that |Jλ(vn)| ≤ c and ‖J ′
λ(vn)‖ → 0, has a strongly convergent subsequence.

3.3. A Mountain-Pass solution

In this section we want to prove that the geometry of Jλ is rather involved, provided

λ is sufficiently large. We show that the trivial solution 0 is always a local minimum of

the functional, so we can apply the Mountain-Pass Theorem (see [8], [70], [77]) between

the two minima found, in order to prove the existence of another solution of (3.0.1).

Proposition 3.11. Assume (3.0.2) and suppose that one of the following conditions

holds

(3.3.1) p < N, p1 < q < min {p∗, pN} and p1 <
p

N − p
,

(3.3.2) p ≥ N,

then 0 is a local minimum of the functional Jλ.

Proof. (3.3.1): p < N implies that the exponent p∗ is well defined and, by assump-

tion, we have that q belongs to (p1, p
∗), so there exists θ ∈ (0, 1) such that

(3.3.3)
1

q
=

θ

p∗
+

1− θ

p1
.

Hence we can apply interpolation inequality, getting

‖v‖qLq(Ω) ≤ ‖v‖θq
Lp∗ (Ω)

‖v‖(1−θ)q
Lp1 (Ω).

By the assumption q < p∗ , we can use the anisotropic Sobolev inequality ((1.1.5) Section

1.1) and we obtain

‖v‖qLq(Ω) ≤ C0

N∏

i=1

‖∂iv‖θq/NLpi (Ω)‖v‖
(1−θ)q
Lp1 (Ω).

By Poincarè type inequality (1.1.10), with i = 1 and r = p1, we have

‖v‖qLq(Ω) ≤ C0

N∏

i=1

‖∂iv‖θq/NLpi (Ω)‖∂1v‖
(1−θ)q
Lp1 (Ω).
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Since we want to prove a local property of Jλ, we restrict to a suitable neighborhood of

0 and, without loss of generality, we suppose ‖∂iv‖Lpi (Ω) ≤ 1, for all i = 1, ..., N , so we

obtain

‖v‖qLq(Ω) ≤ C1‖∂1v‖θq/N+(1−θ)q
Lp1 (Ω) .

Hence we get

Jλ(v) ≥
N∑

i=1

1

pi
‖∂iv‖piLpi (Ω) − C2λ‖∂1v‖θq/N+(1−θ)q

Lp1 (Ω) .

By (3.3.3) we get θ = p∗(q − p1)/[q(p
∗ − p1)]. So we want to show that

p1 <
θq

N
+ (1− θ)q =

p∗(q − p1) +Np1(p
∗ − q)

N(p∗ − p1)

and it holds because the previous inequality is equivalent to

Np21 − (p∗ +Nq) p1 + p∗q > 0,

which follows by the assumption p1 < p∗/N = p/ (N − p). So we have obtained

(3.3.4) Jλ(v) ≥
(

1

p1
− o(1)

)
‖∂1v‖p1Lp1 (Ω) +

N∑

i=2

1

pi
‖∂iv‖piLpi (Ω) ≥ c > 0,

for ‖v‖
W

1,(pi)
0 (Ω)

suitably small (we recall that o(1) stands for a quantity which tends to

0 as ‖∂1v‖Lp1 (Ω) tends to 0), and it implies the claim.

(3.3.2): when p ≥ N the anisotropic Sobolev inequality (1.1.5) holds for any r ≥ 1,

as we had already said in Section 1.1, so, arguing as above, we have

‖u‖Lq(Ω) ≤ ‖u‖1−θ
Lp1 (Ω)‖u‖θLr(Ω) ≤ C3‖∂1u‖1−θ(N−1)/N

Lp1 (Ω) ,

where the exponent θ = r(q − p1)/[q(r − p1)] depends continuously on r. In particular

θ → (q − p1)/q, as r tends to +∞, and it implies that, choosing r suitably large, the

condition (3.3.4) is satisfied and the claim follows as in case i).

Remark 3.12. Note that the assumption p1 < p/(N − p) (contained in (3.3.1)) is

equivalent to

(3.3.5) p > N
p1

1 + p1
,

and this inequality is always true in case (3.3.2) of the proposition above.

