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Introduction

Motivation

It is well-known that the representation theory of groups, algebras, quantum groups,
etc. is most naturally developed in the language of tensor categories [50]. The pro-
blem of constructing one of the previous objects (that we will call in general guantum
groupoid) describing a given tensor category via representation theory originates in
the physics literature (see [29]), but soon became relevant in the theory of categories
[55]. This branch of study is called reconstruction theory, and tries to answer to the
following questions:

(a) given a tensor category C, is it possible to build (possibly in a canonical way) a
quantum groupoid A such that a category of representation of A is equivalent to C?
(b) Is A unique, under some suitable conditions?

Of course these questions can be formulated in different shapes, depending on
the type of category we have, and consequently the answers might change. For a
brief introduction to the reconstruction theorems see the beginning of the Chapter 2.
Here we would like to focus more on how these reconstruction problems are linked
to certain physical models. In classical mechanics, symmetries are elements of the
group of transformation which acts on the phase space. In quantum mechanics, we
cannot talk about points of the phase space, but we have a non-commutative algebra
of observables. The class of symmetries acting on this algebra is larger than a group
(see [1], [26], [47], [48]), and we will call it quantum groupoid. Tensor categories
play a prominent role in this setting, since they are the main tools in order to model
some quantum systems. In this way we come back to the questions shown above:
physics gives us a category with some properties, and we would like to bring out
a quantum groupoid from it, possibly unique or at least canonical, whose physical
interpretation is quite easy to understand at this point. As we can see in Chapter 2,
some of the reconstruction problems arising in this setting were successfully solved
[19], but only when we are dealing with symmetric categories. Unfortunately, many
categories arising in conformal field theory are not symmetric, but only braided [29],
[25]. On one hand, the weakening of this condition does not prevent us from proving
the existence of a large class of quantum groupoids whose representation theory is
equivalent to the given category. On the other hand, it makes hard to prove a sort
of uniqueness of the reconstructed object. This can be seen for a quite large class
of braided tensor categories in [61]. In our work, we focus on a special class of
modular tensor C*-categories, which sometimes are called Verlinde categories [23].
These categories are of interest because their fusion rings, at least in some cases,
are found to be the same as those which come from certain quantum and conformal
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field theories, as for example the Ising model and the Wess-Zumino-Witten model
[14]. Moreover, they played a crucial in role in the subfactor theory [34] and the
study of invariants of 3-manifolds (see [70], [82]). We briefly introduce them. Let
g be a complex simple Lie algebra of type different from FEg, ¢ a primitive root of
unity, and let Uj(g) be the Lusztig’s restricted form of the Drinfeld-Jimbo quantum
group. We consider as its representation category Rep(U,(g)), whose objects are
tensorially generated by the Weyl modules V), where ) is a dominant weight. It is
well-known that U, (g) is not semisimple. As a consequence, Rep(Uy(g)) is quite far
from being semisimple. When ¢ = ed, and d is the ratio of the square lengths of a
long root to a short root, we can restrict to the category of the tilting U, (g)-modules,
which is proved to be the tensor category generated by V)’s, where A € A;. A; is the
so-called principal Weyl alcove and A, is its closure. This category is said to be the
tilting category, and it is labelled by TJ;. Before going further, we add that a tilting
module 7T is irreducible if and only if T = Vj, with A € A;; moreover, for every [
and every g there always exists an irreducible representation called fundamental such
that every irreducible representation is a submodule of a tensor power of V. Our
procedure is not complete, since J;’s are still not semisimple, but now we are close
to obtain the desired semisimple categories. In fact, every J; contains the ideal of
the so-called negligible modules. Quotienting by this ideal, we obtain a semisimple
category that we indicate with F;. J; can be seen as a semisimple tensor category
endowed with a suitable truncated tensor product, which allows to drop out all the
negligible modules. This theory is developed in depth in [2]-[7] and in [27]. Kirillov
[37] introduced a *-involution and an associated hermitian form on the arrow spaces
of F;, conjecturing positivity. Wenzl [81] proved the conjecture, putting on F; a C*
structure which makes the braiding unitary. Putting everything together, it is quite
natural to ask if there exists a quantum groupoid whose representation category is
equivalent to J;. To the best of our knowledge, the problem was faced in two different
ways. On one side, F; can be considered as part of a larger class of semisimple fusion
categories. Every category of this type can be seen as the representation category of a
weak Hopf algebra [31],[61],[76]. It is worth to notice now that in our work we will
give a different definition of weak Hopf algebra in comparison to [10],[11],[12],[60],
as we will also point out later. However, this approach is quite unsatisfactory, since
the relation between the reconstructed object and the original Lie algebra is not clear.
Moreover, the construction is highly non-unique and non-canonical. These facts rely
on the use of a fiber functor which does not reproduce the truncation procedure of
;. On the other side, a different approach can be found in the work of Mack and
Schomerus [49]. They considered only the case g = sly, showing that the truncation
of the tensor product at the categorical level leads to the construction of a weak quasi
Hopf algebra, as we intend in our work. The non-coassociativity of the coproduct on
this algebra is the price we have to pay in order to obtain a more natural construction.

Aim of the work

At this point we are ready to introduce our work. These thesis contains part of the
results of a more general research project about quantum groups at roots of unity
which involves Claudia Pinzari and me [15],[16]. So, the most of the results exposed
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here are products of this collaboration. However, Chapter 2 and Chapter 5 contain
my own contribution, and in particular results exposed in Chapter 5 will be published
separately [17].

In [15] Claudia Pinzari and me partially followed the approach of Mack and
Schomerus in order to extend their construction from g = sls to every g of Lie
type A, using a procedure which is the most possible canonical. In the following
lines we explain our approach. Let U and V' be two tilting modules in J;. The
truncated tensor product U®V could be obtained decomposing U ® V' in indecom-
posable tilting modules, throwing away the negligible ones. Unfortunately this pro-
cedure is non-canonical. Anyway, if we restrict to truncated tensor products of the
type VA®V, where V is the fundamental representation and A € A;, we can choice
a canonical truncation. This result is due to Wenzl. Every V), is endowed with a her-
mitian form, that Wenzl proved to be an inner product under the conditions ¢ = e dr
and A € A;. The truncated tensor product VA&V can be still endowed with an in-
ner product, which is a deformation of the product form using the R-matrix and the
ribbon structure of (a suitable extension) of U,(g). The corresponding projection
from V) ® V to VA®V is self-adjoint w.r.t. the modified form. Therefore, we can
define a natural functor W; : J; — Hilb, where Hilb is the category of Hilbert
spaces. This functor will be called throughout this work as the Wenzl’s functor. Our
strategy is to apply a Tannakian reconstruction to W;. Anyway, we need several ad-
justments in comparison to the Tannakian classical case, since W is really far from
being a tensor functor. The structure of W} seems to be too much poor, even conside-
ring reconstruction theorems which use functors with weaker assumptions on them
(see [30]). This fact is essentially due to the lack of associativity of the projections
pn 2 VO — VE" We briefly report our procedure. We are able to construct the
bialgebra D(V,1) = @, V€™ @ VE", which is coassociative but non-associative,
thanks to some remarkable properties of p,, which partially replace the associativity
failure. Using the coboundary structure on D we can put on it an involution. Next, we
obtain the quotient algebra C(G, () quotienting D(V, ) by a *-coideal which is also
a right ideal (and not a left ideal again because of lack of associativity of p,,). This
coideal is the translation of some identifications that we can do at the level of the fu-
sion category. € is naturally a coalgebra with an involution. The problem is to endow
C with a product, which can be solved supposing that C(G, 1) is cosemisimple. In this
way, we can put on it a non-associative product which is the pull-back of the product
on D(V, ). Passing to the dual algebra GTG? ) we obtain the desired groupoid, that is
a weak Hopf C*-algebra with a R-matrix and a representation category equivalent to
Fi. Moreover, it is endowed with a twisted involution (£2,* ) in a sense that we soon
explain, where the twist € is induced by the R-matrix. At this point, the last thing
to do is to understand when it is possible to put the cosemisimplicity condition on
C(G,1). We focus only on Lie algebras g of type A, proving that in this case C(G, ()
is cosemisimple for every [. Crucial in order to prove this fact is the existence of a
Haar functional, which in turn is induced by a suitable filtration on C(G, ). We avoid
to treat the other cases since they require more Lie technicalities. Anyway, this result
likely extends to every simple Lie algebra of a type different from Fs.

Now it is worth to say something more about the kind of object we built. As we
said before, weak quasi Hopf algebras are not completely new in literature, but since
their first appearance they have been quite ignored in literature. Therefore, in this
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thesis we also give a systematic approach to this kind of object. This will be part
of a second paper, which is now in preparation [16]. A weak quasi Hopf algebra A
is a quasi Hopf algebra in the sense of Drinfeld [20], with a non-unital coproduct.
Following what Gould and Lekatsas did for quasi Hopf algebras [28], we consider as
involution the pair (€2,* ), where Q2 € A ® A is a self-adjoint element satisfying the
following identity:

A(a)*Q = QA(a™) (0.0.1)

and a compatibility condition with the associator ®. Moreover, it is possible to put
a suitable definition of R-matrix on it. We prove that this class of algebras is closed
under a quite large class of twists, and we stress some interesting properties of the
antipode. More precisely, it is quite easy to see (passing to the dual algebra) that
the antipode S on A is not anti-comultiplicative. We prove the existence of a weak
version of the anti-comultiplicative relation. Unlike the quasi Hopf algebra case, if we
restrict to the coassociative case we do not get the usual anti-comultiplicative relation,
and this is a consequence of the non-unitality of the coproduct. We next develop a
theory of representation in the semisimple case. If we consider *-representations on
hermitian spaces, it is worth to notice that the representation category is a tensor
category, but with a hermitian product form which is a deformation of the product
form, using the involution element €2 and the relation (0.0.1). It is possible to prove
the existence of conjugate objects when the antipode .S commutes with *. Probably it
is possible to remove this condition as Woronowicz did for compact quantum groups
[83], but this will not be part of the thesis and will be treated in [16]. Moreover,
we see that the semisimplicity of A is equivalent to the existence of a Haar measure.
Considering a suitable definition of integral on the dual weak quasi Hopf algebra [13],
we also notice that, unlike the Drinfeld case, we cannot prove the existence of such an
integral in the dual case. A deeper look to the object built in the construction reported
above bring us to focus on a subclass (not closed under twists) of these algebras, that
we call weak Hopf algebra. These are weak quasi Hopf algebras with some additional
conditions on the idempotents P, P3, @3, Py, Q4 defined in the following way:

P=A(I), Py=A2idAd), Q;=id@A(A(I))
Pi=A®id®idA®id(AI)), Qs=id®id®AGd®A(A(D)))

As a consequence, the associators ® and ®~! can be chosen in the following peculiar
way:

d=Q3P, @ '=PRQ;

These algebras will be analyzed more in detail in [16]. In this work we notice that
weak (quasi) Hopf algebras can be seen as the counterparts of weak (quasi) tensor
functors. More precisely, given a semisimple weak (quasi) Hopf algebra A and its
representation category, the natural embedding functor of Rep(A) in Vect (or Hilb
in the C* case) is a weak (quasi) tensor funtor. Conversely, given a semisimple tensor
category C with some other mild conditions, and a weak (quasi) tensor functor which
embeds C into Vect, we can reconstruct a weak (quasi) Hopf algebra whose repre-
sentation category is equivalent to €. This result is reported in Chapter 2 and it is a
generalization of the work of Hiring-Oldenburg. Specifically, we do not assume that



the natural transformation associated to the functor is a coisometry. Correspondingly,
the reconstructed groupoid satisfies the generalized commutation relation (0.0.1). It
could seem surprising that we did not apply this reconstruction theorem to our cate-
gories, but the explanation is that it was not obvious before that Wenzl’s functor W,
was a weak (quasi) tensor functor. Indeed the construction of such a tensor structure
can be interpreted as our main contribution. Finally, in order to give a more concrete
look to the algebras reconstructed from F;, we present the groupoid C(SU(2),1) by
generators and relations. We have chosen only the case g = sls because it is the most
workable and there is much information about its representation theory. As recalled
above, all this will be the subject of the paper [17]. Before concluding the introduc-
tion, we would like to give a sketch of the future directions of our research. First of
all, we would like to extend our construction to other simple Lie algebras of type dif-
ferent from A. Moreover, we would like to study the uniqueness of the reconstructed
groupoid, of course under some suitable assumptions on it.

Plan of the work

In the first two sections of the Chapter 1, we reported some well-known definitions
and results about tensor categories, including the pivotal definition of weak (quasi)
tensor functor. In the other sections of the first chapter we introduce weak (quasi)
Hopf algebras, reporting most of the result that will appear in [16]. In the Chapter 2
we made a brief introduction to the reconstruction theorems, and then we explain the
reconstruction theorems made by Majid and Héring-Oldenburg. We also give a gene-
ralization of the Héring-Oldenburg’s construction, as we said before. In Chapter 3 we
report some well-known results about ribbon categories and ribbon algebra. More-
over, we introduce the quantum group at root of unity U,(g) and the main results
about its representation theory (see references therein). We focus on the tilting cate-
gories, showing the result of Kirillov and Wenzl about the existence of a C* structure
on them. Finally, we introduce the Wenzl’s functor and clarify some aspects of the
rigidity of Rep(U,(g)). In the Chapter 4, we report the main results of [15], showing
in detail the construction briefly explained in this Introduction. We also show that the
reconstructed quantum groupoid fits with the algebras introduced in the first chapter.
Finally, in Chapter 5 we focus on some results about Weyl U, (sl3)-modules, which
allow to give a presentation of C(SU(2),1) by generators and relations, for every
even root of unity q.
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Chapter 1

Tensor categories and weak quasi
Hopf algebras

1.1 Generalities on tensor categories

In this section we introduce some general notions about tensor categories. Our main
references are [23], [S5]. A tensor category is a sextuple (C,®,a,1,l,r), where C
is a category, ® : € x € — € is a bifunctor called fensor product, a is a natural
isomorphism such that:

axyz: (X@Y)eZ-—=Xe(Y®Z), X,Y,Z€C

called the associativity costraint, 1 € C is the unit object of C and [, r are natural
isomorphisms such that:

Ix:1®X—=Xandry : X ®1—X

called unit costraints. They are subject to the following two axioms.
(a) The pentagon axiom The diagram:

(WeX)eY)®Z

aW,Xy Wﬁ

WeXeY)e”Z WeY)e(Y®Z)
aW,X@Y,Zi lawcz;x,y,z
id
We(XeY)®2) w ax vz We XY o2z)
(1.1.1)
is commutative for all objects X, Y, Z, W in C.
(b) The triangle axiom The diagram:
(X®1) oY ey X®(1eY)
\ / (1.1.2)
rx Qidy idx ®ly
X®Y

is commutative for all objects X, Y in C.

Definition 1.1.1. A tensor category is strict if for all objects X,Y, Z in C one has
equalities (X ®Y)® Z =X ® (Y ®Z)and X ®1 = X = 1® X, and the
associativity and unit costraints are the identity maps.

3



4 Tensor categories and weak quasi Hopf algebras

Theorem 1.1.2 (MacLane). Any tensor category is tensorially equivalent to a strict
tensor category.

In a tensor category, one can form n-fold tensor products of any ordered sequence
of objects X71,...,X,. Of course such products can be parenthesized in different
ways, obtaining possibly distinct objects of €. For n = 3 we have two different
parenthesizings, (X; ® X2) ® X3 and X; ® (X2 ® X3), which are canonically
identified by the associativity isomorphism. It is easy to see that one can identify
any two parenthesized products of X1, ..., X,,, n > 3, using a chain of associativity
isomorphisms. The problem is that, when n > 4, there may be two or more possible
identification, which could be not the same. If n = 4 the pentagonal axiom avoids the
occurrence of this unpleasant situation. What does it happen if n > 47 This problem
is solved by the following theorem of MacLane:

Theorem 1.1.3 (Coherence Theorem). Let X1,...,X, € C. Let Py, P two paren-
thesized products of X1, ..., Xy. Let f, g be two isomorphisms between Py and Ps,
obtained by composing associativity and unit costraints. Then f = g.

The next definition is crucial, because from now on we will only deal with this
kind of categories.

Definition 1.1.4. A tensor category is called linear if every morphism space (X,Y)
is a C-linear space. Moreover we require the existence of direct sums and subobjects.
More precisely, if X,Y, Z are objects in C, Z is the direct sum of X and Y if there
are morphisms u € (X, 2Z),v € (Z,X),v e (Y, Z),v' € (Z,Y) such that:

uouw +vov =idy
and:
Wou=idxy , v ov=idy and v ou=0=v'ovw

Y is a subobject of X if there exists a morphism p € (X, X) such that p = p o p and
morphisms u € (Y, X), v € (X,Y) such that v’ o v = idy and uw o v’ = p.

We now want to introduce categories endowed with more structure. Let C be a
tensor category. A commutativity costraint c is a natural isomorphism such that:

CX’y:X(X)Y;)Y@X

c must also satisfies the following conditions:
(a)
XV 25 veXx
f®gl },@f (1.1.3)
Xy XY yg X
commutes for all objects X,Y, X’ Y’ and all morphisms f € (X, X’) and g €
(v,Y").
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(b)
XoYe2) X% vez)oX

aX,Y,ZT lay,z,x

(XRY)®Z Y ®(Z®X) (1.1.4)
CX7y®ile Tidy ®cx.z

YeX)eZ 222y (X 2)

commutes for all objects X, Y, Z.

(0
CXQ®Y,Z

(XQY)®Z —3 Ze (X QY)
“;(,IY,ZT lag,lx,y
XY ®2Z) (ZeX)RY (1.1.5)
idx ®cy,zl ) Tcx,z(gndy
XoZoY) X Xez) ey
commutes for all objects X, Y, Z.

The next definition is due to Joyal and Street:

Definition 1.1.5. Let C be a tensor category. A commutativity costraint c on C is also
called braiding. A braided tensor category is a tensor category with a braiding.

When the tensor category C is strict, then the conditions (1.1.4) and (1.1.5) simply
become:

cxyeoz = (dy ®cx z)(cxy ®idz) (1.1.6)
cxey,z = (cx,z ®idy)(idx ®cy,z)
Braided tensor categories are generalizations of symmetric categories:
Definition 1.1.6. A tensor category C is symmetric if it is equipped with a braiding ¢
such that:

cy,x ocxy = idxey (1.1.7)
for all objects X, Y in the category. If (1.1.7) holds, the braiding c is the symmetry

for the category. In that case, diagrams (1.1.4) and (1.1.5) are equivalent.

Definition 1.1.7. A category C is a *-category if there exists an antilinear contra-
variant functor * : ¢ — € which is the identity on the objects and such that:

f* = f for every morphisms f

If C is also a tensor category, the morphisms must satisfy the following additional
compatibility condition:
(fog) =g

Moreover, we require that the commutativity costraint and the associativity costraint
are unitary natural isomorphisms. In other words:

ayyy =axyz VX,Y,Z € Ob(C) (1.1.8)
Cxy =cxy VXY € Ob(€) (1.1.9)
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Definition 1.1.8. A *-tensor category C is rigid if there is, for any object X, an
object X called the conjugate object of X and two morphisms rx € (1, X ® X) and
Tx € (1, X ® X) such that:

rk ®idyoay ¢ oidy @Tx = idy (1.1.10)

idx @1 oay x x 0Tx ®idx = idx (1.1.11)

Definition 1.1.9. Let f € (X,Y) be an arrow in €. Then the transpose f¥ € (Y, X)
of f is an arrow defined in the following way:

Y= (ry ® idy)(id7®f ® idy)(idy ®Fx )

Remark 1.1.10. (a) If we consider a *-category C, we can give an alternative (and
equivalent) definition of linearity. In fact, for a *-category € it is possible to replace
u’ by u* and v’ by v*. As a consequence, p is self-adjoint.

(b) The definition of rigidity can be given in a more general setting. In fact, it is
possible to say that a tensor category € is rigid if there exists a conjugate object X
for all X € Ob(C) and two maps 7 € (1,X ® X) and 7' € (X ® X, 1) playing
respectively the role of 7 and r*.

Definition 1.1.11. (a) An object X in a category C is simple or irreducible if (X, X) =
Cid X

(b) A category C is called semisimple if it is linear and admits a family of simple

objects X; indexed by 7 € I, such that every object X is a finite direct sum of X;’s;

(c) V C Ob(C) denote a set containing one object out of every equivalence class of
irreducible objects;

(d) A category C is rational if there are finitely many isomorphism classes of simple

objects;

The next result is the well-known categorical version of the Schur’s Lemma:

Proposition 1.1.12. Let X and X be two different simple objects in a semisimple
linear tensor category C. Then either (X1, X2) = {0} or dim((X1, X2)) = 1. In the
latter case, X1 = Xo.

Definition 1.1.13. A *-category C is a C*-category if:

(a) (X,Y) is a Banach space for every pair of objects X,Y’;
(b)if f € (X,Y)and g € (Y, 2), then [lg o f]| < gll I/
©if f € (X, V), [lf*fIl = If1*:
(d) f* f is positive in the C*-algebra (X, X) forevery f € (X,Y) and every Y object
in C.

)

At this point we introduce the notion of tensor functor between two tensor cate-
gories.

Definition 1.1.14. Let (C,®,1,a,l,r) and (¢, ®',1',a’,I',7") be two tensor cate-
gories. A tensor functor from € to € is a triple (F, g, e), where F : € — €' is a
functor, ¢ is an isomorphism from 1’ to F'(1), and:

exy :F(X)@ F(Y) = F(X®Y) (1.1.12)
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is a natural isomorphism such that the diagrams:

@' p(X),F(Y),F(Z)
e

(F(X)®'F(Y))®' F(Z) F(X)®' (F(Y)® F(Z2))

ex.y®'idp(z) l lidm) ey
F(X®Y)& F(Z) F(X)&' F(Y@z) (LLI3)
ex@Y,Zl lex,Y@)z
F(X®Y)® 2) Flaxy.z) F(X® (Y ® 2))
and:
Vo F(X) 9 px)
<p0®idF(X)J( T Flix) (1.1.14)
F() e F(X) 2% Pl X)
and:
FX)®1 9  px)
dp(x) WOl T Flry) (1.1.15)

F(X)® F(1) =% F(X®1)

are commutative for all X,Y, Z € €. This is called the tensor structure axiom. A
tensor functor is said to be an equivalence of tensor categories if it is an equivalence
of ordinary categories.

Remark 1.1.15. It is worth to notice that a tensor functor is an ordinary functor
with an additional structure satisfying certain equations (the tensor structure axiom).
These equations may have more than one solution or no solution at all, so the same
functor can be equipped with different tensor structures or not admit any tensor struc-
ture.

Definition 1.1.16. A morphism g € (X,Y’) in C is an epimorphism if it has a right
inverse & € (Y, X). A natural transformation ¢ is a natural epimorphism if there
exists a natural transformation h such that g o h = id.

Definition 1.1.17. (a) A quasi tensor functor between two tensor categories € and €’
is a functor F' : € — €’ together with an isomorphism ¢g : 1’ — F(1) in ¢’ and a
natural isomorphism e:

exy : F(X)®@ F(Y) » F(X®Y)

(b) A weak tensor functor between two tensor categories € and €’ is a functor F' :
C — €' together with an isomorphism ¢g : 1’ — F'(1) in €’ and a natural epimor-
phism e:

exy :F(X)@F(Y)—=F(X®Y)

(but with ey x and ex 1 isomorphisms) such that the diagrams (1.1.13), (1.1.14),
(1.1.15) and the diagram obtained from (1.1.13) reversing all the arrows and replacing
all the natural transformations with their inverses, commute [16];

(¢) A weak quasi tensor functor between two tensor categories € and €’ is a functor
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F : € — € together with an isomorphism ¢ : 1’ — F(1) in ¢’ and a natural
epimorphism e:
EX)Y : F(X)@F(Y) —)F(X@Y)

but with e1 x and ex 1 isomorphisms.

Remark 1.1.18. In (b) of the last Definition it is necessary to require that both the
diagram (1.1.13) and its inverse commute, unlike the case of a tensor functor, where
the commutativity of the inverse diagram is a consequence of the commutativity of
the diagram (1.1.13). This is due to the fact that in the case (b) e has only a right
inverse and not a left inverse. The kind of functor introduced in (b) is new and it is
linked to the examples that we will show in the rest of the work, as we can see more
in detail in [16].

Definition 1.1.19. (a) A functor F' between two braided tensor categories (C, ¢) and
(€', ) is braided it VX, Y € Ob(C) the following diagram commutes:

FX)®FY) 25 F(X®Y)
Xyl lF(cx,y) (1.1.16)
FY)® F(X) =% F(Y @ X)
(b) A functor F' between two *-tensor categories C and €' is *-preserving if F'(f*) =

F(f)* ¥Yf morphism of C.
(¢) A functor F between two rigid tensor categories € and €’ is rigid if there exists a

natural isomorphism dx : F(X) — F(X). If € and € are *-categories, we require
that d% = dy'.

Remark 1.1.20. We point out that associativity costraint, commutativity costraint
and e are all natural transformations in the following sense. If f € (X, X'), g €
(Y,Y')and h € (Z, Z'), then:
axyrzo(f®g)@h=[f®(g@h)oaxyz
g® foexy =cxiyrof®g
exy o F(f)® F(9) = F(f®g)oexy

Finally, let f be a morphism in (Y, X). d natural transformation means that:
F(fY)odx =dy o F(f)"

Definition 1.1.21. Let (F, ¢g, e!™)) and (G, 7o, e(%)) be two weak quasi tensor func-
tors between two tensor categories C and C’. A natural isomorphism 1 : F — G is
tensorial if the following diagrams commute:

(F)

FX)® F(Y) 2 F(X@Y)
nx®nyl lnxeay (1.1.17)
(G)

GX)oGY) =5 X ®Y)
and
— " .Ga

\ / (1.1.18)
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1.2 Definition of weak quasi bialgebra

The notion of quasi Hopf algebra raised in the late *80’s thanks to the Drinfeld’s
work [20], where he proved the equivalence between the braided tensor category of
the modules over the Drinfeld-Jimbo algebra and the braided tensor category of mo-
dules over U(g)[[R]], equipped with a non-trivial associativity costraint. This fact
led to a reformulation of the Kohno’s theorem and an explicit expression of the mo-
nodromy of the Knizhnik-Zamolodchikov equation. The first appearance of the weak
quasi Hopf algebras is probably in the works of Mack and Schomerus [48], [49]. In
fact, physical motivations brought them to develop a generalization of quasi Hopf al-
gebras, allowing the non-unitality of the coproduct. This approach can be also found
in the work of Haring-Oldenburg [30], as we will see in depth in the next chapter.
In the next pages, we have two goals: to give a more systematic approach to these
algebras in comparison to the works previously cited, and to introduce an involution
on them, following what Gould and Lekatsas did for quasi Hopf algebras [28]. We
will finally give the definition of weak Hopf algebra. The facts exposed in this sec-
tion will be treated more in detail in [16]. Classical results about quasi Hopf algebras
which inspired us for this work can be found in [20] and [35].

Let A be an algebra, and a € A. Moreover, let p, ¢ be two idempotents in A. We
can define the linear space (p, q):

(p,q) :=qAp={a € A:qa=a=ap}

D(a) = p will be called the domain of a, and R(a) = ¢ the range. a € (p,q) is
partially invertible if there exists an element a~! € (g, p) such that:

aila:p, aa”t =gq

Definition 1.2.1. A weak quasi bialgebra A is a unital, complex, associative algebra,
with a possibly non-unital algebra homomorphism A : A — A ® A called coproduct
and an algebra homomorphism € : A — C called counit such that:

(e®id) o A =id = (id®e) o A (1.2.1)

Furthermore, there exists a partially invertible element ® € A ® A ® A such that:

D(®) = A®id(A(D)), R(®) = id @A(A(])) (1.2.2)
(A ®id(A(a))) = id®A(A(0)® , Ya € A (1.2.3)
(id®id @A (®))(A @ id ®@id(®)) = (I ® ®)(id RA @id(®))(P @ ) (1.2.4)
id ®e ®id(®) = A(I) (1.2.5)

From now on, we will use the following notation:

P= 1Qy©5, 0 =) pogon (1.2.6)
i i
Remark 1.2.2. (a) The identity ¢ ® id ® id(®) = A(J) = id ® id ®=(P) follows as
in the quasi Hopf algebra case, applying ¢ ® € ® id ® id to both sides of (1.2.4) and
then using the relations (1.2.1), (1.2.2) and (1.2.5).

(b) In the next pages we will often need to manipulate the identity (1.2.4), using it in
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different shapes. Therefore, it is worth to notice the following fact. For example, if
we multiplicate both side of (1.2.4) on the right by ! ® I, we get:

(id ® id @ A(®))(A®id ®id(®))(®'el) = (1) (id ®A®id(®))(id ®A(A(T))®1)
The idempotent appeared in the left hand side can be removed, since:
(Id®A ®id(®))(IdRA(A(I)) @ I) =
= ([d®A ®id(P))(id ®A ® id(A ® id(A(]))))(dRA R (A®id(I ®1))) =
= (Id®A ®id(P))(id ®A ® id(A ® id(A(1)))) =
=id®A ® id(P(A ®id(A(])))) = id ®A ® id(P)

Calculations like this allow to remove idempotent which come out from manipu-
lations of this type.

A morphism of weak quasi bialgebras is a map:
v:(A,A e, ®) — (A A € D)
which is a morphism of algebra such that:
vovoA=ANovand (r@vav)(d) =939

Of course, if A is unital the definition of weak quasi bialgebra reduces to that
of quasi bialgebra. From now on we will indicate with m the multiplication map
m: A® A — Asuchthat m(a ® b) = ab.

Definition 1.2.3. A weak quasi Hopf algebra is a weak quasi bialgebra with an anti-
automorphism S together with two elements « and /3 in A such that:

m(I ® a(S®idoA(a))) =c(a)a (1.2.7)
m(I @ Bid @S o Aa)) = e()8 (128
Z%BS yi)az; =1 = Z j)aq;BS(r5) (1.2.9)

<.

The antipode S is strong if « = = I.

Remark 1.2.4. The compatibility condition (1.2.9) between S and @ is related to the
rigidity of the representation category of A, as we can see in the section 1.4.

Definition 1.2.5. A weak quasi bialgebra A is said to be involutive (or a weak quasi
*-bialgebra) if there exists an involutive map * : A — A and a partially invertible
element 2 € A ® A such that:

Q=0 (1.2.10)
D(Q) =A(I), R(Q) = A(I)* (1.2.11)
Aa)* = QAW Vaec A (1.2.12)
e®id(Q) =1 =1id®e(Q) (1.2.13)
(I 2 Q)(d@AQ)P(A@idQ ) el =071 (1.2.14)

We will use the following notation:

Q:ZCi®di and Q_lzz&(@@
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Definition 1.2.6. A weak quasi Hopf *-algebra A is a weak quasi Hopf algebra en-
dowed with an involutive map * and a ) € A ® A satisfying (1.2.10) - (1.2.14)

Notation.

