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Chapter 0

Introduction

In the beautiful paper [39] Getzler studies the problem of integrating nilpotent dg Lie algebras
to ∞ groupoids in a way which generalizes the classical way a nilpotent Lie algebra integrates to
its exponential group via the Baker-Campbell-Hausdorff product, where in a loose, homotopical,
sense we are using, at least for the moment, ∞ groupoid as a synonym for Kan complex (cf. e.g.
[73] for a justification). He notices that there is a “homotopically right” answer given by rational
homotopy theory (a la Sullivan [100], cf. [39], Proposition 1.1): namely, the functor MC∞(−)
sending a nilpotent dg Lie algebra algebra L to the simplicial set MC∞(L) := MC(Ω(∆•;L))
of Maurer-Cartan forms on the standard cosimplicial simplex ∆• with coefficients in L, that is,
n-simplices of MC∞(L) are 1-forms ω ∈ Ω1(∆n;L) = (Ωn ⊗ L)1, where Ωn = Ω(∆n) is the de
Rham-Sullivan algebra [100, 11] of polynomial differential forms on the n-th standard simplex ∆n,
satisfying the Maurer-Cartan equation

dω +
1

2
[ω, ω] = 0, (0.0.1)

where the bracket is induced by the one on L via scalar extension by Ωn. The functor MC∞(−) had
been previously studied by Hinich [45] in the context of deformation theory, more about this later:
on the other hand this is bigger than what we wanted, for instance if g is an ordinary nilpotent Lie
algebra then the nerve N(exp(g)) of its exponential group is only a deformation retract of MC∞(g).
We review Getzler’s solution from a point of view to our knowledge not covered in the literature.

After Whitney [108] and Dupont [30], integration of forms over simplexes induces a simplicial

contraction ( Ω(∆•;L)

∫
// C(∆•;L)

ι
oo ,K) from the simplicial dg Lie algebra Ω(∆•;L) to the

simplicial complex C(∆•;L) of non-degenerate cochains on ∆• with coefficients in L: the standard
theorem on homotopical transfer of L∞ structures says then that there is an induced simplicial
nilpotent L∞ algebra structure on C(∆•;L), for which it makes sense to consider the Maurer-
Cartan equation. The solution given in [39] is to consider the simplicial subset γ•(L) ⊂ MC∞(L)
of Maurer-Cartan forms in the kernel of Dupont’s Gauge K : Ω(∆•;L) → Ω(∆•;L)[−1]: by a
formal analog of Kuranishi theorem, also due to Getzler (it will be reviewed in Section 2.3, notice
that the enunciate given there is a bit more general than the ones we found in the literature, the
proof on the other hand is essentially taken from [39]), this is isomorphic to the simplicial set
Del∞(L) := MC(C(∆•;L)) of Maurer-Cartan cochains on ∆• with coefficients in L, where the
isomorphism is again induced by integration of forms over simplexes. In fact, for a nilpotent Lie
algebra g we have this time an isomorphism Del∞(g) ∼= N(exp(g)), but more is true: if L is a non
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6 CHAPTER 0. INTRODUCTION

negatively graded nilpotent dg Lie algebra1 then Del∞(L) is isomorphic to the nerve N(Del(L)) of
the Deligne groupoid of L (see e.g. [27, 42, 77, 34]), look at Section 5.2.2 for a proof, explaining
the notation and establishing an important bridge towards deformation theory; again, more on
this later. On the other hand, one of the main results of [39] is the existence of a natural weak
equivalence of simplicial sets Del∞(L) → MC∞(L), thus in the complementary case where L is
negatively graded Del∞(L) represents the simply connected rational homotopy type associated to
L, establishing this time a bridge towards rational homotopy theory.

In Section 5.2 we review some important results by Getzler [39] and Berglund [6] on the structure
of the simplicial set Del∞(L). From [39] we review the existence of the natural weak equivalence
Del∞(L) → MC∞(L) and the proof that Del∞(L) is an ∞ groupoid2. From [6] we review the
computation of the homotopy groups πi(Del∞(L), x) for all base points x ∈ MC(L) = Del∞(L)0

and the following theorem. Given a simplicial set X and a nilpotent dg Lie algebra L we can
form, again via homotopy transfer from the dg Lie algebra Ω(X;L) = Ω(X) ⊗ L along Dupont’s
contraction, the nilpotent L∞ algebra C(X;L) of non-degenerate cochains on X with coefficients
in L: then the simplicial set Del∞(C(X;L)) (this makes sense, cf. below) is naturally weakly
equivalent to the simplicial mapping space SSet(X,Del∞(L)). In [6] this latter fact is used to
deduce that if X is finite and L is a Lie model for the rational homotopy type of Y , then C(X;L)
is an L∞ model for the rational homotopy type of the mapping space SSet(X,Y ): notice that
mapping spaces are usually not connected, so they are beyond the scope of classical rational
homotopy theory (much recent work has been devoted to the rational homotopy theory of mapping
spaces, cf. [6, 15, 68]).

In Section 5.2.1 we look at the role of the functor Del∞(−) in the Lie approach to disconnected
rational homotopy theory developed by Lazarev and Markl [70]. It should be clear by the above dis-
cussion that all we need to define Del∞(−) are scalar extension, homotopy transfer and the Maurer-
Cartan equation, so more in general Del∞(L) can be defined for any complete (that is, pronilpotent)
L∞ algebra L. We take a pause to recall another construction by Sullivan [102] and Cheng-Getzler
[22]. If X is a simplicial set, then via homotopy transfer from the dg commutative algebra Ω(X) it
is induced a C∞ algebra structure on the complex C∗(X) of non-degenerate cochains on X, that is,
a commutative dg algebra structure which is associative only up to system of coherent homotopies.
If X is moreover finite it is induced a dual C∞ coalgebra structure on the complex C∗(X) of non-
degenerate chains on X: the latter is by definition a dg Lie algebra structure on the complete free
Lie algebra L̂(C∗(X)[−1]). It can be checked that this defines a colimit preserving functor from the

category of finite simplicial sets to the category D̂GLA of complete dg Lie algebras, which extends

uniquely to a colimit preserving functor L(−) : SSet → D̂GLA: for instance, L(∆1) is the well

1We work with cohomological gradation.
2We have already said that this should mean in particular that Del∞(L) is a Kan complex, that is, every horn

Λin → Del∞(L) admits a filling α ∈ Del∞(L)n, but again more is true: we can select a set of distinguished simplexes
Tn Del∞(L) ⊂ Del∞(L)n for all n ≥ 1, the thin simplexes (namely, the Maurer-Cartan cochains evaluating to zero
on the top dimensional simplex), such that every degenerate simplex is thin and every horn admits a unique thin
filling. In the theses of Ashley [1] and Dakin [26] it is studied in great detail the notion of a T -complex. This is
a simplicial set X together with subsets of distinguished simplexes TnX ⊂ Xn, n ≥ 1, called as before the thin
simplexes, satisfying the previous two conditions and moreover the third one: if all the faces of a horn are thin, then
the remaining face of the unique thin filling is also thin. For instance, if L is a quantum type dg Lie algebra, that is,
L is concentrated in degrees ≥ −1, then Del∞(L) is a T -complex, cf. [39]. In general only the first two conditions
are satisfied, and Del∞(L) is what we call a weak T -complex: in [39] this is simply called an∞ groupoid. Although
we won’t really have an use for this fact, we believe that it is important to keep it in mind: weak T -complex, and
even more so actual T -complexes, are (the nerve of)∞ groupoids in a much more precise sense than Kan complexes,
cf. [1] and [26] where it is proved that T -complexes are the nerves of crossed complexes in groupoids: in fact, hidden
in their definition there is a rich algebraic structure given by filling procedures (cf. again [1] and [26] as well as the
discussion in Remark 5.2.23) where the remaining axiom for a T -complex plays the role to impose regularity to this
structure.
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known [67, 16, 17, 85, 22] Lawrence-Sullivan model of the interval. We show (cf. Proposition 5.2.27:
this result appears to be new, at least to our knowledge, of course it is just another appearance of
the well established mechanism of Koszul duality and twisting cochains [72, 13, 84]) that L(−) is a

left adjoint functor, whose right adjoint is Del∞(−) : D̂GLA→ SSet. For instance, this recovers
the observation [17] that to give a morphism of dg Lie algebras L(∆1) → M is the same as to
give Maurer-Cartan elements x, y ∈ MC(M) and a Gauge equivalence ea ∗ y = x. The adjunction

L(−) : SSet // D̂GLA : Del∞(−)oo , which is induced via Koszul duality and homotopy transfer

from the adjunction Ω(−) : SSetop // DGCA : 〈−〉oo usual from Sullivan’s approach to ratio-

nal homotopy theory [100, 11] (in the disconnected version developed in [70], where we do not
restrict to non negatively graded algebras), should play an analog role in Quillen’s Lie theoretical

approach. To enforce this point we recover the model category structure on D̂GLA introduced in
[70], modeling disconnected rational homotopy theory (cf. Theorem D in loc. cit.), by transferring

the usual model category structure on SSet along L(−) : SSet // D̂GLA : Del∞(−)oo , this also

automatically shows that the the model category structure on D̂GLA is cofibrantly generated and
the adjunction is a Quillen adjunction3.

Now for the deformation theory side of the story: as we said the functor MC∞(−) had been
studied by Hinich in this context, the reason was to prove the important property of descent of
Deligne groupoids [45]. We make yet another digression to sketch the nowadays standard approach
to deformation theory via dg Lie algebras [27, 42, 58, 76, 77, 34, 51, 35]. Given a nilpotent dg Lie
algebra L, its degree zero part L0 integrates via the classical Baker-Campbell-Hausdorff product
to the exponential group exp(L0), moreover, the latter acts in a natural way on the set MC(L)
of solutions x ∈ L1 of the Maurer-Cartan equation (0.0.1) via the Gauge action (cf. the previous
references or Definition 5.2.33) ∗ : exp(L0) ×MC(L) → MC(L) : (ea, x) → ea ∗ x. The Deligne
groupoid Del(L) is the action groupoid associated to the Gauge action: that is, objects are Maurer-
Cartan elements x, y ∈ MC(L), while the arrows from x to y are the a ∈ L0 such that ea ∗ x = y,
finally, the composition of arrows is given by the Baker-Campbell-Hausdorff product. In classical
situations, a formal moduli problem is encoded in a formal groupoid M : ArtK → Grpd, where
ArtK is the category of Artin K -algebras with field of residues isomorphic to K (by a formal
groupoid we mean precisely a functor F : ArtK → Grpd such that moreover F (K ) is the trivial
groupoid): given A ∈ ArtK , typically M(A) will be the groupoid whose objects are deformations of
the structure we are considering over the fat point Spec A, and and whose arrows are isomorphisms
of deformations. We say that a dg Lie algebra L controls the deformation theory if there is an
equivalence of formal groupoids between M and DelL : ArtK → Grpd : A→ Del(L⊗mA), where
mA ⊂ A is the maximal ideal and L⊗mA has the nilpotent dg Lie algebra structure given by scalar
extension.

It is usually a hard task to find a dg Lie algebra controlling a given deformation problem: to
this end several (homotopical) methods have been developed [45, 77, 51, 34, 53, 54, 2] and, as
we try to illustrate in the final chapter, descent of Deligne groupoids is a powerful one. To see
a typical situation where it applies, we consider a complex manifold X and the deformations of
the complex structure on X, that is, the formal moduli problem DefX : ArtC → Grpd sending
A ∈ ArtC to the groupoid whose objects are deformations of X over Spec A and whose arrows
are isomorphisms of deformations. We denote by ΘX the tangent sheaf on X, with the standard
structure of sheaf of Lie algebras. As a well know consequence of Kodaira-Spencer’s theory and

3Although we won’t elaborate more on this point, we believe that the utility of this approach should be to get rid
of the finite assumptions in [70], Theorem D, which should become unnecessary in a Lie-Quillen version of rational
homotopy theory, cf. [89].
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Cartan’s Theorem B, when X is Stein every deformation of X over A is isomorphic to the trivial
one X×Spec A, so the deformation groupoid DefX(A) has (essentially) only one object, and every

automorphism of the trivial deformation is of the form X × Spec A
eη−→ X × Spec A, where η is a

global vector field η ∈ H0(X; ΘX)⊗mA: in other words, there is an equivalence of formal groupoids
DefX ' DelH0(X;ΘX). In general, if U = {Ui}i∈I is a covering of X by Stein open sets, then
every deformation of X over A is isomorphic to one obtained by gluing the trivial deformations

Ui × Spec A along a family of transition automorphisms Uij × Spec A
eηij−−→ Uij × Spec A on

double intersections, where ηij ∈ ΘX(Uij)⊗mA and as usual Uij := Ui ∩Uj , satisfying the cocycle
condition eηijeηjk = eηik on the triple intersections Uijk: in a slightly fancier language, cf. [45, 34, 2]
and Definition 5.3.10, this says that DefX is equivalent to the (formal) groupoid of descent data
Tot(DefU ) of the formal semicosimplicial groupoid

DefU :
∏

i

DefUi
//
//
∏

i,j

DefUij
//////
∏

i,j,k

DefUijk · · ·

where the faces are induced by the restrictions Uj → Uij , Ui → Uij , etc., as in the usual Čech
construction, cf. [45, 34, 2], and by what we said this is equivalent to the formal semicosimplicial
groupoid

DelΘX(U) :
∏

i

DelΘ(Ui)
//
//
∏

i,j

DelΘ(Uij)
//////
∏

i,j,k

DelΘ(Uijk) · · ·

This should be enough motivation to see the importance of the following theorem by Hinich [45],
in the refined form given in [34, 35]. Given a semicosimplicial non negatively graded dg Lie algebra

L• : L0
//
// L1

////// L2 · · ·

there is an L∞ algebra structure on the total complex Tot(L•), the usual Čech totalization∏
n≥0 Ln[−n] of L• regarded as a semicosimplicial dg space, and an isomorphism of formal groupoids

DelTot(L•)
∼= Tot(DelL•)

4. In the final chapter of the thesis we apply the previous yoga to study
several deformation problems in holomorphic Poisson geometry, more about this in the next para-
graph. We remark that it is essential for the validity of the theorem that we are working with
non negatively graded dg Lie algebras. In section 5.3, Theorem 5.3.6, we prove the analog descent
theorem for the functor Del∞(−), more precisely, we prove that given a semicosimplicial complete
L∞ algebra L• with no grading restrictions there is a natural weak equivalence of simplicial sets
Del∞(Tot(L•)) ' Tot(Del∞(L•)), where again Tot(L•) in the left hand side is the Čech totaliza-
tion of L• with its natural L∞ algebra structure, while this time Tot(−) in the right hand side
is the Bousfield-Kan totalization [9]5. We recover the descent theorem from [45, 34, 35] for the
ordinary Deligne groupoid in the sequent Section 5.3.1.

In Chapter 6, to illustrate the utility of Hinich’s theorem on descent, we consider several de-
formations problems in holomorphic Poisson geometry: this is the content of the paper [2] by

4To make sense of the formal groupoid DelTot(L•), we remark that for any non negatively graded nilpotent L∞
algebra L it is easy to see that Del∞(L) is the nerve of a groupoid (as every horn Λin → Del∞(L), n ≥ 2, admits
a unique filling), so in this case we can define Del(L) as (with our conventions, the opposite of) this groupoid, and
according to Theorem 5.2.37 this is consistent with the usual definition in the dg Lie algebra case.

5Possible applications of this more general result, which we hope to give elsewhere, should include descent of
Deligne 2-groupoids, cf. [38, 110], where in the second reference the result is used to study deformation quantization
of algebraic Poisson varieties. What we are missing is a rigorous comparison between the Deligne 2-groupoid as
defined in [38, 110] and the one implicitly encoded in the structure of Del∞(L), where L is a dg Lie algebra in
degrees ≥ −1. To this regard cf. also [110], Remark 8.11.
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the author and M. Manetti. Recall that a holomorphic Poisson manifold is a complex manifold
X equipped with a Poisson bivector π, that is, a global section π ∈ H0(X;

∧2
ΘX) satisfying

the integrability condition [π, π] = 0, where the bracket is the Schouten-Nijenhuis bracket, and
that a closed submanifold Z ⊂ X is coisotropic if π is in the kernel of the natural projection∧2

ΘX →
∧2NZ|X , where NZ|X is the normal sheaf of Z in X. In particular the Lichnerowicz-

Poisson differential dπ = [π, ·] (Schouten-Nijenhuis bracket) induces a dg structure on the Gersten-
haber algebra

∧
ΘX of holomorphic polyvector fields on X: if Z ⊂ X is coisotropic this factors

to a dg structure on the graded algebra
∧NZ|X . We study deformations of holomorphic Poisson

manifolds, of a pair (Poisson manifold, coisotropic submanifold) and finally embedded coisotropic
deformations, and using descent of Deligne groupoids in all cases we determine controlling dg Lie
algebras, see Theorems 6.2.4, 6.3.3 and 6.3.6. As a first application of these results, we show in
Corollary 6.3.4 an analog of Kodaira stability theorem for coisotropic submanifolds. Other appli-
cations are given in Section 6.4. Recall that the anchor map π# : ΩX →

∧
ΘX is the morphism

of sheaves of dg OX -algebras, where ΩX is the sheaf of holomorphic differential forms, uniquely
defined so that π#(f) = f for all f ∈ OX6: if Z ⊂ X is coisotropic this factors to a morphism of
sheaves of dg OZ-algebras π# : ΩZ →

∧NZ|X . In [47] Hitchin proves that, if (X,π) is a compact

Kähler Poisson manifold, then every element in the image of π# : H1(X,Ω1
X) → H1(X,ΘX) is

the Kodaira-Spencer class of a deformation of the pair (X,π) over a germ of smooth curve. We
recover and extend this result in Theorem 6.4.11, following the method of [33], and we consider
the analog situation for embedded coisotropic deformations. We show in Theorem 6.4.10 that
under some mild additional assumption (namely, if the Hodge to de Rham spectral sequence of Z
degenerates at E1, in particular if Z is compact Kähler) then every element in the image of the
anchor map π# : H0(Z; Ω1

Z)→ H0(Z;NZ|X) is the Kodaira-Spencer class of a coisotropic embed-
ded deformation of Z in (X,π) over a germ of smooth curve. Such result applied to a compact
Kähler Lagrangian submanifold Z of a holomorphic symplectic manifold X shows that every small
deformation in X of Z is Lagrangian and the Hilbert scheme of X is smooth at Z; when X is
compact Kähler we recover in this way a classical result by Voisin and McLean [82, 104].

Up to now we have been trying to talk about dg Lie algebras when possible, mainly for simplicity,
but already at some points we couldn’t avoid to use the language of L∞ algebras. It seems
a bit late now to recall the definition, but here it goes: an L∞ algebra structure on a space
L is equivalently the datum of a dg coalgebra structure on the reduced symmetric coalgebra
S(L[1]) = ⊕n≥1L[1]�n (where L[1]�n is the n-th symmetric power, and we remark that we work
with coinvariants). We will denote by CE(L[1]) the graded Lie algebra of coderivations of S(L[1]),
thus an L∞ structure on L is the datum of Q ∈ CE(L[1]) such that Q has degree one and squares to
zero. As the coalgebra S(L[1]) is cofree, the projection p : S(L[1])→ L[1] induces an isomorphism
CE(L[1]) =

∏
n≥1 Hom(L[1]�n, L) : Q → (q1, . . . , qn, . . .) of graded space, thus Q ∈ CE(L[1]) is

determined by the sequence of Taylor coefficients qn ∈ Hom1(L[1]�n, L[1]). To see the link with
dg Lie algebras we shift again the gradation, then the qn go into a sequence of higher brackets
ln ∈ Hom2−n(L∧n, L) (where L∧n is the n-th exterior power), and the identity [Q,Q] = 0 translates
into a series of identities for these brackets: the first few say that l1 : Li → Li+1 is a differential
on L satisfying the Leibniz identity with respect to the bracket l2 : Li⊗Lj → Li+j , and the latter
satisfies the Jacobi identity up to the homotopy l3 : Li ⊗ Lj ⊗ Lk → Li+j+k−1. In particular, a
dg Lie algebra structure on L is the same as an L∞ structure Q ∈ CE(L[1]) such that qn = 0 for
all n ≥ 3. The utility of dealing with L∞ algebras rather than dg Lie algebras is that while they
have the same homotopy category (once we have defined the appropriate notions of L∞ morphism
and weak equivalence, cf. [46]) L∞ algebras are better behaved with respect to to homotopical

6This determines π# on Ω≤1
X , since we must have π#(df) = [π, f ] for all f ∈ OX , and thus π#, since Ω≤1

X is a
set of generators of the algebra ΩX .
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constructions. For instance two L∞ algebras are isomorphic in the homotopy category if and only if
there are quasi-inverses weak equivalences between them. As another example, if M ⊂ L is a quasi-
isomorphic subcomplex and L carries a dg Lie algebra structure, in general there is no induced dg
Lie algebra structure on M : on the other hand every L∞ algebra structure on L transfers naturally
to a weakly equivalent L∞ algebra structure on M , and moreover we have explicit formulas for
the transferred structure and the weak equivalence. This is the content of the already mentioned
homotopy transfer theorem, which will be reviewed in Section 2.2, following the proof we learned
from the arXiv version of [31]7: as homotopy transfer will be a fundamental tool throughout the
thesis, we spend some time proving some technical necessary lemmas.

The price we paid to obtain this more flexible theory is of course that we complicated the
structure of dg Lie algebra by adding an infinite number of higher brackets and an infinite number
of higher Jacobi relations they must satisfy, which makes it hard to exhibit explicit L∞ algebra
structures on a given space: another part of this thesis deals with certain explicit constructions of
higher brackets and L∞ structures and the study of their homotopical properties.

In Section 3.3 we study and generalize Fiorenza-Manetti’s construction of an L∞ structure on
the mapping cocone coC(f) of a morphism of dg Lie algebras f : L→M [31]. More in general, we
study homotopy equalizers of a pair of ∞ morphisms between two ∞ algebras, by which we mean
either A∞ (dg algebras associative up to a system of coherent homotopies), C∞ (their commutative
version) or L∞ algebras: we prove existence of the homotopy equalizer (Theorem 3.3.1), which is
not trivial since the category of ∞ algebras and ∞ morphisms is not complete. Together with the
computations in [31], cf. also [51, 22], we can deduce explicit formulas when the target ∞ algebra
is a dg (resp.: associative, commutative, Lie) algebra: as an example, we give explicit formulas for
the mapping cocone of an L∞ morphism of dg Lie algebras, generalizing the ones from [31].

In Section 4.1 we study Th. Voronov’s construction(s) of L∞ algebra structures via higher
derived brackets [105, 106], for instance this has been successfully applied to the study of coisotropic
deformations in differentiable Poisson geometry8 [19, 20, 36, 91, 92] and simultaneous deformations
of algebraic structures [37]. The algebraic setup requires a graded Lie algebra M together with
graded Lie subalgebras L,A ⊂ M , with A abelian, such that M = L ⊕ A as a graded space; we
denote by P : M → A the projection with kernel L. In these hypotheses, let D ∈ Der(M) a
derivation of the Lie algebra structure such that D(L) ⊂ L, in [106] Voronov defines a sequence
of higher derived brackets Φ(D)n : A�n → A, n ≥ 1 on A associated to D9 by the formula
Φ(D)n(a1 � · · · � an) = P [· · · [Da1, a2] · · · , an] (graded symmetry follows from the hypothesis
that A is abelian, cf. loc. cit.). We denote by Der(M,L) ⊂ Der(M) the graded Lie subalgebra of
derivations D such that D(L) ⊂ L, thus higher derived brackets define a morphism of graded spaces
Φ : Der(M,L) → CE(A) : D → (Φ(D)1, . . . ,Φ(D)n, . . .). This construction of higher derived
brackets is similar but slightly different to another construction also due to Voronov [105]: in the
above setup, this time we associate a sequence of higher derived brackets Φ(m)n : A�n → A, n ≥ 0,
to every m ∈ M , always by the formula Φ(m)n(a1 � · · · � an) = P [· · · [[m, a1], a2] · · · , an] when
n ≥ 1, with moreover the 0-th bracket Φ(m)0 : A�0 = K → A : 1→ Pm. The difference between
the two constructions is that this time we get a morphism of graded spaces Φ : M → CE(A),
where CE(A) is the graded Lie algebra of coderivations of the non reduced symmetric coalgebra
S(A) = ⊕n≥0A

�n over A (the difference will become more apparent in the non-abelian case). In
[106] the following two facts are proven, which are the key to our approach:

7The only thing we add is the extension of the argument to see homotopy transfer for C∞ algebra structures.
8The method fails in the holomorphic setting since it depends essentially on the choice of an identification of the

normal bundle NZ|X and a tubular neighborhood of Z in X. See Corollary 6.3.8 for a comparison with our methods
in the (rare) case that such a choice is nonetheless possible.

9Notice that we use a different notation than the one in [105, 106].
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1. In Theorem 3 of loc. cit. it is proved that that the correspondences Φ : Der(M,L)→ CE(A)
and Φ : M → CE(A) are morphism of graded Lie algebras: in particular, this tells us that
if D has degree one and D2 = 0 (in most applications D = [l,−] for some degree one l ∈ L
such that [l, l] = 0) then Φ(D) is an L∞ structure on A[−1].

2. Moreover, in Section 4 of loc. cit. it is proved that in this case the L∞ algebra (A[−1],Φ(D))
is a homotopy fiber of the inclusion of dg Lie algebras i : (L,D, [·, ·]) → (M,D, [·, ·])10, in
other words, it is weakly equivalent to Fiorenza-Manetti’s mapping cocone coC(i).

As it is almost immediate to exhibit an explicit contraction from coC(i) to A[−1], this suggests
that Φ(D) should be induced via homotopy transfer along this contraction, and in fact this is
the case as will follow from our results, but the interesting fact here is that the existence of the
contraction does not depend on the hypothesis that A ⊂M is an abelian Lie subalgebra, showing
a possible way to generalize Voronov’s construction when we drop this hypothesis. This is what
we do in Section 4.1, following the paper [3] by the author. We maintain the assumption that
A ⊂ M is a graded Lie subalgebra but we drop the one that it is abelian11. Following a more
refined version of the sketched argument via homotopy transfer, depending also in an essential way
by the classification of L∞ extensions made in [24, 83, 69] (this will be briefly reviewed in Section
1.3.3), we define correspondences Φ : Der(M,L) → CE(A) and Φ : M → CE(A) in this more
general setup, reducing to the ones by Voronov when A is abelian and such that the above items
1 and 2 remain true (this is shown in Theorem 4.1.6 and Theorem 4.1.7: as for item 1 we prove
something more, that the correspondence Der(M,L)oM → CE(A) : (D,m)→ Φ(D) + Φ(m) is a
morphism of graded Lie algebras, where Der(M,L)oM is the semi-direct product). See Definition
4.1.3 for explicit formulas, these involve Bernoulli numbers. Theorem 4.1.6 remains interesting
also in the case L = 0, where it clarifies some results from [7], Section 4. As a first application of
these theorems, we recover an L∞ generalization of the adjoint morphism of a dg Lie algebra and
a geometrically appealing criterion for homotopy abelianity due to Chuang and Lazarev [23], cf.
Example 4.1.18, as well as the construction by Getzler [40] of an L∞ structure on the suspension
of the negatively graded part of any dg Lie algebra, generalizing the well known construction of a
Lie algebra structure on the degree minus one part of a quantum type dg Lie algebra, cf. Example
4.1.23. Other applications are given in the sequent sections.

In Section 4.2 we study the classical [64] construction of the Koszul brackets K(∆)n : A�n → A,
n ≥ 1, associated to an operator ∆ ∈ End(A) on a graded commutative algebra A. As observed in
[105, 106] these can be recovered in a natural way as higher derived brackets: as an application of
our non-abelian construction we introduce a similar sequence of higher brackets K(Q)n : L�n → L,
n ≥ 0, associated this time to a coderivation Q ∈ CE(L) on the symmetric coalgebra S(L) over
a graded left pre-Lie algebra L12. We recover Koszul’s construction when L = A is a graded
commutative algebra and Q = ∆ is a linear coderivation. This works as follows: for all x ∈ L we
denote by σx ∈ Hom(L�0, L) ⊂ CE(L) the constant coderivation σx : L�0 = K → L : 1→ x, and
by ∇x ∈ End(L) ⊂ CE(L) the left adjoint ∇x : L → L : y → x . y, where . is the left pre-Lie
product. It is well known that to say that . is a left pre-Lie product on L is equivalent as to say
that σ∇ : L→ CE(L) : x→ (σx,∇x, 0, . . . , 0, . . .) is a morphism of graded Lie algebras (where the
graded Lie algebra structure on L is given by the commutator), this sends L isomorphically onto

10This explains the utility of higher derived brackets in deformation theory, as homotopy fibers are naturally
associated to semi-trivial deformation probelms, see e.g. [77].

11The main theorems remain true even if we assume that A is just a complement of L in M , but the explicit
formulas in Definition 4.1.3 don’t hold anymore, cf. Remark 4.1.14

12Recall that a product . : L⊗L→ L is left (resp.: right) pre-Lie if the associator A(x, y, z) = (x.y).z−x.(y.z)
is graded symmetric in the first (resp.: last) two arguments: then the commutator [x, y] = x . y − (−1)|x||y|y . x is
a Lie bracket on L. It is a trivial matter to translate the following discussion for graded right pre-Lie algebras, cf.
Definition 4.2.1.
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its image L∇ := σ∇(L). We have a decomposition CE(L) = CE(L) ⊕ L∇ as in the hypotheses

of Theorem 4.1.6, thus a morphism of graded Lie algebras K : CE(L) → CE(L∇)
∼=−→ CE(L),

where the first arrow is given by (non-abelian, if . is not graded commutative) higher derived
brackets; this is the desired K. In Proposition 4.2.6 we prove that K is an automorphism of the
graded Lie algebra CE(L): the inverse K−1 : CE(L) → CE(L) generalizes the construction of
higher brackets on pre-Lie algebras given by the author in the paper [4], where they are called
Kapranov brackets. The reason for this is the following particularly interesting example of such
brackets. Given a compact Kähler manifold X, there is a pre-Lie algebra structure on the complex
A0,∗(TX) of Dolbeault forms with coefficients in the tangent bundle TX , induced by the usual Chern
connection on TX . In this case the Kapranov brackets K−1(∂), where ∂ is Dolbeault differential
on A0,∗(TX), recover the L∞ algebra structure on A0,∗(TX)[−1] introduced by Kapranov in [56],
which has recently attracted much attention [18, 21, 25, 44, 66] due to its role in derived geometry.
As an application of our results, we prove the expected fact that Kapranov’s L∞ algebra structure
on A0,∗(TX)[−1] is homotopy abelian over the field C of complex numbers: cf. Corollary 4.2.10.
Coming back to Koszul brackets, in the case when L = A is a commutative graded algebra,
we recover as a byproduct of our analysis a recent result by Markl [79, 80], namely, that the
Koszul brackets K : CE(A) → CE(A) are the twisting K = F − F−1 by a natural automorphism
F : S(A)→ S(A). As a final application, in Section 4.2.1 we prove an interesting result also proved
by Braun and Lazarev [12] with different methods. This regards commutative BV∞ algebras, that
is, the homotopy version of Batalin-Vilkovisky (BV ) algebras introduced in [65]: BV algebras and
homotopyBV algebras are important in algebraic topology, differential geometry and mathematical
physics. Associated to every BV algebra there is a dg Lie algebra, and similarly associated to a
commutative BV∞ algebra there is an L∞ algebra. In the paper [96] the authors prove that if a
BV algebra satisfies a certain degeneration property (examples include the de Rham algebra of
a symplectic manifold or the Dolbeault algebra of a Calabi-Yau manifold) then the associated dg
Lie algebra is homotopy abelian, and in [12] this result is extended to commutative BV∞ algebras
satisfying an appropriate analog degeneration property and the associated L∞ algebra: we give an
alternative proof of this latter fact as an application of Theorem 4.1.6 and a criterion for homotopy
abelianity by M. Manetti (cf. [53, 54] and Theorem 3.3.5), following the method of proof of the
original formality result in [96] we learned from the paper [52].

Warnings: We will always work over a field K of characteristic zero. Graded spaces are cohomo-
logically Z-graded.

Notation 0.0.1. Given a category C and objects X,Y in C, we will denote by C(X,Y ) the set
of morphisms in C from X to Y .

Acknowledgments. I’m grateful to my Ph.D. advisor M. Manetti, for teaching me about L∞ algebras
and deformation theory, for suggesting me and helping me study the problems we consider in this
thesis, for making available to me private drafts of a book still in preparation that even if not in
the bibliography has been a continuous point of reference during the writing of this thesis, most
of all, for his constant overall support. It is with great pleasure that I thank Domenico Fiorenza
for several and always useful discussions, Jim Stasheff for numerous corrections and suggestions,
Damien Calaque and Marco Zambon for their courtesy and their interest in my work.



Chapter 1

Review of ∞ algebras

Roughly speaking, an algebraic structure is homotopy invariant if it can be transferred along
homotopy equivalences. The idea to consider these kind of structures goes back to the 60s in the
seminal work of Jim Stasheff [97, 98, 99], who introduced A∞ algebras and gave the first spectacular
application of these ideas by proving that a space admits an A∞ algebra structure if and only if it
has the weak homotopy type of an associative monoid. In the following decades homotopy invariant
algebraic structures were studied mostly in algebraic topology, notably in the works of Boardman-
Vogt [8], Kadeishvili [55] (C∞ algebras), Schlessinger-Stasheff [94] (L∞ algebras) among others,
until the 90s when they started to find applications in other areas of geometry and mathematical
physics as well, cf. for instance the beautiful papers by Kontsevich on deformation quantization
[58] and homological mirror symmetry [59]: nowadays, as the relevance of higher (homotopical,
categorical) algebra in mathematics has been widely recognized, they are extensively studied and
an important tool in many situations.

In this thesis we deal mainly with L∞ algebras, that is, dg Lie algebras where the Jacobi identity
has be relaxed up to a system of coherent homotopies, but occasionally we will also consider A∞
algebras (algebras associative up to a system of coherent homotopies) and C∞ algebras (their
commutative version). In Sections 1.1, 1.2 and 1.3 we review the basic definitions. We will spend
more time on L∞ algebras: in Section 1.3.1 we introduce complete L∞ algebras and the Maurer-
Cartan equation, in Section 1.3.2 we review convolution L∞ algebras and finally in Section 1.3.3
we review the classification of L∞ extensions from [24, 83, 69].

1.1 Review of graded spaces

We work over a field K of characteristic zero; graded means Z-graded. We denote by G the
category of graded K -vector spaces V = ⊕i∈ZV i and degree preserving morphisms. An element
v ∈ V will usually be a homogeneous one and its degree will be denoted by |v|.

G is a symmetric monoidal category (cf. [74]) via the usual tensor product (with the gradation

(V ⊗W )i = ⊕j+k=i(V
j⊗W k)), the symmetry given by the Koszul isomorphism V ⊗W ∼=−→W⊗V :

v ⊗w → (−1)|v||w|w⊗ v and the unit K , seen as a graded space concentrated in degree zero. It is
defined an internal Hom(−,−) : Gop×G→ G functor, sending spaces V and W to Hom(V,W ) =
⊕i∈Z Homi(V,W ), where Hom(V,W ) is the space of all linear maps from V to W (forgetting the
gradation) and Homi(V,W ) is the space of those f such that f(V k) ⊂W k+i, ∀k ∈ Z: Hom(−,−)

13
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and ⊗ are related by the usual exponential law, saying that for each graded space V the functors

−⊗ V : G // G : Hom(V,−)oo form an adjoint pair. We denote by End(V ) := Hom(V, V ).

We denote by DG the category of differential graded (dg) spaces (V, dV ) - dV ∈ End1(V ), d2
V =

0 - and dg morphisms f : (V, dV ) → (W,dW ) - fdV = dW f - between them: it has a symmetric
monoidal category structure with tensor product (V, dV )⊗(W,dW ) = (V ⊗W,dV ⊗idW + idV ⊗dW )
and an internal Hom(−,−) : DGop × DG → DG functor defined by Hom((V, dV ), (W,dW )) =
(Hom(V,W ), dHom(V,W )(f) = dW ◦f − (−1)|f |f ◦dV ), again the two are related by the exponential
law.

For n ≥ 0 we denote by V ⊗n the n-th tensor power over V , and by V �n and V ∧n the n-th
symmetric power and the n-th exterior power over V respectively, which are the space of coinvari-
ants of V ⊗n under the natural, resp. alternate, action of the symmetric group Sn (according to
the usual Koszul rule for twisting signs); V �0 = V ∧0 = V ⊗0 := K .

For a graded space V and an integer k we denote by V [k] the shifted space V [k]i = V k+i, and
by s−k ∈ Hom−k(V, V [k]) the shift map. We follow the convention according to which degrees are
shifted on the left, that is, we will always identify V [i] with K [i]⊗V : for instance this implies that

the canonical isomorphism V [1]⊗n ∼= V ⊗n[n] sends s−1v1⊗· · ·⊗s−1vn to (−1)
∑n
j=1(n−j)|vj |s−n(v1⊗

· · · ⊗ vn). There is also a canonical isomorphism Hom(V,W )[−i + j] ∼= Hom(V [i],W [j]), sending
f (more precisely si−jf) to the map V [i]→W [j] : s−iv → (−1)i|f |s−jf(v).

Definition 1.1.1. Décalage is the composite isomorphism

déc: Hom(V ⊗n,W )
∼=−→ Hom(V ⊗n[n],W [1])[n− 1]

∼=−→ Hom(V [1]⊗n,W [1])[n− 1], (1.1.1)

explicitly given by

déc(f)(s−1v1 ⊗ · · · ⊗ s−1vn) = (−1)n|f |+
∑n
j=1(n−j)|vj |s−1f(v1 ⊗ · · · ⊗ vn).

This restricts to an isomorphism

déc: Hom(V ∧n,W )
∼=−→ Hom(V [1]�n,W [1])[n− 1]. (1.1.2)

We denote by GA and GAau the categories of graded associative algebras and graded associa-
tive algebras with a unit υ : K → A : 1→ 1A and an augmentation ε : A→ K respectively: recall
the reduced algebra functor GAau → GA sending A to A = Ker ε. We denote by GCA ⊂ GA
and GCAau ⊂ GAau the full subcategories of graded commutative algebras (Warning: in par-
ticular, when we talk about a commutative graded algebra we will always tacitly assume that it
is also associative). We denote by GC and GCau the categories of graded coassociative coal-
gebras and graded coassociative coalgebras with a counit µ : C → K and a coaugmentation
ε : K → C respectively, and by GCC ⊂ GC and GCCau ⊂ GCau the full subcategories of
graded cocommutative coalgebras (with a similar warning as before). Let ∆ : C → C⊗2 be the
coproduct, 1C := ε(1) and C := Ker µ (so that there is a splitting C = 1CK ⊕ C), and finally

∆ : C → C
⊗2

: c→ ∆(c)−1C⊗c−c⊗1C : then the reduced coalgebra functor GCau → GC sends
(C,∆, µ, ε) to (C,∆). We denote by GNC ⊂ GC the full subcategory of coalgebras (C,∆) which
are locally conilpotent, by which we mean that C =

⋃
n≥1 Ker ∆n, where ∆n : C → C⊗n+1 is the n-

th iterated coproduct, and we denote by GNCau ⊂ GCau the preimage of GNC under the reduced
coalgebra functor; similarly for the full subcategories GNCC ⊂ GCC and GNCCau ⊂ GCCau.
Recall that a graded bialgebra (B,m,∆) is a graded space B with a graded associative algebra
structure m : B⊗2 → B and a graded coassociative coalgebra structure ∆ : B → B⊗2 such that
∆ is a morphism of algebras and m is a morphism of coalgebras, where we consider B⊗2 with the
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induced (co)algebra structure. (B,m,∆) is commutative if such is (B,m) and cocommutative if
such is (B,∆). Graded bialgebras form a category GB, the category GBau consists of bialgebras
with a unit K → B and a counit B → K such that the first one is also a coaugmentation and
the second one is also an augmentation. The reduced bialgebra functor GBau → GB is defined
by combining the algebra and coalgebra cases. Finally, we denote by GLA the category of graded
Lie algebras. All of the above categories have a dg analogous for which we use the same notation
preceded by a D, for instance DGLA will be the category of dg Lie algebras, DGC the category
of dg coassociative coalgebras, and so on: in this case the differential has to be a derivation (resp.:
coderivation, biderivation) of the corresponding algebraic structure. The reader unfamiliar with
these categories is referred to the first chapter of [101].

The (resp.: reduced) tensor space over V is the graded space T (V ) = ⊕n≥0V
⊗n (resp.: T (V ) =

⊕n≥1V
⊗n), the (resp.: reduced) symmetric space over V is the graded space S(V ) = ⊕n≥0V

�n

(resp.: S(V ) = ⊕n≥1V
�n). These spaces carry several algebraic structures as we now recall.

The tensor space T (V ) carries two standard bialgebra structures, one commutative and the other
cocommutative, both augmented with unit K = V ⊗0 → T (V ) and counit T (V ) → V ⊗0 = K the
natural inclusion and projection. We first recall the commutative bialgebra structure on T (V ): its
reduced bialgebra is given by the deconcatenation coproduct ∆ : T (V )→ T (V )⊗ T (V )

∆ : v1 ⊗ · · · ⊗ vn →
n−1∑

i=1

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn), (1.1.3)

and the shuffle product ~ : T (V )⊗ T (V )→ T (V )

~ : (v1 ⊗ · · · ⊗ vp)⊗ (vp+1 ⊗ · · · ⊗ vp+q)→
∑

σ∈S(p,q)

ε(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(p+q), (1.1.4)

where we denote by S(p, q) the set of (p, q)-unshuffles, i.e., those permutations σ ∈ Sp+q such
that σ(k) < σ(k + 1) for k 6= p, and by ε(σ) = ε(σ; v1, . . . , vn) the Koszul sign. As for the
cocommutative bialgebra structure on T (V ), its reduced bialgebra is given by the concatenation
product ⊗ : (v1 ⊗ · · · ⊗ vp) ⊗ (vp+1 ⊗ · · · ⊗ vp+q) → v1 ⊗ · · · ⊗ vp+q and the unshuffle coproduct

∆sh : v1 ⊗ · · · ⊗ vn →
∑n−1
i=1

∑
σ∈S(i,n−i) ε(σ)(vσ(1) ⊗ · · · ⊗ vσ(i))⊗ (vσ(i+1) ⊗ · · · ⊗ vσ(n)), we will

have less use for it. Finally S(V ) carries a bialgebra structure which is both commutative and
cocommutative, and augmented as before by K = V �0 → S(V ) → V �0 = K , whose reduced
bialgebra is given by the concatenation product � : S(V )⊗ S(V )→ S(V )

� : (v1 � · · · � vp)⊗ (vp+1 � · · · � vp+q)→ v1 � · · · � vp+q (1.1.5)

and the unshuffle coproduct ∆sh : S(V )→ S(V )⊗ S(V )

∆sh : v1 � · · · � vn →
n−1∑

i=1

∑

σ∈S(i,n−i)
ε(σ)(vσ(1) � · · · � vσ(i))⊗ (vσ(i+1) � · · · � vσ(n)). (1.1.6)

Remark 1.1.2. Symmetrization

sym : S(V )→ T (V ) : v1 � · · · � vn →
∑

σ∈Sn
ε(σ)vσ(1) ⊗ · · · ⊗ vσ(n)

is a morphism of bialgebras from S(V ) with the (concatenation product, unshuffle coproduct)
structure to T (V ) with the (shuffle product, deconcatenation coproduct) structure.
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Definition 1.1.3. The graded coalgebra (T (V ),∆), where ∆ is the deconcatenation coproduct,
is called the reduced tensor coalgebra over V : this is the cofree locally conilpotent coassociative
coalgebra over V , that is, the functor (T (−),∆) : G → GNC is right adjoint to the forgetful
functor (we remark that this is no longer true if we consider (T (−),∆) as a functor into the larger
category GC). The graded coalgebra (T (V ),∆) equipped with the deconcatenation coproduct is
called the tensor coalgebra over V , the functor (T (−),∆) : G → GNCau is right adjoint to the
composition of the reduced coalgebra functor and the forgetful functor.

The graded cocommutative coalgebra (S(V ),∆sh) (resp.: (S(V ),∆sh)), where ∆sh is the
unshuffle coproduct, is called the (resp.: reduced) symmetric coalgebra over V : the functor
(S(−),∆sh) : G → GNCC (resp.: (S(−),∆sh) : G → GNCCau) is right adjoint to the for-
getful functor (resp.: composed with the reduced coalgebra functor).

The graded algebras (T (V ),⊗), (T (V ),~) and (S(V ),�) (resp.: (T (V ),⊗), (T (V ),~) and
(S(V ),�)) are called respectively the (resp.: reduced) tensor algebra, shuffle algebra and symmetric
algebra over V . The functors (T (−),⊗) : G→ GA, (S(−),�) : G→ GCA are left adjoint to the
forgetful functor, the functors (T (−),⊗) : G → GAau, (S(−),�) : G → GCAau are left adjoint
to the composition of of the reduced algebra functor and the forgetful functor.

Finally, the graded coalgebra (T (V ),∆sh) (resp.: (T (V ),∆sh)), where ∆sh is the unshuffle
coproduct, is called the (resp.: reduced) unshuffle coalgebra over V .

Notation 1.1.4. Given a linear map F : T (V )→ T (W ) (resp.: F : S(V )→ S(W )) we denote by

F kn : V ⊗n → W⊗k (resp.: F kn : V �n → W�k) the composition V ⊗n ↪→ T (V )
F−→ T (W ) −→ W⊗k

(resp.: V �n ↪→ S(V )
F−→ S(W ) −→W�k), where the last arrow is the natural projection.

Given a graded associative algebra A let mn : A⊗n → A, n ≥ 2, be the (n − 1)-th iterated
product.

Definition 1.1.5. For graded spaces V , W and an integer n ≥ 2 extension of scalars by A is the
morphism (−)A : Hom(V ⊗n,W )→ Hom((A⊗ V )⊗n, A⊗W ) defined by

(−)A : f → {fA : (A⊗ V )⊗n
∼=−→ A⊗n ⊗ V ⊗n mn⊗f−−−−→ A⊗W}.

More explicitly fA((a1⊗v1)⊗· · ·⊗(an⊗vn)) = (−1)
∑n
i=1 |ai|(|f |+

∑i−1
j=1 |vj |)a1 · · · an⊗f(v1⊗· · ·⊗vn).

If A is graded commutative then extension of scalars by A restricts to morphisms

(−)A : Hom(V �n,W )→ Hom((A⊗V )�n, A⊗W ), (−)A : Hom(V ∧n,W )→ Hom((A⊗V )∧n, A⊗W ).

Lemma 1.1.6. Extensions of scalars by A commutes with the décalage isomorphism (1.1.1), if
moreover A is graded commutative it commutes with the décalage isomorphism (1.1.2).

Proof. This is a direct and straightforward verification: notice that we have to consider the iso-

morphism (A ⊗ V )[1]
∼=−→ A ⊗ V [1] : s−1(a ⊗ v) → (−1)|a|a ⊗ s−1v to make the statement of the

lemma precise.

1.2 A∞ and C∞ algebras

For a graded space V , we denote by Hoch(V ) the graded Lie algebra Coder(T (V )) of coderivations
of the tensor coalgebra T (V ) over V , then as a consequence of cofreeness corestriction induces an
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isomorphism of graded spaces

Hoch(V ) = Coder(T (V )) ∼= Hom(T (V ), V ) =
∏

n≥0

Hom(V ⊗n, V ) : Q→ pQ = (q0, q1, . . . , qn, . . .),

where p : T (V )→ V ⊗1 = V is the natural projection. We call the n-th component qn : V ⊗n → V
of Q under corestriction its n-th Taylor coefficient: in particular we have the constant Taylor
coefficient q0 : K → V and the linear Taylor coefficient q1 : V → V , a coderivation is linear
(resp.: constant) if all Taylor coefficients but the linear (resp.: constant) one vanish. The inverse
to corestriction sends (q0, q1, . . . , qn, . . .) to the coderivation

Q(v1 ⊗ · · · ⊗ vn) =

n∑

i=0

n−i∑

j=0

(−1)|Q|
∑
k≤j |vk|v1 ⊗ · · · ⊗ qi(vj+1 ⊗ · · · ⊗ vj+i)⊗ · · · ⊗ vn, (1.2.1)

with the understanding q0(∅) := q0(1) (so that for instance, for n = 0, 1, Equation (1.2.1) reads
Q(1) = q0(1), Q(v) = q0(1)⊗ v + (−1)|Q||v|v ⊗ q0(1) + q1(v)).

We call the natural commutator bracket on Hoch(V ), as well as the induced bracket on
Hom(T (V ), V ), the Gerstenhaber bracket. It is induced by a right pre-Lie product (cf. Definition
4.2.1 ) which we call the Gerstenhaber product and denote by ◦, sending coderivations Q and R
to the only coderivation Q ◦R which corestricts to pQR. More explicitly: if f ∈ Hom(V ⊗i, V ) and
g ∈ Hom(V ⊗j , V ), then f ◦ g ∈ Hom(V ⊗i+j−1, V ) is given by

f ◦g(v1⊗· · ·⊗vi+j−1) =

i−1∑

k=0

(−1)|g|
∑
p≤k |vp|f(v1⊗· · ·⊗g(vk+1⊗· · ·⊗vk+j)⊗· · ·⊗vi+j−1), (1.2.2)

with the same understanding as for Equation (1.2.1) if either i or j equals 0 (in particular, if i = 0
then f ◦ g = 0).

We denote by Hoch(V ) the graded Lie algebra of coderivations of the reduced tensor coalgebra
T (V ) over V , then again corestriction induces an isomorphism of graded spaces

Hoch(V ) ∼= Hom(T (V ), V ) =
∏

n≥1

Hom(V ⊗n, V ) : Q→ pQ = (q1, . . . , qn, . . .).

The natural inclusion

Hom(T (V ), V )→ Hom(T (V ), V ) : (q1, . . . , qn, . . .)→ (0, q1, . . . , qn, . . .)

identifies Hoch(V ) ⊂ Hoch(V ) with the graded Lie subalgebra of coderivations Q ∈ Hoch(V ) such
that Q(1) = 0.

Remark 1.2.1. For v ∈ V we denote by τv the constant coderivation pτv = (jv, 0, . . . , 0, . . .), where
jv : K → V : 1 → v. The above formula shows that τv is explicitly τv = v ~ − : T (V ) → T (V ),
where −~− is the shuffle product (1.1.4). Constant coderivations span an abelian Lie subalgebra
Hoch0(V ) ⊂ Hoch(V ) such that as graded spaces Hoch0(V ) ∼= V and Hoch(V ) splits in a direct
sum Hoch(V ) = Hoch(V )⊕Hoch0(V ).

Finally, given graded spaces V , W , then by cofreeness of T (W ) corestriction induces an iso-
morphism

GNC(T (V ), T (W )) ∼= G(T (V ),W ) =
∏

n≥1

Hom0(V ⊗n,W ) : F → pF = (f1, . . . , fn, . . .).
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Again, we call the fn the n-th Taylor coefficient of F , which is called linear if all Taylor coefficients
but the linear one f1 vanish. The inverse to corestriction sends (f1, . . . , fn, . . .) to the morphism
of graded coalgebras F : T (V )→ T (W )

F (v1 ⊗ · · · ⊗ vn) =

n∑

k=1

∑

i1+···+ik=n

fi1(v1 ⊗ · · · ⊗ vi1)⊗ · · · ⊗ fik(vn−ik+1 ⊗ · · · ⊗ vn). (1.2.3)

Remark 1.2.2. A morphism of graded coalgebras F : T (V ) → T (W ) is an isomorphism (resp.:
monomorphism, epimorphism) if and only if such is its linear part f1 : V →W (cf. [62]).

Definition 1.2.3. An A∞[1] algebra structure on a graded space V is a dg coalgebra structure on

T (V ), i.e., is the datum of a degree one Q ∈ Hoch
1
(V ) such that Q2 = Q ◦Q = 1

2 [Q,Q] = 0. An

A∞[1] morphism between A∞[1] algebras (V,Q) and (W,R) is a morphism F : T (V ) → T (W ) of
dg coalgebras, that is, FQ−RF = 0. A linear A∞[1] morphism is called strict. A∞[1] algebras and
A∞[1] morphisms between them form the category A∞[1], A∞[1] algebras and strict morphisms
between them form the subcategory A∞[1] ⊂ A∞[1].

Example 1.2.4. Given an associative dg algebra (A, d, ·), there is an induced A∞[1] structure Q on
the desuspension A[1], given in Taylor coefficients by q1 = déc(d) : A[1]→ A[1] : s−1a→ −s−1da,
q2 = déc(·) : A[1]⊗2 → A[1] : s−1a⊗ s−1b→ (−1)|a|s−1(ab) and qk = 0 for k ≥ 3.

This motivates the following definition.

Definition 1.2.5. An A∞ algebra structure (A,m1, . . . ,mn, . . .) on a graded space A is a hi-
erarchy of maps mn ∈ Hom2−n(A⊗n, A), n ≥ 1, such that (déc(m1), . . . ,déc(mn), . . .) are the
Taylor coefficients of an A∞[1]-structure structure on A[1]. A strict morphism between A∞ al-
gebras (A,m2, . . . ,mn, . . .) and (A′,m′1, . . . ,m

′
n, . . .) is a morphism f : A → A′ of graded spaces

such that m′nf
⊗n = fmn, ∀n ≥ 1. An A∞ morphism between A and A′ is a hierarchy of maps

fn ∈ Hom1−n(A⊗n, A′), n ≥ 1, such that (déc(f1), . . . ,déc(fn), . . .) are the Taylor coefficients of an
A∞[1] morphism (A[1],déc(m1), . . . ,déc(mn), . . .) → (A′[1],déc(m′1), . . . ,déc(m′n), . . .). A∞ alge-
bras and A∞ morphisms between them form the category A∞, A∞ algebras and strict morphisms
between them form the subcategory A∞ ⊂ A∞.

Remark 1.2.6. By construction décalage induces isomorphisms of categories déc : A∞ → A∞[1],
déc : A∞ → A∞[1].

Informally speaking, A∞ algebras are dg algebras which are associative only up to a coherent
system of higher homotopies. To explain this last assertion: (A,m1, . . . ,mn, . . .) is an A∞ algebra
if and only if the hierarchy of identities

n∑

i=1

déc(mn−i+1) ◦ déc(mi) = 0, n ≥ 1,

(where ◦ is the Gerstenhaber product) is satisfied. For instance, for n = 1 this says that m1 is a
differential on A, for n = 2 it says thatm1 satisfies the Leibnitz rule with respect to the productm2 :
A⊗2 → A and for n = 3 it says that m2 is associative up to a homotopy given by m3: in particular
m2 induces an associative product on H(A,m1). Similarly given a family fn ∈ Hom1−n(A⊗n, A′)
this defines an A∞[1] morphism F = (f1, . . . , fn, . . .) : (A,m1, . . . ,mn, . . .)→ (A′,m′1, . . . ,m

′
n, . . .)

if and only if a hierarchy of identities obtained by coresticting déc(M ′)déc(F ) = déc(F )déc(M) :
T (A[1]) → T (A′[1]) is satisfied: the first identity tells us that f1 : (A,m1) → (A′,m′1) is a dg
morphism, the second identity tells us that f1 commutes with the products m2, m′2 up to a
homotopy given by f2: in particular H(f1) : H(A,m1) → H(A′,m′1) is a morphism of graded
associative algebras.
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Definition 1.2.7. The tangent complex of an A∞ algebra (A,m1, . . . ,mn, . . .) is the dg space
(A,m1). The tangent cohomology of A is H(A) = H(A,m1) with the structure of graded associa-
tive algebra induced by m2: tangent cohomology is a functor H(−) : A∞ → GA sending an A∞
morphism F = (f1, . . . , fn, . . .) : A→ A′ to H(F ) := H(f1) : H(A)→ H(A′).