Now we can prove the following result.
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Theorem 3.13. Assume (3.0.2). Moreover suppose that λ is sufficiently large and

that one of the following conditions holds

(3.3.6) p < N, p1 < q < min {p∗, pN} and p1 <
p

N − p
,

(3.3.7) p ≥ N.

Then the problem (3.0.1) possesses at least two nontrivial non-negative weak solution.

Proof. Theorem 3.9 proves the existence of a nontrivial global minimum for λ

large; since 0 is a local minimum by Proposition 3.11, we have the geometry required

by the Mountain-Pass Theorem. The (PS)-condition follows by the compactness of the

Sobolev embeddings, so the claim follows (see also [70]).

Remark 3.14. We note that the assumption (3.3.1) (or (3.3.5)) is a little bit unusual.

We do not know if it is only a technical condition, moreover we want to point out that,

since p ≥ p1, the condition (3.3.5) (equivalent to (3.3.1)) is satisfied if p1 > N − 1.

Hence this condition seems to be equivalent to require that pi’s are sufficiently large in

relation to the dimension N .

Remark 3.15. Now we want to study some simple situations, looking for the validity

of Proposition 3.11. Clearly it implies the existence of two solution, at least for λ

sufficiently large.

We start considering the case in which

p1 = · · · = pJ = p < s = pJ+1 = · · · = pN .

With some easy calculations, we find that

p =
Nps

Js+ (N − J)p
,

so the conditions in (3.3.1) (see Theorem 3.13) become

J

p
+
N − J

s
> 1 >

J − 1

p
+
N − J

s
, and p∗ =

Nps

Js+ (N − J)p− ps
≥ s iff 1 ≥ J

p
−J
s
,

otherwise assumption (3.3.2) reads

1 ≥ J

p
+
N − J

s
.
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In particular, we want to emphasize that if N = 2 it follows J = 1 and, recalling that

p < s, the preceding inequalities are always satisfied and Theorem 3.13 holds assuming

only (3.0.2).

Now consider the case

p1 = · · · = pJ = p < pJ+1 = · · · = pJ+L = r < pJ+L+1 = · · · = pN = s,

avoiding the calculations, it is easy to see that

p =
Nprs

Jsr + Lps+ (N − J − L)pr

and that (3.3.1) is equivalent to suppose that

J

p
+
L

r
+
N − J − L

s
> 1 >

J − 1

p
+
L

r
+
N − J − L

s
,

with

p∗ =
Nprs

Jsr + Lps+ (N − J − L)pr − prs
≥ s iff 1 ≥ J

(
1

p
− 1

s

)
+ L

(
1

r
− 1

s

)

and (3.3.2) now it is

1 ≥ J

p
+
L

r
+
N − J − L

s
.

If N = 3 and J = L = 1 we have two non-negative solutions when either

1

p
> 1− 1

r
− 1

s
> 0 and p < q < min {p∗, s} ,

or
1

p
+

1

r
+

1

s
≤ 1.

Remark 3.16. We note that our results do not contradict the results in Section

8 of [45], in which the authors show an example of a functional Jλ (such that (3.0.2)

holds) which does not satisfy the Mountain-Pass geometry. Indeed they assume that

the parameter λ is sufficiently small and it agrees with Proposition 3.7.

3.4. Strong maximum principle

In this Section we want prove a strong maximum principle for our problems. We will

use the techniques of [80]. The crucial result is the following weak Harnack inequality for
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weak supersolutions. A function u ≥ 0, u ∈ W
1,(pi)
0 (Ω) is a positive weak supersolution

for (3.0.1), if it satisfies the following inequality

(3.4.8)
N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iφ ≥ 0, ∀ φ ∈ C∞
0 (Ω), φ ≥ 0.

The estimate is of local nature. For convenience we shall work in cubes. We will

denote, in the following pages, with Kx0(ρ), the cube in RN of side ρ and center x0
whose sides are parallel to the coordinate axes. We also write Kx0(ρ) = K(ρ).

To prove the Harnack inequality we need to the next lemma.

Lemma 3.17. For all nonnegative measurable functions w ∈ [W
1,(pi)
0 (Ω)]∗ and for all

u ∈ W
1,(pi)
0 (Ω), with pi ≥ 2 for any i = 1, ..., N , we have

(3.4.9)

∫

Ω

|∇u|p1w ≤ N

∫

Ω

w +
N∑

i=1

∫

Ω

w|∂iu|pi .