(1) Let A = a; ® ... ® a; be an element in V7 where V is a linear space, and
consider the pairwise different indices 41,...,4; € {1,...,n}. We indicate
with A, _;; = a] ®...® ay, atensor product in V®" where n > j, defined in
the following way: a; = a;, and a), = I if k # 5 forall h € {1,...,j}. For
example, if A € V&4, A5 € VO satisfies the following identity:

Aotgs = a2 ® a1 @ I ® a3 ® ayg

(2) Let V be a linear space. ¥ : V2 — V®2 i the map which sends v ® w to
w®uv. Bjj: VO — VO™ s the map which switches the first i elements with
the second j elements, where ¢ + 7 = n. More precisely:

Lijn®.. QuiQui1 ®...0U) =041® ... QU1 ® ... Q;
On the other hand,
2in®..00Q..00,8..0U0,) =018...00,8..00,8...0U,
Finally, 3, : V®" — V" reverses the order of the n factors.

Definition 1.2.7. A weak quasi bialgebra A is said to be braided if there exists an
R-matrix R € A ® A partially invertible such that:

D(R) = A(I), R(R) = A°(I) (1.2.15)
A°®(a)R = RA(a) (1.2.16)
id ®A(R) = @55 R13Pa13R12® ! (1.2.17)
A ®id(R) = ®o31 R13P 55 Ros® (1.2.18)

If A is a weak quasi *-bialgebra we require the following additional condition:
QuR=R1Q (1.2.19)

The same definition of R-matrix holds if A is a weak quasi Hopf algebra. We will
use the following notation:

R=Ya®b and R =Y @b

Definition 1.2.8. (a) A morphism of weak quasi Hopf algebras v : (4,5) —
(A’,S") is a morphism of weak quasi bialgebras such that:

voS=58ov
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(b) A morphism of weak quasi *-bialgebras v : (4,Q) — (A’, Q) is a morphism
of weak quasi bialgebras such that:

vo*="ovand vav(Q)=0Q

(c) A morphism of braided weak quasi bialgebras v : (A,R) — (A, R) is a
morphism of weak quasi bialgebras such that:

vov(R)=R

Definition 1.2.9. Let A be a weak quasi bialgebra. A rwist is a partially invertible
element F' € A ® A such that D(F) = A(I) and:

e®id(F) = I = id ®e(F) (1.2.20)

The same definition of twist is valid for weak quasi Hopf algebras. We will use the
following notation:

F=Ye®fiand F'=) 6af
i J

Using a twist F' it is possible to build a new weak quasi bialgebra A, defining
the coproduct Ap : A — A ® A as follows:

Ar(a) = FA(a)F~ ! Yac A (1.2.21)
and a new associator:
dp =@ F)idoA(F)®(Aid(FY))(F'eI) (1.2.22)

If A is a weak quasi Hopf algebra with an antipode (S, «, 5), Ap is a weak quasi
Hopf algebra with an antipode (Sr, ar, Br), such that:

1

Sp=S5,ar=>_ S@af; and =" eBS(f)

We are going to prove these facts in the following:

Proposition 1.2.10. For any weak quasi bialgebra A = (A, A, e, ®) and any twist
F € A® A, the algebra Ap = (A, Ap,e, @) is a weak quasi bialgebra. If A is a
weak quasi Hopf algebra with an antipode (S, o, 3), A is still a weak quasi Hopf
algebra with antipode (Sp, ap, BF).

Proof. We check the relation (1.2.1) - (1.2.5) involving A and @ . Relations (1.2.1)
and (1.2.5) are very easy to obtain using (1.2.20). We prove now that ®p(Ap ®

id(Ap(D)) = Dp:

Op(Arp @id(Ap(I))) =

= (I® F){dAF)®(AQid(F )W FI'Fo)(AQiId(FF Y))(F el =
= (I ® F)(id®AF)?(A®id(F ) (A®idF)(AidF ) (F'el) =
= (I ® F)(idA(F))®(A @ id(AD)) (A @id(F H)(F1el) =

= (I® F)(ideAF)P(A@id(F )WF1el)=op
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In a similar way we obtain that (id ®Ap(Ap(I)))®r = ®p. So we have proved that
Apr and @ satisfy (1.2.2). In the next calculation we prove that they satisfy (1.2.3):

(id®Ap(AFp(a))Pr =
= (I ®F)(id®AFA(a)F"Y) I ® F'F)id@A(F)®(A Qid(F~Y)WF 1o l) =
= (I ® F)id®A(F))(id ®A(A(a)®(A @ id(F)WF1eI) =
= (I ® F)id®A(F)®(A ®@id(Ae)(AQid(F ) (F1al) =
= (I ® F)id®A(F)®(A@id(F ) (FIFRI)(AQid(FA(@F ) F1oI) =
= Op(Ap ®id(Ar(a)))
It remains to prove the relation (1.2.4), or, explicitly:
(1d@id @AR(®r))(Ar ®id®id(Pr)) = (I @ Pp)(id @Ar @id(®p))(Pp @ I)
Hence:
([dRid @ApR(®r))(Ap ®id®id(®F)) =
= F3,(id ®id @ A(Fas(id @A(F)) (A @ id(F~1) F5')) Fyy
- Fio(A ®1d ®id(Fas(id ®A(F))®(A @ id(F~ 1)) Fpy ))Fl—2 =
= F34(id ® id ®A(Fy3))(id ® id 9 A (id @ A(F))) (id ® id 9 A(P))-
(A®AF))Fy Fyy FaFa(A © A(F))(A ® id®id(@))-
(A®ideid(A®id(F 1)) (A ®id®id(Fu')Fo'
Since Fi5 e F34 commute and using (1.2.3) on ® we get:
(I®I® F)(ideid®A(I @ F))(I® ®)(id®A @ id(id A(F)))-
(I @@ ) (id®id 9A(®))(A ®id®id(®)) (¢~ @ I)-
(@A RIdAQIAEFEYNP@ DNAQIddF '@ D) (F'oIel)
Using (1.2.4) on @ we obtain:
I®I®F)(id®id®A @ F))(I ® ®)(id®A ®id(id A(F)))-
(Id®A ®id(®))(id ®A ®@ id(A ® id(F1)))-
(P DNARIUARIAF ') (F'eIal) =
=(I®I®F)(ideideA(l @ F)(I®®)(i[deA®idIe F ) (I F eI
(I®FoideA®id((I ® F)(idA(F)®(A@id(F )W F o)) (I e Ftel)-
(I FeD(deA@Id(FRN) (PR NA®IAQIA(FIN)(Fleolol) =
=[®Pp)(dR®AF ®id(PFr))(Pr ®id)
Let’s pass to the weak quasi Hopf algebra case. We start proving (1.2.7) on Ap:

m(I ® ap(Sp ® idoAp(a ZS (eiaqyé)ar fiam fj =

_ Z S(6)S(agy)S(er)S(é)afnfra fy

i,5,h
Since F~1F = A(I):
ZS e)S(en)afunf; = a (1.2.23)
Z cheiBS(f)S(fn) = B (1.2.24)

ih
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Hence:

m(I ® ap(Sp @idoAr(a))) = > S(¢))S(am))aap f; =
J
=c(a) ) S(E)af; =e(a)ar
J

The condition (1.2.8) can be proved in the same way. It remains to prove the relation
(1.2.9). We will prove only the first of the two identities. Remembering the definition
of ¢, we have:

ZJU ®yZF)®Z( ):

Z €jThek(1)€l @ eifj(l)yhgk@)fl ® fz’fj(g)zhfk
ikl

We want to prove that:

Z xEF)BFSF(yz(F))aFZZ(F) =1

i

In fact:

Zﬂf '8rSpapa") = > ejmnéray | D €enBS(f2)S(f)

g.hok In
- S (€ (2))S (yn Zs ei)S(Em)afmfi | Fiazn

Now, using (1.2.23) and (1.2.24), we obtain:

Zﬂﬁ )5FSF )OéFz( ) =

= > ejanci)BS (@) Sun)S (fir) iy znfi =

3,hk
> eielf) (Z xhﬁs(yh)a2h> (Z E(@)ﬁ) =1
J h k
using (1.2.9) for A and (1.2.20). ]

If we are dealing with weak quasi *-bialgebras A, the weak quasi bialgebra Ap
is still involutive with:
Qp = F1"QF !

This is what we are going to prove in the next:

Proposition 1.2.11. Given a weak quasi *-bialgebra A and a twist F, the algebra
Arp is a weak quasi *-bialgebra.

Proof. We need to prove the relations (1.2.10) - (1.2.14) related to 2. Identities
(1.2.10) - (1.2.12) are very easy to prove. We prove the relation (1.2.13):
QrAp(a*) = FYQF TFA(e)F! =
= FVOA@)F = FTVA@@) QF ! = Ap(a)*Qp
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It remains to prove (1.2.14):

(I ®Qp)(id@AR(Qr)Pr(Ar @id(QE)(Q @ 1) =

—(I@F I FYHYIeF)(idoAF 1) ([doAQ))(doA(F1))
(ITo FH(IeF)(idoAF)PAid(F YY) (FreI)(Fel)
(AQid(F)(AQid Q@ NAQIAFNFIoN)NFoH)(Q o) (Frel) =
= (I® F M) (doAF 1)) (I @ Q)(idoA(Q))d

(A®idQ ) e )(A@idF) (Frel) =

= (@ FM{doA(F YY) o (A eid(F) (Fr e I) =o,"

O]

Now, suppose that (A, A, e, ®, R) is a braided weak quasi bialgebra, and F' €
A ® A atwist. The twisted R-matrix Ry is:

Rp = Fy RF~! (1.2.25)
We have:

Proposition 1.2.12. The algebra Ap = (A, Ap,e,Pp,Qp, Rp) is a braided weak
quasi bialgebra. If A is a braided weak quasi *-bialgebra, Ap is a braided weak
quasi *-bialgebra too.

Proof. We have to prove relations (1.2.15) - (1.2.18) for Rr. (1.2.15) is quite easy to
prove. (1.2.16) is a consequence of the following calculation:

RrAp(a) = FyRF'FA(a)F™! = Fy RA(a)F~! =
= A% (a)RF ™ = (FA(a)F )y Fon RE~! = AP (a)Rp

We pass to (1.2.18). The relation (1.2.17) can be proved in the same way.

id®AR(Rr) = id®AR(R))(id@AR(FY)) =

F1))(id @A(R)) (id@A(F ) (I @ F~1) =
) F51)) @55 R13Po13R12@ (A QA(F ) (I @ F71) =

= (I ® F)(id @A(F)) @55 Ri3Pa13Ri2(A @ id(F~ ) (F ' @ 1)@y =
) )@
) )

)

( )

( )
= ® F)(id ®A(Fs1)
( )

( )

id ®AF(F21))
[ @ F)(idoA
I® F)(id @A

~ N N S N
o~ o~ o~ o~ o~ —~

I ® F)(id @A(Fp1)) @55 Ris(id @A(F 1) o13) Fi3' @y R, @5 =
= (I ® F)(id ®A(F21))® 312(1d QAP (F™ )213)F3T11RF13(I)F213RF12¢;71 =
= (I)Fg,llz 3_11RFl3CI)F213RFH(I)F1

Now, suppose that A is a weak quasi *-bialgebra. It remains to prove the relation
(1.2.19):

Qo1 pRr = Fy " Qo1 Fy ' Fon REY = Fy V" RF 1 =
=R ROF T = B RV R QR =
= F, "R F*Qp = (Fn RFY)™V0Qp = RV QR

312 R13P213(AP @ id(F 1)) (Fyy' @ I)(Rp @ 1)@, =
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When F is a twist on A, then so is F~! and we have:
(Ap)p-1 = A= (Ap-1)r (1.2.26)
If F’ is another twist, then so is the product F'F” and:
(AF)p = App (1.2.27)

Definition 1.2.13. Two weak quasi bialgebras (A, A,e,®) and (A’, A’ &/, ®') are
equivalent if there exist a twist ' on A’ and an isomorphism v : A — A/, of weak
quasi bialgebras.

All the results we have seen before involving weak quasi bialgebras are still valid
for weak quasi Hopf algebras. Before ending this section, we introduce a special
kind of these algebras, which is not closed under twists. Let A be a weak quasi Hopf
algebra. In order to shorten the formulas in the next Definition, we set:

P,=A(I), P3=A®id(A(I)), Q3=id®A(A()) (1228)
Py = A®id®id(A @id(A]))), Q4 =id®id®AGGdQAAI)))

Definition 1.2.14. A weak Hopf algebra is a weak quasi Hopf algebra with P, Ps, Q3, Py, Q4
satisfying the following:

Q32 ®id(A(a)) = id ®A(A(a)) P (1.2.29)
Q3P3Q3 = Q3, P3Q3P3=DP; (1.2.30)
(I ®Q3)(id ®A ®id(Q3P3)(Ps ® I) = Qu(A @ A(P,)) Py (1.2.31)

As a consequence of the previous identities, the associator ® and its inverse ® ! can
be chosen in the following way:

® = Q3P3 = id @A(A(I))A ®id(A()) (1.2.32)
7! = P3Q3 = A®id(A(I))id RA(A(T)) (1.2.33)

Remark 1.2.15. (a) A deeper look to these algebras will be given in [16]. At this
stage we can notice that our definition of weak Hopf algebra is quite different from
the one introduced by Bohm, Nill and Szlachanyi [10], [60]. In fact, their algebras are
coassociative, with a non-counital coproduct and a non-multiplicative counit. This is
due to the fact these two kinds of algebras arise in different contexts and with differ-
ent motivations.

(b) Suppose that A is a weak quasi Hopf algebra with associators ® and ®~'. Hence,
since we already know that ¢ and ®~! are associators, the identities (1.2.32) and
(1.2.33) are equivalent to conditions (1.2.29) - (1.2.31). This fact will be used af-
terwards to prove that a peculiar weak quasi Hopf algebra is actually a weak Hopf
algebra.

1.3 Weak quasi Hopf algebras: properties of the antipode

In this section we focus on some properties of weak quasi Hopf algebras, specially
those involving the antipode. The most of the following results are new but heavily
inspired by the Drinfeld’s work about quasi Hopf algebras [20].
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Proposition 1.3.1. The counit € of a weak quasi Hopf algebra A is unique and sa-
tisfies € 0o S = e. If A is involutive, € also satisfies (a*) = (a), for every a € A.

Proof. The first two statements can be proved in the same way as for quasi Hopf
algebras, namely the first follows from (1.2.1) while the second from applying the
counit to one of the equations (1.2.7) and (1.2.8). For the last statement it suffices to
show that £(a) := (a*) is a counit. We prove just one of the two counit identities:

(id ®2)(A(a)) = an)élac) =
= (afyye(afy))” = (id@e(A(a))" =
= (id®e(QA(a")Q ™))" = (id®e(A(a")))* = a
using (1.2.12) and (1.2.13). i

Proposition 1.3.2. Let A be a weak quasi Hopf algebra with antipode (S, c, ). Then
for every invertible u € A, the triple (S, @, ) defined by

S(a) =uS(a)u™, wa=a, Ppul=4. (1.3.1)

is another antipode of A. Conversely, if (S, a, B) and (S, @, B) are two antipodes,
there exists a unique invertible element u € A satisfying (1.3.1). In particular, if a
strong antipode exists, it is unique.

Proof. Straightforward calculations allow us to prove that, if (S, «, ) is an an-
tipode, (S, @, 3) defined as (1.3.1) is another antipode. Conversely, let (S, a, 3) and
(S, @, B) be two antipodes, and:

u="> S(p:)aqiBS(r;) (13.2)

In some of the following calculations we will avoid the summation symbol. Applying
themapV : A ® A® A — A such that:
V(b®c®d) = S(b)acBS(d)

to both side of the identity A®id(A(a))® ! = &~ (id®A)(A(a)), we getuS(a) =
S(a)u. In fact:

V(A & id(A(a)) ) V(CL 1)Pi ® a(1)(2)4i & a(g)ri) =
(aq) pz)aa )2)2iBS(a@yri) =
(pi)S ( (1))aany2)aiBS(ag)ri) =
(

pi )anBS('rZ) (a) = uS(a)

Applying V to the right hand side, we obtain:

I
Ll U Co\

V(@ (id @A) (A(a)) = V(piaq) ® giaey i) ® ria@)e)) =
= S(piag))agiae)1)BS(riae) )

= S(a)S(pi)ag;pS(ri) = S(a)u
Now, from (1.2.4) and (b) of Remark 1.2.2 it follows that:

(id®id ®A(P))(A ® id @id(®))(@ 1 ® 1) = (I ® ®)(id ®A ®id(®))
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We apply the map W : A®4 — A, to both sides of the previous identity, where
WOhecwdee)=S0b)aclS(d)ae

obtaining in this way ua = @. In fact the left hand side gives

U

(96'ﬂﬂj“)p/c)@yﬂj(g)Qkﬁs(zz'(l)yj?“k)oézi(2)2j =
S(pr)S(2),)) S (@i)ayiz,, anBS (ri) S(yj)e(zi) az; =
S(px)S(xj,)) [S(wi)ayie (2i)|2j, arBS (i) S(y;)az; =
= S(pk)S (), )@z, arBS(r)S(yj)az; =
= S(pr)aarBS(re)[e(x5)S (y;)azj] = ua

We have used the following identity in the third line:

S(x)aye(z) =mo [l @a- (S ®id)(id ®id @e)(®)] =
=mo[l®a- - (S®id)(A(I))]=c(l)a=a

and similarly we have used the relation £(x;)S(y;)cz; = « in the last line. Analo-
gous computations show that the right hand side leads to @. The relation involving
can be proved in the same way. Now we prove the invertibility of u. We define:

v = Z S(pi)aqiB S(r;)

v 1s the inverse of u. Indeed:

uv = ZuS (pi)aqiB S(r; Z S(pi)uag;B S(r;) =
= Z S(pi)agiBS(ri) =
A similar calculation allows to prove the uniqueness of u:

u=ul = ZuS (pj)ag;BS(r;) ZS (pj)uag;BS(rj) =
= S(p))ag;BS(ry)

O

We now ask if there exists a relation between the antipode and the coproduct, or,
more precisely, if the antipode enjoys a sort of anticomultiplicativity. The answer
is quite similar to the quasi Hopf algebras case, but we must take into account the
non-unitality of the coproduct. We define:

y=V(I®d ) (id®id @A(®)))
§=V'((A®id®id(®))(®"' ® 1))

where V, V' : A®4 — A®? are:

V(iewd®e® f) = S(d)ae® S(c)af
Viecwd®e® f) =cBS(f) ®dBS(e)

Our goal is to prove the following:
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Theorem 1.3.3. There exists a unique quasi invertible element F' in A® A such that:

D(F)=A(I), R(F)=S®S(A°(I))
FA(S(a))F~' = (S ® S(A°(a))) Va € A
v =FA(a)
§=AB)F!

Moreover, we have that:

F= Z S ® S(A(pi))vA(BS(rs))

and
F71 = " A(S(pi)ag:)d(S @ S(A'(r:))
We start proving the following:

Lemma 1.3.4. We have:
(a)

y=V(@®)(A®ideid@))
§=V'((([d®ideA@ ") & ®))

(b) If a € A, then:

(S ® S(A(a@))))vAlag) = ela)y
Ala))o(S @ S(A%(a(y))) = e(a)d

(c)

Z A(z;)0(S @ S(AP(y:))vA(zi) = A(I)

D (S @ S(AP(p;)))7A(g;)5(S ® S(AP(r;))) = A(T)

J
Proof. (a) Using (1.2.4) we have
7 =V((d®A ®id(®))(® ® I)(A ®id®id(®)))

It is easy to see that:
Vid®A ®id(®)-T) =V (T)

after the following calculation:

VIid®A ®id(®)-T) = Ze(yz)V(xz RIRIQz-T)=

= e(y)S(Ty)aTs @ S(T1)S (wi) oz Ty =

=D S(T)als  S(T) (S (xi)e(yi)ozi) T =

)

= S(Tr)aTs ® S(Ty)aTy = V(T)

)

(1.3.3)
(1.3.4)
(1.3.5)
(1.3.6)

(1.3.7)
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where the expression in the square brackets is equal to « thanks to (1.2.5). Therefore:

Simil

v =V((d®A ®id(®))(® @ I)(A ®id®id(® 1)) =
=V({(®®D(Aidoid(®1)))

arly for the identity involving 6.

(b) We prove the first identity. The second identity will follow in the same way.

(S®

S(AP(ayy)))vA(a)) is equal to

V(I @@ H(id®id @A(P))(A @ A(A(a))))

which in turn is equal to:

V((d®A id(id 9A(A(@)I @ 1) (id ®@id 9A(D))) (1.3.8)

after the following calculation:

(I® 0 1) (id®id @A(®))(A @ A(A(a)
= (I @0 ) (id®id @A (P(A @ id(A(a)))
= (I ® 0 1) (idoid @A ((iJd®A(A(a)))®
= (Id ®A ® id(id ®A(A(a)(I ® @71 (id®id ®A

)
)
)
(®)

)

Finally, (1.3.8) is equal to £(a)~y since:

V(id

QA @1id(ld®A(A(a))) - T1 @Te @ T3 @ Ty) = c(a)V(T1 @ To @ T3 @ Ty)

(c) We prove the first identity. The second will follow similarly. Let r be the fol-

lowing element in A®6:

Tl (Ied ) (idoideA(®)](A® A A(D))-
(A ®ideid(®)(d ' eI)®I®I]

We introduce the map ¢ : A®6 — A®? with:

Haob@codes f)=(a@b)(3® B)(S(d)© S()aea)es f)

A simple calculation leads to the identity:

In thi

¢(r) = A(i)d(S @ S(A(yi)))yA(zi)

s way we obtain the LHS of the identity that we are going to prove. We need

much more work in order to get the RHS. It is possible to write 7 in a different way:

using

r=(A®id®A®id(ild®id @A(P))) (I @ &71).

(@' @ I (Id A ® id A (A ® id ®id(P)))) (1.3.9)

repeatedly (1.2.3). We report the explicit computation:

= [(I# ® 2™ H)(id* 0A (I © 9)))|(A%(2))[(A @ id® (@ @ I9%)) (@' @ I%?)] =
= (I 2o ) (A ®id?oA(I ® ¢)(id®A ®id(®))(® © 1)))(®! @ I%3) =

[
(
= (
(

1% @ & (A ®id®? @A ((id ®id @A (D)) (A ® id @ id()))) (P! @ I93) =

= (A ®@id)®2((1[d®? @A (9)) (I3 @ &1 (07! @ I®)((id ®A)®? (A ® id®%(D)))
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Now, we apply ¢ to r written as in (1.3.9). We obtain the following identity simply
using the definition of ¢:

o(r) = ¢((A ®id®! (@125)) (@7 @ I¥*)(I*° @ &) (id®* ®A(P145)))
We rewrite the cocycle relation, putting I at the positions 4 and 5:
(id ®id ®A((I)))1236(A ® id®4(¢)125)) = (13236(id RA ® id®3(q)125))q)123

Multiplying both side on the left by (id ® id ®A(®~1))1236 and on the right by ® 55
we get:

(A @ AAD)))1236((A @ id®(@125))) @1 =
= (id @ id @A (D)) g3 P236(1d @A @ id®3 (P 125)) (id ®A(A(I)) ® I93)
We can also rewrite the cocycle relation putting [ at the positions 2 and 3:
(I%° @ &) ((1d®* ®A(P145))) (A @ A(A()))1456 =
= (I® ® (A @id(A))((1d®? A ® id(P145)) ) P145(A @ id @id(P 1)) 14356

Proceeding as in (b) of Remark 1.2.2 we have:
(A @1d®*(P125))) P15 = (id @ id ®A(P)) 1936 Pasze (id ®A @ id®3 (D125))

and:

(I @ @71 ([0 ©A(P1s5))) =
= ((id®3 RA ® id(q)145)))q)145(A ®Rid® id((I)_l))1456

We use the previous two identities in the following calculation:

o(r) = (A @1d® (D125)) (7' @ I%)(I%* @ 1) (id¥* @A(P145))) =
= d)((ld ®id ®A(q)))1236q>236(id RA ® id®3(q)125))'
(1 @A ® id(P145))P145(A ® id @id (D)) 1456)

Using the definition of ¢ we get the desired result:

o(r) = pixTrTipjy) BS Yk YiPiiay ) Yk 2105 @
® ¢iiYjy BS (T Yilj o)) OTin 2i2j 275 =
= e(pj)e(yr)pivjTrg; @ e(ri)e(y;)qizjznry =
= (id®id ®e(® 1)) (id ®e ® id(®))(id ®e @ id(P))-
(e ®@id®id(®@7Y) = A(I)
U

Lemma 1.3.5. Let B be an algebra, p an idempotent in B, f : A — B a homo-
morphism and g : A — B an anti-homomorphism with f(I) = g(I) = p, and
p,0 € (p,p) such that:

(1.3.10)



22 Tensor categories and weak quasi Hopf algebras

where a € A. Moreover,
> F@i)og(yi)pf(z:) =p (1.3.11)

Zg(pj)pf(q]')ag(rj) =p (1.3.12)

J
In addition, we have an idempotent ¢ € B, p, o € qBp and an anti-homomorphism
g: A — Bwithg(Il) = qalso satisfying (1.3.10) - (1.3.12) (but in (1.3.12) q replaces
p)
Then there exists exactly one element F' € B, partially invertible with D(F') = p,
R(F) = q, such that:
Fp=p
gF =0 (1.3.13)
gla) = Fg(a)F~!

As a consequence, we have F' =" G(p;)pf (¢;)og(r;) and F1= > 9i)pf(q)a g(r:).

Proof. Let Fbe Y, G(pi)pf(qi)og(ri). We apply themap V : A®3 — B, V(b®c®
d) = g(b)pf(c)og(d), respectively to (A ®@id(A(a)))®@~! and @1 (id ®A(A(a))),
obtaining Fg(a) = g(a)F. In the same way, we apply the map V : A®* — B such
that:

V(b ewdee) = gb)pf(c)og(d)pf(e)
to both sides of the identity:

(id ®1d @A (P))(A ®id @id(®))(@ ' @ I) = (I ® ®)(id ®A @ id(®))

From the LHS we obtain F'p, and from the RHS p. In the same way for o. It remains
to prove the uniqueness of F'. Suppose that F' satisfies the first three identities of
(1.3.13). Then:

F=Fp= ZFg(pj)pf(qj)Ug(Tj) = Z?(pj)pr(qj)Ug(rj) =

J J
= 9(p))pf(g5)a9(r;)
J
O
At this point we are able to prove the Theorem 1.3.3:

Proof. Tt is straightforward if we apply the previous Lemmato B = A® A, p =

A(I), g = S®S(AP(I)), f = A, g =A08 p=Aa),c =AB).7

S®SoA® p=r,0=09. O

We now ask what does it happen if A is coassociative, or in other terms & =
I ® I ® I. In this case we do not recover the classical anticomultiplicativity property
of the antipode, as we can see in the next:

Proposition 1.3.6. The following identities are equivalent:

A =I&]
(i) Ao S =(S®S) o AP
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Proof. (1)=-(ii) is the ordinary case. Let us prove (ii)=-(i).

A(I)

AT &T) =

(De(In) ) @ I = Ale(I1) )Ly @ I) =
(In

(Ia

ySUaye2)) Uy @1) =

A
A(]
A(L1))A(S(I 2)(1)))(1( )()®I)=

(1(1)(1)®I(1 (2)( (L2 ) ® S(L2y1))(2))L2y2) @ I) =
= InwSUeme)le @5U@ma) =
= I SUea ) @ @ IS5 @)m) =
= Inmele ) ( 1) =
=Ina >®I<1>< >5(I<2>) I ®f< S U2)2) =
— Iy ®@e(I) = el @I =Ia1

O]

Finally, we want to shed light on the structure of the dual algebra A. We recall
the definition of the structure maps on A:

(¢¥]a) := (¢ ® P|A(a))

(B@)lawb) := (@lab) (13.14)
£(¢) = (¢l1)
(S(@)la) = (lS(a)

where ¢, 1) € A, a,b € Aand (-|-) denotes the dual pairing A ® A — C. Using the
structure maps it is easy to see that:

A(p)* =A(¢") Vpe A

Moreover, A is a non-associative algebra, with a coassociative and unital coproduct
and a non-multiplicative counit. The involution * is not antimultiplicative.

1.4 Weak quasi Hopf algebras: representation theory

In this section we will deal with the representation theory of a semisimple weak quasi
Hopf algebra. We restrict to the semisimple case since in this situation talking about
representation categories does not cause any kind of categorical issues. Moreover,
we will consider only finite-dimensional representations. A representation of a weak
quasi Hopf algebra A is a pair (V, 7y ) where V is a finite-dimensional complex
linear space and 71y : A — End(V') an algebra homomorphism. We will indicate
with Rep A the category whose objects are the representations of A and the arrows
between two objects (my, V) and (-, V') the subspace (V, V') of £L(V, V') whose
elements are the A-linear maps. This linear category can be made into a (non-strict)
tensor category following, for example, [10].
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We define X on representations:

Ty xw = (Ty @ ) o A

(1.4.1)
VX W:=nyew()(VeW)
and then on A-linear morphisms:
fxg=(f®g)omyw) (1.4.2)

where f € (V, V'), g € (W,W').

If A is a weak quasi Hopf *-algebra, we restrict to the representations (7y, V)
such that my (a*) = 7y (a)* and V is endowed with a hermitian form. We will call
them *-representations. The category whose objects are these representations will be
called Rep;, A. Finally, if A is a weak quasi Hopf C*-algebra and 2 € A ® A is
a positive element, we restrict to the *-representations 7y on the Hilbert spaces H.
The category whose objects are these representations will be called Repy A.

Our goal is to prove the following:

Theorem 1.4.1. Let A be a weak quasi Hopf algebra. Then Rep A is a tensor ca-
tegory. If A is a weak quasi Hopf *-algebra, Rep,, A is a *-tensor category. If A
is a C*-algebra and ) a positive element in A ® A, then Repy A is a C*-tensor
category. If the antipode S commute with the involution * in A, Repy A is rigid. If
A is braided, then Rep A is braided. If A is endowed with the involution *, then the
braiding is unitary.

It is quite easy to see that the unit object exists and it is the trivial representation
1 = (C,¢), where A acts on the complex numbers in the following way

a-1=¢(a)l

We define the associativity costraints ayy,w : (U x V) x W — U x (V x W) and
agyw U x (V x W) — (U x V) x W. We will take into account that:

(u@v)@w=AIdAI))(u®@v)@w) e (UxV)xW
u® (v w) =idRAAI))(u® (vew)) e U x (VW)

Hence:

avvw(u®v) @w) = 2((u®v) ®w)
a(}}V’W(u @vew) =01 ue (vew))

while the unit costraints are:
ry(v@l)=vandly(l®v)=v

Using (1.2.2) it is quite easy to see that the associativity costraints @ and a~! are well-
defined. Furthermore, pentagon axiom and triangle axiom are direct consequence of
(1.2.2) - (1.2.5). So Rep A is a tensor category.

The next step is to prove that Rep; A is a *-tensor category when A is a weak
quasi Hopf *-algebra. In this setting, the main problem is to prove that the product
of two *-representations is still a *-representation. It is crucial the existence of ).
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In fact, let (7y, V') and (w7, W) be two *-representations. We put on V' x W the
following hermitian form:

(v1 @ w1, v2 @ we) := (11 ® wi, Q(ve ® wz))p
where the form on the right hand side is the product form. Then:

Proposition 1.4.2. Endowing V' x W with (-, -) defined above, we get that Ty xy is
a *-representation.