Definition 1.2.8. An A∞ morphism F between A∞ algebras A and A′ is a weak equivalence if
H(F ) : H(A)→ H(A′) is an isomorphism.

Next we consider C∞ algebras, which are, informally speaking, strictly commutative A∞ alge-
bras. We denote by Harr(V ) ⊂ Hoch(V ) the graded Lie subalgebra of biderivations of T (V ) with
respect to the (shuffle product, deconcatenation coproduct) bialgebra structure.

Lemma 1.2.9. Given Q ∈ Hoch(V ), then Q ∈ Harr(V ) if and only if the corestriction pQ vanishes
on the image of the shuffle product ~ : T (V ) → T (V ). Similarly, a morphism between the tensor
coalgebras F : T (V ) → T (W ) is a morphism of the (shuffle product, deconcatenation coproduct)
bialgebra structures if and only if the corestriction pF vanishes on the image of the shuffle product.

Proof. Recall that given a morphism F : (C,∆C) → (T (V ),∆) of locally conilpotent coalgebras,
an F -coderivation R : C → T (V ) is a linear map such that ∆R = (R ⊗ F + F ⊗ R)∆C : we need
the fact that every F -coderivation as above is uniquely determined by its corestriction, hence the
local conilpotence hypothesis. Let Q ∈ Hoch(V ), we want to know if Q is a derivation with respect

to the shuffle product (1.1.4) Q~ = ~
(
Q⊗ idT (V ) + idT (V )⊗Q

)
: but ~ is a morphism of locally

conilpotent coalgebras and both Q~ and ~
(
Q⊗ idT (V ) + idT (V )⊗Q

)
are ~-coderivations, thus

Q ∈ Harr(V ) if and only if pQ~ = p~
(
Q⊗ idT (V ) + idT (V )⊗Q

)
= 0, as p~ = 0.

A similar argument shows the second claim of the lemma. The coalgebra morphism F is a
morphism of bialgebras if and only F~ = ~F⊗2 : T (V )⊗2 → T (W ): since both F~ and ~F⊗2

are morphisms of locally conilpotent coalgebras and T (W ) is cofree, this happens if and only if
pF~ = p~ F⊗2 = 0.

Definition 1.2.10. A C∞[1] algebra structure on a graded space V is a dg bialgebra structure
on T (V ) with its (shuffle product, deconcatenation coproduct) bialgebra structure, that is, it

is the datum of Q ∈ Harr
1
(V ) such that Q2 = 0. C∞[1] algebras span a full subcategory

C∞[1] ⊂ A∞[1]. A C∞[1] morphism between C∞[1] algebras (V,Q) and (W,R) is a dg bialgebra
morphism F : (T (V ), Q) → (T (W ), R): C∞[1] algebras and C∞[1] morphisms between span a
subcategory (not full) C∞[1] ↪→ A∞[1]. The categories C∞ ⊂ A∞, C∞ ⊂ A∞, are the preimage of
C∞[1], C∞[1], under décalage.

Example 1.2.11. Let (A, d, ·, 0, . . . , 0, . . .) be a dg associative algebra, seen as an A∞ algebra as
in Example 1.2.4: it is a C∞ algebra if and only if the product · is graded commutative.

Definition 1.2.12. Let (A, d, ·) be an associative dg algebra: given an A∞[1] algebra (V,Q) =
(V, q1, . . . , qn, . . .) extensions of scalars by A (cf. Definition 1.1.5) induces an A∞[1]-structure QA
on A⊗ V given by

pQA = (d⊗ idV + idA⊗q1, (q2)A, . . . , (qn)A, . . .).

It is a C∞[1] structure if such is Q and moreover A is graded commutative.

We close this subsection by recalling the dual definition of A∞ and C∞ coalgebras. Recall that
the free Lie algebra L(V ) over a graded space V is the smallest Lie subalgebra of T (V ), with the
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commutator bracket induced by the concatenation product, containing V : this is also the space of
primitives in its universal enveloping (bi)algebra, which is T (V ) with the (concatenation product,
unshuffle coproduct) bialgebra structure, cf. [101], namely, L(V ) = Ker ∆sh : T (V )→ T (V )⊗2.

The reduced tensor algebra T (V ) over V is filtered by F pT (V ) = ⊕n≥pV ⊗n: the reduced com-

plete tensor algebra over V is the completion T̂ (V ) = lim T (V )/F pT (V ), thus as a graded space

T̂ (V ) =
∏
n≥1 V

⊗n. Let V ∗ = Hom(V,K ) be the dual of V , then transposition induces a mor-

phism of graded Lie algebras −t : Der(T̂ (V )) → Hoch(V ∗): in fact we can identify Der(T̂ (V )) =

Hom(V, T̂ (V )) =
∏
n≥1 Hom(V, V ⊗n) and for each n ≥ 1 transposition and pullback by the canoni-

cal (V ∗)⊗n → (V ⊗n)∗ induce a map −t : Hom(V, V ⊗n)→ Hom((V ⊗n)∗, V ∗)→ Hom((V ∗)⊗n, V ∗),
finally it is not hard to verify that

−t : Der(T̂ (V ))→ Hoch(V ∗) : (q1, . . . , qn, . . .)→ (−qt1, . . . ,−qtn, . . .)

is a morphism of graded Lie algebras (notice that we have to take the minus sign since otherwise
we would get an antihomomorphism of graded Lie algebras).

The free Lie algebra L(V ) over V is filtered by F pL(V ) = L(V )
⋂
F pT (V ), the completion

L̂(V ) = lim L(V )/F pL(V ) is the complete free Lie algebra over V . As a graded space Der(L̂(V )) =

Hom(V, L̂(V )), the pushforward Der(L̂(V )) = Hom(V, L̂(V ))→ Hom(V, T̂ (V )) = Der(T̂ (V )) iden-

tifies the graded Lie algebra Der(L̂(V )) with a graded Lie subalgebra of Der(T̂ (V )): moreover, given

Q = (q1, . . . , qn, . . .) ∈ Der(L̂(V )), since the composition V
qn−→ V ⊗n

∆sh−−→ T (V )⊗ T (V ) vanishes,
dually we also see that the transpose qtn vanishes on the image of the shuffle product, thus by Lemma

1.2.9 transposition restrict to a morphism of graded Lie algebras −t : Der(L̂(V ))→ Harr(V ∗).

If V is finite dimensional (that is, each V k is finite dimensional and V k = 0 for |k| >> 0),
with a preferred choice of basis, likewise transposition defines isomorphisms of graded Lie algebras
Hoch(V )→ Der(T̂ (V ∗)), Harr(V )→ Der(L̂(V ∗)).

Definition 1.2.13. An A∞ coalgebra structure on a graded space V is a dg algebra structure on
the completed reduced tensor algebra T̂ (V [−1]). A C∞ coalgebra structure on a graded space V

is a dg Lie algebra structure on the completed free Lie algebra L̂(V [−1]).

Remark 1.2.14. Taking into account the natural (V [−1])∗ ∼= V ∗[1], the previous discussion shows
that transposition (together with décalage) sends A∞ (resp.: C∞) coalgebra structures on a graded
space to A∞ (resp.: C∞) algebra structures on its dual, as well as A∞ (resp.: C∞) algebra
structures on a finite dimensional graded space with a basis to A∞ (resp.: C∞) coalgebra structures
on its dual.

1.3 L∞ algebras

We denote by CE(V ) the graded Lie algebra of coderivations of the symmetric coalgebra S(V ) over
V , corestriction induces an isomorphism CE(V ) ∼=

∏
n≥0 Hom(V �n, V ), we call the components of

pQ = (q0, q1, . . . , qn, . . .) the Taylor coefficients of the coderivation Q: we call q1 and q0 respectively
the linear and the constant Taylor coefficient of Q, we say that Q is a linear (resp.: constant)
coderivation if all Taylor coefficients but the linear (resp.: constant) one vanish. The inverse to
corestriction sends (q0, q1, . . . , qn, . . .) to

Q(v1 � · · · � vn) =

n∑

i=0

∑

σ∈S(i,n−i)
ε(σ)qi(vσ(1) � · · · � vσ(i))� · · · � vσ(n), (1.3.1)
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(with the same understanding as for Equation (1.2.1), for instance for n = 0, 1 Equation (1.3.1)
reads Q(1) = q0(1), Q(v) = q0(1)� v + q1(v)).

We call the commutator bracket on CE(V ), as well as the induced bracket on Hom(S(V ), V ),
the Nijenhuis-Richardson bracket. It is induced by a right pre-Lie product which we call the
Nijenhuis-Richardson product and denote by •, where again Q •R corestricts to pQR. Explicitly:
if f ∈ Hom(V �i, V ) and g ∈ Hom(V �j , V ), then f • g ∈ Hom(V �i+j−1, V ) is given by

f • g(v1 � · · · � vi+j−1) =
∑

σ∈S(j,i−1)

ε(σ)f(g(vσ(1) � · · · � vσ(j))� · · · � vσ(i+j−1)). (1.3.2)

The graded Lie algebra CE(V ) = Coder(S(V )) ∼=
∏
n≥1 Hom(V �n, V ) identifies, via the natural

embedding (q1, . . . , qn, . . .) → (0, q1, . . . , qn, . . .), with the graded Lie subalgebra of coderivations
Q ∈ CE(V ) such that Q(1) = 0.

Remark 1.3.1. Let v ∈ V , denote by σv the constant coderivation pσv = (jv, 0, . . . , 0, . . .), where
jv : K → V : 1 → v. Formula (1.3.1) shows that σv is explicitly σv = v � − : S(V ) → S(V ),
where − � − is the concatenation product (1.1.4), and formula (1.3.2) shows that σv •Q = 0 for
all Q = (q0, . . . , qn, . . .) ∈ CE(V ), while Q • σv = [Q, σv] = ([q1, σv], . . . , [qn+1, σv], . . .) is given in
Taylor coefficients by

[q1, σv](1) = q1(v), [qn+1, σv](v1 � · · · � vn) = qn+1(v � v1 · · · � vn). (1.3.3)

Constant coderivations span an abelian Lie subalgebra CE0(V ) ⊂ CE(V ), such that as graded
spaces CE0(V ) ∼= V , and CE(V ) splits in a direct sum CE(V ) = CE(V )⊕ CE0(V ).

Finally, given graded spaces V , W , then corestriction induces an isomorphism

GNCC(S(V ), S(W )) ∼= G(S(V ),W ) =
∏

n≥1

Hom0(V �n,W ) : F → pF = (f1, . . . , fn, . . .).

The fn are the Taylor coefficients of F , which is linear if all Taylor coefficients but the linear one
f1 vanish. The inverse to corestriction sends (f1, . . . , fn, . . .) to the morphism F : S(V )→ S(W )

F (v1� · · · � vn) =

n∑

k=1

1

k!

∑

i1+···+ik=n

∑

σ∈S(i1,...,ik)

ε(σ)fi1(vσ(1)� · · · )� · · · � fik(· · · � vσ(n)) (1.3.4)

Remark 1.3.2. A morphism of graded coalgebras F : S(V ) → S(W ) is an isomorphism (resp.:
monomorphism, epimorphism) if and only if such is its linear part f1 : V →W (cf. [62]).

Definition 1.3.3. A L∞[1] algebra structure on a graded space V is a dg coalgebra structure

on S(V ), that is, the datum of Q ∈ CE
1
(V ) such that Q2 = Q • Q = 1

2 [Q,Q] = 0. A L∞[1]

morphism between L∞[1] algebras (V,Q) and (W,R) is a morphism F : (S(V ), Q) → (S(W ), R)
of dg coalgebras: a linear L∞[1] morphism is called strict. L∞[1] algebras and L∞[1] morphisms
between them form the category L∞[1], L∞[1] algebras and strict morphisms between them form
the subcategory L∞[1] ⊂ L∞[1].

Example 1.3.4. If (L, d, [·, ·]) is a dg Lie algebra then there is a L∞[1] structure Q on the
desuspension L[1] given by q1 = déc(d) : L[1] → L[1] : s−1l → −s−1dl, the graded symmetric
bracket q2 = déc([·, ·]) : L[1]�2 → L[1] : s−1l � s−1m→ (−1)|l|s−1[l,m] and qk = 0 for k ≥ 3.
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Definition 1.3.5. A L∞ algebra structure on a graded space L is the data of a hierarchy of
maps ln ∈ Hom2−n(L∧n, L), n ≥ 1, such that the coderivation given in Taylor coefficients by
(déc(l1), . . . ,déc(ln), . . .) is an L∞[1] structure on L[1]. A strict morphism between L∞ algebras
(L, l1, . . . , ln, . . .) and (L′, l′1, . . . , l

′
n, . . .), is a morphism of graded spaces f : L → L′ such that

l′nf
∧n = fln, ∀n ≥ 1. A L∞ morphisms between L and L′ is a hierarchy fn ∈ Hom1−n(L∧n, L′)

such that (déc(f1), . . . ,déc(fn), . . .) are the Taylor coefficients of an L∞[1] morphism L[1]→ L′[1].
L∞ algebras and L∞ (resp.: strict) morphisms between them form the category L∞ (resp.: the
subcategory L∞ ⊂ L∞).

Remark 1.3.6. By construction décalage induces isomorphisms of categories déc : L∞ → L∞[1],
déc : L∞ → L∞[1].

Informally speaking, L∞ algebras are dg Lie algebras where the Jacobi identity has been relaxed
up to a coherent system of higher homotopies. For instance, expanding the first few identities∑n
i=1 déc(ln−i+1) • déc(li), n ≥ 1, we see that l1 is a differential on L satisfying the Leibnitz

identity with respect to the bracket l2 : L∧2 → L, and the last one satisfy the Jacobi identity up
to the homotopy l3. If (f1, . . . , fn, . . .) is an L∞ morphism, then f1 : L → L′ is a dg morphism,
preserving the brackets up to the homotopy f2.

Definition 1.3.7. Given an L∞ algebra (L, l1, . . . , ln, . . .), its tangent complex and its tangent
cohomology are (L, l1) and H(L) = H(L, l1) respectively: the last one has a graded Lie algebra
structure induced by l2. Tangent cohomology is a functor H(−) : L∞ → GLA, by putting
H(F ) := H(f1) : H(L)→ H(L′).

Definition 1.3.8. A L∞ morphism F = (f1, . . . , fn, . . .) : (L, l1, . . . , ln, . . .) → (L′, l′1, . . . , l
′
n, . . .)

is a weak equivalence between L and L′ if H(F ) : H(L)→ H(L′) is an isomorphism.

Definition 1.3.9. Given L∞[1] algebra (V,Q) = (V, q1, . . . , qn, . . .) and a commutative dg algebra
(A, d, ·) via extensions of scalars by A there is an L∞[1] structure QA on the tensor product A⊗V ,
given (as in the A∞[1] case, Definition 1.2.12) by

pQA = (d⊗ idV + idA⊗q1, (q2)A, . . . , (qn)A, . . .).

Finally, we recall the following definition: homotopy abelian L∞ algebras play an important
role in deformation theory, cf. Remark 6.4.4.

Definition 1.3.10. An L∞ algebra (L, l1, . . . , ln, . . .) is abelian if ln = 0 for n ≥ 2, it is homotopy
abelian if it is weakly equivalent to an abelian one.

Remark 1.3.11. For graded spaces V , W , we still denote by sym : Hom(T (V ),W )→ Hom(S(V ),W )
the pullback by the symmetrization sym : S(V )→ T (V ). It is well known and easy to prove directly
(cf. also Remark 4.1.19) that when W = V the resulting

sym : Hoch(V )→ CE(V ) : (q1, . . . , qn, . . .)→ (sym(q1), . . . , sym(qn), . . .),

sym(qn)(v1 � · · · � vn) =
∑

σ∈Sn
ε(σ)qn(vσ(1) ⊗ · · · ⊗ vσ(n)),

is a morphism of graded Lie algebras, in particular it sends A∞[1] structures on V to L∞[1] struc-
tures on V . It is also not hard to show that if F = (f1, . . . , fn, . . .) is an A∞[1] morphism
F : (V, q1, . . . , qn, . . .) → (W, r1, . . . , rn, . . .), then sym(F ) = (sym(f1), . . . , sym(fn), . . .) is an
L∞[1] morphism sym(F ) : (V, sym(q1), . . . , sym(qn), . . .) → (W, sym(r1), . . . , sym(rn), . . .), thus
symmetrization is a functor sym : A∞[1]→ L∞[1]. Given Q ∈ Harr(V ), since sym : S(V )→ T (V )
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is a morphism from the symmetric algebra over V to the shuffle algebra over V , Lemma 1.2.9
implies that the corestriction p sym(Q) has to vanish on the image of the concatenation product
and since the latter is

∑
n≥2 V

�n this means that sym(Q) is a linear coderivation: thus C∞[1]
structures symmetrize to abelian L∞[1] structures - that is, complexes - and in the same way we
see that C∞[1] morphisms symmetrize to strict L∞[1] morphisms - that is, dg morphisms.

1.3.1 Complete L∞ algebras

A complete graded space (V, F •V ) is a graded space V equipped with a decreasing filtration
V = F 1V ⊃ · · · ⊃ F pV ⊃ · · · such that V is complete in the induced topology, i.e., the natural
morphism V → lim V/F pV is an isomorphism. Continuous morphisms of complete graded spaces

are the ones compatible with the filtrations. We denote by Ĝ the category of complete graded

spaces and continuous morphisms between them. Likewise we can define the categories D̂G, D̂GA,

D̂GLA by requiring the differentials and the respective algebraic structures to be compatible with
the filtration in the usual way.

Definition 1.3.12. A complete L∞[1] algebra is a complete graded space V = lim V/F pV with
an L∞[1] structure (V, q1, . . . , qn, . . .) which are compatible qn(F i1V � · · · � F inV ) ⊂ F i1+···+inV ,
∀n, i1, . . . , in ≥ 1. A L∞[1] morphism F = (f1, . . . , fn, . . .) : V → W between complete L∞[1]
algebras is continuous if fn(F i1V �· · ·�F inV ) ⊂ F i1+···+inW is satisfied for every n, i1, . . . , in ≥ 1.

We denote by L̂∞[1] (resp.: L̂∞[1]) the category of complete L∞[1] algebras and continuous L∞[1]
(resp.: strict) morphisms between them.

Remark 1.3.13. Let (V, F •V, q1, . . . , qn, . . .) be a complete L∞[1] algebra, then for all q ≥ 1 there is
an induced complete L∞[1] algebra structure on V/F qV such that the natural V → lim V/F pV is

an isomorphism in the category L̂∞[1]: the filtration on V/F qV is the induced one F p(V/F qV ) =
F pV/F qV if 1 ≤ p ≤ q and F p(V/F qV ) = 0 if p > q.

Definition 1.3.14. The curvature of a complete L∞[1] algebra (V, q1, . . . , qn, . . .) is the function

R : V 0 → V 1 : v →
∑

n≥1

1

n!
qn(v�n).

Sometimes we also denote it by RV or R(V,Q). An x ∈ V 0 is called a Maurer-Cartan element of
(V,Q) if R(x) = 0, we denote the set of Maurer-Cartan elements of V by MC(V ), or sometimes

MC(V,Q). The Maurer-Cartan functor MC(−) : L̂∞[1] → Set sends the L∞[1] morphism F =
(f1, . . . , fn, . . .) : V →W to

MC(F ) : MC(V )→ MC(W ) : x→
∑

n≥1

1

n!
fn(x�n)

Remark 1.3.15. From the previous definition it is not clear that MC(F ) sends Maurer-Cartan
elements to Maurer-Cartan elements, so we take a moment to show this well known fact. First of
all we consider more in general the forgetful functor −0# : L̂∞[1] → Set sending V to V 0 and a
continuous L∞[1] morphism F = (f1, . . . , fn, . . .) : (V,Q)→ (W,R) to

F 0# : V 0 →W 0 : v →
∑

n≥1

1

n!
fn(v�n).

Functoriality is easy and left to the reader. We have to prove that F 0# sends Maurer-Cartan
elements to Maurer-Cartan elements: let v ∈ V 0 and w := F 0#(v) ∈ W 0, RV : V 0 → V 1 and
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RW : W 0 →W 1 the respective curvature functions, this follows from

RW (w) = r1(w) +
∑

n≥2

1

n!
rn
(
F 0#(v)�n

)
=

= r1(w) +
∑

n≥2

1

n!
rn


 ∑

j1,...,jn≥1

fj1(v�j1)

j1!
� · · · � fjn(v�jn)

jn!


 =

= r1(w) +
∑

n≥2

∑

k≥0

1

(n+ k)!
rn


 1

n!

∑

j1+···+jn=n+k

(n+ k)!

j1! · · · jn!
fj1(v�j1)� · · · � fjn(v�jn)


 =

= r1(w) +
∑

n≥2

∑

k≥0

1

(n+ k)!
rnF

n
n+k(v�n+k) =

∑

n≥1

1

n!
r1fn(v�n) +

∑

n≥2

1

n!

n∑

k=2

rkF
k
n (v�n) =

=
∑

n≥1

1

n!
pRF (v�n) =

∑

n≥1

1

n!
pFQ(v�n) =

∑

n≥1

1

n!

n∑

k=1

n!

k!(n− k)!
fn−k+1(qk(v�k)� v�n−k) =

=
∑

n≥1

1

(n− 1)!
fn(RV (v)� v�n−1).

Remark 1.3.16. It is immediate to see that MC(−) seen as a functor L̂∞[1]→ Set commutes with

small limits, as it commutes with both equalizers and arbitrary products. The category L̂∞[1] is
not complete, since in general equalizers don’t exist, but one could still ask if MC(−) as a functor

L̂∞ → Set preserves small limits whenever these exist. This is not the case, as the following
easy counterexample shows: let V = W = K with the trivial L∞[1] structure, and consider the
pair of L∞[1] morphisms F = (f1, . . . , fn, . . .) and G = (g1, . . . , gn, . . .) from V to W given by
f1 = idK , fk = 0 for k 6= 1, g2 : K�2 → K is the product and gk = 0 for k 6= 2. In this case
MC(V ) = MC(W ) = K and MC(F ) : K → K : t → t, MC(G) : K → K : t → 1

2 t
2, thus the

equalizer of MC(F ) and MC(G) is the inclusion of the two points set {0, 2} → K : on the other

hand it is not hard to see that 0→ V is an equalizer for F and G in the category L̂∞[1]. This also

implies that MC(−) is not representable as a functor L̂∞[1]→ Set (it is representable as a functor

D̂GLA → Set by the complete dg Lie algebra L(∆0), cf. Section 5.2.1: this is the complete free

Lie algebra L̂(x) over a single generator x in degree one and with differential dx = − 1
2 [x, x]).

It is possible to twist L∞[1] structures by Maurer-Cartan elements, cf. for instance [39, 109]. Let
(V, F •V ) be a complete graded space, we denote by CEc(V ) ⊂ CE(V ) the right pre-Lie subalgebra

CEc(V ) = {Q = (q0, . . . , qn, . . .) ∈ CE(V ) s.t.

qn
(
F i1V � · · · � F inV

)
⊂ F i1+···+inV, ∀n, i1, . . . , in ≥ 1

}
.

The fact that CEc(V ) is closed with respect to the Nijenhuis-Richardson product follows easily from
(1.3.2). Similarly we denote by CEc(V ) ⊂ CEc(V ) the right pre-Lie subalgebra of coderivations
with vanishing constant Taylor coefficient. The graded space CEc(V ) is complete with respect to
the filtration F 0 CEc(V ) = CEc(V ), and for p ≥ 1

F p CEc(V ) = {Q = (q0, . . . , qn, . . .) ∈ CE(V ) s.t.

q0(1) ∈ F pV, qn
(
F i1V � · · · � F inV

)
⊂ F i1+···+in+pV, ∀n, i1, . . . , in ≥ 1

}
,
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and moreover this filtration is compatible with the Nijenhuis-Richardson bracket in the usual
way. As in Remark 1.3.1, for all x ∈ V we denote by σx ∈ F 1 CEc(V ) the constant coderivation
with constant Taylor coefficient 1 → x. Since the inner derivation [σx,−] : CEc(V ) → CEc(V )
sends F p CEc(V ) to F p+1 CEc(V ), it is well defined the automorphism of graded Lie algebras
e[−,σx] : CEc(V ) → CEc(V ) : Q → Qx, which we call the twisting by x. Remark 1.3.1 shows that
Qx = (qx,0, . . . , qx,n, . . .) is given explicitly by

qx,0(1) =
∑

k≥0

1

k!
qk(x�k), qx,n(v1 � · · · � vn) =

∑

k≥0

1

k!
qn+k(x�k � v1 � · · · � vn).

In particular, if Q ∈ CEc(V ) is a complete L∞[1] structure on (V, F •V ) also [Qx, Qx] = 0, thus
Qx is a new complete L∞[1] structure on V if moreover qx,0(1) = 0, that is, by the above, if
x ∈ MC(V,Q).

Proposition 1.3.17. Given a complete L∞[1] algebra (V, q1, . . . , qn, . . .) and a Maurer-Cartan
element x ∈ MC(V ), there is a new complete L∞[1] algebra structure Qx = (qx,1, . . . , qx,n, . . .) on
V , given by

qx,n(v1 � · · · � vn) =
∑

k≥0

1

i!
qn+k(x�k � v1 � · · · � vn).

Proof. Given above.

Lemma 1.3.18. MC(V,Qx) = {x′ ∈ V 0 s.t. x+ x′ ∈ MC(V,Q)}.

Proof. An easy computation shows that R(V,Qx)(x
′) = R(V,Q)(x+ x′) for all x′ ∈ V 0.

There is also a relative version of the previous proposition: given a continuous L∞[1] morphism
F = (f1, . . . , fn, . . .) : (V,Q) → (W,R) of complete L∞[1] algebras and a Maurer-Cartan element
x ∈ MC(V ), let Fx : S(V ) → S(W ) be the morphism of coalgebras given in Taylor coefficients
Fx = (fx,1, . . . , fx,n, . . .) by

fx,n(v1 � · · · � vn) =
∑

i≥0

1

i!
fn+i(x

�i � v1 � · · · � vn).

Proposition 1.3.19. Fx : (V,Qx)→ (W,RMC(F )(x)) is a continuous L∞[1] morphism.

Proof. We prefer to omit a detailed proof: let y := MC(F )(x) ∈ MC(W,R), the required identity
FxQx = RyFx can be proved either by a direct computation, along the lines (but more involved)
of the one in Remark 1.3.15, or by making sense of the equalities Qx = e−σxQeσx , Ry = e−σyReσy ,
Fx = e−σyFeσx (cf. [109], the problem in the latter case, of course, is that the coalgebra automor-
phisms eσx : S(V )→ S(V ), eσy : S(W )→ S(W ) are not well defined).

Remark 1.3.20. Under some additional hypothesis Proposition 1.3.17 and Proposition 1.3.19 also
hold in the non complete setting, for instance if qn = rn = fn = 0 for n� 0: the following remark
is a bit pedantic but we will need it in section 4.1. Consider the following situation where (V,Q),
(W,R) are L∞[1] algebras (not complete ones) and F : (V,Q)→ (W,R) is an L∞[1] morphism: a
given x ∈ V 0 satisfies 0 = qk+n(x�k �−) : V �n → V and 0 = fk+n(x�k �−) : V �n → W for all
k ≥ 0 and n � 0, likewise

∑
n≥1

1
n!fn(x�n) := y ∈ W 0 satisfies 0 = rk+n(y�k � −) : W�n → W

for all k ≥ 0 and n � 0. It makes sense to say that x is Maurer-Cartan if 0 =
∑
n≥1

1
n!qn(x�n),

moreover in this case the computation in Remark 1.3.15 shows that also y is Maurer-Cartan. By
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the hypotheses the previous formulas well define coderivations Qx ∈ CE(V ), Ry ∈ CE(W ) and a
morphism of coalgebras Fx : S(V )→ S(W ). Claim: in the previous hypotheses the conclusions of
Proposition 1.3.17 and Proposition 1.3.19 still hold (in fact both could be proved by a cumbersome
but direct computation which continue to make sense).

We close this subsection with an useful proposition. Since for a complete L∞[1] algebra V =
lim V/F pV we have MC(V ) = lim MC(V/F pV ), it can be useful to study inductively the sets
MC(V/F pV ), and this can be done using the following result.

Proposition 1.3.21. Let ε : 0 → I → V → W → 0 be a central extension of complete L∞[1]
algebras, as in Definition 1.3.31, then there is an obstruction map o : MC(W ) → H1(I) with
the property o(x) = 0 if and only if x lifts to a Maurer-Cartan element of MC(V ). If the set of
Maurer-Cartan liftings of x is not empty it has the structure of an affine space over Z0(I): more
precisely given a Maurer-Cartan lifting x̃ ∈ MC(V ) of x the set of all Maurer-Cartan liftings of x
is in bijective correspondence with Z0(I) via Z0(I)→ MC(V ) : z̃ → x̃+ z̃.

Proof. We denote by qn : V �n → V the L∞[1] structure operations. Given x ∈ MC(W ) let x̃ ∈ V 0

be an arbitrary lifting of x, then R(x̃) ∈ Z1(I): in fact it is clear that R(x̃) ∈ I, and since I is an
abelian ideal we also see that

q1(R(x̃)) =
∑

n≥2

1

n!
q1qn(x̃�n) = −

∑

n≥2

1

n!

(
n∑

i=2

n!

(n− 1)!(n− i+ 1)!
qi(qn−i+1(x̃�n−i+1)� x̃�i−1)

)
=

= −
∑

i≥2

1

(i− 1)!
qi(R(x̃)� x̃�i−1) = 0

If x is another lifting of x, n ≥ 2, then qn(x̃�n)−qn(x�n) =
∑n−1
i=0 qn(x̃�i�(x̃−x)�x�n−i−1) = 0,

as x̃− x ∈ I and I is abelian, thus

R(x̃)−R(x) = q1(x̃− x) (1.3.5)

Thus it is well defined o sending x to the cohomology class of R(x̃), for x̃ an arbitrary lifting of
x. If R(x̃) = q1(z̃), with z̃ ∈ I0, then (1.3.5) implies that R(x̃− z̃) = 0, thus x admits a Maurer-
Cartan lifting and the converse is obvious. Finally, the last statement also follows immediately
from Equation (1.3.5).

Remark 1.3.22. The obstruction map defined in the previous proposition is natural with respect to
strict morphisms between central extensions of L∞[1] algebras, that is strict morphisms between
the bases, the fibers and the total spaces of two given central extensions making the obvious
diagram commutative: this is immediate by construction.

1.3.2 Convolution L∞ algebras

In this subsection we associate to every pair of L∞[1] algebras (V,Q) and (W,R) an L∞[1] struc-
ture on the graded space CE(V,W ) := Hom(S(V ),W ) =

∏
n≥1 Hom(V �n,W ), called the convo-

lution L∞[1] structure. In fact this correspondence is induced by a morphism graded Lie algebras
CE(V ) × CE(W ) → CE(CE(V,W )) (where the graded Lie algebras structures are given by the
commutator bracket): this sends Q ∈ CE(V ) to the linear coderivation Q∗ = (Q∗, 0, . . . , 0, . . .) ∈
CE(CE(V,W )), with Q∗(F ) = −(−1)|Q||F |FQ (here we are considering Q as a coderivation
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S(V ) → S(V ), and F , Q∗(F ) as graded morphisms S(V ) → W ), and sends R ∈ CE(W ) to
the coderivation R∗ = (r∗,1, . . . , r∗,n, . . .) ∈ CE(CE(V,W )) defined by

r∗,n(F1 � · · · � Fn) : S(V )
∆
n−1

−−−→ S(V )⊗n
F1⊗···⊗Fn−−−−−−−→W⊗n →W�n

rn−→W,

where: F1, . . . , Fn ∈ CE(V,W ), S(V )
∆
n−1

−−−→ S(V )⊗n is the iterated coproduct and W⊗n → W�n

the natural projection. This is graded symmetric since so is rn and the coproduct on S(V ) is
cocommutative.

Lemma 1.3.23. The correspondence CE(W )→ CE(CE(V,W )) : R→ R∗ is a morphism of graded
right pre-Lie algebras.

Proof. We have to prove that R∗ •R′∗ = (R •R′)∗ for all R,R′ ∈ CE(W ), where • i the Nijenhuis-
Richardson product: it suffices to consider R = ri ∈ Hom(W�i,W ) and R′ = r′j ∈ Hom(W�j ,W ),

then r∗,i • r′∗,j is given, for F1, . . . , Fi+j−1 ∈ CE(V,W ), by

r∗,i • r′∗,j(F1 � · · · � Fi+j−1) =
∑

σ∈S(j,i−1)

ε(σ)r∗,i
(
r′∗,j(Fσ(1) � · · · � Fσ(j))� · · · � Fσ(i+j−1)

)
=

=
∑

σ∈S(j,i−1)

ε(σ)ri

(
r′j(Fσ(1) ⊗ · · · ⊗ Fσ(j))∆

j−1 ⊗ · · · ⊗ Fσ(i+j−1)

)
∆
i−1

=

=
∑

σ∈S(j,i−1)

ε(σ)ri
(
r′j(Fσ(1) ⊗ · · · ⊗ Fσ(j))⊗ · · · ⊗ Fσ(i+j−1)

)
∆
i+j−2

=

= (ri • r′j)(F1 ⊗ · · · ⊗ Fi+j−1)∆
i+j−2

= (ri • r′j)∗(F1 � · · · � Fi+j−1).

Lemma 1.3.24. [Q∗, R∗] = 0 for all Q ∈ CE(V ), R ∈ CE(W ).

Proof. For n = 1

[Q∗, r∗,1](F ) = Q∗(r1F )− (−1)|Q||R|r∗,1
(
−(−1)|Q||F |FQ

)
=

= −(−1)|Q|(|R|+|F |)r1FQ+ (−1)|Q|(|R|+|F |)r1FQ = 0,

and, since Q : S(V )→ S(V ) is a coalgebra coderivation, for n ≥ 2

Q∗ (r∗,n(F1 � · · · � Fn)) = −(−1)|Q|(|R|+
∑n
j=1 |Fj |)rn(F1 ⊗ · · · ⊗ Fn)∆

n−1
Q =

=

n∑

i=1

−(−1)|Q|(|R|+
∑n
j=1 |Fj |)rn(F1 ⊗ · · · ⊗ Fn)

(
id⊗i−1

S(V )
⊗Q⊗ id⊗n−i

S(V )

)
∆
n−1

=

= (−1)|Q||R|
n∑

i=1

(−1)
∑i−1
j=1 |Q||Fj |rn(F1 ⊗ · · · ⊗ −(−1)|Q||Fi|FiQ⊗ · · · ⊗ Fn)∆

n−1
=

= (−1)|Q||R|
n∑

i=1

(−1)
∑i−1
j=1 |Q||Fj |rn,∗(F1 � · · · �Q∗(Fi)� · · · � Fn).
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Lemma 1.3.25. The correspondence CE(V )→ CE(CE(V,W )) : Q→ Q∗ is a morphism of graded
Lie algebras.

Proof. Clear.

Finally, putting all the lemmas together we see that as claimed

Proposition 1.3.26. The correspondence CE(V )×CE(W )→ CE(CE(V,W )) : (Q,R)→ Q∗+R∗
is a morphism of graded Lie algebras.

Definition 1.3.27. Given a pair (V,Q) and (W,R) of L∞[1] algebras, by the previous proposition
Q∗ +R∗ is an L∞[1] structure on CE(V,W ). We call the L∞[1] algebra (CE(V,W ), Q∗ +R∗) the
convolution L∞[1] algebra of (V,Q) and (W,R).

The descending filtration

F pCE(V,W ) =
{
F = (f1, . . . , fn, . . .) ∈ Hom(S(V ),W ) s.t. fi = 0∀i < p

}
,

turns CE(V,W ) into a complete space, in fact

lim CE(V,W )/F pCE(V,W ) = lim Hom(⊕p−1
i=1 V

�i,W ) = Hom(colim ⊕p−1
i=1 V

�i,W ) =

= Hom(S(V ),W ) = CE(V,W ).

Working out the definitions, given F1 = (f1,1, . . . , f1,n, . . .), . . . , Fj = (fj,1, . . . , fj,n, . . .) ∈ CE(V,W ),
rj ∈ Hom(W�j ,W ), j ≥ 1, we have

r∗,j(F1 � · · · � Fj)(v1 � · · · � vn) =

=
∑

k1+···+kj=n

∑

σ∈S(k1,...,kj)

ε(σ)rj(f1,k1
(vσ(1) � · · · )� · · · � fj,kj (· · · � vσ(n))),

which shows that r∗,j is continuous. Moreover, given F = (f1, . . . , fn, . . .) ∈ CE(V,W ) and Q =
(q1, . . . , qn, . . .) ∈ CE(V ) we have

Q∗(F )(v1 � · · · � vn) =

n∑

i=1

∑

σ∈S(i,n−i)
ε(σ)fn−i+1(qi(vσ(1) � · · · � vσ(i))� · · · � vσ(n)),

which shows thatQ∗ : CE(V,W )→ CE(V,W ) is continuous as well. Thus the filtration F •CE(V,W )
turns the convolution L∞[1] algebra (CE(V,W ), Q∗+R∗) from the previous definition into a com-
plete L∞[1] algebra, in particular it makes sense to consider the Maurer-Cartan equation.

Proposition 1.3.28. A graded morphism F ∈ Hom0(S(V ),W ) is a Maurer-Cartan element of
(CE(V,W ), Q∗+R∗) if and only if it is the corestriction of an L∞[1] morphism F : (V,Q)→ (W,R).

Proof. By the previous computations, F is Maurer-Cartan if and only if for all v1, . . . , vn ∈ V ,
n ≥ 1, we have

n∑

j=1

1

j!

∑

k1+···+kj=n

∑

σ∈S(k1,...,kj)

ε(σ)rj(fk1
(vσ(1) � · · · )� · · · � fkj (· · · � vσ(n))) =

=

n∑

i=1

∑

σ∈S(i,n−i)
ε(σ)fn−i+1(qi(vσ(1) � · · · � vσ(i))� · · · � vσ(n)),
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which is exactly the equation for (f1, . . . , fn, . . .) to be the corestriction of an L∞[1] morphism
F : (V,Q)→ (W,R).

We close this subsection by sketching a different construction of convolution L∞ algebras, this
time associated to a C∞ coalgebra C and a dg Lie algebra M . We will need the following result
in Section 5.2.1.

Proposition 1.3.29. Given a C∞ coalgebra structure on a space C, that is, a dg Lie algebra
structure on the complete free Lie algebra L̂(C[−1]), and a complete dg Lie algebra (M,F •M) there
is a complete L∞ algebra structure on Hom(C,M) with the induced filtration F p Hom(C,M) =
Hom(C,F pM). The natural identification

Hom1(C,M) = Hom0(C[−1],M) = G(C[−1],M) = ĜLA(L̂(C[−1]),M)

restricts to a natural identification MC(Hom(C,M)) = D̂GLA(L̂(C[−1]),M).

Proof. (sketch, cf. [84] for details, also notice that this is just another appearance of the well estab-
lished mechanism of twisting cochains and Koszul duality [72, 13]) We only recall the construction
of the L∞[1] algebra structure on Hom(C,M)[1] = Hom(C[−1],M). The transpose of the C∞
coalgebra structure on C gives a C∞[1] algebra structure on the space C∗[1], hence via extensions
of scalars by the universal enveloping algebra U(M) there is an A∞[1] algebra structure on the
space C∗[1]⊗ U(M) = Hom(C[−1], U(M)), thus via symmetrization also an L∞[1] algebra struc-
ture: finally one verifies that Hom(C[−1],M) ⊂ Hom(C[−1], U(M)) is an L∞[1] subalgebra, cf.
[84], Lemma 3.3. The last assertion follows by unwinding the definitions, cf. [84], Section 3.2.

1.3.3 L∞ extensions

The aim of this subsection is to review the classification of L∞[1] extensions from [24, 83, 69].

Definition 1.3.30. A L∞[1] ideal of an L∞[1] algebra (V, q1, . . . , qn, . . .) is a graded subspace
I ⊂ V such that qn+1(I ⊗ V �n) ⊂ I, for all n ≥ 0: then Q restrict to an L∞[1] structure on I.
There is an induced L∞[1] algebra structure (V/I, r1, . . . , rn, . . .) on the quotient V/I: if [v] ∈ V/I
denotes the class of v ∈ V , this is given by rn; (V/I)�n → V/I : [v1]�· · ·�[vn]→ [qn(v1�· · ·�vn)].
A L∞[1] ideal I of V is abelian if moreover qn+1(I ⊗ V �n) = 0 for all n ≥ 1.

Definition 1.3.31. An exact sequence ε : 0 → (I,Q) → (V, S) → (W,R) → 0 of L∞[1] algebras
and strict morphism is called a (resp.: central) extension of L∞[1] algebras of base (W,R) and
fibre (I,Q) if the image of the first arrow is an (resp.: abelian) L∞[1] ideal in (V, S).

Given an extension ε of L∞[1] algebras as in the previous definition there is a unique isomor-

phism of graded spaces V
∼=−→W × I making the diagram

V

##

��

I

<<

0×idI ""

W

W × I
pW

;;
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commutative, and correspondingly an induced L∞[1] structure Qε on W × I making the sequence

0 → (I,Q)
0×idI−−−−→ (W × I,Qε) pW−−→ (W,R) → 0 into an extension of L∞[1] algebras: conversely,

each isomorphism class of L∞[1] extensions with a fixed base (W,R) and a fixed fiber (I,Q) (where
we consider isomorphisms given by diagrams as the one above) contains a unique representative of
this form.

Remark 1.3.32. It is convenient to decompose the symmetric powers ofW×I into types (W×I)�i ∼=⊕i
j=0W

�i−j⊗I�j . For any other graded space V , in particular for V = W×I, we have correspond-

ing isomorphisms Hom(S(W × I), V ) =
∏
i≥1 Hom((W × I)�i, V ) =

∏
j+k≥1 Hom(W�j ⊗ I�k, V )

.

The coderivation Qε ∈ CE(W × I) lies in the subspace

Hom(S(W ),W )×Hom(S(I), I)×Hom(S(W )⊗ S(I), I) ⊂ Hom(S(W × I),W × I), (1.3.6)

and moreover the Hom(S(W ),W ) component has to be R and the Hom(S(I), I) component has
to be Q, so the coderivation Qε is determined by its component

Fε ∈ Hom1(S(W )⊗ S(I), I) = Hom0(S(W ),Hom(S(I), I)[1]) = CE
0
(W,CE(I)[1]).

Remark 1.3.33. Explicitly Qε = (qε,1, . . . , qε,n, . . .) and Fε = (fε,1, . . . , fε,n, . . .) : W → CE(I)[1]
determine each other via the formulas

qε,i(w1 � · · · � wi) = (ri(w1 � · · · � wi), sfε,i(w1 � · · · � wi)0(1)),

qε,j(v1 � · · · � vj) = (0, qj(v1 � · · · � vj)),
qε,i+j(w1 � · · · � wi ⊗ v1 � · · · � vj) = (0, sfε,i(w1 � · · · � wi)j(v1 � · · · � vj)) if i, j ≥ 1,

where we denote by sfε,i the composition W�i
fε,i−−→ CE(I)[1]

s−→ CE(I).

Proposition 1.3.34. The set of isomorphism classes of L∞[1] extensions of base (I,Q) and fiber
(W,R) is in bijective correspondence with the set of L∞[1] morphisms from (W,R) to the dg Lie
algebra (CE(I), [Q, ·], [·, ·]), seen as an L∞[1] algebra via décalage. This correspondence is given
explicitly as in Remark 1.3.33.

Proof. We omit to give a detailed proof. By the results of the previous section the graded Lie
algebra structure on CE(I) given by the Nijenhuis-Richardson bracket [−,−] induces by convolution
a graded Lie algebra structure [−,−]∗ on CE(W,CE(I)), moreover we have a morphism of graded
Lie algebras

CE(W )× CE(I)→ Der(CE(W,CE(I))) : (R,Q)→ R∗ + [Q,−]∗,

hence we can form the semidirect product (CE(W )×CE(I)) o CE(W,CE(I)). We claim that the
inclusion (1.3.6), which we rewrite as

CE(W )× CE(I)× CE(W,CE(I)) ⊂ CE(W × I),

identifies this semidirect product with a graded Lie subalgebra of CE(W × I) with the Nijenhuis-
Richardson bracket: this could be seen by a direct and rather unpleasant computation1. In particu-
lar Qε is an L∞[1] structure, that is, [Qε, Qε] = 0, if and only if R∗(Fε)+[Q,−]∗(Fε)+ 1

2 [Fε, Fε]∗ =

1Or more easily by passing to the dual picture where we consider L∞[1] algebra structure on a graded space as
dg commutative algebra structures on the completed symmetric algebra over its dual, cf. [24, 83, 69].



1.3. L∞ ALGEBRAS 31

0, that is, according to Proposition 1.3.28, if and only if Fε ∈ CE
1
(W,CE(I)) = CE

0
(W,CE(I)[1])

is the corestriction of an L∞[1] morphism from (W,R) to the dg Lie algebra (CE(I), [Q,−], [−,−]),
seen as an L∞[1] algebra via décalage.

Notation 1.3.35. Given an L∞[1] morphism Fε : W → CE(I)[1] as in the previous proposition
we denote the L∞[1] algebra (W × I,Qε) also by W ×Fε I. We say that (W × I,Qε) is a semidirect
product of (W,R) and (I,Q) if Fε factors through the inclusion CE(I)[1]→ CE(I)[1], and in this
case we also denote it by W oFε I.

Lemma 1.3.36. Given an L∞[1] extension 0→ I →W ×Φ I →W → 0 and an L∞[1] morphisms

F : W ′ →W we denote by F ∗Φ the pullback F ∗Φ : W ′
F−→W

Φ−→ CE(I)[1]: there is a commutative
diagram

0 // I // W ′ ×F∗Φ I

F̃

��

// W ′ //

F

��

0

0 // I // W ×Φ I // W // 0

where the L∞[1] morphism F̃ is given by f̃n((w′1, i1)� · · · � (w′n, in)) = (fn(w′1 � · · · � w′n), 0) for
n ≥ 2, conversely if an L∞[1] extension 0→ I →W ′×ΨI →W ′ → 0 fits into a diagram as the one

above then Ψ = F ∗Φ. Given an L∞[1] isomorphism G : I
∼=−→ I ′ we denote by G∗Φ : W → CE(I ′)[1]

the pushforward of Φ by the isomorphism of graded Lie algebras G−G−1 : CE(I)→ CE(I ′): there
is a commutative diagram

0 // I

∼= G

��

// W ×Φ I

G̃
��

// W // 0

0 // I ′ // W ×G∗Φ I ′ // W // 0

where the L∞[1] morphism G̃ is given by g̃n((w1, i1) � · · · � (wn, in)) = (0, gn(i1 � · · · � in)) for
n ≥ 2, conversely if an L∞[1] extension 0 → I ′ → W ×Ψ I ′ → W → 0 fits into a diagram as the
one above then Ψ = G∗Φ.

Proof. Omitted, this could be seen by verifying through a direct computation that the L∞[1]

identities for the morphisms F̃ and G̃ exactly translates into commutativity of the diagrams

W

Φ $$

F // W ′

F∗Φzz
CE(I)[1]

W
Φ

zz

G∗Φ

$$
CE(I)[1]

G−G−1

// CE(I ′)[1]

1.3.4 O∞ algebras

To avoid to keep using constructs such as “A∞ (resp.: C∞, L∞)”, especially in Chapters 2 and 3,
we establish the following

Convention: We denote by O∞ (resp.: O∞) a category which could be either one of the categories
A∞, C∞, L∞ (resp.: A∞, C∞, L∞), and correspondingly we also talk about O∞ algebra and strict
(resp.: O∞) morphisms between them.
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It is clear how some of the definitions we gave in this section for L∞[1] algebras also apply
immediately, mutatis mutandis, to O∞[1] algebras: for instance, we say that an O∞[1] algebra
(V, q1, . . . , qn, . . .) is homotopy abelian if qn = 0 for n ≥ 2. It is also clear how to define the

category Ô∞[1] (resp.: Ô∞[1]) of complete O∞[1] algebras and continuous strict (resp.: O∞[1])
morphisms between them.



Chapter 2

Homotopy transfer of ∞ structures

As already remarked in several occasions, one of the most useful features of ∞ structures is that
they can be transferred (unlike, for instance, dg algebra structures) along homotopy retractions.
In Section 2.2 we prove this fundamental fact in the A∞, C∞ and L∞ cases, following an argument
we learned from the arXiv version of [31], together with a series of technical lemmas we will need in
the sequel. In the L∞ case, if the homotopy retraction satisfies some side conditions (then we call
it a contraction) a formal analog of classical Kuranishi’s theorem hold, due to Getzler, specifying
the behavior of Maurer-Cartan sets under homotopy transfer: this is reviewed in Section 2.3, the
proof is a slight generalization of an argument from [39].

2.1 Homotopy retractions and contractions

Definition 2.1.1. A homotopy retraction of dg spaces is the data ( V
p // W
i

oo ,K) of a pair of

dg morphism p : V → W and i : W → V such that p is a left inverse to i - pi = idW - and a
homotopy K ∈ Hom−1(V, V ) between ip and idV - dVK +KdV = ip− idV : in particular i and p
are quasi-isomorphisms. Homotopy retractions form a category Horet, where a morphism

f : ( V
p // W
i

oo ,K)→ ( V ′
p′ // W ′
i′
oo ,K ′)

is the datum of a dg morphism pr1(f) : V → V ′ commuting with the homotopy operators -

pr1(f)K = K ′ pr1(f). A homotopy retraction ( V
p // W
i

oo ,K) is a contraction if it satisfies the

side conditions K2 = pK = 0: contractions span a full subcategory Contr ⊂ Horet.

Remark 2.1.2. Given a contraction ( V
p // W
i

oo ,K) then

(Ki)p = K(dVK +KdV + idV ) = KdVK +K = (dVK +KdV + idV )K = i(pK) = 0,

thus Ki = 0, as p is epi.

Remark 2.1.3. There are natural projection functors pri : Horet → DG, i = 1, 2: pr1 sends

f : ( V
p // W
i

oo ,K) → ( V ′
p′ // W ′
i′
oo ,K ′) to the corresponding dg morphism pr1(f) : V → V ′

33
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(cf. the previous definition), pr2(f) : W → W ′ is the composition W
i−→ V

pr1(f)−−−−→ V ′
p′−→ W ′. To

see that pr2 is a functor we notice the identities pr2(f)p = p′ pr2(f) and pr1(f)i = i′ pr2(f): we
show the first one, the second one is proved similarly

pr2(f)p = p pr1(f)ip = p′ pr1(f)(dVK+KdV +idV ) = p′(dV ′K
′+K ′dV ′+idV ′) pr1(f) = p′ pr2(f).

Thus we also see pr1(f)ip = i′p′ pr1(f). Given g : ( V ′
p′ // W ′
i′
oo ,K ′) → ( V ′′

p′′ // W ′′
i′′
oo ,K ′′)

now it is easy

pr2(g) pr2(f) = p′′ pr1(g)i′p′ pr1(f)i = (p′′i′′)p′′ pr1(g) pr1(f)i = pr2(gf),

thus pr2 is indeed a functor and moreover p : pr1 → pr2 and i : pr2 → pr1 are natural transforma-
tions.

The categories Horet and Contr are complete. The existence of products is clear, so we

consider equalizers: let f, g : ( V
p // W
i

oo ,K) → ( V ′
p′ // W ′
i′
oo ,K ′) be a pair of morphisms in

Horet, and let V ⊂ V and W ⊂ W be the equalizers in DG of pr1(f), pr1(g) and pr2(f),pr2(g)
respectively. We put i = i|W , p = p|V , thus by naturality of p : pr1 → pr2 and i : pr2 → pr1 we

see that i(W ) ⊂ V and p(V ) ⊂ W . If v ∈ V also K(v) ∈ V , in fact pr1(f)K(v) = K ′ pr1(f)(v) =
K ′ pr1(g)(v) = pr1(g)K(v): we put K = K|V and we have just seen that K(V ) ⊂ V , but now

it is clear that ( V
p // W
i

oo ,K) is a homotopy retraction and an equalizer of f and g in Horet,

moreover it is a contraction if such is ( V1

p1 // W1
i1
oo ,K1). This shows that Horet and Contr are

complete: in fact more precisely it shows that the functor pr1×pr2 : Horet→ DG×DG creates
small limits (cf. [74]).

Homotopy retractions and contractions can be composed as in the following

Definition 2.1.4. Given a pair of homotopy retractions ( V
p // W
i

oo ,K) and ( W
π // Z
ι
oo , H)

their composition is

( V
p // W
i

oo ,K) ◦ ( W
π // Z
ι
oo , H) := ( V

πp // Z
iι
oo ,K + iHp)

Notice that the composite of two contractions remains a contraction.

Finally we need the fact that complete graded space structures on V transfer along homotopy
retractions if some compatibility condition with the filtration is satisfied.

Definition 2.1.5. A complete homotopy retraction is a homotopy retraction ( V
p // W
i

oo ,K)

and a complete dg space structure (V, F •V ) on V = lim V/F pV such that K : V → V and
ip : V → V are continuous. In these hypotheses W is complete with respect to the induced
filtration F •W = i−1(F •V ) (notice that this is preserved by dW ) and i, p are continuous morphisms
of complete dg spaces: in fact by definition i(F pW ) = i(W )

⋂
F pV and since ip is continuous also

p(F pV ) = F pW , the remaining claim follows easily from the other two (if {wn} is a Cauchy
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sequence in W , then {vn} := {i(wn)} is a Cauchy sequence in V , and w := p(v) := p(lim vn) is the
limit of {wn} - in fact we only used continuity of ip, continuity of K will be used in Section 2.3).

A morphism f of homotopy retractions is continuous if such is pr1(f) (and then so is pr2(f)):

complete homotopy retractions and continuous morphisms form a category Ĥoret, and similarly

one defines the full subcategory Ĉontr ⊂ Ĥoret of complete contractions.

2.2 Homotopy transfer theorems

O∞[1] algebra structures can be transferred along homotopy retractions as in the following theorem.

Theorem 2.2.1. Given an O∞[1] algebra (V, q1, . . . , qn, . . .) together with a homotopy retraction

( (V, q1)
g1 // (W, r1)
f1

oo ,K) there is a transferred O∞[1] structure R on W with linear part r1 and

an O∞[1] weak equivalence F : (W,R)→ (V,Q) with linear part f1. The higher Taylor coefficients
of F are determined recursively by the equation

pF = f = f1 +Kq+F, (2.2.1)

where we consider Q as a perturbation of the abelian O∞[1] structure q1 on V and we denote by
Q+ = Q− q1 the perturbation and by q+ = pQ+ = (0, q2, . . . , qn, . . .) its corestriction. The higher
Taylor coefficients of R are determined recursively by

pR = r = r1 + g1q+F. (2.2.2)

Proof. We give the proof first in the L∞[1] case, which is the one we are most concerned with.
Equation (2.2.1) determines the Taylor coefficients fn, n ≥ 2, recursively: in fact once expanded
it says

fn(v1 � · · · � vn) =

n∑

k=2

1

k!