Proof. We use some arguments in [50]. If pi = p1 for any i we have

∫

Ω

|∇u|p1w =

∫

Ω

(
N∑

i=1

(∂iu)
2

) p1
2

w ≤
∫

Ω

N∑

i=1

|∂iu|p1f ≤ N

∫

Ω

w +
N∑

i=1

∫

Ω

|∂iu|p1w,

by the convexity of the real function t→ t
p1
2 (p1

2
≥ 1) and the positivity of w. If pi 6= p1

for some i = 1, ..., N we apply Young inequality with exponents pi/p1 > 1 and (pi/p1)
′.

So
∫

Ω

|∇u|p1w ≤
∫

Ω

N∑

i=1

|∂iu|p1w ≤
∫

Ω

N∑

i=1

(|∂iu|pi + 1)w = N

∫

Ω

w +
N∑

i=1

∫

Ω

|∂iu|piw.

Theorem 3.18. Let u be a weak non-negative supersolution of (3.0.1), such that

u < M in Ω, and assume that p1 ≥ 2. Then

(3.4.10) ρ
−N
γ ‖u‖Lγ(K(2ρ)) ≤ Cmin

K(ρ)
u,

for γ < N(p1−1)
N−p1

, if p1 ≤ N ; for any γ, if p1 > N .

Proof. Without loss of generality, we can suppose that u ≥ ε > 0, otherwise we

can replace u by u+ ε and let ε→ 0 in the final result.

We take as a test function in (3.4.8)

(3.4.11) φ = ηuβ,
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where β < β0 < 0 and η is a function in C1
0(Ω) defined as follows,

η =
N∏

j=1

η
pj
j ,

where ηj = η(xj), for j = 1, . . . , N , and η is a nonnegative real function, 0 ≤ η ≤ 1,

which will be chosen later. We also define ηi =
N∏

j=1, j 6=i

η
pj
j .

From (3.4.11) we get ∂iφ = piη
pi−1
i η′iηiu

β + ηβuβ−1∂iu. By using its in (3.4.8), we

obtain
N∑

i=1

pi

∫

Ω

|∂iu|pi−2∂iuη
pi−1
i η′iηiu

β + β
N∑

i=1

∫

Ω

|∂iu|piηuβ−1 ≥ 0.

This inequality gives nontrivial information only if β < β0 < 0, so we obtain

|β0|
N∑

i=1

∫

Ω

|∂iu|piηuβ−1 ≤
N∑

i=1

pi

∫

Ω

|∂iu|pi−1ηpi−1
i |η′i|ηiuβ.

Now we apply Young inequality to |∂iu|pi−1ηpi−1
i |η′i|u

β−β+pi−1

pi u
β+pi−1

pi for all i =

1, ..., N . Hence we get

|β0|
N∑

i=1

∫

Ω

|∂iu|piηuβ−1 ≤
N∑

i=1

(
1

ε

)pi−1 ∫

Ω

|η′i|piuβ+pi−1ηi +
N∑

i=1

ε(pi − 1)

∫

Ω

|∂iu|piuβ−1η.

So
N∑

i=1

[|β0| − ε(pi − 1)]

∫

Ω

|∂iu|piηuβ−1 ≤
(
1

ε

)pN−1 N∑

i=1

∫

Ω

|η′i|piuβ+pi−1ηi.

We choose ε such that (|β0| − (pi − 1)ε) > 0 for any i = 1, . . . , N , so we take

ε = min

{
1,

|β0|
2(pN − 1)

}
.

We obtain

N∑

i=1

∫

Ω

|∂iu|piηuβ−1 ≤
(
2(pN − 1)

|β0|
+ 1

)pN−1
2

|β0|
N∑

i=1

∫

Ω

|η′i|piuβ+pi−1ηi,

and taking w = ηuβ−1 in Lemma 3.17 we get

(3.4.12)

∫

Ω

|∇u|p1ηuβ−1 ≤ C0

(∫

Ω

ηuβ−1 +
N∑

i=1

∫

Ω

|η′i|piuβ+pi−1ηi

)
.
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Now we define

(3.4.13) v =




us where p1s = p1 + β − 1 β 6= 1− p1

log u for β = 1− p1.