Proof. First of all, the form (-, -) is hermitian because of the self-adjointness of (2.
Next:

(11 @ w1, Ty xw(a) (v2 @ wa)) = (Tyxw(a)(v1 ® wi),v2 @ wa) =

= (A(a)(v1 @ w1), Q(v2 @ w2))p = (v1 @ w1, A(a) Qva @ w2)), =

= (1 ® w1, QA(a%)(v2 @ w2))p = (v1 @ w1, Ty (a”)(v2 @ w2))
O
What does it happen if we have n *-representations V7,...,V,? Since the co-
product is not coassociative, the category is not strict. So, it will be necessary to use
parentheses to indicate the order of the products. According to the order that occurs,

we define
AW = (([d®...®dRA®Id®...®id)o...0 A

with A) = idand A®) = A

Unlike the coassociative case, A depend on the positions of A’s into the com-
position. When it will be possible, we will avoid the use of parentheses and we will
consider A® fixed, withi < n. If A = A & A() o A, then:

Q= Q") @ Q) (AN @ ADY Q) € A% (1.4.3)

with Q) = T and Q) = Q. In other words, the definition of (™ depends on the
A™) which in turn is chosen according to the order of the products.
Now we can define the hermitian formon V; x ... x V,;:

(... QU @ ... QU)) = (11 ®...0v, AW ®...0u)), (144
As before:

Proposition 1.4.3. Endowing Vi X ... X V,, with the hermitian form (1.4.4), we get
that v, « .. xv, Is a *-representation.

Remark 1.4.4. The relation A(a)*Q = QA(a*) can be extended to A™ and Q™)
or more explicitly:

A (@)*Q™) = QM AM (%)
VYa € A and Vn € N. We prove it by induction.
A (@) QM = (AT @ AL (A(a)*(2"7) @ Q) (AT @ AB Q) =
= (A(T)(a(l))*Q(r) ® A(S)(a@))*g(s))(A(T) ® AB(Q)) =

= (2020 (af) © QDA (afy))(AT) & AD() =
= (M 20y A" e A 5)(A(a) Q) =
= (@ ’“)®Q (AT @ AL@) (AT © AV(A(a"))) =
= QA (a%)
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The following result completes the proof that Rep,, A is a *-tensor category:

Proposition 1.4.5. The associativity costraint ay,y,w satisfies the following identity:

* —1
auvw = Syyvw
forallU,V, W in Rep,, A.

Proof. Tt is merely a consequence of (1.2.14):

(w1 ®v1) @ wi, agyw(uz ® (vg ®wy))) =
= (ay,y,w((u1 ® v1) ® wy), (u2 ® (v2 @ w2)))p =

(11 ®v1) ® w1), (I ® Q)(Id RA(RQ)) (u2 ® (v2 ® w2)))p =
(u1 @ v1) @ wy, (I @ Q)(Id RA(Q)) (u2 ® (v2 ® wa)))p =
(u1 ®@v1) @ wi, (@ I)(ARid(Q2)P(uz ® (v2 @ wa))), =
(u1 ®v1) @ wy, aU,V,W(UQ ® (v2 ® w2)))

= (@
(
(
(

O]

It remains to talk about the C* case. If A is a C*-algebra and ) a positive element
in A ® A, it is very easy to prove that Repy A is a C*-tensor category. We just need
to check the following:

Proposition 1.4.6. Suppose that Q is a positive element in A @ A. Then Q™ is
positive ¥n € N and for every A(™).

Proof. We suppose that A" is equal to A @A) oA, and we proceed by induction.
Since Q and Q") are positive for all » < n, we have Q = TZ, Q") = T7 and
Q) = T32, where 11, T and Tj are self-adjoint. We will obtain the result after the
following calculation:
o) — (Q(T) ® Q(S))(A(T) ® AB(A(T?))) =
— (A0 & AV(T))(Q @ 9 (A © A (TL)) =
= (A @ A(T)*) (T ® T3) (T @ T3) (AW @ A¥)(Ty)) = B*B

where B = (T ® T3)(A") @ AG)(TY)). O
Next, we focus on the rigidity of Repy A under the assumption:
So* =* oS

Let V be a Hilbert space and V its conjugate space. If (7, V) is a *-representation
of A, then (77, V) is also a *-representation of A, with the following action of a € A
onv € V:

<

av = S(a)* (1.4.5)

The next calculation shows that (7, V) is a *-representation of A:
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Now we prove that V' is the conjugate object of V in Repy; A. In order to prove
this fact, we introduce the conjugation maps r = r%ﬁy ) e (1,VxV)and7 = FE}B ) €
(1,V xV):

r( -1 Z & ® ate; (1.4.6)
A1) = Zﬁei Qe (1.4.7)

We have:

Proposition 1.4.7. The map r*(v ® w) = (v, aw) is the adjoint map of r. Moreover,
r and T defined respectively as in (1.4.6) and (1.4.7) are morphisms in Repy A.

Proof. We start with r*:

rm@w) = (r(1), 20 @ w)), = (2 (€6 © a*e;), AT w)), =

= (€;,v)(a"e;,w) = (v, ¢) (e, aw) = (v, aw)

Of course r is a morphism if and only if r* is a morphism. Therefore it is sufficient
to prove that 7* € (V x V,1):

" (Aa)(v @ w)) = (S(a@)) v, aapw) = (v, S(an))aapw) =
= ¢e(a)(v, aw) = e(a)r* (v @ w)

using (1.2.7). In order to prove the second statement, we use the well-known exi-
stence of the linear space isomorphism A : V ® V' — B(V), such that:

Av@w)(u) = (w,u)v

So it will be sufficient to prove that A(A(a)7(1)) (1) = Ae(a)F(1))(u) Yu € V.
AMA@F(1)) (1) = A (zn; oy Be; ® a(2>ei> (u) =
Z ei, Slag))u)agBe; = anyBS(a@m))u = e(a)fu =
. (a(a) gﬁ ®) (1) = A(=(@)r(1)(w)

using (1.2.8). 0

Proposition 1.4.8. The morphisms r and T satisfy the conjugate equations (1.1.10)
and (1.1.11). Hence V is the conjugate object of V in Repy A.

Proof. First of all, it is easy to see that the conjugate identities can be proved putting
the standard tensor product ® in place of the truncated product x. It is merely a
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consequence of (1.2.2). We start proving the equation (1.1.10):
n

< sidengeitont) = 0 gl (00 (35007) ) -
i=1

= i@ OB eE) =Y r*@idpT® qbe ® rg) =
=1

i,J
=Y (v, S(pj)ag;Beriei =Y (ei, B*q;a*S(p;) v)S(rj) e =
i,j i,J

*

= S(ry)*BqiarS(p)v=| Y Spj)agBS(r;) | v="0
J 7

We pass to the second identity (1.1.11):

n

id@r o aypy 0T ®id(v) = Y _id@r*(®(Be; ® &G ® v)) =

i=1
= id@rt(zBe ® Y ® zv) = > (e, S(y)azv)a;Be; =
1,J 2%
= ijﬁS(yj)azj v="
J
In both cases we have used (1.2.9). ]

Remark 1.4.9. We point out that Rep,, A is also a rigid category, but in this case we
can choose 7y and 7y as in (1.4.6) and (1.4.7) only when the hermitian form on V' is
an inner product. Otherwise, we have to introduce slight modifications on r and 7.

Focusing on the proofs of the last two results, we can see that all the properties of
the antipode S' are crucial in order to prove the rigidity of the category. We wonder if
it is possible to reverse this statement in some sense. Suppose that A is a (semisimple)
weak quasi bialgebra, and S is a *-antiautomorphism. We define the representation
on V asin (1.4.5) using S. Then:

Proposition 1.4.10. Let A be a quasi C*-bialgebra and (1.4.5) the representation of
AonV, where S is a *-antiautomorphism of A. Then (S, «, B) is an antipode if and
only if Repy A is rigid with conjugate object V and conjugate morphisms T‘g/?é ) and

Fg/ﬁ) respectively as in (1.4.6) and (1.4.7).

Proof. We have just proved that if (S, a, 8) is an antipode commuting with the invo-
lution, then Repy; A is rigid, with r%}l ) and F%}B ) asin (1.4.6) and (1.4.7). Conversely,
we must first notice that, since A is a semisimple algebra, then there exists a faithful
representation V. Suppose now that the rigidity of the category Repy A is given

(a)
1%

by the conjugate morphisms r = ry,” and 7 = F%f ) defined resp. as in (1.4.6) and

(1.4.7). Then, Yo, w € V:
(v, S(ay)aapgyw) =1r*(A(a) (T @w)) = r*(e(a)(v" @ w)) = (v,e(a)aw)

which implies (1.2.7). We pass to 7, recalling that A : V ® V — B(V) is an isomor-
phism of linear spaces such that:

Av@w)(u) = (w,u)v
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So:

n

e(a)Bv =c(a) Y (ei,v)Be; = A (6(@) D Bei® e) (v)
i=1

=1

= Ae(a)r(1))(v) = AMA(a)7(1))(v) = A <Z anybei ® a(2)ez’> (v) =
=1

= (e, S(ag))v)amBe; = (aq)BS(a)))v
=1

We obtain (1.2.8) using the faithfulness of V" as representation of A. Next, developing
the calculations as in the proof of the Prop. 1.4.8 and proceeding as for (1.2.7) and
(1.2.8) we get that (S, o, ) satisfies (1.2.9). O

In order to conclude the proof of the Theorem 1.4.1, we prove that if A is endowed
with a R-matrix R satisfying the identities (1.2.15) - (1.2.18), then Rep A is braided.
Proposition 1.4.11. If (7, U) and (my, V') are two representations of A, then:

cyy = X(m @m)(R) € (UxV,VxU) (1.4.8)
are morphisms such that, for all f € (U,U’) and g € (V,V'):

coryrofxg=gXfocyy (1.4.9)
and.:

—1 . . —1
CUVXW = aV,W,U o ldv XCyw o ay,uw ©cyy X 1dW oaUMW (1 4.10)

cuxv,w = aw,u,v © cuw X idy Oa(},lw,v oidy Xcey,w o ayv,w
Finally, if A is a weak quasi Hopf *-algebra, cyy are unitary morphisms VU, V.
Proof. 1t is straightforward to see that ¢y, are morphisms in Rep A using (1.2.15)
and (1.2.16). The identity (1.4.9) follows after an easy calculation. (1.4.10) are also

easy to obtain using (1.2.17) and (1.2.18). Finally, we want to show that in the in-
volutive case cy,y is unitary. It will be trivial after finding the explicit expression of

c*U’V:
(u1 @ v1, ey (V2 @ u2)) = (cyv (w1 @ v1), Ave ® uz)), =
= (XR(u1 ® v1), Qv2 @ u2))p = (u1 @ v1, R*EQ(v2 @ ug)), =
= (u1 ® v1, R*Qo1(u2 ® v2))p = (u1 ® v1, QR (ug @ v2))p, =
= (u1®vl,QR_lE(v2®u2))p = (u1 ®v1, R~ E(vg®u2))
using (1.2.19). So ¢y, = R7'. O

Collecting results together we obtain the proof of the Theorem 1.4.1.

We close this section giving some additional results about the representation
theory of a weak quasi Hopf algebra. We remember that two weak quasi bialgebras A
and A’ are equivalent if there exists a twist " on A’ and an isomorphism v : A — A%,
of weak quasi bialgebras. We are going to prove that equivalent weak quasi bialge-
bras have equivalent representation theory. We start proving the following result. Let
A be a weak quasi bialgebra and F' € A ® A a twist. Define:

e&f@v(v @w)=F '(vew)

where v and w respectively belong to V and .
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Lemma 1.4.12. Under the previous hypothesis, the triple (id,id, e’ )) is a tensor
equivalence from the tensor category Rep A to the tensor category Rep Ap.

Proof. We have to prove that eF) satisfies the relations (1.1.13) - (1.1.15). Relations
(1.1.14) and (1.1.15) are immediate to prove using (1.2.20). Relation (1.1.13) is
consequence of the following identity:

(IdRA(F 1) Fy'®p = ®(A@id(F 1) !

Finally, it is a tensor equivalence since the tensor functor (id, id, el 71)) is the inverse
of (id, id, et). O

Now we can prove the result stated before. Let A and A’ such that:
v: A= AR

is an isomorphism of weak quasi bialgebras. Now, given a A’,-representation V', we
can equip V' with a A-module structure:

a-v:=v(a)v Yac A, YveV

In this way we can define a tensor functor (v*,id, id) from Rep A% to Rep A which
is the identity on objects and arrows. Composing it with (id, id, e )) we obtain
the tensor functor (v*,id, e*)) which is a tensor equivalence between Rep A’ and
Rep A.

It is possible to give an extension to the braided case. As before, we have the
following definition and the following theorem:

Definition 1.4.13. Two braided weak quasi bialgebras (4, A, e, ®, R) and (A, A’, &', @' R')
are equivalent if there exist a twist /' on A" and an isomorphism v : A — A’ of
braided quasi bialgebras.

Theorem 1.4.14. In the previous hypotheses, the tensor functor (v*,id, elF )) is a
braided tensor equivalence between the braided tensor categories Rep A’ and Rep A.

Next, we want to give the categorical counterpart of the anticomultiplicativity re-
lation. It is a well-known result in the category theory, but we shall give an alternative
and more concrete proof, making use of what we have seen in the previous section.
We set:

F=Yfiog adF =) fiog
% %
Then:

Proposition 1.4.15. Let A be a weak quasi Hopf*-algebra and V, W two *-representations.
Then V- x W and W x V are isomorphic as *-representations of A.

Proof. We setthemapsy € (W x V.,V x W)andy~' € (V x W, W x V):
Ywev)=Q 1 F(vew) = Z Gfjv® cfig;fw
(2

Y loew) = Z@*djw ® ﬁ'*cjv

0]



1.4 Weak quasi Hopf algebras: representation theory 31

L are A-linear:

Y(a(@ @) =~(S(a@) w® S(ae)v) =
= Q7 1F*(S® S(A°P(a))*)(v@w) = Q7 TA(S(a))* F*(v @ w) =
=A(S(a))Q T F* (v @w) = aQ 1 F*(v @ w) = ay(W ® D)

We first prove that v and v~

and

v Ha(v@w) =7 (A(S(a)* (v @ w)) =
= 771((5(@*)(1)@ ® (S(a)*)@w) =
= Z@*d (2 yw® fz Cj( (a )*)(1)U

Since:

Ff 7 00 A%(S(a)) = S © S(A()*Ffy 01
we get:
7_1 (v@w)) ZS gz*d w®S( )*ﬁcjv :a'y_l(v®w)

-1

It remains to prove that v~ is the left and right inverse map of :

Yo @B W) = Y@ dw @ filejo) =

1,
= QI I ew) = Q1A * Qv @ w) =
=AN)(vew)=v@w

On the other hand:

v Hy(w @) 27 le;v®67¢gjw):

= > G drdigiw ® fi crliffv =
ik

=S(1))'we SIg)v=AD)(Wx0) =07

where we use the following calculation:
> Gntdrdig] @ f erifjv = F3 Q' ) =
i7j7h7k
= Fy AP(I)Fy = FyyUF = S © S(A)
O]

We conclude this section showing a relation between weak (quasi)Hopf algebras
and weak (quasi)tensor functor. Before proving it, we need the following:

Definition 1.4.16. Let F' be a tensor functor from Rep(A) to the tensor category
Vect of the f.d. linear spaces, such that:

F((my, V)=V

and acting as the identity on the arrows. F’ is called forgetful functor. More generally,
if € is a tensor category and F' a tensor functor from C to Vect, F' is called fiber

Sfunctor.



32 Tensor categories and weak quasi Hopf algebras

Theorem 1.4.17. Let A be a weak quasi Hopf algebra. Then the forgetful functor
F : Rep(A) — Vect is a weak quasi tensor functor. If A has an involution (%), F
is *-preserving, and if A has a R-matrix, F is braided. Moreover, A is a weak Hopf
algebra if and only if F' is a weak tensor functor.

Proof. Proving that F' is a weak quasi tensor functor is quite easy. We set:
evar (v ®w) = A (v ® w)
It is not an isomorphism but only an epimorphism, and the right inverse is the map:
e (A & w) = A (o @ w)
which is merely the inclusion:
ey VW VeW

recalling that V x W = A(I)(V ® W). The assertions about involution and braiding
are very easy to prove, so we focus on the last statement. Looking back at the diagram
(1.1.13), we have that F' is a weak tensor functor if and only if ex y and ® satisfy the
identities:

. . /
Flaxy,z) oexxy,zoexy xidp(z) = ex,yxz 0 idr(x) Xey,z © Apx) p(v),F(2)

and

1o -1 1 o -1 . 11
ex,y Xidpz)oexyy OF(aX,Y,Z) = Op(x),F(Y),F(Z) oidp(x) Xeyz0€x vy

In our situation, a},( X),F(Y),F(Z) is the trivial associativity costraint in Vect. Using
the fact that e has right inverse, we have:

. ~1 . 1
Flaxy,z) = exyxz oidp(z) Xex)y o exy X idp(z) o€y, y »
—1 _ . . -1 -1
F(aXy’Z) =€exXxY,ZO€xy X 1dF(Z) OldF(X) XeY,Z o eX,Y><Z

Using the definition of the natural transformations a and e, the previous identities
become:

o

(IdRAAMD)I @ AD)(A(I) @ (A ®id(A(]))) =
= ([d®A))(A ®id(A(1)))

and in the same way:
7! = (A®id(A)))(id®A(A()))

As a consequence, (1.2.29) and (1.2.30) are immediately satisfied. In order to prove
(1.2.31), it is sufficient to see that a x v,z and a}ly , must enjoy the pentagon axiom.
O

Remark 1.4.18. The notion of weak Hopf algebra and its relation with weak tensor
functors will be studied in detail in [16].
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1.5 Weak quasi Hopf algebras: Haar measure and semisim-
plicity

It is well-known [67] in the theory of Hopf algebras that if A is an arbitrary Hopf al-
gebra, then the left integral space has dimension < 1, and if A is a finite-dimensional
Hopf algebra, then this dimension is exactly 1. Same statement is true for the right
integral space. Moreover, if the left integral space has dimension 1, then the right
one has dimension 1 too. The two spaces coincide if and only if A is semisimple.
In this case, we deduce the existence of unique idempotent self-adjoint two-sided
integral such that e(h) = 1. We call this element Haar measure. The same result
can be given for the dual algebra A. These facts can be generalized to quasi Hopf
algebras and dual quasi Hopf algebras, giving in the last case a suitable definition
of integral which could be the extension of the classical integral to a non-associative
algebra [13]. In this section, we focus on an analogous result for finite-dimensional
weak quasi Hopf algebras. More precisely, we want to prove that if A is a f.d. weak
quasi Hopf algebra, then A is semisimple if and only if A has a Haar measure. If
we consider the dual algebra A, we will prove that it is not possible to extend the re-
sult concerning the existence of the integrals available for dual quasi Hopf algebras.
In fact, there exists a class of weak quasi Hopf algebras A such that A cannot have
integrals.

Definition 1.5.1. (i) Anelement! € A, [ # 0, is a left integral if xl = e(z)l Yz € A.
(ii) An element € A, r # 0, is a right integral if rx = e(x)r Vo € A.
(iii) An element h € A, h # 0, is a Haar measure if it is a two-sided integral such
thate(h) = 1.

It is possible to prove the following central result:

Theorem 1.5.2. A has a Haar measure h iff A is semisimple. It is unique, idempotent,
self-adjoint and such that S(h) = h.

In order to prove the theorem, we need the following lemmas:

Lemma 1.5.3. Let A be a semisimple unital algebra. If J is a left ideal, J = Ae,
where €? = e. If J is a right ideal, J = f A, where f? = f.

Proof. Let J be a left ideal of A. For semisimplicity it exists a left ideal K such that
A=J®K. So,I = e+finaunique way, withe € Jand f € K. e = el = e?+ef.
Since f € K,ef € K. Butef =e?2—ec € J,soef € JNK = {0}. Soe? =e.
Let’s prove that J = Ae. Ae C J is trivial. On the other hand, let j be an element of
J.j=jl=jle+f)=je+jf.Sojf € JNK ={0},and j = je € Ae.

Let’s pass to the right case. J is a right ideal. It is possible to consider the action
a -z := xS (a). Since the invertibility of S, K is a A-module with this action if and
only if K is a right ideal. So, it exists a right ideal K such that A = J & K. As
before, I = e+ f,withe € J, f € K. So:

SHe)I=5"1e)-e+SHe) - f=e=el+ fe=fe=0=c*=¢

Let’s prove that J = eA. eA C J is obvious, since ea = S~!(a) - e € J. On the
other hand, j € J. So:

j=Ii=(e+fi=ei+fi=5"0)e+S () f=
= fj=0=j=ejccA
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O]

Lemma 1.5.4. The following statements are equivalent:

()l is a left integral;
(ii) kere - 1 = {0};
(iii)S(1) is a right integral.

Proof. (i) = (ii) is obvious.

(13) = (i) z —e(x)] € kere. Soxl = (x — e(x))l + e(z)l = e(x)l.

(7) = (di7) S(xl) = S(e(z)l) = S(1)S(z) = e(x)S(l). We can conclude since S is
bijective.

(7i7) = (i) It is obvious since S is invertible. O

Now we can prove the Theorem 1.5.2. The proof is inspired by [62]:

Proof. kere is a *-two-sided ideal of A. € # 0, so kere # A. Using the lemma,
we have that kere = Ap and kere = ¢A, where p?> = p, ¢> = gand p,q # 1. So
kere(I —p) = (0), and (I — q) kere = (0). So I — pis a left integral, and I — ¢ is
a right integral. It is obvious that p,q € kere, so ¢(I —p) = O and (I — q)p = 0.
Therefore ¢ = qp = p. In this way we can say that [ — p is a two-sided integral.
I—p#0,ande(I —p) =¢(I)—e(p) =e(l) = 1. Let h := I — p. It is unique.
In fact, let A’ # 0 another two-sided integral, with (k') = 1. So h = hh/ = /. By
uniqueness it is immediate to prove that h = h* and S(h) = h.

Let’s prove the opposite implication. Let h be the Haar measure. We consider
two left A-module M, N, where N is a submodule of M. Let £ : M — N be a
projection, and P : M — N, with:

P(m) =Y xihyBE(S(h2)) S (yi)ozim)

If n € N, then P(n) = >, x;h(1BS(h(2))S(yi)azin = n. So, P is a projection.
Now, we prove that P is A-linear.

aP(m) = ayzih)BE(S(h2))S(yi)e(am))azim) =
= ayziha)BE(S(h2))S(yi)S(a@)1))aa)@)zim)

Since id ®A(A(a)) = ®(A ® id(A(a)))® !, we have

a1y ® ag)1) ®a@)e) = Z(ﬂfi%)u)pj R yia)y2)4 @ ziao)r;)

.
So:

aP(m) = xka(l)(1)pjxih(1)6E(S(h(2))S(yi)S(yka(l)(g)qj)azka(g)rjzim) =
= wpay)PiTih)BE(S(h2))S(q5vi) S (yra)2))azka)rizim)

Since Zi,j PiT; @ QY QT2 = I(l)(l) &® I(l)(z) & I(Q) we have:

aP(m) = zraqymyLayayh)BE(S(he))S(aq)@2)la)@)S (k) azrap)L2ym)
= zraqya)yhBE(S(aqy@2)h2)S (Yr)azragym)
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Since h is a Haar measure, we have a(1)(1)h(1)®a1)2)h2) = Alayh) = e(an))hny®
h(2). Hence,

aP(m) = :rka ﬁE( (a(l)(g)h(g))S(yk)oazka(g)m) =
= wkhu)ﬁ (S(h(2))5(yk)a2kam) = P(am)

d

We can conclude that the existence of a Haar measure is equivalent to the semisim-
plicity of the algebra.

Let us pass to A. Here, the situation is different in comparison to the ordi-
nary case. In fact, the cosemisimplicity of A is not a sufficient condition to get
the existence of a Haar measure. More precisely, suppose that A is coassociative
(® =1® I ®I). We have the following:

Proposition 1.5.5. There are no invariant functionals on A, or, in other words, there

are no ) € A such that o =o(I)Y Vo € A.

Proof. Let M be a left A-module. We can see it as a right A-comodule, in this way:
let {b;}7_, be a basis of A, and {3;}"_, be its dual basis. 6 : M — M ® A is the
associated right coaction, with 6(m) := Y7, 8" - m ® b;, where ¢ - m is the left
action of A on M. Conversely, if 6 : M — M ® A, with §(m) = my®my, is a right
coaction of A on M, we can define the associated left action of A on M in this way:

¢ -m = ¢(m1)mg

Let’s check that § is a coaction. First of all, we can write A(b;) = Y AL, b, ® by.
Therefore:

n

(6 ®id) 0 8)( Zaﬁﬂ =Y (B8)-mabeb,
&

(([d®A) 0 6)( Zﬁ’ m & A(b Z)\ R85 m @ by, @ by
i,h,k

It is straightforward to see that 5'37(b;) = /\ﬁj, and B'(b;)) = 6;. So, BiBF =
> )\éjﬁl and:

7

(([d®A) 0 8)(m) =D A - m®bh®bk—Z<ZA§Lk6i>-m®bh®bk:

ihk R,k

=> B"8"-me b, @b = ((6 ©id) 0 5)(m)

h.k

Now we have to check that (idy; ®¢) o § = idys:

n

(idyr ®e)(6(m)) =Y e(b)B - m = I(b;)" - m=1T-m=m
=1

=1

So, § is a coaction. Similarly it is possible to prove that, if § is a right coaction,
¢ -m = ¢(mq)my is a left action.
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The space of invariants of a left A-module M is defined to be the subspace:
Inv(;M) := {m € M : p-m = E(¢)m,¥p € A} = {m € M : ¢-m = ¢(I)m,¥o € A}
By duality, we define the coinvariants of a right A-comodule M as:

Coinv(MA) :={meM: my@m; =m®I}

We want to see that in our case Inv( ;M) = Coinv(M 4). In fact, let m € Inv( aM).
So, ¢ - m = ¢(I)m V¢ € A, and in particular 3 - m = B(I)m. Then:

S(m)=> B (Hmeb=> mep )b =
=1 i=1
=m®Y BDbi=mel
i=1

So, we have just proved that Inv( ;M) C Coinv(M 4). Now, let m be an element
of Coinv(M#4). Tt exists a linear map ® : M ® A — Hom(A, M) which is an
isomorphism of linear spaces, with ®(m ® z) = (¢ — ¢(x)m). So, V¢ € A:

Zﬁi-m®bi:m®12>¢<z,3i'm®bi> (¢) =2(m®I)($) =
i=1 i=1

=Y 6(b)B-m=d(I)m = ¢-m = ¢(I)m
=1

In this way, we have proved that Inv(;M) = Coinv(M 4). The main consequence
is that Inv(;M) = {0} VM A-module. In fact, if m € Inv(3M), m # 0, then
m € Coinv(M#4), so 6(m) = m @ I. But d is a coaction, so (§ ® ida) 0 § =
(idpr ®A) o §. The identity implies that m @ I ® I = m ® (1) @ I(2), which in turn
implies A(l) = I ® 1.

Let Iy, (ﬁ) be the space of the left integrals of A. If we consider A as a A-module
under left multiplication, for what we said previously, we have 77 (A) = Inv( 221\) =
{0}. O



Chapter 2

The reconstruction theory for
tensor categories

2.1 Generalities on reconstruction theorems

The topic exposed in this section will be the motivation for what the reader will find
afterwards. We can start from a very basic problem. Suppose that G is a locally
compact abelian group. It is possible to build another locally compact abelian group
G whose elements are the continuous homomorphisms from G to T. G is locally
compact with the topology of uniform convergence on compact sets. The product on
G is the pointwise multipAlication. G is called the dual of G. Repeating the procedure,

we can build the bidual G. The classical result by Pontrjagin [66] states:

Theorem 2.1.1. There is a canonical group isomorphism between G and G, which
is also a homeomorphism.

Of course, one can ask if it is possible to generalize this theorem to the non-
abelian case. If we preserve for G the same definition, we will not be able to recon-
struct our group G, so we need to reformulate the definition of G. In the abelian case,
G is the set of the unitary irreducible representations of GG. So, we can give this defi-
nition for G also in the non-abelian case. But in this case G is no more a group, since
the irreducible representations might have dimensions higher than 1, and the tensor
product of two irreducible representations might be reducible. So we must change
our point of view. We consider G = Rep(G) the category of all the f.d. represen-
tations of G. It is possible to see that Rep(G) is a symmetric rigid tensor category.
Is there a way to reconstruct G from Rep(G)? We consider the forgetful symmetric
tensor functor £ from Rep(G) to the category Vect of the f.d. linear spaces, and we
call Nat(F) the set of the natural isomorphisms between £ and itself. Tannaka [77]
proved that:

Theorem 2.1.2. Let G be a compact group and Nat(E) the set of the natural auto-
morphisms of E, where E : Rep(G) — Vect is the forgetful functor. Then Nat(FE)
is a compact group and G = Nat(FE).

Suppose now that we start from a given symmetric rigid tensor category C, with
a fiber functor I : € — Vect. We ask if it is always possible to find a compact group

37
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G such that C can be identified with Rep(G). The answer is positive and is due to
Krein [41]:

Theorem 2.1.3. Let C be a rigid symmetric linear category with End(1) = C and
E : C — Vect a forgetful functor. Let G = Nat(E) be the group of the natural
automorphisms of E. Then there exists a functor F' : © — Rep(G) such that:

F(X)=(E(X),rx) and 7x(9) =gx (g € G)

which is an equivalence of symmetric tensor categories. If C is a *-category, G is
compact.

It is interesting to give a sketch of the proof, following [55]:

Proof. Let 1, Ey : € — Vect be two fiber functors. We define a unital algebra
Ao(El, EQ) by:
Ag(Ey, By) = €D (Ba(X), B1 (X)) veer
XeC
spanned by elements [X, s], X € C, s € (Ea(X), E1(X))vect, With [ X, s] - [Y,t] =
[X ® Y, u], where:

u=exyo(s®@t)oeyy

This is a unital associative algebra, and A(E1, E») is defined as the quotient by the
ideal generated by:
[X,a0 Ey(s)] —[Y, E1(s) o d]

where s € (X,Y)e and a € (E2(Y), E1(X))vect. At this point one can proves that:
if 1 and FE5 are symmetric tensor functors, A(FEq, Fs) is commutative; if C is a
*-category and E, E» are *-preserving, then A(E1, E2) is a *-algebra and has a C*-
completion; if C is finitely generated, then A(E, E2) is finitely generated. Finally,
there exists a bijection between natural (unitary) isomorphisms o : £y, — FEs and (*-
)characters on A(E1, E3). Now, if Eq, E5 are symmetric and either C is a *-category
or is finitely generated, then A(E1, E9) admits characters, using the Gelfand’s theory
or the Nullstellensatz, so 1 = FEo. Moreover, G = Nat(E}) is the group of the (*-
)characters of A(E7) = A(FE1, E1), and so A(E1) is the algebra of the representative
(continuous) functions on G. This allows to prove that € and Rep(G) are equivalent.