∑

i1+···+ik=n

∑

σ∈S(i1,...,ik)

ε(σ)Kqk(fi1(vσ(1) � · · · )� · · · � fik(· · · � vσ(n))).

In order to prove H := QF − FR = 0 it suffices to show pH = 0 (since H : S(W ) → S(V ) is an
F -coderivation, cf. the proof of Lemma 1.2.9).

Since 0 = pQ2 = qQ = (q1 + q+)Q = q1(q1 + q+) + q+Q we see that q1q+ = −q+Q : S(V )→ V .
We use this fact in the following computation

pH = p(QF − FR) = q1(f1 +Kq+F ) + q+F − (f1 +Kq+F )R =

= q1f1 + (f1g1 − idV −Kq1)q+F + q+F − f1(r1 + g1q+F )−Kq+FR =

= (q1f1 − f1r1)−Kq1q+F −Kq+FR = Kq+(QF − FR) = Kq+H.

We can reconstruct the F -coderivation H explicitly from its corestriction pH = (h1, . . . , hn, . . .) as

Hi
n(v1 � · · · � vn) =

n−i+1∑

k=1

∑

σ∈S(k,n−k)

ε(σ)hk(vσ(1) � · · · � vσ(k))� F i−1
n−k(vσ(k+1) � · · · � vσ(n)),

for instance

H(w) = h1(w), H(w1 � w2) = h2(w1 � w2) + h1(w1)� f1(w2) + (−1)|w1|f1(w1)� h1(w2),
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and so on. Thus pH = Kq+H implies inductively H = 0: in fact h1(w) = pH(w) = Kq+h1(w) = 0
∀w ∈ W , since q+h1 = 0, and if we know inductively that h1 = · · · = hn−1 = 0 then by the above
also H2

n = · · · = Hn
n = 0, thus hn =

∑n
k=2KqkH

k
n = 0. This proves QF = FR, it remains to show

that R2 = 0: by the above

pR2 = (r1 + g1q+F )R = r1(r1 + g1q+F ) + g1q+FR = r1g1q+F + g1q+QF = g1(q1q+ + q+Q)F = 0.

The A∞[1] case is treated in the exact same way. In the C∞[1] case, by Lemma 1.2.9 it only
remains to show that for all p, q ≥ 1, v1, . . . , vp+q ∈ V , the following hold

fp+q((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) = rp+q((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) = 0.

Suppose we have proven inductively the above for p+ q < n, the n = 1 case being empty. Consider
the morphism of coalgebras F<n : T (W ) → T (V ) defined by pF<n = (f1, . . . , fn−1, 0, . . . , 0, . . .):
by the inductive hypothesis and Lemma 1.2.9 F<n is a morphism of the (shuffle product, decon-
catenation coproduct) bialgebra structures. Suppose p+ q = n, then

fp+q((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) = pF ((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) =

= Kq+F ((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) = Kq+F<n((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) =

= Kq+(F<n(v1 ⊗ · · · ⊗ vp)~ F<n(vp+1 ⊗ · · · ⊗ vp+q)) = 0,

since Q is supposed to be a C∞[1] structure. rp+q((v1 ⊗ · · · ⊗ vp) ~ (vp+1 ⊗ · · · ⊗ vp+q)) = 0 is
proved in the same way.

Remark 2.2.2. It is not hard to see that (2.2.1) and (2.2.2) are just compact forms of the tree
summation formulas by Kontsevich and Soibelman, cf. [60].

We need a series of technical lemmas on homotopy transfer.

Lemma 2.2.3. Given O∞[1] algebras (V, q1, . . . , qn, . . .), (V ′, q′1, . . . , q
′
n, . . .) and homotopy retrac-

tions ( V
g1 // W
f1

oo ,K), ( V ′
g′1 // W ′
f ′1

oo ,K ′) let F : (W,R)→ (V,Q) and F ′ : (W ′, R′)→ (V ′, Q′)

as in Theorem 2.2.1. If

h : ( V
g1 // W
f1

oo ,K)→ ( V ′
g′1 // W ′
f ′1

oo ,K ′)

is a morphism of homotopy retractions such that pr1(h) : V → V ′ is a strict O∞[1] morphism, then
pr2(h) : W → W ′ (cf. Remark 2.1.3) is a strict O∞[1] morphism between the transferred O∞[1]
structures R and R′: moreover F ′ pr2(h) = pr1(h)F : (W,R)→ (V ′, Q′).

Proof. Consider for instance the A∞[1] case, the others are treated similarly. We have to prove
the identities pr1(h)fi = f ′i pr2(h)⊗i and pr2(h)ri = r′i pr2(h)⊗i for all i ≥ 1. We begin the
with the first identity, suppose inductively we have proven it for i < n, then by (1.2.3) also

pr1(h)⊗kF kn = F ′kn pr2(h)⊗n for 2 ≤ k ≤ n, but then (cf. Remark 2.1.3)

pr1(h)fn =

n∑

k=2

pr1(h)KqkF
k
n =

n∑

k=2

K ′ pr1(h)qkF
k
n =

n∑

k=2

K ′q′kF
′k
n pr2(h)⊗n = f ′n pr2(h)⊗n.
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Similarly

pr2(h)rn =

n∑

k=2

pr2(h)g1qkF
k
n =

n∑

k=2

g′1 pr1(h)qkF
k
n =

n∑

k=2

g′1q
′
kF
′k
n pr2(h)⊗n = r′n pr2(h)⊗n.

By the lemma homotopy transfer can be seen as a functor O∞[1]×DG Horet→ O∞[1], where
the fibred product is taken over the projection functor pr1 : Horet→ DG and the tangent complex
functor O∞[1]→ DG : (V, q1, . . . , qn, . . .)→ (V, q1).

Remark 2.2.4. The lemma also tells us that F from Theorem 2.2.1 is a natural transformation
of functors O∞[1] ×DG Horet → O∞[1] from homotopy transfer to the projection onto the first
factor (both followed by the inclusion O∞[1] ↪→ O∞[1]). In the proof of Theorem 5.2.16 we will
also need a natural transformation in the opposite direction. Unfortunately, the previous proof of
Theorem 2.2.1 does not give an O∞[1] morphism G : V → W right inverse to F and with linear
part g1: although it is not hard to prove indirectly that such a G exists it is more difficult to show
that we can choose G with the required naturality properties. In the A∞[1] case there is a well
known proof of Theorem 2.2.1 based on the ordinary perturbation lemma and what is known as the
tensor trick (cf. [5]): this has the advantage to give also a possible choice for G : V →W with the
desired properties. In the hypothesis of Theorem 2.2.1 let K : T (V )→ T (V ) be the degree minus

one linear map defined by 0 = K
i

n : V �n → V �i if i 6= n (cf. Notation 1.1.4), K
1

1 = K : V → V
and

K
n

n(v1 ⊗ · · · ⊗ vn) =

n−1∑

j=0

(−1)
∑j
k=1 |vk|f1g1(v1)⊗ · · · ⊗ f1g1(vj)⊗K(vj+1)⊗ vj+2 ⊗ · · · ⊗ vn.

A possible choice of G : V → W is given by the recursion pG = g = g1 + gQ+K (in other words,

gn(v1 ⊗ · · · ⊗ vn) =
∑n−1
i=1 giQ

i
nK

n

n(v1 ⊗ · · · ⊗ vn) for n ≥ 2). Then a similar argument as in the
proof of the previous lemma shows that this choice of G defines a natural transformation of functors
O∞[1]×DG Horet→ O∞[1] from the projection onto the first factor to homotopy transfer (both
followed by the inclusion O∞[1] ↪→ O∞[1]).

Actually we need this result in the L∞[1] case, where the tensor trick breaks down: the solution
is due to Berglund [5]. First we consider the symmetrization K

sym
: T (V )→ T (V ) of the operator

K: explicitly (K
sym

)in = 0 if i 6= n and (K
sym

)nn = 1
n!

∑
σ∈Sn σ

−1K
n

nσ (where σ−1K
n

nσ is the

composition V ⊗n
σ−→ V ⊗n

K
n
n−−→ V ⊗n

σ−1

−−→ V ⊗n). The operator K
sym

preserves Sn-invariants, so
it pulls back via sym : S(V ) → T (V ) to a degree minus one operator which we denote again
by K : S(V ) → S(V ): then a possible choice of G : S(V ) → S(W ) is defined as before by the
recursion pG = g = g1 + gQ+K, cf. [5]. Again we see that this choice of G has the required
naturality properties.

We notice that

Lemma 2.2.5. As a functor O∞[1]×DGHoret→ O∞[1] homotopy transfer commutes with small
limits.

Proof. As it is immediate that it commutes with arbitrary products and equalizers, cf. Re-
mark 2.1.3.



38 CHAPTER 2. HOMOTOPY TRANSFER OF ∞ STRUCTURES

Lemma 2.2.6. In the hypotheses of Theorem 2.2.1 let I ⊂ V be an (resp.: abelian) O∞[1] ideal
such that K(I) ⊂ I and f1g1(I) ⊂ I, then J := g1(I) is an (resp.: abelian) O∞[1] ideal of W with
the transferred O∞[1] structure.

Proof. The hypotheses say that the homotopy retraction in the claim of Theorem 2.2.1 restricts

to a homotopy retraction ( I
g1 // J
f1

oo ,K), by the previous Lemma J with the transferred O∞[1]

structure is an O∞[1] subalgebra of W with the transferred O∞[1] structure. To fix the ideas
consider the L∞[1] case, the others are treated in the same way. If we suppose to have shown
inductively that ri(J ⊗W�i−1) ⊂ J and fi(J ⊗W�i−1) ⊂ I for all i < n, then we also see that
qiF

i
n(J ⊗W�n−1) ⊂ qi(I ⊗V �i−1) ⊂ I for all 2 ≤ i ≤ n by the inductive hypothesis and since I is

an O∞[1] ideal of (V,Q), and thus rn(J ⊗W�n−1) =
∑n
i=2 g1qiF

i
n(J ⊗W�n−1) ⊂ g1(I) = J and

fn(J ⊗W�n−1) =
∑n
i=2KqiF

i
n(J ⊗W�n−1) ⊂ K(I) = I and we can go on with the induction. If

I is an abelian O∞[1] ideal we see by the same inductive argument that rn(J ⊗W�n−1) = 0 and
fn(J ⊗W�n−1) = 0 for all n ≥ 2.

Lemma 2.2.7. Let g1 : (V, q1, . . . , qn, . . .) → (W, r1, . . . , rn, . . .) be a strict morphism of O∞[1]

algebras fitting into a contraction ( V
g1 // W
f1

oo ,K) from (V, q1) to (W, r1). The transferred O∞[1]

algebra structure on W is again (W, r1, . . . , rn, . . .), moreover the O∞[1] morphism g1 : V →W is
left inverse to F : W → V from Theorem 2.2.1.

Proof. The first statement follows from Lemma 2.2.3 applied to the morphism of contractions

h : ( V
g1 // W
f1

oo ,K)→ ( W
idW // W
idW

oo , 0)

such that pr1(h) = g1, pr2(h) = idW . For the second statement we have g1f1 = idW and g1K = 0
by hypothesis, thus also g1fn =

∑n
i=2 g1KqiF

i
n = 0 for all n ≥ 2 and the thesis follows.

Lemma 2.2.8. Homotopy transfer commutes with composition of homotopy retractions.

Proof. Let (V, q1, . . . , qn, . . .) be a O∞[1] algebra, (W, r1) and (X, s1) dg spaces,

( V
g1 // W
f1

oo ,K), ( W
g′1 // X
f ′1

oo , H) homotopy retractions.

Let (W, r1, . . . , rn, . . .) and F : W → V induced via homotopy transfer along the first homotopy
retraction as in Theorem 2.2.1, likewise let and (X, s1, . . . , sn, . . .) and F ′ : X → W induced
via homotopy transfer from (W, r1, . . . , rn, . . .) along the second homotopy retraction. We show
that FF ′ : X → V is the O∞[1] morphism induced via homotopy transfer along the composite
homotopy retraction

( V
g′1g1 // X
f1f
′
1

oo ,K + f1Hg1).

In fact

pFF ′ = (f1 +Kq+F )F ′ = f1(f ′1 +Hr+F
′) +Kq+FF

′ =

= f1f
′
1 + f1H(g1q+F )F ′ +Kq+FF

′ = f1f
′
1 + (K + f1Hg1)q+FF

′,
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which is exactly Equation (2.2.1). We show that S is the O∞[1] structure on X induced via
homotopy transfer along the composite homotopy retraction: in fact

pS = s1 + g′1r+F
′ = s1 + g′1g1q+FF

′,

which by the above is exactly Equation (2.2.2).

Finally, homotopy transfer is compatible with scalar extension and symmetrization.

Lemma 2.2.9. Given an O∞[1] algebra (V, q1, . . . , qn, . . .), a homotopy retraction ( V
g1 // W
f1

oo ,K)

and a commutative dg algebra (A, d, ·), then the two O∞[1] structures on A⊗W , the one induced
first by homotopy transfer and then by extension of scalars by A and the one induced first by exten-

sion of scalars of V by A and then by homotopy transfer along ( A⊗ V
idA⊗g1// A⊗W
idA⊗f1

oo , idA⊗K),

coincide. In the A∞[1] case, this remains true even if A is only dg associative.

Proof. Straightforward.

Lemma 2.2.10. Given an A∞[1] algebra (V, q1, . . . , qn, . . .) together with a homotopy retraction

( V
g1 // W
f1

oo ,K), then the two L∞[1] structures on W , the one induced first by homotopy transfer

and then by symmetrization and the one induced first by symmetrization and then by homotopy
transfer, coincide.

Proof. Given F : T (W ) → T (V ) satisfying the recursion (2.2.1) we have to show that its sym-
metrization sym(F ) : S(W )→ S(V ) satisfies the same recursion: this follows by writing down the
formulas explicitly, details are left to the reader. Similarly, given R = r1 + g1q+F the transferred
A∞[1] structure on W then one checks that p sym(R) = r1 + g1 sym(q+) sym(F ), and then by the
first part sym(R) is induced by sym(Q) via homotopy transfer.

We close this section by recalling probably the most important consequences of Theorem 2.2.1,
namely the existence of the minimal model.

Definition 2.2.11. An O∞[1] algebra (V,Q) is called minimal if Q has vanishing linear part, that
is, q1 = 0: unlike other properties, for instance the one of being abelian or nilpotent, the property
of an O∞[1] algebra of being minimal is preserved by O∞[1] isomorphisms. A minimal model of
an O∞[1] algebra (V,Q) is the datum of a minimal O∞[1] algebra (W,R) and a weak equivalence
F : (W,R)→ (V,Q).

Since a weak equivalence of minimal O∞[1] algebras has to be an isomorphism, a minimal
model as in the previous definition is determined up to an isomorphism over (V,Q). Existence of a
minimal model is ensured by Theorem 2.2.1 since over a field of characteristic zero every complex
(V, d) retracts onto its homology (H(V, d), 0).

Theorem 2.2.12. Given an O∞[1] algebra (V, q1, . . . , qn, . . .) there is a minimal O∞[1] algebra
structure (H(V ), 0, r2, . . . , rn, . . .) on the tangent cohomology H(V ) = (V, q1) together with a weak
equivalence H(V )→ V of O∞[1] algebras.
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In fact with some more work (cf. [62]) it can be proved that every O∞[1] algebra is isomorphic
to the direct product of a minimal model and an acyclic complex (considered as an abelian O∞[1]
algebra). We will need the following lemma.

Lemma 2.2.13. An O∞[1] algebra is homotopy abelian if and only if the O∞[1] structure of
some (and then all) minimal model is trivial. Given an O∞[1] morphism F : (V,Q) → (W,R): if
H(F ) = H(f1) : H(V )→ H(W ) is injective and (W,R) is homotopy abelian so is (V,Q); similarly,
if H(F ) is surjective and (V,Q) is homotopy abelian so is (W,R).

Proof. If (W, 0) is a minimal model of (V,Q), then (V,Q) is homotopy abelian by definition: con-
versely, given an abelian O∞[1] algebra (V, q1, 0, . . . , 0, . . .) it is clear that (H(V ), 0) is a minimal
model and since weakly equivalent O∞[1] algebras have isomorphic minimal models the first state-
ment follows.

Given an O∞[1] morphism F : (V,Q) → (W,R) there is an O∞[1] morphism H(V ) → H(W )
between the minimal models with linear part H(f1). If H(f1) is surjective so is the O∞[1] morphism
H(V ) → H(W ) (that is, the associated morphism of graded coalgebras is surjective), thus if the
O∞[1] structure on H(W ) is trivial so has to be the one on H(V ) and by the first part of the
lemma (V,Q) is homotopy abelian. The other case is proved similarly.

2.3 Formal Kuranishi theorem

Homotopy transfer can be enhanced to a functor Ô∞[1]×
D̂G

Ĥoret→ Ô∞[1].

Proposition 2.3.1. In the hypotheses of Theorem 2.2.1, suppose that V is a complete O∞[1]
algebra and that the homotopy retraction is complete with respect to the same filtration F •V on
V . Then W with the transferred O∞[1] structure and the induced filtration F •W = i−1(F •V ) is a
complete O∞[1] algebra and F : W → V from Theorem 2.2.1 (as well as G : V →W from Remark
2.2.4 in the A∞[1] and L∞[1] cases) is a continuous O∞[1] morphism.

Proof. As in Definition 2.1.5 we see that (W,F •W, r1) is a complete dg space and f1, g1 are
continuous morphisms. Continuity of fn and rn for n ≥ 2 follows inductively from the continuity
of K, g1, f1, qk ∀k ≥ 2, and from fn =

∑n
k=2KqkF

k
n , rn =

∑n
k=2 g1qkF

k
n . Continuity of G is

proved similarly.

Remark 2.3.2. All the various lemmas from the previous section remain valid in the complete
setting, details are left to the reader.

The aim of this section is to prove the following formal analog of Kuranishi’s theorem, essentially
due to Getzler [39] (cf. the proofs of Lemma 4.6 and Lemma 5.3 in loc. cit.).

Theorem 2.3.3. In the same hypotheses as in Proposition 2.3.1, in the L∞[1] case, suppose

moreover that ( V
g1 // W
f1

oo ,K) is a complete contraction. Let G = (g1, . . . , gn, . . .) : V →W be a

a continuous L∞[1] left inverse to F : W → V (not necessarily the particular choice of such a G
made in Remark 2.2.4): the correspondence

ρ : MC(V )→ MC(W )×
(

Im K
⋂
V −1

)
: x→ (MC(G)(x),K(x))
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is bijective. The inverse ρ−1 admits the following recursive construction: given y ∈ MC(W ) and
K(v) ∈ Im K

⋂
V −1 we define a succession xi ∈ V 0, i ≥ −1, by x−1 = 0 and for i+ 1 ≥ 0 by

xi+1 = f1(y)− q1K(v) +
∑

n≥2

1

n!
(Kqn − f1gn)

(
x�ni

)
, (2.3.1)

this succession is convergent (with respect to the complete topology induced by the filtration on V )
and ρ−1(y,K(v)) = x := lim xi. We have ρ−1(−, 0) = MC(F ) : MC(W ) → MC(V ) and together
with the restriction of g1 they are inverses bijective correspondences between the sets MC(W ) and
Ker K

⋂
MC(V ).

Proof. We proceed as in [39], moreover we use the notations and computations from Remark 1.3.15.
First of all if x ∈ MC(V ) then

x = f1g1(x)− q1K(x)−Kq1(x) = f1G
0#(x)− q1K(x) +

∑

n≥2

1

n!
(Kqn − f1gn)

(
x�n

)
(2.3.2)

Equation (2.3.2) implies injectivity of ρ as follows: if y ∈ MC(V ) is such that G0#(x) = G0#(y),
K(x) = K(y), then subtracting the respective equations (2.3.2) for x and y we obtain

x− y =
∑

n≥2

1

n!

n−1∑

j=0

(Kqn − f1gn)
(
x�j � (x− y)� y�n−j−1

)

The above shows x− y ∈ F pV ⇒ x− y ∈ F p+1V , thus inductively x− y ∈ ⋂p≥1 F
pV = 0.

Now consider y ∈ MC(W ), K(v) ∈ Im K
⋂
V −1 and the sequence xi ∈ V 0 defined by the

recursion (2.3.1): we show that the limit x = lim xi is well defined. We suppose inductively,
starting with x0 − x−1 ∈ F 1V = V , that xi − xi−1 ∈ F i+1V , and deduce

xi+1 − xi =
∑

n≥2

n−1∑

j=0

1

n!
(Kqn − f1gn)

(
x�ji � (xi − xi−1)� x�n−j−1

i−1

)
∈ F i+2V.

By completeness the infinite sum
∑
i≥0(xi − xi−1) converges to a well defined x ∈ V 0.

By construction x satisfies

x = f1(y)− q1K(v) +
∑

n≥2

1

n!
(Kqn − f1gn)

(
x�n

)

Applying K, since Kf1 = K2 = 0 = g1K = 0,

K(x) = −Kq1K(v) = (q1K + idV − f1g1)K(v) = K(v).

Applying g1, since moreover g1f1 = idW ,

g1(x) = y −
∑

n≥2

1

n!
gn(x�n) =⇒ G0#(x) = y.

Applying q1, we get

q1(x) = q1f1(y) +
∑

n≥2

1

n!
(f1g1 − idV −Kq1)qn(x�n)−

∑

n≥2

1

n!
q1f1gn(x�n).
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We notice that

q1f1(y)−
∑

n≥2

1

n!
q1f1gn(x�n) = q1f1(y) + q1f1g1(x)− q1f1G

0#(x) = q1f1g1(x) = f1g1q1(x),

hence

RV (x) = f1g1RV (x)−
∑

n≥2

1

n!
Kq1qn(x�n).

We denote by fGk =
∑k
i=1 fiG

i
k the k-th Taylor coefficient of the continuous L∞[1] morphism

FG : V → V . By the computation in Remark 1.3.15, and since y ∈ MC(W ), we see that

0 = RV F 0#(y) = RV F 0#G0#(x) = f1g1RV (x) +
∑

k≥2

1

(k − 1)!
fGk(RV (x)� x�k−1).

On the other hand

−
∑

n≥2

1

n!
Kq1qn(x�n) =

∑

n≥2

1

n!

n−1∑

j=1

n!

j!(n− j)!Kqn−j+1(qj(x
�j)� x�n−j) =

=
∑

k≥2

1

(k − 1)!
Kqk(RV (x)� x�k−1).

Finally, putting everything together

RV (x) =
∑

k≥2

1

(k − 1)!
(Kqk − fGk)(RV (x)� x�k−1),

which shows RV (x) ∈ F pV ⇒ RV (x) ∈ F p+1V , thus inductively RV (x) = 0. We have constructed
x ∈ MC(V ) such that MC(G)(x) = y and K(x) = K(v), thus ρ is surjective.

Since fn =
∑n
k=2KqkF

k
n for n ≥ 2, we also see that g1fn = Kfn = 0 for n ≥ 2, hence the

identities
g1F

0# = idW , KF 0# = 0.

Remark 2.3.4. In fact applying respectively g1 and K to the identity

RV F 0#(w) =
∑

n≥1

1

(n− 1)!
fn(RW (x)� x�n−1)

we also see that
g1RV F 0# = RW , KRV F 0# = 0.

Given x ∈ MC(W ) we have MC(G)(MC(F )(x)) = x and by the above also K(MC(F )(x)) = 0,
thus MC(F )(x) = ρ−1(x, 0). It is now clear that MC(F ) = ρ−1(−, 0) : MC(W )→ Ker K

⋂
MC(V )

is a bijective correspondence and we have already observed that g1 MC(F ) = idMC(W ).



Chapter 3

∞ structures on cochain complexes

In Section 3.1 we review the construction by Whitney [108] and Dupont [30] of a simplicial contrac-

tion ( Ω(∆•)

∫
// C(∆•)

ι
oo ,K) from the simplicial dg algebra of polynomial forms on the standard

cosimplicial simplex ∆• to the simplicial complex of non-degenerate cochains on ∆•. As in the pa-
per [22], in Section 3.2 we use this contraction together with scalar extension and homotopy transfer
to put a natural O∞[1] algebra structure on the complex C(X;V ) of non-degenerate cochains on a
simplicial set X with coefficients in an O∞[1] algebra V . In the final section we compute explicitly
the O∞[1] structure on C(∆1;V ) when V is a dg (resp.: associative, commutative, Lie) algebra,
seen as an O∞[1] algebra via décalage. Moreover we prove the existence of certain homotopy
limits in the category O∞[1], namely homotopy equalizers, and we give explicit formulas when the
target O∞[1] algebra is a dg (resp.: associative, commutative, Lie) algebra, generalizing formulas
by Fiorenza and Manetti [31].

3.1 Dupont’s contraction

By an abuse of notation we denote by the same symbol the standard n-th simplex ∆n ∈ SSet and
the standard affine n-th simplex ∆n =

{
(t0, . . . , tn) ∈ K n+1 s.t. t0 + · · ·+ tn = 1

}
: we denote by

(Ωn, d,∧) the dg commutative algebra of polynomial forms on ∆n [11, 100], formally

Ωn =
S(t0 . . . , tn, dt0, . . . , dtn)

(t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn)

is the symmetric algebra over variables t0, . . . , tn in degree 0, dt0, . . . , dtn in degree 1 and with
differential induced by ti → dti, i = 0, . . . , n, modulo the dg ideal generated by t0 + · · · + tn − 1
and dt0 + · · ·+ dtn. Ω• = {Ωn}n≥0 has a natural structure of simplicial dg commutative algebra,
where the faces and the degeneracies are induced by the usual cosimplicial structure on ∆• via
pullback of forms: for i = 0, . . . , n

∂i : Ωn → Ωn−1 : ω(t0, . . . , ti, . . . , tn, dt0, . . . , dti, . . . , dtn)→
→ ω(t0, . . . , 0, . . . tn−1, dt0, . . . , 0, . . . dtn−1) and

43
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si : Ωn → Ωn+1 : ω(t0, . . . , ti, . . . , tn, dt0, . . . , dti, . . . , dtn)→
→ ω(t0, . . . , ti + ti+1, . . . tn+1, dt0, . . . , dti + dti+1, . . . dtn+1).

For each k ≥ 0, Ωk• = {Ωkn}n≥0 is the simplicial K -vector space of polynomial k-forms on the stan-
dard cosimplicial simplex ∆•. Given a simplicial set X we denote by Ωk(X) := SSet(X,Ωk•) the
space of polynomial k-forms on X, it has a natural structure of K -vector space defined pointwise.
We denote by ω(σ) ∈ Ωkn the value of a k-form ω ∈ Ωk(X) on an n-simplex σ : ∆n → X. The
Sullivan-de Rham algebra Ω(X) := ⊕k≥0Ωk(X) of polynomial forms on X has a natural structure
of dg commutative algebra defined pointwise by (ω∧φ)(σ) = ω(σ)∧φ(σ) and dω(σ) = d(ω(σ)): we
notice that Ω(∆n) = Ωn. The Sullivan-de Rham algebra functor Ω(−) : SSetop → DGCA sends
f : X → Y to the pullback Ω(f) =: f∗ : Ω(Y )→ Ω(X) defined pointwise by f∗ω(σ) = ω(fσ).

We denote by C(X) := C(X;K ) the complex of non-degenerate simplicial K -cochains on X,
that is, C(X) = ⊕k≥0C

k(X) where Ck(X) is the space of K -valued k-cochains α : Xk → K :
σ → ασ on X vanishing on degenerate simplices. As usual we equip C(X) with the differential

d : Ck(X) → Ck+1(X) : α → (dα)σ =
∑k+1
i=0 (−1)iα∂iσ, where ∂i : Xk+1 → Xk, i = 0, . . . , k + 1,

are the face maps: the functor C(−) : SSetop → DG sends f : X → Y to the pullback C(f) =:
f∗ : C(Y ) → C(X) defined pointwise by f∗ασ = αfσ. The aim of this section is to review the
construction of a natural contraction from Ω(X) to C(X), following Whitney [108] and Dupont
[30].

Definition 3.1.1. We denote by ωi0···ik ∈ Ωkn, where 0 ≤ i0 < · · · < ik ≤ n, the Whitney
elementary form

Ωkn 3 ωi0···ik := k!

k∑

j=0

(−1)jtijdti0 ∧ · · · ∧ d̂tij ∧ · · · ∧ dtik .

We denote by σi0···ik : ∆k → ∆n : [0 · · · k] → [i0 · · · ik] considered as an element of (∆n)k
(the k-simplices of the standard n-th simplex), and given a cochain α ∈ Ck(∆n) we denote by
αi0···ik := ασi0···ik ∈ K . Following [108] we define a dg embedding ι : C(∆n)→ Ωn by

ι : Ck(∆n)→ Ωkn : α→
∑

0≤i0<···<ik≤n
αi0···ikωi0···ik ,

it sends C(∆n) isomorphically onto the subcomplex of Ωn spanned by Whitney’s elementary forms.

In [108] Whitney also defines a dg left inverse
∫

: Ωn → C(∆n) to ι by integrating k-forms over
k-simplices: explicitly, for each k ≥ 0 let

∫

∆k

: Ωkk → K : ti11 · · · tikk dt1 ∧ · · · ∧ dtk →
i1! · · · ik!

(i1 + · · ·+ ik + k)!
,

then
∫

: Ωn → C(∆n) is defined by

∫
: Ωkn = Ωk(∆n)→ Ck(∆n) : ω →

(∫
ω

)

i0···ik
=

∫

∆k

ω(σi0···ik).

This is a dg morphism by the classical Stokes’ formula. By construction the above assemble to
a simplicial dg morphism ι : C(∆•) → Ω• of simplicial dg spaces and a simplicial dg left inverse∫

: Ω• → C(∆•).
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We recall the construction of a simplicial homotopy between ι
∫

and idΩ• due to Dupont [30],
cf. also Getler’s paper [39]. For i = 0, . . . , n, we denote by −→ei ∈ ∆n the i-th vertex and we put

ϕi : [0, 1]×∆n → ∆n : (u,
−→
t )→ u · −→t + (1− u) · −→ei .

(here we are considering ∆n as the affine n-simplex). We define hi : Ωkn → Ωk−1
n as the composition

of pullback by ϕi and integration along the fibres of the projection [0, 1]×∆n → ∆n. Explicitly

hi : f(t0, . . . , tn)dti1 ∧ · · · ∧ dtik →

→




k∑

j=1

(−1)j−1(tij − δiij )dti1 ∧ · · · ∧ d̂tij ∧ · · · ∧ dtik



∫ 1

0

uk−1(f ◦ ϕi)du, (3.1.1)

where δiij is Kronecker’s delta. Finaly, following Dupont1 we put

K : Ωkn → Ωk−1
n : ω →

k−1∑

j=0

(−1)j+1
∑

0≤i0<···<ij≤n
ωi0···ij ∧ hij · · ·hi0(ω) (3.1.2)

This assemble to a simplicial K : Ωk• → Ωk−1
• .

Theorem 3.1.2. With the previous definitions ( Ω•

∫
1 // C(∆•)
ι

oo ,K) is a simplicial contraction.

We refer to [30] for a proof that it is a simplicial homotopy retraction, where in the process the
following lemma is also proved (cf. the footnote).

Lemma 3.1.3. Given ω ∈ Ωkn and 0 ≤ i0 < · · · < ik ≤ n, then
(∫
ω
)
i0···ik = εikhik−1 · · ·hi0(ω),

where εi : Ω0
n → K is evaluation at the vertex −→ei , i = 0, . . . , n.

We refer to [39] for a proof that ( Ω•

∫
1 // C(∆•)
ι

oo ,K) is moreover a simplicial contraction,

where in the process it is also proved that

Lemma 3.1.4. hihj + hjhi = 0, ∀ 0 ≤ i, j ≤ n.

Definition 3.1.5. The Dupont’s contraction ( Ω(X)

∫
X // C(X)
ιX
oo ,KX) associated to a simplicial

set X is defined on ω ∈ Ωk(X) and α ∈ Ck(X) by

ιX(ω) ∈ Ck(X) is the k-form sending an n-simplex σ : ∆n → X to ιX(α)(σ) = ι(σ∗α), where
σ∗α ∈ Ck(∆n) is the pullback of α by σ and ι : Ck(∆n)→ Ωkn is as in Definition 3.1.1.
∫
X
ω ∈ Ck(X) is the (non-degenerate) k-cochain evaluating to

(∫
X
ω
)
σ

=
∫

∆k
ω(σ) ∈ K on

a k-simplex σ : ∆k → X.

KX(ω) ∈ Ωk−1(X) is the (k − 1)-form sending an n-simplex σ : ∆n → X to KX(ω)(σ) =
K(ω(σ)), where K : Ωkn → Ωk−1

n is as in (3.1.2).

1In the formulas from [Dupont] and [Getzler] the sign (−1)j+1 doesn’t appear, on the other hand Dupont had

defined ϕi as (u,
−→
t )→ u · −→ei + (1−u) · −→t , with the effect of changing the formula (3.1.1) for hi by a sign (-1), thus

our formula coincides with Dupont’s original one. It can be checked that given ω0 ∧ ω012 ∈ Ω2, without the sign
(−1)j+1 in the formula (3.1.2) one would obtain K(ω0 ∧ ω012) = 0, contradicting Kd+ dK = f1

∫
1− idΩ2

.
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In the sequel, if there is no risk of confusion, we will omit the explicit reference to X in the

notation and we will write ( Ω(X)

∫
// C(X)

ι
oo ,K) . It is easy to see that it is defined a functor

Dup : SSetop → Contr sending X to the associated Dupont’s contraction.

3.2 ∞ structures on cochain complexes

Given an O∞[1] algebra (V, q1, . . . , qn, . . .) and a simplicial set X it is defined, by extension of
scalars (Definitions 1.2.12 and 1.3.9), an O∞[1] structure on the space Ω(X;V ) := Ω(X) ⊗ V
of polynomial forms on X with coefficients in V : as pullback by a morphism f : X → Y and
pushforward by a strict O∞[1] morphism g : V → W commute with each other, that is, the
diagram

Ω(Y ;V )
f∗ //

g∗

��

Ω(X;V )

g∗

��
Ω(Y ;W )

f∗ // Ω(X;W )

is commutative, it is defined the functor Ω(−;−) : SSetop ×O∞[1]→ O∞[1].

Let C(X;V ) be the complex of cochains on X with coefficients in the dg space (V, q1): as a
space C(X;V ) = C(X) ⊗ V , the differential is dC(X) ⊗ idV + idC(X)⊗q1. Dupont’s contraction
(Definition 3.1.5) induces a contraction

( Ω(X;V )

∫
⊗ idV // C(X;V )
ι⊗idV

oo ,K ⊗ idV ) (3.2.1)

from Ω(X;V ) to C(X;V ), hence by homotopy transfer a O∞[1] algebra structure on C(X;V ).
By Lemma 2.2.3, the pullback f∗ : C(Y ;V ) → C(X;V ) by f : X → Y is a strict morphism of
O∞[1] algebras, and so is the pushforward g∗ : C(X;V ) → C(X;W ) by a strict O∞[1] morphism
g : V →W : these commute with each other, in the sense that the following diagram commutes.

C(Y ;V )
f∗ //

g∗

��

C(X;V )

g∗

��
C(Y ;W )

f∗ // C(X;W )

Definition 3.2.1. The functor C(−;−) : SSetop × O∞[1] → O∞[1] is defined as above, by
applying homotopy transfer to Ω(−;−) : SSetop × O∞[1] → O∞[1] along Dupont’s contraction
Dup : SSetop → Contr.

Remark 3.2.2. As a particular case of the previous construction we see that the non-degenerate
cochains functor C(−) : SSet→ DG has a natural enhancement to a functor C(−) : SSet→ C∞,
by applying homotopy transfer to Ω(−) : SSet→ DGCA along Dupont’s contraction, cf. [22].

Given a simplicial set X the functor C(X;−) : O∞[1] → O∞[1] has an important technical
advantage over the functor Ω(X;−) : O∞[1]→ O∞[1].

Lemma 3.2.3. For all X ∈ SSet the functor C(X;−) : O∞[1] → O∞[1] commutes with small
limits.
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Proof. Let C → O∞[1] : c → Vc be a functor from a small category C. Since the forgetful functor
−# : O∞[1] → DG : (V, q1, . . . , qn, . . .) → (V, q1) commutes with small limits, reflects isomor-
phisms and sends C(X;V ) to C(X;V )# = Hom(C∗(X)/D∗(X), V #), where C∗(X) is the complex
of simplicial K -chains on X (according to our cohomological convention, we take it concentrated
in degrees ≤ 0) and D∗(X) is the subcomplex spanned by the degenerate simplices, and since
moreover Hom(C∗(X)/D∗(X),−) : DG→ DG commutes with small limits, the lemma follows by
looking at the diagram

C(X; limc∈C Vc) //

#

��

limc∈C C(X;Vc)

#

��
Hom(C∗(X)/D∗(X), limc∈C V #

c )
∼= // limc∈C Hom(C∗(X)/D∗(X), V #

c )

Remark 3.2.4. On the other hand, the functor Ω(X;−) : O∞[1]→ O∞[1] in general only commutes
with finite limits.

Given a dg space W and a complete dg space (V, F •V ) the usual tensor product W ⊗ V is not
in general complete with respect to the induced filtration F p(W ⊗V ) = W ⊗F pV , so the definition
of Ω(−;−) has to be modified slightly in the complete case. We introduce the completed tensor
product (W ⊗̂V, F •(W ⊗̂V )): namely, this is the completion

W ⊗̂V = lim (W ⊗ V/W ⊗ F pV ) = lim W ⊗ (V/F pV ),

with the induced filtration F p(W ⊗̂V ) = Ker
(
W ⊗̂V →W ⊗ (V/F pV )

)
. If (V, F •V, q1, . . . , qn, . . .)

is a complete O∞[1] algebra and (A, d, ·) is a dg commutative algebra there is an induced O∞[1]
algebra structure on A ⊗ (V/F pV ) for all p ≥ 1, hence also an induced O∞[1] algebra structure
on the completion A⊗̂V and this is compatible with the filtration. Finally, we define the functor
Ω(−;−) : SSetop × Ô∞[1]→ Ô∞[1] by (Ω(X;V ), F •Ω(X;V )) := (Ω(X)⊗̂V, F •(Ω(X)⊗̂V )).

As for the functor C(−;−) we see that for all complete spaces (V, F •V ) and simiplicial setsX the
space C(X;V ) is always complete with respect to the filtration F •C(X;V ) := C(X;F •V ). There
are two ways to put an O∞[1] structure on C(X;V ), one by homotopy transfer from Ω(X)⊗V with
its ordinary (not complete) O∞[1] structure along Dupont’s contraction (3.2.1), the other by homo-

topy transfer from Ω(X;V ) along the limit of the contractions Ω(X;V/F pV ) // C(X;V/F pV )oo

(recall - Remark 2.1.3 - that the category Contr is complete): in fact by applying Lemma 2.2.5
to the natural Ω(X)⊗ V → Ω(X)⊗̂V we see that both ways induce the same O∞[1] structure on
C(X;V ), moreover the second construction shows that (C(X;V ), F •C(X;V )) with the transferred
O∞[1] structure is a complete O∞[1] algebra and the induced C(X;V )→ Ω(X;V ) is a continuous
O∞[1] morphism. .

Definition 3.2.5. The functor C(−;−) : SSetop × Ô∞[1]→ Ô∞[1] is defined as in the previous
discussion by sending a simplicial set X and a complete O∞[1] algebra (V, F •V, q1, . . . , qn, . . .)
to the complete O∞[1] algebra structure on (C(X;V ), F •C(X;V ) = C(X;F •V )) induced from
Ω(X;V ) (equivalently, from Ω(X)⊗ V ) via homotopy transfer along Dupont’s contraction.

Lemma 3.2.3 remains true in the complete case.

Lemma 3.2.6. For each X ∈ SSet, the functor C(X;−) : Ô∞[1]→ Ô∞[1] commutes with small
limits.
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Proof. The family of functors F p− : Ô∞[1] → O∞[1] : (V, F •V ) → F pV , p ≥ 0, commutes with

small limits and has the property that a morphism f ∈ Ô∞[1] is an isomorphism if and only

if such is F p(f), ∀p ≥ 0. Given a functor C → Ô∞[1] : c → Vc from a small category, since

F pC(X;−) = C(X;F p−) : Ô∞[1]→ O∞[1], by looking at

C(X; limc∈C Vc) //

Fp−
��

limc∈C C(X;Vc)

Fp−
��

C(X; limc∈C F pVc) // limc∈C C(X;F pVc)

the lemma follows from Lemma 3.2.3.

The following simple lemma says that the O∞[1] structure on C(X;V ) satisfies a certain locality
condition over X.

Lemma 3.2.7. If X ⊂ X is a sub-simplicial set then the space C(X,X;V ) ⊂ C(X;V ) of cochains
vanishing on X is an O∞[1] ideal.

Proof. This follows immediately from Lemma 2.2.6.

We close this section by remarking an open problem.

Remark 3.2.8. The functor Ω(−;−) : SSetop ×O∞[1] → O∞[1] (as well as its complete version)
admits a natural enhancement to a functor Ω(−;−) : SSetop × O∞[1] → O∞[1], as extension of
scalars by a commutative dg algebra is a functor O∞[1] → O∞[1]. It would be highly desirable
to have a similar enhancement of the functor C(−;−): unfortunately, this doesn’t seem an easy
matter, cf. the related problem of constructing an A∞ algebra structure on the tensor product of
two A∞ algebras [90, 78, 71] . Let us notice, given an O∞[1] morphism H : V →W , that this can’t

be given by the recipe C(X;H) : C(X;V )
F−→ Ω(X;V )

Ω(X;H)−−−−−→ Ω(X;W )
G−→ C(X;W ), where F

is induced by homotopy transfer and G is a left inverse as in Remark 2.2.4, since this fails to be
functorial if the morphisms are not strict (consider the case of abelian O∞[1] algebras and O∞[1]
morphisms between them). In other words, Lemma 2.2.3 and the considerations in Remark 2.2.4
do not extend if we work with general O∞[1] morphisms2.

3.3 Mapping cocones

Let (V,QV ) and (W,QW ) be O∞[1] algebras, and let (C(∆1;W ), QC(∆1;W )) be the O∞[1] algebra
of non-degenerate cochains on the 1-simplex with coefficients in W , as in the previous section. We
denote by j∗ : C(∆1;W ) → C(∂∆1;W ) the pullback by the inclusion j : ∂∆1 → ∆1, notice the
isomorphism C(∂∆1;W ) ∼= W ×W in O∞[1].

2the point here is that Ω(X;H)FG = FGΩ(X;H) if H = h is strict, where FG in the left and right hand side
denotes the respective FG : Ω(X;W ) → Ω(X;W ) and FG : Ω(X;V ) → Ω(X;V ), but not in general, cf. with the
situation in Remark 2.1.3.
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Theorem 3.3.1. Let F = (f1, . . . , fn, . . .) : V → W and G = (g1, . . . , gn, . . .) : V → W be a pair
of O∞[1] morphisms: there is an O∞[1] algebra Eh(F,G) and a cartesian diagram

Eh(F,G) //

��

C(∆1;W )

j∗

��
V

F×G // C(∂∆1;W )

in O∞[1].

Remark 3.3.2. This result is not trivial since the category O∞[1] is not complete, and in particular
there are pair of morphisms which do not admit equalizers.

Proof. We start by considering the A∞[1] case. As a graded space C(∆1;W ) = W ×W ×W [−1],
the underlying space of Eh(F,G) will be Eh(F,G) = V ×W [−1]. In order to simplify the notations,
and hoping this will not cause too much confusion, in the course of the proof we denote by the
same symbol pW [−1] the projections Eh(F,G) → W [−1] and C(∆1;W ) → W [−1], as well as

T (Eh(F,G))
p−→ Eh(F,G)

pW [−1]−−−−→ W [−1] and T (C(∆1;W ))
p−→ C(∆1;W )

pW [−1]−−−−→ W [−1], leaving
to the context to make it clear to which one we are referring to. Similarly, we denote by the same

symbol pV the projections Eh(F,G)→ V , T (Eh(F,G))
p−→ Eh(F,G)

pV−−→ V and T (V )
p−→ V .

Our strategy will be roughly to guess the universal pair of morphisms P : Eh(F,G) → V
and I : Eh(F,G) → C(∆1;W ), and then show that these determine the A∞[1] structure on
Eh(F,G) and everything works properly. We take P to be the linear morphism of coalgebras
P = (pV , 0 . . . , 0 . . .) and we define I = (i1, . . . , in, . . .) by

i1(v, sw) = (f1(v), g1(v), sw),

in((v1, sw1)⊗ · · · ⊗ (vn, swn)) = (fn(v1 ⊗ · · · ⊗ vn), gn(v1 ⊗ · · · ⊗ vn), 0) for n ≥ 2.

The identity (F ×G)P = j∗I follows immediately.

We claim that there is a unique coderivation QEh(F,G) ∈ Hoch(Eh(F,G)) such that the identities
PQEh(F,G) = QV P and IQEh(F,G) = QC(∆1;W )I are satisfied. In fact, the corestriction pQEh(F,G)

decomposes as pQEh(F,G) = pVQEh(F,G)×pW [−1]QEh(F,G) : T (Eh(F,G))→ Eh(F,G) = V ×W [−1].

It is clear that (with the abuse of notation explained in the beginning) T (Eh(F,G))
pV−−→ V and

T (Eh(F,G))
P−→ T (V )

pV−−→ V conincide - that is, pV = pV P : T (Eh(F,G)) −→ V - thus the
identity PQEh(F,G) = QV P implies that pVQEh(F,G) = pV PQEh(F,G) = pVQV P : in other words
the component pVQEh(F,G) of the corestriction pQEh(F,G) has to be

pVQEh(F,G) : T (Eh(F,G))
P−→ T (V )

QV−−→ T (V )
pV−−→ V.

Similarly, the identity IQEh(F,G) = QC(∆1;W )I and the observation that

pW [−1] = pW [−1]I : T (Eh(F,G))→W [−1]

(by construction of I) imply that pW [−1]QEh(F,G) = pW [−1]IQEh(F,G) = pW [−1]QC(∆1;W )I: in other
words pW [−1]QEh(F,G) has to be

pW [−1]QEh(F,G) : T (Eh(F,G))
I−→ T (C(∆1;W ))

QC(∆1;W )−−−−−−→ T (C(∆1;W ))
pW [−1]−−−−→W [−1].
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This shows uniqueness. Conversely, if pQEh(F,G) = pVQEh(F,G) × pW [−1]QEh(F,G) is defined
as above by construction it is immediate that PQEh(F,G) = QV P and moreover by what we
have already seen pW [−1]IQEh(F,G) = pW [−1]QEh(F,G) = pW [−1]QC(∆1;W )I (the first identity since
pW [−1] = pW [−1]I, the second by definition), thus to prove to prove IQEh(F,G) = QC(∆1;W )I it only
remains to show that pW×W IQEh(F,G) = pW×WQC(∆1;W )I: notice that pW×W = j∗ is pullback
by the inclusion j : ∂∆1 → ∆1, so we see

j∗IQEh(F,G) = (F ×G)PQEh(F,G) = (F ×G)QV P =

= (QW ×QW )(F ×G)P = (QW ×QW )j∗I = j∗QC(∆1;W )I.

Next we claim that QEh(F,G) defines an A∞[1] algebra structure on Eh(F,G), but this is easy

since pV
(
QEh(F,G)

)2
=
(
pVQEh(F,G)

)
QEh(F,G) = (pVQV P )QEh(F,G) = pV (QV )

2
P = 0 and simi-

larly

pW [−1]

(
QEh(F,G)

)2
=
(
pW [−1]QEh(F,G)

)
QEh(F,G) =

=
(
pW [−1]QC(∆1;W )I

)
QEh(F,G) = pW [−1]

(
QC(∆1;W )

)2
I = 0.

Given an A∞[1] algebra (X,QX) together with a pair of A∞[1] morphisms J : X → V and
K : X → C(∆1;W ) such that (F ×G)J = j∗K : X → C(∂∆1;W ) we have to show that there is
a unique A∞[1] morphism H : X → Eh(F,G) such that J = HP and K = HI. In fact uniqueness
is proved as before and pH = pVH × pW [−1]H : T (X) → Eh(F,G) = V × W [−1] has to be

given by pVH : T (X)
J−→ T (V )

pV−−→ V and pW [−1]H : T (X)
K−→ T (C(∆1;W ))

pW [−1]−−−−→ W [−1].
It is straightforward that PH = J so we have to check IH = K: this follows as before from
pW [−1]IH = pW [−1]H := pW [−1]K and from j∗IH = (F × G)PH = (F × G)J = j∗K. It only
remains to show that H is an A∞[1] morphism - that is , QEh(F,G)H = HQX : on the one hand we
see that pVQEh(F,G)H = pVQV PH = pVQV J = pV JQX = pVHQX , and on the other

pW [−1]QEh(F,G)H = pW [−1]QC(∆1;W )IH = pW [−1]QC(∆1;W )K = pW [−1]KQX = pW [−1]HQX .

In the C∞[1] case it is clear that P : T (Eh(F,G))→ T (V ) and I : T (Eh(F,G))→ T (C(∆1;W ))
constructed as before satisfy the assumption of Lemma 1.2.9, thus are morphisms of the (shuffle
product, deconcatenation coproduct) bialgebra structures.

For p, q ≥ 1 we see that

pVQEh(F,G)(((v1, sw1)⊗ · · · ⊗ (vp, swp))~ ((vp+1, swp+1)⊗ · · · ⊗ (vp+q, swp+q))) =

= pVQV P (((v1, sw1)⊗ · · · ⊗ (vp, swp))~ ((vp+1, swp+1)⊗ · · · ⊗ (vp+q, swp+q))) =

= pVQV ((v1 ⊗ · · · ⊗ vp)~ (vp+1 ⊗ · · · ⊗ vp+q)) = 0

pW [−1]QEh(F,G)(((v1, sw1)⊗ · · · ⊗ (vp, swp))~ ((vp+1, swp+1)⊗ · · · ⊗ (vp+q, swp+q))) =

= pW [−1]QC(∆1;W )I(((v1, sw1)⊗ · · · ⊗ (vp, swp))~ ((vp+1, swp+1)⊗ · · · ⊗ (vp+q, swp+q))) =

= pW [−1]QC(∆1;W )(I((v1, sw1)⊗ · · · ⊗ (vp, swp))~ I((vp+1, swp+1)⊗ · · · ⊗ (vp+q, swp+q))) = 0

This says that the corestriction pQEh(F,G) vanishes on the image of the shuffle product and thus

by Lemma 1.2.9 QEh(F,G) ∈ Harr(Eh(F,G)). A similar argument - this time using the second part

of Lemma 1.2.9 - shows that H : X → Eh(F,G) is a C∞[1] morphism if X is a C∞[1] algebra and
J , K are C∞[1] morphisms.

Finally, the L∞[1] case is treated exactly as the A∞[1] one, simply replacing T (−) by S(−),
Hoch(−) by CE(−) and ⊗ by �.
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Definition 3.3.3. We call the O∞[1] algebra Eh(F,G) as in the previous theorem the homotopy
equalizer of the O∞[1] morphisms F and G. In particular we call the homotopy equalizer of 0 and
F the mapping cocone of F and we denote it by coC(F ) := Eh(0, F ). Given O∞[1] morphisms

F : V →W and G : V ′ →W we call the homotopy equalizer of the morphisms V ×V ′ pV−−→ V
F−→W

and V × V ′ pV ′−−→ V ′
G−→W the homotopy fiber product of V and V ′ along F and G and we denote

it by V ×hW V ′. In particular we call the homotopy fiber product W ×hW V along idW : W → W
and F : V →W the mapping cocylinder of F and we denote it by Cyl(F ).

Definition 3.3.4. We say that a sequence X → Y → Z of O∞[1] algebras and O∞[1] morphisms

is a homotopy fiber sequence if it is weakly equivalent to one of the form coC(F )
pV−−→ V

F−→ W ,
and in this case we say that X is a homotopy fiber of Y → Z.

The following theorem is due to M. Manetti when both F and G are strict morphisms of dg
Lie algebras, we merely observe that the same proof also shows more in general that

Theorem 3.3.5. In the hypotheses of Theorem 3.3.1, if H(F )−H(G) : H(V )→ H(W ) is injective
then the homotopy equalizer Eh(F,G) is homotopy abelian.

Proof. The O∞[1] subalgebra C(∆1, ∂∆1;W ) ⊂ C(∆1;W ) is abelian (not an abelian ideal!) as
follows easily from Corollary 2.2.6: in fact it is (strictly) isomorphic to (W [−1],−q1, 0, . . . , 0, . . .),
where we denote by (W, q1, . . . , qn, . . .) the O∞[1] algebra structure on W . The commutative
diagram

C(∆1, ∂∆1;W ) �
� //

0

��

C(∆1;W )

j∗

��
V

F×G // C(∂∆1;W )

together with the proof of the previous theorem shows that

i : C(∆1, ∂∆1;W ) = W [−1]→ Eh(F,G) = V ×W [−1] : sw → (0, sw)

is a strict O∞[1] morphism. The exact sequence of complexes 0→W [−1]
i−→ Eh(F,G)

pV−−→ V → 0
induces a long exact sequence in cohomology

· · · → Hk(V )
H(f1−g1)−−−−−−→ Hk(W )

H(i)−−−→ Hk+1(Eh(F,G))
H(pV )−−−−→ Hk+1(V )→ · · · ,

in particular the hypothesis H(F )−H(G) = H(f1 − g1) injective implies that H(j) is surjective,
so the thesis follows from Lemma 2.2.13.

In the final part of the chapter, at last, we want to give some explicit formulas in some particular
hypotheses. This requires the explicit computation of the O∞[1] structure on C(∆1;W ).

We denote by {Bi}i≥0 the sequence of Bernoulli numbers, i.e., the sequence of (rational) num-
bers defined by the power series expansion t

et−1 =
∑
i≥0

Bi
i! t

i = 1− 1
2 t+ 1

2!
1
6 t

2 + 1
4! (− 1

30 )t4 + · · · .
For n ≥ 2 the n-th Bernoulli number Bn can be calculated by the recursion

n∑

k=1

(
n

k

)
Bn−k = 0, ∀n ≥ 2, (3.3.1)

it is well known, and in any case easy to prove, that B2n+1 = 0 for all 2n+ 1 ≥ 3. The Bernoulli
polynomials Bn(t) ∈ Q[t], n ≥ 0, are defined by Bn(t) =

∑n
k=0

(
n
k

)
Bn−ktk, in particular Bn(0) =

Bn and for n ≥ 2 also Bn(1) = Bn: since B1(1) = 1
2 = −B1 and B2n+1 = 0 for n ≥ 1 in all cases

we have Bn(1) = (−1)nBn.
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Proposition 3.3.6. Let (A, d, ·) be a dg associative (resp.: commutative) algebra. The induced
A∞[1] (resp.: C∞[1]) structure Q = (q1, . . . , qk, . . .) on C(∆1;A[1]) = s−1A×s−1A×A is explicitly
given by

q1(s−1a, s−1b, c) = (−s−1da,−s−1db,−b+ a+ dc)

q2((s−1a1, s
−1b1, c1)⊗ (s−1a2, s

−1b2, c2)) =

=

(
(−1)|a1|s−1(a1a2), (−1)|b1|s−1(b1b2),

1

2

(
(a1 + b1)c2 + (−1)1+|c1|c1(a2 + b2)

))

qk((s−1a1, s
−1b1, c1)⊗ · · · ⊗ (s−1ak, s

−1bk, ck)) =

=

(
0, 0,

k∑

i=1

(−1)k−i+
∑
j<i |cj | Bk−1

(i− 1)!(k − i)!c1 · · · (ai − bi) · · · ck
)

for k ≥ 3. Let (L, d, [·, ·]) be a dg Lie algebra: the induced L∞[1] structure Q = (q1, . . . , qk, . . .) on
C(∆1;L[1]) is given by

q1(s−1l, s−1m,n) = (−s−1dl,−s−1dm,−m+ l + dn)

q2((s−1l1, s
−1m1, n1)� (s−1l2, s

−1m2, n2)) =

=

(
(−1)|l1|s−1[l1, l2], (−1)|m1|s−1[m1,m2],

1

2

(
[l1 +m1, n2] + (−1)|n1|+1[n1, l2 +m2]

))

qk((s−1l1, s
−1m1, n1)� · · · � (s−1lk, s

−1mk, nk)) =

=

(
0, 0,

Bk−1

(k − 1)!