First we analyze the case β 6= 1− p1, we obtain, since p1 > 1 and η ≤ 1,

(3.4.14)

∫

Ω

|η∇v|p1 ≤
∫

Ω

η|∇v|p1 = |s|p1
∫

Ω

ηu(s−1)p1|∇u|p1 =

= |s|p1
∫

Ω

ηuβ−1|∇u|p1 ≤

≤ |s|p1C1

(∫

Ω

ηuβ−1 +
N∑

i=1

∫

Ω

|η′i|piuβ+pi−1ηi

)
,

by (3.4.12). Now we use the classic Sobolev inequality

(3.4.15)

(∫

Ω

|ηv|χp1
) 1

χ

≤ C2

∫

Ω

|∇(ηv)|p1 ,

where χ = N/(N − p1) if p1 < N , χ is arbitrarily large if p1 = N , and χ = ∞ if p1 > N .

Then

(3.4.16)

∫

Ω

|∇(ηv)|p1 ≤
∫

Ω

|∇η|p1vp1 +
∫

Ω

ηp1|∇v|p1 ≤

≤
∫

Ω

|∇η|p1vp1 + C1|s|p1
(∫

Ω

ηuβ−1 +
N∑

i=1

∫

Ω

|η′i|piuβ+pi−1ηi

)
≤

≤ C3|s|p1
(∫

Ω

|∇η|p1vp1 +
∫

Ω

ηuβ−1 +
N∑

i=1

∫

Ω

|η′i|piuβ+pi−1ηi

)
.

Let now 1 ≤ h′ < h′′ ≤ 2 and take η as a cutoff function for K(h′) (η ∈ C∞
0 (K(h′′))),

such that 0 ≤ ηi ≤ 1 for all i, η = 1 in K(h′), η = 0 outside K(h′′) and

|η′i| ≤
2

h′′ − h′
∀ i = 1, ..., N ⇒ |∇η| ≤ 2C4

h′′ − h′
.

Now we want to estimate any integral in (3.4.16) with

∫

K(h′′)
vp1 . By the choice of η,

for the first integral we obtain

(3.4.17)

∫

Ω

|∇η|p1vp1 ≤ C5

(
2

h′′ − h′

)p1 ∫

K(h′′)
vp1 .
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By the boundedness of u, the second integral becomes

(3.4.18)

∫

Ω

ηuβ−1 ≤
∫

K(h′′)
up1(s−1) ≤ C6

∫

K(h′′)
vp1 .

Finally, for the third integral we have, always by the assumptions on u and η,

(3.4.19)
N∑

i=1

∫

Ω

uβ−1+pi|η′i|piηi ≤
N∑

i=1

∫

K(h′′)
up1s−p1+pi|η′i|piηi ≤

≤
N∑

i=1

(
2

h′′ − h′

)pi ∫

K(h′′)
up1supi−p1 ≤

(
2

h′′ − h′

)pN ∫

K(h′′)
vp1 .

Putting together (3.4.17), (3.4.18), (3.4.19), (3.4.16) and (3.4.15) we arrive to

(∫

K(h′)
vχp1

) 1
χ

≤ C7|s|p1(h′′ − h′)−pN

∫

K(h′′)
vp1 .

By taking the p1-th root of each side of the previous inequality, we obtain

(3.4.20) ‖v‖Lχp1 (K(h′)) ≤ C8|s|(h′′ − h′)−
pN
p1 ‖v‖Lp1 (K(h′)).

The above inequality allows us to conclude the proof proceeding in the same way of

Theorem 1.2 of [80]. For the case β = 1− p1 we proceed in a similar way.

The previous result easily implies the following statement.

Corollary 3.19. Let u be a weak non-negative solution for (3.0.1), and assume

that p1 ≥ 2. Then either u is the trivial solution or u is strictly positive in Ω.

3.5. On the set of positive solutions

Let us define Λ > 0 as the infimum of the λ such that the functional Jλ has at

least a nontrivial critical point (or, equivalently, that (3.0.1) has at least a positive

solution). Obviously (3.2.12) gives a lower bound on Λ. Now we want to show some

global properties of the set of the positive solutions of (3.0.1). Throughout all this

section we assume that p1 ≥ 2 in order to have positive solutions of (3.0.1) and no

restriction on the range of the exponent q.