O

A good review of the Tannaka-Krein theory can be found in [38]. As we can
point out from the sketch of the proof just seen, the fiber functor is unique up to
isomorphism, and the symmetry of the category is crucial to state this fact. Of course,
this implies that the group G is unique up to isomorphism. Now we want to go one
step further. Is it possible to state the same theorem for an abstract category? Or,
in other words, without giving a fiber functor? The answer is “no” in general, but it
becomes “’yes” if we add some weak assumptions on €. This is the theorem due to
Doplicher and Roberts [19]:

Theorem 2.1.4. Let C be a linear rigid symmetric C*-tensor category, with End(1) =
C. Then there exists a unique (up to isomorphism) compact group G such that the
category of the unitary representation of G Rep(G) is equivalent to C as linear rigid
symmetric C*-tensor category.
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In this theorem we don’t need to give a fiber functor thanks to the C*-structure.
So in the symmetric case we can say that everything works well. We can now try to
give a further generalization, supposing that € is not symmetric. In this case, it may
happen that we don’t have any fiber functor, and if it exists, it could be not unique
up to natural isomorphism. Moreover, if E is a fiber functor, it is not symmetric, so
A(F) is not a commutative algebra and the reconstructed object cannot be a group.
The suitable object is a Hopf algebra, with its several generalizations (multiplier Hopf
algebras, quantum groups,...) [33]. For example, if C is a linear rigid semisimple and
finitely generated tensor category and F is a fiber functor, we can reconstruct a finite-
dimensional Hopf algebra H such that C is equivalent to Rep(H). If the category is
braided, H is braided; if € is a *-category and the fiber functor is *-preserving, H
is a *-Hopf algebra. We now wonder if we are able to give a reconstruction theorem
also when the category C does not admit a fiber functor, or in other words, when the
functor £/ : C — Vect is not a tensor functor. The answer is positive if E is a quasi
tensor functor or a weak quasi tensor functor [30]. This is what we are going to see
in a detailed way in the next section.

2.2 Reconstruction theorems of weak quasi Hopf algebras

Our main reference in this section is [30]. We will also give an extension of the re-
sults exposed there, in two different directions. On one hand, we will talk about the
case when the category C is endowed with a weak tensor functor, getting as recon-
structed object a weak Hopf algebra. On the other hand, suppose that the category
C is endowed with an involution *. In this case, Haring-Oldenburg considered only
(weak) quasi tensor functors whose natural transformations ex y satisfy the identity
exy = e;(}y VX,Y. This request forced the reconstruction object to have an invo-

* oA. We drop out this condition, obtaining

lution and a coproduct satisfying Ao* =
a more general class of reconstructed objects, which fits exactly with the definition
of weak quasi Hopf *-algebra introduced before.

From now on in this section, we will deal with a linear semisimple rational rigid
braided tensor category C. As we said in the previous section, if we have a non-
symmetric tensor category, it is not always possible to give an associated fiber functor.

In any case, it is always possible to build a weak quasi tensor functor.

Definition 2.2.1. A weak dimension function is a function defined on the irreducible
objects of a semisimple, rigid braided tensor category D : Ob(C), — N. Itis
constant on equivalence classes, and:

and
D(X)D(Y)> > D(Z)dim((X ®Y, 2)) (2.2.1)
zZev
If the equality holds, D is called dimension function

Starting from dimension functions we can build tensor functors:

Proposition 2.2.2. Let C be a semisimple, rigid, braided tensor category and D :
Ob(€) — N a weak dimension function. Then there is a faithful weak quasi tensor
functor F' : € — Vect.
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In order to prove the above proposition, we introduce the following lemma:

Lemma 2.2.3. Set X € Ob(C)yy. Then forallY € Ob(C), we have:
(Y, X) =2 (X, V)"
where (X,Y)* is the dual space (as vector space) of (Y, X).
Proof. Let® : (Y, X) — (X,Y)*, where ®(g) = A\, and:
Ag(f)=gofe(X,X)=C

where f € (X,Y). We distinguish two cases. If X does not appear in the decom-
position of Y, then (Y, X) = {0} = (X,Y). We prove this statement. We have
Y = P, X;, where X; are simple objects which are not isomorphic to X. There
exist morphisms v; € (X;,Y") and v € (Y, X;) such that v o v; = ¢; ;idx, and:

idy = E viovg
%

So, if g € (Y, X), then:

g=goidy = go(viov) =Y (gouv;)ov=0
i i
since g o v; € (X;,X) = {0}. So (Y,X) = {0}. In the same way, let f be a
morphism in (X, Y). Then:

f=idyof =) wio(of)=0

So (X,Y) = {0}. Now, we pass to the case where X is a subobject of Y. In this

case:
ni no
Yy & @Xi @ @Xmﬂ-
i=1 j=1

where X; and X are isomorphic if ¢ < n; and not isomorphic if ¢ > n;. As before,
there exist v; € (X;,Y) and v € (Y, X;) such that:

/ — . . 3 ] — . /
v;0vj = 0;jidx, and idy = E v; 0 ;
i

Now we want to prove that & is injective. If \; = 0, thengo f = 0Vf € (X,Y).

Hence:
ni ni+nz

g=goidy =3 (gouv)ori+ 3 (gou)od]
i=1 i=ni+1
We know that (X;, X) has an invertible arrow ¢; if ¢ < nq, while (X;, X) = {0} if

1> ni. So:
ni

9= (g0 wiod ) odi0]
i=1
ButVi € {1,...,n1}, g0 (viop; ') = 0since v; 0 ¢; ! € (X,Y). Therefore g = 0.
Since morphism spaces are finite-dimensional vector spaces, it is sufficient to prove
that (X,Y") and (Y, X)) have the same dimension. Recalling Prop. 1.1.12, we have
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that dim((X;, X)) = 1if 7 < ny, so each one is generated by ¢;. Now, we can prove
that (X,Y) has By = {v; o ¢; '}, as basis, while By = {¢; o v/} is a basis of
(Y, X). Let f be an arrow in (X, Y"). Then:

f=idyof =) wvio(vof)
i=1

Since v} o f € (X, X;), there exists )\Z(f) € C such that:

v of = )\(f)qﬁfl

So By generates (X, Y). It is quite easy to see that it is linearly independent. In fact,

n1
Z A\;U; © (bl._l =0
i=1

Composing on the left by vg-, we obtain /\j‘f)j_l = 0 which implies A\; = 0. We
conclude repeating this argument for every j € {1,...,n;}. Now, By is a basis and
can be proved in the same way. Since |B;| = | Bz|, we get the result. O

Now we can prove Prop.2.2.2:

Proof. Let X be a simple object and F(X) := CP(X), F is extended on the other
objects in the following way:

F(Y):= @ X, Y)® F(X)
XeVv
F' has to map morphisms f € (Y7,Y32) to morphisms F(f) € (F(Y71), F(Y2)).
Because of linearity, F'(f) needs only to be defined on simple tensor products in
(X,Y1) ® F(X). We define:

F(f)lgoz)=fog®x (2.2.2)

where g € (X,Y1) and x € F(X). Now we want to prove that F' is faithful. Let
F(f1) be equal to F'(f2). This implies that f; o g = f3 o g for all X simple object
and for all g € (X,Y7). Since Y7 = €, X, then:

idy, = Z v; 0 V]
i
as in the previous lemma, where v; € (X;,Y7) and v} € (Y1, X;). So:

fi=froidy, =) (fiov)ovi = (faov)ovj=fa

Next we prove that F'(Y) = F(Y)* = F(Y'). We need some preliminary facts. First
of all, we have:

(X,))2(C,Y®X)~ (Y, X)2(X,Y)"

using rigidity and the previous lemma. More precisely, ® : (X,Y) — (C,Y ® X)
such that:
O(f) = f @ idy oFy
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is an isomorphism, where f € (X,Y). The inverse map of ® is:

®~!(g) =idy @rlog @ idg

X). Finally, if
have the same

As a consequence, X is also a simple object, since (X, X) = (X,
X is a simple object, F(X)* & F(X) = F(X) because X and X
dimension. So:

V)=) X,V)eFX) =) X.V)®FX)=

X X
=N (X,Y) @ F(X)" 2 F(Y)
X

Now, let X; and X5 be two simple objects. We choose an arbitrary epimorphism:

Ex,x, : F(X1) ® F(X3) = F(X1 ® X2) = @ (X, X1 ® X3) ® F(X)
Xev

It is always possible to find such morphism thanks to the property (2.2.1) of the weak
dimension function D. Now, we want to extend F to every object of €. Therefore we
define ey, v, : FI(Y1) ® F(Y2) — F (Y1 ® Y3), or, in other terms:

evL.Ys EB(Xl,Yl)Q?F(Xl) ® GB(X27Y2)®F(X2) =

X1€eV XoeV
= P X)) F(X)e (X, Y2) ® F(Xa) - @B (X, V1 ©Ys) ® F(X)
X1,X2€V Xev
in the following way:
eviy, : P (T ®@id) o (id®id®Ex, x,) 0id 9L ®id (2.2.3)
X1,X2

where I' is a map from (X1,Y7) ® (X2,Y2) ® (X, X7 ® X3) to (X,Y7 ® Y3) such
that:

L(fi®fa®g):=(fi®f)oy
We need to prove that, given f; € (Y,,Y) 1 = 1,2, we have:
F(fi® f2) oeviy, = ey 3 0 (F(f1) © F(f2))

We introduce the following vectors v; € F(Y;), where i = 1,2:

ya

Z;eV

with (%) € F(Z;) and g'%) € (Z;,Y;). Using the notation:

#0580 = B
EZLZQ (‘T qZ1 Za ® le 122
BeV
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we get:

5y 3, © (F(f1) © F(f2))(v1 ® v2) =
= eﬁfyé(fl o g(Zl) & QT(ZI) X f2 o g(ZQ) ® x(Z2)) —

- D (F @id(fi0 g @ fr0 g @ Bz, 7,(z" SC(ZQ)))) =
A1

= @ (fro g ® fro Q(ZQ)) ° qgl,ZQ ® 5551,22 =
Z1,%2,BEV

=F(f1® f2)o P 09 ?)oqf 4015 4 | =
Zl,Zg,BEV

= F(f1 ® f2) o eyy v, (v1 ® v2)

O]

Remark 2.2.4. (a) If C is a C*-category, we look for a forgetful functor F' in the
category of the finite-dimensional Hilbert space Hilb. We wonder if the functor F'
built in the previous proof goes into Hilb and it is *-preserving. It straightforward to
see that F'(X) is a Hilbert space if X is simple. Otherwise, we recall that:

FY)= P X Y)e F(X)
Xev

We can put on (X, Y") the following form:

(f9)=F"ege (X, X)=C

Using the properties of a C*-category it is quite easy to see that it is an inner product.
If (-, -) is the inner product on F'(X):

is the inner product on F'(Y). It remains to prove that F'(f*) = F(f)*. Let f be a
morphism in (Y71, Y2), z,y € F(X) and g, h € (X, Y2):

(hoy, F(f) (gox) = (F(f)(hoy),goz) =
=(foh®@y,gez) = (foh,g)(yz)=

=h*o ffog(y,z)=(h®y ffogoa) =

= (h®y F(f) (g )

(b) The proof of the last Proposition allows us to say that finding a weak quasi tensor
functor means finding a weak dimension functor. Moreover, it is clear that the functor
constructed in the previous proof is not compatible in general with the associativity
costraint as in (1.1.13).

Proposition 2.2.5. If C is a rational, semisimple, rigid, braided tensor category, there

exist weak dimension functions D such that:

DA)=1, D(X)=dim @ Y oX,2)= Y Ny (2.2.4)
Y,Zev Y,ZeV
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Proof.

DOOD(Y) = (Z%) SV = S Vs S NN
s,r S.R s,r,S,R K,N,M

Explicitly,

> O NEyMW =Y dm(N @ X, K)dim(K @Y, M) =
K,N,M K,N,.M

= Zdim (@dim(N@X,K)(K@)Y’M)) _
N,M K
=Y dm(N®X®Y,M)=D(X®Y)

N,M

O]

So, putting together the last Proposition and the last Remark we can state that
every category C of our type can be endowed with a weak quasi tensor functor F' :
€ — Vect.

Now we are ready to introduce the Majid’s reconstruction theorem (see [51], [52],
[53] and [54]) and the generalization made by Haring-Oldenburg. We will consider
the case when C is a *-category. Let Nat(F, F') be the set of natural transformations
of F'. We define:

H=H(C,F)=Nat(F,F) ={h: 0b(€) - Endyect|hx € End(F(X))

and F(f)ohx = hy o F(f)VX,Y € Ob(C),Vf € (X,Y)}
Proposition 2.2.6. H is a (braided) quasi Hopf algebra if F' is a (braided) quasi
tensor functor.

Proof. H is a vector space by pointwise addition. The multiplication is also point-
wise:

(hg)x = hx o gx , where X € Ob(C), h,g € H (2.2.5)

The unit is the natural transformation which send X to id x. The coproduct is defined
in the following way:

A(h)xy = exy o hxoy cexy (2.2.6)
A is compatible with multiplication:

(AR)A(g)xy =A(h)xy o Alg)xy =
= 6;(’1}/ o hX®y oexy © 6;(71Y 0 gx®Yy CEXy =

= exly © hxey © gxey o exy = A(hg)x,y
The counitis € : H — C, where £(h) = hy:

((d®e)A(h)x = (ha) @ hy,)x = A(h)x1 =

—1
=eyj°hxgroex1 =hx
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The associator ® € H ® H ® H is defined in the following way:

Oxyz = (id ®65_/,IZ) ° 6;(,1Y®Z o Flaxy,z)oexgyzo(exy ®id)  (2.2.7)
If I is a tensor functor, ®x y 7 is trivial because of (1.1.13). If F'is a quasi tensor
functor, we have that ® x y, 7 is invertible with inverse:

(I);(,ly,z = (e;c,ly ®id) o e;((ng,Z o F(%?}Y,z) oexygz o (id®ey,z)
Moreover, we want to prove that:
(@1 (Id®AA)xy,z = (A@id(AMR) ) xyz

In fact:

(@ (i d@A(AR)x,y.z =
=) ;o (exyezo (id®eyz)) ! o hxgyez) o exyez o ([d®ey,z) =
= (6},13/ ®id) o 6}@42 o F(a},ly,z) o hxg(vez) ©ex,yez o (id®ey,z)
On the other side:
(A@idAM)® )xyz =
= (exy ®id) o expy 5 0 hixey)ez © exav.z o (exy ®id) o DYy, =
= (exy ®id) 0 exgy 7 © hxov)az © Flaxly z) o exyez o (id @ey, )
We can conclude proving that F(a)_(}K 7) ° hxervez) = hixeviez © F(a)_(jlx 2)-

But it is immediate because of naturality of . Now we want to prove the cocycle
relation on ®. The LHS is:

LHS = id ®id ®eyyy 0 id ®ey yamw © €xly o zow) © Flax,y,zew)o
oexgy,zew o ex,y ®id®idoid®id®ezw o eyy ®id®idoid ®id ®ey 0
o 6;(1®Y,Z®W o Flaxgy,zw)© e(XQY)QZ,W © XY,z & idoexy ®id ®id
while the RHS is:
RHS = id ®id ®e,}y 0 id @ey Yoy 0 id @F (ay,zw) © id Qeygzwo
0id@ey,z ®idoid ®eyy ®idoid ®eyg, yw © €x(yazew®
o F<aX7Y®Z,W) (e} 6X®(Y®Z),W o eX,Y(X)Z X ld o ld ®€Y’Z X ld e} ld ®€;71Z ® ld (e}
o e)_(}Y@)Z ®id OF(aX7yjz) ®id cexwy,z ® id ocexy & d®id
Simplifying both expressions, we get:
LHS =id®id ®6§71W oid ®6;/,1Z®W o e;(,l},@(Z@W) o Fax,y,zew)o
o Flaxgy,zw) © €(xey)oz,w © exey,z ®idoeyy ®id®id
and:
RHS =id®id ®6271W oid ®e{,}Z®W oid®@F(ay zw) o 6;(,1(Y®Z)®WO

o F(aX,Y®Z,W) Cexe(yez),w © F(ax,yjz) ® id CEXQY,Z ® id ocexy ®id ®1id
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Now, using the naturality of e in the RHS expression, we have:

RHS = id ®id ®e,y;, 0 id ©ey o © €X'y g zaw) © id OF (ay,zw)o
e} F(aX,Y(X)Z,W) o F(aX’y,Z) ® id Oe(X(X)Y)@Z,W CexXRY,Z ®id oeXY ®id ®id

At this stage, we can conclude using the pentagon relation on a. The question of the
antipode will be treated afterwards.
Now we want to prove the existence of a R-matrix R in H ® H. We define:

Rx,y = e} pov) 0 ev'x 0 Flexy) oexy (2.2.8)
We prove that:
(RA(MR Y)xy = A%(h)xy
We have:
_ -1 _
(RAMWR Y)xy = i) rv) © eyix © Flexy) o exyo
oexly © hxay oexy oexly o Flexy) " oeyx o i py) =
—1 _ —
= cp).F(v) © ey © Flexy) o hxgy o Flexy) ™! o ey x o (%) pv)

Using naturality of h, we obtain:

(RA(h)R )xy = CXQ(%,IF(Y) o ey'x 0 hyex o eyx o (¥ piy) = A%P(h)xy

Next we prove that R satisfies (1.2.17) and (1.2.18). We prove the first of the two
identities. The other one will follow similarly. On one side we have:

. -1 . -1 .
(A®id(R))xy = exy ® idoX¥q g0 €7 xoy © F(exgy.z) ocexey,zoexy ®id
and on the other side:
-1
(P3120 Riz 0 (P132) 0 Raz o P)xy,z =
=Y120id ®€;(’1Y o 62,1X®Y oF(azxy)oezoxy cezx ®@ido
oeyy ®idoF(cx z) ®idoex z ®idoey!, ®idoexl , 0
OF(a;(’lzyy) o ex,ZRy © id Xezy o id ®62,1Y oid ®F(Cy7z> oid Xey,zo
oid ®e{,}Z o e;{}yg)z oFlaxyz)oexgyzoexy ®id
Using the right invertibility of e we obtain:
-1
(P3120 Riz30 (P132) 0 Raz o ®)xy,z =
-1 . —1
=exy ®@idoXipoe, oy 0 Flazxy)oezax,yo
. —1 —1
oF'(cx,7z) ®id Cxezy © F(aX,Z,y) 0€X,ZRYO°
. -1 .
oid ®F(Cy7z) °€xygz° F(aX7y7z> cexgy,zoexy ® id

At this point we can conclude using the naturality of e and the identity (1.1.4) invol-
ving a and c. 0

Lemma 2.2.7. If F' is a (braided) weak quasi tensor functor then H is a (braided)
weak quasi Hopf algebra.
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Proof. Let I be the natural transformation such that Ix = idx VX € Ob(C). Itis
quite easy to see that:

A(Nxy =exyoexy
Remember that ex y o e}}y =idp(xgy) and e}}y oexy # idpx)gr(y)- Now we
are ready to prove that H is a weak quasi Hopf algebra:
(id®e ®id(®))xy =
= (idx ®€1_7%/) o e)_(’ll@, oFlaxiy)cexgly cexi®idy =
= e;{}y ocexy =AI)xy

Next:

—1 _ -1 —1 Vect Vect ™! -1 _
(R R)xy = €xy © F(CX,Y) CCy.X OCp(x) F(Y)°Cr(X),F(Y)°Cyx° Flexy)oexy =

= e)_(’ly ocexy =A)xy
Similarly we get:
Pxlyz 0 Pxyz =
= (exy ®idz) 0 expy 4 © Flayy ;) oexyez o (idx ®ey,z)o
ofidx ®ey ) 0 ex'y oz 0 Flaxy.z) o exay.z o (exy ®idz) =
= (e)_(,ly ®idy) o e;(gy’z cexpy,z o (exy ®idz) =
= (ex'y ®idz) o A(I)xgy.z o (exy ®idy) =
= (A®id(A(])))x,v.z
In the same way we can prove that (I);(,IY,Z olyyz = (1d®A(A)))xy 2 O

Lemma 2.2.8. If F is a (braided) weak tensor functor, then H is a (braided) weak
Hopf algebra.

Proof. We defined the associator ® in the following way:
Oxyz = ([d®eyy) 0 exlygy 0 Flaxy.z) o exeyz o (exy @id)
Looking back at the Theorem 1.4.17, we have:
Flaxy,z) = exyez o idpx) ®ey,z o e;(,ly ®idp(z) Oe;(éaY,Z
Using this identity in the defining expression of ®, we get:
¢ = (idp(x) ®6§,1Z) o 63(,11/@2 oex,ygz © (idp(x) ®ey,z)o

o(exly ®idp(z)) © €xpy 7 © €xoy.z © (exy ®idp(z)) =
= ([d®A(A()))(A ®id(A(])))

In a similar way we can prove the assertion concerning ®~!. Since ® and ®~! are de-
fined as in 2.2.6, they automatically satisfy all the conditions in order to be an associa-
tor and its inverse, respectively. As a consequence, the idempotents P», P3, Q3, Py, Q4
defined as in (1.2.28) must enjoy the relations (1.2.29), (1.2.30) and (1.2.31). ]

Lemma 2.2.9. The vector spaces F(X) are representation spaces of H. The functor
G : C — Rep(H) is a braided tensor functor.
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Proof. Let px : H — End(F(X)) be the representation such that:
px(h)=hx he H

It is straightforward to prove that px is a representation of H. This induces a functor
G : € — Rep(H)suchthat G(X) = F(X)and G(X)®G(Y) = A()x vy (F(X)®
F(Y)). In addition, we put G(f) = F(f), so G(f) is an intertwiner:

G(f)epx(h) =F(f)ohx =hy o F(f)=py(h)oG(f)

We can see that ex y is an isomorphism between G(X) ® G(Y) and G(X ® Y).
In fact, being A(I)x,y (v ® w) an element in G(X) ® G(Y'), and using the identity
AD)xy = e;(ly o ex,y, we obtain:

exy cexy(A)xy (v @w)) = exly ocexy o (exy oexy(v@w)) =
= (exy o (exy oexly) oexy)(v@w) = exly cexy(v@w) = A(l)xy (v @ w)

Moreover, the definitions of ® and R in H allow us to state that G is a braided tensor
functor. O

Lemma 2.2.10. Ser X, Y € Ob(C) and h € H. If X and Y are isomorphic, then
hx is determined uniquely by hy. If C is semisimple, then h € H is determined by
its values on V.

Proof. The first statement is a direct consequence of the naturality of h. Next, we
assume that € is semisimple, so every object is isomorphic to the direct sum of simple
objects. Therefore, it is sufficient to define h on the direct sums of simple objects.
It remains to prove that it is determined by its values on V. Consider €D, X;, where
X; € V. We have morphisms p; € (@, X;, X;) and ¢; € (X;, @, X;), such that:

Y giop; =idgx,
J
Naturality implies that:
F(pj) o hgyx, = hx, o F(p;)
Hence:
hex, =F D aiopi| ohgx, = Flg5) o F(pj) o hgx, =
J J
=Y F(g;) o hx; o F(p))

J

Lemma 2.2.11. There exists an algebra isomorphism:

Y : H— @) End(F(X;)) (2.2.9)
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Proof. We define v in the following way:
Y(h) = @ hx;

It is easy to see that it is an algebra isomorphism. We need to prove that it is injective
and surjective. If ¢)(h) = 0, then hx, = 0 VX; € V. Let X be an object in C. If ¢ is
an isomorphism in (X, € X;) and pj, ¢; as in the proof of the previous lemma, we
define:

S5 :pjogpandtj :¢,1Oqj
with s; € (X, X;) and t; € (X, X). Itis an easy computation to see that:

Sj Otj = lde and Ztl o S8; = ldX

(2

Proceeding as in the proof of the last lemma, we have:

hX:ZF(tj)OhXjOF(Sj):O
J

We need to prove surjectivity of ¢. Given b; € End(F(X;)) where X; € V, and
X € Ob(C), we define bx € End(F (X)) in the following way:

bX :ZF(tj)objoF(Sj)
J

where s; € (X,X;) and t; € (X;,X) are as before, and X = @, ¢ X;. The

definition of bx does not depend on the choice of s, ;. In fact, let s}, ¢’ be with the

same features of s; and ¢;. We define:
bx =Y F(t;)objo F(s})
J

Moreover:

sioth =0\ idx, and s} o t; = 6; ;A% idy,

where )\5-1), )\5-2) e C. So:

—~ —1 -1
F(S;) obx o F(t;) =b; = /\5-1) )\5-2) F(sg) obx o F(t;) = F(s;) obx o F(t;)

) _ 1.

In the next calculation we explain why AEDA ¥

(12
AjTA

J

:sjo <Zt2082) Otj:SjOtj:ide

h

idx; :sjot;»os;-otj:

It is quite obvious that:

F(s}) obx o F(t) = 0= F(s}) o bx o F(t})
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Putting everything together we get:

bx = ZF 3 o&o(ZFt;{ oF(S%))z
:ZF(t;)o(F( oonFtk>oF

:ZF(t;)o(F( )obx o F(t,)) o F(s),
j,k

ZF(t;-)oF(sg») obx o (ZF(t%)OF(S%)) =bx
J k

It remains to show the naturality of b. Let f be an arrow in (X,Y), s5; € (Y, X;) and
€ (X}, Y) with the same properties of s;, ¢; such that by = F(t;)ob;o F(5;).
Then:

(f)obX—ZF ot;)ob;o F(s;) = ZF 0550 fot;)ob;oF(s;)

Since 550 fot; € (X;, Xj), itis a scalar multiple of idx, if X; =2 X, or 0 otherwise.
So:

obX_ZF JobjoF(sjofotjos;) =

_ZF Ob oF( Of (Ztiosi)):

%

_ZFtJ JobjoF(sj0f)=0byoF(f)

J

Lemma 2.2.12. F and G are essentially surjective and full.

Proof. Tt is a well-known result that if A is an algebra isomorphic to the direct sum
of End(V;), where V; are vector spaces, then all the irreducible representations are
equivalent to p; : A — End(V;), and p;, p; are equivalent iff i = j. So, using the
previous lemma, we can state that every irreducible representation V' is isomorphic
to F'(X;) for some i as object in Rep(H ). Since Rep(H) is semisimple, W as
representation of H is isomorphic to the direct sum of F'(X;). Now we prove that F’
and G are full. Since F'(X;) is an irreducible representation, we have:

(F(X3), F(X;)) = {0}
End(F(X;)) = Cidp(x,)

Now, let f be an arrow in (F(X), F(Y)). We use the map s; € (X, X;), t; €
(X5, X), st € (Y, X;), t; € (X;,Y), introduced in the proof of the previous lemma.
We have F'(s}) o f o F(t;) € End(F(X;)), where X; is a simple object appearing in
the decomposition of X. So there exists a A\; € C such that:

F(S;) ofo F(tj) = 5i,j)\i idF(Xi)
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Composing on the left by F'(t}), on the right by F'(s;) and summing up on  and j we
get:

ZF o f o F(tj) o F(s;) ZSHAF )o F(sj) =

<ZFt’oF ) ZF ) o F(s5) Z)\F )o F(s;) =
:>f:F<Z)\it;osi>

O]

Lemma 2.2.13. Faithfulness of F implies that inequivalent objects yield inequivalent
representations.

Proof. Assume X and Y to be inequivalent object and F'(X) = F(Y), and call
¢ : F(X) — F(Y) an isomorphism. Since F'is full and F'(idx) = idp(x, we have
that o = F(f) and o~ = F(g) such that:

F(f)o F(g9) =idpy) = F(fog) = F(idy)

Using again the faithfulness of F' we get that f o ¢ = idy. Similarly we obtain
go f =idx. O

Lemma 2.2.14. If C is a *-category and F' a rigid and *-preserving functor, then H
is a weak quasi Hopf *-algebra. If C is a C*-category, H is a C*-algebra.

Proof. We define the involution on H in the following way:
(h")x = (hx)"

It is straightforward to prove that it is an involutive anti-linear map on H as an alge-

bra. Moreover, £(h*) = (h) since:

e(h*) = (h*)1 = (h1)" = ha = ¢(h)

We need to prove the existence of an invertible self-adjoint element 2 € H ® H such
that:

A(R)* = QAR (2.2.10)
(@ H* = (I 2Q)(dRAQ)P(ARidQ ) Q el (2.2.11)
e®id(Q) = I = id®e(Q) (2.2.12)

We set {lx y = ey y o ex,y. Self-adjointness is obvious. The inverse element of {2
is:
-1 _ -1 -1
Q7 =exyoexy
So:

*

QO ' =eXyo %{,Yﬁl = (6}}y oexy) =A)xy

Q0= 6)_(713/ oexy = A(I)Xg/
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Now we prove (2.2.10):

A(h)*x,y = (A(h)xy)" = 6§(,Y ohxgy © 6;(,1}/* =
= eﬁ(,y oex)y o 6)_(,11/ o(h*)xgy oexy o e)_(,lY ° e)_(,lY* =

= (exyoexy) o A )xy o (exy oexly)

The next calculation allows us to prove (2.2.11):

o7 = idx ®ez 0 ek yez o Flayly ;) oexby, oexly ®idz=
= (I ©@ Q)([d®A(Q)) oidx ®eyy 0 exlygy F(a;(,ly,z*)o
oexgyzoidx ®eyzo (A®idQ)N)Q T ®I) =
= (I ® Q)(IdA(Q)) cidx Qeyy 0 ex'y g, 0 Flaxy,z)o
oexgyzoidx ®eyzo (A@id Q) Q' al) =
= (I ®Q)(Id@A(Q)P(A ®id(Q H)(Q e 1)

while (2.2.12) is immediate. Suppose now that C is a C*-category. We want to prove
that H is a C*-algebra. We put the following norm on H:

2 2
A2 =" [lhx, |
X;eV

The definition does not depend on the choice of the X; in the isomorphism classes.
Completeness is a consequence of the completeness of End(F'(X;)) as C*-algebras.
Subadditivity is a consequence of the Cauchy-Schwartz inequality, while submulti-
plicativity is straightforward to prove. If ||| = 0, then hy, = 0 VX; € V. So, for
what we said in Lemma 2.2.10, h = 0. Finally, the C*-property is a direct conse-
quence of the fact that [|-||, is a C*-norm on End(F'(X;)). Finally, we must prove
that 2 and R satisfy the following relation:

—_1*
QuR=R1Q
On the left hand side, we have:
-1
Yo(eyxoeyx)oeyyoF(exy)oexy =
—1
=Yoeyyo(eyvxoeyy)oF(exy)oexy =
=YoeyxolF(exy)oexy
On the right hand side, we have:
1 *
YoeyxoF(exy)oeyy olexyoexy)=
—1 *
=XoeyxoF(exy)ol(exy oexy)oexy =
=YoeyyoF(exy)oexy
O

Remark 2.2.15. We introduce the antipode on H. Since € and F’ are rigid, for every
object X there exists a conjugate object X, and a natural isomorphism:

dy : F(X) — F(X)
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We use it in the definition of the antipode:
(S(h))x = d¥ o h¥%ody ™ (22.13)

where V' : Vect — Vect is a functor which sends V into V.= V*, and f € (U,V)
into the dual map fV € (V,U), transpose arrow in Vect of f € (U, V). It is an easy
calculation to see that:

fllev)=pvof
In fact, Vect is a rigid tensor category with the following maps:
53, : V*®V — C such that 5;@0 ®v) = ¢(v)
dy : C =V ® V* such that 6y (1) = Zei R e}
i

Therefore:

FV(pv) = 81, @ idy(idy- ©f @ idy- (idy- @0y (pv))) =
=6, @ idy (idy- ©f © idy-(py © ¢ @ €f)) =
=0} (ov ® f(en) ® €] = pv(f(er)ef =
= (pv o flei))e; =¢vo f

Since € is a *-category, it is possible to rewrite S. In fact, let Jyy : V — V be the
map which sends v into v = (v, ). If f € (U, V), f* € (V,U) and:

fr=JtofVoldy (2.2.14)
This is a consequence of the following calculation:
(gt o £ o J)(w) = I (Y @) = I (Y ((0,)) =
= Ji (v, fO)) = I (F* (), ) = I (F(0) = f*(v)
Hence, if € is a *-category, the antipode becomes:
S(h)x = JE(lX) ody' o (hx)* odx o Jp(x) (2.2.15)
since:
d% oh¥%ody ' =
-1 * —1 * -1 —1
= (JF(X) ody o Jm) o (JiF(X) o h¥ o m) o (JF(Y) ody o Jpix)) =
= Jg(lX) o d;(l o(hx)"odx o Jr(x)
Finally, the dual representation V is given by:
mx(h) = 7x(S(h))"
Using (2.2.14) the dual representation becomes:
mx(h) = Jp(x) o mx (S(h)* o Tl
and, more explicitly:
(W) (®) = Jp(x) 0 mx (S(h)" 0 Ty (0) =
= Jr(x) © (JE(l)() ody!ohgodx o Jrx)) © Jf:(l)()@) -
= dy' o hy o dx(7)

Finally it is easy to see that S commutes with *.
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Lemma 2.2.16. Rep(H) is rigid, and S defined in the Remark 2.2.15 is an antipode.