∑

σ∈Sk
ε(σ)[· · · [lσ(1) −mσ(1), nσ(2)] · · · , nσ(k)]

)

for k ≥ 3.

Proof. The computation is due to Fiorenza and Manetti [31], for the C∞[1] case cf. also [22]. we
identify Ω1 = S(t0, t1, dt0, dt1)/(t0 + t1 − 1, dt0 + dt1) with S(t1, dt1) - by eliminating t0 - and we
denote it (as in [31]) by K [t, dt]. We denote the space K [t, dt]⊗A[1] = (K [t, dt]⊗A)[1], with the
A∞[1] structure induced by extension of scalars by K [t, dt] (recall - cf. Lemma 1.1.6 - that this
commutes with décalage), by (A[t, dt][1],m1,m2, 0, . . . , 0, . . .). Dupont’s contraction is given by:∫

: A[t, dt][1] → C(∆1;A[1]) : s−1ω(t) → (s−1ω(0), s−1ω(1),
∫ 1

0
ω(t)) where

∫ 1

0
: A[t, dt][1] → A is

formal integration in dt, namely
∫ 1

0
: s−1(tn · a) → 0 and

∫ 1

0
: s−1(tndt · a) → 1

n+1a for all n ≥ 1;

the homotopy retraction K is given by K : s−1(tn · a)→ 0 and

K : s−1(tndt · a)→ s−1

((
t

∫ 1

0

snds−
∫ t

0

snds

)
· a
)

= s−1

(
t− tn+1

n+ 1
· a
)

;

finally, we denote by f1 : C(∆1;A[1])→ A[t, dt][1] : (s−1a, s−1b, c)→ s−1 ((1− t) · a+ t · b+ dt · c)
the remaining morphism, in stead of ι as in the previous sections. We consider the A∞[1] case
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first: in the course of the proof we will also prove inductively that the A∞[1] morphism induced
by homotopy transfer F = (f1, . . . , fn, . . .) : C(∆1;A[1])→ A[t, dt][1] is explicitly - where k ≥ 2 -

fk((s−1a1, s
−1b1, c1)⊗ · · · ⊗ (s−1ak, s

−1bk, ck)) =

= s−1

(
Bk(t)−Bk

k!
·
k∑

i=1

(
k − 1

i− 1

)
(−1)

∑
j<i(|cj |+1)c1 · · · (bi − ai) · · · ck

)
.

For k = 2

m2(f1(s−1a1, s
−1b1, c1)⊗ f1(s−1a2, s

−1b2, c2)) =

= m2

(
s−1 ((1− t) · a1 + t · b1 + dt · c1)⊗ s−1 ((1− t) · a2 + t · b2 + dt · c2)

)
=

= (−1)|a1|s−1
(
(1− t)2 · a1a2 + t(1− t) · (a1b2 + b1a2) + t2 · b1b2+

+dt
(

(−1)|a1|(1− t) · a1c2 + (−1)|a1|t · b1c2 + (1− t) · c1a2 + t · c1b2
))

Moreover, ∫ 1

0

(1− s)ds =

∫ 1

0

sds =
1

2

t

∫ 1

0

(1− s)ds−
∫ t

0

(1− s)ds = −
(
t

∫ 1

0

sds−
∫ t

0

sds

)
=
t2 − t

2
=
B2(t)−B2

2!
,

thus q2 =
∫
m2f

⊗2
1 and f2 = Km2f

⊗2
1 are given by (notice that Ks−1 = −s−1K)

q2((s−1a1, s
−1b1, c1)⊗ (s−1a2, s

−1b2, c2)) =

=

(
(−1)|a1|s−1(a1a2), (−1)|b1|s−1(b1b2),

1

2

(
(a1 + b1)c2 + (−1)|c1|+1c1(a2 + b2)

))

f2((s−1a1, s
−1b1, c1)⊗ (s−1a2, s

−1b2, c2)) =

= s−1

(
B2(t)−B2

2!
·
(

(b1 − a1)c2 + (−1)|c1|+1c1(b2 − a2)
))

For k > 2

m2F
2
k ((s−1a1, s

−1b1, c1)⊗ · · · ⊗ (s−1ak, s
−1bk, ck)) =

= m2(f1(s−1a1, s
−1b1, c1)⊗ fk−1((s−1a2, s

−1b2, c2)⊗ · · · ⊗ (s−1ak, s
−1bk, ck)))+

+m2(fk−1((s−1a1, s
−1b1, c1)⊗ · · · ⊗ (s−1ak−1, s

−1bk−1, ck−1))⊗ f1(s−1ak, s
−1bk, ck))+

+ terms in Ker K
⋂

Ker
∫
,

since the inductive hypothesis implies m2(fj(· · · ) ⊗ fk−j(· · · )) ∈ A[t][1] for 1 < j < k − 1 (also
notice that Bk−1(0) − Bk−1 = Bk−1(1) − Bk−1 = 0 for k ≥ 3). Modulo terms in Ker K

⋂
Ker

∫

this is

s−1

(
Bk−1(t)−Bk−1

(k − 1)!
dt ·

k∑

i=1

((
k − 2

i− 1

)
+

(
k − 2

i− 1

))
(−1)

∑
j<i(|cj |+1)c1 · · · (bi − ai) · · · ck

)
=
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= s−1

(
Bk−1(t)−Bk−1

(k − 1)!
dt ·

k∑

i=1

(
k − 1

i− 1

)
(−1)

∑
j<i(|cj |+1)c1 · · · (bi − ai) · · · ck

)
,

always by the inductive hypothesis. The formulas claimed for fk = Km2F
2
k and qk =

∫
m2F

2
k

follow if we show that

∫ 1

0

Bk−1(t)−Bk−1

(k − 1)!
dt = − Bk−1

(k − 1)!
and K

(
Bk−1(t)−Bk−1

(k − 1)!
dt

)
= −Bk(t)−Bk

k!
.

Both identities follow easily from the following (k ≥ 3)

∫ t

0

Bk−1(s)−Bk−1

(k − 1)!
ds =

k−1∑

i=1

∫ t

0

Bk−i−1

i!(k − i− 1)!
sids =

=

k∑

i=2

Bk−i
i!(k − i)!s

i =
Bk(t)− kBk−1t−Bk

k!
.

Finally, notice that the above would give the sign (−1)
∑
j<i(|cj |+1) = (−1)i−1+

∑
j<i |cj | in the

fornula for qk, k ≥ 3: to get the signs right we observe that either k − 1 is even or Bk−1 = 0 (for
k ≥ 3), in any case we always have (−1)i−1Bk−1 = (−1)k−iBk−1.

This concludes the proof in the A∞[1] case, thus also in the C∞[1] case. Finally, the L∞[1] case
can be treated by a completely similar computation, details are left to the reader, in particular the
L∞[1] morphism F = (f1, . . . , fn, . . .) : C(∆1;L[1])→ L[t, dt][1] is given - for k ≥ 2 - by

fk((s−1l1, s
−1m1, n1)� · · · � (s−1lk, s

−1mk, nk)) =

= s−1

(
Bk(t)−Bk

k!

∑

σ∈Sk
ε(σ)[· · · [mσ(1) − lσ(1), nσ(2)] · · · , nσ(k)]

)
.

We refer to [31] for a proof using tree summation formulas.

From this we also obtain explicit formulas for the homotopy equalizer Eh(F,G) when the target
A∞[1] (resp.: C∞[1], L∞[1]) algebra is associated to a dg associative (resp.: commutative, Lie)
algebra via décalage. As an example we describe explicitly the L∞[1] structure on the mapping
cocone coC(F ) = V ×M of an L∞[1] morphism F = (f1, . . . , fn, . . .) : V → s−1M from an L∞[1]
algebra (V, q1, . . . , qn, . . .) to a dg Lie algebra (M,d, [·, ·]) the last one seen as an L∞[1] algebra via
décalage. When F is a strict morphism of dg Lie algebras we recover the L∞[1] structure from
Fiorenza and Manetti [31].

Corollary 3.3.7. In the above set up the L∞[1] structure R = (r1, . . . , rn, . . .) on the mapping
cocone coC(F ) is given explicitly by r1(v,m) = (q1(v), dm− sf1(v)) (recall that as a graded space
coC(F ) = V ×M) and for n ≥ 2 by

rn((v1,m1)� · · · � (vn,mn)) =

=

(
qn(v1 � · · · � vn),−

n∑

k=1

Bn−k
k!(n− k)!

∑

σ∈Sn
ε(σ)[· · · [sfk(vσ(1) � · · · � vσ(k)),mσ(k+1)] · · · ,mσ(n)]

)

where we denote by sfk the composition V �k
fk−→ s−1M

s−→M .
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Proof. As in the proof of Theorem 3.3.1 we write

pR = pVR× pMR : S(coC(F )) = S(V ×M)→ V ×M.

According to the same proof we have to show that pVR is the composition - with R as in the claim
of the proposition and P and I as in the proof of Theorem 3.3.1 (and of course with (0, F ) in stead
of (F,G)) -

S(coC(F ))
P−→ S(V )

pQ−−→ V,

which is clear, and that pMR is the composition

S(coC(F ))
I−→ S(C(∆1;M [1]))

pQC(∆1;M[1])−−−−−−−−→ C(∆1;M [1])
pM−−→M,

which follows readily from the explicit formulas for pQC(∆1;M [1]) we gave in the previous proposi-
tion.
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Chapter 4

Higher derived brackets

This section is devoted to the study of various explicit constructions of higher brackets and L∞
algebra structures. In Section 4.1 we propose a non-abelian version of Voronov’s construction of
higher derived brackets [105, 106], as applications we recover some constructions by Bering [7] and
Getzler [40] and some results by Chuang and Lazarev [23]. As another application, in Section
4.2 we propose a possible generalization to graded pre-Lie algebras of Koszul’s construction of
higher brackets on a graded commutative algebra [64]: we recover from a different perspective
some results on Koszul brackets by M. Markl [79, 80]. There is also an inverse (in a precise sense)
construction of brackets on a graded pre-Lie algebra which we call the Kapranov brackets: in
fact, as a particular example of the latter we recover in Section 4.2.2 Kapranov’s construction of
an L∞ algebra structure on the suspended Dolbeault complex of a Kähler manifold [56]. As a
final application of the results of this chapter, in Section 4.2.1 we give an alternative proof of the
result by Braun and Lazarev [12] that the L∞ algebra associated to a commutative BV∞ algebra
satisfying a degeneration property analog to the one from [96] is homotopy abelian.

4.1 Nonabelian higher derived brackets

Notation 4.1.1. Let M be a graded Lie algebra and L ⊂M a graded Lie subalgebra. We denote
by Der(M) the graded Lie algebra of derivations of M and by Der(M,L) ⊂ Der(M) the graded
Lie subalgebra of derivations D such that D(L) ⊂ L.

Recall the following construction, due to Th. Voronov [105, 106]. Let M be a graded Lie
algebra, together with complementary graded Lie subalgebras L,A ⊂ M such that A is abelian,
that is, we require that as a graded space M is the direct sum M = L⊕A; we denote by P : M → A
the projection with kernel L. In these hypotheses, we have the following easy lemma.

Lemma 4.1.2. For all D ∈ Der(M) the linear maps A⊗i →M : a1⊗· · ·⊗ai → [· · · [Da1, a2] · · · , ai],
i ≥ 2, are graded symmetric.

Proof. Easy induction, as in [106]: this follows since A ⊂ M is supposed to be abelian. For i = 2
we have [Da1, a2] − (−1)|a1||a2|[Da2, a1] = D([a1, a2]) = 0 by the Leibnitz identity. For i ≥ 3 we
have by induction that the given A�i →M is graded symmetric in the first (i− 1)-arguments, so

57
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we have to show graded symmetry in the last two: by Jacobi

[[· · · [Da1, a2] · · · , ai−1], ai]− (−1)|ai−1||ai|[[· · · [Da1, a2] · · · , ai], ai−1] =

= [[· · · [Da1, a2] · · · ], [ai−1, ai]] = 0.

Following [105], in the previous setup we define the hierarchy of higher derived brackets on A
associated to m ∈M by Φ(m)i : A�i → A : a1 � · · · � ai → P [· · · [m, a1] · · · , ai] when i ≥ 1, with
moreover the 0-th bracket Φ(m)0 : A�0 → A : 1→ Pm. Graded symmetry follows from the above
lemma. The main result of [105] says that when m ∈ L, |m| = 1 and [m,m] = 0, the higher derived
brackets Φ(m)i define an L∞[1] algebra structure on A (when m 6∈ L but the remaining conditions
are satisfied, they define what is known as a curved L∞[1] algebra structure on A, cf. [20]).

The construction considered in [106] is similar but slightly different (the difference will become
more apparent in the non-abelian case). With M = L ⊕ A and P : M → A as in the previous
paragraph, this time we associate to all D ∈ Der(M,L) the hierarchy of higher derived brackets
Φ(D)i(a1 � · · · � ai) = P [· · · [Da1, a2] · · · , ai], i ≥ 1, on A, with no 0-th bracket: then again if
|D| = 1, [D,D] = 0, this defines an L∞[1] algebra structure on A. In fact in [106], Theorem 3, it
is proved something more: that the correspondence

Φ : Der(M,L)→ CE(A) : D → (Φ(D)1, . . . ,Φ(D)i, . . .)

is a morphism of graded Lie algebras. Finally, in [106], Section 4, it is established a link with
homotopy theory which is the key to our approach: there it is proved that A[−1] with the induced
L∞ algebra structure is a homotopy fiber (as in Definition 3.3.4) of the inclusion of dg Lie algebras
i : (L,D, [·, ·]) → (M,D, [·, ·]). As we argued in the introduction, this leads the way to a possi-
ble non-abelian generalization of Voronov’s construction (similar results were also obtained very
recently by M. Bordemann with different methods).

We drop the assumption that the graded Lie subalgebra A ⊂ M is abelian. To say it in
other words, we suppose we are given a graded Lie algebra M together with a linear idempotent
P : M →M , that is, P 2 = P , such that both L = Ker P and A = Im P are graded Lie subalgebras
of M . We denote by P⊥ = idM −P and notice that D ∈ Der(M,L), that is D(L) ⊂ L, if and only
if PDP⊥ = 0, that is,

PDP = PD. (4.1.1)

The aim of this section is to generalize the previous constructions of higher derived brackets in
this setup.

Definition 4.1.3. For m ∈ M the higher derived brackets on A associated to m are the graded
symmetric maps Φ(m)i : A�i −→ A, i ≥ 0, defined by

Φ(m)i(a1 � · · · � ai) =
∑

σ∈Si
ε(σ)

i∑

k=0

Bi−k
k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [m, aσ(1)] · · · , aσ(k)]), aσ(k+1)] · · · , aσ(i)]

for i ≥ 1, and Φ(m)0(1) = Pm. We denote by (Φ(m)0, . . . ,Φ(m)i, . . .) = Φ(m) ∈ CE(A) the
corresponding coderivation.

For D ∈ Der(M,L) the higher derived brackets on A associated to D are the graded symmetric
maps Φ(D)i : A�i → A, i ≥ 1, defined by

Φ(D)i(a1�· · ·�ai) =
∑

σ∈Si
ε(σ)

i∑

k=1

Bi−k
k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · , aσ(k)]), aσ(k+1)] · · · , aσ(i)]
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We denote by (Φ(D)1, . . . ,Φ(D)i, . . .) = Φ(D) ∈ CE(A) the corresponding coderivation.

The first few brackets are given by

Φ(D)1(a) = PDa, Φ(m)1(a) = P [m, a]− 1

2
[Pm, a],

Φ(D)2(a1 � a2) =
∑

σ∈S2

ε(σ)

(
1

2
P [Daσ(1), aσ(2)]−

1

2
[PDaσ(1), aσ(2)]

)
,

Φ(m)2(a1�a2) =
∑

σ∈S2

ε(σ)

(
1

2
P [[m, aσ(1)], aσ(2)]−

1

2
[P [m, aσ(1)], aσ(2)] +

1

12
[[Pm, aσ(1)], aσ(2)]

)
.

Remark 4.1.4. If l ∈ L, then the inner derivation [l, ·] is in Der(M,L), and in this case we have
Φ([l, ·]) = Φ(l). However, if [m, ·] ∈ Der(M,L), that is, m is in the normalizer of L in M , but
m 6∈ L, then Φ([m, ·]) 6= Φ(m), as the two differ by the terms involving Pm, so the two constructions
shouldn’t be confused in general.

Proposition 4.1.5. If A ⊂ M is an abelian Lie subalgebra, given m ∈ M , D ∈ Der(M,L),
a1, . . . , ai ∈ A, i ≥ 1, the previous brackets become

Φ(m)i(a1 � · · · � ai) = P [· · · [m, a1] · · · , ai], Φ(D)i(a1 � · · · � ai) = P [· · · [Da1, a2] · · · , ai],

that is, they are the same as the ones from [105, 106].

Proof. If A ⊂M is an abelian Lie subalgebra only the k = i term in the summation for the brackets
remains, thus the thesis follows immediately from Lemma 4.1.2.

Our main results are the following two theorems, whose proof will take most of the section.

Theorem 4.1.6. In the set up of Definition 4.1.3, for every D,Dk ∈ Der(M,L), m,mk ∈ M ,
k = 1, 2, the following identities hold:

[Φ(m1),Φ(m2)] = Φ([m1,m2]), (4.1.2)

[Φ(D1),Φ(D2)] = Φ([D1, D2]), (4.1.3)

[Φ(D),Φ(m)] = Φ(Dm), (4.1.4)

where the bracket in the left hand side is the usual (Nijenhuis-Richardson) bracket of coderivations.

Theorem 4.1.7. If D ∈ Der(M,L), |D| = 1, [D,D] = 0, then the L∞ algebra (A[−1],Φ(D)) is a
homotopy fiber (Definition 3.3.4) of the inclusion of dg Lie algebras i : (L,D, [·, ·])→ (M,D, [·, ·]).
More precisely, the sequence A → s−1L → s−1M of L∞[1] algebras and L∞[1] morphisms, where
the first arrow is given by

A�n → s−1L : a1 � · · · � an → s−1

(
1

n!

∑

σ∈Sn
ε(σ)P⊥[· · · [Daσ(1), aσ(2)] · · · , aσ(n)]

)
, n ≥ 1,

and the second arrow is the inclusion i, is a homotopy fiber sequence.

Theorem 4.1.6 will follow from the classification of L∞[1] extensions (reviewed in Section 1.3.3)
and the following proposition, which is proved via homotopy transfer.
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Proposition 4.1.8. The coderivation pR = (r1, . . . , rn, . . .) ∈ CE(s−1 Der(M,L) × s−1M × A),
given in Taylor coefficients by (cf. Remark 1.3.32)

r1(s−1D, s−1m, a) = (0, 0, Pm),

r2(s−1m1 � s−1m2) = (−1)|m1|s−1[m1,m2],

r2(s−1D1 � s−1D2) = (−1)|D1|s−1[D1, D2],

r2(s−1D ⊗ s−1m) = (−1)|D|s−1Dm,

rn+1(s−1D ⊗ a1 � · · · � an) = Φ(D)n(a1 � · · · � an),

rn+1(s−1m⊗ a1 � · · · � an) = Φ(m)n(a1 � · · · � an),

for n ≥ 1, and R = 0 otherwise, is an L∞[1] structure on s−1 Der(M,L)× s−1M ×A.

Proof. As usual we consider s−1L, s−1M , s−1 Der(M,L) with the induced L∞[1] algebra structure
via décalage. Let Cyl(i) be the mapping cocylinder of the inclusion i : s−1L → s−1M as in
Definition 3.3.3: the underlying space is s−1M × s−1L×M , the L∞[1] structure is the restriction
of the one on C(∆1; s−1M) = s−1M × s−1M ×M , cf. Proposition 3.3.6 for explicit formulas, we
denote it by Q′ = (q′1, . . . , q

′
n, . . .). We need a lemma.

Lemma 4.1.9. The correspondence

Ψ : (Der(M,L), 0, [·, ·])→ (CE(Cyl(i)), [Q′, ·], [·, ·]) : D → (Ψ(D)1, 0, . . . , 0, . . .),

Ψ(D)1(s−1m, s−1l, n) = ((−1)|D|s−1Dm, (−1)|D|s−1Dl,Dn),

is a morphism of dg Lie algebras.

Proof. It is clear that [Ψ(D1),Ψ(D2)] = Ψ([D1, D2]), it remains to show that [q′n,Ψ(D)1] = 0 for
all D ∈ Der(M,L) and n ≥ 1: since the formula for q′n involves nested brackets, this follows easily
from D being a derivation.

We sketch a different approach, anticipating the one we will use to prove Theorem 4.1.6. We
consider the dg Lie algebra

Hi = {(m, l,m(t, dt)) ∈M × L×M [t, dt] s.t. m(0, 0) = m, m(1, 0) = l} ,

It is clear from the definitions and by Lemma 2.2.5 that there is a contraction s−1Hi
// Cyl(i)oo ,

induced by Dupont’s contraction, such that the L∞[1] structure on Cyl(i) is induced from the
L∞[1] structure on s−1Hi via homotopy transfer. The graded Lie algebra Der(M,L) acts on
Hi by derivations in an obvious way, hence we can take the semidirect product Der(M,L) o Hi

and the contraction s−1(Der(M,L) oHi)
// s−1 Der(M,L)× Cyl(i)oo induced in an obvious

way. According to Proposition 1.3.34 Ψ is a morphism of graded Lie algebras if and only if the
corresponding coderivation Q on s−1 Der(M,L)×Cyl(i), determined by Ψ as in Remark 1.3.33, is
an L∞[1] structure: but in fact it is not hard to see, by repeating the computations in the proof
of Proposition 3.3.6, that Q is precisely the L∞[1] structure induced via homotopy transfer along

the contraction s−1(Der(M,L) oHi)
// s−1 Der(M,L)× Cyl(i)oo .

As in the proof of the lemma, we can form the semidirect product (s−1 Der(M,L)oΨ Cyl(i), Q),
cf. Proposition 1.3.34 and Notation 1.3.35: this is an L∞[1] algebra whose underlying graded space
we denote for simplicity by

V := s−1 Der(M,L)×
(
s−1M × s−1L×M

)
.
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We know the L∞[1] structure Q = (q1, . . . , qn, . . .) ∈ CE(V ) explicitly: first of all the linear
bracket is q1(s−1D, (s−1m, s−1l, n)) = (0, (0, 0,m− l)), moreover, the restriction of Q to the L∞[1]
subalgebra Cyl(i) ⊂ V is given as in the claim of Proposition 3.3.61, finally, the only remaining
non-vanishing bracket is q2(s−1D ⊗ (s−1m, s−1l, n)) =

(
0,
(
(−1)|D|s−1Dm, (−1)|D|s−1Dl,Dn

))
,

compare the lemma and Remark 1.3.33.

We consider the following contraction from (V, q1) to (s−1 Der(M,L)× s−1M ×A, r1), with r1

as in the claim of the proposition:

g1 : V −→ s−1 Der(M,L)× s−1M ×A :

:
(
s−1D, (s−1m, s−1l, n)

)
−−−→

(
s−1D, s−1m, Pn

)
(4.1.5)

f1 : s−1 Der(M,L)× s−1M ×A −→ V :

: (s−1D, s−1m, a) −−−→
(
s−1D, (s−1m, s−1P⊥m, , a)

)
(4.1.6)

K : V → V :
(
s−1D, (s−1m, s−1l, n)

)
−−−→

(
0, (0, s−1P⊥n, 0)

)
(4.1.7)

We are going to prove that the transferred L∞[1] structure R on s−1 Der(M,L)× s−1M ×A is as
in the claim of the proposition.

Let F = (f1, . . . , fn, . . .) : s−1 Der(M,L) × s−1M × A → V be the L∞[1] morphism as in
Theorem 2.2.1: we claim that that fn+1 vanishes everywhere for all n ≥ 1 but on mixed terms of
type s−1m⊗ a1� · · · � an and s−1D⊗ a1� · · · � an, and moreover it factors through the inclusion
s−1L → V : s−1l → (0, (0, s−1l, 0)). It is easy to check the claim directly for f2 = Kq2f

�2
1 , so we

suppose inductively to have proven it for f2, . . . , fn. By definition

fn+1(· · · ) =

n+1∑

k=2

1

k!

∑

i1+···+ik=n+1

∑

σ∈S(i1,...,ik)

ε(σ)Kqk(fi1(· · · )� · · · � fik(· · · ))

Since K factors through the inclusion s−1L→ V , so does fn+1. Since Kqk+1 vanishes everywhere
but on terms of type s−1m ⊗m1 � · · · �mk, s−1l ⊗m1 � · · · �mk and s−1D ⊗m1 � · · · �mk

(notice that in the latter case k = 1), the above formula reduces to

fn+1(· · · ) =

n∑

k=1

1

k!

∑

σ∈S(n−k+1,1,...,1)

ε(σ)Kqk+1(fn−k+1(· · · )� f1(· · · )� · · · � f1(· · · ))

and the claim follows easily from this using the inductive hypothesis.

A similar reasoning shows that for n ≥ 2 the (n+1)-th Taylor coefficient rn+1 of the transferred
L∞[1] structure

rn+1(· · · ) =

n+1∑

k=2

1

k!

∑

i1+···+ik=n+1

∑

σ∈S(i1,...,ik)

ε(σ)g1qk(fi1(· · · )� · · · � fik(· · · ))

reduces to

rn+1(· · · ) =

n∑

k=1

1

k!

∑

σ∈S(n−k+1,1,...,1)

ε(σ)g1qk+1(fn−k+1(· · · )� f1(· · · )� · · · � f1(· · · ))

1Since i is an inclusion, we can identify Cyl(i) with an L∞[1] subalgebra

Cyl(i) = s−1M × s−1L×M ⊂ s−1M × s−1M ×M = C(∆1;M).
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and vanish everywhere but on terms of type s−1m⊗ a1 � · · · � an and s−1D ⊗ a1 � · · · � an.

Remark 4.1.10. For future reference (cf. Remark 4.1.14) we remark that up to this point we never
used the hypothesis that A ⊂ M is a graded Lie subalgebra, nor we used the explicit formulas in
Definition 4.1.3. The hypothesis that A is [·, ·]-closed will be essential in the following computation.

We show that fn+1 is explicitly given, for n ≥ 1, by

fn+1(s−1D ⊗ a1 � · · · � an) =

=

(
0,

(
0, s−1 1

n!

∑

σ∈Sn
ε(σ)P⊥[· · · [Daσ(1), aσ(2)] · · · , aσ(n)], 0

))
, (4.1.8)

fn+1(s−1m⊗ a1 � · · · � an) =

=

(
0,

(
0, s−1 1

n!

∑

σ∈Sn
ε(σ)P⊥[· · · [m, aσ(1)] · · · , aσ(n)], 0

))
, (4.1.9)

and fn+1 = 0 otherwise.

We leave to the reader to check the case n = 1, using f2 = Kq2f
�2
1 and recalling (4.1.1). Next

for all n ≥ 2 we have to prove fn+1 =
∑n
j=1Kqj+1F

j+1
n+1. To simplify the computation we notice

that we are only interested in keeping track of pMqj+1F
j+1
n+1, where we denote by pM the projection

V →M : in fact Kqj+1F
j+1
n+1 =

(
0,
(

0, s−1P⊥(pMqj+1F
j+1
n+1), 0

))
.

The considerations preceding Remark 4.1.10 imply that for 1 ≤ j ≤ n− 1

pMqj+1F
j+1
n+1(s−1D ⊗ a1 � · · · � an) =

=
∑

σ∈S(n−j,j)
ε(σ)pMqj+1

(
fn−j+1(s−1D ⊗ aσ(1) � · · · � aσ(n−j))⊗ aσ(n−j+1) � · · · � aσ(n)

)
=

= − Bj
j!(n− j)!

∑

σ∈Sn
ε(σ)

j︷︸︸︷
[· · · [P⊥([· · · [Daσ(1), aσ(2)] · · · ]), aσ(n−j+1)] · · · , aσ(n)]

where in the first identity we used graded symmetry of qj+1 and fn−j+1, and in the second we
substituted the explicit formulas we knew from Proposition 3.3.6 and the inductive hypothesis. In
the same way, for 1 ≤ j ≤ n− 1

pMqj+1F
j+1
n+1(s−1m⊗ a1 � · · · � an) =

= − Bj
j!(n− j)!

∑

σ∈Sn
ε(σ)

j︷︸︸︷
[· · · [P⊥([· · · [m, aσ(1)] · · · ]), aσ(n−j+1)] · · · , aσ(n)]

The remaining terms to consider are

pMqn+1F
n+1
n+1 (s−1D ⊗ a1 � · · · � an) = 0 for n ≥ 2,

and

pMqn+1F
n+1
n+1 (s−1m⊗ a1 � · · · � an) = pMqn+1

((
s−1m, s−1P⊥m, 0

)
⊗ a1 � · · · � an

)
=
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=
Bn
n!

∑

σ∈Sn
ε(σ)[· · · [m− P⊥m, aσ(1)] · · · , aσ(n)] =

Bn
n!

∑

σ∈Sn
ε(σ)[· · · [Pm, aσ(1)] · · · , aσ(n)]

Summing over j we see that

n∑

j=1

pMqj+1F
j+1
n+1(s−1D⊗a1�· · ·�an) =


−

n−1∑

j=1

Bj
j!(n− j)!


 ∑

σ∈Sn
ε(σ)[· · · [Daσ(1), aσ(2)] · · · , aσ(n)]+

+

n−1∑

j=1

Bj
j!(n− j)!

∑

σ∈Sn
ε(σ)

j︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · ]), aσ(n−j+1)] · · · , aσ(n)]

Finally, by the identity (3.3.1) on Bernoulli numbers and with a change of variable k = n − j we
obtain

n∑

j=1

pMqj+1F
j+1
n+1(s−1D ⊗ a1 � · · · � an) =

1

n!

∑

σ∈Sn
ε(σ)[· · · [Daσ(1), aσ(2)] · · · , aσ(n)]+

+

n−1∑

k=1

Bn−k
k!(n− k)!

∑

σ∈Sn
ε(σ)

n−k︷︸︸︷
[· · · [P ([· · · [Daσ(1), aσ(2)] · · · ]), aσ(k+1)] · · · , aσ(n)] (4.1.10)

In a similar way

n∑

j=1

pMqj+1F
j+1
n+1(s−1m⊗ a1 � · · · � an) =

1

n!

∑

σ∈Si
ε(σ)[· · · [m, aσ(1)] · · · , aσ(n)]+

+

n−1∑

k=0

Bn−k
k!(n− k)!

∑

σ∈Sn
ε(σ)

n−k︷︸︸︷
[· · · [P ([· · · [m, aσ(1)] · · · ]), aσ(k+1)] · · · , aσ(i)] (4.1.11)

Notice that in both the identities (4.1.10) and (4.1.11) the bottom line lies in A, and this is the
only (essential) passage where it is used the hypothesis that A is [·, ·]-closed. Applying K, it is
now clear that fn+1 =

∑n
j=1Kqj+1F

j+1
n+1 is given as in Equations (4.1.8) and (4.1.9).

It remains to prove prove that rn+1 is as in the claim of the proposition: first of all, we leave
to the reader to check directly that so is r2 = g1q2f

�2
1 . For n ≥ 2 we already observed that

rn+1 =

n∑

j=1

g1qj+1F
j+1
n+1 =

n∑

j=1

(
ps−1 Der(M,L)qj+1F

j+1
n+1, ps−1Mqj+1F

j+1
n+1, P

(
pMqj+1F

j+1
n+1

))

vanishes everywhere but on mixed terms of type s−1m⊗ a1 � · · · � an and s−1D ⊗ a1 � · · · � an.
Comparing equations (4.1.10) and (4.1.11) with the definition of the brackets in 4.1.3, the thesis
follows if we show that ps−1 Der(M,L)qj+1F

j+1
n+1 = 0 = ps−1Mqj+1F

j+1
n+1 for all n ≥ 2 and 1 ≤ j ≤ n.

We consider the second identity, the first one is treated similarly: ps−1Mqj+1F
j+1
n+1 is zero for j > 1

since in this case ps−1Mqj+1 = 0, while in the j = 1 case

ps−1Mq2F
2
n+1 = q2p

�2
s−1MF

2
n+1 =

1

2

n∑

i=1

∑

σ∈S(i,n−i+1)

ε(σ)q2(ps−1Mfi(· · · )� ps−1Mfn−i+1(· · · )) = 0

since ps−1Mfk = 0 whenever k ≥ 2.



64 CHAPTER 4. HIGHER DERIVED BRACKETS

Proof. (of Theorem 4.1.6) We have to prove that

Φ : Der(M,L) oM → CE(A) : (D,m)→ Φ(D) + Φ(m)

is a morphism of graded Lie algebras. In the previous proposition we constructed an L∞[1] algebra
fitting into an L∞[1] extension 0→ A→ s−1 Der(M,L)×s−1M×A→ s−1(Der(M,L)oM)→ 0 of
fibre (A, 0) and base Der(M,L)oM , seen as an L∞[1] algebra via décalage: this is classified by an
L∞ morphism Der(M,L)oM → CE(A) as in Proposition 1.3.34, and by comparing with Remark
1.3.33 we see immediately that this L∞ morphism is (Φ, 0, . . . , 0, . . .), thus Φ is a morphism of
graded Lie algebras.

Remark 4.1.11. Theorem 4.1.6 is interesting even in the case L = 0, where it says that given a
graded Lie algebra (M, [·, ·]) the correspondence Φ : M → CE(M) : m→ (Φ(m)0, . . . ,Φ(m)n, . . .)

Φ(m)0(1) = m, Φ(m)n(m1�· · ·�mn) =
(−1)nBn

n!

∑

σ∈Sn
ε(σ)[· · · [m,mσ(1)] · · · ,mσ(n)] for n ≥ 1,

is a morphism of graded Lie algebras: this seems to clarify some computations from [7], Section 4.
On the other hand, in this case the higher derived brackets associated to derivations vanish after
the linear one, that is, we have Φ : Der(M)→ CE(M) : D → (D, 0 . . . , 0, . . .).

We prove Theorem 4.1.7 as a particular case of a more general result. Consider the L∞[1]
algebra s−1 Der(M/L) oΨ Cyl(i) = (V,Q) as in the proof of Proposition 4.1.8: then in the same
proof we constructed an L∞[1] morphism

F : (s−1 Der(M,L)× s−1M ×A,R)→ (V,Q),

in fact a weak equivalence, cf. Equations (4.1.8) and (4.1.9). We notice that if D ∈ Der(M,L) sat-
isfies |D| = 1, [D,D] = 0, then (s−1D, 0, 0) ∈ s−1 Der(M,L)× s−1M ×A satisfies the assumptions
of Remark 1.3.20, thus we can twist everything by D to get a new L∞[1] morphism

FD : (s−1 Der(M,L)× s−1M ×A,RD)→ (V,QD).

Let j : (N,D, [·, ·])→ (M,D, [·, ·]) be the inclusion of a dg Lie subalgebra, then RD restricts to an
L∞[1] algebra structure on s−1N ×A, which we continue to denote by RD = (rD,1, . . . , rD,n, . . .),
explicitly given by

rD,1(s−1n, a) =
(
−s−1Dn,P (Da+ n)

)
, rD,2(s−1n1 � s−1n2) = (−1)|n1|s−1[n1, n2], (4.1.12)

rD,i+1(s−1n⊗ a1 � · · · � ai) = Φ(n)i(a1 � · · · � a1), (4.1.13)

rD,i(a1 � · · · � ai) = Φ(D)i(a1 � · · · � ai), (4.1.14)

and RD = 0 otherwise. Similarly, QD restricts to an L∞[1] algebra structure on the subspace
s−1N × s−1L×M ⊂ V , which we continue to denote by QD, which is exactly the homotopy fiber
product (Definition 3.3.3) s−1N ×hs−1M s−1L along the inclusions j : (N,D, [·, ·]) → (M,D, [·, ·])
and i : (L,D, [·, ·]) → (M,D, [·, ·]) (as usual, via décalage). The L∞[1] morphism FD restricts to
an L∞[1] morphism FD : (s−1N ×A,RD)→ (s−1N ×hs−1M s−1L,QD), explicilty

fD,1(s−1n, a) =
(
s−1n, s−1P⊥(n+Da), a

)
, (4.1.15)

fD,i+1(s−1n⊗ a1 � · · · � ai) =

(
0, s−1 1

i!

∑

σ∈Si
ε(σ)P⊥[· · · [n, aσ(1)] · · · , aσ(i)], 0

)
, (4.1.16)
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fD,i(a1 � · · · � ai) =

(
0, s−1 1

i!

∑

σ∈Si
ε(σ)P⊥[· · · [Daσ(1), aσ(2)] · · · , aσ(i)], 0

)
, (4.1.17)

and FD = 0 otherwise. Finally, we notice that FD is a weak equivalence of L∞[1] algebras: in
fact the restrictions g1 : s−1N ×hs−1M s−1L→ s−1N ×A : (s−1n, s−1l,m)→ (s−1n, Pm) of (4.1.5)
and K : s−1N ×hs−1M s−1L → s−1N ×hs−1M s−1L : (s−1n, s−1l,m) → (0, s−1P⊥m, 0) of (4.1.7)
are respectively a dg left inverse to fD,1 and a homotopy between fD,1g1 and ids−1N×h

s−1M
s−1L

(recall (4.1.1)). This proves

Proposition 4.1.12. The L∞[1] algebra (s−1N × A, rD,1, . . . , rD,n, . . .) as in (4.1.12)-(4.1.14) is
weakly equivalent to the homotopy fiber product (s−1N ×hs−1M s−1L,QD).

Remark 4.1.13. In fact, with the previous notations, it can be proved that RD is the L∞[1] structure
induced from QD via homotopy transfer along the contraction fD,1, g1, K: this can be done by
adapting the computations in Proposition 4.1.8.

Proof. (of Theorem 4.1.7) The first claim is the particular case of the previous proposition when
N = 0. The second claim follows by the commutative diagram of L∞[1] algebras and L∞[1]
morphisms

A //

FD

��

s−1L
i // s−1M

coC(i) // s−1L
i // s−1M

where the top sequence is as in the claim of the theorem and FD is as in (4.1.15)-(4.1.17).

Remark 4.1.14. In this remark we consider what happens when we further remove the assumption
that A ⊂ M is a graded Lie subalgebra and we just suppose that A is a complement to L in M .
We sketch a proof that in this case there is still a correspondence Φ : Der(M,L) oM → CE(A)
such that both Theorem 4.1.6 and Theorem 4.1.7 hold, but explicit formulas for Φ will have to
be more involved than those in Definition 4.1.3. To construct Φ it is sufficient to construct the
corresponding L∞[1] extension and this can be done using homotopy transfer, following the proof
of Proposition 4.1.8 step by step up to Remark 4.1.10. There is still an induced L∞[1] structure R
on s−1 Der(M,L)×s−1M ×A and again this fits into an L∞ extension of base Der(M,L)oM and
fiber (A[−1], 0): finally, the classifying L∞ morphism Der(M,L) oM → CE(A) is again a strict
morphism, thus a morphism of graded Lie algebras. To see that explicit formulas for Φ will have
to be more involved than those in Definition 4.1.3, we notice that if A is not [·, ·]-closed then there
is no guarantee that it will be closed with respect to the brackets in 4.1.3: alternatively one could
try to compute the first brackets directly via homotopy transfer. Proposition 4.1.12 and Theorem
4.1.7 can be proved as above, except that the various explicit formulas do not longer hold.

As a corollary to Theorem 4.1.7 and Theorem 3.3.5 we have the following

Corollary 4.1.15. In the hypotheses of Theorem 4.1.7, if H(i) : H(L,D)→ H(M,D) is injective
(equivalently, if H(P ) : H(M,D) → H(A,PD) is surjective) then the L∞[1] algebra (A,Φ(D)) is
homotopy abelian.

We will need two lemmas: the first Lemma gives a certain functoriality property of higher
derived brackets (the problem in general is that CE(−) is not a functor), the second a certain
invariance property (this should be confronted with the results of [20]).
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Lemma 4.1.16. Given Mk = Lk⊕Ak, k = 1, 2, as in the assumptions of Definition 4.1.3 together
with a commutative diagram

L1
//

��

M1

��

A1

∼=
��

oo

L2
// M2 A2

oo

of morphisms of graded Lie algebras such that the right vertical arrow is an isomorphism (thus it
induces an isomorphism CE(A1)→ CE(A2) of graded Lie algebras), the diagram

M1

��

Φ // CE(A1)

��
M2

Φ // CE(A2)

is also commutative, where Φ : Mk → CE(Ak) is given by higher derived brackets.

Proof. This follows immediately from the definitions.

Lemma 4.1.17. Given M = L ⊕ Ak, k = 1, 2, as in the assumptions of Definition 4.1.3, we
denote by Φk : Der(M,L) → CE(Ak) the respective constructions of higher derived brackets: if D
is as in the hypotheses of Theorem 4.1.7 then the L∞[1] algebras (A1,Φ1(D)) and (A2,Φ2(D)) are
isomorphic (in the category L∞[1]).

Proof. Let (coC(i), QD) be the mapping cocone of the inclusion i : s−1L → s−1M , according
to Remark 4.1.13 homotopy transfer induces L∞[1] morphisms (A1,Φ1(D)) → (coC(i), QD) and
(coC(i), QD) → (A2,Φ2(D)): the composite L∞[1] morphism (A1,Φ1(D)) → (A2,Φ2(D)) has
linear Taylor coefficient the dg isomorphism (A2, P1D) → (A2, P2D) : a → P2a, where we denote
by Pk : M → Ak the projection with kernel L, hence it is an L∞[1] isomorphism.

We close with two examples, other examples and applications will be given in the following
sections.

Example 4.1.18. As in Remark 1.3.1 we denote by CE0(V ) ⊂ CE(V ) the abelian Lie subalgebra
spanned by constant coderivations, then CE(V ) = CE(V ) ⊕ CE0(V ) satisfies the hypotheses of
Voronov’s construction [105] of higher derived brackets. Notice that CE0(V ) is isomorphic to
V via σ : V → CE0(V ) : v → σv (cf. Remark 1.3.1), thus there is induced a morphism of

graded Lie algebras CE(V )
Φ−→ CE(CE0(V ))

∼=−→ CE(V ): we claim that this is just the identity.
We denote by P : CE(V ) → CE0(V ) the projection with kernel CE(V ): the claim follows since
Equation (1.3.3) implies immediately that for all Q = (q0, . . . , qn, . . .) ∈ CE(V ) and n ≥ 1 we have
P [· · · [Q, σv1

] · · · , σvn ] = σqn(v1�···�vn). In particular, if Q ∈ CE(V ) is an L∞[1] structure on V
then (V,Q) = (V,Φ(Q)) = (V,Φ([Q, ·])).
Remark 4.1.19. As noticed in [37], in the similar situation Hoch(V ) = Hoch(V ) ⊕ Hoch0(V )

considered in Remark 1.2.1, the induced morphism Hoch(V )
Φ−→ CE(Hoch0(V ))

∼=−→ CE(V ) is
symmetrization sym : Hoch(V ) → CE(V ), in fact given Q = (q0, . . . , qn, . . .) ∈ Hoch(V ) we have
(with the notations of Remark 1.2.1)

P [· · · [Q, τv1
] · · · , τvn ] = τqn(v1~···~vn) = τqn(sym(v1�···�vn)) = τsym(qn)(v1�···�vn).
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As an application of Theorem 4.1.7 we recover the following result of Chuang and Lazarev [23].

Theorem 4.1.20. Every L∞[1] algebra (V,Q) is a homotopy fiber (Definition 3.3.4), more pre-
cisely, (V,Q) is weakly equivalent to the mapping cocone of the inclusion of dg Lie algebras

i : (CE(V ), [Q, ·], [·, ·]) → (CE(V ), [Q, ·], [·, ·]) and V
Ad−−→ s−1CE(V )

i−→ s−1 CE(V ) is a homotopy
fiber sequence, where the L∞[1] morphism

Ad = (Ad1, . . . ,Adn, . . .) : V → s−1CE(V ),

is explicitly given by sAdn(v1�· · ·�vn)k(vn+1�· · ·�vn+k) = qn+k(v1�· · ·�vn+k) for all n, k ≥ 1

(we denote by sAdn the composition V �n
Adn−−−→ s−1CE(V )

s−→ CE(V )).

Remark 4.1.21. The L∞[1] morphism Ad : V → s−1CE(V ) in an L∞[1] generalization of the
adjoint morphism ad : L→ End(L) : l→ [l, ·] of a graded Lie algebra L.

Finally, as a consequence of Corollary 4.1.15 we obtain the following necessary and sufficient
condition for an L∞[1] algebra (V,Q) to be homotopy abelian. This is more nicely stated in the
language of formal pointed dg manifolds by Kontsevich and Soibelman [62]. Recall that a formal
pointed dg manifold is a dg coalgebra which is cofree as a coalgebra, thus we may think of an L∞
algebra (V,Q) as a formal pointed dg manifold with a choice of coordinates. We may also think
of the graded Lie algebra CE(V ) as the Lie algebra of vector fields on the underlying dg manifold
and of the dg morphism (CE(V ), [Q, ·])→ (V, q1) : Q→ q0(1) as evaluation of vector fields on the
tangent complex at the marked point. When the latter admits a dg right inverse (this does not
depend on the choice of coordinates) we say that the formal pointed dg manifold has the splitting
property : according to Corollary 4.1.15 and the proof of the following proposition this is equivalent
to say that the formal pointed dg manifold admits an abelian L∞[1] system of coordinates.

Proposition 4.1.22. An L∞[1] algebra (V,Q) is homotopy abelian if and only if the dg morphism
(CE(V ), [Q, ·])→ (V, q1) : Q→ q0(1) admits a dg right inverse.

Proof. The if part follows from Corollary 4.1.15. For the only if part, recall [62] that every L∞[1]
algebra is isomorphic to the direct product of a minimal model and an abelian L∞[1] algebra. If
(V,Q) is homotopy abelian, then the L∞[1] structure on the minimal model is trivial, thus there is
an L∞[1] isomorphisms between (V,Q) and an abelian L∞[1] algebra: since we can always compose
such an L∞[1] isomorphism with the inverse of its linear part, there is an L∞[1] isomorphism
F : (V, q1, q2, . . . , qn, . . .) → (V, q1, 0, . . . , 0, . . .) with linear part the identity. We extend F to an
automorphism of graded coalgebras F : S(V ) → S(V ) by putting F (1) = 1. The required right
inverse is given by V → CE(V ) : v → F−1σvF , where σv ∈ CE(V ) is the constant derivation
as in Remark 1.3.1. This is a right inverse to (CE(V ), [Q, ·]) → (V, q1) : Q → q0(1) = Q(1),
in fact F−1σvF (1) = F−1σv(1) = F−1(v) = v, since F−1 has linear part the identity. This
is a dg morphism, in fact CE(V ) → CE(V ) : Q → F−1QF is clearly bracket preserving, thus
[Q,F−1σvF ] = [F−1q1F, F

−1σvF ] = F−1[q1, σv]F = F−1σq1(v)F .

Example 4.1.23. Given a dg Lie algebra (L,D, [·, ·]), we denote by L≥0 = ⊕i≥0L
i the non

negatively graded part and by L<0 = ⊕i<0L
i the negatively graded part of L respectively, these

are graded Lie sublgebras. Clearly L = L≥0 ⊕L<0 and D ∈ Der(L,L≥0), thus we are in the setup
of Theorem 4.1.7 and there is an induced L∞[1] algebra structure Φ(D) on L<0 by higher derived
bracket. These are explicitly given, for i ≥ 2, by

Φ(D)i(l1 � · · · � li) =
∑

σ∈Si
ε(σ)

i∑

k=1

Bi−k
k!(i− k)!

i−k︷︸︸︷
[· · · [P ([· · · [Dlσ(1), lσ(2)] · · · ]), lσ(k+1)] · · · , lσ(i)] =
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=
∑

σ∈Si
ε(σ)

(
Bi−1

(i− 1)!
[· · · [PDlσ(1), lσ(2)] · · · , lσ(i)] +

(
i∑

k=2

Bi−k
k!(i− k)!

)
[· · · [Dlσ(1), lσ(2)] · · · , lσ(i)]

)
=

= − Bi−1

(i− 1)!

∑

σ∈Si
ε(σ)[· · · [P⊥Dlσ(1), lσ(2)] · · · , lσ(i)]

where in the second identity we used the fact that for k > 1 the P becomes irrelevant, since it
applies to an element already in L<0, and in the third one we used the identity (3.3.1). The linear
bracket is Φ(D)1 = PD, which is 0 on L−1 and D on L<−1, moreover, P⊥D acts on L<0 as D
on L−1 and 0 elsewhere: we see that these are essentially the same brackets as those introduced
by Getzler in [40]. When L is concentrated in degrees ≥ −1, then we say that L is a quantum
type dg Lie algebra, L<0 = L−1 ⊂ L is an abelian Lie subalgebra and the brackets reduce to
Φ(D)2(l1 � l2) = [Dl1, l2] for l1, l2 ∈ L−1 and Φ(D)n = 0 for n 6= 2: thus we see that the previous
construction generalizes the well known construction [38, 110, 105] of a Lie algebra structure on
the degree minus one part of a quantum type dg Lie algebra. Finally, by Theorem 4.1.7 we see
that the strict L∞[1] morphism L<0 → s−1L≥0 : l→ s−1P⊥Dl fits into a homotopy fiber sequence
L<0 → s−1L≥0 → s−1L of L∞[1] algebras.

4.2 Koszul brackets and Kapranov brackets

In [64] Koszul defined for any graded commutative algebra (A, ·) with a unit 1A ∈ A a morphism of
graded Lie algebras K1A : End(A) → CE(A) : f → K1A(f) = (K1A(f)0, . . . ,K1A(f)n, . . .), where
it is usual to call the Taylor coefficients K1A(f)n : A�n → A the Koszul brackets on A associated
to f . These are defined by K1A(f)0(1) = f(1A), K1A(f)1(x) = f(x)− f(1A)x and then for n ≥ 2
recursively by

K1A(f)n(x1 � · · · � xn) = K1A(f)n−1(x1 � · · · � xn−2 � xn−1xn)−
−K1A(f)n−1(x1 � · · · � xn−2 � xn−1)xn − (−1)|xn−1||xn|K1A(f)n−1(x1 � · · · � xn−1 � xn)xn−1.

We are going to generalize the construction of Koszul brackets in several directions: as a first step
we recall how they arise as higher derived brackets. Let (A, ·) be a graded commutative algebra
(without need to assume the existence of a unit) and define the graded Lie algebra Aff(A) as the
semidirect product Aff(A) := End(A) o A, where we consider A with the abelian Lie structure:
explicitly, given (f, x), (g, y) ∈ Aff(A) their bracket is [(f, x), (g, y)] =

(
[f, g], f(y)− (−1)|g||x|g(x)

)
.

We denote by ∇− : A → End(A) : x → {∇x : y → xy} the left adjoint morphism and we
denote by A∇ ⊂ Aff(A) the abelian Lie subalgebra spanned by elements of the form (∇x, x), then
Aff(A) = End(A)⊕A∇ and we are in the setup of Voronov’s construction of higher derived brackets,
thus it is defined a morphism of graded Lie algebras Φ : End(A)→ CE(A∇) as in Theorem 4.1.6,

and by further composing this with the isomorphism CE(A∇)
∼=−→ CE(A) it is defined a morphism

of graded Lie algebras K : End(A) → CE(A) : f → (K(f)1, . . . ,K(f)n, . . .). We want to compare
this construction with the one by Koszul when a unit 1A ∈ A exists: we claim that with the
previous definitions

K(f)n(x1 � · · · � xn) = K1A(f)n(x1 � · · · � xn) + (−1)nf(1A)x1 · · ·xn. (4.2.1)

We introduce the graded symmetric maps

K(f)1
n : A�n → End(A) : x1 � · · · � xn → [· · · [f,∇x1

] · · · ,∇xn ],
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where graded symmetry follows since the ∇x span an abelian Lie subalgebra of End(A): in this
way we have [· · · [(f, 0), (∇x1

, x1)] · · · , (∇xn , xn)] = (K(f)1
n(x1 � · · · � xn),K(f)n(x1 � · · · � xn)),

and thus

(
K(f)1

n(x1 � · · · � xn),K(f)n(x1 � · · · � xn)
)

=

=
[(
K(f)1

n−1(x1 � · · · � xn−1),K(f)n−1(x1 � · · · � xn−1)
)
, (∇xn , xn)

]
,

which implies the equations K1
n(x1 � · · · � xn) =

[
K1
n−1(x1 � · · · � xn−1),∇xn

]
and

K(f)n(x1 � · · · � xn) = K(f)1
n−1(x1 � · · · � xn−1)(xn)−K(f)n−1(x1 � · · · � xn−1)xn, (4.2.2)

that is, K(f)n(x1�· · ·�xn−1�−) = K(f)1
n−1(x1�· · ·�xn−1)−∇K(f)n−1(x1�···�xn−1). From this

we deduce that the K(f)n satisfy the same recursive relation as the brackets K1A(f)n, in fact

K(f)n(x1 � · · · � xn) = [K(f)1
n−2(x1 � · · · � xn−2),∇xn−1

](xn)−K(f)n−1(x1 � · · · � xn−1)xn =

= [K(f)n−1(x1�· · ·�xn−2�−)−∇K(f)n−2(x1�···�xn−2),∇xn−1
](xn)−K(f)n−1(x1�· · ·�xn−1)xn =

= [K(f)n−1(x1 � · · · � xn−2 �−),∇xn−1
](xn)−K(f)n−1(x1 � · · · � xn−1)xn =

= K(f)n−1(x1 � · · · � xn−2 � xn−1xn)−K(f)n−1(x1 � · · · � xn−2 � xn−1)xn−
− (−1)|xn−1||xn|K(f)n−1(x1 � · · · � xn−1 � xn)xn−1.

But then both the left and the right hand side of Equation (4.2.1) satisfy the same recursive
relation, so the claim follows inductively by the case n = 1.

Next we observe that the previous construction makes sense for left pre-Lie algebras.

Definition 4.2.1. A bilinear product � : V ⊗2 → V on a graded space V is Lie admissible if the
associated commutator [x, y] := x � y − (−1)|x||y|y � x satisfies the Jacobi identity.