Proposition 3.20. Let uλ be the minimum solution of (3.0.1). Then

‖uλ‖W 1,(pi)
0 (Ω)

→ +∞, as λ→ +∞.
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Proof. It is easy to see that inf Jλ → −∞ as λ increases to +∞, then, using the

weak formulation of (3.0.1), we have that

Jλ(uλ) =
N∑

i=1

(
1

pi
− 1

q

)
‖∂iuλ‖piLpi (Ω) → −∞.

It implies that ‖∂iuλ‖Lpi (Ω) → +∞, at least for some pi > q, so the statement is proved.

Proposition 3.21. Let uλ be a positive solution of (3.0.1). Then

‖uλ‖L∞(Ω) ≤ C(pi, q, λ)a
βmeas(Ω)α,

with

α =
m(p∗ − p)

mp(p∗ − 1)−mp∗(q − 1)− p∗
,

β =
pN

pN − q

(
γ − 1

γ

)
(p− 1)γ

(p− 1)γ − (q − 1)

and m > N/p is suitably chosen.

Proof. First of all, we want to recall that all the solutions of (3.0.1) are bounded

(see Remark 3.1), now we want to give an estimate on this bound depending on the

measure of Ω. Using the weak formulation of the problem (3.0.1) (with uλ as a test

function), we have
N∑

i=1

‖∂iuλ‖piLpi (Ω) = λ‖uλ‖qLq(Ω).

Now we use Hölder inequality with exponents pN/q and pN/(pN−q). By the assumption

q < pN and Poincaré type inequality (1.1.10), we obtain

‖∂Nuλ‖pNLpN (Ω) ≤
N∑

i=1

‖∂iuλ‖piLpi (Ω) ≤ λ
(apN

2

)q
‖∂Nuλ‖qLpN (Ω)meas(Ω)

pN−q

pN .

Simplifying and using again (1.1.10), we get

‖uλ‖pN−q
LpN (Ω) ≤ λ

(apN
2

)pN
meas(Ω)

pN−q

pN ⇒ ‖uλ‖LpN (Ω) ≤ λ
1

pN−q

(apN
2

) pN
pN−q

meas(Ω)
1

pN .

It is easy to prove that

(3.5.21) ‖uλ‖Ls(Ω) ≤ λ
1

pN−q

(apN
2

) pN
pN−q

meas(Ω)
1
s , ∀ s < pN .
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Now by the result in [45], that is

uλ ∈ Ls(Ω) ∀ s <∞,

and using, as in the previous chapter, the Stampacchia techniques (see [75]), we obtain

‖uλ‖L∞(Ω) ≤
‖uλ‖

1− 1
γ

L1(Ω)C0‖f‖
1

(p−1)γ

Lm(Ω)

1− 1
γ

,

with

f = λuq−1
λ and γ =

mp(p∗ − 1)− p∗

mp∗(p− 1)
,

for all m > N/p. So we obtain

‖uλ‖L∞(Ω) ≤
C1‖uλ‖

1− 1
γ

L1(Ω)λ
1

(p−1)γ ‖uλ‖
q−1

(p−1)γ

L(q−1)m(Ω)

1− 1
γ

.

Now we apply the inequality (3.5.21) with s = 1, and we get

‖uλ‖L∞(Ω) ≤
γλ

1
pN−q

(1− 1
γ
)+ 1

(p−1)γ (apN)
pN

pN−q
(1− 1

γ
)
C2 meas(Ω)1−

1
γ ‖uλ‖

q−1
(p−1)γ

L(q−1)m(Ω)

(γ − 1)2
pN

pN−q
(1− 1

γ
)

≤

≤ C3‖uλ‖
q−1

(p−1)γ

L∞(Ω)a
pN

pN−q
(1− 1

γ
)
meas(Ω)1−

1
γ
+ 1

mγ(p−1) ;

where the constant C3 does not depend on meas(Ω) and a = diam(Ω). So, since uλ ∈
L∞(Ω), we have

(3.5.22) ‖uλ‖
1− q−1

(p−1)γ

L∞(Ω) ≤ C4 a
pN

pN−q
(1− 1

γ
)
meas(Ω)1−

1
γ
+ 1

mγ(p−1) .