Proof. Suppose that r' and 7 are the conjugate maps in €. We will prove that Rep(H )
is rigid with the following conjugate maps:

pl=F(rf)oeg odx ®id (2.2.16)
p=idedy' o e}% o F(F) (2.2.17)

The first step is to prove that p’ and 7 are morphisms:
PT ° A(h)fg( =
= F(rT) oex y© dx ® idoal;(1 ® idoe%%x °hgex © €x x © dx ®idx =

= F(’]“T) OhY®X oeY,X OdX ®1d:
=h1o F(rf) oex y odx ®id = &(h)p!

and:
Alh)xxop=
=id ®d)_(1 o A(h)x x oid®dx oid ®d}1 o e;(’ly o F(T) =

(
= id ®dy oA(h)Xyoe;{lyoF(
< © F(

(

)

)
=id®dy oeXYth@XoeXXoeX1 oF(T) =
= id @d " oey foh ox © F(7)

=id®dy oe XfoF() o hy = pe(h)

Next, we want to prove that pT and p satisfy the conjugate equations. We will prove
only one of the two equations. The other will follow similarly.
T =1 7o —
Pl ®ido® " oid ®p =
= F(r') ® idoeg y ®idodx ® id®idody' ® id ®dy'o
OBYX ®1doeX®XX oF(a XXX) °ex xoX oidy ®ex x°
ody ®id ®@dy oid ®id ®@dy" oid®e f01d®F( ) =
=FirHe idoid®id ®dy* o eY@XX o F(a XIXX)O
oty xex ©dx ®id®idoid ®F(T) =
=dy o F(rl ®id oagx’Y 0id ®F) o dx = id
In order to prove the properties of the antipode, it is sufficient to find v and 3 such
that:

pl(T@y) = (z,ay) and p(1 Zﬁez Qe
where {e;}7_, is a basis of F'(X). It is straightforward to see that:

o= (id®p') o (5 ®id) (2.2.18)
B =(idad") o (7 ®id) (2.2.19)
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where 61 : F(X) ® F(X) — C is such that:

@ wy) = (z,9)
and§ : C — F(X)® F(X) is such that:
. n
(1) =) ea
i=1
At this stage, proving that S is an antipode is straightforward, and it is merely a
consequence of Prop. 1.4.10. O

Summing up all the results, we can state:

Theorem 2.2.17. Let C be a rational semisimple braided rigid tensor category, and
F : € — Vect a weak quasi tensor functor. Then:

(a) H = Nat(F) is a f.d. weak quasi Hopf algebra;

(b) there is a functor G : C — Rep(H) such that F = V o G, where V :
Rep(H) — Vect is the forgetful functor. G is full and essentially surjec-
tive. If F is faithful, G is faithful and maps inequivalent objects to inequivalent
objects;

(c¢) CandRep(H) are equivalent braided tensor categories;
(d) if F is faithful, Rep(H ) is rigid;

(e) if Cis a *-category and F is rigid and *-preserving, then H is a weak quasi
Hopf *-algebra. If C is a C*-category, H is a C*-algebra;

(f) if F is a tensor functor, H is a Hopf algebra;
(g) If F'is a quasi tensor functor, H is a quasi Hopf algebra;

(h) If F' is a weak tensor functor, H is a weak Hopf algebra.

Before concluding the chapter, we say something about the uniqueness of the
construction. The reconstruction of H we have presented is highly non-unique. In
fact, changing the weak dimension function we obtain a different weak quasi tensor
functor F'. Moreover, we can have two different weak quasi tensor functors with the
same weak dimension function, because they can differ in the choice of the epimor-
phisms.

Proposition 2.2.18. Let G, G : € — Vect be two different faithful weak quasi tensor
functors constructed by the same weak dimension function. Then the reconstructed
weak quasi Hopf algebras H and H are equal up to twist equivalence.
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Proof. Since G and G share the same weak dimension function, there exists a natural
isomorphism ¢ such that:

EX)Y = PXoY ©ex)y

We can see that H = H r, where F' € H ® H is such that Fly y = e;(ly o gp}}g)y o
ex,y. Itis quite easy to see that F' € H ® H. We don’t check every calculation. For

example,
A(h)xy = exy o hxey oexy =
= 63{,11/ 0 pxuy ©hxay © Oxgy oexy =
=Fxyo e)_(,ly ohxgy oex,y © F)E}Y =
= Fxy o A(h)xy o Fxy
and:

EX’Y =>Xo fev;’lX e} F(CX’y) o gX7y =
=Xo ex_/,lx © 9017%)( o Fexy)opxey oexy =
:Eoe{,ﬁxogp;é@Xoey,XoEoZo
o 6;3)( o F(C)Qy) oexy © e;(}y o PXRY CeXYy =
= EOFY,X OEORX,Y OF);,IY = (F21RF_1)X,Y



Chapter 3

Quantum groups at roots of unity
and Wenzl’s functor

3.1 Ribbon categories

In this section and in the next one we will give a quick review of the main results
about ribbon categories and ribbon algebras. We refer to [35] for a deeper look. Let
C be a strict rigid braided tensor category, and cy y its braiding.

Proposition 3.1.1. cx y satisfies the following relations:

Cxy =Tk ®idggy oidy ®cyy ® idy oidsgy, ®Fx (.1.1)

cyy = idy ®@idx @rl oidy ®cyy ®idy ofy @ idy ®idy (3.1.2)

Proof. Using the rigidity of C and the naturality of ¢ we have:

Xy y © 7’;{ ®idy ®idy oid% ®Fy ®idy oids ®ci%’ _

CY7
Cxy © r;( ® idy ®idy oidy (X)C;(l@)Y v © idy ®idy ®@Tx

Since CX@Y,Z = CX,z ® idy oidx Key,z then:

-1 i —1
Cxexy = 1dx @cxy

o cxly ®idg
Therefore:
cxy = ®idy ®idy oidy ®idx ®ey 40
oidy ®idx ¥y, oidy ®eyly ®idy oidy @ idy ®7x
The second equality follows in the same way. 0
We are ready to introduce the following:
Definition 3.1.2. (a) A rwist on C is a natural isomorphism fx € (X, X) such that:
Oxsy = (Ox @Oy )cy xcxy and b5 = 0%

(b) A ribbon category is a strict braided rigid tensor category with a twist.

We omit the proof of the next:

57
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Lemma 3.1.3. (a) Given objects X and'Y of C we have:

Oxey = cyxex,y (Ox ® by) = cy,x(fy @ Ox)exy
(b) We also have 07 = id;.
Using the braiding and the twist we define morphisms 5x : C — X ® X and
s& : X ® X — C for any object X of the ribbon category € by:
Sx = (idy@&x)chrX (3.1.3)
ste = rhexx(0x ®idy) (3.1.4)
Now we prove a technical lemma which will be useful afterwards:
Lemma 3.1.4. For any object X of a ribbon category, we have:
0% = (r @ idx) (idg ®cx'y) (cx x7x ®idx) =
= (rkexx ®idx)(idx ®cy x7x) =
= (idx ®reyx) ey © idy) (idx ©7x)
Proof. Ttis sufficient to prove the first equality. The others follow using the naturality

of the braiding. We indicate with f the RHS of the first equality. We want to prove
that:

Tx = (0% f ®idx)Tx (3.1.5)
In fact, using the above expression, we get:
idx = (idx @rk)(Fx @ idx) = (idx @rk) (0% f @ idx)Fx @ idx) = 0% f
Therefore:
0y = f
So, it remains to prove (3.1.5):
Tx =Tx0r = OxoxTx = cx xCx x0x ® OxTx =

= cx x 0y x 0 Ox ®idgoidx @rl ®idgo

oildy ®idy ®0y ® idgoidxy ®id ®Fy oTx =

=Cx x 0Cxx© Ox ®idyoidy ®r} ®idxo

oTx ®idyx ®idgofx ® idgoFx =

=Cxx°Cxx O 93( ®idgoryx =

=7k ®idx ®idgoidy ®cy'y ® idgoidg ®idy ®Fxo0

oCxx o 0% @ idyorx =

=7k ®idx ®idgoidy @cy'y ® idgoidy ®0% ® idx ®idgo

oidg ®idx ®Fx ocy g oTx =

=7k ®idx ®idgoidy ®idx ®0% @ idgoidy @cy'y ® idgo

oldy®idx ®Tx o CxxOTx =

= 0% ®idgor ®idy ®idgoidy ®cy'y ®idgo

oCyx ® idy ®idyory ®idy ®idxorx =
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In the first equality we used 6; = I; in the second one the naturality of the twist; in
the third one the definition of the twist; in the fourth one (1.1.11) and the naturality of
the twist; in the fifth one the naturality of the tensor product; in the sixth one (1.1.11)
again; in the seventh one we used the Prop. 3.1.1; in the eighth and ninth ones the
naturality of the twist; in the tenth one the naturality of the tensor product; in the
eleventh one the definition of f. O

It is possible to introduce the notions of quantum trace and quantum dimension
in a ribbon category.

Definition 3.1.5. Let C be a ribbon category. For any object X in C and any endo-
morphism f of X, we define the quantum trace Tr,(f) of f as the element:

Tro(f) = sk (f @ idg)Tx = riex ¢(0x f @ idg)Fx
of (1,1)

It is quite easy to see that in Vect the above notion of trace coincides with the
usual one. The quantum trace enjoys the usual properties of trace:

Proposition 3.1.6. Given endomorphisms f and g in a ribbon category, we have:
(@) Try(fg) = Try(gf) whenever f and g are composable;

(b) Try(f ® g) = Trq(f) o Try(g);
() Trg(f) = Trqg(f7).

Proof. We will prove the equalities (a) and (c¢). The equality (b) follows using the
same technicalities. Let us start with (a):

try(fg) = r}( ocyxolxfg®@idgoryx =
=rk ocyxolxf@idgoidy ®rk ®idgorx ®idy ®idgog ® idg oFx =
=rl oy oidy ®rk @idgolx f ® idg ®idx ®idgo
oidy ®idy®g ®idyorx ®idx @idgory =
=rk oy oidy @rk @idgoidy ®idy ®g @ idgo
ofxf®idy®idy ®idyory ®idy ®idygory =
= r} o r;( ®idy ®idx oidy ®g ® idy ®idx OCx XX ©X°
ofxf®idy®idyx oidx ®id¢x ®Tx oTx =
=1l 0idy ®g ® idy ®idx oidy ®idy ®@rko
0idy ®Tx ®idgocy g obxf ®@idgory =
=l oidg®gocygolxf@idgory =
=71k ocyxog@idgolxf @idy oFx = Try(gf)
In the first and last equalities we used the definition of the quantum trace; in the
second one (1.1.11); in the third and fourth ones the naturality of the tensor product;
in the fifth one the naturality of the braiding; in the sixth one the naturality of the

tensor product and of the braiding; in the seventh one (1.1.11); in the eighth one the
naturality of the braiding again.
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We pass to (c):
Try(fY) = T%o <.x© Hyfv ®idx ofy =
ocx x 00k f' @idxory =
ocx.x o (fOx)' ®@idx org =

ocx y 0Tk ®idg ®idy oidy @fx f ® idg ®idy oidy @Tx ® idx oF g =

o ldy RTx ®idx ory =
=rlorl ®idx ®idgoidy ®0x f @idy @idgoidy @idx @rl ®idx ®idgo
oldg ®idx ®idy ®cy'y ®idgoidy ®idx ®idg ®idx @Fx o idg ®Tx © idx oFg =
=rlork ®idx ®idgoidg ®@bx f ® idy ®idgo
0idg ®ck'y ®idxg oidg ®idx &Fx o Tx =
= 7l oidy @0x f o idg ®@idx @rl o idy ®cxly @ idy oFx @ idx @ idx oFx =
= T;( oidg®Oxfocyxorx =
=rk oy ofxf @idgorx = Try(f)

in the first equality and last equalities we used the definition of the trace; in the second

one the definition of the twist; in the third one the antimultiplicativity of the transpose;

in the fourth one the definition of transpose map; in the fifth one the naturality of the

braiding and of the tensor product; in the sixth one the first identity in the Prop. 3.1.1;

in the seventh and eighth ones the naturality of the tensor product; in the ninth one the

second identity of the Prop. 3.1.1; in the tenth one the naturality of the braiding. [

We can derive the notion of dimension from the trace:

Definition 3.1.7. Let C be a ribbon category. For any object X of C we define the
quantum dimension dim,(X) as the element:

dimy(X) = Tr,(idx) = s o7x
in (1,1).
As a consequence of the Prop. 3.1.6, we have:
Corollary 3.1.8. Let X,Y be objects of a ribbon category. Then:

dimgy (X ® Y) = dimg(X) dimy(Y) and dimy(X) = dim,(X)

3.2 Ribbon algebras

Let A be a braided Hopf algebra [67]. For our purpose, we can see it as a braided
weak quasi Hopf algebra with a coassociative and counital coproduct. We use the
following notation:

R=Ya;®b and R™' =) @ ®b;
i i
We consider the element u € A given by:

u=>_ Sbia; (3.2.1)
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Proposition 3.2.1. The element u defined as in (3.2.1) is invertible with inverse given
by:
=Y "5 (b)a (3.2.2)
i

and for all a € A we have:
S5%(a) = uau™? (3.2.3)

Proof. We first show that S?(a)u = ua foralla € A. Ify € A ® A, we have the
identity:
(A’ @id(y))(R® 1) = (R®I)(A®id(y))

in A® A® A. When y = A(a) for some a € A, we have:

D apa @anybi @ ag) = Y aiag) @ biag) © ag)

% %

Now, let V' be the linear map m o m ® id 0id ®5 ® S? from A ® A ® A to A, where
S is the antipode on A. We apply V to the previous identity, obtaining:

ZSQ a(l) ZSQ )S(bz)aza(l)

Using the well-known properties of the antipode for a coassociative Hopf algebra, it
is straightforward to get S(a)u on the left hand side, and ua on the right hand side.
It remains to show that  is invertible. We set v = >, S~1(b;)a;. Then:

Uv = Zqul ZS Jua;

using that S?(a)u = ua. As a consequence,

UU—ZS Yua; = ZS i)aia; =
m(S® 1d(R21R21 ) = (S idI 1)) =1

In the same way, vu = 1. O

Corollary 3.2.2. We have that S(u)u = uS(u). Moreover, this element is central in
A.

Proof. Using the last proposition, we have uS~!(a) = S(a)u. Applying S to both
sides of the last expression, we get:

aS(u) = S(u)S*(a) = S(u)uau™!

and therefore a.S(u)u = S(u)ua. This proves that S(u)u is central in A. Moreover,
if we take ¢ = w in the equality:

aS(u) = S(u)uau™"
we obtain uS(u) = S(u)u. O

It is possible to prove that u satisfies some additional relations.
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Proposition 3.2.3. The element u satisfies the following identities:

e(w) =1, A(u) = (RuR) " (u®@u) = (u@u)(RnR)™
A(S(u) = (R21R) H(S(w) @ S(u) = (S(u) ® S(u)) (R R) ™
A(uS(u)) = (Ra1R)"*(uS(u) @ uS(u)) = (uS(u) @ uS(u)) (R R)

Before proving the Proposition we need to prove the following result about braided
Hopf algebras:

Proposition 3.2.4. Let A be a braided Hopf algebra:
(a) The R-matrix R satisfies the equation:

RiaR13R23 = Ro3Ri3 R (3.2.4)

and we have:
(e®id(R)) = I = (id®e(R)) (3.2.5)

(b) If the antipode S is invertible, then:

(S®id(R)) = R™! = (id®S(R)) (3.2.6)
(S®S(R)) =R (3.2.7)

Proof. (a) Using (1.2.17) and (1.2.18) in the coassociative and counital case we get:

Ri2R13R23 = R12(A ®id(R)) = (A’ ® id(R))R12 =
— %Y ®id(A ®id(R))E ©id Ris =
=YX R® id(ngRgg)E ® id R12 = RogR13R12

Next,
R=(:®id®id(A ®id(R))) = (e ® id®id(Ri3Ra3)) = I ® (¢ @ id(R)) - R

Since R is invertible, we obtain ¢ ® id(R) = I. Similarly for the other side.
(b) Using (a) we obtain:

(m®id(S®id®id(A®id(R)))) = (e ®id(R)) =1
As a consequence:

I=(m®id(S ®id®id(Ri3R23))) = (S®id(R))R
using the unitality of .S. Since R is invertible:

(S®id(R)) = R!
Proceeding similarly in the opposite braided Hopf algebra we get:
(id®S H(R)) = R™!

Finally, we have:

(S® S(R)) = (id®S(S ®id(R))) = (id®S(R™1))
= ([d®S(id®S1(R))) = (id®id(R))

R
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At this point we can prove the Prop. 3.2.3:

Proof.

e(u) = e(Sbi))e(a) =D e(bi)e(as) = e (e(ai)bi) = T

i i
Next we compute A(w). It is quite easy to see that, for all a € A:
A(Q)RglR = RglRA(a)
Since R R is invertible, it is enough to show that A(u)Ro1 R = u ® u:

A(u)RorR =" A(S(1:))A(a;) Ry R =
=Y (S ®S(AP(b:))A(a;) R R =
= Z(S ® S(AOP(bz)))RglRA(al)

Now we define the action of the algebra A% on A ® A on the right by:
(ot)- (QeT)=(5S25(T))(¢t)Q
where ¢,t € Aand Q,T € A ® A. We can rewrite the previous equalities as:
A(u)Ro1 R = Ry - RA(a;) @ AP(b;) = Ro1 - (R I @ 1)(A®AP(R)))
Since id ® A(R) = Rj13R12, we have id ® A°P(R) = Ri2R13, so:
ARAP(R) = A®id ®id(id ®A°P(R)) = A®id ®id(R12R13) = R13Re3R14R24

Hence:
A(u)R21R = Rg1 - Ri1aR13R23R14Ro4

Using (a) of the last proposition we get:
A(u)R21 R = Ra1 - RogRi3R12R14Roy
Now we calculate the expression above. Using (b) of the last proposition we get:

Ry~ Roz =) S(bj)bi ® aja; = (S @id(Y_ 57" (bi)bj ® aiay)) =
i i

= (S®id(Ry Ro1)) = S@idI® 1) =1®1

Hence,
Ro1 - RogRi3 =1®1 - Ry ZZS(bi)ai@)I:u@I
Next,
Ro1 - RosRi3Ri12 = (u®1I)- Ria=(u®I)R
and:

R21 . R23R13R12R14 = (U &® I)(Z aiaj X S(bj)bz> =
i,J
= (e )[ideS>_ aia; ® S (bi)b;)) =
1,
=wa)(ideS(R'R)=uxT
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Finally:
Ro1 - RosR13R19R14Roy = (u &® I) - Roy = (u & I)(I ® u) =UuUQuU

The formula involving A(S(u)) is a consequence of the formula for A(u) and the
anticomultiplicativity relation. The formula for A(uS(u)) can be obtained putting
together the formulas for A(u) and A(S(w)) and using the centrality of uS(u). [

At this stage we are able to give the following:

Definition 3.2.5. A braided Hopf algebra A is a ribbon algebra if there exists a central
element 6 € A satisfying the relations:

A(0) = (RuR)"'0®6), /) =1, SO) =6 (3.2.8)
We wonder if ribbon algebras produce ribbon categories.

Proposition 3.2.6. Let A be a ribbon algebra. Then the category of finite-dimensional
representations Rep(A) is a ribbon category with twist Ox given by the action by the
inverse of the element 0 introduced in the previous Definition.

Proof. We define the twist 6y, on the vector space V by 0y (v) = 0~ v, wherev € V.
Oy is clearly an A-linear automorphism since #~! is central and invertible. We need
to prove that 8y is actually a twist. We have:

Oy ® HW)CI/V,VCV,W(U QRw) = (971 Y 971)ER2R(U W) =
=0 @0 RuR(v@w) =
=AW Hvew) =yew (v ®w)

Moreover, let v, w be elements in V. Rigidity is given on Rep(A) by the following
maps:

Sy (1) = Zei ® e} and 8, (a ® v) = a(v)
i—1

where {e;}7" ; is a basis of V, {e}}”_, its dual basis, a an element in V*. Of course
V = V*. Therefore, omitting the summation symbol:

(0v)Y () = 8" @ idy- (idy~ @0y @ idy-(idy- ®3(a))) =
= 6" @idy-(idy+ @0y @ idy+(a ® e; ® €f))
=0V @idy-(a®@ 0 le; @el) =
= a(0le)e; = (S0 Ha)(ei)e; =0

O]

Corollary 3.2.7. The central element 0* in a ribbon algebra acts as uS(u) on any
f.d. representation. As a consequence, 0> = uS(u) if A is finite-dimensional.

Proof. Using the last proposition we have that 62 acts as «9‘_,2 on V. Using the Lemma
3.1.4 we have:

02 = (idy ®3}cv,v+)(eyh, ® idy-)(idy @dy)
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We compute the right hand side of the equality, omitting the summation symbol and
using the identity R~! = (S ® id(R)):

(idv ®d} evy)(eyy, @idy+)(idy ®3v)(v
= (idy ®5chv*)(cvv Ridy+)(v®e; Qe
= (idy ®5VCVv*)(CL]61 ® b v ® e;

= (idy ®5V)(S(a])el ® bre; ® apbjv

= e; (S(bg)arbjv)S(a;)e; = S(aj)ubjv = S(a])SQ(b uv

= S(S(bj)aj)uv = S(u)uv = uS(u)v

)=
i)
)
)=

O]

It is quite easy to compute the quantum trace and the quantum dimension on the
representations of a ribbon algebra:

Proposition 3.2.8. Let V be a representation of the ribbon algebra A. Then:

Try(f) = Tr(v = 0 uf(v))
where f € Enda(V). In particular, dim, (V') is the trace of the action of 0 u on V.

Proof.

Try(f) = 0" (ex,x+(Ox f ®idx+(6(1)))) =
ex x+(Ox f@idx«(e;®ef))) =

5
=07(
=6 (ex x+ (07" fe:) ®e})) =
5t
i (

bje ® a] lf(el)) -
e/ (S(bj)a;0~" f(e:)) = ] (0 uf(ei)

which is the trace of the endomorphism v + 6~ u f(v). O

3.3 Quantum groups: definition and R-matrix

In this section we introduce Uy (g). We will mainly follow the presentation of Lusztig
[46], which can also be found in [14] and [81]. Let g be a complex simple Lie algebra,
let h be a Cartan subalgebra and h* its dual space. Let & C h* be the root system
of g. Let (-, -) be the unique inner product on h such that (o, o) = 2 for every short
root a € . Let ® = {& = (C%%‘;ﬂa € @} be the dual root system of ®. Let
A={Neb*|(\a) € Z,Va € ®} be the weight lattice, A, = ZP C A be the root
lattice, and A, = Z® C %A be the dual root lattice. Let W (the Weyl group) be the
group of isometries of h* generated by reflections o, such that:

oa(N) =A==\, &)«
We will most deal with the translated action of the Weyl group, which is defined by:
o A=0(A+p)—p

_ 6]
where p =3 (5.



66 Quantum groups at roots of unity and Wenzl’s functor

Let L be the least integer such that L (\,v) € ZV\,v € A. Let A = {ay,...,an}
be a basis and (a;;) = (o, ;) be the Cartan matrix. & > [ means that « — S is a
nonnegative linear combination of the elements of A. Let At = {\ € A| (\, ;) >
0,Va; € A} be the set of nonnegative integral weights. Let 6 be the longest root, or,
in other words, the unique long root in ® N A™, and let ¢ be the unique short root in
the same intersection.

We consider the complex *-algebra C[z, x 1] of Laurent polynomials with invo-
lution z* = !, and let C(z) be the associated quotient field, endowed with the
involution naturally induced from C[z, x~1]. We consider Drinfeld-Jimbo quantum
group U,(g), i.e. the algebra over C(x) defined by generators E;, Fj, K;, K; ',
i =1,...,r, and relations

K K;=K;K;, KK '=K'K =1,
KEjK ' =zl KK =% By

K — K;'
E;Fj — FSE; = b;; 7906;1‘ — l‘idi’

l—aij l—aij

Z (—]_)kE'(l_aij_k)EjEi(k) —0, Z (_1)kFi(1—aij—k)FjFi(k) =0, i 7& 7

)
0 0

where d; = (a;,a4)/2, and, for k& > 0, Ei(k) = EF/[k]a,)s Fi(k) = FF/[k]a,). We
notice that d; = 1 if oy is a short root and d; = d if «; is a long root, where d is the
ratio of the square lengths of the long and short roots. d = 1 except in the cases B,
C, Fy, where it is equal to 2, and G2 where d = 3. Quantum integers and factorials
are defined in the following way:

xk — m_k

Ko = ——

r—XT

[k]x! = [k]x s [2]95

We will often use the notation: [k]4, := [k|,q;. There is a unique *—involution on
U,(g) making it into a *—algebra over C(x) such that

K;=K;', Ef=F,.

The introduction of an involution * is due to Wenzl [81]. This algebra becomes a
Hopf algebra, i.e. a coassociative coalgebra with coproduct A, counit € and antipode
S. In fact:

AE)=K®E+E&I, A(F)=I1F+F®K;", and AK;) = K; ® K;
S(K;) =K; ', S(E;)— K;'E; and S(F}) = —~FK;

e(Ei) =0=¢(F), e(Ki) =1

Using the above identities it is possible to check that:

A(a*) = A°(a)* (3.3.1)
e(a*) = e(a) (3.3.2)
S(a*) = S(a)* (3.3.3)
S%(a) = K;,'aKa, (3.3.4)
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for all @ € Ug(g). If « is in the root lattice, K, := Kfl ... KFr, where a =
> iy ki Our goal is to construct a braided tensor category starting from U, (g). In
order to achieve this goal, we consider a larger polynomial ring A = (C[a:ﬁ , :zrfﬁ],
with L the smallest positive integer such that L({\, u) € Z for all dominant weights
A, 1. We give the explicit values of L for all Lie types: L = n + 1 if g is of type A,;
L = 1in the cases By, C)y, Eg, Fy and Go; L = 2 in the cases By, 1, Doy, and E7;
L = 3 in the case Eg; L = 4 in the case D2y 1.

(k)We ?}S)ﬁne the integral form Uy as the A-subalgebra generated by the elements

i >/ and K;. It is quite easy to prove that it is a *—invariant Hopf .A—algebra

with the structure inherited from U, (g). U, has not a R-matrix, even topologically,
so we will need to extend it in a suitable way. Before doing it, we introduce Uy (g).

We fix ¢ € T, and consider the *~homomorphism A — C which evaluates every
polynomial in ¢, and form the tensor product *—algebra,

UQ(G) = UA ®.A (Ca

which becomes a complex Hopf algebra with a *—involution. Properties (3.3.1) -
(3.3.4) still hold for Uy(g).

Given a dominant weight A of g, we can associate different modules V) (z),
Va(A), and V\(q) to U,(g), U4 and U,(g) respectively, usually called Weyl mo-
dules, and thus form corresponding representation categories as follows. We shall
mostly be interested in V) (¢) that we will usually denote by V), as well.

Let V\(x) be the irreducible representation of U, (g) with highest weight \ and
let vy, be the highest weight vector of V) (x). We can form the cyclic module of Uy
generated by v)y:

VA(A) = Uy - vy

It is possible to see that:
VA(A) ®a C(z) = Va(2)

We denote by Rep(Uy ) the linear category over A with objects finite tensor products
of modules V) (A). It becomes a tensor category in the natural way.

Every module V) (A) gives rise to the complex U, (g)-modules via the map which
sends z to a complex number ¢:

V,\(q) = V)\(.A) R4 C.

The representation category of Uy (g) whose objects are finite tensor products of
the modules V) (¢) is a braided tensor category, even though U, (g) is not braided. In
fact we will produce a braided Hopf algebra UL (g) which is the extension of Ug(g)
(see [75]). As we said before, A will be the ring (C[:cﬁ,x_ﬁ], and A the weight
lattice. Now we consider the Hopf algebra of functions on A as additive group. The
collection of all set-theoretic functions from A to A will be indicated by Map(A, A),
and it is naturally an algebra over A with pointwise multiplication. It is a topological
Hopf algebra with the following:

A(f) () = f(p+ ')
e(f) = f(0) and S(f)(p) = f(—n)
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for f € Map(A, A) and p, i/ € A. Here:
A : Map(A, A) — Map(A x A, A)

The latter space contains Map(A, A) ® Map(A,A) as a dense subspace in the to-
pology of pointwise convergence, and thus may be viewed as the completion of the
tensor product. A topological basis for this Hopf algebra is given by {Jy } xea, Where
dr(7) = 6x. By topological basis we mean that the elements are linearly indepen-
dent and span a dense subspace of Map(A,A) in the topology of pointwise conver-
gence. It is a classical result that given a homomorphism between an abelian group
and its dual, we can associate to the homomorphism a R-matrix in the Hopf algebra
of function on the group. If the homomorphism is A L) | the R-matrix is:

R — Z ey © 6,

Ay

which is an element in the completion of Map(A, A) ® Map(A, A). We will indicate
with UL([)) the topological Hopf algebra Map(A,.A), and with z* the homomor-
phism >\ z A0S, Uy(g) acts on Uy via the A-grading of U,. More precisely,
we define the weight of a monomial in { E;, F;, K;} to be the sum of «; for each fac-
tor of F; and —ay; for each factor of F;. Then f € Ujl(h) acts on a monomial X by
f[X] = f(weight(X))X and then extends linearly. This action is a homomorphism
of Hopf algebras so we can form the semidirect product U;l(h) X Uyg. This Hopf al-
gebra is topologically generated by { E;, F;, K;} U {0 }aea with the usual quantum
group relations together with:

a0y = Orq0x » D _On=1
A€A

WK = Kidy , 0\E; = Eidr—q, » OzF; = Fidryq,

If U;rl(h) x Uy acts on an A-module V, we say v € V is of weight A € A if
Kiv = 2™) and fo = f(Av for f € U;(f)). V is a A weight space if it consists
entirely of weight A vector. Let )1 be the direct product of all Ujl(h) x U 4-modules
which are a finite direct sum of A\ weight spaces on A. Of course Ujl(b) x Uy acts
on 9. The kernel of this action is a two-sided ideal I (which is not {0} for sure
since it contains K; — x®¢). Moreover, I is a Hopf ideal, so U;l([)) x Uy /I is a Hopf
algebra which embeds into End(99t). End(97) is endowed with a topology given by
the product topology on 91, where a sequence converges if and only if it converges
on each f.d. submodules. The closure of UL(F)) x U 4 /I with respect to this topology
is called UL, and it is a ribbon Hopf algebra. The R-matrix is:

Ty (1) ts)
R=R Z HqﬁTQ (1= gq52) " [tr)gs, \ By © Fg"

t1,..,tn=1r=1

with R € U;@Ujl. By g, we mean q% when f3, is the same length of «;. The ribbon
element related to R is ¢.