A graded left pre-Lie algebra (L, .) is a graded space L with a bilinear product . : L⊗2 → L,
such that the associator, defined by

A : L⊗3 → L : x⊗ y ⊗ z → A(x, y, z) = (x . y) . z − x . (y . z),

is graded symmetric in the first two arguments, that is, A(x, y, z) = (−1)|x||y|A(y, x, z), ∀x, y, z.
In terms of the left adjoint morphism ∇ : L→ End(L) : x→ {∇x : y → x . y} and the associated
commutator [·, ·] := L∧2 → L the left pre-Lie identity becomes

[∇x,∇y] = ∇[x,y] ∀x, y ∈ L, (4.2.3)

In particular . is Lie admissible (cf. the proof of the next proposition). A graded right pre-Lie
algebra (L, /) is a graded space L together with a bilinear product / : L⊗2 → L such that the
associator is graded symmetric in the last two arguments: we remark that this is true if and only if
x.y := −(−1)|x||y|y/x ia a left pre-Lie product on L, in particular since the associated commutator
of . and / is the same right pre-Lie products are also Lie admissible.

Proposition 4.2.2. The set of left pre-Lie products on L is in bijective correspondence with the
set of graded Lie subalgebras L∇ ⊂ Aff(L) such that Aff(L) = End(L)⊕ L∇.

Proof. Given a graded Lie subalgebra L∇ ⊂ Aff(L) as in the claim of the proposition, the com-
position of the inclusion L∇ ⊂ Aff(L) and the projection pL : Aff(L) → L : (f, x) → x is an
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isomorphism of graded spaces L∇ → L: let σ∇ : L→ L∇ be the inverse, thus σ∇(x) = (∇x, x) for
some ∇x ∈ End(L) depending linearly on x, and since L∇ ⊂ Aff(A) is a Lie subalgebra

[σ∇(x), σ∇(y)] = [(∇x, x), (∇y, y)] = ([∇x,∇y],∇x(y)− (−1)|x||y|∇y(x)) =

= σ∇pL([σ∇(x), σ∇(y)]) = (∇∇x(y)−(−1)|x||y|∇y(x),∇x(y)− (−1)|x||y|∇y(x)),

that is, the product x.y := ∇x(y) satisfies the left pre-Lie identity (4.2.3). Conversely, if . is a left
pre-Lie product then the graded morphism σ∇ : L→ Aff(L) : x→ (∇x, x) sends L isomorphically
onto a graded Lie subalgebra L∇ ⊂ Aff(L) satisfying the assumptions of the proposition.

By the proposition given a left pre-Lie product . on L we are in the setup of Theorem 4.1.6,
thus by (nonabelian) higher derived brackets it is defined a morphism K : End(L) → CE(L) of
graded Lie algebras, moreover, by the previous discussion when the left pre-Lie product is an
associative and graded commutative product this is essentially the usual construction of Koszul
brackets. In fact this can be generalized further: we have the embedding of graded Lie algebras
Aff(L) ↪→ CE(L) : (f, x) → (σx, f, 0, . . . , 0, . . .), if L∇ satisfies the assumptions of the proposition
and we denote by the same symbol its image in CE(L) now we have CE(L) = CE(L) ⊕ L∇

still as in the assumptions of Theorem 4.1.6, thus by higher derived brackets an endomorphism
K : CE(L) → CE(L) sending the graded Lie subalgebra CE(L) ⊂ CE(L) into itself (notice that
when the product . is trivial we recover Example 4.1.18, thus in this case K is the identity). Lemma
4.1.16 implies that the morphism K restricts to the previously defined one on End(L) ⊂ CE(L).

Definition 4.2.3. Given a graded Left pre-Lie algebra (L, .), we call the morphism of graded Lie
algebras K : CE(L)→ CE(L) : Q→ K(Q) = (K(Q)0, . . . ,K(Q)n, . . .) as in the previous discussion
the Koszul transform associated to the pre-Lie product ., and we call the Taylor coefficients K(Q)n
the Koszul brackets on (L, .) associated to Q.

The following easy lemma has an interesting consequence, cf. Proposition 4.2.6.

Lemma 4.2.4. Given a graded left pre-Lie algebra (L, .) together with qn : L�n → L, n ≥ 0, the
associated Koszul brackets satisfy K(qn)i = 0 for all 0 ≤ i < n and K(qn)n = qn.

Proof. The fact that K(qn)i = 0 for i < n follows from the definition via higher derived brackets
and the observation that all terms in the summation of Definition 4.1.3 vanish, since for j ≤ i < n
and x1, . . . , xj ∈ L we have [· · · [qn, σx1

+ ∇x1
] · · · , σxj + ∇xj ] ∈ CE(L), moreover by the same

observation the only non-vanishing contribute to K(qn)n(x1 � · · · � xn) is given by

K(qn)n(x1 � · · · � xn) =
1

n!

∑

σ∈Sn
ε(σ)[· · · [qn, σxσ(1)

+∇xσ(1)
] · · · , σxσ(n)

+∇xσ(n)
](1) =

1

n!

∑

σ∈Sn
ε(σ)[· · · [qn, σxσ(1)

] · · · , σxσ(n)
](1) =

1

n!

∑

σ∈Sn
ε(σ)qn(xσ(1)�· · ·�xσ(n)) = qn(x1�· · ·�xn)

Example 4.2.5. The explicit computation of the Koszul brackets on a general pre-Lie algebra
seems quite intricate. For a constant coderivation σx we obtain the following formula

K(σx)n(x1 � · · · � xn) =

=

n∑

k=0

Bn−k
k!(n− k)!

∑

σ∈Sn
ε(σ)(−1)k+|x|∑j≤k |xj |[· · · [xσ(1) . (· · · . (xσ(k) . x) · · · ), xσ(k+1)] · · · , xσ(n)]
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For instance if we denote by ∗ : L�2 → L the symmetrized product x∗y = 1
2

(
x . y + (−1)|x||y|y . x

)

we have K(σx)1(x1) = − 1
2 [x, x1] − (−1)|x||x1|x1 . x = −x ∗ x1. If . is an associative and graded

commutative product the previous formula reduces to K(σx)n(x1 � · · · � xn) = (−1)nxx1 · · ·xn.
Given f ∈ End(L) by the lemma K(f)0 = 0 and K(f)1 = f , the quadratic Koszul bracket K(f)2

is given by
K(f)2(x� y) = f(x ∗ y)− f(x) ∗ y − (−1)|f ||x|x ∗ f(y).

We have already observed how the higher Koszul brackets are (essentially) the usual ones when .
is an associative and graded commutative product, if . is only associative we should recover the
hierarchy of higher Koszul brackets considered by Bering in [7]. As a last example we consider
a graded commutative algebra (A, ·) and an antisymmetric bracket [·, ·] : A[−1]∧2 → A[−1]: let
{·, ·} : A�2 → A be the symmetric bracket associated via décalage, the first Koszul bracket not
given in Lemma 4.2.4 is

K({·, ·})3(x� y � z) = [[[{·, ·}, σx +∇x], σy +∇y], σz +∇z](1) =

= [[[{·, ·},∇x], σy], σz](1) + [[[{·, ·}, σx],∇y], σz](1) + [[[{·, ·}, σx], σy],∇z](1) =

= [{·, ·},∇x](y � z) + [{x,−},∇y](z)− {x, y}z

The term [{x,−},∇y](z)− {x, y}z = {x, yz} − {x, y}z − (−1)(|x|+1)|y|y{x, z} measures how far is
[sx,−] to be a derivation with respect to the product · on A, while the term [{·, ·},∇x](y � z)
measures how far is ∇x to be a derivation with respect to the bracket [·, ·] on A[−1], in particular,
if (A, ·, [·, ·]) is a graded Poisson algebra of degree (−1) (Definition 6.1.1) only the latter remains.

Proposition 4.2.6. The Koszul transform K : CE(L)→ CE(L) associated to a left pre-Lie product
on the space L is an isomorphism of graded Lie algebras.

Proof. On the one hand Lemma 4.2.4 tells us that the first non-vanishing Taylor coefficient of Q
and K(Q) is the same, thus K is injective; on the other hand given R = (r0, . . . , rn, . . .) we put
q0 = r0 and then recursively qn = rn − K(q1, . . . , qn−1, 0, . . . , 0, . . .)n, then the lemma shows that
Q = (q0, . . . , qn, . . .) is such that K(Q) = R, thus K is surjective. In fact

K(Q)n = K(q1, . . . , qn, 0, . . . , 0, . . .)n = qn +K(q1, . . . , qn−1, 0, . . . , 0, . . .)n = rn.

Definition 4.2.7. Given a graded Left pre-Lie algebra (L, .) we call the automorphism of graded
Lie algebras K−1 : CE(L) → CE(L) : Q → K−1(Q) = (K−1(Q)0, . . . ,K−1(Q)n, . . .) the Kapranov
transform associated to ., and we call the Taylor coefficients K−1(Q)n the Kapranov brackets on
(L, .) associated to Q.

Remark 4.2.8. In this remark we show how both K and K−1 can be obtained via an abelian
higher derived brackets construction: let CE0(L) be the abelian Lie algebra spanned by constant
coderivations, then K(CE0(L)) ⊂ CE(L) is an abelian Lie subalgebra such that we continue to
have CE(L) = CE(L)⊕K(CE0(L)) as in the the assumptions of Voronov’s construction of higher
derived brackets: the induced morphism Φ : CE(L)→ CE(L) is given by Φ(Q)0(1) = q0(1)

Φ(Q)n(x1 � · · · � n) = [· · · [Q,K(σx1)] · · · ,K(σxn)](1) = K
(
[· · · [K−1(Q), σx1 ] · · · , σxn ]

)
(1) =

= [· · · [K−1(Q), σx1
] · · · , σxn ](1) = K−1(Q)n(x1 � · · · � xn),

that is, in this case the morphism Φ induced by higher derived brackets coincides with K−1. More
in general, by the same argument we see that given j ∈ Z and the morphism Kj : CE(L)→ CE(L)
of graded Lie algebras, this is induced by an abelian higher derived brackets construction applied
to CE(L) = CE(L)⊕K−j(CE0(L))).
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By the previous remark and Lemma 4.1.17 we conclude that

Proposition 4.2.9. Given an L∞[1] algebra structure Q ∈ CE(L) on L, the three L∞[1] algebras
(L,Q), (L,K(Q)) and (L,K−1(Q)) are all isomorphic to each other.

Corollary 4.2.10. Given d ∈ End(L) such that |d| = 1 and d2 = 0, the L∞[1] algebras (L,K(d))
and (L,K−1(d)) are homotopy abelian.

In the next proposition we find an interesting characterization of Koszul and Kapranov brackets,
cf. at the end of the section for an interpretation in terms of L∞ extensions. Let (L, .) be a graded

left pre-Lie algebra, σ∇ : L→ CE(L) the embedding L
∼=−→ L∇ ↪→ CE(L) and Φ : L→ CE(L) the

morphism associated to the graded Lie algebra structure (L, [·, ·]) on L via higher derived brackets
as in Remark 4.1.11.

Proposition 4.2.11. The Koszul transform K : CE(L)→ CE(L) is the only morphism of graded
Lie algebras sending the graded Lie subalgebra CE(L) ⊂ CE(L) into itself and making the diagram
on the left commutative

CE(L)
K // CE(L)

L
σ∇

bb

Φ

<<
CE(L) CE(L)

K−1
oo

L
σ∇

bb

Φ

<<

Similarly, the Kapranov transform K−1 : CE(L) → CE(L) is the only morphism of graded Lie
algebras sending the graded Lie subalgebra CE(L) ⊂ CE(L) into itself and making the diagram on
the right commutative.

Proof. The fact that K (and thus also K−1) makes the previous diagram commutative follows by
Lemma 4.1.16 applied to

0 //

��

L

σ∇

��

L

σ∇

��
CE(L) // CE(L) L∇oo

which shows that

L

σ∇

��

Φ // CE(L)

∼=
��

CE(L)
Φ // CE(L∇)

is commutative: but by definition K is the composition of the bottom arrow and the inverse of the
right vertical arrow.

The idea behind uniqueness is that the identities K(Q)0 = q0, K([Q, σx+∇x]) = [K(Q),Φ(x)] for
all x ∈ L determine the Taylor coefficients K(Q)n recursively and similarly for K−1, cf. the proof of
the next proposition. We give a more indirect argument: the decomposition CE(L) = CE(L)⊕Φ(L)
satisfies the assumptions of Theorem 4.1.6, thus induces via higher derived brackets a morphism

of graded Lie algebras KΦ : CE(L) → CE(Φ(L))
∼=−→ CE(L). If ϕ : CE(L) → CE(L) is such that

σ∇ = ϕ ◦ Φ : L → CE(L) and moreover ϕ sends CE(L) into itself we can form a commutative
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diagram

CE(L) //

ϕ

��

CE(L)

ϕ

��

Φ(L)

ϕ

��

oo

L

σ∇}}

Φ

aa

CE(L) // CE(L) L∇oo

and then Lemma 4.1.16 implies that the diagram

CE(L)

ϕ

��

KΦ

$$
CE(L)

CE(L)

K

::

is commutative. In particular in the previous discussion we can take ϕ = K−1, which shows
that KΦ = idCE(L): but then the uniqueness claim for K−1 also follows by the previous diagram,
since any ϕ as above has to be a left inverse to the isomorphism K, thus it has to be K−1. To
prove uniqueness for K we consider ϕ : CE(L) → CE(L) filling a similar diagram as the previous
one with the direction of the vertical arrows reversed, then again by Lemma 4.1.16 we see that
K = KΦ ◦ ϕ = ϕ.

The previous proposition allows to compare Definition 4.2.7 of Kapranov brackets with the one
we gave in [4].

Proposition 4.2.12. Let (L, .) be a graded left pre-Lie algebra. For all d ∈ Der(L, [·, ·]) the
Kapranov’s brackets K−1(d)n : L�n → L, n ≥ 1, admit the following recursive definition




K−1(d)1 = d
K−1(d)2(x� y) = ∇dx(y)− [d,∇x](y)
K−1(d)n+1(x� y1 � · · · � yn) = −[K−1(d)n,∇x](y1 � · · · � yn) for n ≥ 2.

(4.2.4)

Proof. Given d ∈ Der(L, [·, ·]), by Lemma 4.2.4 we have K−1(d)0 = 0 and K−1(d)1 = d: according
to Theorem 4.1.6 and Remark 4.1.11 we see that [d,Φ(x)] = Φ(dx) for all x ∈ L, hence by the
previous proposition we also see that [K−1(d), σx+∇x] = K−1([d,Φ(x)]) = K−1(Φ(dx)) = σdx+∇dx
for all x ∈ L, and thus

[K−1(d)2, σx] + [K−1(d)1,∇x] = ∇dx and for n ≥ 2 [K−1(d)n+1, σx] + [K−1(d)n,∇x] = 0.

It is clear that the above is equivalent to the recursion in the claim of the proposition.

Remark 4.2.13. We notice how it is not obvious that the above recursion is well defined, since it
is not a priori obvious with the previous definition that the (n + 1)-bracket is graded symmetric
given graded symmetry of the first n. We give a direct proof of this fact following [4], Proposition
4.3, which also illustrates nicely the role played by the left pre-Lie identity (4.2.3).
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We rewrite K−1(d)2 as

K−1(d)2(x� y) = ∇dx(y)− [d,∇x](y) = dx . y + (−1)|x||d|x . dy − d(x . y).

In other words, K−1(d)2 measures how far is d from satisfying the Leibniz rule with respect to the
pre-Lie product .. Thus a straightforward computation shows

K−1(d)2(x� y)− (−1)|x||y|K−1(d)2(y � x) = [dx, y] + (−1)|x||d|[x, dy]− d[x, y] = 0,

since d ∈ Der(L, [·, ·]). The recursive definition implies that K−1(d)3 is graded symmetric in the
last two arguments, so it suffices to show that it is also graded symmetric in the first two. We
notice that

K−1(d)3(x� y � z) = −[K−1(d)2,∇x](y � z) = −[[K−1(d)2,∇x], σy](z),

hence graded symmetry of K−1(d)3 follows from the following computation

[[K−1(d)2,∇x], σy]− (−1)|x||y|[[K−1(d)2,∇y], σx] =

= [K−1(d)2, [∇x, σy]]+(−1)|x||y|[[K−1(d)2, σy],∇x]−(−1)|x||y|[K−1(d)2, [∇y, σx]]−[[K−1(d)2, σx],∇y] =

= [K−1(d)2, σ∇x(y)]+(−1)|x||y|[∇dy−[d,∇y],∇x]−(−1)|x||y|[K−1(d)2, σ∇y(x)]−[∇dx−[d,∇x],∇y] =

= ∇d∇x(y) − (−1)|x||y|∇d∇y(x) − [∇dx,∇y] + (−1)|x||y|[∇dy,∇x]+

+[[d,∇x],∇y]− (−1)|x||y|[[d,∇y],∇x]− [d,∇∇x(y)] + (−1)|x||y|[d,∇∇y(x)] =

= ∇d[x,y] −∇[dx,y] − (−1)|x||d|∇[x,dy] + [d, [∇x,∇y]−∇[x,y]] = 0,

Given n ≥ 3, we suppose inductively to have showed graded symmetry of K−1(d)i for all 2 ≤ i ≤ n.
To show graded symmetry of K−1(d)n+1 we only have to show it for the last two arguments, where
is follows by a similar (and actually a little simpler) computation as the one before

[[K−1(d)n,∇x], σy]−(−1)|x||y|[[K−1(d)n,∇y], σx] = [K−1(d)n−1, [∇x,∇y]−∇[x,y]] = 0 ∀x, y ∈ L.

The morphisms of graded Lie algebras Φ : L → CE(L) and σ∇ : L → CE(L) classify, as in
Proposition 1.3.34, cf. also Notation 1.3.35, a pair of L∞[1] extensions of fiber (L, 0) and base
the graded Lie algebra s−1L (seen as usual via décalage). In fact these are two very natural
L∞[1] extension associated to the graded pre-Lie algebra (L, .): the L∞[1] extension classified
by Φ is strictly isomorphic to 0 → C(∆1, ∂∆1; s−1L) → C(∆1, e1; s−1L) → C(e1; s−1L) → 0, cf.
Proposition 3.3.6, where e1 denotes the vertex ∆0 → ∆1 : [0]→ [1], that is, s−1L×ΦL is essentially
the mapping cocone coC(ids−1L) of the identity ids−1L : s−1L → s−1L, as in Definition 3.3.32; as
for the morphism σ∇ : L → CE(L) this classifies the extension 0 → L → s−1L. → s−1L → 0,
where L. is the dg Lie algebra as in the following proposition.

Proposition 4.2.14. There is a bijective correspondence between the set of left pre-Lie products
. on L and the set of dg Lie algebra structures L. = (L× sL, δ, [·, ·]) on the space L× sL with the
differential δ(x, sy) = (0,−sx) and such that [L,L] ⊂ L, [L, sL] ⊂ sL, [sL, sL] = 0.

Proof. It is easy to see that a left pre-Lie product . on L and a bracket with the required properties
on L. = sL×L determine each others via [x, sy] = (−1)|x|s(x.y), [x, y] = x.y−(−1)|x||y|y.x.

2We say essentially since we defined the mapping cocone of a morphism F as the homotopy equalizer Eh(0, F ),
so to be precise the mapping cocone coC(ids−1L) would be the L∞[1] algebra C(∆1, e0; s−1L).
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Comparing with Proposition 4.2.11 and Lemma 1.3.36, it is natural to conjecture that there
should be an L∞[1] automorphism F : (L, 0)→ (L, 0) of the fiber such that, with the notations of
Lemma 1.3.36, we have F∗σ∇ = Φ, K = F − F−1 : CE(L) → CE(L). Such an F would sit in a
commutative diagram

0 // L

∼= F

��

// s−1L.

F̃

��

// s−1L // 0

0 // L // C(∆1, e1; s−1L) // s−1L // 0

of L∞[1] algebras and L∞[1] morphisms: once we identify s−1L. = C(∆1, e1; s−1L) = s−1L×L as

graded spaces, the L∞[1] morphism F̃ is determined by F according to f̃1(s−1m, l) = (s−1m, f1(l))

and f̃n((s−1m1, l1) � · · · � (s−1mn, ln)) = (0, fn(l1 � · · · � ln)) for n ≥ 2. Since not only the
underlying spaces, but also the underlying complexes of s−1L. and C(∆1, e1; s−1L) identify, we
may moreover require that f1 = idL. Then we claim that if an F : (L, 0)→ (L, 0) with the desired

properties exists, it can be uniquely determined by the fact that it makes the corresponding F̃ an
L∞[1] morphism. This is because, denoting by R = (r1, . . . , rn, . . .) and Q = (q1, q2, 0, . . . , 0, . . .)
the L∞[1] structures on C(∆1, e1; s−1L) and s−1L. respectively, we would have

(0, fn(l1 � · · · � ln)) = f̃nq1((s−1l1, 0)� (0, l2)� · · · � (0, ln)) =

= (f̃nq1 − r1f̃n)((s−1l1, 0)� (0, l2)� · · · � (0, ln)) =

= (−f̃n−1 • q2 +

n∑

j=2

rjF̃
j
n)((s−1l1, 0)� (0, l2)� · · · � (0, ln)) (4.2.5)

where the last term only depends on f2, . . . , fn−1. Thus we obtain formulas specifying recursively
the Taylor coefficients fn for all n ≥ 2: the point would be to show that this recursion is well
defined, that is, graded symmetry of f2, . . . , fn−1 also implies graded symmetry of fn. We notice
that for n = 2 the above becomes f2(l1 � l2) = −l1 . l2 + 1

2 [l1, l2] = −l1 ∗ l2 (where ∗ is as in
Example 4.2.5), thus we get in fact a graded symmetric f2.

From this point on we consider the case when L = A is a graded commutative algebra, and
hope to treat the general pre-Lie case somewhere else. In this case the graded Lie algebra structure
on A is abelian, and so is the L∞[1] algebra structure on C(∆1, e1; s−1A), that is, rn = 0 for all
n ≥ 2: thus the recursion (4.2.5) simplifies to

fn(x1 � · · · � xn) = −
∑

σ∈S(2,n−2)

ε(σ)fn−1(xσ(1)xσ(2) � xσ(3) � · · · � xσ(n)).

For n = 2 this becomes f2(x� y) = −xy, which we already saw, and for n ≥ 2 we see inductively
that it becomes fn(x1 � · · · � xn) = (n − 1)!(−1)n−1x1 · · ·xn, n ≥ 2, which is clearly graded
symmetric. In other words fn = (n − 1)!(−1)n−1mn, where mn : A�n → A is the iterated
multiplication map.

Remark 4.2.15. As in [79], we may introduce the group Aut(A) of automorphisms F : S(A)→ S(A)
of the graded coalgebra structures of the form F = (idA, k2m2, . . . , knmn, . . .), where kn ∈ K are
scalars and themn the iterated multiplications. We can associate to F = (idA, k2m2, . . . , knmn, . . .)
its generating series 1 + t+ k2

2! t
2 + · · ·+ kn

n! t
n + · · · ∈ K [[t]], then it is not hard to verify that the

generating series of a composition is the composition of the generating series, cf. [79]. In the case
of F = (idA,−m2, . . . , (n− 1)!(−1)n−1mn, . . .) as in the previous paragraph, the associated series

is the logarithmic series 1 + t− t2

2 + t3

3 − t4

4 + · · · .
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Summing up, given F = (idA,−m2, . . . , (n− 1)!(−1)n−1mn, . . .) as above, it is easy to see that

in fact the associated F̃ : s−1L. = s−1L×L→ s−1L×L = C(∆1, e1; s−1L) is an L∞[1] morphism:
the necessary identities follow by construction on mixed terms of type s−1x ⊗ y1 � · · · � yn and
trivially in the remaining cases, details are left to the reader. Comparing with Lemma 1.3.36 and
Proposition 4.2.11, this shows the following result by Markl [79, 80].

Proposition 4.2.16. Given a graded commutative algebra (A, ·), the associated Koszul transform
is given by K = F −F−1 : CE(A)→ CE(A), where F : S(A)→ S(A) is the natural automorphism
F = (idA,−m2, . . . , (n− 1)!(−1)n−1mn, . . .).

4.2.1 Commutative BV∞ algebras

We give another interesting application of the results of Section 4.1. First we recall the definition
of differential operators on graded commutative algebras and modules.

Definition 4.2.17. Given a graded commutative algebra (A, ·), the space Diff0(A) ⊂ End(A)
of differential operators of order ≤ 0 on A is the abelian Lie subalgebra spanned by the adjoint
operators ∇x : A→ A : y → xy. For i ≥ 1 the space Diffi(A) ⊂ End(A) of differential operators of
order ≤ i on A is defined recursively by Diffi(A) = {f ∈ End(A) s.t. [f,Diff0(A)] ⊂ Diffi−1(A)}.

Remark 4.2.18. An easy and well known inductive argument shows that for all i, j ≥ 0 we have
(where we put Diff−1(A) := 0) [Diffi(A),Diffj(A)] ⊂ Diffi+j−1(A), moreover if we denote by ◦
the composition product on End(A) we also have Diffi(A) ◦ Diffj(A) ⊂ Diffi+j(A): in particu-
lar Diff(A) =

⋃
i≥0 Diffi(A) is a graded Poisson subalgebra of the graded Poisson algebra - cf.

Definition 6.1.1 - (End(A), ◦, [·, ·]).

Recall the two constructions of Koszul brackets explained at the beginning of the previous
section (namely, K : End(A)→ CE(A) and K1A : End(A)→ CE(A)).

Lemma 4.2.19. Given a graded commutative algebra (A, ·) with a unit 1A ∈ A together with an
operator f ∈ End(A) the following are equivalent conditions

K1A(f)i+1 = 0 ⇔ K1A(f)n = 0 ∀n > i ⇔ f ∈ Diffi(A),

K(f)i+1 = 0 ⇔ K(f)n = 0 ∀n > i ⇔ f ∈ Diffi(A) and f(1A) = 0.

Proof. The fact that K(f)i+1 = 0 if and only if K(f)n = 0 for all n > i follows from the recursive
formula defining the Koszul brackets, and similarly for K1A(f)i+1 = 0 if and only if K1A(f)n = 0
for all n > i. We have f ∈ Diff0(A) if and only if f = ∇f(1A) if and only if K1A(f)1 = 0,
moreover f ∈ Diff0(A) and f(1A) = 0 is equivalent to 0 = f = K(f)1. For x ∈ A we have
that K1A(∇x) = σx is a constant coderivation, moreover by definition f ∈ Diffi(A) if and only
if [f,∇x] ∈ Diffi−1(A) for all x ∈ A, and we see inductively that this is true if and only if the
Taylor coefficient K1A([f,∇x])i = [K1A(f)i+1, σx] vanishes for all x ∈ A, that is, if and only if
K1A(f)i+1 = 0. In light of equation (4.2.1) it only remains to prove K(f)i+1 = 0⇒ f(1A) = 0: an
easy induction using the recursive definition of the brackets shows K1A(f)n+1(x1�· · ·�xn�1A) = 0
for all n ≥ 0 and x1, . . . , xn ∈ A, in particular if K(f)i+1 = 0 equation (4.2.1) with n = i+ 1 and
x1 = · · · = xi+1 = 1A implies that f(1A) = 0.

We recall the definition of commutative BV∞ algebras due to O. Kravshenko (this is a particular
case of the notion of BV∞ algebras one obtains by resolving the operad of BV algebras via the
Koszul duality machinery [72]).
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Definition 4.2.20. A commutative BV∞ algebra (A, d = ∆0,∆1, . . . ,∆i, . . .) of degree k, where
k is an odd integer, consists of a commutative dg algebra (A, d, ·) with unit 1A and for all i ≥ 1

an operator ∆i ∈ End1−i(k+1)(A) on A of degree 1− i(k + 1) such that

(1) For all i ≥ 0 we have Ki+2(∆i) = 0 (by the previous lemma, for i = 0 this just says that
d = ∆0 is a derivation vanishing at the identity), and

(2) if we denote by t a central variable of (even) degree k + 1, then the degree one operator

∆ = ∆0 + t∆1 + · · ·+ ti∆i + · · · : A[[t]]→ A[[t]] :
∑

j≥0

tj · xj →
∑

n≥0

tn


 ∑

i+j=n

∆i(xj)




on the algebra of formal power series A[[t]] squares to zero.

If (A, d = ∆0,∆1, . . . ,∆i, . . .) is a commutative BV∞ algebra of (odd) degree k as in the
previous definition there is an associated L∞[1] structure on A[k+1] as we now describe. Consider
the algebra of formal Laurent series A((t)) =

⋃
j∈Z t

jA[[t]], we denote by p+ : A((t)) → A[[t]] the

projection with kernel A((t))− =
⋃
j<0 t

jA[[t]] and by p− = idA((t))−p+ : A((t)) → A((t))− the
projection with kernel A[[t]]. The graded Lie algebra M = End(A((t))) splits as M = L⊕B, where
L is the graded Lie subalgebra L = {f ∈M s.t. f(1A((t))) ∈ A[[t]]} and B ⊂M is the abelian Lie
subalgebra of left adjoint operators ∇x(t), where x(t) varies in the subalgebra A((t))− ⊂ A((t)).
The decomposition M = L⊕B satisfies the assumptions of Voronov’s construction of higher derived
brackets, moreover, ∆ : A[[t]]→ A[[t]] extends by K ((t))-linearity to an operator which we denote
by the same symbol ∆ : A((t))→ A((t)), which is an element of L1 such that [∆,∆] = 0: by higher
derived brackets we have an L∞[1] structure Φ(∆) = Φ([∆,−]) on B.

Proposition 4.2.21. Consider the linear embedding ∇t−1·− : A[k+1]→ B : s−k−1x→ ∇t−1·x, its
image ∇t−1·−(A[k+ 1]) is an L∞[1] subalgebra of (B,Φ(∆)). The induced L∞[1] algebra structure
on A[k + 1] is given in Taylor coefficients by (∆0,K(∆1)2, . . . ,K(∆n−1)n, . . .).

Proof. Item (1) in the previous definition implies ∆j(1A) = 0 for all j ≥ 0, therefore as in the
proof of the previous lemma K(∆j)n+1(x1 � · · · � xn � 1A) = 0 for all n ≥ 0 and x1, . . . , xn ∈ A
and we see from equation (4.2.2) that K(∆j)n(x1 � · · · � xn) = [· · · [∆j ,∇x1

] · · · ,∇xn ](1A) for all
x1, . . . , xn ∈ A. Now a straightforward computation shows

[[∆0 + t∆1 + · · ·+ tj∆j + · · · , ∇t−1·x1
] · · · , ∇t−1·xn ](1A((t))) =

=
∑

j≥0

tj−n · [· · · [∆j ,∇x1 ] · · · ,∇xn ](1A) =
∑

j≥0

tj−n · K(∆j)n(x1 � · · · � xn),

thus
Φ(∆)n (∇t−1·x1

� · · · � ∇t−1·xn) = ∇∑n−1
j=0 t

j−n·K(∆j)n(x1�···�xn),

and since K(∆j)n = 0 for j < n − 1 by the definition of commutative BV∞ algebras and the
previous lemma we finally see that

Φ(∆)n(∇t−1·−(x1)� · · · � ∇t−1·−(xn)) = ∇t−1·−(K(∆n−1)n(x1 � · · · � xn)).

Definition 4.2.22. A commutative BV∞ algebra has the degeneration property if the projection
(A[[t]],∆)→ (A,∆0) : x(t)→ x(0) is surjective in homology.
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The following theorem, which was proved with different methods by Braun and Lazarev [12],
generalizes the formality theorem from [96]. We follow the proof of this last result given in [52],
Theorem 6.6.

Theorem 4.2.23. If a commutative BV∞ algebra (A,∆0,∆1, . . . ,∆i, . . .) of (odd) degree k has
the degeneration property, then the L∞[1] algebra (A[k+ 1],∆0,K(∆1)2, . . . ,K(∆n−1)n, . . .) is ho-
motopy abelian.

Proof. Consider the decreasing Z-filtration F jA((t)) = tjA[[t]] ⊂ A((t)) by ∆-closed subspaces:
then the degeneration property is equivalent to injectivity in homology of F 1A((t)) ↪→ F 0A((t)),
which readily implies injectivity in homology of F jA((t)) ↪→ F j−1A((t)) for all j ∈ Z (by K ((t))-
linearity of ∆) and then also of F jA((t)) ↪→ F kA((t)) for all j > k. In particular A[[t]] ↪→ A((t)) is
injective in homology, so p− : A((t))→ A((t))− is surjective in homology: in turn this also implies
that the projection P : M → B induced by the splitting M = L⊕B is surjective in homology, this
follows by looking at the commutative diagram of dg spaces

(M, [∆, ·]) P //

ev1A((t))

��

(B,P [∆, ·])
ev1A((t))

��
(A((t)),∆)

p− // (A((t))−, p−∆)

Since we are working over a field H(ev1A((t))
) = ev1H(A((t)))

: H(M) = End(H(A((t))))→ H(A((t)))

is surjective, while ev1A((t))
: B → A((t))− is an isomorphism. Thus by Corollary 4.1.15 the L∞[1]

structure Φ(∆) = Φ([∆, ·]) on B is homotopy abelian.

The thesis follows from Lemma 2.2.13 if we show that the embedding ∇t−1·− from the previous
proposition is injective in homology. We look at the commutative diagram

0 // F 0A((t)) // F−1A((t))

��

// F−1A((t))/F 0A((t))

��

// 0

0 // A[[t]] // A((t)) // A((t))− // 0

The rows are split exact and the middle vertical arrow is injective in homology, then so must be
the right one: but this is isomorphic to ∇t−1·− : A[k + 1]→ B.

4.2.2 Kapranov brackets in Kähler geometry

Let X be a hermitian manifold, we denote by AX the de Rham algebra of complex valued forms
on X, and by A(TX) the AX -module of smooth forms with coefficients in the tangent bundle TX .
We denote by D = ∇+∂ : A∗,∗(TX)→ A∗+1,∗(TX)⊕A∗,∗+1(TX) the Chern connection on A(TX)
(that is, the only connection compatible with both the metric and the complex structure on TX ,
see e.g. [57]). Finally, we denote by (z1, . . . , zd) a local system of holomorphic coordinates on some
open U ⊂ X, together with the corresponding local frame ( ∂

∂z1 , . . . ,
∂
∂zd

) of TX .

For α ∈ Ap,q(TX), the contraction operator iα ∈ Endp−1,q(A(TX)) is defined as follows: if
locally α =

∑
i α

i ⊗ ∂
∂zi and β =

∑
j β

j ⊗ ∂
∂zj , then locally iα(β) =

∑
j

(∑
i α

i ∧ ( ∂
∂zi yβj)

)
⊗ ∂

∂zj ,
where we denote by y the contraction of forms with vector fields. An easy computation, left to
the reader, shows that [∂, iα] = i∂α.
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We denote by Dα := [iα, D] ∈ Endp+q(A(TX)) and by ∇α := [iα,∇] ∈ Endp,q(A(TX)). Recall
that A(TX) carries a natural structure of (bi)graded Lie algebra induced by the bracket of vector
fields, cf. for instance [76]: under the additional hypothesis iα(β) = iβ(α) = 0, the usual Cartan
identities [iα, iβ ] = 0 and [Dα, iβ ] = i[α,β] hold. This hypothesis is verified in particular for

α, β ∈ A0,∗(TX): since Dα = [iα,∇+ ∂] = ∇α + (−1)|α|i∂α, in this case we also see that

[∇α, iβ ] = i[α,β] ∀α, β ∈ A0,∗(TX).

We define . : A0,∗(TX)⊗A0,∗(TX)→ A0,∗(TX) by

α . β := ∇α(β) = Dα(β) ∀α, β ∈ A0,∗(TX),

then . is a graded left pre-Lie product on A0,∗(TX) precisely when the hermitian metric on X is
Kähler. This can be seen as follows.

As well known [57], the curvature D2 ∈ End2(A(TX)) is AX -linear: this implies that if locally
β =

∑
j β

j ⊗ ∂
∂zj , then locally D2(β) =

∑
i(
∑
j β

j ∧ Ωij) ⊗ ∂
∂zi , where the forms Ωij ∈ A2

X are

defined by D2( ∂
∂zj ) =

∑
i Ωij ⊗ ∂

∂zi . For the Chern connection we have moreover that Ωij ∈ A1,1
X ,

∀i, j [57]: this implies D2 = 1
2 [∇+ ∂,∇+ ∂] ∈ End1,1(A(TX)), thus

D2 = [∂,∇], [∇,∇] = 0.

By the Jacobi identity also [∇α,∇] = [[iα,∇],∇] = 0, ∀α ∈ A(TX). For α, β ∈ A0,∗(TX) we see
(by the Jacobi and Cartan identities) that

[∇α,∇β ] = [∇α, [iβ ,∇]] = [[∇α, iβ ],∇] = [i[α,β],∇] = ∇[α,β]

Then the pre-Lie identity (4.2.3) holds if and only if the bracket on A0,∗(TX) associated to . is the
natural one induced by the bracket of vector fields, that is, if and only if for all ∀α, β ∈ A0,∗(TX)
we have [α, β] = ∇α(β) − (−1)|α||β|∇β(α) = Dα(β) − (−1)|α||β|Dβ(α): in other words . is a left
pre-Lie product on A0,∗(TX) if and only if D is torsion free, but as well known [57] this is equivalent
to the hermitian metric on X being Kähler.

We assume in the remainder that X is a Kähler manifold. The Dolbeault differential ∂ in-
duces a dg Lie algebra structure on the graded Lie algebra associated to (A0,∗(TX), .): in fact,
(A0,∗(TX), ∂, [·, ·]) is the Kodaira-Spencer dg Lie algebra controlling the infinitesimal deformations
of the complex structure on X, cf. [76]. According to Corollary 4.2.10, the Kapranov brackets
K−1(∂)n induce a homotopy abelian L∞[1] algebra structure on A0,∗(TX).

Next we recall the construction of the L∞[1] algebra structure on A0,∗(TX) by Kapranov [56].
We can form the bundles of commutative coalgebras S(TX) = ⊕n≥1T

�n
X , S(TX) = ⊕n≥0T

�n
X

and the bundles of Lie algebras CE(TX) = Coder(S(TX)), CE(TX) = Coder(S(TX)) over X
as in sections 1.1 and 1.3 but working in the symmetric monoidal category of holomorphic vector
bundles over X. As a holomorphic vector bundle CE(TX) =

∏
n≥1 HomOX (T�nX , TX), and similarly

CE(TX) =
∏
n≥0 HomOX (T�nX , TX). The bundle of Lie algebras structure on CE(TX) induces a dg

Lie algebra structure on the Dolbeault complex A0,∗(CE(TX)) =
∏
n≥1A0,∗(HomOX (T�nX , TX)).

Finally, there is a morphism of dg Lie algebras

Ψ :
(
A0,∗(CE(TX)), ∂, [·, ·]

)
→
(
CE(A0,∗(TX))), [∂, ·], [·, ·]

)
,

where in the left hand side ∂ is the Dolbeault differential on A0,∗(CE(TX)) while in the right hand
side ∂ is the Dolbeault differential on A0,∗(TX), regarded as a linear coderivation on S(A0,∗(TX)).
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The morphism Ψ sends Rn ∈ A0,∗(Hom(T�nX , TX)) to Ψ(Rn) : A0,∗(TX)�n → A0,∗(TX) given by
the composition

Ψ(Rn) : A0,∗(TX)�n
Rn⊗−−−−−→ A0,∗(Hom(T�nX , TX))⊗A0,∗(T�nX ) −→ A0,∗(TX),

where the second map is the natural contraction, and where in the first one we are also implicitly
considering A0,∗(TX)�n → A0,∗(T�nX ) induced by the wedge product of forms. We leave to the
reader the easy verification that Ψ is indeed a morphism of dg Lie algebras. We notice that the
brackets Ψ(Rn) are A0,∗

X -multilinear in the following graded sense:

Ψ(Rn)(α1 � · · · � (ω ∧ αk)� · · · � αn) = (−1)|ω|(|Rn|+
∑k−1
j=1 |αj |)ω ∧Ψ(Rn)(α1 � · · · � αn), (4.2.6)

∀α1, . . . αn ∈ A0,∗(TX), ω ∈ A0,∗
X .

Recall that the Chern connection D = ∇ + ∂ on TX induces the Chern connection on each
one of the associated bundles Hom(T⊗nX , TX), n ≥ 1, which we still denote by the same symbol
D = ∇+ ∂ ∈ End1,0(A(Hom(T⊗nX , TX)))⊕ End0,1(A(Hom(T⊗nX , TX))). Following Kapranov [56],
we define recursively a hierarchy of tensors Rn ∈ A0,1(Hom(T⊗nX , TX)), n ≥ 2, starting with the
curvature form R2 = Ω =

∑
i,j Ωij dz

j⊗ ∂
∂zi ∈ A1,1(End(TX)) ∼= A0,1(Hom(T⊗2

X , TX)), and then by

Rn+1 = ∇(Rn) ∈ A1,1(Hom(T⊗nX , TX)) ∼= A0,1(Hom(T⊗n+1
X , TX)). (4.2.7)

It turns out ([56], it will also follow from Theorem 4.2.24 and Proposition ??), by torsion freeness
of D, that the tensors Rn are symmetric in their holomorphic covariant indices: in other words,
the above Recursion (4.2.7) actually defines a hierarchy Rn ∈ A0,1(Hom(T�nX , TX)), n ≥ 2, which
we can assemble to R = (0, R2, . . . , Rn, . . .) ∈ A0,1(CE(TX)). Finally, in [56], Theorem 2.6, it
is proved that ∂R + 1

2 [R,R] = 0, that is, R is a Maurer-Cartan element of the dg Lie algebra(
A0,∗(CE(TX)), ∂, [·, ·]

)
. It follows that ∂ + Ψ(R) is an L∞[1] structure on A0,∗(TX), where again

we are regarding ∂ as a linear coderivation on S(A0,∗(TX)), in fact, 1
2 [∂ + Ψ(R), ∂ + Ψ(R)] =

Ψ
(
∂R+ 1

2 [R,R]
)

= 0: this is the L∞[1] structure on A0,∗(TX) considered in [56]. Conversely, we
can deduce that R is Maurer-Cartan by the following theorem, as Ψ is clearly injective.

Theorem 4.2.24. With the previous notations, ∂ + Ψ(R) = K−1(∂): in particular, the L∞[1]
algebra structure on A0,∗(TX) by Kapranov [56] is homotopy abelian over the field C of complex
numbers.

Proof. Since ∂ ∈ Der(A0,∗(TX), [·, ·]), the brackets K−1(∂)n can be defined via the recursion in the
claim of Proposition 4.2.12. Of course ∂ = K−1(∂)1, we have to prove Ψ(Rn) = K−1(∂)n, ∀n ≥ 2.
We start by computing K−1(∂)2, which is given by

K−1(∂)2(α� β) = ∇∂α(β)− [∂,∇α](β) = [i∂α,∇](β)− [∂, [iα,∇]](β) =

= (−1)|α|[iα, [∂,∇]](β) = (−1)|α|iαD
2(β).

If locally α =
∑
i α

i ⊗ ∂
∂zi and β =

∑
j β

j ⊗ ∂
∂zj , then locally

K−1(∂)2(α� β) =
∑

k


∑

i,j

(−1)|α|αi ∧
(
∂

∂zi
y(βj ∧ Ωkj )

)
⊗ ∂

∂zk
=

=
∑

k


∑

i,j

(−1)|α|+|β|αi ∧ βj ∧
(
∂

∂zi
yΩkj

)
⊗ ∂

∂zk
.
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Graded symmetry of this expression also follows from the identity ∂
∂zi yΩkj = ∂

∂zj yΩki , ∀i, j, k, which

itself is a consequence of torsion freeness of D. This shows that Ψ(R2) = K−1(∂)2, in particular it
implies that K−1(∂)2 is A0,∗

X -bilinear. More in general, every K−1(∂)n, n ≥ 2, is A0,∗
X -multilinear

in the sense of (4.2.6): by graded symmetry it suffices to consider the case k = 1 in the formula
(4.2.6), which is seen by induction using the recursive definition and the easily established identity
∇ω∧α(β) = ω ∧ ∇α(β), ∀α, β ∈ A0,∗(TX), ω ∈ A0,∗

X . Finally, in order to prove in general that
Ψ(Rn)(α1 � · · · � αn) = K−1(∂)n(α1 � · · · � αn), ∀α1, . . . αn ∈ A0,∗(TX), we have reduced to the
case αk = ∂

∂zik
, k = 1, . . . , n. Proceeding by induction and using the recursive definition 4.2.4 we

see that for all n ≥ 3

Ψ(Rn)

(
∂

∂zi1
� · · · � ∂

∂zin

)
=
∑

k

(∑

h

(Rn)k
i1···inhdz

h

)
⊗ ∂

∂zk
=

=
∑

k

(∑

h

(∇ ∂

∂zi1

Rn−1)k
i2···inhdz

h

)
⊗ ∂

∂zk
= [∇ ∂

∂zi1

,Ψ(Rn−1)]

(
∂

∂zi2
� · · · � ∂

∂zin

)
=

= −[K−1(∂)n−1,∇ ∂

∂zi1

]

(
∂

∂zi2
� · · · � ∂

∂zin

)
= K−1(∂)n

(
∂

∂zi1
� · · · � ∂

∂zin

)

Together with Corollary 4.2.10 this proves the theorem.

Remark 4.2.25. As the brackets K−1(∂)n, n ≥ 1, are all OX -multilinear, (A0,∗(TX),Φ(∂)) is an
OX -multilinear L∞[1]-algebra in the sense, for instance, of [109]: in the claim of the previous
theorem we had to specify the field of definition since otherwise the homotopy abelianity part
would fail (it should remain true when the Atiyah class αTX vanishes).
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Chapter 5

Higher Deligne groupoids

After some necessary preliminaries on model categories and simplicial sets, in Section 5.2 we
introduce the main subject of this chapter, namely, what we call the Deligne-Getzler ∞ groupoid
(cf. 5.2.23 as for why it is an ∞ groupoid) Del∞(L) of a complete L∞[1] algebra L, after the
seminal paper [39], and we study some of its main properties from [39, 6]: in Section 5.2.2 we show
that Del∞(−) generalizes the Deligne groupoid of a (nilpotent) dg Lie algebra. In Section 5.2.1
we study the role of the functor Del∞(−) in the Lie approach to disconnected rational homotopy
theory developed by Lazarev and Markl [70]. Finally, in the last two sections we study descent
of Deligne groupoids: in Section 5.3.1 the original result by Hinich [45], and in Section 5.3 a
corresponding descent theorem for the functor Del∞(−).

5.1 Miscellanea on model categories and simplicial sets

In this section we recall the various results from model category theory that we will need in the
rest of the chapter. This is an extremely rich subject, and we merely recall the essential facts
to make sense of Proposition 5.1.2 and Proposition 5.1.5, which are the results we will actually
need. Our references here are [50, 48], the original by Quillen [88], and finally the appendices of
[73]: numerous other references can be found in the bibliographies of loc. cit.. In the second part
of the section we review the model category structure on the category of simplicial sets, together
with another Proposition 5.1.9 and some standard definitions we will need in the sequel: we refer
mainly to [50, 88] and [81], but again, possibly even more excellent introductions to this material
are available. We close this section by recalling the definition of T -complex, cf. Ashley’s and
Dakin’s theses [1, 26], and their weak versions considered by Getzler [39]. Even if we will have no
actual use for these concepts, it will be good to keep them in mind.

Usually, in homotopy theory we are concerned with a category C and a subcategoryW of weak
equivalences that we would like to consider as isomorphisms: there is always a way to localize C at
W, that is, there is a category C[W−1] (called the Gabriel-Zisman localization of C atW) with the
same class of objects of C and a functor C→ C[W−1] which is the identity on objects and universal
with the property that it sends arrows inW to isomorphisms in C[W−1]. This does not require any
assumption on W, however Gabriel-Zisman localization is hard to work with since in general we
have to quotient a large class (not a set!) of morphisms by an equivalence relation, and moreover
one can incur in set theoretical difficulties (resolved by working with Grothendieck universes) as

83
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it is not always the case that this quotient will be a set. In a model category (C,W) is enriched
to (C, C,F ,W), where C and F are two auxiliary subcategories and the data satisfy a series of
axioms listed below: even if we are ultimately only interested in the pair (C,W) the structure of
model category on C provides a neat description of the category C[W−1] and guarantees that we
do not incur in the aforementioned difficulties.

Recall that given a pair of arrows f : A → B and g : X → Y in C then f has the left lifting
property with respect to g, and conversely g has the right lifting property with respect to f , if in
all commutative diagrams in C

A //

f

��

X

g

��
B //

>>

Y

the dotted arrow can be filled so that the whole diagram remains commutative.

A model category (C, C,F ,W) is a category C together with distinguished subcategories C, F
andW whose class of objects is the same as C and whose arrows are called respectively cofibrations,
fibrations and weak equivalences, while the arrows in C⋂W and F ⋂W are called respectively triv-
ial cofibrations and trivial fibrations, such that: C is complete and cocomplete, weak equivalences
satisfy the two out of three properties (namely, if two out of f , g and fg are weak equivalences so
is the third) and the subcategories C, F and W are stable under retracts, and moreover

trivial cofibrations have the left lifting property with respect to fibrations and trivial fibrations
have the right lifting property with respect to cofibrations;

every arrow admits functorial factorizations as a cofibration followed by a trivial fibration
and as a trivial cofibration followed by a fibration.

We refer to [50] for a more detailed discussion of the previous list of axioms, in particular the original
definition given in [88] is more general, and instead we have defined what Quillen calls a closed
model category, where the closed adjective refers to the following important fact: if (C, C,F ,W) is
a model category as in the previous definition, then C (resp.: C⋂W) is precisely the class of arrows
with the left lifting property with respect to arrows in F ⋂W (resp.: F), and conversely F ⋂W
(resp.: F) is precisely the class of arrows with the right lifting property with respect to arrows
in C (resp.: C⋂W). In particular we can recover the whole structure (C, C,F ,W) knowing two
out of C, F , W, C⋂W and F ⋂W: for instance, given (C, C, C⋂W) the subcategory F (resp.:
F ⋂W) consists of arrows with the right lifting property with respect to arrows in C⋂W (resp.: C),
while weak equivalences can be characterized as those arrows admitting a factorization as a trivial
cofibration followed by a trivial fibration. In many important situations it is possible to reduce
the generating data further, from two classes of arrows to two sets of arrows. A model category
(C, C,F ,W) is cofibrantly generated if it admits distinguished sets I ⊂ C of generating cofibrations
and J ⊂ C⋂W of generating trivial cofibrations such that F (resp.: F ⋂W) is precisely the
subcategory of arrows with the right lifting property with respect to arrows in J (resp.: I) and
an additional technical assumption is satisfied, roughly saying that I and J allow Quillen’s small
objects argument (cf. [50, 48] for details, let us just say that the assumption will be automatically

satisfied for the categories we will be interested in, such as SSet, DG, DGLA, D̂GLA etc.).
Conversely, given a complete and cocomplete category C together with sets of arrows I and J
satisfying the aforementioned technical assumption, there is an useful criterion (attributed to Kan
in [48]) to check whether these data generates a (by construction, cofibrantly generated) model
category structure on C, cf. [48], Theorem 11.3.1, and [50], Theorem 2.1.19.
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As we said, if (C, C,F ,W) is a model category then the localization C[W−1], which in this case
is called the homotopy category of (C, C,F ,W) and denoted by Ho(C), admits a neat description.
The category C has an initial object ∅ since it is cocomplete and a final object ∗ since it is
complete, and we say that an object X is cofibrant if ∅ → X is a cofibration and it is fibrant
if X → ∗ is a fibration: when X is cofibrant or Y is fibrant there is a well defined equivalence
relation ∼ on the set of morphisms C(X,Y ) constructed from the axioms of model category: this
is called the homotopy relation. The model category axioms imply that for any object X there are
functorially defined weak equivalences X

∼−→ X and X
∼−→ X with X both fibrant and cofibrant:

finally, the homotopy category Ho(C) has the same class of objects as C and the sets of morphisms
are Ho(C)(X,Y ) = C(X,Y )/ ∼, where X and Y are fibrant and cofibrant models of X and Y
respectively and ∼ is the homotopy relation. Typically, functors between model categories come in
adjoint pairs: an adjunction between model categories F : C // D : Goo is a Quillen adjunction if
F preserves cofibrations and trivial cofibrations andG preserves fibrations and trivial fibrations, the
two conditions are not independent and in fact each one of them implies the other, moreover they
imply that F preserves cofibrant objects and weak equivalences between them while G preserves
fibrant objects and weak equivalences between them. We also say that F is a left Quillen functor
and G is a right Quillen functor. If F : C // D : Goo is a Quillen adjunction there is a derived

adjunction between the homotopy categories Ho(F ) : Ho(C) // Ho(D) : Ho(G)oo , if the derived

adjunction is an equivalence of categories then F : C // D : Goo is called a Quillen equivalence,
see [88, 48, 50] for necessary and sufficient conditions.

We recall a proposition from [50] which will be used in several occasions in the forthcoming
sections. First recall that a small category S is direct if it admits a functor S → ω into some
ordinal ω, seen as a category via the order, sending non identity arrows into non identity arrows. For
instance the semicosimplicial indexing category ∆−→ (Definition 5.1.7) is direct by ∆−→→ ω0 : ∆n → n,
where ω0 is the first limit ordinal. As another example, given a simplicial set X the category ∆−→X
of non degenerate simplices of X (Definition 5.1.8) is direct by ∆−→X → ω0 : {σ : ∆n → X} → n. Of
course every ordinal is a direct category. A small category S is inverse if Sop is direct. According
to [50], Theorem 5.1.3, given a direct category S and a model category C there is a model category
structure on the category of functors CS , called the projective model structure, where fibrations
and weak equivalences are defined pointwise (that is, given functors φ, ψ : S → C and a natural
transformation f : φ → ψ, then f is a weak equivalence (resp.: fibration) if for all s ∈ S so is
f(s) : φ(s) → ψ(s)) and the cofibrations are the Reedy cofibrations discussed in the following
remark. Dually, there is a model category structure on CS

op

, called the injective model structure,
where cofibrations and weak equivalences are defined pointwise and the fibrations are the Reedy
fibrations.

Remark 5.1.1. We recall the definition of Reedy fibrations, Reedy cofibrations are defined in the
dual (Eckmann-Hilton duality) way, cf. [48, 50] for more details. Given an inverse category Sop
and an object i ∈ Sop, we denote by Sopi↑ be the category of arrows in Sop with codomain i, then the

matching space functor Mi− : CS
op → C is defined as the composition of the restriction functor

CS
op → CS

op
i↑ and the limit functor CS

op
i↑ → C. Given a functor X : Sop → C : j → Xj , we

denote by MiX the matching space of X at i ∈ Sop, notice that there is a natural Xi → MiX.
Let f : X → Y be a natural transformation in CS

op

, the matching morphism of f at i ∈ Sop is
by definition the induced Xi → Yi ×MiY MiX: we say that f is a Reedy fibration if the induced
matching morphisms are fibration for all i ∈ Sop. For instance, when i ∈ Sop = ωop0 , where ω0 is
the first limit ordinal, then a functor X : ωop0 → C is a tower · · · → X2 → X1 → X0 in C, and X
is a Reedy fibration if and only if X0 is fibrant and all the Xn+1 → Xn, n ≥ 0, are fibrations.

In the following proposition we fix a choice of colim : CS → C and lim : CS
op → C functors.
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Proposition 5.1.2. Let S be a direct category and C a model category. If we equip CS with the
projective model structure then colim : CS → C is a left Quillen functor. If we equip CS

op

with
the injective model structure then lim : CS

op → C is a right Quillen functor.