In order to conclude the proof we note that

1− q − 1

(p− 1)γ
> 0,

if and only if

m >
p∗

[p(p∗ − 1)− (q − 1)p∗]
.

If
p∗

[p(p∗ − 1)− (q − 1)p∗]
≤ N

p
,

the proof is finished. If
p∗

[p(p∗ − 1)− (q − 1)p∗]
>
N

p
,
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we choose m = p∗

[p(p∗−1)−(q−1)p∗] and it is possible because the inequality holds true for

all m > N
p
.

Remark 3.22. The above proposition implies that a positive solution of




−∑N
i=1 ∂i

[
|∂iu|pi−2 ∂iu

]
= λ|u|q−2u in Ω′

u = 0 on ∂Ω′

where Ω′ is a non empty set strictly contained in Ω, can be a subsolution of (3.0.1)

provided the measure of Ω′ is sufficiently small. Indeed, since any positive solution

of (3.0.1) is strictly positive (see Corollary 3.19), it is possible to choose Ω′ in such a

way that the corresponding solution uλ,Ω′ (extended to zero in Ω \ Ω′) is very small

in L∞-norm. Moreover Proposition 3.21 shows also that it is possible to build a con-

stant supersolution. So Lemma 8 in [9] proves the existence of a continuum of positive

solutions.

Proposition 3.23. Let wλ be the Mountain-Pass solution of (3.0.1). Then

Jλ(wλ) → 0, as λ→ +∞.

Proof. We define

J0
λ = {v ∈ W

1,(pi)
0 (Ω) : Jλ(v) ≤ 0}.

We note that, if λ is sufficiently large, J0
λ is nonempty. In fact uλ, the minimum solution,

belongs to J0
λ. We also have that J0

λ ⊇ J0
λ′ if λ > λ′, so if v ∈ J0

λ0
then v ∈ J0

λ for all

λ ≥ λ0. Now we fix λ0 ∈ R, sufficiently large, such that

uλ0 ∈ J0
λ0
.

For any t ∈ [0, 1], we have

Jλ(tuλ0) ≤
1

p1

N∑

i=1

‖∂iuλ0‖piLpi (Ω) t
p1 − λ

q
‖uλ0‖qLq(Ω) t

q.

It is easy to prove that the real function

φλ(t) = Jλ(tuλ0)

has a maximum for

t0 =

[∑N
i=1 ‖∂iuλ0‖piLpi (Ω)

λ‖uλ0‖qLq(Ω)

] 1
q−p1

.
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Since uλ0 is a minimum of Jλ0 , using the weak formulation of (3.0.1), we get

φλ(t0) =
(q − p1)λ

q
q−p1
0 ‖uλ0‖L

q(Ω)
q

qp1λ
p1

q−p1

> 0.

Let

cλ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

with

Γ =
{
γ : [0, 1] → W

1,(pi)
0 (Ω) : γ is continuous, γ(0) = 0 and γ(1) = uλ0

}
.

So if we choose γ(t) = tuλ0 , we obtain the claim, since

0 < cλ ≤ φ(t0) → 0 as λ→ +∞.

The above results seem to show that the continuum of positive solutions of (3.0.1)

has a ⊂-shape. This because we have no solution for λ small (Proposition 3.7) and at

least two positive solution for λ large enough (Theorems 3.9,3.13 and Corollary 3.19).

Finally, this branch of solutions cannot bifurcate from the set of trivial solutions, since

there is no correct “linearized” problem for (3.0.1).
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[13] L. Boccardo, Hardy potentials and quasi-linear elliptic problems having natural growth terms, Ellip-

tic and parabolic problems, 67–87, Progr. Nonlinear Differential Equations Appl., 63, Birkhäuser,
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[18] L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and

L1 data, Nonlinear Anal. T.M.A., 19 (1992), 573–579.

[19] L. Boccardo, T. Gallouët, P. Marcellini, Anisotropic equations in L1, Differential Integral Equations

9 (1996), 209–212.
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Gauthier-Villars, Paris, (1969).

[60] P. Marcellini, Un exemple de solution discontinue d’un probleme variationnel dans le cas scalaire,

Preprint Istituo Mat. ”U. Dini”, Università di Firenze 11 (1987).
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