It is possible to see that V) (A) is a U}l(g)—module by letting f € Ujl(h) acton a
weight A vector by multiplication by f(A). On the other side, every UL (g) is clearly
a U4-module. Therefore Rep(U,) and Rep(U; (g)) are the same category and hence
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Rep(Uy) is ribbon. Now we restrict = to a root of unity, proceeding as before. Thus
we can define:

_ gt
Ulg) =U} @4 C

We indicate with UJ@U, the space (Ul'L ® UL) ® C. Tt is the completed tensor
product of UJ ® U in the topology inherited from (UL@UL) ® C. Therefore U (g)
is a ribbon algebra, and Rep(U;r (g)) is a ribbon category. Proceeding as before, we
have that Rep(U,(g)) is the same as Rep(UqT(g)), so it is ribbon.

3.4 Irreducibility of representations of U,(g) and quotient
category

In the previous section we introduced the category Rep(U,(g)) generated by the
Weyl modules V), = V,(¢q). We focus on this category, trying to understand when
Vy\’s are simple and if there is a way to restrict the category of representations in
order to obtain a semisimple one. We will give here an overview of the results about
this topic, following [2]-[7] and [27]. Other reviews on this argument can be found
in [15] and [81]. In order to answer to the first question, we introduce the so-called
linkage principle. We consider ¢ as primitive root of unity of the type ¢ = ed.
Moreover, we define the affine Weyl group W; which acts on the real vector space £
spanned by the roots in the following way:

wez=w(w+p)—p

where w € W; and x € E. Under the above restriction on ¢, W, is generated by the
ordinary Weyl group W and the translation by /6, where 6 is the highest root. The
action of W, on E admits a fundamental domain!, called the principal Weyl alcove,
which is:

A={AeAT: (\+p,0) <di}

The linkage principle states that V), is irreducible if A € A;. Moreover, V) and V), are
pairwise inequivalent if \, u € A;. The proof of these facts can be found in [4].

Now, we restrict to a peculiar category of representations of U, (g). In order to do
that, we introduce the notion of filting module.

Definition 3.4.1. A finite-dimensional U, (g)-module V" has a Weyl filtration if there
exists a sequence of submodules

{0}=VhcWic...CcV,=V

with V,./V,_1 2V, for some \; € AT. A finite-dimensional U,(g)-module V is a
tilting module if both V" and its dual V* has a Weyl filtration.

We fix for each Lie type a representation V' of g taken from a specific list, that we
call fundamental. For example, if g is of type A, V is the vector representation. Each
fundamental representation has the property that every irreducible representation of

'Given a topological space and a group acting on it, the images of a single point under the group
action form an orbit of the action. A fundamental domain is a subset of the space which contains exactly
one point from each of these orbits.
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g is contained in some tensor power of V. We can form the category T; = T(g, 1)
whose objects are finite tensor powers of V' and arrows the intertwining operators,
completed with subobjects and direct sums. T7; is called tilting category, because
every object of T; is a tilting module, and conversely for [ large enough every tilting
U,(g)-module is isomorphic to an object of T;. How much does [ have to be large?
We need an order [ such that x € A;, where & is the weight associated to V' and

A ={NeAT:(N+p,0) <dl}

In a tilting module, Weyl filtrations are not unique. Anyway, for all filtrations of
a tilting module T the number of factors isomorphic to a given V)(q) is unique,
and it is in fact given by the multiplicity of V) (z) in W (z) if W is obtained from a
specialization 2 — ¢ of a module W (x) of U,(g). In particular, suppose that W is
the tensor product V, ® ... ® V), with \; € A; forall i € {1,...,n}. Then the
multiplicities of the factors in its Weyl filtrations are the same as those determined
by the decomposition into irreducibles of the corresponding tensor product in the
classical case. We now want to lists some interesting results about tilting modules,
but without giving proofs.

Proposition 3.4.2. (a) The dual of a tilting module is tilting;
(b) Any finite direct sum of tilting modules is tilting;

(¢) Any direct summand of a tilting module is tilting;

(d) Any finite tensor product of tilting modules is tilting.

The Prop. 3.4.2 allows us to restrict our attention to indecomposable tilting mo-
dules. They are parametrized by A™:

Proposition 3.4.3. For any A\ € A" there exists, up to isomorphism, a unique inde-
composable tilting module T\ = T\(q). In particular, if \ € A;, T\ = V), so it is
irreducible. If T is a tilting module for U,(g), then:

= @ Tj\?A(T)
AeAT

where the multiplicities n(T') are uniquely determined by T.

At this stage it is quite interesting to discuss the point of the quantum dimensions
of tilting modules. First of all, we need to clarify the form of the ribbon element in
the (extended) quantum group U, (g)'. We have:

Proposition 3.4.4. U,(g) is ribbon with ribbon element v = Ksyu, where u =
m(S X id(Rzl)).

1

Proof. First of all, we need to prove that v is central. Since S?(x) = uzu~' and

S%(z) = K2_p1mK2p, we have:
vr = Kopyux = K2p52(a:)u = Kng;plxKgpu = zKo,u = v
It is easy to see that £(v) = 1. Moreover we prove that A(v) = (v ® v)(Ra1 R) L
A(v) = A(Ka2p)A(u) = (Kap ® Kop)(u® u)(RnR) ™' = (v@v) (Rt R) ™

It remains to prove that S(v) = v. It is quite easy to see that K. 2_/)15 (u) acts as Koyu
on V. Since VY = V), for some 1 € AT, KQ_plS(u) acts like Ko,u. We can extend
this fact to any module, obtaining that v = Ko,u = K. 2_/)15 (u). This identity leads to
the conclusion. O
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Using the last proposition and the Prop. 3.2.8, we have that the quantum trace of
an endomorphism f of a finite-dimensional U, (g)-module is:

Trq(f) = Tr(KQ_plf)
Taking f = idy, we obtain the quantum dimension:

dim, (V) = Tr(K;,)
The following results will be crucial. We report them without proofs.
Proposition 3.4.5. Let A € AT. Then dimy(T)) # 0 if and only if X € A,.

Corollary 3.4.6. (a) Let A € A* \ Ajand f € End(Ty). Then Try(f) = 0.
(b) Let A € AT\ A; and V' be any Uy(g)-module. Then, every direct summand of
T\ ®V 2V T\ has quantum dimension zero.

Tilting modules with zero quantum dimension will be called negligible.

At this point we have all the tools to build a semisimple quotient category of J7,
which will be indicated by ;. Using Prop. 3.4.3 we can state that every object of J;
decomposes as a direct sum of indecomposable tilting submodules, and this decom-
position is unique (up to isomorphism). We can form two full linear (non-tensorial)
subcategories, T and T of T}, with objects respectively those representations which
can be written as direct sums of V), with A\ € A;, and those which have no such V),
as direct summand. Therefore every object in T is a negligible representation.

Definition 3.4.7. Let W and W’ be two objects in J;. An arrow 7' € (W, W) is said
to be negligible if there exist two arrows S; € (W, N) and Sz € (N, W’), where N
is negligible, such that T = S5 o 5.

The category T satisfies the following properties, which can be inferred from
Prop. 3.4.3 and 3.4.5, and from Cor. 3.4.6:

Proposition 3.4.8. (a) Any object W € T is isomorphic to a direct sum W =
Wo @ N, where Wy € TO and N € T+;
(b) For any pair of arrows T € (W1, N) and S € (N, W3) in T;, where N € T+ and
Wl, Wy € ‘TO, then:

ST =0

(¢) For any pair of objects W € T, N € T+, we have that N @ W and W @ N are
negligible.

Property (a) follows from the decomposition of tilting modules shown in Prop.
3.4.3. Property (b) means that non-negligible modules cannot be summands of a
negligible one. This can be easily proved by a dimensional argument. Same argument
can be used to prove property (c). These properties were first shown by Andersen [2]
and then abstracted by Gelfand and Kazhdan [27].

Now, let Neg (W, W) be the subspace of the negligible arrows of (W, W'). Then
the quotient category J; is the category with the same objects as J; and arrows be-
tween the objects W and W’ the quotient space:

(W, W)z, = (W,W')/ Neg(W, W)
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Therefore it is possible to define a functor F' : J; — F; which is the identity
on the objects and the natural projection on morphisms. It is quite easy to see that
J; is a linear rigid braided tensor category using as associativity and commutativity
costraints the images through F' of those in J;, and the same for the rigidity maps.
If we restrict F' to T9 we obtain the functor F° which is an equivalence between the
categories T and J;. Indeed, to prove this, it is enough to show that every object in
F; is isomorphic to the image under F'° of an object of 70, and that F is a bijection
on sets of morphisms. The first assertion is quite easy to prove, since if W € TJ; is
non-negligible, then T is equivalent to F'(IW) in F;. Conversely, if N is negligible,
then NV is equivalent to F'(0) in F;. The second assertion is a consequence of the
property (b) seen before. Since J; is a linear rigid braided tensor category, so is T°.
We will usually denote the tensor product of objects and arrows in F; by W W' and
S®T respectively, and we will call it the truncated product. Dropping out all the
indecomposable but not irreducible tilting modules, we get that J; is a semisimple
category, with {V\, A € A;} as complete set of irreducible objects. F; or, equivalently
J9, can be seen as the categorification of the fusion ring with the truncated tensor
product. If A, 4 € A;, we can decompose V) ® V), in T} in the following way:

eV, @mi,V,oN
veN;

where N is negligible. The decomposition is unique up to isomorphism. Passing to
F;, we obtain:
VA&V, = @ mx Vv
vEN;
It is worth to notice that the decomposition of V\ ® V, in J; is unique up to isomor-
phism but not canonical.

3.5 Kirillov-Wenzl theory

The goal of this section is to prove the existence of a hermitian form on the represen-
tation spaces of Rep(Uy). So it is required a double effort: to put a hermitian form
on V) (A), and to find a suitable hermitian form on every tensor product space gen-
erated by V)\’s. These results can be found in [37]. Wenzl [81] proved the existence
of a subclasses of such representations where this hermitian form is a scalar product,
also when we consider the product form. We will strictly follow the review of these
results made in [15].

It was proved in the section 2 of this chapter that Rep(Uy) is a ribbon category,
since U; is a ribbon algebra. It is possible to put on UL an involution which extends
the involution on Uy, defining:

R* = (R 1)y (3.5.1)

where R is the R-matrix. Recalling the definition of w in the first section of this
chapter, we have:

Proposition 3.5.1. u is a unitary element in UL. As a consequence, the ribbon ele-

ment v s unitary too.



3.5 Kirillov-Wenzl theory 73

Proof. Since S commute with %, we have that u* = ). afS(b]). Moreover, from
Prop. 3.2.4 (b), we have S ® S(R) = R. Therefore S ® S(R*) = R* and hence
S~!® S~1(R*) = R*. As a consequence:

v =m(id®S(R*)) = m(id ®S(S~! @ S7H(R*))) = m(S~! ® id(R*))
Using (3.5.1), we get:
u* =m(ST! @id(R*)) = m(S™! ®id(R5,)) ZS bi)a; = u~

Since K>, is also unitary, we get that v* = v L O

It is possible to derive the explicit expression of v as operator on the highest

weight module V), using R and Ks,. It is given by the scalar multiplication by

2~ MA120) on V. Therefore it is possible to construct a central square root w of v in

A A+2p)

the topological completion of U , ! which acts as 272 on every V). Therefore:

2

w? =vand w* = w!

Since v is the ribbon element, we have:
Ry R= (vev)Av™)

For this reason, we have (Rle)% = (w®@w)A(w™"). We set

Jun

0=w'ew HA(w) = (RyuR) 2
and R = RO. We give the following:

Lemma 3.5.2. The element © satisfies the following relations:
(a) ©* = 0]
(b) ©21 R = RO

Proof. We start proving (a):

0" = A(w)* (w@w) = A%(w ) (w®w) = (w®w)A®(w™ ') = 05
Next:
021R = (wl'@w HAP(w)R = (w'@w ) RA(w) = Rw™ '@w ) A(w) = RO

O

The following result is crucial:

Proposition 3.5.3. R is self-adjoint. More precisely:
R =R, =R
Proof. Using the (a) of the previous lemma, we have:
R =(RO)" = 0"R" = 03'Ry! = (RnOn) ' =Ry,
For the second part of the equality, we proceed in the following way:
R R = R31021RO = Ry  RO* = |

. _1 —. . — . .
since © = (Rg1 R)™ 2. Therefore R is the inverse element of Ro, so it must coincide
with R". O
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We proved in the section 2 of this chapter that R satisfies the relation (3.2.4), also
called the Yang-Baxter equation. It can be expressed in an alternative way, which can
be inferred from (3.2.4) itself and (1.2.17) and (1.2.18) restricted to the coassociative
and counital case:

Ri2(A ®id(R)) = Ra3(id ®A(R)) (3.5.2)

This identity allows us to define the following elements:
R — (R™ @ (A @id(R)) = (I ® R™)(id A"~ D(R))

where R(?) = R. Moreover, we set 0" = (w™ ' ® ... ® w™)AP=D(w), with
O = ©. We have the following identity:

©™ & 1)(AM Y 2id(0)) =

= " @ DAV (W) & AT () @ AT @ id(Aw))) =
— w—l@'ﬂA(n) (w) _ @(n—i—l)

In the same way it is possible to prove that Q(”H) = (I @ ©M)(id@A"=D(@)).

Hence we can define the element E(n) in UL o in the following natural way:

R™ = ptmgm

(2)

where R = R. Our goal is to prove that R(n) is self-adjoint for n > 2. We need

the following:
Lemma 3.5.4. We have the following recursive relation:
R = (B"™ ¢ 1) (A 9 id(R)) = (I @ R™)(id 0A™ (R))
Proof. The first part of the equality follows after the following computation:
E" o 1A id(R)) =
= (R™ @ 1©™ @ (A" 9id(R))(A™ Y @id(0)) =
— (R™ & I)(w ™" © (A (w) © (AT @ id(R)(A" ) id(0)) =
= (R™ @ (A" @id(R))(w™ " @ I)(A"V(w) @ 1)(A"Y ©id(0))
— R(n+1)(@(n) ®I)(A("*1) ®id(0)) = R+ gn+1) _ E( 1)

O

We get the second part of the equality in the same way.
At this stage we are ready to prove the following:
Proposition 3.5.5. B is self-adjoint for all n.
Proof. 1t is straightforward to prove (for example, by induction) that for all n:
A ()" = APM) (¢*)

Moreover, it is quite easy to see that A°?(a)R = RA(a), since © commutes with
A(a) for all a. We define now:

Rpp1 = (AP D @id(R) (R, ® I) = (id A"V (R))(I ® R,)
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and Ry = R. We can prove the following identity by induction:
APV ()R, = R, A" D (q)

for all a. When n = 2 the above identity is true. Suppose it is true for n. We prove it
forn + 1:

N(APT Y id(R)) (R, ® I) =
R)(Ry 1) =
AP @ 1d(A(a)) (R @ 1) =

R, @ I)(A"Y @id(A(a))) =

AP (@) Rypy =

Next, by induction again we have (E(HH))* = R,41. In fact, recalling that R is

self-adjoint and R — (ﬁ(n) ® I)(AMD @ id(R)), we get:

(R(”+1))* _ (Aop(nfl) ® ld(ﬁ*))(ﬁ(n)* ® I) _
= (A" @ id(R) (R, ® I) = Ry,

(n+1)

At this point, proceeding by induction once more, we obtain that R is self-
adjoint:
R(”-Fl) _ (Aop(n—l) ® ld(ﬁ*))(ﬁ(") ® I) _

= (AP D @ id(R) (R, ® 1) = (R @ I)(A™ Y ®id(R)) =
—®E" oAV 2idR) = ®" o DA @id®) = R"

O]

The existence of the R-matrix in UJZ@U; allows us to define, for any pair of
objects (77, U) and (7, V') in Rep(Uy) the braiding operators:

coy =X(mp@my(R)) e UV, VaU)

It is quite natural to consider the associated modified form:

oy = Z(WU ® Wv(R)) € (U RV, V® U)
The operators oy, are called coboundary operators. We have the following:

Proposition 3.5.6. oy v is a natural isomorphism satisfying:

ouv e} ov,u = idV®U (353)

oveu,w °oyy Qidw = oywev o idy oy, (3.5.4)

Proof. The first equality is a consequence of the identity Ro; R = I. The second one
is a consequence of Lemma 3.5.4. O
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The identity (3.5.4) defines an intertwiner of the category Rep(U,) which re-
verses the order in a triple tensor product:

o3 :=oyguw ooy Qidw € U3VeaW,WeVeU)
More generally, we can consider the arrows:
EM®...0V,,Vh®...0W)
which can be inductively defined in the following way:

On =0V, 1®..@V1,V, © On—1 @ idy,
Proposition 3.5.7. We have:

on = Sn Ry, 3.5.5)
o2 =id (3.5.6)
and:
Op =0p—1® idvl 00V, Vo ®...QV, =
=0V, V.0V, ©1dy, ®op_1 = (3.5.7)
= ian ROp—1 00V, ®...QV,_1,Va

Proof. We start proving (3.5.5) by induction on n:

on =S 11(APD @id(R))(Zp_1Rp_1 ®id) =
= (Zn-1.10 81 @id)(AP D @id(R)) (Rp—1 @id) =
= 2, (AP @ id(R))(Ro—1 ® id) = Sp Ry

(3.5.7) can be proved in a similar way. For example:

On—1 ®idy, 00y, V..oV, =

= (Zp1Rp1 ®id)(S1,0_1 0 id@ACPD(R)) =

= (Zp1 @id oS, 1)([d @R, 1) ([d @A D(R)) =
= %, (Id@AP" DR (id®R,-1) = LnRn = o

It remains to prove (3.5.6), which can be proved by induction and using (3.5.7) and
(3.5.3):

2 . .
0, = 0,00, =idy, ®0,_100V,..0Vs,Vi © OV, Veo..0V, ©idy, ®0p_1 =
= idy, ®oy,—1 0idy;, ®op—1 = idy ..oV,

O]

Following now Kirillov [37] and Wenzl’s [81] approach we are able to introduce
an involution on Rep(U,) making it into a *-tensor category. Let V' be a represen-
tation of U4. V is a hermitian space if it is endowed with a non-degenerate and
sesquilinear A-valued form (£, 7) on V' such that:

&n)* = ¢
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If T is a map from V to V', we can define the adjoint map 7% : V' — V. There-
fore the category of the hermitian spaces on A is a *-category. (my,V) is a *-
representation of Uy if V' is a hermitian space and:

Weyl modules can be made into *-representations. First of all, we prove that V(A)
is endowed with a sesquilinear form:

Proposition 3.5.8. Let V)\(A) be a Weyl module and v) be its highest weight vec-
tor. Then there exists a sesquilinear form ( , ) on V\(A) uniquely determined by
(vx,vn) = 1 and by:

(avy, buy) = (b avy, vy) = (vy, a*bvy) (3.5.8)

Proof. The uniqueness is clear. We pass to the existence of such form. We know that
VA (A)* is still a U 4-representation, with the following action:

a-$(&) = (S~ (a)€)

where ¢ € V) (A)*. Vi(A)* has highest weight —w(\), where wy is the longest
element in the Weyl group. Define ¢y € V) (A)* by ¢a(vy) = 1 and ¢ (v) = 0 for
any v weight vector not belonging to the weight A. Using a little bit of Lie theory it
is possible to prove that ¢, is the lowest weight vector in V) (A)*. Now, we consider
the conjugate space V) (A) with the action of U4 defined in the following way:

av = S~ a*)v
The highest weight in V) (A) is —wg () and the lowest weight vector is ). Therefore

we have an antilinear isomorphism ® : V) (A) — V) (A)* such that ®(7y) = ¢, and
®(av) = a®(v). At this point we can define the sesquilinear form on V) (A):

(&m) = 2(&)(n)

It is easy to see that this form is well-defined and (v, vy) = 1. It remains to prove
(3.5.8):

(&, an) = ®(&)(an) = S(a)2(§)(n) = ©(S(a)€)(n) = ©(a*&)(n) = (a"¢,n)
O

Proposition 3.5.9. The sesquilinear form defined in (3.5.8) for an irreducible highest
weight module V\(A) is hermitian over A. In other words:

(&mn) =08

Proof. Since V) (A) is spanned by elements of the type avy, and using the sesquilin-
earity of the form, it is sufficient to prove that (ajvy, agv)) is self-adjoint in A. We
can restrict to the case that a1, ag are products of F;’s, and we proceed by induction
on the number of factors. Assume a; = F,.a). Then (a1vy, agvy) = (a}vy, Eragvy).
It is sufficient to prove that E,aqvy = Y ; fjbjvy, where each b; is a product of F;’s
with less factors than ao and f; are self-adjoint and commute with F; and F; for all
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1. We proceed by induction on the number of factors F). in ao. If as does not contain
F,, Eras = agE, = 0. Otherwise, we can write as = a) F.al, where a is a product
of elements of { F;,i # r}. Then:

Erasvy = ay([{an, W)z + FrEr)aboy

where (1 is the weight of the weight vector ajvy. [(au, u)]z is clearly self-adjoint and
commute with F; and F;, while E,a’ can be written as a linear combination as stated
using the induction. Iterating we obtain in the end:

> (vx, fibivy)

i

The j-th addend of the above summation is 0 if b; # I. So we obtain that (a;vy, asvy)
is self-adjoint for all a1, as. O

As a consequence of the last proposition we have that V) (q) is also a hermi-
tian space in Rep(Uy(g)). This makes that module into a *-representation. At this
stage, there is a problem to overcome. In fact, if we consider the product of two *-
representation U, V of U 4, with the action of U, defined in the usual way using the
coproduct, and we put on it the natural product form:

(5 ® m, 5/ ® 77,)1) = (ga 5/)(7% 77/)

then U ® V is not a *-representation, since A is not *-preserving. However, the
coboundary structure fixes the problem.

Proposition 3.5.10. For any pair of *-representations (i, U) and (v, V') of Uy,
the following form:

enen)=Eenm (R @), (3.5.9)
is hermitian. Furthermore, (U ® V, 7y @ my) is a *-representation.

Proof. We proved that R is self-adjoint and invertible in the extended algebra U;l.
Hence the right hand side of (3.5.9) define a non-degenerate and hermitian form. It
remains to prove that 7y @ 7y (a*) = 7y @ 7y (a)*:

(€@ nm @y ©n)) = (rerva)(©n),& )=

= (A(@)(E@n), R(E @n))p = (@, A%(@)R(E @n'))p =
= (®n, RA(a")(§ @1)p = (@ 0,70 @ myv(a”)(§' ® 7))

O

In this way, all the objects in Rep(U,4) can be made into *-representations. More
precisely, we endow the tensor product V), ® ... ® V) with the form defined by the

action of the matrix R(n):

&) = (&R,

() is self-adjoint. We have the following:

which is hermitian since R
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Theorem 3.5.11. The hermitian forms so defined on objects of Rep(Uy) allows us
to state that Rep(Uy) is a strict tensor *-category. Furthemore, both the braiding
operators cyy = YR € (U ® V,V ® U) and the coboundary operators oyy =
YR e (U®V,V ®U) are unitary arrows of Rep(U).

Proof. The associativity of the tensor product easily follows from Lemma 3.5.4.
Moreover, (S ® T)* = S* ® T*, where S and T are arrows in the category, and
itis merely a consequence of the U 4-linearity of S and I". We pass to the unitarity of
cand o:

€@,y ®@f)) = (ER(E@n), R(
= (R(¢®n),Ru(¢' ®@7)) = (@n R R21@21(§ ®n'))
= (£®n,02(6'®7)) = (E®n,0uRR (¢ @1))
=(E®n,ROR'S( @ ¢

£)

)

~—

Therefore ¢, = R7Y = c[_le In a similar way one can prove the unitarity of
ouv- Ul

We now focus on Rep(U,(g)). As we said before, if we specialise  to g € T, we
obtain a complex sesquilinear and hermitian form on V) (g). We can ask if there are
some cases where the hermitian form on V) (¢) is an inner product, or, equivalently,
positive definite.

Theorem 3.5.12. Let g € T. The hermitian form of V\(A) specialises to a positive
definite form on V\(q) in the following cases:

(a) for X € AT satisfying (A + p,0) < d +
(b) for \ € Ay if g = et

Alternatively, we can say that the hermitian form on V)(q) is positive definite if A €
AT and q = ™t with:

\tl if q is not a root of unity;

1

<
g A+p,0)—d

We call I the set of such q.

Proof. Since V) (q) is simple when ¢ € I, the hermitian form on it must be non-
degenerate, otherwise its nilspace would be a non-trivial submodule. Let {v; }; be the
canonical basis of V\(¢), and C = ((v;,v;)); ;. Obviously the coefficients and the
eigenvalues of C' depend continuously on ¢. They are all real and positive if ¢ = 1
from the classical Lie theory, and non-zero for any g € I. Therefore they have to be
positive for all ¢ € I, by continuity. O

Let x be the dominant weight of the fundamental representation V' = V,; of g.
The order of the root of unity q is chosen large enough to make V,; non-negligible.
The following result is crucial to understand the fusion rules of the tensor product of
an irreducible representation with the fundamental one.

Theorem 3.5.13. Let V be the fundamental representation of g, where g is of a Lie
type different from Fg. Let A € A;. Then:
(a) All irreducible submodules V,, of VA @ V in Rep(Uy(g)) have weights pu € Ay;
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(b) The maximal negligible and non-negligible summands Vy @ V' in J; are unique
and given by:
Na= P muVu. VagV = P m,v,
PIAVY REN
with multiplicities as in the classical case. Specifically, both decompositions are
multiplicity free for g # Fy;
(© Ifgisoftype A, B,C, D, then:

my,=1<=p€ E\={\+~v:vweight of V}NAT

Proof. The proof of (a) and (b) is essentially a consequence of the classical Lie
theory. A sketch of it can be found in Theorem 3.5 of [Wenzl]. We prove (c). Every
summand V,, of V) ® V' has weight of the form . = X + v, where v is a weight of
V. But in addition g is of type ABC'D, so the previous statement has a converse:
for any weight  of V' such that A + + is dominant, V), does appear in V) ® V
[LerherZhang]. ]

We know that the coboundary matrices E(n)

are invertible and self-adjoint, so the
corresponding hermitian formon V), ®...®V)  is non-degenerate when \; € A, for
all <. However, it may happen that this form degenerates on some subspaces. Thanks
to the properties of the fundamental representation exposed in the Theorem 3.5.13,

Wenzl proved the next important result:

Theorem 3.5.14. For q = et and \ € A the hermitian form (3.5.9) on V), @ V is
positive definite on V\QV. Furthermore, for any v € Ay, the canonical projection:

Pyt NnWev — TTL»VVV

is self-adjoint under the same form and py py , = 0 for v # .

3.6 Rigidity of Rep(U,(g))

Itis well-known that Rep (U, (g)) is arigid category. So, here in this section we would
like to focus more on the explicit expression of the conjugate maps. In Theorem
3.5.12 we have seen that if ¢ = e we can put an inner product on V) when \ €
A;. Proceeding as in the section 1.4 and in particular as in the Remark 1.4.9, we
can explicitly express the conjugate maps of Rep(U,(g)) using an orthonormal basis
{e;}, but only when r = ry and 7y are referred to V endowed with an inner product.

Hence:
n

n
r(1) = Ry Zeﬁ-@ei 7(1) = Zei@)a (3.6.1)
i=1 i=1
We notice that r and 7 are as in (1.4.6) and (1.4.7), taking into account that U, (g) is
a weak quasi Hopf *-algebra with ® = I®3, ) = Rand o = I = /3. Nevertheless, r
and 7 could be written differently in this special case. This fact will be useful in the
next chapter.

Proposition 3.6.1. Let r and 7 be as in (3.6.1). Then:
r(1) = 1 @ Kopt); (3.6.2)

() ® @) = (¢, Kz, ) (3.6.3)
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where ), ¢ € Vy and {1;}; is a basis of V.
Proof. We start calculating 7*:

(1), Ry ® ¢)) = (¢i @ ¢i, R ® 9)) =
bi, agw™ wyl) (i, S(0:)*S(w1)* S (w(a))*¢) =
biy azw ™ wey ) (S(b;)* S (w)S(wz)) ¢, vi) =

T @e) = (T
= (
= (
= (S(b)*S(w)S(w))* ¢, ajw™ wy) =
=(
= (
= (

¢, S(w(z))S(w™1)S(by)ajw™ wyh) =
&, S(wz)S(w™ Huw™ lwgyy) =
¢, S(w(z))

@)uS™H(w Hw  w )

Since w? = v and S(v) = v, we have S(w™!) = w™!. So:

(¢, S(wez))uS™ (w™w  wy) =
= (¢, S( 2))“” wyy) = (¢, 9 ( ) Ky wayp) =

using thatv = Kp,uand S 2(a) = K. 27)1 akK5,. We pass to prove the identity involving
r. Let f be a map defined as the right hand side of (3.6.2). It will be sufficient to
prove that f* = r* in order to prove that f = r:

1), R@©¢) = (f(1),R (@ ¢)) =

Vi, (wry) "was ) (Kopthi, (wiz)) "whi¢) =
75@}(1)) (w=1)S(a;)¥) (Kopthi, (wiz)) wbjé) =
S(w))S(w™1)S(az)w, i) (i, K3, (wiz)) " wbie) =
S(w))S(w™1)S(aj)p, Ky, (wiz)) wbie) =

b, S(az)*S(w)S(w))* Ky, (wiz)) wbie)

froee¢) =

(
= (
= (
= (
= (
= (

Since:
S(aj)*S(w)S(w)) Ky, (wz)*whi = (bjw ™ wez) KopS(wery)S(w™")S(ay))*

it is sufficient to prove that bjw™ w9 K2,S(w1))S(w1)S(a;) = I in order to
conclude. Using the tools we used before for 7 and the centrality of w—! we obtain:

bjw_lw(Q)KgpS(w(l))S(w_l)S(aj) =
= b'w_lw(g)S_l(w(l))Kgp (w 1)5( )
=bju"'S(a;) = b;S aj)ut = S(bj)ajut =1

In the last line of the previous calculation we used that b;S~*(a;) = S(bj)a; = u,
and it is worth to explain why. The Proposition 3.2.4 tells us that S ® S(R) = R.
Therefore id ®S(R) = S~! ® id(R). Applying the opposite multiplication to both
sides of the identity we obtain b; S~ (a;) = S(b;)a;. O
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3.7 Wenzl’s functor

In this section we construct the projections p;, on the tensor powers V®" onto suitable
Hilbert subspaces, and describe their main properties. Let A be a weight in A; and
px be the self-adjoint projection from V) ® V to VA\®V, given by px = > px+»
where the sum is made over all v € A; such that V,, is a summand of V) ® V.
We denote with pg the identity map in (C, C) and p; the identity map in (V, V). If
g # D,, we denote with py the projection p,, where « is the dominant weight of
V. In the D,, case we denote with x; and k2 the dominant weights of the two half-
spin irreducible subrepresentations of V. In this case we set pa = px, + Pr,. In
general, we denote with p,, the canonical projection onto the non-negligible part of a
canonical decomposition of VV®" into submodules:

Ve = BV, P Na

Leln

with N, negligible. Using what we said in the previous section, we have unitaries
U,p: Vi = Vi n, with € Ay. It is possible to define the projections p,, iteratively:

Pn+1 = Z UL,'n ® ldV Opu o) U,:ul &® 1dV OPn X ldV
<y

Using the iterative description, we can prove the next useful lemma:
Lemma 3.7.1.