Remark 5.1.3. In particular lim : CS
op → C preserves fibrations, trivial fibrations and weak

equivalences between fibrant objects.

Definition 5.1.4. Given a model category (C, C,F ,W), a complete and cocomplete category D

and an adjunction F : C // D : Goo : we say that the model category structure on C transfers
along the adjunction if it is well defined - that is, all axioms are satisfied - a model category
structure on D by saying that an arrow f in D is a weak equivalence or a fibration if such is the
arrow G(f) in C, and then by defining cofibrations via the corresponding lifting property. When

this happens F : C // D : Goo becomes automatically a Quillen adjunction.

If the model category C is cofibrantly generated, by sets I of generating cofibrations and J
of generating trivial cofibrations, there is a general and powerful criterion, which can be found in
Hirschorn’ book [48], Theorem 11.3.2, where it is again attributed to Kan, to check whether the

model category structure on C transfers along a given adjunction F : C // D : Goo : when this
criterion is met the transferred model category structure on D is again cofibrantly generated, this
time by F (I) and F (J). It is of course important to reduce to a minimum the things to be checked
in order for the criterion to apply: in the situation we will be interested we can use the following
version of Quillen’s path object argument ([88], Chapter II, 4.9) which we learned from the proof
of [95], Lemma A.3. Recall that a path space factorization of an object X in C is a factorization
of the diagonal X → X ×X as a trivial cofibration followed by a fibration.

Proposition 5.1.5. Let C be a cofibrantly generated model category, D a complete and cocom-
plete category and F : C // D : Goo an adjunction. We notice that since G is a right adjoint
it preserves limits and in particular final objects. If for every object X of D we have that G(X)
is fibrant in C and moreover there is a factorization of the diagonal X → Y → X ×X such that
G(X)→ G(Y )→ G(X ×X) = G(X)×G(X) is a path space factorization of G(X), then the cofi-

brantly generated model category structure on C transfers along the adjunction F : C // D : Goo .

For instance the previous proposition applies when C is the category DG with the model
category structure where fibrations are epimorphisms and weak equivalences quasi-isomorphisms
(this is cofibrantly generated, cf [50], Section 2.3), D is one of the categories DGA, DGCA,
DGLA, F is the free algebra functor and G is the forgetful functor.

Remark 5.1.6. In the claim of the previous proposition we are omitting a technical assumption,
namely that the sets of arrows F (I) and F (J) - where I and J generate the model category
structure on C - should allow the small object argument: however, this will be automatically
satisfied in the aforementioned cases and in the case of Theorem 5.2.28.

Of fundamental importance is the model category of simplicial sets.

Definition 5.1.7. The cosimplicial indexing category is the category ∆ whose objects are finite
ordinals, which we depict as n = [0 · · ·n] and whose morphisms are order preserving maps, which
we depict as n → m : [0 · · ·n] → [i0 · · · in], where 0 ≤ i0 ≤ · · · ≤ in ≤ m. The simplicial indexing
category is the category ∆op. The semicosimplicial indexing category is the subcategory ∆−→ ↪→ ∆
with the same set of objects but morphisms the injective order preserving maps, namely, those
n → m : [0 · · ·n] → [i0 · · · in] with 0 ≤ i0 < · · · < in ≤ m. The semisimplicial indexing category

is the category ∆−→
op. Given a category C, the categories of functors C∆, C∆op

, C
∆−→ and C

∆−→
op
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are called respectively the category of cosimplicial, simplicial, semicosimplicial and semisimplicial
objects in C (e.g. simplicial sets, cosimplicial dg Lie algebras, etc.). Equivalently, objects in
the category C∆ (resp.: C∆op

) could be defined as sequences Xn of objects of C together with
faces ∂i : Xn → Xn+1 (resp.: di : Xn+1 → Xn) and degeneracies σj : Xn+1 → Xn (resp.:
sj : Xn → Xn+1) for all n ≥ 0, 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n satisfying a well known list
of relations, see e.g. [81]: morphisms are collections fn : Xn → Yn commuting with faces and

degeneracies. The categories C
∆−→ and C

∆−→
op

can be defined similarly by only considering faces and
the relations between them. Finally, we denote the category Set∆op

of simplicial sets by SSet.

Each ordinal n represents a simplicial set ∆op → Set : m → ∆(m,n) which is called the
standard n-th simplex and denoted by ∆n, the cosimplicial simplicial set ∆ → SSet : n → ∆n is
called the standard cosimplicial simplex and is denoted by ∆•. According to Yoneda’s lemma for
all simplicial sets X : ∆→ Set : n→ Xn and n ≥ 0 we have a natural identification

Xn = SSet(∆n, X). (5.1.1)

In particular we can depict n-simplices σ ∈ Xn as arrows σ : ∆n → X: we put |σ| = n and call it
the order of σ.

Definition 5.1.8. Given a simplicial set X the category ∆X of simplices of X is the small category
whose objects are all the simplices σ : ∆|σ| → X of X (with |σ| variable) and whose morphisms
are the commutative diagrams

∆|σ| //

σ
!!

∆|τ |

τ}}
X

in SSet. We can reconstruct X from its category of simplices as the colimit of the natural functor
∆X → SSet : σ → ∆|σ|

X = colimσ∈∆X ∆|σ|.

An n-simplex σ ∈ Xn is degenerate if it is in the image of a degeneracy sj : Xn−1 → Xn and
non-degenerate otherwise. The category of non-degenerate simplices of X is the subcategory
∆−→X ↪→ ∆X whose objects are the non degenerate simplices σ : ∆|σ| → X of X and where

morphisms are defined as above, but ∆|σ| → ∆|τ | is required to be a mono (that is, the image
under the functor ∆• of a morphism in the subcategory ∆−→ ↪→ ∆). As before, we can reconstruct
X from the category ∆−→X as the colimit of ∆−→X → SSet : σ → ∆|σ|

X = colimσ∈∆−→X ∆|σ|. (5.1.2)

The category SSet has an internal Hom(−,−) functor, namely, the simplicial mapping space
functor SSet(−,−) : SSetop × SSet→ SSet defined on simplicial sets X and Y by

SSet(X,Y ) : ∆op → Set : n→ SSet(X,Y )n = SSet(X ×∆n, Y )

In other words, SSet(X,Y ) = SSet(X ×∆•, Y ).

We denote by ∆≤n ⊂ ∆ the full subcategory of ordinals ≤ n. The natural restriction functor

SSet = Set∆op → Set∆op
≤n admits a left adjoint, the composition SSet → Set∆op

≤n → SSet of
these two functors is called the n-skeleton and denoted by skn(−), namely, skn(X) is the simplicial
set with the same simplices of X up to order n and after that only the degeneracies of simplices
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of order ≤ n. The boundary ∂∆n of the n-simplex is defined by ∂∆0 = ∅ and for n ≥ 1 by
∂∆n = skn−1(∆n): in other words ∂∆n has the same non-degenerate simplexes as ∆n minus the
top dimensional simplex idn : n→ n. For 0 ≤ i ≤ n the i-th horn Λin is the simplicial set with the
same non-degenerate simplexes as ∆n minus the the top dimensional simplex idn : n→ n and the

i-th face n− 1→ n : [0 · · ·n− 1]→ [0 · · · î · · ·n− 1].

The importance of the category SSet lies in the fact that, while being algebraic in nature, it
admits a model category structure Quillen equivalent to the one on the category Top of topolog-
ical spaces where the fibrations are the Serre fibrations and the weak equivalences are the weak

homotopy equivalences (namely, the f : X → Y inducing an isomorphism πn(f) : πn(X)
∼=−→ πn(Y )

between the homotopy groups for all n ≥ 0). The model category structure on SSet is cofi-
brantly generated: the generating cofibrations are the boundary inclusions ∂∆n → ∆n and the
generating trivial cofibrations are the horn inclusions Λin → ∆n for all n ≥ 1 and 0 ≤ i ≤ n.
The fibrations in the model category SSet, which are called Kan fibrations, are thus defined ac-
cording to the corresponding lifting property with respect to horn inclusions: fibrant object in
the model category SSet are called Kan complexes, the full subcategory of Kan complexes is
denoted by Kan ⊂ SSet. The standard topological n-th simplex |∆n| is defined as usual as
|∆n| =

{
(t0, . . . , tn) ∈ Rn+1 s.t. t0 + · · ·+ tn = 1

}
, they assemble into the standard cosimplicial

topological simplex |∆•| ∈ Top∆: according to the following Proposition 5.1.9 the cosimplicial ob-

ject |∆•| in Top induces an adjunction | − | : SSet // Top : C•(−)oo , where n-simplices of the

simplicial set C•(Y ) are as usual continuous morphisms |∆n| → Y , and the faces and degeneracies
are defined in the obvious way: the left adoint |−| : SSet→ Top is called the geometric realization
functor, roughly, the topological space |X| is obtained by pasting various copies of |∆|σ||, one for
each simplex σ : ∆|σ| → X of X, according to the incidence relation prescribed by the faces and
the degeneracies. Coming back to the model category structure on SSet, the weak equivalences are
the morphisms f : X → Y going into weak homotopy equivalences |f | : |X| ∼−→ |Y | after geometric
realization: there is also a purely combinatorial way to define the homotopy groups πn(X) of a Kan
complex X (we refer to [81], this definition of homotopy groups is the one we will use in the prof
of Theorem 5.2.20), as well as fibrant replacement functors SSet→ Kan (Kan’s Ex∞ functor is a
possible choice, cf. [41]), thus we could characterize the weak equivalences f : X → Y without any
need to leave the category SSet, first if both X and Y are Kan complexes by requiring, as for Top,

that πn(f) : πn(X)
∼=−→ πn(Y ) is an isomorphism for all n ≥ 0, and then in general by requiring that

the induced morphisms between fibrant replacements (for instance Ex∞(f) : Ex∞(X)→ Ex∞(Y ))
is a weak equivalence. Finally, the class of cofibrations in SSet is determined by the other two
and the corresponding lifting property: cofibrations turn out to be simply the monomorphisms

of simplicial sets X ↪→ Y . With these definitions the adjunction | − | : SSet // Top : C•(−)oo

becomes a Quillen equivalence of model categories [89, 50].

We recall the correspondence between cosimplicial objects in a category C and adjunctions
F : SSet // C : Goo , in combination with Proposition 5.1.5 this gives a powerful way to generate

a cofibrantly generated model category structure on C from a minimal amount of data, namely,
a cosimplicial object of C. As in [50], we can define the category with objects the adjunctions

F : SSet // C : Goo .

Proposition 5.1.9. Let C be a cocomplete category. There is an equivalence of categories between
the category C∆ of cosimplicial objects in C and the category of adjunctions F : SSet // C : Goo .

Proof. We refer to [50] Proposition 3.1.5, here we just recall the construction of the correspondence.

Given an adjunction F : SSet // C : Goo the corresponding cosimplicial object in C is just
the image F (∆•) of the standard cosimplicial simplex. Conversely, given a cosimplicial object
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X : ∆ → C : n → Xn of C, since C is cocomplete, it is defined by formal nonsense a colimit
preserving F : SSet→ C : Y → F (Y ) := colimσ∈∆Y X|σ|, the right adjoint G is given by

G : C→ SSet : Z → {G(Z) : ∆op → Set : n→ G(Z)n = C(Xn, Z)} .

This allows a two steps construction of a cofibrantly generated model category structure on
the category C: first we give a cosimplicial object of C, then we look at the induced adjunction
F : SSet // C : Goo and try to see if the conditions of Proposition 5.1.9 (or more in general Kan’s

criterion [48]) are satisfied: when this happens the model category structure on SSet transfers to
a cofibrantly generated model category structure on C, where the generating cofibrations are the
F (∂∆n) → F (∆n) and the generating trivial cofibrations are the F (Λin) → F (∆n), for all n ≥ 1
and 0 ≤ i ≤ n. We will follow this strategy in the proof of Theorem 5.2.28.

Example 5.1.10. We apply the previous proposition with the cosimplicial simplicial set skk(∆•).
The left adjoint is the k-th skeleton skk(−), as this preserves colimits, while the right adjoint is
called the k-th coskeleton functor and denoted by coskk(−) : SSet→ SSet. By definition, given a
simplicial set X the k-coskeleton is the simplicial set coskk(X)n = SSet(skk(∆n), X). A simplicial
set is said to be k-coskeletal if it is in the essential image of coskk(−), equivalently, if the natural
X → coskk(X) given by Xn = SSet(∆n, X)→ SSet(skk ∆n, X) = coskk(X)n is an isomorphism.

Finally, although we won’t really need the next definition, we believe it is important to keep
it in mind in order to better understand the results of the following sections. Recall that given a
horn Λin → X and a factorization Λin → ∆n

σ−→ X, the n-simplex σ : ∆n → X is called a filling of
the horn. Kan complexes are by definition those simplicial sets such that every horn admits a (in
general not unique) filling.

Definition 5.1.11. A weak T -complex (X,TX) is a simplicial set X equipped with a family of
distinguished simplexes TnX ⊂ Xn, n ≥ 1, called the thin simplexes, such that

1. every degenerate simplex is thin; and

2. every horn Λin → X admits a unique thin filling, for all n ≥ 1 and 0 ≤ i ≤ n.

A morphism f : (X,TX)→ (Y, TY ) of weak T -complexes is a morphism f : X → Y of simplicial
sets such that f(TnX) ⊂ TnY , ∀n ≥ 1. It is clear, by item 2, that the forgetful functor sending
(X,TX) to the simplicial set X factors through the full subcategory Kan ⊂ SSet of Kan com-
plexes. We denote by wTKan the category of weak T -complexes. We say that a weak T -complex
is of rank k if every n-simplex is thin for n > k, we denote by wTKan≤k ⊂ wTKan the full
subcategory of weak T -complexes of rank k.

We call a horn Λin → X a thin horn if all of its (n − 1)-th faces are thin. A weak T -complex
(X,TX) is a T -complex if moreover

3. in the unique thin filling of a thin horn, the remaining (n− 1)-th face is also thin.

We denote by TKan ⊂ wTKan the full subcategory of T -complexes, and by TKan≤k ⊂ TKan
the full subcategory of T -complexes of rank k. .
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Remark 5.1.12. In the theses of Ashley [1] and Dakin [26] it is shown that T -complexes are equiv-
alent in a precise sense to crossed complexes over groupoids: in particular the full subcategory
TKan≤1 ⊂ TKan of T -complexes of rank ≤ 1 is equivalent to the category of groupoids via the
nerve and fundamental groupoid functors, and we refer to [1, 26] for a detailed proof of the fact that
the full subcategory TKan≤2 ⊂ TKan of T -complexes of rank ≤ 2 is equivalent to the category
of crossed modules over groupoids. Objects in the category of weak T -complexes should then be
considered as the nerves of weak crossed complexes over groupoids (whatever the latter means!),
in fact in [39] they are simply called ∞ groupoids. Morphisms in the category wTKan should be
thought of as strict morphisms between ∞ groupoids: accordingly, it would be interesting to have
a category wT Kan of weak T -complexes and weak morphisms between them.

5.2 The Deligne-Getzler ∞ groupoid of a complete L∞ al-
gebra

Let (V, F •V, q1, . . . , qn, . . .) be a complete L∞[1] algebra, there is an associated simplicial complete
L∞[1] algebra C(∆•;V ) of non-degenerate cochains on the standard cosimplicial simplex ∆• with
coefficients in V , as in Definition 3.2.5. According to Lemma 2.2.3, given a strict continuous
morphism f : V → W the various f∗ : C(∆n;V ) → C(∆n;W ) fit into a simplicial pushforward

f∗ : C(∆•;V )→ C(∆•;W ), thus we have a functor C(∆•;−) : L̂∞[1]→ L̂∞[1]∆
op

. Of course the

Maurer-Cartan functor MC(−) : L̂∞[1]→ Set also induces a functor MC(−) : L̂∞[1]∆
op → SSet.

Definition 5.2.1. The functor Del∞(−) : L̂∞[1]→ SSet is the composition

Del∞(−) : L̂∞[1]
C(∆•;−)−−−−−−→ L̂∞[1]∆

op MC(−)−−−−→ SSet.

Given a complete L∞[1] algebra (V, F •V, q1, . . . , qn, . . .) we call the simplicial set Del∞(V ) :=
MC(C(∆•;V )) the Deligne-Getzler ∞ groupoid of V (or sometimes, for simplicity, the higher
Deligne groupoid of V ).

Remark 5.2.2. We observe that Del∞(V ) actually only depends on the L∞[1] structure Q on V ,
and not on the particular filtration F •V making (V,Q) into a complete L∞[1] algebra.

Remark 5.2.3. If we had the enhancement C(∆n;−) : L̂∞[1] → L̂∞[1] from Remark 3.2.8, we

would also have enhancements C(∆•;−) : L̂∞[1]→ L̂∞[1]∆
op

and Del∞(−) : L̂∞[1]→ SSet.

We have the following formal consequence of the definition, which anticipates the more profound
relationship between Del∞(−) and simplicial mapping spaces in Theorem 5.2.16.

Lemma 5.2.4. There is a natural isomorphism MC(C(−;−))
∼=−→ SSet(−,Del∞(−)) of functors

SSetop × L̂∞[1]→ Set.

Proof. Let V be a complete L∞[1] algebra and X a simplicial set, recall that we denote by ∆−→X

the direct category of non degenerate simplices of X (Definition 5.1.8) and the natural isomor-
phism X = colimσ∈∆−→X

∆|σ|. The induced natural C(X;V ) → limσ∈(∆−→X)op C(∆|σ|;V ) is a dg

isomorphism, thus also a strict isomorphism of the transferred L∞[1] algebra structures, and since
MC(−) commutes with small limits

MC(C(X;V )) = limσ∈(∆−→X)op MC(C(∆|σ|;V )) =: limσ∈(∆−→X)op Del∞(V )|σ| =
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= limσ∈(∆−→X)op SSet(∆|σ|,Del∞(V )) = SSet(colimσ∈∆−→X
∆|σ|,Del∞(V )) = SSet(X,Del∞(V )).

That this is natural in X and V is easy and left to the reader.

For instance this immediately implies

Corollary 5.2.5. If for some k ≥ 0 the complete L∞[1] algebra V is concentrated in degrees > −k,
then the simplicial set Del∞(V ) is k-coskeletal (Example 5.1.10).

Proof. If X is a simplicial set and V is concentrated in degrees > −k then clearly pullback by the

inclusion restricts to isomorphisms C0(X;V )
∼=−→ C0(skk(X);V ) and C1(X;V )

∼=−→ C1(skk(X);V ),
in particular it sends MC(C(X;V )) isomorphically onto MC(C(skk(X);V )). Thus by the previous
lemma the natural

Del∞(V )n = SSet(∆n,Del∞(V ))→ coskk(Del∞(V ))n := SSet(skk(∆n),Del∞(V ))

is an isomorphism.

Another useful lemma is an immediate corollary of Lemma 3.2.6.

Lemma 5.2.6. The functor Del∞(−) commutes with small limits.

Recall that an L∞[1] algebra (V, q1, . . . , qn, . . .) has a canonical compatible filtration F •V , the
central descending filtration: this is the smallest compatible filtration on V , it can be defined
recursively so that F pV is the span of qk(F p1V � · · · � F pkV ), ∀k ≥ 2, p1 + · · · + pk = p, and of
course F 1V = V . The L∞[1] algebra V is nilpotent if F pV = 0 for some p� 0. A nilpotent L∞[1]
algebra is complete when equipped with the central descending filtration.

Proposition 5.2.7. The restriction of Del∞(−) to the full subcategory of nilpotent L∞[1] algebras
is naturally isomorphic to the functor γ•(−) defined by Getzler in [39].

Proof. Recall that Getzler defines the simplicial set γ•(V ) = {γn(V )}n≥0 by

γn(V ) = {ω ∈ MC(Ωn ⊗ V ) s.t. (K ⊗ idV )(ω) = 0} ,

where K is Dupont’s contraction operator (3.1.2). For a nilpotent L∞[1] algebra V the completed
tensor product Ωn⊗̂V =: Ω(∆n;V ) and the usual tensor product Ωn ⊗ V , with the filtration
F p(Ωn ⊗ V ) = Ωn ⊗ F pV , are naturally isomorphic. We apply Theorem 2.3.3 to Dupont’s con-
traction (3.2.1).

Remark 5.2.8. Let (V, F •V, q1, . . . , qn, . . .) ba a complete L∞[1] algebra, then V = lim V/F pV in

the category L̂∞[1], where we equip V/F pV with the induced filtration F q(V/F pV ) = F qV/F pV
if 1 ≤ q ≤ p, and F q(V/F pV ) = 0 if q > p. By Lemma 5.2.6 Del∞(V ) = lim Del∞(V/F pV ), for
each p ≥ 1 the L∞[1] algebra V/F pV is nilpotent, and as we already remarked it doesn’t really
matter which filtration we are considering on it: by the previous proposition Del∞(−) extends the

functor γ•(−) to the category L̂∞[1] according to Del∞(V ) = lim γ•(V/F pV ), as in [6].

Example 5.2.9. Let (V, q1, 0, . . . , 0, . . .) be an abelian L∞[1] algebra, of course it is a nilpotent
L∞[1] algebra, and the central descending filtration becomes F 1V = V , F pV = 0, ∀p ≥ 2.
Since extension of scalars and homotopy transfer send abelian L∞[1] structures to abelian L∞[1]
structures, every C(∆n;V ) is an abelian L∞[1] algebra, and Del∞(V ) is the simplicial vector
space Del∞(V )n = Z0(C(∆n;V )), where Z0(−) : DG → V is the functor of 0-cocycles. A
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direct inspection shows that under the Dold-Kan correspondence V∆op → DG≤0 (cf. [107]) from
simplicial vector spaces to complexes concentrated in non positive degrees, Del∞(V ) goes into the
0-truncation of the complex (V, q1)

· · · q1 // V −2 q1 // V −1 q1 // Z0(V ) .

In particular, by [107], Theorem 8.4.1, we see that πi(Del∞(V ), x) ∼= H−i(V ) for all i ≥ 0 and
(when i ≥ 1) all base points x ∈ MC(V ) = Z0(V ).

We recall some result from [39], Section 5.

Theorem 5.2.10. A strict morphism f : V → W of complete L∞[1] algebras induces a Kan
fibration Del∞(f) : Del∞(V ) → Del∞(W ) of simplicial sets if and only if it is surjective in de-
grees < 0. In particular, the functor Del∞(−) factors through the full subcategory Kan ⊂ SSet of
Kan complexes.

Proof. For n ≥ 1 and 0 ≤ i ≤ n we denote by λin : Λin → ∆n the i-th horn. By Lemma 5.2.4 the
set of horns Λin → Del∞(V ) is in bijective correspondence with MC(C(Λin;V )). We consider the
contraction

( C(∆n;V )
(λin)∗ // C(Λin;V )
f1

oo ,K).

The dg morphism f1 is defined by f1(β)0···n = 0, f1(β)0···̂i···n =
∑
j 6=i(−1)i+j+1β0···̂j···n and

(λin)∗f1 = idC(Λin;V ). The operator K is defined by K(α)0···̂i···n = (−1)i+1α0···n and K(α) eval-
uates at 0 elsewhere. If the notations are confusing cf. Section 3.1. By Theorem 2.3.3 (cf. also
Lemma 2.2.7) there is an identification

Del∞(V )n
∼=−→ MC(C(Λin;V ))× V −n : α→ ((λin)∗(α), α0···n).

Likewise,

SSet(Λin,Del∞(V ))×SSet(Λin,Del∞(W )) Del∞(W )n
∼=−→

∼=−→ MC(C(Λin;V ))×MC(C(Λin;W ))

(
MC(C(Λin;W ))×W−n

)
= MC(C(Λin;V ))×W−n.

.

By definition Del∞(f) is a Kan fibration if and only if for every horn Λin → ∆n the induced

Del∞(V )n → SSet(Λin,Del∞(V ))×SSet(Λin,Del∞(W )) Del∞(W )n

is surjective, and this identifies with

id×f : MC(C(Λin;V ))× V −n → MC(C(Λin;V ))×W−n.

Definition 5.2.11. We denote by MC(−) the functor MC(−) := π0(Del∞(−)) : L̂∞[1] → Set.
By the previous proposition, if V is a complete L∞[1] algebra then the setMC(V ) is the quotient
of Del∞(V )0 = MC(V ) by an equivalence relation, which by extension of the case of a dg Lie
algebra we call the Gauge equivalence relation (cf. Definition 5.2.33).
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We introduce, for i = 0, . . . , n, a degree minus one operator hi : C(∆n;V ) → C(∆n;V ): with
the same notations of Definition 3.1.1

hi : Ck+1(∆n;V )→ Ck(∆n;V ) :

: α→ hi(α)i0···ik =

{
0 if i ∈ {i0, · · · , ik}
(−1)jαi0···ij−1iij ···ik if 0 ≤ i0 < · · · < ij−1 < i < ij < · · · < ik ≤ n

We denote by ei : ∆0 → ∆n : [0] → [i] the i-th vertex of ∆n and by π : ∆n → ∆0 the final
morphism. We leave to the reader to check that the above operator hi fits into a contraction

( C(∆n;V )
e∗i // V
π∗
oo ,−hi)

satisfying the hypotheses of Lemma 2.2.7. If ∂i : ∆n−1 → ∆n : [0 · · ·n − 1] → [0 · · · î · · ·n] is the
i-th face of the simplex ∆n, then we notice that ∂∗i sends Im hi

⋂
C−1(∆n;V ) isomorphically onto

C−1(∆n−1;V ). Now Theorem 2.3.3 (cf. also Lemma 2.2.7) implies the following result.

Proposition 5.2.12. For all i = 0, . . . , n the correspondence

ρi : Del∞(V )n → MC(V )× C−1(∆n−1;V ) : α→ (e∗i (α), ∂∗i h
i(α))

is bijective.

Remark 5.2.13. Lemma 3.1.3 and Lemma 3.1.4 together show that

(

∫
⊗ idV )(hi ⊗ idV ) = hi(

∫
⊗ idV ) : Ωn ⊗ V → C(∆n;V ),

where
∫
⊗ idV : Ωn ⊗ V → C(∆n;V ) is integration of forms, hi ⊗ idV : Ωn ⊗ V → Ωn ⊗ V in the

left hand side is as in Equation (3.1.1) and finally hi : C(∆n;V ) → C(∆n;V ) in the right hand
side is as above. Keeping this in mind, the reader will recognize that the above proposition is the
same as [39], Lemma 5.3.

Remark 5.2.14. We can visualize the thesis of the previous proposition as follows: for each n ≥ 0
and 0 ≤ i ≤ n we call the open star around the vertex ei ∈ ∆n the collection of (non-degenerate)
simplices which are not in the opposite face ∂i∆n (notice that an open star is not a subsimplicial
set), and we assign a Maurer-Cartan element to ei and arbitrary elements in V −j for each j-simplex
of the open star around ei, as in the following pictures (where x ∈ MC(V ), a, b ∈ V −1 and η ∈ V −2)

x
a //

x

b

��

η
a

@@

The previous proposition tells us that for any such a choice there is a unique Maurer-Cartan cochain
in Del∞(V )n with the assigned restriction on the open star around ei. Evaluating this cochain on
the face ∂i∆n defines functions

γ1,i
− : MC(V )× V −1 → MC(V ) : (x, a)→ γ1,i

x (a), i = 0, 1, and for n ≥ 2

γn,i− : MC(V )×
n∏

i=i

(
V −i

)×(ni) → V 1−n, 0 ≤ i ≤ n,
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as in the following figures

x
a // := γ1,0

x (a)

x

b

  

η

γ1,1
x (a)

a

>>

:=γ2,1
x (a,b,η)

// γ1,0
x (b)

The functions γn,i− are called generalized Baker-Campbell-Hausdorff series in [39] (more precisely,

Getzler defines these series as the functions γn,i− = γn,i− (−, 0) : MC(V )×∏n−1
i=i

(
V −i

)×(ni) → V 1−n):

this is because when L is a complete dg Lie algebra then γ2,1
0 (−,−) = γ2,1

0 (−,−, 0) : L0×L0 → L0

is precisely the Baker-Campbell-Hausdorff product on L0, cf. Proposition 5.2.36. In this case,
moreover, we will see in Proposition 5.2.34 that the functions γ1,0

− , γ1,1
− : MC(L) × L0 → MC(L)

recover the usual Gauge action ∗ : exp(L0)×MC(L)→ MC(L) of the exponential group on Maurer-
Cartan elements (the Gauge action will be reviewed, together with the Baker-Campbell-Hausdorff
product, in Section 5.3.1), more precisely, we have γ1,0

x (a) = e−a ∗ x and γ1,1
x (a) = ea ∗ x. We

refer to [39], Proposition 5.7, for an explicit computation of γ1,0
− , γ1,1

− in the case of a general L∞[1]
algebra. The higher Baker-Campbell-Hausdorff γn.i− should be intimately related with the structure
of ∞ groupoid (in Getzler’s sense) on Del∞(V ), cf. Proposition 5.2.22 and the following remark.

The main result of [39] is the weak equivalence of the functor Del∞(−) and the classical Hinich-

Sullivan functor MC∞(−) := MC(Ω(∆•;−)) : L̂∞[1] → SSet [100, 45] . This will be reviewed at
the end of the section. Instead we turn our attention to the proof of an important theorem by
Berglund [6] and Brown-Szczarba [14] (where in the latter they consider MC∞(−)) on the relation
between the functor Del∞(−) and simplicial mapping spaces. First we need to prove the following
analog of Proposition 1.3.21.

Proposition 5.2.15. If 0→ I → V → W → 0 in an extension of complete L∞[1] algebras, as in
Definition 1.3.31, the square in SSet

Del∞(I) //

��

Del∞(V )

��
∆0

0 // Del∞(W )

is cartesian, where we denote by ∆0
0−→ Del∞(W ) the inclusion of the vertex 0 ∈ MC(W ). If

0 → I → V → W → 0 is a central extension of complete L∞[1] algebras, then the simplicial
abelian group Del∞(I) acts principally on the right on Del∞(V ). Moreover, there is an obstruction
map o : MC(W ) → H1(I) such that the kernel of the obstruction coincides with the image of
MC(V ) →MC(W ). Finally, if we denote by K(W ) the Kan subcomplex of Del∞(W ) consisting
of connected components in Ker o, then Del∞(V )→ K(W ) is isomorphic to the principal fibration
associated to the action of Del∞(I), as in [81], § 18.

Proof. The first claim follows from Lemma 5.2.6, as

I

��

// V

��
0 // W
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is a cartesian square in L̂∞[1].

We claim that a Maurer-Cartan cochain α ∈ Del∞(W )n lifts to α̃ ∈ Del∞(V )n if and only if
for some (and then for all) i = 0, . . . , n its evaluation x := e∗i (α) ∈ MC(W ) at the i-th vertex
ei : ∆0 → ∆n : [0]→ [i] lifts to a Maurer-Cartan element x̃ ∈ MC(V ): in fact, we have a morphism
of central extensions of complete L∞[1] algebras

0 // C(∆n; I) //

e∗i
��

C(∆n;V ) //

e∗i
��

C(∆n;W ) //

e∗i
��

0

0 // I // V // W // 0

and by Remark 1.3.22 H(e∗i )(o(α)) = o(e∗i (α)) = o(x), as H(e∗i ) is an isomorphism the claim
follows. By Proposition 1.3.21 the abelian group Del∞(I)n = Z0(C(∆n; I)) acts on the right on
the set of Maurer-Cartan liftings of α, when this is not empty.

Next we claim that the obstruction map o : MC(W ) → H1(I) from Proposition 1.3.21 factors
through the projection MC(W ) → MC(W ): in fact, we notice that H(e∗0) = H(e∗1), as they are
both inverses to pullback by the final morphism H(π∗) : H(W ) → H(C(∆1;W )), thus, given
Maurer-Cartan elements x, y ∈ MC(W ) and α ∈ Del∞(W )1 such that x = e∗0(α), y = e∗1(α),
we see that o(x) = H(e∗0)(o(α)) = H(e∗1)(o(α)) = o(y). By the previous claim the resulting
o :MC(W )→ H1(I) has the required properties.

Now the rest of the proposition follows easily.

Recall that we denote by SSet(−,−) = SSet(∆•×−,−) : SSetop×SSet→ SSet the simplicial
mapping space functor, as in the previous section. The reader should compare the following
theorem with [6], Theorem 5.5, and with [14], Theorem 2.20, in particular, notice that we are not
putting any restriction on X or V .

Theorem 5.2.16. There is a natural weak equivalence Del∞(C(−;−))
∼−→ SSet(−,Del∞(−)) of

functors SSetop × L̂∞[1]→ SSet.

Proof. For a complete L∞[1] algebra V , a simplicial set X and an integer n ≥ 0, we define the
required Del∞(C(X;V ))n −→ SSet(X,Del∞(V ))n as the following long composition (at this point
the reader should probably take another look at Remark 2.2.4, which was made having the next
passage in mind)

Del∞(C(X;V ))n = MC(C(∆n;C(X;V )))
MC(F )−−−−→

MC(F )−−−−→ MC(Ω(∆n; Ω(X;V )))
MC(p∗1∧p∗2)−−−−−−−→ MC(Ω(∆n ×X;V ))

MC(G)−−−−→
MC(G)−−−−→ MC(C(∆n ×X;V ))

∼=−→ SSet(∆n ×X,Del∞(V )) = SSet(X,Del∞(V ))n,

where F is the composite homotopy transfer morphism

C(∆n;C(X;V ))→ Ωn⊗̂C(X;V )→ Ωn⊗̂(Ω(X)⊗̂V ) = Ω(∆n; Ω(X;V )),

cf. Lemma 2.2.8, G : Ω(∆n×X;V )→ C(∆n×X;V ) is induced by homotopy transfer as in Remark
2.2.4, p1 and p2 are the projections of ∆n×X onto the first and second factor respectively and finally
p∗1 ∧p∗2 : Ω(∆n; Ω(X;V )) = Ωn⊗̂(Ω(X)⊗̂V ) = (Ωn⊗Ω(X))⊗̂V → Ω(∆n×X)⊗̂V = Ω(∆n×X;V )
is induced by

Ωn ⊗ Ω(X)
p∗1⊗p∗2−−−−→ Ω(∆n ×X)⊗2 ∧−→ Ω(∆n ×X).
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The fact that this defines a morphism of simplicial sets and the fact that this is natural in X and
V are both consequences of Lemma 2.2.3 and Remark 2.2.4.

Remark 5.2.17. Notice that we used in an essential way the fact that we are requiring naturality
only with respect to strict L∞[1] morphisms f : V → W . This is trivially so, since we don’t

know any way to define an enhancement C(X;−) : L̂∞[1] → L̂∞[1], but there is another reason

more subtle: as already remarked such an enhancement Ω(X;−) : L̂∞[1] → L̂∞[1] exists, since

scalar extension by a dg commutative algebra is a functor L̂∞[1] → L̂∞[1]. If we look for an
enhancement of C(X;−) such that F and G remain natural transformation as in Lemma 2.2.3
and Remark 2.2.4, then the pushforward of an L∞[1] morphism H : V → W would have to be

H∗ : C(X;V )
F−→ Ω(X;V )

H∗−−→ Ω(X;W )
G−→ C(X;W ): in fact, when H = h is strict the above

composition is precisely h∗ : C(X;V ) → C(X;W ). On the other hand this definition fails to be
functorial with respect to general L∞[1] morphisms, as one can see by looking at the case when

V and W are abelian. To sum up, even if we had an enhancement C(X;−) : L̂∞[1]→ L̂∞[1] this

can’t be obtained by transferring the enhancement Ω(X;−) : L̂∞[1]→ L̂∞[1]. Moreover, to give a

natural transformation Del∞(C(−;−))
∼−→ SSet(−,Del∞(−)) of functors SSetop×L̂∞[1]→ SSet

we would still need a natural C(∆n;C(X;−))
∼−→ C(∆n ×X;−) of functors L̂∞[1]→ L̂∞[1], that

is, a natural L∞[1] enhancement of the classical Eilenberg-Zilber quasi-isomorphism, and this can’t
be obtained anymore by transferring the natural Ω(∆n; Ω(X;−))

∼−→ Ω(∆n ×X;−).

Having defined the natural Del∞(C(X;V )) −→ SSet(X,Del∞(V )), we have to check that this
is a weak equivalence. Pull back from the terminal morphism π : X → ∆0 induces

Del∞(V ) = Del∞(C(∆0;V ))→ Del∞(C(X;V )) and

Del∞(V ) = SSet(∆0,Del∞(V ))→ SSet(X,Del∞(V )),

and the following diagram is commutative

Del∞(C(X;V )) // SSet(X,Del∞(V ))

Del∞(V )

gg 66

When X = ∆m is a simplex, since ∆m is contractible, that is, ∆m → ∆0 is a weak equivalence,
and Del∞(V ) is a Kan complex, it is well known that Del∞(V )→ SSet(∆m,Del∞(V )) is a weak
equivalence. We claim that Del∞(V ) → Del∞(C(∆m;V )) is a weak equivalence for all m ≥ 0,
thus, by two out of three, so is Del∞(C(∆m;V )) −→ SSet(∆m,Del∞(V )).

When V is abelian with the central descending filtration, so is C(∆m;V ) for all m ≥ 0, and
the claim follows from Example 5.2.9. We suppose inductively that the claim has been proved for
the nilpotent L∞[1] algebra V/F pV , the filtration defined as in Remark 1.3.13, and wish to prove
it for the nilpotent L∞[1] algebra V/F p+1V . Consider the diagram

0 // C(∆m;F pV/F p+1V ) // C(∆m;V/F p+1V ) // C(∆m;V/F pV ) // 0

0 // F pV/F p+1V //

π∗

OO

V/F p+1V //

π∗

OO

V/F pV //

π∗

OO

0

The rows are central extensions of complete L∞ algebras, we will use Proposition 5.2.15: re-
call from its claim the definition of K(V/F pV ), K(C(∆;V/F pV )). By the inductive hypothesis
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Del∞(V/F pV )→ Del∞(C∗(∆m;V/F pV )) is a weak equivalence, and by naturality of the obstruc-
tions it restricts to a weak equivalence K(V/F pV ) → K(C(∆m;V/F pV )), but then we also see
that Del∞(V/F p+1V ) → Del∞(C(∆m;V/F p+1V )) is a morphism of principal fibrations inducing
weak equivalences between the bases and the fibres, hence a weak equivalence. This concludes the
inductive step, the claim for V = lim V/F pV follows since

lim Del∞(V/F pV ) = Del∞(V )→ Del∞(C(∆m;V )) = lim Del∞(C(∆m;V/F pV ))

is the limit of a weak equivalence between injectively fibrant towers of simplicial sets, cf. Re-
mark 5.1.3 (here the Reedy fibrancy condition explained in Remark 5.1.1 simply says that all the
arrows of the tower are fibrations and the bottom is fibrant, which is clear by Theorem 5.2.10).

Finally, the morphism Del∞(C(X;V )) → SSet(X,Del∞(V )) is a weak equivalence, since it is
the limit

limσ∈(∆
−→
X)op Del∞(C(∆|σ|;V ))→ limσ∈(∆

−→
X)op SSet(∆|σ|,Del∞(V ))

of a weak equivalence between injectively fibrant diagrams of simplicial sets over the inverse cate-
gory (∆−→X)op of non degenerate simplices of X. For instance, the fact that

Del∞(C(∆|−|;V )) : (∆−→X)op → SSet : σ → Del∞(C(∆|σ|;V ))

where σ : ∆|σ| → X is a non-degenerate simplex of X, is Reedy fibrant, that is, all matching
morphisms

Del∞(C(∆|σ|;V ))→Mσ Del∞(C(∆|−|;V )) := limτ∈(∆
−→
X)op,τ<σ Del∞(C(∆|τ |;V ))

are fibrations, cf. Remark 5.1.1, where τ < σ means that the non-degenerate simplex τ is a proper
face of the non-degenerate simplex σ, follows from the fact that Del∞(−) commutes with small
limits and Theorem 5.2.10.

In [6] the previous theorem is proved via the explicit computations of the homotopy groups
πi(Del∞(V ), x), for all n ≥ 1 and all base points x ∈ MC(V ), next we want to review this
computation

Definition 5.2.18. Given a complete L∞[1] algebra V and a Maurer-Cartan element x ∈ MC(V ),
we call πi(Del∞(V ), x) the i-th homtopy group of V at x and we denote it by πi(V, x).

Given x ∈ MC(V ) we denote by Vx the L∞[1] algebra obtained after twisting the L∞[1] structure
on V by x, as in Proposition 1.3.17.

Lemma 5.2.19. Let V be a complete L∞[1] algebra. For all x ∈ MC(V ) and i ≥ 1, there is a
natural isomorphism of groups πi(V, x) ∼= πi(Vx, 0).

Proof. (cf. [6], Proposition 4.9) Let π : ∆n → ∆0 be the final morphism, x ∈ MC(V ) and
MC(π∗)(x) ∈ Del∞(V )n (MC(π∗)(x) is the 0-cochain which evaluates to x at the vertices of ∆n

and to zero elsewhere). As it is easy to see that C(∆n;V )MC(π∗)(x) = C(∆n;Vx), the thesis follows
from Lemma 1.3.18, which implies in fact an isomorphism (Del∞(V ), x)→ (Del∞(Vx), 0) of pointed
simplicial sets.

Theorem 5.2.20. Let (V, F •V, q1, . . . , qn, . . .) be a complete L∞[1] algebra together with a Maurer-
Cartan element x ∈ MC(V ). For all i ≥ 2 there is an isomorphism πi(V, x) ∼= H−i(Vx) of
abelian groups. Moreover, π1(V, x) ∼= H−1(Vx), the latter seen as a group via the Baker-Campbell-
Hausdorff product.
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Proof. Cf. Section 5.3.1 for the definition of the Baker-Campbell-Hausdorff product. By the pre-
vious lemma we are reduced to the case x = 0, we may also suppose that F •V is the central
descending filtration, cf. Remark 5.2.2. Recall from [81], Definition 3.6, the following combina-
torial description, due to D. M. Kan, of the homotopy groups πi(V, 0). Let π̃i(V, 0) be the set of
Maurer-Cartan cochains α ∈ MC(C(∆i, ∂∆i;V )) ⊂ MC(C(∆i;V )) = Del∞(V )i, in other words, α
evaluates at zero everywhere but on the top dimensional simplex. This set is in bijective correspon-
dence with the set of (−i)-cocycles z ∈ Z−i(V ) via α→ α0···i = z ∈ V −i, in fact, since we immedi-
ately see thanks to Lemma 2.2.3 that the L∞[1] subalgebra C(∆i, ∂∆i;V ) ⊂ C(∆i;V ) is abelian,
such an α is Maurer-Cartan if and only if q1(z) = 0. As a set, πi(V, 0) is the quotient of π̃i(V, 0)
by the homotopy relation: recall, [81] Definition 3.1, that given z, z′ ∈ Z−i(V ) and the respective
α, α′ ∈ π̃i(V, 0) a homotopy between α and α′ is a Maurer-Cartan cochain β ∈ MC(C(∆i+1;V ))
such that β evaluates at zero everywhere but on the last two faces β0···̂i(i+1) = z, β

0···i(̂i+1)
= z′

and on the top dimensional simplex β0···i(i+1) = v ∈ V −i−1.

Given i ≥ 1 we denote by τ≤−iV the truncation of V at the degree (−i), that is, the L∞[1]
subalgebra τ≤−iV ⊂ V such that (τ≤−iV )j = V j for j < −i, (τ≤−iV )−i = Z−i(V ) and finally
(τ≤−iV )j = 0 for j > −i. By the previous discussion it is clear that the inclusion τ≤−iV → V
induces an isomorphism πi(τ≤−iV, 0)→ πi(V, 0): in fact any two α, α′ ∈ π̃i(V, 0) and any homotopy
between them factor through the inclusion Del∞(τ≤−iV )→ Del∞(V ). We consider H−i(V ) as an
L∞[1] algebra concentrated in degree (−i), equipped with the trivial L∞[1] structure if i > 1,
and with the Lie bracket induced by q2 if i = 1. It is straightforward that τ≤−iV → H−i(V )
sending z ∈ Z−i(V ) to its cohomology class [z] ∈ H−i(V ) (and obviously V j to zero if j < −i)
is a strict morphism of L∞[1] algebras, as such it induces πi(τ≤−iV, 0) → πi(H

−i(V ), 0): we
claim that this is an isomorphism for all i ≥ 1. The claim implies the thesis: in fact, we see by
Example 5.2.9 that πi(H

−i(V ), 0) ∼= H−i(V ) as abelian groups whenever i > 1, moreover, it will
follow from Proposition 5.2.36 that π1(H−1(V ), 0) ∼= H−1(V ), the latter seen as a group via the
Baker-Campbell-Hausdorff product.

Surjectivity of πi(τ≤−iV, 0)→ πi(H
−i(V ), 0) is clear by the previous explicit description as sets,

to show injectivity we notice that the induced

Z−i(V )
∼=−→ π̃i(τ≤−iV, 0)→ πi(τ≤−iV, 0)→ πi(H

−i(V ), 0)
∼=−→ H−i(V )

sends z ∈ Z−i(V ) to its cohomology class [z] ∈ H−i(V ), so we have to show that if z = dv
for some v ∈ V −i−1 then the corresponding Maurer-Cartan cochain α ∈ π̃i(τ≤−iV, 0) is homo-
topic to zero. The homotopy is given by β ∈ MC(C(∆i+1,Λ

i
i+1; τ≤−iV )) ⊂ MC(C(∆i+1; τ≤−iV ))

such that β0···̂i(i+1) = z and β0···i(i+1) = v: the fact that β is Maurer-Cartan follows since

C(∆i+1,Λ
i
i+1; τ≤−iV ) is an abelian L∞[1] subalgebra of C(∆i+1; τ≤−iV ), again by Lemma 2.2.3.

We close this long section by comparing some properties of the functor Del∞(−) and the
more classical Hinich-Sullivan functor MC(−)∞. We have already observed that the functor of

polynomial forms Ω(∆•;−) : L̂∞[1]→ L̂∞[1]∆
op

on the standard cosimplicial simplex has a natural

enhancement to a functor Ω(∆•;−) : L̂∞[1]→ L̂∞[1]∆
op

, since scalar extension by a commutative
dg algebra is a functor L∞[1]→ L∞[1].

Definition 5.2.21. The functor MC∞(−) : L̂∞[1]→ SSet is the composition

MC∞(−) : L̂∞[1]
Ω(∆•;−)−−−−−→ L̂∞[1]∆

op MC(−)−−−−→ SSet
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Given a complete L∞[1] algebra V we call the simplicial set MC∞(V ) the Maurer-Cartan ∞
groupoid of V 1.

Of course one of the advantages of working with the functor MC∞(−) is that it is easily defined
on L∞[1] morphisms: for instance in the recent preprint [29] it is proven the expected result that
given a continuous L∞[1] morphism F : V → W , if F is a weak equivalence then so is MC∞(F ).
There are some technical advantages when working with the functor Del∞(−), for instance the fact
that it commutes with all small limits whereas in general MC∞(−) only commutes with finite limits.
From the point of view of homotopy theory we will prove after Getzler [39] that the space Del∞(V )
is a deformation retract of the space MC∞(V ), in particular they both model the same rational
homotopy type. In this context the role of the functor Del∞(−) will become apparent in the next
section: it is the right adjoint of a natural Lie model functor on spaces. From another point of
view the functor Del∞(−) is more closely related to classical constructions in deformation theory:
in particular, when V is associated to a dg Lie algebra concentrated in degrees ≥ 0 via décalage,
the space Del∞(V ) is precisely the nerve of the Deligne groupoid (Theorem 5.2.37). Although we
will not pursue this point of view, the real reason to consider the functor Del∞(−) is that, while
both MC∞(−) and Del∞(−) are means to integrate pronilpotent L∞ algebras to∞ groupoids in a
way which generalizes (homotopically) the way a nilpotent Lie algebra integrates to its exponential
group via the Baker-Campbell-Hausdorff product, MC∞(−) only factors through the category Kan
of Kan complexes, which are ∞ groupoid only in a loose (homotopical) sense, while the functor
Del∞(−) factors through the more structured category wTKan of weak T -complexes (Definition
5.1.11), which are ∞ groupoids in a more precise (even if not fully understood) sense, cf. also the
following Remark 5.2.23: in fact, as already said, for an ordinary nilpotent Lie algebra g the space
Del∞(g) is precisely the nerve of exp(g), so in this case the generalization is not just by analogy.

Proposition 5.2.22. The functor Del∞(−) factors through Del∞(−) : L̂∞[1]→ wTKan and the
forgetful functor wTKan→ SSet.

Proof. Given a complete L∞[1] algebra V , the thin simplices of Del∞(V ) are the Maurer-Cartan
cochains evaluating to 0 on the top dimensional simplex: for n ≥ 1

Tn Del∞(V ) = {α ∈ Del∞(V )n s.t. α0···n = 0} .

It is easy, by the proof of Theorem 5.2.10, cf. also Remark 5.2.14 that the required conditions (1)
and (2) in Definition 5.1.11 are satisfied.

Remark 5.2.23. Hidden in the axioms of a weak T -complex there is a rich algebraic structure given
by filling procedures, cf. the theses of Ashley [1] and Dakin [26]: to illustrate this point let us
again consider the case of a complete dg Lie algebra L (seen as usual via décalage). We will prove
in Section 5.2.2 that in this case we can recover the Baker-Campbell-Hausdorff product on L via
the following filling procedure: we take a horn Λ1

2 → Del∞(L)

x

b

!!
ea ∗ x

a

==

e−b ∗ x
1Although this is not a groupoid in the sense of Getzler’s paper [39], that is, a weak T -complex as in Definition

5.1.11, but only in the loose sense that it is a Kan complex.
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(it doesn’t matter the particular choice of x ∈ MC(L)) and then the unique thin filling is

x

b

!!
ea ∗ x

a◦b
//

a

==

e−b ∗ x

where we denote by a◦b the Baker-Campbell-Hausdorff product L0×L0 → L0. With the notations
of Remark 5.2.14 we have that γ2,1

x = ◦ for all x ∈ MC(L). The fact that when L is concentrated
in degrees ≥ 0 then Del∞(L) is the nerve of the ordinary Deligne groupoid follows from the above
description of 2-simplices and Lemma 5.2.5. Even without knowing the above facts, it is immediate
to notice that when L is concentrated in degrees ≥ 0 the remaining axiom for Del∞(L) to be a
T -complex is satisfied, since every n-simplex is automatically thin for n ≥ 2, and in fact this says
more, that Del∞(L) is a T -complex of rank one, thus by the results in [1, 26] the nerve of a groupoid
(this is a well known argument, cf. also [73], Chapter 1): notice that this only uses the fact that L
is concentrated in degrees ≥ 0, so L maybe an otherwise arbitrary L∞ algebra (and it makes sense
in this case to talk about the Deligne groupoid of L, cf. Definition 5.2.33). We refer to [39], in
particular the proof of Proposition 5.4, to see that when the dg Lie algebra L is of quantum type,
that is, concentrated in degrees ≥ −1, then Del∞(L) is a T -complex of rank two (here the fact that
we are working with dg Lie algebras is essential), in particular by [1, 26] it defines a crossed complex
in groupoids (and in fact two possible such structures), that is, a 2-groupoid: this should recover
the Deligne 2-groupoid introduced by Deligne in private correspondence [27], cf. also [38, 110],
but we remark that it would be essential to have some explicit computation to see what’s actually
going on. It is in general not true that if L is a complete dg Lie algebra concentrated in degrees
≥ −2 then Del∞(L) is a T -complex of rank three. For simplicity, let us assume now that L = g is
an ordinary Lie algebra: even without knowing that it is the Baker-Campbell-Hausdorff product
let us sketch a proof, borrowed from [1], of the fact that ◦ := γ2,1

0 is an associative product on g.
With the notations of Remark 5.2.14 consider the following horn Λ2

3 → Del∞(g)

b

�� b◦c

��
c

''
(a◦b)◦c

//
a◦b

77a

??

We take the unique thin filling of this horn, since g has no elements in degree minus one the
remaining face is automatically thin, that is,

b◦c

��
(a◦b)◦c

//

a

??

is thin: but by definition this means that (a ◦ b) ◦ c = a ◦ (b ◦ c) (in other words, associativity
follows from the uniqueness assumption in axiom (2)). Let us notice here that the above filling
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procedure makes sense for an arbitrary L∞[1] algebra (V, q1, . . . , qn, . . .) concentrated in negative
degrees (in Getzler’s paper this is called an∞ Lie algebra, and Del∞(V ) an∞ group): in this case
MC(V ) = 0 and Del∞(V )1

∼= V −1. We put ◦ := γ1,2
0 : V −1 × V −1 → V −1, by universality of the

formulas this will be again the Baker-Campbell-Hausdorff product ◦ associated to the bracket q2

on V −1, but notice that the latter does not satisfy the Jacobi identity anymore, the failure being

measured by the bracket q3 :
(
V −1

)�3 → V −2. Now the previous filling procedure followed by
evaluation on the remaining face defines a function V −1 × V −1 × V −1 → V −2: this measures the
failure of ◦ to be associative and should integrate in an appropriate sense the bracket q3. More in
general it should be possible to integrate concretely (that is, as functions) the higher brackets via
similar filling procedures, giving a precise meaning to the slogan that the simplicial set Del∞(V )
integrates the L∞[1] algebra V . We stop this informal discussion here, and close this section with
the promised proof of the weak equivalence between Del∞(−) and MC∞(−).

Theorem 5.2.24. There is a natural weak equivalence Del∞(−)
∼−→ MC∞(−), where both are seen

as functors L̂∞[1]→ SSet.

Proof. We remark that the analogs of Example 5.2.9, Theorem 5.2.10 and Proposition 5.2.15 hold
for the functor MC∞(−) with similar proofs, we refer to [39] (cf. also [6] for the latter) for details.
For all n ≥ 0 we have by homotopy transfer an L∞[1] morphism F : C(∆n;V )→ Ω(∆n;V ), hence
an induced MC(F ) : Del∞(V )n → MC∞(V )n: this defines a natural Del∞(−) → MC∞(−) by
Lemma 2.2.7. To prove that this is a weak equivalence we proceed inductively as in the proof
of Theorem 5.2.16. If V is an abelian L∞[1] algebra with the central descending filtration, then
F = f1 is a quasi-isomorphism and the thesis follows from 5.2.9. As in the proof of 5.2.16, we
show the thesis inductively for the L∞[1] algebras V/F pV by comparing the central extensions
of simplicial complete L∞[1] algebras C(∆•;F pV/F p+1V )→ C(∆•;V/F p+1V )→ C(∆•;V/F pV )
and Ω(∆•;F pV/F p+1V ) → Ω(∆•;V/F p+1V ) → Ω(∆•;V/F pV ) via Proposition 5.2.15, then the
thesis for V = lim V/F pV follows by passing to the limit.

5.2.1 Disconnected rational homotopy theory

The aim of this section is to construct a model category structure on the category D̂GLA of
complete dg Lie algebras and explain briefly its relevance to rational homotopy theory. This
model category structure has been defined in [70], via Koszul duality between commutative and
Lie algebras and the usual model category structure on the category of (unbounded) commutative
dg algebras. We follow a different route, already outlined in Section 5.1: namely, we consider a

natural cosimplicial object L(∆•) in D̂GLA, the Lie-Sullivan model of the standard cosimplicial

simplex. By Proposition 5.1.9 this induces an adjunction SSet // D̂GLAoo , we will see that
both the left and the right adjoint are geometrically meaningful, in fact: the right adjoint is just
the restriction of Del∞(−) : L̂∞ → SSet to the full subcategory of complete dg Lie algebras, we

will see that the left adjoint L(−) : SSet → D̂GLA can be interpreted as sending the simplicial
set X to a natural C∞ coalgebra structure on the space C∗(X)/D∗(X) of non-degenerate chains
on X (we notice here that the quadratic part will be an axprossimation of the diagonal, thus we
recover a construction considered by Sullivan in the appendix of the paper [102]), moreover, further
transposing this C∞ coalgebra structure to a C∞ algebra structure on the space C(X) of non-
degenerate cochains on X we recover the natural C∞ enhancement C(−) : SSet → C∞ induced,
as in the paper [22] and Section 3.2, via homotopy transfer from Ω(−) : SSet → DGCA along
Dupont’s contraction Dup : SSet → Contr. Finally, we will see that we can transfer the usual

model category structure on SSet to a model category structure on D̂GLA along the adjunction
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L(−) : SSet // D̂GLA : Del∞(−)oo , as in Definition 5.1.4, and that we recover this way the

model category structure defined by Lazarev and Markl [70], moreover, this also automatically
shows that this is cofibrantly generated and the adjunction is a Quillen adjunction.

Via homotopy transfer along Dupont’s contraction it is defined the simplicial C∞ algebra C(∆•)
of non-degenerate cochains on the standard cosimplicial simplex. Since the C(∆n) are all finite
dimensional, by transposition it is also defined the cosimplicial C∞ coalgebra of non-degenerate
chains on the standard simplex, cf. Remark 1.2.14. By definition, a C∞ coalgebra structure on
the space C∗(∆n)/D∗(∆n) of non-degenerate chains on ∆n is a dg Lie algebra structure on the

complete free Lie algebra L̂(C∗(∆n)/D∗(∆n)[−1]), we denote the dg Lie algebra associated to
C(∆n) by L(∆n). Thus, it is defined the cosimplicial complete dg Lie algebra L(∆•): since the

category D̂GLA is cocomplete, according to Proposition 5.1.9 this induces a left adjoint functor

L(−) : SSet→ D̂GLA. We call the complete dg Lie algebra L(X) the Lie-Sullivan model of the

simplicial set X, this is defined by L(X) = colimσ∈∆X L(∆|σ|): since the functor L̂(−) preserves

colimits we always have that the underlying graded Lie algebra of L(X) is L̂(C∗(X)/D∗(X)[−1]),

thus the functor L(−) : SSet→ D̂GLA is the datum of a natural C∞ coalgebra structure on the
non-degenerate chains on a simplicial set. It remains to check that the C∞ algebra structure on
C(X) associated to L(X) via transposition is again the one induced via homotopy transfer along
Dupont’s contraction: but this is so by construction when X = ∆n, thus it follows in general from
Lemma 2.2.5.

Example 5.2.25. The only cases where we know explicitly the C∞ algebra structure on C(∆n)
are: trivially when n = 0, and less trivially when n = 1, cf. Proposition 3.3.6. We determine
explicitly the dg Lie algebra structure on L(∆0) and L(∆1)2. When n = 0, then C(∆0) = K
with its K -algebra structure: this dualizes to the coalgebra K → K⊗2 : 1 → 1 ⊗ 1. Shifting the
degrees by one and taking the opposite sign (recall that we change the sign since transposition
is an antihomomorphism of graded Lie algebras, cf. the discussion at the end of Section 1.2),
the above tells us that if we regard C(∆0) as an A∞ algebra the dual A∞ coalgebra is given by

the differential x → −x ⊗ x on the complete tensor algebra T̂ (x) over a generator x in degree
one3. Since x ⊗ x = 1

2 [x, x] in the associated Lie algebra, we conclude that L(∆0) is the graded

Lie algebra L̂(x), |x| = 1 (in particular, since [x, [x, x]] = 0 by Jacobi, we see that as a graded
space L(∆0) = Kx ⊕ K [x, x]) with the dg Lie algebra structure given by dx = − 1

2 [x, x]. This

makes evident the fact that L(∆0) represents the functor MC(−) : D̂GLA → Set: here the
Maurer-Cartan equation takes its most classical form

dx+
1

2
[x, x] = 0.

In the case n = 1, considering C(∆1) as an A∞ algebra the explicit formulas in 3.3.6 imply

that the dual A∞ coalgebra is given by the differential on the complete tensor algebra T̂ (x, y, a),
|x| = |y| = 1, |a| = 0, given by x→ −x⊗ x, y → −y ⊗ y and finally

a→ y−x− 1

2
((x+ y)⊗ a− a⊗ (x+ y))+

∞∑

k=3

Bk−1

(k − 1)!

k∑

i=1

(
k − 1

i− 1

)
(−1)k−ia⊗i−1⊗(y−x)⊗a⊗k−i

Let ada = [a,−] be the adjoint: by the well known formula, valid more in general in any associative

2It is clear how from L(∆1) we can describe L(X) for all 1-dimensional cell complexes X, cf. [67], the second
version (the one linked to in the bibliography), for some examples

3In other words, this is the algebra of formal power series K [[x]], |x| = 1, equipped with the differential x→ −x2
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algebra,

(ada)k−1(y − x) =

k∑

i=1

(
k − 1

i− 1

)
(−1)k−ia⊗i−1 ⊗ (y − x)⊗ a⊗k−i

we see that the differential of a in L(∆1) = L̂(x, y, a) becomes da = y − x + 1
2 ada(x + y) +∑

k≥3
Bk−1

(k−1)! (ada)k−1(y − x), and finally the dg Lie algebra structure on L(∆1) is given as in

dx = −1

2
[x, x], dy = −1

2
[y, y], da = ada(y) +

∑

k≥0

Bk
k!

(ada)k(y − x). (5.2.1)

Thus we recovered the well known [67, 16, 17, 85, 22] Lawrence-Sullivan model of the interval: in
particular this answers, after the paper [22], an answer posed by Sullivan in [102], cf. [85] for a
different proof of the same result.

By definition the right adjoint D̂GLA → SSet sends a complete dg Lie algebra M to the

simplicial set D̂GLA(L(∆•),M).

Lemma 5.2.26. There is a natural isomorphism D̂GLA(L(∆n),−)→ MC(C(∆n,−)) of functors

D̂GLA→ Set.

Proof. This follows from Lemma 1.3.29, we should check that given a complete dg Lie algebra M
the L∞ structure on C(∆n;M) = Hom(C∗(∆n)/D∗(∆m),M) induced via convolution with the C∞
coalgebra structure on C∗(∆n)/D∗(∆n), as in Lemma 1.3.29, is the same as the usual one, that is,
the one induced via homotopy transfer along Dupont’s contraction. Recall that the convolution L∞
structure was defined by restricting the L∞ algebra structure on Hom(C∗(∆n)/D∗(∆n), U(L)) =
C(X;U(L)) = C(X)⊗U(L), where U(L) is the universal enveloping algebra, induced by extension
of scalars of the C∞ algebra C(X) by the dg associative algebra U(L) and then by symmetrization.
By Lemmas 2.2.9 and 2.2.10 the latter is the same as the L∞ algebra structure on C(X;U(L))
obtained via homotopy transfer from the dg Lie algebra Ω(X)⊗U(L), seen as a dg Lie algebra via
the commutator, along Dupont’ s contraction: it is then clear by Lemma 2.2.3 that this restricts
to the usual L∞ algebra structure on C(X;L).

Putting the previous lemma and Lemma 5.2.4 together shows the following

Proposition 5.2.27. The functors L(−) : SSet // D̂GLA : Del∞(−)oo form an adjoint pair.

We are ready to put the model category structure on D̂GLA.

Theorem 5.2.28. There is a model category structure on the category D̂GLA such that, given a
continuous morphism f : L→M of complete dg Lie algebras:

f is a fibration if such is Del∞(f), that is, if it is surjective in degrees ≤ 0, and

f is a weak equivalence if such is Del∞(f), that is, if MC(f) : MC(L) → MC(M) is
bijective and for all x ∈ MC(L) and i ≤ 0 the induced H−i(f) : H−i(Lx) → H−i(Mf(x)) is
an isomorphism, finally,

f is a cofibration if it has the left lifting property with respect to trivial fibrations.



104 CHAPTER 5. HIGHER DELIGNE GROUPOIDS

Moreover, this model category structure is cofibrantly generated, with generating cofibrations the
inclusions L(∂∆n) → L(∆n), for all n ≥ 1, and generating trivial cofibrations the inclusions

L(Λin) → L(∆n), for all n ≥ 1 and 0 ≤ i ≤ n. Finally, L(−) : SSet // D̂GLA : Del∞(−)oo is

a Quillen adjunction.

Proof. Keeping in mind Theorem 5.2.10 and Theorem 5.2.20, all the claims follow once we show
that we are in the hypotheses of Proposition 5.1.5. Since the functor Del∞(−) factors through
the full subcategory Kan of Kan complexes, we only have to show the existence of path space
factorizations. We prove that for a complete dg Lie algebra L the factorization of the diagonal
L −→ Ω(∆1;L) −→ L × L has the required properties (where the first arrow is pullback by the
terminal morphism ∆1 → ∆0 and the second arrow is pullback by the inclusion ∂∆1 → ∆1).

Since Theorem 5.2.10 immediately implies that Del∞(Ω(∆1;L)) → Del∞(L × L) is a fibra-
tion, and clearly Del∞(L) → Del∞(Ω(∆1;L)) is a cofibration, that is, an inclusion, we have
to show that the latter is also a weak equivalence. We proceed inductively as in the proof
of Theorem 5.2.16: when L is abelian with the central descending filtration, so is Ω(∆1;L),
and the thesis follows from Example 5.2.9 since L → Ω(∆1;L) is a quasi-ismorphism, then we
can prove the claim inductively for the dg Lie algebras L/F pL by comparing, via Proposition
5.2.15, the central extensions of complete L∞ algebras F pL/F p+1L → L/F p+1L → L/F pL
and Ω(∆1;F pL/F p+1L) → Ω(∆1;L/F p+1L) → Ω(∆1;L/F pL). Finally, we deduce the claim
for L = lim L/F pL by passing to the limit.

In the following remark we explain the relevance of the previous theorem in rational homotopy
theory, first let us notice that Theorem 5.2.16 immediately implies the following proposition, which
says that Del∞(−) takes values in K -local spaces [10].

Proposition 5.2.29. For a morphism f : X → Y of simplicial sets the following are equivalent
conditions:

pullback along f is a weak equivalence SSet(Y,Del∞(L)) → SSet(X,Del∞(L)) for every
complete dg Lie algebra L; and

f induces an isomorphism in K -homology.

Proof. To prove that the second item implies the first it is sufficient, by Theorem 5.2.16, to show
that Del∞(C(Y ;L)) → Del∞(C(X;L)) is a weak equivalence for every L. If L is abelian, since
C(Y ;L)→ C(X;L) is a quasi-isomorphism by hypothesis, the thesis follows from Example 5.2.9:
then the thesis follows in general by the usual inductive argument.

Conversely, if the first item hold then we have that Del∞(C(Y ;K [i])) → Del∞(C(X;K [i])) is
a weak equivalence for all i, where we take K [i] with the trivial L∞ structure, thus C(Y )→ C(X)
is a quasi-isomorphism.

Remark 5.2.30. Notice that the previous model category structure on D̂GLA is quite different
from the one where the fibrations are all all the surjections and the weak equivalences are all the

quasi-isomorphisms4: however, the two coincide on the full subcategory D̂GLA≤0 of complete dg
Lie algebras concentrated in non positive degrees. To see that this is the same model category
structure as the one defined by Lazarev and Markl [70] we refer to loc. cit., Section 10.

4The latter is more relevant in deformation theory, since it is the homotopy theory of L seen as a derived
deformation functor Del∞(L⊗ m−) : dgArt≤0 → SSet, cf. [86].
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Since the seminal work of Quillen [89], we know that dg Lie algebras concentrated in negative
degrees model (connected and) simply connected rational homotopy types, and since the seminal
work of Sullivan [100], cf. aso [39], Proposition 1.1, we known that the homotopy type associated
to a negatively graded dg Lie algebra L is represented by the Maurer-Cartan∞ groupoid MC∞(L)
of L, thus according to Theorem 5.2.24 also by the Deligne-Getzler ∞ groupoid Del∞(L). In fact
this (very well known) result could be probably proved in the spirit of [100], cf. also [11], using the
Lie-Sullivan model L(−) in place of the the de Rham-Sullivan model Ω(−) and the functor Del∞(−)
instead of the geometric realization functor (cf. loc. cit.) 〈−〉 : DGCA → SSet. The aim of
the paper [70] was to show how this classical equivalences of categories in fact are restrictions of
equivalences between a certain rational homotopy category of spaces not necessarily connected, all
of whose connected components are nilpotent and of finite Q-type, and the homotopy category of
a certain subcategory of arbitrarily graded, but satisfying some finite type assumption, complete
dg Lie algebras, we refer to [70] (in particular Theorem D) for a precise statement: again the
functor Del∞(−) realizes the rational homotopy type associated to a complete dg Lie algebra. In
fact, we suspect that the finiteness assumptions are unnecessary, and an undesired byproduct of
the method of proof5. We mention here that a slightly different (but still closely related with the
results discussed in this section) approach to disconnected rational homotopy theory then the one
in [70] has been given [17], by U. Buijs and A. Murillo.

Typical examples of non connected spaces we would like to model are mapping spaces [6, 15, 68].
When the space X has finite cohomology and Y → YQ is a localization, then, cf. [6], Section 6,
the pushforward SSet(X,Y )→ SSet(X,YQ) is a localization as well. In these hypotheses we can
conclude thanks to Theorem 5.2.16 that if L is a model of Y , that is, there is a weak equivalence
YQ → Del∞(L), then the L∞ algebra C(X;L) of non-degenerate cochains on X with coefficients
in L is a model (an L∞ one) of the mapping space SSet(X,Y ). We also recover the result by
Brown-Szczarba [14] and Berglund [6] that Ω(X;L) is a Lie model of SSet(X,Y ).

Remark 5.2.31. It has been pointed out in [16] that the complete dg Lie algebra L(X) actually
models the space X+, where we have added a disjoint base-point to X: the extra point will
correspond to the vertex 0 ∈ MC(L(X)). This can be seen as follows: the functor Del∞(−) factors
naturally through the category SSet∗ of pointed simplicial sets, namely, Del∞(L) is pointed by

0 ∈ MC(L), but since the category D̂GLA is pointed more is true, cf. [50], Corollary 3.1.6, namely,
that the whole adjunction in Theorem 5.2.28 factors as

SSet
+ // SSet∗

L(−) //
#

oo D̂GLA
Del∞(−)

oo

where # : SSet∗ → SSet is the forgetful functor and −+ : SSet→ SSet∗ : X → (X+,+) adds a

disjoint base point to X. The functor L(−) : SSet∗ → D̂GLA : (X,x) → L(X,x), that we call
the reduced Lie-Sullivan model functor, is defined by the cocartesian square

L(∆0)

��

L(x) // L(X)

��
0 // L(X,x)

in D̂GLA, where x : ∆0 → X is the inclusion of the vertex x. L(−) : SSet∗
// D̂GLA : Del∞(−)oo

5Namely, by proving the corresponding fact for commutative dg algebras, where in fact the finite type assumptions
are essential, and then by translating via Koszul duality.
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is a Quillen adjunction, and in fact we could equivalently have defined the model category structure

on D̂GLA via transfer along this adjunction.

Remark 5.2.32. We notice an interesting fact, which will be used in the proof of Proposition 5.2.36,
namely, that the generating trivial cofibrations L(Λin)→ L(∆n) split, where the splitting is induced
by the operation of thin filling: in fact, since T : SSet(Λin,Del∞(M)) → SSet(∆n,Del∞(M))
sending a horn to his unique thin filling is obviously natural in M , by Yoneda it is induced by a
splitting L(∆n) → L(Λin) of L(Λin) → L(∆n). The morphism L(∆n) → L(Λin) has the property
that it sends the generator corresponding to the top dimensional simplex to zero, conversely, this is
the unique left inverse to L(Λin)→ L(∆n) with this property: in fact, any such a morphism would
determine a natural filling operation SSet(Λin,Del∞(M))→ SSet(∆n,Del∞(M)), moreover, this
must send a horn to a filling evaluating to zero on the top dimensional simplex, but then it must
send it to its unique thin filling.

5.2.2 Comparison with the Deligne groupoid

We begin by recalling some classical definitions [43, 27, 42, 76].

Definition 5.2.33. The Gauge action on the Maurer-Cartan set of a complete dg Lie algebra
(L,F •L, d, [·, ·]) is defined by

e− ∗ − : L0 ×MC(L)→ MC(L) : (a, y)→ ea ∗ y := y +
∑

k≥0

1

(k + 1)!
(ada)k (ada(y)− da) ,

this is well defined by completeness: it is well known and easy to prove that it sends Maurer-Cartan
elements to Maurer-Cartan elements, this follows immediately from the following alternative def-
inition. Since [d, d] = 0, the inclusion K d → Der(M) is a morphism of graded Lie algebras and
thus defines a semidirect product K doM : it is clear that in the latter graded Lie algebra we have
ea ∗ x = eada(x + d) − d. Since the Maurer-Cartan equation dx + 1

2 [x, x] becomes the equation
[x+ d, x+ d] = 0 in K doM , this makes evident that the Gauge action preserves Maurer-Cartan
elements. We have to explain yet why the Gauge action is an action: it is an action with re-
spect to the group structure on M0 induced by the Baker-Campbell-Hausdorff product, see e.g.
[43, 76]. This is the group operation ◦ : M0 ×M0 →M0 defined by eaeb = ea◦b, where we denote
by exp(M0) the exponential group integrating the (pronilpotent) Lie algebra (M0, [·, ·]) and by
e− : M0 → exp(M0) : a→ ea the exponential map (which in this case is a natural identification),
cf. [76]. It is well known that the Baker-Campbell-Hausdorff product a ◦ b can be expressed only
in terms of the Lie algebra structure on M : for instance, a recursive definition using Bernoulli
numbers goes as follows [43]

ξ0 = b, ξn+1 =
1

n+ 1

∑

k≥0

Bn
n!

∑

i1+···+ik=n

[ξi1 , · · · [ξik , a] · · · ], a ◦ b =
∑

n≥0

ξn.

In particular this shows that morphisms of graded Lie algebras are compatible with the Baker-
Campbell-Hausdorff product. To see why the Gauge action is an action with respect to the Baker-
Campbell-Hausdorff product, since ad : M0 → End0(M) is a morphism of Lie algebras

ea ∗ (eb ∗ x) = eada
(
eadb(x+ d)− d+ d

)
− d = eadaeadb(x+ d)− d = eada◦b(x+ d)− d = ea◦b ∗ x.

The Deligne groupoid Del(M) of M [27, 42] is the action groupoid associated to the Gauge action,
namely, the groupoid whose objects are the Maurer-Cartan elements of M and whose arrows are
the Gauge equivalences, that is, arrows from x to y are the a ∈M0 such that ea∗x = y. Clearly this
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defines a functor Del(−) : D̂GLA→ Grpd. The Deligne groupoid is of fundamental importance
in deformation theory, see e.g. [42, 45, 76].

We notice that
∑
k≥0

1
(k+1)! (ada)k = eada−id

ada
and

∑
k≥0

Bk
k! (ada)k = ada

eada−id
are inverses opera-

tors, thus in the dg Lie algebra L(∆1) = L̂(x, y, a), cf. Example 5.2.25, we have

ea ∗ y = y +
eada − id

ada
(ada(y)− da) = y +

eada − id

ada

(
− ada
eada − id

(y − x)

)
= x.

Let M be a complete dg Lie algebra and f : L̂(x, y, a) → M any morphism of complete
graded Lie algebras: this is the datum of arbitrary f(x), f(y) ∈ M1 and f(a) ∈ M0. If f has
to be a morphism of dg Lie algebras then f(x) and f(y) have to be Maurer-Cartan elements of
M and since morphisms of dg Lie algebras obviously preserve the Gauge action we also must
have that ef(a) ∗ f(y) = f(x). Conversely, given Marer-Cartan elements f(x), f(y) ∈ MC(M)
and a Gauge equivalence f(a) ∈ M0, ef(a) ∗ f(y) = f(x), between them, then f : L(∆1) → M
is a morphism of dg Lie algebras: in fact, clearly df(x) = fd(x) and df(y) = fd(y), moreover

f(x) = ef(a) ∗ f(y) = f(y) + e
adf(a)−id
adf(a)

(adf(a)(f(y))− df(a)) and thus

df(a) = adf(a)(f(y)) +
adf(a)

eadf(a) − id
(f(y)− f(x)) = f

(
ada(y) +

ada
eada − id

(y − x)

)
= fd(a).

This proves the following [31, 17].

Proposition 5.2.34. The set of morphism f : L(∆1) → M of complete dg Lie algebras, equiva-

lently, the set of Maurer-Cartan cochains f(x)
f(a)−−−→ f(y) in Del∞(M)1, is in bijective correspon-

dence with the set {(f(x), f(y), f(a)) ∈ MC(M)×MC(M)×M0 s.t. ef(a) ∗ f(y) = f(x)}.

Corollary 5.2.35. The set of simplicial loops f(x)
f(a)−−−→ f(x) in Del∞(M) at f(x) is in bijective

correspondence with the set of cocycles f(a) ∈ Z−1(Mf(x)).

Proof. Since by the previous computation ef(a) ∗ f(x) = f(x) if and only if df(a) = adf(a)(f(x)) if
and only if df(x)(f(a)) = 0, where df(x) := d+ adf(x) by definition is the twisted differential.

The previous proposition tells us what we said without proof in Remark 5.2.14, with the no-
tations used there, that ea ∗ y = γ1,1

y (a) and e−a ∗ x = γ1,0
x (a): in the next proposition we prove

the remaining unproved claim, namely, that the function γ2,1
x : M0 ×M0 → M0 is the Baker-

Campbell-Hausdorff product for all choices of x ∈ MC(L).

Proposition 5.2.36. Given a complete dg Lie algebra (M,F •M,d, [·, ·]), y ∈ MC(M), a, b ∈M0,
then the unique thin filling of

y

b

""
ea ∗ y = x

a

<<

z = e−b ∗ y
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is
y

b

""
ea ∗ y = x

a◦b
//

a

<<

z = e−b ∗ y

Proof. As noticed in Remark 5.2.32, the thin filling operation is induced by a morphism of dg Lie
algebras L(∆2)→ L(Λ1

2) left inverse to the inclusion L(Λ1
2)→ L(∆2). We consider the composition

L(∆1)
L(∂1)−−−→ L(∆2) −→ L(Λ1

2), where ∂1 is the face ∂1 : ∆1 → ∆2 : [01] → [02], this induces the

operation γ2,1
− . By the previous proposition, if L(∆1) = L̂(x′, y′, a′) and L(Λ1

2) = L̂(x, y, z, a, b),
then this composition sends a′ to a η ∈ L(Λ1

2), |η| = 0, such that eη ∗ z = x. After [67], Theorem 2
in the version of the paper linked to in the bibliography, we notice that a solution to this equation
is given by η = a ◦ b, since x = ea ∗ y = ea ∗ (eb ∗ z) = ea◦b ∗ z: the thesis follows if we show that
there are no other solutions, and clearly this is equivalent to the fact that the only loop eξ ∗ x = x
at x is the trivial one ξ = 0, thus, by the corollary, to the fact that ξ = 0 is the only solution of

d(ξ) + adx(ξ) = 0, |ξ| = 0, (5.2.2)

in the dg Lie algebra L(Λ1
2) = L̂(x, y, z, a, b). We notice that the degree zero part of L(Λ1

2) is the

Lie algebra L̂(a, b). Let δ : L(Λ1
2) → L(Λ1

2) be the linear differential δ(x) = δ(y) = δ(z) = 0,
δ(a) = y − x, δ(b) = z − y. According to [89], Proposition 2.1, the dg Lie algebra (L(Λ1

2), δ, [·, ·])
has no cohomology in degree zero, and then the equation δ(ξp) = 0, |ξp| = 0, admits the only

solution ξp = 0. Let L := L̂(a, b) equipped with the central descending filtration F •L, given ξ ∈ L
satisfying Equation (5.2.2), we complete the proof if we show inductively that ξ ∈ F pL for all
p ≥ 1, the case p = 1 being trivial. This is easy from the previous observation: if we suppose
ξ ∈ F pL and we write ξ = ξp + F p+1L, then Equation (5.2.2) implies that

0 = d(ξ)+adx(ξ) = δ(ξp)+F
p+1L ⇒ δ(ξp) = 0 ⇒ ξp = 0 ⇒ ξ ∈ F p+1L.

Together the previous propositions imply the following theorem.

Theorem 5.2.37. If M is a complete dg Lie algebra, then Del∞(M≥0) is isomorphic to the nerve
of the opposite of the Deligne groupoid Del(M).

Proof. This follows from the definition of the Deligne groupoid, the above explicit description of the
k-simplices of Del∞(M≥0) for k ≤ 2 and the fact that the simplicial set Del∞(M≥0) is 2-coskeletal,
cf. Corollary 5.2.5 and Example 5.1.10.

5.3 Descent of higher Deligne groupoids

In the subsection we review the fundamental theorem by Hinich on descent of Deligne groupoids,
its role in the approach to deformation theory via dg Lie algebras will be illustrated through specific
examples in the following chapter. The aim of this section is to give the analog of Hinich’s result,
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which we remark only applies when we work with non-negatively graded dg Lie algebras (actually,
it suffices if their cohomology is non-negatively graded), for the Deligne-Getzler∞ groupoid functor
on L∞[1] algebras with no grading restrictions (thus, also for dg Lie algebras this tells us something
new): we will recover Hinich’s theorem as a particular case in the next section, using the results
from the previous one. We will work from the outset with semicosimplicial objects, since this seems
more natural for the applications in deformation theory we have in mind, cf. [34, 2].

Recall that the restricted totalization functor Tot(−) : SSet
∆−→ → SSet (cf. [9]) sends a semi-

cosimplicial simplicial set X• to the simplicial set Tot(X•)n := SSet
∆−→(∆n × ∆−→•, X•) with the

obvious faces and degeneracies, where ∆−→• is the standard semicosimplicial simplex in SSet
∆−→. We

are going to introduce an analog restricted totalization functor Tot(−) : L̂∞[1]
∆−→ → L̂∞[1] and

prove that Del∞(−) commutes with totalization up to homotopy.

We denote the restriction of X• ∈ SSet
∆−→ to the full subcategory ∆−→≤k ⊂ ∆−→, with objects

the i with i ≤ k, by X≤k ∈ SSet
∆−→≤k : we remark an ambiguity in the notation, since we

denote by the same symbol both the category ∆−→≤k and the restriction to ∆−→≤k of the stan-

dard semicosimplicial simplex ∆−→•. There is a tower of functors Tot≤k(−) : SSet
∆−→ → SSet

together with a natural isomorphism Tot(−)
∼=−→ lim Tot≤k(−): these are defined as before by

Tot≤k(X•)n = SSet
∆−→≤k(∆n×∆−→≤k, X≤k). It is then clear that Tot≤0(X•) = SSet(∆0, X0) = X0,

moreover from the definition there are are natural maps Tot≤k(X•) → SSet(∆k, Xk) such that
Tot≤k(X•) = Tot≤k−1(X•)×SSet(∂∆k,Xk) SSet(∆k, Xk) for all k ≥ 1.

Remark 5.3.1. The family of morphisms Tot(X•) = lim Tot≤k(X•) → SSet(∆k, Xk), k ≥ 0, is
universal with the property that for each arrow i→ j in ∆−→ the induced diagram

Tot(X•) //

��

SSet(∆j , Xj)

��
SSet(∆i, Xi) // SSet(∆i, Xj)

is commutative. As in [45] we define the categoryM−→ whose objects are the arrows in ∆−→ and whose

arrows
{
i→ j

}
→
{
i′ → j′

}
are the factorizations

{
i′ → j′

}
=
{
i′ → i→ j → j′

}
in ∆−→: then the

above says that Tot(X•) is a limit of M−→→ SSet :
{
i→ j

}
→ SSet(∆i, Xj), similarly Tot≤k(X•)

is a limit of the restriction of this functor to the full subcategory M−→≤k of arrows in ∆−→≤k.

Keeping in mind Theorem 5.2.16, this suggests how to define the restricted totalization functor
Tot(−) : L̂∞[1]

∆−→ → L̂∞[1].

Definition 5.3.2. The restricted totalization Tot(−) : L̂∞[1]
∆−→ → L̂∞[1] sends a semicosimpli-

cial complete L∞[1] algebra V• ∈ L̂∞[1]
∆−→ to the limit of M−→ → L̂∞[1] : {i → j} → C(∆i;Vj).

Restricting to the full subcategory M−→≤k ⊂ M−→ and taking the limit, we similarly define a func-

tor Tot≤k(−) : L̂∞[1]
∆−→ → L̂∞[1]: we see immediately that with these definitions we still have

Tot≤0(V•) = V0, Tot≤k(V•) = Tot≤k−1(V•)×C(∂∆k;Vk) C(∆k;Vk) and Tot(V•) = lim Tot≤k(V•).

Remark 5.3.3. Obviously the above also makes sense in the non complete setting and defines
functors Tot(−) : L∞[1]

∆−→ → L∞[1], Tot≤k(−) : L∞[1]
∆−→ → L∞[1].

In order to compare the simplicial sets Del∞(Tot(V•)) and Tot(Del∞(V•)), first of all we observe
that they have the same set of vertices.
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Proposition 5.3.4. There is a natural isomorphism MC(Tot(−))
∼=−→ Tot(Del∞(−))0 of functors

L̂∞[1]
∆−→ → Set.

Proof. Since MC(−) commutes with small limits, by Lemma 5.2.4

MC(Tot(V•)) = limM−→
MC(C(∆i;Vj)) = limM−→

SSet(∆i,Del∞(Vj)) = Tot(Del∞(V•))0.

Remark 5.3.5. In the same way there are natural isomorphisms MC(Tot≤k(−))
∼=−→ Tot≤k(Del∞(−))0

of functors L̂∞[1]
∆−→ → Set.

Theorem 5.3.6. There is a natural weak equivalence Del∞(Tot(−))
∼−→ Tot(Del∞(−)) of functors

L̂∞[1]
∆−→ → SSet.

Proof. We have morphisms Del∞(Tot(V•)) → Del∞(C(∆i;Vi)) → SSet(∆i,Del∞(Vi)), i ≥ 0,
given by Theorem 5.2.16, and for each arrow {i→ j} in ∆−→, in the induced diagram

Del∞(Tot(V•))

��

// Del∞(C(∆j ;Vj)) //

��

SSet(∆j ,Del∞(Vj))

��

Del∞(C(∆i;Vi))

��

// Del∞(C(∆i;Vj))

))
SSet(∆i,Del∞(Vi)) // SSet(∆i,Del∞(Vj))

the inner squares are commutative, thus the outer square is commutative as well and there is
induced a unique natural Del∞(Tot(V•))→ Tot(Del∞(V•)) making the diagram

Del∞(Tot(V•))

��

// Del∞(C(∆i;Vi))

��
Tot(Del∞(V•)) // SSet(∆i,Del∞(Vi))

commutative for all i ≥ 0. In the same way for each k ≥ 0 we define natural transformations
Del∞(Tot≤k(−))→ Tot≤k(Del∞(−)).

We prove inductively that Del∞(Tot≤k(V•)) −→ Tot≤k(Del∞(V•)) is a weak equivalence, the
case k = 0 being obvious. To continue the induction we look at the commutative diagram

Del∞(Tot≤k−1(V•)) //

��

Del∞(C(∂∆k;Vk))

��

Del∞(C(∆k;Vk))

��

oo

Tot≤k−1(Del∞(V•)) // SSet(∂∆k,Del∞(Vk)) SSet(∆k,Del∞(Vk))oo

where all spaces are Kan complexes. As the right to left arrows are Kan fibrations, the top one by
Theorem 5.2.10 and the bottom one as Del∞(Vk) is a Kan complex and ∂∆k → ∆k is a cofibration
(see e.g. [48]), we see that the fiber products of the rows

Del∞(Tot≤k(V•)) = Del∞(Tot≤k−1(V•))×Del∞(C(∂∆k;Vk)) Del∞(C(∂∆k;Vk))
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Tot≤k(Del∞(V•)) = Tot≤k−1(Del∞(V•))×SSet(∂∆k,Del∞(Vk)) SSet(∆k,Del∞(Vk))

are also homotopy fiber products (cf. [73], Remark A.2.4.5). As the vertical arrows in the diagram
are weak equivalences, by the inductive hypothesis and Theorem 5.2.16, this implies that also
Del∞(Tot≤k(V•)) → Tot≤k(Del∞(V•)) is a weak equivalence and the inductive step is proven.
Finally, both ωop0 → SSet : k → Del∞(Tot≤k(V•)) and ωop0 → SSet : k → Tot≤k(Del∞(V•))
are injectively fibrant towers of simplicial sets, as both Del∞(Tot≤k(V•)) → Del∞(Tot≤k−1(V•))
and Tot≤k(Del∞(V•)) → Tot≤k−1(Del∞(V•)) are pullbacks of a Kan fibration for all k ≥ 1 and
Del∞(Tot≤0(V•)) = Tot≤0(Del∞(V•)) = Del∞(V0) is fibrant, hence we see by Proposition 5.1.2

that also Del∞(Tot(V•)) → Tot(Del∞(V•)) = limk

(
Del∞(Tot≤k(V•))

∼−→ Tot≤k(Del∞(V•))
)

is a

weak equivalence.

We notice that the previous theorem combined with the previous proposition imply the following
corollary, where we denote by π≤1(−) : Kan → Grpd the functor sending a Kan complex to its
fundamental groupoid.

Corollary 5.3.7. There is a natural isomorphism π≤1(Del∞(Tot(−)))
∼=−→ π≤1(Tot(Del∞(−))) of

functors L̂∞[1]
∆−→ → Grpd.

Proof. Since an equivalence of groupoids which is an isomorphism on the set of objects has to be
an isomorphism.

5.3.1 Descent of Deligne groupoids

In this section we see how Theorem 5.3.6 translates when applied to a semicosimplicial dg Lie
algebra concentrated in degrees ≥ 0, thus recovering the important theorem by Hinich on Descent
of Deligne groupoids [45] in the enhanced version form the papers [34, 35]. The utility of this
theorem in deformation theory will be illustrated in the following chapter through specific examples,
cf. Theorems 6.2.4, 6.3.3 and 6.3.6.

We denote by ArtK the category of Artin K -algebras A with residue field isomorphic to K ,
that is, if we denote by mA the maximal ideal then A/mA ∼= K : in particular A = K ⊕ mA
and this induces an isomorphism between ArtK and the category of nilpotent finite dimensional
K -algebras. We will use the following terminology.

Definition 5.3.8. Let C be a category with finite limits, and in particular a final object ∗. The
category fC of formal objects in C is the category of functors ArtK → C such that F (K ) = ∗.
For instance, objects in the category fSet of formal sets are usually just called functors of Artin
rings, but we can also talk about formal simplicial sets, formal groupoids, and so on.

Every L∞ algebra L can be regarded as a formal nilpotent L∞ algebra L⊗m− : A→ L⊗mA,
where L⊗mA has the L∞ structure induced via extension of scalars by the nilpotent commutative
algebra mA. Since nilpotent L∞ algebras are in particular complete, naturally associated to L
are the formal sets MCL := MC(L ⊗ m−), DefL := MC(L ⊗ m−) and the formal simplicial sets
MC∞,L := MC∞(L⊗m−), Del∞,L := Del∞(L⊗m−), in fact the latter is a formal ∞ groupoid (in
the sense of Getzler). When L is a dg Lie algebra there is moreover associated the formal groupoid
DelL := Del(L ⊗ m−): this makes sense also if L is an L∞ algebra concentrated in non-negative
degrees, in fact in this case Del∞(L ⊗ mA) is a T -complex of rank 2 and thus the nerve of a
groupoid, cf. Remark 5.2.23, and we may define DelL(A) as the opposite of this grouopoid, which
is consistent with the dg Lie algebra case by Theorem 5.2.37. Most of the results in section 5.2
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translate straightforwardly for their formal counterparts, for instance there is a natural (in L, with

respect to strict L∞ morphisms) weak equivalence of formal simplicial sets Del∞,L
∼=−→ MC∞,L.

After Grothendieck’s philosophy and the foundational work of Schlessinger [93], it is usually
convenient to regard a formal moduli problem as a formal pointed set M : ArtK → Set∗ satisfying
some additional conditions, the Schlessinger’s conditions [93, 75], or better yet, due to well known
problems linked to the existence of non-trivial automorphisms of the trivial deformation, as a
formal pointed groupoid M : ArtK → Grpd∗, to which we can can associate a formal pointed
set via the functor π0(−) : Grpd∗ → Set∗. We call M regarded as a formal pointed groupoid the
deformation groupoid of the formal moduli problem, namely, objects of M(A) are the deformations
over A of the structure we are considering and arrows are isomorphisms of deformations. We call M
regarded as a formal pointed set the deformation functor of the formal moduli problem, namely,
this sends A to the set of isomorphism classes of deformations over A (in both cases M(A) is
pointed by the trivial deformation). Cf. Definitions 6.2.1, 6.2.2 and 6.3.2 for some examples of
this kind.

Definition 5.3.9. We say that an L∞ algebra L governs (or controls) a formal moduli problem,
regarded as a formal pointed set M : ArtK → Set∗, if there is an isomorphism of formal pointed
sets DefL ∼= M . If L is a dg Lie algebra or an L∞ algebra concentrated in non negative degrees
and M is enhanced to a formal pointed groupoid M : ArtK → Grpd∗, we require an equivalence
DelL

∼−→ M of pointed groupoids (both DefL and DelL are pointed by 0): since π0(−) sends
equivalences of groupoids to isomorphisms in this case L also governs M regarded as a formal set.

Let L• be a semicosimplicial dg Lie algebra concentrated pointwise in non negative degrees, this
induces a semicosimplicial formal groupoid DelL• and a semicosimplicial formal ∞ groupoid (in
the sense of Getzler) Del∞,L• : by the results of Section 5.2.2 we can recover the one from the other
via the functors nerve N(−) : Grpd → Kan and fundamental groupoid π≤1(−) : Kan → Grpd.
As observed in [45], cf. the lemma on page 6, the totalization Tot(−) commutes with the nerve,

that is, there is a natural isomorphism Tot(N(−))
∼=−→ N(Tot(−)) of functors Grpd

∆−→ → SSet,

where in the right hand side Tot(−) : Grpd
∆−→ → Grpd is the classical totalization functor on

semicosimplicial groupoids via the groupoid of descent data.

Definition 5.3.10. The functor Tot(−) : Grpd
∆−→ → Grpd sends a semicosimplicial groupoid

G• : G0
// // G1

////// G2

// ////// · · ·

to the groupoid Tot(G•), also called groupoid of descent data, defined in the following way [45, 34]:

The objects of Tot(G•) are the pairs (l,m) with l an object in G0 and m a morphism in
G1 between ∂0l and ∂1l, where ∂0, ∂1 : G0 → G1 are the faces, such that the three images
∂im ∈ G2, i = 0, 1, 2, are the edges of a 2-simplex in the nerve of G2, explicitly

(∂0m)(∂1m)−1(∂2m) = 1 in G2(∂2∂0l, ∂2∂0l).

The morphisms between (l0,m0) and (l1,m1) are the morphisms a ∈ G0(l0, l1) making the
diagram

∂0l0
m0 //

∂0a

��

∂1l0

∂1a

��
∂0l1

m1 // ∂1l1

commutative in G1.
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Remark 5.3.11. Totalization commutes with equivalences: more precisely, if γ : F• → G• is a
morphism of semicosimplicial groupoids, then Tot(γ) : Tot(F•) → Tot(G•) is an equivalence of
groupoids if such are the various γn : Fn → Gn. The easiest way to see this is to check it directly,
we leave it to the reader.

According to Corollary 5.3.7 we obtain the following enhancement of the main result of [45],
already proved in [34, 35].

Theorem 5.3.12. Given a semicosimplicial dg Lie algebra L• concentrated in non negative degrees,

there is a natural isomorphism of formal groupoids DelTot(L•)
∼=−→ Tot(DelL•).

Remark 5.3.13. Notice that DelTot(L•) makes sense since the L∞ algebra Tot(L•), as in Definition
5.3.2, is concentrated in non negative degrees. We also remark that the conclusion of the theorem
hold more in general, with the same proof, for any semicosimplicial non negatively graded L∞
algebra L•.

Proof. Corollary 5.3.7 implies a natural isomorphism π≤1

(
Del∞,Tot(L•)

) ∼=−→ π≤1 (Tot(Del∞,L•))
of formal groupoids, where the right hand side is by definition DelopTot(L•)

. On the other hand, by

theorem 5.2.37 and since totalization commutes with the nerve we also see that

π≤1(Tot(Del∞,L•)) = π≤1(Tot(N(DelopL•))) = π≤1(N(Tot(DelL•)
op)) = Tot(DelL•)

op.

As we show in the following chapter, the previous theorem provides a powerful tool to find an
L∞ algebra governing a given deformation problem. On the other hand, in some situations we
may want to stick with dg Lie algebras, and in this case we simply have to replace the totalization
Tot(−) with the Thom-Whitney totalization TotTW (−); as a price we get a slightly weaker result.

Definition 5.3.14. Given a morphism f : L→M of dg Lie algebras the homotopy fiber K(f) is
defined by the pullback square

K(f) //

��

Ω(∆1;M)

��
L

0×f // M ×M

,

in the category DGLA, cf. Definition 3.3.3, more explicitly

K(f) = {(l,m(t)) ∈ L×M [t, dt] s.t. m(0) = 0, m(1) = f(l)}.

The Thom-Whitney totalization functor TotTW (−) : DGLA
∆−→ → DGLA sends a semicosimplicial

dg Lie algebra L• to the dg Lie algebra TotTW (L•) := limM−→
Ω(∆i;Lj), cf. Definition 5.3.2.

It is clear by Lemma 2.2.5 that the homotopy fiber K(f) and the Thom-Whitney totalization
TotTW (L•) are respectively dg Lie algebra models of the mapping cocone coC(f) (Definition 3.3.3)
and the totalization Tot(L•) we considered in the previous section. Moreover, weakly equivalent
L∞ algebras have weakly equivalent Deligne-Getzler ∞ groupoids (this can be seen by putting
together Theorem 5.2.24 and the main result from [29]), so Theorem 5.3.12 implies the following
corollary.

Corollary 5.3.15. Given a semicosimplicial dg Lie algebra L• concentrated in non negative de-
grees, there is an equivalence of formal groupoids DelTotTW (L•) ' Tot(DelL•).
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Chapter 6

Deformation problems in
holomorphic Poisson geometry

We study several deformation problems in holomorphic Poisson geometry, namely, deformations of
Poisson manifolds, coisotropic deformations of a pair (Poisson manifold coisotropic submanifold)
and finally embedded coisotropic deformations: using Hinich’s theorem on descent of Deligne
groupoids, in all cases we determine controlling dg Lie algebras. In the final section, under some
mild additional assumption, we show that the infinitesimal first order deformations induced by the
anchor map are unobstructed. Applications of these results include the analog of Kodaira stability
theorem or coisotropic deformation (cf. Corollary 6.3.4) and a generalization of McLean-Voisin’s
theorem about the local moduli space of lagrangian submanifold (cf. Corollary 6.4.12).

6.1 Review of holomorphic Poisson geometry

We recall the definition of graded Poisson algebras and Gerstenhaber algebras, these play a major
role in Poisson geometry.

Definition 6.1.1. Let k ∈ Z be an integer, we call a graded k-Poisson algebra the data (A, ·, [·, ·])
of a graded space A together with a product · : Ap ⊗ Aq → Ap+q making (A, ·) into a graded
commutative algebra and a bracket [·, ·] : Ap ⊗ Aq → Ap+q+k making (A[−k], [·, ·]) into a graded
Lie algebra, and such that moreover the (odd) Poisson identity

[a, bc] = [a, b]c+ (−1)(|a|+k)|b|b[a, c], ∀a, b, c ∈ A, (6.1.1)

is satisfied: in other words, the adjoint [a,−] has to be a derivation of the dg algebra structure for
all a ∈ A. In particular, a graded 0-Poisson algebra is just called a graded Poisson algebra, and if
moreover A is concentrated in degree zero (which will be the only graded Poisson algebras we will
consider) just a Poisson algebra. We call a graded (-1)-Poisson algebra a Gerstenhaber algebra1, of
course it only makes sense to consider Gerstenhaber algebras in the graded setting. A differential
Gerstenhaber algebra (A, d, ·, [·, ·]) is a Gerstenhaber algebra together with a differential d that is
a derivation of both (A, ·) and (A[−k], [·, ·]).

1Some authors call a Gerstenhaber algebra what we call a graded 1-Poisson algebra, in any case notice that a
Gerstenhaber algebra in our sense induces a graded 1-Poisson algebra structure on the space Ao = ⊕i∈ZA−i, and
conversely.

115



116CHAPTER 6. DEFORMATION PROBLEMS IN HOLOMORPHIC POISSON GEOMETRY

Remark 6.1.2. Let (A, ·, [·, ·]) be a Gerstenhaber algebra and let I ⊂ A be an ideal of the underlying
commutative graded algebra (A, ·) generated by a set of homogeneous elements S ⊂ I. Then the
Poisson identity (6.1.1) immediately implies that I is [·, ·]-closed if and only if [S, S] ⊂ I.

Let X be a complex manifold, we denote by OX the sheaf of holomorphic functions on X, by
ΘX the holomorphic tangent sheaf and by

∧
ΘX =

⊕
i≥0

∧i
OX ΘX [−i] the sheaf of holomorphic

polyvector fields, moreover, we denote by (ΩX , ∂,∧) the sheaf of holomorphic differential forms on
X, equipped with the usual structure of sheaf of dg commutative algebras.

The sheaf
∧

ΘX carries a natural structure of sheaf of Gerstenhaber algebras (
∧

ΘX ,∧, [·, ·])
with the exterior product and the Schouten-Nijenhuis bracket

[·, ·] :
∧i

ΘX ⊗
∧j

ΘX →
∧i+j−1

ΘX ,

see e.g. [103]. Recall that this is defined uniquely according to (6.1.1) so that [η, ξ] is the usual

bracket of vector fields if η, ξ ∈ ΘX , while [η, f ] = η(f) = ηydf if η ∈ ΘX and f ∈ ∧0
ΘX = OX2.

The only thing to be checked to see this turns
∧

ΘX into a sheaf of Gerstenhaber algebras is the
(odd) Jacobi identity for [·, ·], but using the Poisson identity and the fact that

∧
ΘX is generated

as an algebra by
∧≤1

ΘX we can reduce ourselves to check the Jacobi identity on the latter: in
this case it is clear, since it just says that the bracket of vector fields is a Lie bracket and that this
bracket is given by the commutator. Notice that for η ∈ ΘX the operator [η,−] :

∧
ΘX →

∧
ΘX

is the Lie derivative with respect to η.

Given a polyvector field η ∈ ∧i ΘX , we denote by

iη : Ω∗X → Ω∗−iX , iη(α) = ηyα,

the corresponding contraction operator. In particular, if η ∈ ∧0
ΘX = OX is a function then iη

is just multiplication by this function, while if η ∈ ∧1
ΘX = ΘX is a vector field then iη is the

only degree (−1) derivation of the graded algebra (ΩX ,∧) such that iη(∂f) = η(f) for all f ∈ OX :
there are two possible conventions to extend this to all of

∧
ΘX , we adopt the one according to

which iα∧β = iα ◦ iβ , where the product ◦ on the right hand side is the composition product. We

see that if η ∈ ∧i ΘX then iη ∈ Diffi(ΩX) is a differential operator of order ≤ i on the graded
commutative algebra (ΩX ,∧), cf. Section 4.2.1, by definition if i = 0 or i = 1, and then in general

since Diffi(ΩX) ◦ Diffj(ΩX) ⊂ Diffi+j(ΩX). Given a polyvector field η ∈ ∧i ΘX , we denote by
lη = [iη, ∂] : Ω∗X → Ω∗−i+1

X the holomorphic Lie derivative on differential forms with respect to η:
since ∂ ∈ Diff1(ΩX) and [Diffi(ΩX),Diffj(ΩX)] ⊂ Diffi+j−1(ΩX), we also see that lη ∈ Diffi(ΩX).
The contractions and the Lie derivatives are related by the classical Cartan formulas, see e.g. the
abstract formulation in [32],

[iη, iξ] = 0, [iη, lξ] = i[η,ξ], (6.1.2)

where in the second formula the bracket in the right hand side is the Schouten-Nijenhuis bracket
of polyvector fields.

We introduce the main subject of this chapter.

Definition 6.1.3. A holomorphic Poisson bivector on X is a global section π ∈ H0(X,
∧2

ΘX)
satisfying the integrability condition:

[π, π] = 0 . (6.1.3)

2Here and in the sequel, to alleviate the notations, we allow ourselves to write f ∈ OX , η ∈ ΘX , while clearly
we are talking about local sections f ∈ OX(U), η ∈ ΘX(U) over some open U ⊂ X.
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A holomorphic Poisson manifold is a pair (X,π) consisting of a complex manifold X and a holo-
morphic Poisson bivector π on X.

Example 6.1.4. If dimX = 2 then every global section of
∧2

ΘX is a holomorphic Poisson
bivector. If dimX = 3, via the natural identification

∧2
ΘX = Ω1

X ⊗
∧3

ΘX = Ω1
X(K−1

X ),

a global section α ∈ H0(X,Ω1
X(K−1

X )) corresponds to a holomorphic Poisson bivector if and only
if

α ∧ ∂α = 0 ∈ H0(X,Ω3
X(K−2

X )) = H0(X,K−1
X ).

As another example, if A ⊆ H0(X,ΘX) is an abelian Lie subalgebra, then every element in the

image of
∧2

A→ H0(X,
∧2

ΘX) is a Poisson bivector. Finally, every holomorphic symplectic form
ω ∈ Ω2

X induces a Poisson bivector π on X uniquely by the condition

iπ(iη(ω) ∧ α) = iη(α), η ∈ ΘX , α ∈ Ω1
X .

Remark 6.1.5. If π is a holomorphic Poisson bivector on X, by the Jacobi and Cartan identities,

[lπ, ∂] = [[iπ, ∂], ∂] = 0, [lπ, lπ] = [[iπ, ∂], lπ] = [[iπ, lπ], ∂] = [i[π,π], ∂] = 0.

The datum of a holomorphic Poisson bivector π on X induces several additional structures, for
more details we refer to [63, 103]:

1) the Lichnerowicz-Poisson differential dπ = [π, ·] : ∧∗ΘX →
∧∗+1

ΘX , inducing on
∧

ΘX

the structure of sheaf of differential Gerstenhaber algebras.

2) the Poisson bracket {·, ·}π : OX
∧OX → OX , given by

{f, g}π = [[π, f ], g] = [dπf, g] = iπ(∂f ∧ ∂g) .

This clearly satisfies the (even) Poisson identity (6.1.1) and it is well known, see e.g. [103], that
condition (6.1.3) is equivalent to the Jacobi identity for {·, ·}π. Therefore a holomorphic Poisson
manifold could be equivalently defined as a complex manifold X together with a sheaf of Poisson
algebras structure on OX (cf. [103]). We notice that in a system of local holomorphic coordinates
z1, . . . , zn we can reconstruct the Poisson bivector from the Poisson bracket by the formula

π =
∑

1≤i<j≤n
πij

∂

∂zi
∧ ∂

∂zj
, where πij = −{zi, zj}π .

3) the Koszul bracket [·, ·]π : ΩiX ⊗ ΩjX → Ωi+j−1
X , defined by the formula

[α, β]π := (−1)|α|(lπ(α ∧ β)− lπ(α) ∧ β)− α ∧ lπ(β), (6.1.4)

inducing on (ΩX , ∂,∧) the structure of a sheaf of differential Gerstenhaber algebras. We take a
moment to sketch a proof of this well know fact. We notice that [α, β]π coincides with the Koszul
bracket K(lπ)2(α�β) up to the sign (−1)|α|, cf. Section 4.2, in particular the identity K(lπ)3 = 0,
which follows since lπ ∈ Diff2(ΩX), immediately translates into the odd Poisson identity for [·, ·]π.
Similarly, the Jacobi identity translates into the identity [K(lπ)2,K(lπ)2] = 0 in the graded Lie
algebra CE(ΩX): for the latter, we know from Section 4.2 that K is a morpjism of graded Lie
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algebras, thus by Remark 6.1.5 [K(lπ)2,K(lπ)2] = K([lπ, lπ])3 = 03. Finally, the Leibniz identity
translates into [∂,K(lπ)2] = 0, then again this follows since K(∂)2 = 0 and by the remark we see
that [∂,K(lπ)2] = K([∂, lπ])2 = 0.

4) the anchor map

π# : (ΩX , ∂,∧, [·, ·]π)→ (
∧

ΘX , dπ,∧, [·, ·]),

which is the morphism of graded sheaves defined for α ∈ Ω1
X by the formula

π#(α)(f) = iπ(α ∧ ∂f), f ∈ OX , (6.1.5)

and then uniquely extended to an OX -linear morphism of sheaves of graded algebras. It is well
known that it is a morphism of sheaves of differential Gerstenhaber algebras. Again, we only
sketch the proof. In order to show that π#([α, β]π) = [π#(α), π#(β)] it is sufficient to check it
for α ∈ Ω1

X , β ∈ Ω0
X = OX , where it follows from definition (cf. (6.1.5) and (6.1.4)), or β ∈ Ω1

X ,
which is shown for instance in [64, 103]; the proof of π#(∂α) = dπ(π#(α)) follows again from the
Formula (6.1.5) for α = f ∈ Ω0

X = OX ; in general it is sufficient to check it on forms of the type
α = f ∂g1 ∧ · · · ∧ ∂gk, with f, g1, . . . , gk ∈ OX , which is a straightforward direct inspection.

Remark 6.1.6. When the Poisson bivector is induced by a holomorphic symplectic form ω the
anchor map π# : Ω1

X → ΘX is an isomorphism with inverse ω[ : ΘX → Ω1
X , ω[(η) = iη(ω).

Remark 6.1.7. Given a differential form α ∈ ΩkX , if we denote by α ∧ − : Ω∗X → Ω∗+kX the left
multiplication by α, it is not difficult to prove the formula

iπ#(α) =
[iπ,−]k

k!
(α ∧ −)

in the graded Lie algebra End(ΩX).

Before we close the section, we turn our attention to an important class of submanifolds of a
holomorphic Poisson manifold, namely, the coisotropic ones. Recall that a multiplicative ideal I
of a Poisson algebra (A, ·, {, }) is called coisotropic if it is closed with respect to {·, ·}.

Definition 6.1.8. Let (X,π) be a holomorphic Poisson manifold. A holomorphic closed subman-
ifold Z ⊂ X is called coisotropic if its ideal sheaf IZ is coisotropic in OX .

Given a closed submanifold Z of a complex manifold X we denote by NZ|X the normal sheaf

of Z in X and by
∧NZ|X :=

⊕
i≥0

∧i
OZ NZ|X [−i] its graded exterior algebra: by a little abuse

of notation we also denote by
∧NZ|X its direct image under the inclusion Z → X. Moreover, we

denote by ΘX(− logZ) the subsheaf of vector fields η ∈ ΘX such that η(IZ) ⊂ IZ . There is a
natural epimorphism

∧
ΘX →

∧NZ|X of sheaves of graded algebras on X: we denote its kernel by
LZ and we notice that L0

Z = IZ and L1
Z = ΘX(− logZ), where the latter is by definition the sheaf

of vector fields tangent everywhere to Z, that is, the sheaf of Lie subalgebras ΘX(− logZ) ⊂ ΘX

of derivations η ∈ ΘX such that η(IZ) ⊂ IZ .