(1) pn o pm ®idyer = pp = pm @ idyer opy, n=m+r
(2) A® idv@r OPm+r = Pntr © A® idv@r = A@ idV@r, Ae (V@m, V@n)

Proof. The first assertion is easy to prove. In fact, for r = 1 it is a simple con-
sequence of the iterative definition of p,; a simple iteration gives the result for
the generic case. We pass to prove the second statement. We assume r = 1 and

A= ULQ’MUEIM. So:

A:Vim = V= V,n

Therefore:

A®idy oppy1 = U, , @idy opy, o sz,lu ® idy opp ® idy = ppy1 0 A®idy

Since VE™ and VE™ are completely reducible, the equality is true for every A €
(V&m y8n) Now we prove the same assertion for 7 > 1 by induction on r, and
using (1):

A®idyer oppmir = (A ® idyer-1 opm4r—1) @ idv opptr =
= (pn—f—'r—l 0A® idV®T*1) ® idy opp4r =
= Pntr © (Pntr—10 A®idyer1) ®idy = ppir 0 A®idyer

O

Proposition 3.7.2. The projection p,, are self-adjoint for all n w.r.t. the Wenzl’s
hermitian form.
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Proof. We prove it by induction. If n = 0 and n = 1 the projections are the identity
maps so it is straightforward. Suppose it is true for n, and we prove it for n + 1.
Using the identity p, ® idy opp+1 = pp+1 and the iterative description of p,1 we

have:
. . . 1 . .
Pn+1 = Z Pn @ idy OUL,n ®idy OPu © UL,,u ® idy op, ® idy
LEIn
Since py, is self-adjoint and U}, = Ubjnl, we obtain that pj, | = ppy1. O]

In the Lemma 3.7.1 we saw that the projections p,, satisfy a sort of left associa-
tivity (property (1)). Conversely, this property is not true on the right. In other words,
ifn=m-+nm

Pn © id\/@T XPm 7& pn and idV®T ®Pm © Pn 7é Pn
This fact can be deduced from the next example.
Example 3.7.3. Let g be sl and [ = 3. « is the unique simple positive root, so
d=1,0=a,p=Saand (a,a) = 2. Therefore:
1
Al = {)\EA+ . <)\+2O(,Oé> <3}

So the only admissible \’s are A = 0 and A = %a. Hence the irreducible non-

negligible representations are Vo = C and V; = V fundamental representation. We
know that V; ® V} =V & Vs, so Vi®V) = V. Therefore:

Vo@ Vi =V 2 VeW

As a consequence, ps = p2 ® idy. We now want to understand how py acts on
V1 ® V1. We have the following explicit expression of the decomposition of V1 ® Vi:

Vo = (¥1 ® P2 — g2 ® 1)
Vo = (1h1 @ 1,11 ®@ by + ¢ ha @ 1, P2 ® o)
where {11, 12} is a basis of V} such that:
Er =0, Fyy =12, Ky = qin
Evpg =11, Fipg =0, Ktpy = ¢~ 1y
So:

p2(1P1 @ 1) = 0 = pa(1h2 ® 2)
pa(1 @ o) = ¢ L (1h1 @ Yo — qiho @ 11)
P2(2 @ Y1) = — (Y1 @ Y2 — qh2 @ Y1)

For instance,
P32 @Y1 @ Y1) = pa @idy (Y2 @ 1 @ P1) = =1 @ Y2 @ 1 + qh2 @ Y1 @ Yy
On the other hand:

p3 o idy @pa(e @ Y1 @ Y1) = p2 @ idy oidy @p2(2 ® Y1 ® 1) =0

So p3 o idy ®p2 # ps. In the same way it is easy to see that idy ®po o ps # ps. For
a deeper treatment of this kind of examples one can see the last chapter of this work.
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The next lemma will be very useful for calculations, and it is a sort of replacement
of the right associativity failure of the projections:

Lemma 3.7.4. For any pair of morphisms S € (V€™ V&) and T € (V& V),
we have:
proT oidyes @p ® idye: 0S opym =proSoT opy,

Proof. The range of idy ¢s ®(idye: —py) ® idy e- is a negligible module by the pro-
perty (c) of Prop. 3.4.8, while the ranges of p,, and p, are non-negligible modules.
Hence using propery (b) of Prop. 3.4.8, we obtain:

pr o T oidy s ®(idv®t —pt) ®idyez 0S opy =0

At this point we are ready to introduce the category G;, whose objects are:
Ven .= p,ven
and morphisms:
(VM VE™) = LS € (VE" V™) : Sp, = ppS = S}
We introduce a tensor product in G;:

yEmgyen . yemtn
SQT = ppy4n’ ©S @ T 0 Prygn,

where S € (VE™ V&™) and T € (V2" VE™). The following theorem is due to
Wenzl:

Theorem 3.7.5. G, is a strict tensor C*-category with a unitary braiding simmetry
given by:

Cyv ‘= PnCUVDPn
Furthermore the composition of the inclusion G; — J; with the quotient Ty — JF is

an equivalence of braided tensor *-categories.

Proof. First of all, we need to prove that idy,em & idy,en = idy,@m+n. Since idy,en =
Pn, it means to prove that p,,, @p,, = Pmin. It is straightforward using property (1)
of Lemma 3.7.1 and Lemma 3.7.4. Next, we need to prove that (SRT")* = S*®T™.
We have:

(SOT)" =Py © (S®T)* 0 pryyy = Prmtn © (S @ T™) 0 pyr oy = S*RT™
Now we prove the associativity of the tensor product:

(QR9)JT = pu/ntr © Py @ 1dpr 0Q @ S @ T 0 Py, ® idy OPmgntr =
= Pm/4n/4r © QRS QT 0 Pryynyy =
= P/ n/ 41 © iy @Ppr 4 0 Q @ S @ T' 0 idsm, @Prtr © Prrtntr =
= QR(SXT)
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using again property (1) of Lemma 3.7.1 and Lemma 3.7.4. Finally we prove that:
(SoT)®(S" oT') = (S®S") o (TRT")

where S € (V& V&) §' ¢ (VEY V&) T € (VE™, VEN), T/ ¢ (VE™ Va),
In fact:

(SoT)@(S oT") =priyr 0 (SoT)® (S 0 T") 0 Py =
= Prir 0 (S® Sl) o(T® T/) O Pm+m/ =
= Prir © (S ® ') 0 Pu 0 Prgn © (TR T') 0 Py =
= (S®5") o (TRT")

using Lemma 3.7.4. The assertions about the braiding can be proved using the same
tools and with similar calculations. The unitarity of the braiding is a direct conse-
quence of the self-adjointness of p,, and of the Theorem 3.5.11. The C*-structure is
inherited from 7J;. It remains to prove that the functor F' : §; — J; is an equiva-
lence of tensor categories. It is sufficient to proceed as in the case of the equivalence
between T and F;. ]

This realisation of the quotient category J; is very useful in order to obtain a sort
of fiber functor W; : §; — Hilb which send V" to its Hilbert space p, V®", and acts
identically on the arrows. Now it is quite natural to wonder if we are able to apply the
reconstruction theorem seen in the previous chapter to (G;, ;). The answer is 'no’,
since it is not possible to state that WV is at least a weak quasi tensor functor. In fact,
it is not obvious at all to prove the existence of epimorphisms:

ey : W(U) & W(V) — W(U &® V)

and this fact is essentially a consequence of id,, ®pm © Prtm F Prnitm and Ppim, ©
id;, ®Pm # Pnem. Anyway, it is possible to develop a reconstruction theorem for the
Wenzl’s functors W; when g = sl,,, and this is what we will do in the next chapter.
After this construction we will be able to say that the Wenzl’s functor W, is actually
a weak tensor functor.
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Chapter 4

A reconstruction theorem for J;

4.1 The generic ¢ case

In this section we fix ¢ € T not a root of unity. We treat this case even if we don’t
need of any kind of truncation in J;. Anyway, this construction is interesting because
it conveys a general strategy that will be extended to the root of unity case in the next
sections. The reconstructed object will be a quantum group € which can be seen as
the quantization of the algebra function over the compact group G corresponding to
the compact real form of g. We denote with V the category whose objects are the
object of J; which can be endowed with a hermitian form, and the arrows are the
linear maps. The tensor product of two spaces in Vz is still a hermitian space, with
the well-known hermitian form:

(v@w,v @uw) = (vew, RV @w'))

as in the truncated case. Therefore it is possible to define the adjoint on V3. It satisfies
all the axioms of a tensor *-category, except the rule of the adjoint of a tensor product
arrow, which is replaced by:

(S®T) =R o(S*®T")oR @.1.1)

Of course it becomes the usual rule if S and 7" are morphisms of representations. We
indicate with V" the n-th tensor power of the fundamental representation of Ug(g),
and with ¢; ... ¢, a simple tensor in V™. In an obvious way, elements of V" can be
regarded as arrows of (1,V™), and elements of (V")* can be regarded as arrows in
(V™,1). We introduce the tensor algebra associated to V'

D:=PVm) eV

neN

where the multiplication is given by:

(p@Y)(¢ @Y') = oo’ @Yy’ (4.12)

with o € (V)*, ¢/ € (V™)*,¢p € V", ¢ € V™. Itis easy to see that the subset of
simple tensors:

{vop =@V, e V,p e V*}

87
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generates D as an algebra. Now, let J be the linear subspace of D generated by:
{poA®p—p@ Ao, eV pe (V)™ Ac (V" V™)}
We have the following:

Proposition 4.1.1. J is a two-sided ideal of D, so the quotient space © = D/J is an
associative and unital algebra.

Proof. 1t is sufficient to show that J is stable under left and right multiplication by
the generators v . In fact:

V(o ARY —pRAoy) = (Pppoid®A) ® (7)) — (dp) ® (Id®A o y1))

Since id ®A € (V™1 V™m+1) we obtain the left stability of J. The right one can be
obtained in the same way. 0

We now want to give C a structure of involutive Hopf algebra. Let v be an element
of V, and ¢* the linear functional on V' defined by:

(W) = (¢, ¢)

It is possible to identify the dual space (V")* with (V*)", denoting by ¢} ...} the
tensor product functional 1) @ ... ® 1. In fact, (V*)" is a subspace of (V")*. But
they have the same dimension, so they must coincide. We can define the involution *
on D as follows:

(6.0 @1 .. ) =0 YT @ 1. bn (4.1.3)

where ¢;,1; € V. It is now interesting to express this adjoint in terms of the hermi-
tian structure of V":

Lemma 4.1.2. Let 91, ..., be vectors in'V, and oy, = Enﬁ(n) e (V™ V™) the

coboundary operator. We have:
(V1. n)" =ty Yoo
Proof. Using (4.1.1), we have:
W1 ) = R oyt g o BR™
E(n)_l can be removed since it acts trivially on the unit object. Therefore:
(1 ovn) =i o B = 4 o
O

Representing simple tensors in D in the form ¢*o, 1 ® ¢, one can define the
adjoint map on D by:
(Wo, @) =¢"0, @y
where ¢, € V™.

Proposition 4.1.3. This involution makes D into a x-algebra and J into a *-ideal.

Hence C is a x-algebra.
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Proof. 1t is straightforward to see that D is a x-algebra. Let us prove that J is a -
ideal. Suppose that A € (V™ V"), ¢ € V", ¢ € V™, and we compute the adjoint
of Y*o 1A ® ¢

(w*J;1A® ¢)* — ((O’;lA*Unw)*O',;l ® (Z))* — ¢*0—7;1 ® U;lA*O'n¢
using the unitarity of o,. In the same way:

(Yo, ' ® Ag)* = (Ag)*o, ' @ ¢ = ¢ 0, (onA 0, ) @1

Since o, = 0, !, we have that the adjoint of an element of the form ¢)*o,, 1A ® ¢ —
Y*o, ' @ Ag is of the same form. O

Remark 4.1.4. Let [¢)* ® ¢'] be a class element in €, where 1,1’ € V™. The adjoint
is:

where the adjoints of 1,1’ are referred to the hermitian form on V™. If V, is a sub-
module of V", with o« € A;, then the hermitian form on V™ restricts to the hermitian

form on V. Hence if 1, ¢’ € V,,, ¢* and 1)'* are the adjoints relative to the hermitian
form of V,.

We can now introduce a Hopf algebra structure on € first endowing D with a
coproduct defined by:

A" @¢) =Y (¢"®@n) @ (nf @)

T

where {7, }, is a basis of V" and 7 its dual basis in (VV")*. An easy computation
shows that the definition of A does not depend on the choice of the basis. In fact if

AN(p*@y) = (0" ®&) (£ @), we obtain:
d (" e&) @ () Z\ s &) 20" @ mp) @ (1 ® ) =

S

= Il (¢*@n) @ (n:f DY) =D (" @n) @ () @)

T

Proposition 4.1.5. The coproduct A is unital and coassociative, and satisfies A(a)*
A°P(a*). Moreover J is a coideal, so A is a coproduct on C satisfying the same pro-
perties.

Proof. Unitality is straightforward. Let us pass to multiplicativity. We take ¢, €
V™ and v, € V™. Moreover, {1, } is a basis of V" and {&;} is a basis of V'™

A" @ P)A(Y @ 6) = Z[(cb* Q) @ (0 @P)[(V ® & @EE®I)] =

= Z ¢ @ mrés) © (165 @ PS) = A($™y" ® o)

Now we focus on the central terms ZT’ s @ mEEE. Let {¢p,} be a basis of V1™,
We define:

Ch = (Chvrlrfs)n:g:
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Therefore:

((h)* = 2(777“557 (h)(’?ifz)* = Z(nrg& Ch)R2177r§s =

7,8 r,s

= ZEQI (777“557§Ch)p§r775 - RQIEC}L = Ch

r,s

So {¢"}}, is the dual basis of {(;};,. Multiplicativity follows after the next computa-
tion:

ZCh ® Ch = Z Ch ® (Chaﬁrfs)ﬁigg =
h

h,r,s

= Z (Z(Cha"?rfs)@t) & 77:5: = anfs & 77:5:
T,8 h

r,$

Coassociativity is very easy to prove. We pass to the relation A(a)* = A (a*).
Using multiplicativity of A, it is sufficient to prove it fora = ¢* Q¢ € V* Q@ V. We
have:

AP(¢" @ )" = <Z(n§f RY) (9" ® m)) =

r

=S W) @ (1 ®6) = AW © 9) = A" @ ¥)")

Finally we prove that J is a coideal. We take A € (V™, V™), {n;}; basis of V", {¢;};
basis of V™, ¢ € V™" and ¢ € (V™)*:

Alpo ARY)=dpo A n @n @Y
Ap@Acy) =¢pRERER Aoy

Therefore:

A(pAR ) — ¢ @ AY) =Y (pA®ni — ¢ ® An;) @ 0} @b+
4,J

+R&Q(GARY - RAY) + R AN RN ®Y -9 RE REGARY)

It remains to check that:
PRAN @, ¥Y=9REREGARY

In fact, this implies A(J) C I ® D + D ® J. Omitting all the summation symbols,
we have:

PR AN @ @ =@ (5, Am)E; @ n; @ P =
=& @ ((Ani, &))" @Y =
=& @ ((ni, A"§)mi)* @ =
=9®§RAE) @Y=
— e BEADY
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We next introduce the functional h : € — C. Lete,, : V™ — V"™ be the projection
onto the isotypical component of the trivial subrepresentation of V™. So:

h(¢ & 7!)) = ¢(€nﬂ))

where 1) € V™ and ¢ € (V")*. Calculating h on a generic element of J we obtain:

MPA® Y — ¢ @ AY) = dp(emAY) — d(Aenth) = 0

since e,, A = Ae,, for any A € (V™, V™). In fact A sends every isotypical com-
ponent of V" in the same isotypical component of V'™, since it is U,(g)-linear. In
particular it happens for the trivial subrepresentation. Hence A annihilates on J. As a
consequence, it is a linear functional on €. This functional will turn out useful later.
Consider a complete set V), of irreducible representations, where A € A™. The iso-
metric intertwiner S € (Vy, V") induces a linear inclusion V;* ® V) < € which
takes a simple tensor ¢ ® 1 to [p 0 S* ® S o 1)].

Proposition 4.1.6. The above inclusion does not depend on n and S € (Vy, VE™).
Moreover, the image is a subcoalgebra.

Proof. Let T be another isometry in (Vy, V®™). Then:
[pS™ @ SY| = [pS™ @ ST*TY] = [¢S*ST* @ T¢] = [¢T* @ TY|

since ST* € (VO™ V®") 1t remains to prove the last assertion. A similar compu-
tation allows to prove that [¢)* ® '] = 0 when 1) and ¢}’ lie in orthogonal invariant
subspaces of some V®™, The next step is to choose a basis of V®" collecting the
basis of every single irreducible components of V®™. So, if ¢ and v stay in the same
irreducible component of V®", then A([¢* ® 1/]) can be expressed using only the
orthonormal basis of that submodule. 0

Lemma 4.1.7. Let V) and V,, be two irreducible representations. Then V\ @V,
contains the trivial representation if and only if Vy = Vi

Proof. Suppose that V is isomorphic to V,,. Then the trivial representation is con-
tained in V), ® V), using the rigidity of the category. On the other hand, suppose that
C is contained in V) ® V,,. Then there exists a Uy(g)-linear map ¢ from V) ® V,, onto
C, such that £ ® v — ¢¢ 5. This induces a map ¢’ from V), to V,, where £ — £* such
that £*(7y) = c¢¢ . Using the properties of ¢ we can see that ¢’ # 0 is in (V}, V).
Since V), and VM are both irreducible we have V) = VM ]

Theorem 4.1.8. For any A € A™, the natural inclusion Vi ® Vy < C is faithful.
Therefore:

c=EP vien
AEAT

as a coalgebra and C is cosemisimple.

Proof. Consider Sy ; € (Vy, V®") such that S5 ;S ; = idy, and:

Z S)\ylS;(\,’L = 1dv®n
A
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The class of the element ¢ @ ¢ € (V®™)* @ V™ in € can be written in the form:

[p@¢] =

DY Sy iS5t

> 98 ® S:,iw]

As a consequence, C is linearly generated by V" @ V). We prove now that the in-
clusion of V" ® V) in C is faithful. In order to do this, we use the functional h. Let
a =" ® v’ be an element in Vy ® V) and b = ¢* ® ¢ be an element in V7 @ V.
If V) is not conjugate to V},, h(ab) = 0, since V) ® V,, does not contain the trivial
representation. Suppose now that V) = W If {4;}; is an orthonormal basis of V),
we consider the conjugate map 7(1) = Y, 1; ® ¢; in (C,V\ ® V3). Suppose that
a = ¢* ® 1 is equal to 0 as an element of €, and we want to prove that it is 0 also as
an element of V¥ ® Vi. Let b = & © 7] be an element in V) ® V;. We know that

T =, (¢, K{,}%’) = d(\), where d(A) is the quantum dimension of V). As a
1

. Gy TT" is the projection of V) ® V, onto C. Therefore:

consequence

0 =d(\h(ab) = (¢ @ &, 77" (¥ @ 7)) =

= (T (6®8), T (W en) = (£ Ky, ) (n, K,'¥)
forall §,n € Vi. Hence K, '¢ = 0 = K, ') which implies ¢ = 0 = 1). O
Let us fix a complete set of irreducible representations parametrised by A™*. For
any u € AT, the conjugate of V), is V), where A = —wou. The composition of the
complex conjugation .J,, : V,, — V,, with a unitary intertwiner U, : V,, — V) is an

antiunitary map j,, : V,, — V), unique up to a scalar z € C such that |z| = 1. We can
thus define a linear map, the antipode, S : € — C, by:

S0 @) = (Gut)” @ jud

where ¢, € V. It is quite easy to see that the definition of S does not depend on
the choice of the unitary intertwiner. We can also define the counit ¢ : ¢ — C, such
that:

e(o* @) = (4,7)

Proposition 4.1.9. Antipode S and counit € make C into a Hopf *-algebra. Further-
more, S is invertible and S and € commute with the adjoint map. Finally:

S (¢* @) = " Ky, @ Koyih

Proof. The relations S(a*) = S(a)* is easy to check. S is invertible and its inverse
is the map:

SN @) = (G, ) @b 'e
where j;l =J, LoU .- Next, we prove that € is a counit. We check the identity
e ®id oA = id. The identity with € on the right can be proved in the same way.

e@id(A(¢* @) =Y e@id(¢" @ @1; ® ) =

=Y (¢n)ur @ =" @9
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where ¢, € V) and {7, }, is an orthonormal basis in V. We pass to prove that S is
an antipode:

moid®SoA(¢* @) =moid®S(¢* @n, @ @) =

=m(¢* @0 @ (Ju)" @ (Junr)) = " (Jub)* @ M (Jumr) =

= ¢ ()" @ ([deU, oT(1)) = ¢*(juy)" 0id@U, 0T @ 1
Now we calculate the left factor of the tensor product in the last expression of the
above identity:

¢* @ (ju)* 0id @U, oT(1) = Y (¢, 0e) (Guth, Junr) =

r

=D (&) (W) = ($,¢) = (6" @ ¢)

It remains to prove the relation involving S? and K 2p- We need to talk about some
preliminary facts. First of all, it is possible to identify V), and WL In fact, let £ be an
element in V,,, and a € Uy(g). We have:

a-&=5%a)¢ = K, aKayt

So K, € (ﬁ, Vi) Vu, and of course Kgpl € (Vmﬁ). Furthermore, let Uy and
U, be the unitary intertwiners introduced before. More precisely, U,, € (V,,, V,) and
Uy € (Vi, V). Itis possible to express Uy, in terms of U,,:

U,\ :KQpOUlY

where U, ;Y € (Vi,V,,) is the transpose arrow of U,,. Repeating the same argument of
the Remark 2.2.15 we obtain that U,/ (¢v;) = ¢, o U, and U}/ o Jy = Jyo U, If
we want to calculate S2, we have:
52((25* & 1/}) = (]A]u¢)* & (]Ajuw)
where ¢, € V),. We look for the explicit expression of jyj,:
j,\ju:UAOJ,\OUMOJH:KgpoU/YoJ,\oUMoJH:
:K2POJWOUZOUNOJ#:KQPOJWOJ/‘L
and this gives jyj, = Kz,. O
We finally pass to the dual space €’ and we endow it with the usual dual algebra

structure given by:
ww i=ww oA

Moreover, we can define a coproduct:
A'(w)(a®b) = w(ab)
and an involution: -
w*(a) = w(a*)
Notice that the involution on the dual space of C differs from the one of a ordinary

Hopf *-algebra. The counit &’ : €' — C and the antipode S’ : ¢’ — € are defined as

usual by:
g'(w) =w()and §'(w) =wo S

As a consequence of the Theorem 4.1.8, we have:
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Theorem 4.1.10. €' is isomorphic as a *-algebra to the direct product of full matrix
algebras:

€' = [[ Mny(C), nx = dim(V))

The coproduct A’ is an algebra homomorphism satisfying A'(w*) = (A’)°P(w)*

4.2 The universal algebra D(V ()

In this section the deformation parameter is a fixed root of unity of the form ¢ =
ed . Our aim is to construct non-associative bialgebra D(V,1) endowed with an
involution playing a role similar to that of D (V) in the generic case. Let V be Wenzl’s
fundamental representation of g (where g is not of type Fg). We consider the infinite-
dimensional linear space:

o0

D(V,1) = PVE)pp @ ppVE"

n=0

Notice that D = D(V,[) depends not only on V' but also on the root of unity. We
define the multiplication on D by:

aff == ¢¢/pm+n X pern@Z”w[/

for
a=¢RyY e (Vm)*pm ®pmvm and 8 = ¢, ® ﬂ/ € (Vn)*pn ®pnvn

D is a unital but not associative algebra, as, if we pick a third element v = ¢” ®¢" €
(V")*p, @ p, V", and we take into account the relation p,, 1,1y © Prmin @ id, =
DPm+n+r, We see that:

(aB)y = (¢¢/¢H>pm+n+r & Pmtnr (W/w")

but

04(/8'7) = (¢¢/¢N) ldm ®pn+7” O Pm+n+r & PmA4n+r © ldm ®pn+r (Wb%”)

that differs from the previous one since in general p,,1p+r © idy, @Prtr # Prmtntr-
The elements:

Ve m :§*®777 5577 eV
still generate D as an algebra. We next introduce an involution on D as suggested
by the generic case. Specifically, we replace the coboundary operators o, by their

truncated version:
Tn ‘= PnOnPn € (V@nv V@n)

Proposition 4.2.1. 7, satisfies the following relations:
=1, and T2 = py
forallm € N.

Proof. T = ppo;pn = Pnonpy since o, = Y. R, is self-adjoint with respect to

the hermitian form. Furthermore, using Lemma 3.7.4 we have 7'7% = PnOnPnOnPn =

Pno2p, = pp since 02 = id. ]
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We can write any element ¢ € (V™)*p,, uniquely in the form ¢ = 1* with
1 € V& The adjoint of 1) is computed with respect to the Wenzl’s inner product of
VEn, We set for 1,9’ € VE™:

(¢* ® w/)* = (Tn¢,)* ® Tatp

Proposition 4.2.2. The involution on D enjoys the following properties. Let a be an
element in D and v¢ ,, in V* @ V:

(a) a — a* is antilinear;

(b) a** = ay

(©) Ugm = Up¢s

(d) (vepa)* = a g,

Proof. (a) is obvious, (b) is a consequence of the involutivity of 7,, and (¢) of 7 =
idy . More effort is required to prove (d). Let a be of the following form:

a=¢* @ e (V) 'pp @ ppVE"
We have:

e ) ©¢) =

o @idy opps1) @ (pag1 o7, ' @ idy 09€) =

() o o(V,VE) o1 1 @idy opps1) @ (pns1 o 7t @ idy ogé) =

(n)* oidy ®pyp, 0 o(V, V@”)—l o Tn_l ®idy opnt1) ® (P10 Tn_l ® idy 0g€)

Using the adjoint identity of the next lemma, we obtain that:
idy ®py, 0 (idpg1 —pry1) © U;}t@n o1, ' ®idy oppi1 =0

So we can add the projection p,, 41 after (n))* in the above computation, removing
idy ®p,. We obtain:

()* 0 ppg1 0 o(V,VE) oot @idy opps1) ® (Ppt1 07, ' @ idy 0gpf)

At this point, using the iterative definition of o, we get:

()" © Ps10t1Pns1) © (Prg1 0 7y - @ idy 06p€)
We calculate now (vg ,a)*. We have:
(ven@)* = (6" 0 Pt @ popan)* = () o7y @ 1} 0 o (VE™, V) 0 ¢
We focus on 7,, !, 0 o(VE™, V). We have:

Tn_Jil o O’(V@n’ V) = Pn+1‘7;i1pn+10(V®”, V) o pn ® idV _
= Ppi10 agl ® idy OU(V®n, V)_l O Ppi1 0 g(V®”7 V)op, ®idy =
= ppr1 00, @idyoa(VE, V) Loa(VE V)op, @idy = pur1o7, ' ®@idy

using Lemma 3.7.4. 0

Lemma 4.2.3. Let T be a negligible arrow of the tilting category T;. Then:

Pn OTOidV OPm—1 = 0
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Proof. SetY = p, o T oidy @pm—1. VE™ 1 is the direct sum of V), where A €
A;. V ® V) is completely reducible and the dominant weights 4 of the irreducible
components V/i all liein A;. If u € Ay, V,, must be in the kernel of T" since 7' is
negligible (it is a straightforward recalling the definition of negligible arrow). On the
other hand, if 1 € A; \ Ay, then YV}, = {0}, as otherwise it would be an irreducible
submodule of p, V" of weight p. O

We introduce a coproduct:
A:D—->D®D

in a way similar to the generic case. More precisely, let ¢, ¢ be elements in p,, V™" and
{nr}» be an orthonormal basis in p, V", with {n}} its dual basis in (p,,V")*. Then:

AP @Y)=¢" @n @ @Y
It is easy to prove that the definition does not depend on the choice of the basis.

Theorem 4.2.4. The coproduct A is unital, coassociative, and satisfies for a,b € D:
(a) A(a™) = A°(a)*;
(b) A(ab) = A(a)A(Db).

Proof. (b) can be obtained with an argument very similar to the one used in the
generic case. So we focus on (a). Set a = ¢* ® v/, where ¢, v’ € p,V", and let
{1y} be an orthonormal basis in p,, V™. Since 7,, is unitary, we have that {7, }, is
still an orthonormal basis:

Aa*) = A((rad)* @ 1ath) = > (10')* @ Tathy) ® ((Tathr)* © Tut)) =

T

=Y (Wrev) @@ y,) =A%)

T

O]

Proposition 4.2.5. The linear map € : D — C which send ¢* @ in (¢, 1)) is a counit
for the coproduct A making D(V, 1) into a coalgebra. Moreover c(a*) = £(a).

Proof. The first statement can be proved as in the generic case. The second one is
consequence of the following calculation:

e((¢" @¢)") = e((Tat))” @ ™) = (Tt Tdp) =
= (,9) = (¢,¢) = e(¢* @)

using the unitarity of 7,,. O

Remark 4.2.6. It is important to notice that, unlike the generic case, € is not multi-
plicative on D(V, 1), since in general p,, # id.
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4.3 The quantum groupoid C(G, /) and a corresponding as-
sociative filtration

In analogy to the generic case, we follow a Tannakian reconstruction from the quo-
tient category JF; for which D = D(V/ 1) plays the role of a universal algebra, obtain-
ing a quantum groupoid C(G, 1). The two main differences with the generic case are
the associativity failure of D(V, 1) and the fact that the ideal of D defining C(G, 1) is
only a right ideal. €(G, 1) is naturally only a *-coalgebra, so we need a new effort in
order to give an algebra structure in C(G, [) which is compatible with the coalgebra
structure. In this section we define € = C(G, [) and establish the main properties. We
then introduce a non-trivial (possibly nilpotent) associative structure on C, described
by a finite sequence ék of *-coalgebras, which we regard as a generalised algebra
filtration. We will eventually be able to give an algebra structure in C(G, 1) in the
type A case by analysing this filtration.