Proposition 6.1.9. In the notation above, LZ is a sheaf of Gerstenhaber subalgebras of
∧

ΘX .
Moreover the following conditions are equivalent:

1. Z is coisotropic;

3In other words, since K(lπ) ∈ CE(ΩX) is a degree minus one coderivation such that K([lπ , lπ ]) = 0, it is what we
may call a homological L∞[1] structure on ΩX , whereas we have been considering cohomological L∞[1] structures:
via décalage this induces a homological dg Lie algebra structure on ΩX [1], whose Lie bracket is exactly [·, ·]π
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2. π ∈ H0(X;L2
Z);

3. dπ(LZ) ⊆ LZ , i.e., LZ ⊂
∧

ΘX is a sheaf of differential Gerstenhaber subalgebras.

Proof. We firts prove that LZ is generated as a multiplicative ideal of
∧

ΘX by L0
Z and L1

Z :
choosing a system of holomorphic coordinates z1, . . . , zn such that Z = {z1 = · · · = zp = 0}, we

have
∂

∂zi
∈ L1

Z if and only if i > p, while a polyvector field

ξ =
∑

1≤i1<···<ik≤n
ξi1···ik

∂

∂zi1
∧ · · · ∧ ∂

∂zik

belongs to LZ if and only if ξi1···ik ∈ IZ whenever 1 ≤ i1 < · · · < ik ≤ p.
The proof of the first claim of the proposition amounts to show that LZ is [·, ·]-closed: by

Remark 6.1.2 this is equivalent to the fact that L≤1
Z is [·, ·]-closed, which is clear since by definition

ΘX(− logZ) ⊂ ΘX is the sub Lie algebra of derivations sending IZ into itself.

If π ∈ H0(X,L2
Z) and f, g ∈ IZ = L0

Z , also {f, g}π = [[π, f ], g] ∈ IZ : thus Z is coisotropic
and LZ ⊂

∧
ΘX is a differential Gerstenhaber subalgebra. It is clear that item 3 implies that

Z is coisotropic, so it remains to show that the latter implies π ∈ H0(X;L2
Z). We write in local

coordinates

π =
∑

1≤i<j≤n
πij

∂

∂zi
∧ ∂

∂zj
, πij = −{zi, zj}π.

If Z = {z1 = · · · = zp = 0} is coisotropic then zi, zj ∈ IZ for 1 ≤ i < j ≤ p and then also
πij = −{zi, zj}π ∈ IZ for 1 ≤ i < j ≤ p: this says that π is a section of L2

Z .

6.2 Deformations of holomorphic Poisson manifolds

Let X be a complex manifold.

Definition 6.2.1. A deformation of (the complex structure on) X over A ∈ ArtC is a pullback
diagram of complex spaces

X

��

i // X
p

��
Spec C // Spec A

(6.2.1)

with p a smooth morphism. More concretely, we shall identify X with the only closed fiber in X and
we shall look at the structure sheaf OX as a sheaf of A-algebras over X together with a morphism
of sheaves of A-algebras OX → OX , where we regard the sheaf of C-algebras OX as a sheaf of A
algebras via the projection A → A/mA = C: then the fact that p is smooth says moreover that
OX is a sheaf of flat (unitary) A-algebras on X and that in some neighborhood U of any point
x ∈ X the deformation trivializes, that is, there is an isomorphism OX (U) → OX(U) ⊗ A over
OX(U). Equivalences between deformations X0 and X1 of X over A are morphisms of sheaves of
A-algebras OX0

→ OX1
over OX : we call a deformation equivalent to X → X × Spec A→ Spec A

trivial.
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Every deformation X of X over A trivializes globally on a Stein open U ⊂ X, that is, we

have OX (U)
∼=−→ OX(U) ⊗ A over OX(U): as usual, exponential and logarithm induce a bijective

correspondence between the graded Lie algebra ΘX(U)⊗mA and the group of automorphisms of
A-algebras OX(U)⊗A→ OX(U)⊗A over OX(U), in other words, the group of self-equivalences
of the trivial deformation U × Spec A is the exponential group exp(ΘX(U) ⊗ mA). Thus, given
a covering U = {Ui}i∈I of X by Stein open subsets, the whole X can be reconstructed up to
isomorphism by gluing the family of trivial deformations Ui×Spec A along the double intersections
Uij = Ui

⋂
Uj via a family of transition automorphisms eηij : OX(Uij)⊗A→ OX(Uij)⊗A, where

ηij ∈ ΘX(Uij)⊗mA, satisfying the cocycle condition eηijeηjk = eηik : OX(Uijk)⊗A→ OX(Uijk)⊗A
on triple intersections, that is, ηij ◦ ηjk = ηik in the nilpotent Lie algebra ΘX(Uijk) ⊗ mA, where
◦ is the Baker-Campbell-Hausdorff product.

In order to deform the datum of a Poisson bivector π ∈ H0(X;
∧2

ΘX) on X together with the
complex structure, given a deformation X of X over A, we consider the sheaf of OX -modules ΘX/A
of A-linear derivations of OX : as in the previous section the sheaf ΘX/A has a natural structure
of sheaf of Gerstenhaber algebras given by the Schouten-Nijenhuis bracket, uniquely defined so
that the brackets of vector fields is the usual one and the bracket of a vector field and a function
is the contraction. We notice that when U ⊂ X is a Stein open subset, there is an isomorphism∧∗

ΘX/A(U)
∼=−→ ∧∗

ΘX(U)⊗A of Gerstenhaber algebras over
∧∗

ΘX(U), where the Gersthenaber
algebra structure on the right hand side is given via scalar extension by A. Let as before U be a
covering of X by Stein open sets, we denote by eηij a family of transition automorphisms for OX
over U as before. Looking at the ηij ∈ ΘX(Uij)⊗mA as elements of

∧
ΘX(Uij)⊗A ∼=

∧
ΘX/A(Uij),

the adjoints

adηij = [ηij , ·]SN :
∧

ΘX/A(Uij)→
∧

ΘX/A(Uij)

are degree zero nilpotent Gerstenhaber derivations, that is, derivations both of the algebra (by the
Poisson identity) and the Lie algebra (by the Jacobi identity) structure, which shows that their
exponentials ead ηij :

∧
ΘX/A(Uij) →

∧
ΘX/A(Uij) are automorphisms of Gerstenhaber algebras

over
∧

ΘX(Uij). As before the sheaf
∧

ΘX/A can be reconstructed by gluing the local pieces∧
ΘX(Ui)⊗A along the double intersections, we see that the transition automorphisms are exactly

the ead ηij :
∧

ΘX(Uij) ⊗ A → ∧
ΘX(Uij) ⊗ A: in fact, it suffices to check this on functions

f ∈ OX (Uij) =
∧0

ΘX(Uij) ⊗ A, where ead ηij (f) = eηij (f), and on vector fields ξ ∈ ΘX/A(Uij),

where ead ηij (ξ) = eηij ◦ξ◦e−ηij . We can treat equivalences of deformations by the same reasoning:
namely, an equivalence between deformations X0 and X1 of X over A induces an isomorphism∧

ΘX0/A →
∧

ΘX1/A over
∧

ΘX , if the equivalence is locally given by

OX0(Ui) ∼= OX(Ui)⊗A eηi // OX(Ui)⊗A ∼= OX1(Ui) ,

where ηi ∈ ΘX(Ui)⊗mA, then the induced
∧

ΘX0/A →
∧

ΘX1/A is locally given by

∧
ΘX0/A(Ui) ∼=

∧
ΘX(Ui)⊗A ead ηi // ∧ΘX(Ui)⊗A ∼=

∧
ΘX1/A(Ui) .

It is clear now how to define infinitesimal deformations of (X,π) over A.

Definition 6.2.2. A deformation of a holomorphic Poisson manifold (X,π) over A ∈ ArtC is the
data of

a deformation X
i // X p // Spec A of X over A as in Definition 6.2.1, and

a global section π̃ ∈ H0(X;
∧2

ΘX/A) such that [π̃, π̃] and such that π̃ restricts to π on the
closed fiber, that is,

∧
ΘX/A →

∧
ΘX : π̃ → π.
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Given two deformations (X0, π̃0), (X1, π̃1) an equivalence between them is an equivalence between
X0 and X1 such that the induced isomorphism

∧
ΘX0/A →

∧
ΘX1/A sends π̃0 to π̃1. To every

holomorphic Poisson manifolds (X,π) we associate

a formal pointed groupoid Del(X,π) : ArtC → Grpd∗, sending A to the groupoid whose
objects are deformations of (X,π) over A and whose arrows are equivalences between them;

a formal pointed set Def(X,π) : ArtC → Set∗ : A→ π0(Del(X,π)(A)), sending A to the set of
equivalence classes of deformations of (X,π) over A.

Remark 6.2.3. Equivalently, a deformation of (X,π) over A is a sheaf OX of flat Poisson A-algebras
on X (that is, flat A-algebras equipped with an A-bilinear Poisson bracket) and a sheaves of Poisson
A-algebras morphism OX → OX wich trivializes locally, that is, for all x ∈ X there is an open
U ⊂ X containing x and an isomorphism OX (U)→ OX(U)⊗ A of sheaves of Poisson A-algebras
over OX , where we consider the Poisson structure on OX(U)⊗A given via scalar extension by A.

Given a covering U of a Poisson manifold (X,π) by Stein open sets, via the Čech construction
it is defined a semicosimplicial differential Gerstenhaber algebra (with the Lichnerowicz-Poisson
differential, cf. the previous section)

∧
ΘX(U)• :

∏

i

∧
ΘX(Ui)

//
//
∏

i,j

∧
ΘX(Uij)

//////
∏

i,j,k

∧
ΘX(Uijk) · · ·

with the usual face operators given by restriction. The part in degrees ≥ 1 is a semicosimplicial
differential Gerstenhaber subalgebra, since the associated semicosimplicial dg Lie algebra

∧
Θ≥1
X [1](U)• :

∏

i

∧≥1
ΘX [1](Ui)

//
//
∏

i,j

∧≥1
ΘX [1](Uij)

//////
∏

i,j,k

∧≥1
ΘX [1](Uijk) · · ·

is concentrated in degrees ≥ 0, it satisfies the hypotheses of Theorem 5.3.12 and Corollary 5.3.15.

Theorem 6.2.4. The totalization Tot(
∧≥1

ΘX [1](U)•) (or, if we want a dg Lie algebra, the Thom-

Whitney totalization TotTW (
∧≥1

ΘX [1](U)•)) governs the deformations of (X,π). More precisely,
there are equivalences of formal pointed groupoids

DelTotTW (
∧≥1 ΘX [1](U)•) ' DelTot(

∧≥1 ΘX [1](U)•) ' Del(X,π) .

Proof. Let A ∈ ArtC and (X , π̃) be a deformation of (X,π) over A, this trivializes over each
Ui and thus we have isomorphisms

∧
ΘX/A(Ui) ∼=

∧
ΘX(Ui) ⊗ A of Gerstenhaber algebras over∧

ΘX(Ui). As we said, the sheaf
∧

ΘX/A can be reconstructed by the local trivial pieces via a family

of transition automorphisms eadηij :
∧

ΘX/A(Uij) →
∧

ΘX/A(Uij), where ηij ∈ ΘX(Uij) ⊗ mA,
satisfying the cocycle condition ηij ◦ ηjk = ηik in the Lie algebra ΘX(Uijk)⊗mA. Since π̃ restricts

to π, over each Ui we have π̃|Ui = π|Ui + σi, where σi ∈
∧2

ΘX(Ui) ⊗ mA: then [π̃, π̃] = 0 is

equivalent to [π|Ui , σi] + 1
2 [σi, σi] = 0, ∀i, that is, σi is a Maurer-Cartan element of the dg Lie

algebra (
∧≥1

ΘX [1](Ui)⊗mA, dπ|Ui , [·, ·]) for all Ui ∈ U . Finally, since the local sections π̃|Ui glue

to the global π̃, on double intersections we have that ead ηij (π|Uij + σj|Uij ) = π|Uij + σi|Uij , which

becomes the equation eηij ∗σj|Uij = σi|Uij in the dg Lie algebra (
∧≥1

ΘX [1](Uij)⊗mA, dπ|Uij , [·, ·]),
where ∗ denotes the Gauge action. Conversely, the previous discussion shows that given the open
covering U of X by Stein open subsets a deformation (X , π̃) of (X,π) over A is determined up to
equivalence by the following data:
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for all Ui ∈ U a solution σi ∈
∧2

ΘX(Ui)⊗mA to the Maurer-Cartan equation in the dg Lie

algebra (
∧≥1

ΘX [1](Ui)⊗mA, dπ|Ui , [·, ·]) and

for all double intersections Uij a section ηij ∈ ΘX(Uij)⊗ mA such that eηij ∗ σj|Uij = σi|Uij
in the dg Lie algebra (

∧≥1
ΘX [1](Uij)⊗mA, dπ|Uij , [·, ·]), and such that moreover

.the cocycle conditions ηij ◦ ηjk = ηik are satisfied in the Lie algebras ΘX(Uijk)⊗mA.

If we compare with Definition 5.3.10 we see that the above data is exactly the datum of an object
in the groupoid of descent data Tot(Del∧

Θ
≥1
X [1](U)•

(A)) of the semicosimplicial groupoid

∏

i

Del∧≥1 ΘX [1](Ui)
(A)

//
//
∏

i,j

Del∧≥1 ΘX [1](Uij)
(A)

//////
∏

i,j,k

Del∧≥1 ΘX [1](Uijk)(A) · · ·

Equivalences of deformations can be treated similarly: given a pair of deformation (X1, π̃1) and

(X2, π̃2), and once we have fixed trivializations
∧

ΘXp/A(Ui)
∼=−→ ∧

ΘX(Ui) ⊗ A, p = 1, 2, of both
over the various Ui ∈ U , we denote by (σi, ηij) and (τi, θij) the corresponding descent data as in
the previous discussion: then an equivalence between (X1, π̃1) and (X2, π̃2) is exactly the data

for all Ui ∈ U of a section ξi ∈ ΘX(Ui) ⊗ mA such that eξi ∗ σi = τi in the dg Lie algebra

(
∧≥1

ΘX [1](Ui)⊗mA, dπ|Ui , [·, ·]) and such that moreover

the various eξi glue to a global OX1
→ OX2

, that is, on double intersections the identities

eξi|Uij eηij = eθijeξj|Uij are satisfied, or equivalently we have ξi|Uij ◦ ηij = θij ◦ ξj|Uij in the
Lie algebras ΘX(Uij)⊗mA.

Again, comparing with Definition 5.3.10 these are exactly the morphisms between the objects
(σi, ηij) and (τi, θij) in the groupoid of descent data Tot(Del∧

Θ
≥1
X [1](U)•

(A)). To sum up: there

is an equivalence of pointed groupoids Del(X,π)(A)
∼−→ Tot(Del∧

Θ
≥1
X [1](U)•

(A)), and since it clear

that this is natural in A by Theorem 5.3.12 and Corollary 5.3.15 we get equivalences of formal
pointed groupoids

Del(X,π) ' Tot(Del∧
Θ
≥1
X [1](U)•

) ∼= Del
Tot(

∧
Θ
≥1
X [1](U)•)

' Del
TotTW (

∧
Θ
≥1
X [1](U)•)

.

Remark 6.2.5. We notice that the previous argument is algebraic in nature, in particular, it can
be easily extended to every algebraic Poisson manifold defined over a field of characteristic 0:
roughly, it is sufficient to replace holomorphic with algebraic and Stein with affine and everything
still works.

Comparing Theorem 5.3.12 and Corollary 5.3.15 we see that the more natural model to consider
would be Tot(

∧
Θ≥1
X [1](U)•), and in fact the underlying dg space is the usual Čech complex of

cochains on the (nerve of the) covering U with coefficients in the sheaf of dg Lie algebras
∧

Θ≥1
X [1]

over X. On the other hand, in some situations we may want to work only with dg Lie algebras,
and in this case, although a natural homotopical construction, the Thom-Whitney totalization is
not really a familiar object to work with: we shall use Dolbeault’s resolutions in order to describe
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another dg Lie algebra governing Poisson deformations (of course this only works in the complex
analytic setting).

Given a locally free sheaf E on a complex manifold X we shall denote by A0,j
X (E) the sheaf of

differentiable forms of type (0, j) with values in E . The Dolbeault resolution of a bounded below
complex

(E∗, δ) : 0→ E i δ−→E i+1 δ−→· · ·
of locally free sheaves on a complex manifold is the sheaf of dg vector spaces A0,∗

X (E∗), where

A0,∗
X (E)i =

⊕

j+h=i

A0,j
X (Eh),

and the differential ∂E∗ is defined by the formula

∂E∗ : A0,j
X (Eh)→ A0,j+1

X (Eh)⊕A0,j
X (Eh+1), ∂E∗(φ⊗ e) = ∂φ⊗ e+ (−1)jφ⊗ δe .

According to Dolbeault’s lemma, the natural inclusion E∗ → A0,∗
X (E∗) is a quasi-isomorphism.

Similarly we denote by A0,∗
X (E∗) the dg space of global sections of the Dolbeault resolution;

more generally, for every open subset U ⊂ X we shall denote by A0,∗
U (E∗) the dg space of sections

of A0,∗
X (E∗) over U . Notice that, by Dolbeault theorem, the cohomology A0,∗

X (E∗) is isomorphic to
the hypercohomology of E∗.

Let (E∗, δ) be a bounded below complex of locally free sheaves on a complex manifold X and let
U = {Ui} be an open Stein covering of X. Thus we have a natural morphism of semicosimplicial
dg vector spaces:

E∗(U)• :

��

∏
i E∗(Ui)

//
//

��

∏
i,j E∗(Uij)

��

//////
∏
i,j,k E∗(Uijk) · · ·

��
A0,∗
U (E∗)• :

∏
iA

0,∗
Ui

(E∗) //
//
∏
i,j A

0,∗
Uij

(E∗) // ////
∏
i,j,k A

0,∗
Uijk

(E∗) · · ·

Since A0,∗
X (E∗) is the equalizer of ∂0, ∂1 : A0,∗

U (E∗)0 → A0,∗
U (E∗)1 and every map

E∗(Ui1···ik)→ A0,∗
Ui1···ik

(E∗)

is a quasi-isomorphism, according to the following Remark 6.2.6 we get diagrams of quasi-isomorphisms

TotTW (E∗(U)•)

��
A0,∗
X (E∗) e′ // TotTW (A0,∗

U (E∗)•)

Tot(E∗(U)•)

��
A0,∗
X (E∗) e // Tot(A0,∗

U (E∗)•)

Remark 6.2.6. Let L• be a semicosimplicial dg Lie algebra and denote byH = {x ∈ L0 | ∂0x = ∂1x}
the equalizer of ∂0, ∂1 : L0 → L1: we remark that if x ∈ H then x is also in the equalizer of the
(n + 1) iterated faces L0 → Ln for all n ≥ 1. This clearly implies, by the universal property of
Tot(−) (as explained in Remark 5.3.1), that the family of maps H → C(∆n;Ln) : x → π∗(∂n0 x),
where ∂n0 : L0 → Ln is the iterated face and π∗ : Ln → C(∆n;Ln) is pullback by the terminal
morphism π : ∆n → ∆0, induces a strict morphism e : H → Tot(L•) of L∞ algebras. In the same
way it is defined a morphism of dg Lie algebras e′ : H → TotTW (L•), and moreover the two are
compatible with the natural quasi-isomorphism

∫
: TotTW (L•)→ Tot(L•). In the above diagram

e is a quasi-isomorphism, and thus so is e′, since the whole diagram induces the usual isomorphism
between Dolbeault and Čech (hyper)cohomology.
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We apply the previous considerations to the complex of locally free sheaves on X

∧≥1
ΘX [1] : 0→ ΘX

dπ−→
∧2

ΘX
dπ−→
∧3

ΘX · · · ,

where
∧i

ΘX is in degree i−1. In this case the complex A0,∗
X (
∧≥1

ΘX [1]) admits a natural structure
of dg Lie algebra, where the bracket is the antiholomorphic extension of the Schouten-Nijenhuis
bracket on A0,0

X (
∧≥1

ΘX [1]).

Theorem 6.2.7. The dg Lie algebra A0,∗
X (
∧≥1

ΘX [1]) controls the deformation of (X,π). More
precisely, there is an equivalence of formal pointed groupoids

DelA0,∗
X (

∧≥1ΘX [1]) ' Del(X,π)

Proof. The previous diagram of quasi-isomorphisms (the one on the left) is clearly a diagram of dg
Lie algebras: we know by the classical result of Goldman and Milson [42] that a quasi-isomorphism
f : L→M of dg Lie algebras concentrated in degrees ≥ 0 induces an equivalence of formal pointed
groupoids DelL → DelM , thus the result follows from Theorem 6.2.4.

6.3 Coisotropic deformations

The aim of this section is to study infinitesimal embedded coisotropic deformations of a coisotropic
submanifold Z ⊂ X of a holomorphic Poisson manifold (X,π): we shall begin by studying
coisotropic deformations of the triad (X,Z, π), and as a first step deformations of the (complex
manifold, complex submanifold) structure on the pair (X,Z).

Definition 6.3.1. A deformation of the (complex manifold, complex submanifold) structure on
the pair (X,Z) over A is a deformation X of X over A, as in Definition 6.2.1, together with a sheaf
IZ ⊂ OX of A-flat ideals and a morphism

IZ �
� //

��

OX

��
IZ �
� // OX

of pairs of sheaves of A-algebras which locally trivializes, that is, for all x ∈ X there is a neighbor-
hood x ∈ U ⊂ X and an isomorphism

IZ(U) �
� //

��

OX (U)

��
IZ(U)⊗A � � // OX(U)⊗A

of pairs of A-algebras over IZ(U) ↪→ OX(U). Equivalences between deformations of (Z,X) over
A are isomorphisms of pairs of sheaves over IZ ↪→ OX .

Recall that we denote by ΘX(− log Z) ⊂ ΘX the sheaf of vector fields tangent everywhere to
Z. Given a covering U of X by Stein open sets, a deformation of the pair (X,Z) over A trivializes
globally over each Ui ∈ U , and as in the previous section we can recover the whole deformation
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by gluing together trivial deformations via a family of transition automorphisms on the double
intersections, satisfying moreover the cocycle condition on triple intersections. It is easy to see
that eηij : OX(Uij)⊗A→ OX(Uij)⊗A sends IZ(Uij)⊗A into itself, where ηij ∈ ΘX(Uij)⊗mA, if
and only if ηij ∈ ΘX(− log Z)(Uij)⊗mA: in other words, the group of self-equivalences of the trivial
deformation IZ(Uij)⊗A ↪→ OX(Uij)⊗A is the exponential group exp(ΘX(− log Z)(Ui)⊗mA).

Definition 6.3.2. Given a holomorphic Poisson manifold (X,π) and a coisotropic submanifold
Z ⊂ X, a coisotropic deformation of (X,Z, π) over A ∈ ArtC is a deformation (X , π̃) of (X,π)
together with a sheaf of coisotropic ideals IZ ⊂ OX such that IZ ↪→ OX is a deformation of the
pair (X,Z) over A. Together with the obvious notion of equivalence, we associate to (X,Z, π) a
formal pointed groupoid and a formal pointed set

Delco(X,Z,π) : ArtC → Grpd∗, Defco(X,Z,π) : ArtC → Set∗ .

We take U as usual. Recall from Proposition 6.1.9 the sheaf of differential Gerstenhaber sub-
algebras LZ ⊂

∧
ΘX : the semicosimplicial dg Lie algebra L≥1

Z [1](U)• is defined as in the previous
section via the usual Čech construction, this is concentrated in degrees ≥ 0 and in particular it
satisfies the assumptions of Theorem 5.3.12 and Corollary 5.3.15.

Theorem 6.3.3. There are equivalences of formal pointed groupoids

Del
TotTW (L≥1

Z [1](U)•)
' Del

Tot(L≥1
Z [1](U)•)

' Delco(X,Z,π) .

Proof. Given a deformation (X ,Z, π̃) of (X,Z, π) over A, the deformation (X ,Z) of the pair
(X,Z) is determined up to equivalence by the family of transition automorphisms eηij , where
ηij ∈ ΘX(− log Z)(Uij)⊗mA = L1

Z(Uij)⊗mA: moreover, as in the proof of (1)⇔(2) in Proposition
6.1.9 we see that the ideal IZ(Ui) ⊗ A ⊂ OX(Ui) ⊗ A is coisotropic with respect to the Poisson

bivector π̃|Ui = π|Ui + σi if and only if σi ∈ L2
Z(Ui) ⊗ mA ⊂

∧2
ΘX(Ui) ⊗ mA. As in the proof

of 6.2.4, the deformation (X ,Z, π̃) is determined up to equivalence by the corresponding object
(σi, ηij) in the groupoid of descent data Tot(DelL≥1

Z [1](U)•
(A)) of the semicosimplicial groupoid

∏

i

DelL≥1
Z [1](Ui)

(A)
//
//
∏

i,j

DelL≥1
Z [1](Uij)

(A)
//////
∏

i,j.k

DelL≥1
Z [1](Uijk)

(A) · · ·

Equivalences between deformations can be treated in the exact same way as in 6.2.4, and since this
is natural in A there is an equivalence of formal pointed groupoids Delco(X,Z,π) ' Tot(DelL≥1

Z [1](U)•
),

so the thesis follows from Theorem 5.3.12 and Corollary 5.3.15.

As an application of the above result we are able to give the analog of Kodaira’s stability
theorem for coisotropic submanifolds. Let

∧≥1NZ|X [1] be the complex of sheaves on X

∧≥1
NZ|X [1] : 0→ NZ|X dπ−→

∧2
NZ|X dπ−→

∧3
NZ|X · · · , (6.3.1)

where
∧iNZ|X is in degree i − 1. We notice that the Lichnerowicz-Poisson differential induces

∧iNZ|X dπ−→ ∧i+1NZ|X thanks to Proposition 6.1.9.

Corollary 6.3.4 (Stability of coisotropic submanifolds). Let (X,π) be a compact holomorphic
Poisson manifold and let Z be a coisotropic submanifold. Let X → (B, 0) be a Poisson deformation

of (X,π) over a germ of complex space (B, 0). If H1(Z,
∧≥1NZ|X [1]) = 0 then, after a possible

shrinking of B, there exists a family of coisotropic submanifolds Z ⊂ X which is smooth over B
and such that Z0 = Z.
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Proof. Following the same standard argument used in the proof of Theorem 8.1 of [49], involving
relative Douady space and Artin’s theorem on the solution of analytic equations, it is not restrictive
to assume B a fat point, that is, B = Spec A for some A ∈ ArtC. Thus the stability theorem is
proved whenever we show that the natural transformation of formal pointed sets

Defco(X,Z,π)−→Def(X,π)

is smooth (cf. Remark 6.4.4). Fixing an open Stein covering U = {Ui} of X, the above natural
transformation is induced by the inclusion of differential graded Lie algebras

Tot(L≥1
Z [1](U)•)

i−→Tot(
∧≥1

ΘX [1](U)•).

According to standard smoothness criterion, see e.g. [76], the morphism Defco(X,Z,π)−→Def(X,π) is

smooth whenever i is surjective on H1 and injective on H2. By the definition of L≥1
Z we have an

exact sequence of complexes of coherent sheaves

0→ L≥1
Z [1]→

∧≥1
ΘX [1]→

∧≥1
NZ|X [1]→ 0,

and the thesis follows from the hypercohomology long exact sequence.

Next we study embedded coisotropic deformations. Recall that given a pair (X,Z) consisting of
a complex manifold X and a locally closed complex submanifold Z ⊂ X the local Hilbert functor
is the formal pointed set HilbZ|X : ArtC → Set sending A ∈ ArtC to the set of sheaves of A-
flat ideals IZ ⊂ OX ⊗ A such that IZ ⊗A C = IZ . In other words, HilbZ|X is the functor of
formal embedded deformations of Z in X. If U ⊂ X is open Stein then IZ(U) ↪→ OX(U) ⊗ A is
isomorphic as a pair to IZ(U) ⊗ A ↪→ OX(U) ⊗ A, and thus there is η ∈ ΘX(U) ⊗ mA such that
IZ(U) = eη(IZ(U)⊗A).

Definition 6.3.5. Given a holomorphic Poisson manifold (X,π) and a coisotropic submanifold
Z ⊂ X, the local coisotropic Hilbert functor is the formal pointed set HilbcoZ|X : ArtC → Set∗
sending A to the set of sheaves of A-flat coisotropic ideals IZ ⊂ OX ⊗A such that IZ ⊗A C = IZ .

Let K≥1
Z be the homotopy fiber of the inclusion of sheaves of (non negatively graded) dg Lie

algebras L≥1
Z [1] ↪→ ∧≥1

ΘX [1] (the notation is a little ambiguous, this is not the non negatively
graded part of the homotopy fiber KZ of the inclusion LZ [1] ↪→ ∧

ΘX [1]). We take U as usual and

denote by K≥1
Z (U)• the associated semicosimplicial dg Lie algebra (concentrated in degrees ≥ 0).

Theorem 6.3.6. There are equivalences of formal pointed groupoids

Del
TotTW (K≥1

Z (U)•)
' Del

Tot(K≥1
Z (U)•)

' HilbcoZ|X ,

where HilbcoZ|X is regarded as a formal pointed groupoid via the inclusion Set∗ → Grpd∗.

Proof. We shall first show that DelK≥1
Z (U)

' HilbcoU
⋂
Z|U for a Stein open U ⊂ X, then the theorem

will follow from descent of Deligne groupoids as in the previous cases. We notice that the mapping
cocone coC(f) and the homotopy fiber K(f) of a morphism f : L → M of dg Lie algebras
are particular cases of totalization and Thom-Whitney totalization, respectively applied to the
semicosimplicial dg Lie algebra

L
0 //
f
// M

// //// 0 · · ·
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If L and M are concentrated in degrees ≥ 0 Theorem 5.3.12 and Corollary 5.3.15 apply, and in
this case they tell us that DelcoC(f) and DelK(f) are respectively isomorphic and equivalent to
the formal groupoid (sending A ∈ ArtC to the groupoid) whose objects are pairs (l, a), where
l ∈ MC(L ⊗ mA) and a ∈ M0 ⊗ mA is such that ea ∗ 0 = f(l) (notice that the cocycle condition
is automatically satisfied) and whose morphism (l, a) → (l′, a′) are the b ∈ L0 ⊗ mA such that
eb ∗ l = l′ and ef(b)ea = ea

′
, that is, f(b) ◦ a = a′ in the Lie algebra M0⊗mA. When f is moreover

the inclusion L ⊂ M of a dg Lie subalgebra, objects in this groupoid are just the η ∈ M0 ⊗ mA
such that eη ∗ 0 ∈ L1 ⊗ mA: in this case there is at most one morphism between two objects and

thus Grpd∗
π0(−)−−−−→ Set∗ −→ Grpd∗, where the second map is the inclusion, induces equivalences

of formal pointed groupoids DelcoC(f) ' DelK(f) ' DefcoC(f)
∼= DefK(f).

In the case of the inclusion of non negatively graded dg Lie algebras L≥1
Z [1](U) ↪→ ∧≥1

ΘX [1](U)
we see that objects in DelK≥1

Z (U)
(A) are the η ∈ ΘX(U) ⊗ mA such that eη ∗ 0 ∈ L2

Z(U) ⊗ mA,

and morphisms η → θ are the α ∈ Θ(− log Z)(U) ⊗ mA such that α ◦ η = θ in the Lie algebra
ΘX(U) ⊗ mA. We define an isomorphism of sets DefK≥1

Z (U)
(A)

∼−→ HilbcoU
⋂
Z|U (A) by sending the

Gauge equivalence class of η to the ideal e−η(IZ∩U ⊗ A) ⊂ OU ⊗ A, we have to show that this is
well defined: given a morphism α ◦ η = θ between η and θ, since α ∈ Θ(− log Z)(U)⊗mA we have
e−α(IZ∩U ⊗A) = IZ∩U ⊗A and thus also e−η(IZ∩U ⊗A) = e−θ(IZ∩U ⊗A), so it remains to show
that e−η(IZ∩U ⊗ A) is a coisotropic ideal, but since eadη :

∧
ΘX(U)⊗mA →

∧
ΘX(U)⊗mA is a

Gerstenhaber automorphism, this is equivalent to say that IZ∩U ⊗A is coisotropic with respect to
the Poisson bracket induced by eadη (π|U ) = π|U + eη ∗ 0, and as in the proof of Proposition 6.1.9
this is equivalent to eη ∗ 0 ∈ L2

Z(U) ⊗ mA. We have to show that this is an isomorphism: this is
injective since e−η(IZ∩U ⊗A) = e−θ(IZ∩U ⊗A) if and only if θ ◦ (−η) =: α ∈ Θ(− log Z)(U)⊗mA,
and thus α is a morphism from η to θ in DelK≥1

Z (U)
(A), this is surjective since as we said if U is

open Stein then every IZ|U in HilbZ∩U |U (A) (and in particular in HilbcoZ∩U |U (A) ) is of the form

e−η(IZ∩U ⊗A) for some η ∈ ΘX(U)⊗mA. Finally, it is clear that this is natural in A, so we have
constructed the promised equivalence DelK≥1

Z (U)
' HilbcoU

⋂
Z|U of formal pointed groupoids.

It is clear by definition that U → HilbcoU
⋂
Z|U (A) is a sheaf of pointed sets onX, in particular this

means that the formal pointed set HilbcoZ|X , regarded as a formal pointed groupoid, is canonically
isomorphic to its groupoid of descent data, that is, the totalization of the semicosimplicial formal
pointed groupoid

∏
i HilbcoUi

⋂
Z|Ui

//
//
∏
i,j HilbcoUij

⋂
Z|Uij

//////
∏
i,j,k HilbcoUijk

⋂
Z|Uijk · · ·

and by the first part of the proof this is equivalent to the semicosimplicial formal pointed groupoid
∏
i DelK≥1

Z (Ui)

//
//
∏
i,j DelK≥1

Z (Uij)

//////
∏
i,j,k DelK≥1

Z (Uijk)
· · ·

Since totalization commutes with equivalences (Remark 5.3.11) we finally get an equivalence of for-
mal pointed groupoids HilbcoZ|X ' Tot(DelK≥1

Z (U)•
). Now the thesis follows as usual from Theorem

5.3.12 and Corollary 5.3.15.

In the final part of the section we compare Theorem 6.3.6 with the more usual approach to
coisotropic deformations via the homotopy Lie algebroid of Oh-Park [87] and Cattaneo-Felder [19].
As a first step we shall use Dolbeault resolutions to determine a more amenable dg Lie algebra
governing the embedded coisotropic deformations of Z in X. Let

∧≥1NZ|X [1] be the complex of

sheaves on X as in equation (6.3.1), we define LZ|X ⊂ A0,∗
X (
∧≥1

ΘX [1]) by the short exact sequence

0→ LZ|X
χ−−→ A0,∗

X (
∧≥1

ΘX [1])
P−−→ A0,∗

Z (
∧≥1

NZ|X [1])→ 0, (6.3.2)
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where P is the natural projection map and χ is the inclusion: then we see as in the proof of
Proposition 6.1.9 that LZ|X ⊂ A0,∗

X (
∧≥1

ΘX [1]) is a dg Lie subalgebra.

Theorem 6.3.7. The homotopy fiber K(χ) of the inclusion LZ|X
χ−→A0,∗

X (
∧≥1

ΘX [1]) governs the
infinitesimal embedded coisotropic deformations of Z in X.

Proof. Since the functor TotTW (−) : DG
∆−→ → DG is exact there is a short exact sequence

0→ TotTW (L≥1
Z [1](U)•)

α−→TotTW (
∧≥1

ΘX [1](U)•)→ TotTW (
∧≥1

NZ|X [1](U)•)→ 0

and TotTW (K≥1
Z (U)•) is isomorphic to the homotopy fiber of α. The above sequence is part of

a 3 × 3 diagram with exact rows, with the first two columns made by morphisms of differential
graded Lie algebras, the second two columns as in Remark 6.2.6 and where every vertical arrow is
a quasi-isomorphism

0 // TotTW (L≥1
Z [1](U)•)

α //

��

TotTW (
∧≥1

ΘX [1](U)•) //

��

TotTW (
∧≥1NZ|X [1](U)•) //

��

0

0 // K // TotTW (A0,∗
U (
∧≥1

ΘX [1])•) // TotTW (A0,∗
U (
∧≥1NZ|X [1])•) // 0

0 // LZ|X
χ //

OO

A0,∗
X (
∧≥1

ΘX [1]) //

e

OO

A0,∗
Z (
∧≥1NZ|X [1]) //

e

OO

0

This diagram induces a quasi-isomorphism between the homotopy fibers of α and χ.

Now we review the construction of the homotopy Lie algebroid: the main ingredient was the
subject of study of Chapter 4, namely, higher derived brackets. In order to apply the higher derived
brackets construction we look for a splitting A0,∗

Z (
∧≥1NZ|X [1]) → A0,∗

X (
∧≥1

ΘX [1]) of the exact
sequence (6.3.2): in the analog situation in the differentiable setting one performs such a choice
via the identification of the normal bundle NZ|X with a tubular neighborhood of Z in X4, in the
complex analytic setting this is not possible anymore and we have to work from the outset in
the rather restrictive hypothesis that X = E is the total space of a holomorphic vector bundle
p : E → Z over Z, which is embedded in E as the zero section In this case there is a natural
identification E ∼= NZ|E , and thus a natural identification p∗NZ|E ∼= p∗E between the pullback
bundle p∗NZ|E → E and the sub-bundle p∗E ⊂ TE of vertical tangent vectors: this induces a
morphism NZ|E → p∗ΘE of sheaves on Z, sending a section ξ of NZ|E to the vector field constantly

ξp along the fiber Ep, by multiplicative extension we also get
∧≥1NZ|E → p∗

∧≥1
ΘE . Thus, for

every open subset U ⊂ Z we have a morphism

∧≥1
NZ|E [1](U)→

∧≥1
ΘE [1](p−1(U))

whose image is an abelian graded Lie subalgebra. Acting via pull-back on differential forms, we
obtain a splitting

σ : A0,∗
Z (
∧≥1

NZ|E [1]) −−−→ A0,∗
E (
∧≥1

ΘE [1]) (6.3.3)

of the exact sequence (6.3.2) whose image is an abelian graded Lie subalgebra.

4We could recover by Lemma 4.1.17 the fact already proved in [20] that the resulting L∞ algebra does not depend
on this choice up to L∞ isomorphism.
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Given a Poisson bivector π on E seen as an element of A0,0
E (
∧2

ΘE), we see as in the proof
of Proposition 6.1.9 that if Z ⊂ E is a coisotropic submanifold then π ∈ L1

Z|E . In this case the

derivation D = ∂ + dπ ∈ Der(A0,∗
E (
∧≥1

ΘE [1])) sends the graded Lie subalgebra LZ|E into itself,
thus we are in the algebraic setup of Voronov’s construction of higher derived brackets and there
is an induced L∞[1] algebra structure on A0,∗

Z (
∧≥1NZ|E [1]): explicitly

Φ(D)1(ξ) = (∂ + dπ)(ξ),

Φ(D)n(ξ1 � · · · � ξn)nD = P ([[· · · [dπ(σ(ξ1)), σ(ξ2)], · · · ], σ(ξn)]), n ≥ 2,

where P : A0,∗
E (
∧≥1

ΘE [1])→ A0,∗
Z (
∧≥1NZ|E [1]) is the projection (notice that Φ(∂)n = 0 for n ≥ 2

since the image of σ is ∂-closed).

According to Theorem 4.1.7 the L∞ algebra structure on the space A0,∗
Z (
∧≥1NZ|E) (induced

via décalage) is weakly equivalent to the homotopy fiber of LZ|X
χ−→ A0,∗

E (
∧≥1

ΘE [1]), thus by
homotopy invariance of Def− (cf. [75]) we obtain the following corollary of Theorem 6.3.7.

Corollary 6.3.8. In the previous hypotheses there is an isomorphism of formal pointed sets

DefA0,∗
Z (

∧≥1NZ|E)
∼= HilbcoZ|E .

Remark 6.3.9. Since the L∞ algebra A0,∗
Z (
∧≥1NZ|E) is concentrated in degrees ≥ 1 there is an

isomorphism of formal sets DefA0,∗
Z (

∧≥1NZ|E)
∼= MCA0,∗

Z (
∧≥1NZ|E), thus the corollary shows that

for all A ∈ ArtC there is a bijective correspondence between the set HilbcoZ|E(A) and the set of

solutions ξ ∈ A0,0
Z (NZ|E) ⊗ mA of the Maurer-Cartan equation

∑
n≥1

1
n!Φ(D)n(ξ�n) = 0 in the

nilpotent L∞[1] algebra A0,∗
Z (
∧≥1NZ|E [1])⊗mA.

6.4 Deformations induced by the anchor map

In this section we show that deformations induced by the anchor map are unobstructed, to this
end we need the following easy criterion for a dg Lie algebra to be homotopy abelian (this was
proved in [33], cf. also [2]).

Theorem 6.4.1. Let L = (L, d, [·, ·]) be a dg Lie algebra and (L[1], q1, q2, 0, . . . , 0, . . .) the cor-
responding L∞[1] algebra: if there is h ∈ Hom−1(L∧2, L) such that its image under décalage
déc(h) =: r ∈ Hom0(L[1]�2, L[1]) satisfies [r, q1] = q2 and [r, q2] = 0 in the graded Lie algebra
CE(L[1]), then L is homotopy abelian.

Proof. We consider r as a coderivation of S(L[1]): since r : L[1]�n → L[1]�n−1 it is well defined er :
S(L[1])→ S(L[1]) and since r is a degree zero coderivation this is an automorphisms of coalgebras.
This also induces an automorphisms of graded Lie algebras e[r,−] : CE(L[1]) → CE(L[1]), and by
hypothesis

e[r,−](q1) = q1 + [r, q1] +
1

2
[r, [r, q1]] + · · · = q1 + q2 +

1

2
[r, q2] + · · · = q1 + q2.

Since e[r,−](q1) = er ◦ q1 ◦ e−r this says that er : (L[1], q1, 0, . . . , 0, . . .)→ (L[1], q1, q2, 0, . . . , 0, . . .)
is an isomorphism of L∞[1] algebras, and then (L, d, [·, ·]) is homotopy abelian.
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Corollary 6.4.2. Let
L• : L0

//// L1
////// L2

//////// · · ·
be a semicosimplicial differential graded Lie algebra. If there is a family of degree minus one
hn : Ln∧Ln → Ln satisfying the assumptions of the previous theorem and assembling to a morphism
of semicosimplicial sets h• : L• × L• → L•, then TotTW (L•) is homotopy abelian.

Proof. The Thom-Whitney totalization identifies naturally with a dg Lie subalgebra of the product∏
n≥0 Ω(∆n;Ln), cf. [34, 2] for an explicit description. By scalar extension, every map hn extends

to a bilinear map on Ω(∆n;Ln) and it is clear that the induced

h =
∏

n≥0

hn : (
∏

n≥0

Ω(∆n;Ln)) ∧ (
∏

n≥0

Ω(∆n;Ln))→
∏

n≥0

Ω(∆n;Ln)

satisfies the assumptions of Theorem 6.4.1. The fact that the hn assemble to a semicosimplicial h•
says moreover that the above h restricts to h : TotTW (L•) ∧ TotTW (L•)→ TotTW (L•) satisfying
the assumptions of Theorem 6.4.1.

Corollary 6.4.3. In the hypotheses of Theorem 6.4.1, if M ⊂ L is dg Lie subalgebra such that
h(M ∧M) ⊂M , then M and the homotopy fiber of the inclusion M → L are homotopy abelian.

Proof. The first claim is clear, the second is the previous corollary applied to the semicosimplicial
dg Lie algebra

L
0 //
f
// M

// //// 0 · · ·

Remark 6.4.4. The importance of homotopy abelian dg Lie algebras in deformation theory lies
in the fact that their deformation functors are smooth [76]: this means that if L is homotopy
abelian and B � A is an epimorphism in ArtK , then DefL(B) → DefL(A) is surjective. If we
have a formal moduli problem M : ArtK → Set∗ governed by L, this tells us that every first
order infinitesimal deformation α ∈ H1(L) ∼= T 1M := M(K [t]/(t2)) is tangent to a deformation
over the ring K [[t]] of formal power series. We are going to use a relative version of this latter
observation: if M : ArtK → Set∗ is a formal moduli problem governed by a dg Lie algebra L and
we are given a morphism of dg Lie algebras f : L′ → L with L′ homotopy abelian, then every first
order infinitesimal deformation α ∈ H1(L) ∼= T 1M in the image of H1(f) : H1(L′) → H1(L) is
tangent to a deformation over the ring K [[t]].

Recall from Section 6.1 that a Poisson bivector π on X induces the Koszul bracket [·, ·]π on
ΩX [1].

Lemma 6.4.5. If (X,π) is a holomorphic Poisson manifold, for all open U ⊂ X the dg Lie algebra
(ΩX [1](U), ∂, [·, ·]π) satisfies the assumptions of Theorem 6.4.1, with h given by

h : ΩiX(U)⊗ ΩjX(U)→ Ωi+j−2
X (U), h(α, β) = (−1)i(iπ(α ∧ β)− iπ(α) ∧ β − α ∧ iπ(β)).

Given an open covering U of X, there is induced a sequence of linear maps on the semicosimplicial
dg Lie algebra Ω∗X [1](U)• as in the hypotheses of Corollary 6.4.2.

Proof. Compare with the discussion of Koszul brackets in Section 6.1. We see that r in the claim
of Theorem 6.4.1 is given by r = −K(iπ)2, moreover q1 = −∂ and q2 = K(lπ)2: these satisfy
[−K(iπ)2,−∂] = K([iπ, ∂])2 = K(lπ)2 and also [K(iπ)2,K(lπ)2] = K([iπ, lπ])3 = K(i[π,π])3 = 0,
since both iπ and lπ are differential operators of order ≤ 2. The last claim is clear.
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For all k ≥ 0 we denote by Ω≥kX the part of of ΩX concentrated in degrees ≥ k, in particular

Ω≥0
X = ΩX : this is a sheaf of differential Gerstenhaber subalgebras for all k. We notice that for

k 6= 1 the sheaf of dg Lie subalgebras Ω≥kX [1] is stable with respect to the operator h defined in the
previous Lemma 6.4.5: this and Theorem 6.4.1 immediately imply the following proposition.

Proposition 6.4.6. Let (X,π) be a holomorphic Poisson manifold. For every nonnegative integer

k 6= 1, (Ω≥kX [1], ∂, [·, ·]π) is a sheaf of homotopy abelian dg Lie algebras on X, and given an open

covering U of X the Thom-Whitney totalization TotTW (Ω≥kX [1](U)•) is homotopy abelian.

Now we consider a closed submanifold Z ⊂ X: we denote by JZ ⊂ ΩX the sheaf of dg ideals
of forms vanishing along Z, that is, the kernel of the restriction ΩX → ΩZ , in particular its degree
zero part is J 0

Z = IZ ; also recall the sheaf LZ from Proposition 6.1.9.

Proposition 6.4.7. Let (X,π) be a holomorphic Poisson manifold and Z ⊂ X a coisotropic
submanifold. The sheaf JZ ⊂ ΩX is a sheaf of differential Gerstenhaber subalgebras, moreover, it
is closed with respect to the operator h introduced in Lemma 6.4.5, finally, it is sent into LZ by the
anchor map π# : ΩX →

∧
ΘX . Conversely, each one of these conditions is equivalent to Z being

coisotropic.

Proof. We choose local holomorphic coordinates z1, . . . , zn such that Z = {z1 = · · · = zp = 0}. As
in the proof of Proposition 6.1.9, Z is coisotropic if and only if πij = −iπ(∂zi ∧ ∂zj) ∈ IZ for all
1 ≤ i, j ≤ p, since

iπ(∂zi ∧ ∂zj) = −h(∂zi, ∂zj) = π#(∂zi)(zj) = [∂zi, zj ]π

each one of the conditions in the claim of the proposition implies that Z is coisotropic.

Since JZ ⊂ ΩX is the multiplicative ideal generated by S = {zj , ∂zi}1≤i,j≤p, since π# is a
morphism of graded algebras and recalling Remark 6.1.2 this also shows the converse except for
h-closeness. The latter is equivalent to iπ(α ∧ β) ∈ JZ for all α, β ∈ JZ and it is not restrictive
to take as α an element of S: if α = zj , 1 ≤ j ≤ p, then iπ(zj ∧ −) = zj ∧ iπ(−) and since
zj ∧ − : ΩX → JZ we are done, if α = ∂zi, 1 ≤ i ≤ p, then JZ is iπ(∂zi ∧ −)-closed if and only if
it is [iπ, ∂zi ∧ −]-closed, but now formula (6.1.4) shows

[iπ, ∂zi ∧ −] = [iπ, [∂, zi ∧ −]] = [lπ, zi ∧ −] = [zi,−]π,

and we already observed that [zi,−]π-closeness follows from Remark 6.1.2.

We notice that for a coisotropic submanifold Z the subspace JZ is not iπ-closed in general.

We denote by J≥kZ the part of JZ in degrees ≥ k and by H≥kZ the homotopy fiber of the

inclusion of sheaves of dg Lie algebras I≥kZ [1] ↪→ Ω≥kX [1]: in particular H≥0
Z = HZ is the homotopy

fiber of JZ [1]→ ΩX [1].

Proposition 6.4.8. Let (X,π) be holomorphic Poisson manifold, Z ⊂ X a coisotropic subman-

ifold and k a nonnegative integer. If k 6= 1, then J≥kZ [1], H≥kZ are sheaves of homotopy abelian
dg Lie algebras on X. Moreover, for an open covering U of X the Thom-Whitney totalizations
TotTW (J≥kZ [1](U)•) and TotTW (H≥kZ (U)•) are homotopy abelian.

Proof. Immediate from Proposition 6.4.7 and Theorem 6.4.1.
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On the other hand, we are specifically interested in the only case not covered by the previous
proposition, namely, the k = 1 case. In the same assumption of Proposition 6.4.8, and fixed once
and for all a covering U of X by Stein open sets, we have a commutative diagram of dg Lie algebras

TotTW (HZ(U)•) // TotTW (JZ [1](U)•) // TotTW (ΩX [1](U)•)

TotTW (H≥1
Z (U)•) //

OO

TotTW (J≥1
Z [1](U)•) //

OO

TotTW (Ω≥1
X [1](U)•)

OO

where the rows are the associated homotopy fiber sequences, the dg Lie algebras in the top row
are homotopy abelian and the vertical arrows are the inclusions.

Lemma 6.4.9. If the Hodge to de Rham spectral sequence of X degenerate at E1, then the dg Lie
algebra TotTW (Ω≥1

X [1](U)•) is homotopy abelian. If the Hodge to de Rham spectral sequence of Z

degenerate at E1, then the dg Lie algebra TotTW (H≥1
Z (U)•) is homotopy abelian.

Proof. If we show that the hypotheses imply that the vertical arrows in the previous diagram are
injective in cohomology, then the thesis follows from Theorem 3.3.5: to this end we may replace
TotTW (−) with Tot(−). The first item follows once we recall that the Hodge to de Rham spectral
sequence of a smooth complex manifold X may be defined as the spectral sequence associated to
the filtration of Čech (double) complexes F k = C(U ,Ω≥kX ) (see e.g. [28]), the second item follows
from the same reason, once we point out that for every Stein open subset U ⊂ X and every k ≥ 0
the complexes J≥kZ (U) and Ω≥kZ (U) are quasi-isomorphic.

Next we consider the following commutative diagram of dg Lie algebras, where the vertical
arrows are the anchor maps.

TotTW (H≥1
Z (U)•) //

π#

��

TotTW (J≥1
Z [1](U)•) //

π#

��

TotTW (Ω≥1
X [1](U)•)

π#

��
TotTW (K≥1

Z (U)•) // TotTW (L≥1
Z [1](U)•) // TotTW (

∧≥1
ΘX [1](U)•)

(6.4.1)

In particular there are morphisms of deformation functors induced by the anchor map

π# : Def
TotTW (J≥1

Z (U)•)
→ HilbcoZ|X , π# : Def

TotTW (Ω
≥1
X [1](U)•)

→ Def(X,π) ,

which at first order reduce to the anchor map in cohomology

π# : H1(TotTW (J≥1
Z (U)•)) = H1(Z; Ω≥1

Z )→ T 1 HilbcoZ|X ,

π# : H1(TotTW (Ω≥1
X [1](U)•)) = H2(X; Ω≥1

X )→ T 1 Def(X,π) .

Whenever the Hodge to de Rham spectral sequence of Z (resp.: X) degenerates at E1 we have

an isomorphism H1(Z,Ω≥1
Z ) ' H0(Z,Ω1

Z) (resp.: H2(X,Ω≥1
X ) ' H0(X,Ω2

X)⊕H1(X,Ω1
X)).

Theorem 6.4.10. In the notation above, if the Hodge to de Rham spectral sequence of Z degener-
ates at E1, then for every ω ∈ H0(Z,Ω1

Z) the first order embedded coisotropic deformation π#(ω)
extends to an embedded coisotropic deformation of Z over Spec C[[t]].
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Proof. Clear by Remark 6.4.4 and Lemma 6.4.9.

Theorem 6.4.11. In the notation above, if the Hodge to de Rham spectral sequence of X degener-
ates at E1 then for every ω ∈ H0(X,Ω2

X)⊕H1(X,Ω1
X) the first order deformation π#(ω) extends

to a deformation of (X,π) over Spec C[[t]].

Proof. As above.

Theorem 6.4.11 has been proved in a different way by Hitchin [47] under the additional as-
sumption that X is compact Kähler. As a further application we can generalize to coisotropic
submanifolds part of classical results by McLean and Voisin about deformation of Lagrangian
submanifolds [82, 104].

Corollary 6.4.12. Let Z be a compact coisotropic submanifold of a holomorphic Poisson manifold
(X,π). If the Hodge to de Rham spectral sequence of Z degenerates at E1 and the anchor map

π# : H0(Z,Ω1
Z)→ H0(Z,NZ|X)

is surjective, then every small embedded deformation of Z is coisotropic and the Hilbert functor
HilbZ|X = HilbcoZ|X is unobstructed.

Proof. Since Z is compact, by the argument used in Corollary 6.3.4 it is sufficient to consider
infinitesimal deformations. It is now sufficient to apply Theorem 6.4.10.

Obviously the above corollary fails without the assumption about the anchor map. For instance,
if Z = p is a point, then Z is coisotropic if and only π vanishes at p; this shows that in general
HilbcoZ|X is obstructed and strictly contained in HilbZ|X . Corollary 6.4.12 holds in particular for
Lagrangian submanifolds of a holomorphic symplectic manifold; a different proof of this case, based
on Ran-Kawamata’s T 1-lifting theorem, is given in [61].
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[104] C. Voisin, Sur la stabilité de sous-variétés lagrangiennes des variétés symplectiques holo-
morphes, in Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc.
Lecture Note Ser. 179 (1992), 294-303.

[105] Th. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202
(2005), 133-153; arXiv:0304038 [math.QA].

[106] Th. Voronov, Higher derived brackets for arbitrary derivations, Travaux mathématiques, fasc.
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