We introduce identifications in D as follows. Consider the linear span J of D of
elements of the form:

[0, A, Y] :=¢" RAY =" 0 AR Y
where A € (VE™ V&™) and set:
C(G,1) =D(V,1)/d
We start summarizing the properties that € inherits from D.

Proposition 4.3.1. C(G, 1) is a finite-dimensional, coassociative, counital coalgebra
with involution. More precisely:

(a) J is a right coideal;

(b) C is linearly spanned by class tensors vg’w =" @], 0,9 € V\,\ € Ay;

(c) dim(€) < oo;

(d) J is a coideal annihilated by ;

(e) J is *-invariant, hence the involution of D factors through C and satisfies:

A(a*) = A%®(a)*, e(a*) =¢€(a), a €C (Uﬁs,w)* = v{\p@
Finally, the coproduct acts on the class tensors in the following way:
A A A
Avgy) =D V30 OV g

r

Proof. We start proving (a). Setz = ¢ @ Aothp —po ARy eTJand( =E@n €
(VA)*pp, @ pp V. We have:

¢ = PEPnih © Pryn(AY)N — (PA)EPmin © PmntPn =

= (#€pntn) ® (Pnin 0 A@1dya(¢¥n)) — (#€) © A @ idyn opmin) @ (Pmintpn) =

= (0€Pn+n) @ (AQidyn)pmintn) — (9€pn+r(AQ1dya)) @ (Pmnthn) €7
To show (b) we may argue as in the generic case, but now with a choice of isometries
Si € (Vi,, V&™), with \; € Ay, in the C*-category J; satisfying >, S; S = py. () is
a consequence of (b), since |A;| < oo and dim(V),) < oo. (d) and (e) can be proved
as in the generic case, taking into account the results of the previous section. O
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We now focus on the filtration ék We filter D by the size of the tensor product.
Set:

D= @(V®n)*pn ® ppVE"
n<k

Proposition 4.3.2. (a) Dy, is a filtration of D, i.e. it is an increasing sequence of
subspaces satisfying:

Do=C, DpDs C Dy, U@k:D
k=0
(b) Dy, are *-invariant subcoalgebras: (Dy)* = Dy and A(Dy) C Dy @ Dy.

Proof. (a) is an immediate consequence of the definition of Dy. (b) follows using the
definition of * and A on D. O

Set:
Ik = span{[p, A, 9], A € (V@m, VEM p e VE™ b e VE" m,n < k}

and notice that I, C Jand J; C Jxi1. Set €, = Dy /J. Hence there are maps
Cr — Ciy1 and €, — C. Focusing on the former one, it is defined in the following
way:

di, + I — (di ® Ogg1) + Tgt1
where dj, € Dy.. Since Ji, C Ji11, the map is well-defined. The latter can be defined
in a similar way.

Lemma 4.3.3. IN Dy, = I and Jj11 N Dy, = Iy

Proof. We prove the first identity. The inclusion J; C J N Dy, is obvious. Let now
X € INDy, be written as a finite sum of [¢, A, 1] elements of J. Since X is an element
of Dy, we can assume that the indices m, n appearing in the elements [¢, A, ] of the
finite sum satisfy min(m, n) < k. Therefore X =Y + Z, where Y € Jj, and:

Z:Z(¢®AO¢—¢OA®¢)+Z(§®A’O77—§OA’®77)

where A € (V& VEr) A" € (VR VE"), n,q < k, m,r > k. We know that
V&M can be written as the direct sum of some Vy’s. Therefore we can consider the
maps Sy = S/(\m) € (Ve V&™) where VE™ is the lowest tensor power where
V) appears as summand of the irreducible decomposition. S) restricted to V) is an
isometry, while it annihilates the other summands. Since ), S\SY = ppm, the first
sum in X can be written as follows:

D (0 ® (ASN) i — do (AS)) ® (S51)) + Y (¢ o (ASy) @ (Sip)) —po AR )

and similarly for the second sum. If ny > k, A o S\ = 0. Hence:

> (6@ (AS)) S5t — ¢ o (AS)) @ (S3a)))

is an element of Jj.. It remains to show that:

W =Y "((¢A)S) @ S5 — pA@ ) + > (6@ A'n — £Sy @ S5(A'n))
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vanishes. Since W € J N Dy, and the domain of A and the range of A’ have large
indices, hence the sum of the terms in second and third position must vanish. It
remains to prove that the sum of the terms in first and fourth position vanish. We are
thus reduced to show the general statement that given elements ¢; and 1); of a Hilbert
space H such that ), ¢ ® ¢» = 0 and operators Y; : K; — H, where K; are other
Hilbert spaces, then ) . ¢:Y; ® Y;*1); = 0, and this can be now checked by means of
orthonormal basis decomposition of ¢;, 1);. ]

Proposition 4.3.4. The natural maps Cy, — Ci1 are faithful and form a finite in-
creasing sequence of inclusions of *-invariant subcoalgebras:

C=CCcCcCctCcCc...c,=¢
stabilizing to C.

Proof. Using the previous lemma it is straightforward to prove that the natural maps
defined above are faithful. Passing to the second statement, there is an integer m
such that every irreducible V with A\ € A; is contained in V®" for some n < m.
Therefore:

Dy = @(V@m)* ® Vem o~ @ (V; ® V)\)@m)\
AEA;
Quotienting by J;, we identify the different copies of V' @ V)\’s, so:

Cr = Dy /I = @(V;@V,\)EBW”‘ /Jkg@V;®VA§G
AEA,; AEN;

O]

We next pass from Cj, to a quotient ék and from the linear (faithful) maps C;, —
Ck41 to the linear (possibly non-faithful) maps ék — ék+1. The advantage will be
the existence of natural and associative multiplication maps éh ® ék — E;Hk. More
precisely, we observe that the associativity failure of D can be described in terms of
certain negligible intertwiners Z of the tilting category, as follows.

Lemma 4.3.5. For any triple « = ¢ @, B = ¢/ @' and v = ¢ @ )" of elements
of D, of grades m,n,r respectively, we have:

(@B)y — a(fy) =

= ((¢¢,¢H)pm+n+r ® Z(Wf’d/’)) + ((¢¢/¢”) 0 Z* @ (Pmtntr © idm @ppyr 0 (@bwlwﬂ)))
4.3.1)

where Z = pusnr © i @ (idntr —posr).
Proof. It is sufficient to put the explicit expression of Z in the identity (4.3.1). O
Consider the following spaces of negligible arrows of the tilting category:
2 = {pgrjrr 0id, @(id; —pj) ®id,, g+ j +r < k}

and then define:

I :=span{Jy, ¢ @ Z o), ¢' o (Z')" @ ¢}

where Z, Z' vary in Z(), 1), ¢ in the canonical truncated tensor powers of V and
', ¢ in the full tensor powers.
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Proposition 4.3.6. We have the following inclusions:
@jik C @+k and E]Vij C '5j+k

Proof. Arguments similar to those of Prop. 4.3.1 (a), but keeping track of the grades
of homogeneous elements, show that J,D; C J; 1, and hence J;,D; is a subspace of
ijJrk. Similar considerations hold for products y{ with y of the form y = ¢ ® Z1 or
y=¢oZ*@pand( =E@ne€ (VMp, @ p, V", where Z € 2*) and h < j. For
example, if y = ¢ @ Zi):

YC = OEPnth @ Prtn © Z @ idy(1hn)

and p,, 41, 0 Z ®idy, is an element of 2**7 since n < k. Dﬁk C ,ij% is more difficult
to prove, due to the lack of associativity of the projections p,. Let y and ¢ be as in
the calculation above. We have:

CY = EPPhn ® Phin © idp ®Z (1))
Z has the explicit expression:
Z =ppo idq ®(idj —pj) ® id,
So:
Phtn ©idp ®Z = ppyy 0idp @pp 0 idp4g ®(idj —pj) ® id,
Now, set Z1 = ppin, © idp1q ®(idj —pj) ® id, and Zy = ppyp, 0 idp, ®(idy, —pp). It
is straightforward to see that:
Phin 01y ®Z = Zy — Z 0idpyq @(idj —p;) @ id,

Since Z1, Zo € 27, we have (y € §j+k. We are left to show that (x € §j+k, for
al( € Djandx = p R Aor) —po AR € Ji. Itis sufficient to prove it when
Jj=1land { = v¢,, where vg ,, := {®@n € V*®@ V. Indeed, finite products of simple
tensors vg, ,,, are total in (V2")* @ V€h, and multiplication of D is associative up to
summing elements of i+ & thanks to (4.3.1). We thus compute:

Ve T = EPP1on @ (Pron 0 1dy ®A(MY)) — ((€¢) 0 idy ®A 0 p14m) @ Promny =
= EPp14n @ (idy @A) 0 promn — (§dp1in 0 1d @A) ® (pr4mn)+
+ Edp1in @ Yi(n) — (£0)Ya @ prymny

where:
Y1 = p1yn 0idy ®A o (idy —p1ym) and Yo = (idy —p144) 0 idy @A 0 pryp,

Using Lemma 4.2.3 we have that Y] oidy ®p,,, = 0 = idy ®p, o Ya. So the last two
terms in the sum vanish, and hence v¢ o € Jgy1. O

Proposition 4.3.7. Each subspace ik is *-invariant.

Proof. As already noticed in the proof of the Prop. 4.3.1, the proof of the x-invariance
of Jy, is similar to that of the generic case. Now, let Z be an arrow in Z,(¥) Ny, ven),
Then:
(W ® Z¢)* = (TnZ(Z))* Q Tptp =
= (MmZ¢)" @ Tt — (mZ¢)"ry' @) +¢" 0 2" @4
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which lies in ik, with ¢ € V™ and ¢ € V", In the same way it is possible to
prove that ((¢ o Z')* @ ¢)* € Iy, as well for Z' € (2())*, concluding that Jj, is
*-invariant. O

Proposition 4.3.8. ik is a coideal in Dy, or in other words:
A(Ek) C ,jvk ® Dy + Dy (X)E]VJC

Proof. This statement can be proved with the same calculations of the proof of the
Prop. 4.1.5, keeping track of the grades of the homogeneous elements. O

We set ék = Dy /ik, for £ € N. The composition of the natural linear inclusion
thi @ Dy — Dk, where £ > h, with projection 7 : Dy — ék factors through a
linear map i, 1, : Gh — (‘Zk In fact, let dj, be an element in Dy,. ¢y, 1 (dp) = dp, @
(05,1 ®0p41)®. .. (0;®0%), which can be shortly written ¢y, (dp) = dp, B OBk—h
while 7 (di) = dy, + Jg. So:

Tk 0t (dp) = dj, @ 0FF 1 Ty

Suppose that dj, € Jp,. Since 0k~ =2 m0f ® A0 0y — 0f 0 A® 0y, for some

Ay e (vem, V@l), we can conclude that dj, 0P+ —h ¢ Jk, s0 T oy, i factors through
ik, Which is an inductive system. Moreover, we have natural quotient maps:

Gk—>ék

and we denote by e ;€ e % the image of the matrix coefficient v ; € €y correspond-
ing to an orthonormal basis of V). Let Ak denote the set of A 6 Al for which V), is
a summand of some VE", with n < k. In analogy with the properties of Prop. 4.3.1
for €, we also summarise the results about ék:

Theorem 4.3.9. Assume that g # Eg and let V' be Wenzl’s fundamental representa-
tion of g. Then:

(a) @k is a *-coalgebra linearly spanned by elements e ; labelling matrix units cor-
responding to Vy, for X € AF;

(b) coproduct and involution satisfy:

A A A A A
Ae};) =Y er @ep; and (e}))" = e,
T

In particular the involution is anncomultzplzcatzve

(c) There are associative multiplication maps Gh & C’k — eh—i-k and an element
Ie GQ acting as the identity. The involution is antimultiplicative and the coproduct
is unital and multiplicative.

—_—

4.4 Quasi coassociative dual C*-quantum groupoids C(G, 1)

The aim of the present and the next section is to show that if G = SU(N), then
the dual groupoid C(G, 1) can be made into a C*-quantum groupoid, satisfying the
axioms of a weak quasi Hopf C*- algebra introduced in the first chapter. Furthermore,
the representation category Repv((i‘) of C generated by the fundamental representa-

tion turns out to be a tensor C*-category equivalent to the original fusion category
I
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We shall divide the proof in two parts. Throughout this section g is general (but
not Eg) and we assume to know that C(G,1) is cosemisimple with respect to the
coalgebra structure intﬁ)d\uced in the previous section. We then show that the above
conclusions hold for €(G, 1). More precisely, we will first show that C(G, 1) is a non-
associative bialgebra with antipode, associated to a fixed section of the quotient map
D(V, 1) — €(G,1); then we will pass to @), constructing a Drinfeld’s associator
in (G, 1) and discussing the main properties; moreover, we will explicitly write
down quasi invertible R-matrices for @ ) and we will discuss the relation among
the groupoid structures associated to different sections; finally, we will show that

Repy/(€) is a tensor C*-category equivalent to F;. In the next section we will verify
cosemisimplicity in the type A case.

4.4.1 Algebra structure and antipode in C(G, )

Let V), be a copy of the irreducible representation of U, (g) with highest weight A €
A; and contained in some V2", and let M), denote the image of VY ® V) in C under
the quotient map D — C. We already know that M are subcoalgebras independent
of the choice of V), and spanning C. We shall say that C(G, () is cosemisimple if it is
the direct sum of M), which are not only subcoalgebras but also matrix coalgebras
of full dimension dim(V})2. If we know that C(G, [) is cosemisimple, we can endow
it both with an invertible antipode and with a non-associative algebra structure. Let’s
start with the antipode, which we introduce in a way similar to the generic case. Fix
a complete set Vy, where A € A, of irreducibles contained in the various V€", and
set, for ¢* @1 € Vi @ Vi

Ay oA
S(%MZJ) = Ujaping
which does not depend on the choice of V). It satisfies the relations:

S(a)* _ S(a"‘)7 SQ(Ung) = ’Ui\(zp@szw’ AoS=S®50A

The above properties can be proved as in the general case. As regards the alge-
bra structure, we pull back the product of D(V,1) via the choice of a section s :
C(G,1) — D(V,1) of the quotient map D(V,l) — €(G,1). Correspondingly, we
have a choice of irreducibles V) and s takes v(’\iw to ¢* ® 1, where ¢, € V. We
thus set:

vg’wvgn = [s(v%w)s(vgn)]

We always choose Vg = C and V,; = V for the trivial and the fundamental repre-
sentation, respectively. In this way, denoting as before by v¢ ;, the class tensors of V,
products of the form vngvgm encode fusion decomposition of V), ® V' in F;. How-
ever, the section is not unique, and the product of C(G, [) depends on s (but later we
will see that this is not really a problem).

Proposition 4.4.1. The product makes C(G, 1) into a non-associative unital algebra
and the coproduct of C(G, 1) is a unital homomorphism. Furthermore, the following
relation holds:

moid®S oA =¢e(-)I =moS®idoA
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Proof. The fact that the coproduct is an algebra homomorphism can be proved as the
statement (b) of the Theorem 4.2.4. Next we prove that m oid ®S o A = ¢(+)I. The
right identity can be proved in the same way. Developing the same calculation as in
the proof of the Prop. 4.1.9, we obtain:

m(id @S(A(¢" @ ))) = ¢*(janr)” © Pham @ Phim 01d QU o T(1)

where i and m are the powers of V' containing V), and V5 respectively. We have that
the image of C through id ®U) o 7 is a copy of Vj in V), ® Vy = V5 @ V), which in
turn is embedded in VE"™ | As a consequence:

Phim 0ld@Uy oT =idQ@Uy o7 =id®U, oT o py
Hence:

m(id@S(A(¢* ®@v))) = ¢*(Janr)" © Phim @ Phym 0 id@UL o T(1) =
" (Jany)* cid®@UyoT ® 1

At this stage it is easy to conclude proceeding again as in the proof of the Prop.
4.1.9. O

Hence C(G, 1) satisfies all the axioms of a Hopf algebra except associativity of
the product and multiplicativity of the counit. The antipode is not antimultiplicative.

—

4.4.2 The dual quantum groupoid C(G, )

Starting from the results of the previous subsection we can state that the structure
of C(G,1) is quite unsatisfactory. In fact, C(G,1) is quite far from admitting an
interpretation as a non-commutative space as compared, for instance, to the compact
quantum groups of Woronowicz. It is far more rewarding to pass to the dual C(G, 1),
and correspondingly consider its *-representations. In this subsection we show that
GTG,\Z ) satisfies the properties of the weak quasi Hopf C*-algebras.

We identify elements of tensor power algebras €™ with functionals on C®". We
shall need various elements of these algebras, and we start with P € @@2, defined as
follows:

P(vj;ﬂ/), vgn) = (0 @& PV @)y

where h and k are such that V), and V,, are summands of V& and V&% respectively.
Notice that these integers depend on the section. Furthermore, the form defining P is
understood with respect to the product form of V&" @ V2*, where each factor is in
turn endowed with the Kirillov-Wenzl inner product.

Proposition 4.4.2. C= C‘E(/C¥7) is a unital complex associative *-algebra such that:

€= P End(V))

AEN;

Hence it is a C*-algebra.

Proof. It is mainly a consequence of the duality maps and of the corresponding pro-
perties of C(G, 1). More precisely, the associative algebra structure of € follows from
the coassociative coalgebra structure of C. Antimultiplicativity of the involution of e
follows from anticomultiplicativity of that of C. The isomorphism is a consequence
of the cosemisimplicity of €. O
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Proposition 4.4.3. € is endowed with a coproduct A and a counit € such that:

A(I) =P (4.4.1)
A(wt) = A(w)A(T) (4.4.2)
e(wr) = e(w)e(T) (44.3)
e®idoA =id =id®e o A 4.4.4)

Proof. We prove the first assertion:
AI) (03, vE,) = T3 y0E,)) = e((9°€* © Phis @ Prik 0 9n]) =
= O Dhik(Prrrtn) = (€, Prktn)p = P(v} ., vE )
We pass to the second statement. We start calculating the left hand side:
AWT) (04 o) = wr (67 Phsk © prai]) =

=w® T<[¢*§*ph+k & Cj], [C]* ®ph+k¢77]) -
= w([¢"E Pryk @ GNT(CF @ Pryrbn])

where {(;}; is an orthormal basis of VE"*¥_On the other side:

AW)A(T) = (m@moid®Y ®idoA ® A(w @ 7)) (v} 4, vk,

= ([deX ®id(A ®@ A(w®7)))([¢" @], [vi @], [§ ® 5], [67 @n))
=A@ Aw®T))([¢" @], €7 ® 5], [ @], 67 ®n])

=w R T(["E Prak @ PrrrVidsls [V 05 Phak @ Prhyrn]) =

= w([¢"E Prtk ® Prari6)T ([ 05 Phtk © Prtrtdn))

where {7;}; is an orthonormal basis of VE" and {§;}; is an orthonormal basis of
V@ The multiplicativity of ¢ is an easy consequence of the unitality of the copro-
duct of C. The last statement is also immediate to prove using the duality. 0

The coproduct A in € is not coassociative, and this fact is due to the lack of
associativity of the multiplication in C. However, we are going to show that it is
possible to endow € with a Drinfeld’s associator ®, making € a weak quasi Hopf
C*-algebra.

For a given weight A € Ay, let h) denote the truncated powers of V' containing
V), as prescribed by the choice of a section s. It will be useful for later computations
to have a multiplication rule for elements of €™ of the following form. Let 7' = (Th)
be a sequence of linear maps 7T}, : V™ — V" and associate the element wr of cen
defined by:

Wr(V)! s ) = (01 @ . ® by Ty i, Y1 @ - @ U

where the form on the right is the product form with n factors. The following lemma
is a convenient formulation of the product of two elements in C®" of the above form.

Lemma 4.4.4. Given S = (Sy,) and T = (T,) as above, set w = wswr. Then:

A >\"l j—
w(vqﬁm, e ,U¢n7wn) = (gf)l e On, th\l""---""hkn Oph/\1®' . .®ph/\n OThx\l""---""hAn P1... wn)p
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Proof. We have:

w(v;‘i’wl, e ,02:’%) =

=ws((gi @&V, [0h @ €M ([5(”* @ 1l,... [E" @ )

= (@1 by Sha it 1) 6D (E € Ty o W1 - )y =
:(¢1...¢n,5hkl+._.+hm(£§3>...£<”),Thkl+...+hknwl n)pEL . €)=

in

= (¢1 cee ¢TL’ ShA1+...+h>\n Oph)\l X ... ®ph>\n © Th)\l—l—...—‘rh)\n/l;z)l oo ¢n)p
O

Now we introduce the elements ®, ¥ € C®3, Set:

Qhy by by = Zidm ®Sy,i © Phy+h,y ©1dp, @S
V5%

where S, ; € (V, V@(h*”“h”)) are isometries of the fusion category satisfying

*
) 8405 = Dhythy
Vst

It is quite easy to prove that ¢ does not depend on the choice of the isometries. In
fact, suppose that 5!, € (V,, VE(+m)) are other isometries, with S*,S, ; =
Cv,i0~,n0;i ;idy, where ¢, ; € T and ¢ is the Kronecker symbol. Of course we also
have:

Z‘Sfy ZS’,}/Z Phy+hy > S’y zs7l7j 677776i7j id’Y

We set:
/ . .
Qhxhyush = E :ldhx ®S i © Phathy ©idp, ®55;
V5%
Therefore
. ) .
Ty s = E idpy ®S5,i © Phyth, ©1dp, @S], =
758
= idn, ®ph,+h, ©idn, ®S5i © Pryin, © idn, @S5 ; 0 idn, @ph,n, =
v,

. / J% . * /%
= Z 1dhA ®S,7 ]S’V] ]Sfy,i © Phy+hy © 1dh>\ ®S )i Ll Ll =
7’n7b’i7j7l

= 207 iCy idp, ®S i © Dhy+hs, ©idp, 5'/7*7Z =
= Z ldhA i © Phath, ©idn, ®ST; = q;Duh;uhu
It remains to explain why ¢, ; € T. In fact:

- 1% * ql
Cy,iCy,i = S S S’y ZS’Y’L -

. Qr* L Q¥ /!
=550 ZSWSWJ 05 =

_ ol ro_
= S 0 Phy+h, © S, ; = idy
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Next we set:
D0}, VE V%) = (D @ € ® X, Gy gy © Phsthyth, @ @M@ C)p  (44.5)
\Il(vd),@lﬂ & X’C) = (¢ & g X X7ph)\+hpl+hy o QhA,hM,hﬂb X n 02y C)p (446)

In the next theorem we will see that ® and W play the roles of the Drinfeld’s associator
and its inverse in a weak quasi bialgebra, respectively.

Theorem 4.4.5. ® and V satisfy the following relations:

TP = A®id(A()), T =id®A(A(I)) (4.4.7)
PA ®id(A() = ® = idRA(A(I))® (4.4.8)
PA ®id(A(w)) =id® ( (w))® (4.4.9)
(id®id ©A(P))(A ® id®id(®)) = (I ® P)([d ®A ®@id(®)) (P © I) (4.4.10)
id ®e ® id(®) = A(I) 4.4.11)

So ® is partially invertible and U is its inverse.
Proof. First of all, we see that:

A @IA(AD)) (0], vF s V) = (6 D E D X, Phythyth, 0V ONRC)  (44.12)

id ®A(A(I))(v$,¢, Ug,n’ vy o) = (0 ®@E® X,1d @85 0 ppytn, 01d @S] 09 @1 ® ()
(4.4.13)

omitting in (4.4.13) the summation symbol with indices v and i. We prove (4.4.13):

id@AAMD) (" @], [ @), [x* @) =
= A ([¢" @], [€°X" © Phythy @ Phyuth,, ©1C])

Since pp,,+h, = Y., ; vy, and Sy ; € (Vy, V&huthi) we obtain:

A(I)([¢" @], [£°X" © Phy+hy @ Phyth, ©0G]) =
= ZA ([¢* @], [€*X" 0 57 @ 8% ; 0 n¢])

= Z(cb ® £ X,id ©8,; 0 iy yh,, 01 @SE; 0 PnC),
V5t

We are ready now to prove (4.4.7). We start with the identity on the left. We know
that ¥ = wg and ® = wy, where S and T can be easily deduced from (4.4.5) and
(4.4.6). Therefore, using Lemma 4.4.4, $® = wy;, where:

U= ) Phathrh, ©id @Sy 0 phyin, 01d @S5 0

,Y7L7i7j

0 Phy @ Ph,, @ Ph, ©1d @S, j © Ppyth, 1A @S] 0 Ppythy,+h, =

= Z Phy+hyth, ©1d®8y;01d®SY ; 0id®S, ; 0id ®S]; © Prythy,+h, =
PY’L7'L7.]

= E Phy+hythy © 1A @Sy iS7 50 Dhy v hy+hy, = Phy+hy+he
V5t
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The identity on the right can be proved using the same approach. We have ®¥ = wy,,
where:

. . *
V= E id ®Sy,i © Pry+h, ©1d @S] ; © Phy thy+h,°
77[/71'7.]‘

© Phy ® Phy, @ Dhy, © Phy+hyth, ©1d @S, j 0 prytn, 01d®S); =

= Z id ®Sy i © phy+h, 0 id ®Sfm 0id®95,j o phy+h, 0id ®S:j =
Votstsd

= id®Syi 0 phyth, 01d DS,

V5%

We pass to (4.4.8). The left identity is very easy to prove. The next calculation
allows us to prove the right one, using again Lemma 4.4.4. Suppose that & = wr as
before, and id ® A(A(I)) = wg, where S can be deduced from (4.4.13). Therefore
id ®A(A(I))® = wq, and it will be sufficient to prove that Q) = T":

Q= Z id ®S,,; 0 phy+n, 01 @S] ; 0 phy ® ph, ® ph, ©id ®S, j 0 phyyn, 1A @S © Phy 11y +h, =

77L’i7.j

= Z id ®S%i O Phy+h, © id ®Sf§7i oid ®SL,]' oid ®S:j O Dhy+hy+h, =
VobstsJ

= Z id ®S%i O Phy+hy © id ®S;,z O Phy+hyu+h, = T
75t

Next we prove (4.4.9). We first calculate the left hand side:

PA ®id(Aw))([¢" @], [§" @], X" ®(]) =
= Q1w(1)(1) ® Pow(r)(2) ® Pawe)([¢" @ Y], [§" @), X" ® (]) =
= &1 @ w1y(1) @ P2 @ w(1y(2) ® P3 B w(ny([¢" ® i, [6; @ Y], [§" @ 4], [ @], X" @ ki), [k @ (]) =
= @([¢" @4, [ @y, [X" @ ki) A @id(A(w))([67 @ Y], [¢f @), [k @ (]) =
= (¢, Téivjrr)pw ([0 L5 K] © Phythputhy @ Phy+hyu+h,PNC])
Using the symbol ¢ to indicate the adjoint w.r.t. the product form, we have:
(9€C, Tdivjkr) pw ([67 L5 K] © Phy+hythy @ Phythy+h, V1C]) =

W([((Ostjkr, T*PEC)0itjK1)° © Phythythy @ Phy+hyth, Y1C]) =
= w([¢*€"C* o T o ppy @ Ph, @ Ph,, © Phythy+hy @ Phy+hy+h, ¥1G])

Using the same tools in the calculation of the right hand side we get:

id @A(A(w))2([¢" @ ], [€" @], [x" ® (]) =
= w([¢*E" X" 0id ®Syi © Phy+hy @ Phyth,, ©1d @SS, 0 ppy @ phy, @ P, © TPn(])
At this stage, using the explicit expression of 7" and the well-known properties of the
projections we get:
w([¢*E X" 0id @Sy © Phythy @ Phythy © 1A @S 0 Py @ pp, @ pr, 0 TYn(]) =

= w([¢*E" X" 0id ®Syi © Phy+hy @ Phyth,, © 01 @SS ; 0 Phythy,+h, © YNC])

Passing id ®5, ; from the left tensor factor to the right one and summing on « and
¢ we obtain (4.4.9). The relation (4.4.11) is very easy to prove using the same
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tools. Therefgre it remains to prove the identity (4.4.10). We compute the elements
Ty, Ty, T3 € C®* corresponding to A ® id ® id(®), id ®A ® id(®), id ® id A (D).
We start with T7:

A®id® id(@)(vé"w, Vg, 35 vgn, vy o) = @(v(;"wv;ﬁ, vgn, vy o) =

= (palX, Syj @ idp, 1n, 0 idh, @S5 © Phyth,©

oidp, ®S7 ; 0 Phyhy+h, © Sy @ idn,1h, VENC)

where S, ; € (V,, VEWwthv)and S, ; € (V,, VEm+hr) Therefore:

Ty = S5,j ®@idp,+n, ©1dn, ®Sy,i © Phyth, ©idn, ®SY; © Phythy,+h, © Sgj @ idp,+n, =
= idpy+h, ®Sy,i © So,j @ idp, +h, OPhy+h, ©idp, ®S] ;0 S5 @ idn,+h, OPhy+hethy+h, =
= idpy +h, ®S4,i © Phy+hethy © So,j @ idp, 055 ; ® idp, 0idp, 1h, ®ST; © Phythethy+h,

Summing on ¢ and j we obtain:

. . .
Th = idp, +h, ®Sy,i © Phythrthy © 1ny+h, @S © Dhy+hy+hy+h,

One also finds:

T = idh)\ ®Sgl7j®idhu o idhA ®SA//7iOph>\+hv, Oidh)\ ®S;/7iophk+hal+h,,oidh>\ ®S;/7j®idhu
where S/ ; € (V,y, VEhor+)y and S0 ; € (V,r, VEBrHhu)) and:

T3 = idhA+hT ®So.l/7joidh>\ ®S’7”,ioph>\+h,y// OidhA ®S’>;”,ioph>\+h‘r+hall Oidh)\+h7— ®S;”,j

where S, ; € (Vyr, Y &(hr+hon)) and Serrj € (Von, V&(huthe)y - At this point we
are ready to prove the cocycle relation. Since the formulas are rather long, we will
drop out many indices. For example, we indicate with po the projections pp, 4., and
so on. We first calculate the left hand side:

Ts op?4 oT) =id®id ®S] 0id ®S 0 p2 0id ®S5 o p3 0 id ® id ®ST op?4 0id ® id ®S3 o p3o
0id ®1d ®S3 o ps = id ®id ®S] 0id ®S3 0 py 0id ®S5 01d ® id ®ST © p4
On the other side, if 7" is the matrix defining P:
(I®T)opftoTyopfo(Twl) =
=1d®id ®51 0 id ®py 0 id ® id ®ST 0 id ®p3 opi94 0id ®S5 ® id 0id ®S3 o pyo
0id®S3 o p3 0id @55 ® id op{* 0id ®Sy ® id ops ® id 0id ® S} ® id op3 ® id
Using the usual tools we can delete the idempotents id ®p3 and the first p?‘*. More-
over, we can delete the first three factors of the second copy of p?‘l, moving the fourth
to the far right. This has also allowed to use S5 o Sy = d2,4. So we obtain:
id ®1d ®S5] 0id ®p2 01d ® id ®S7 0 id ®(S2 ® id 0S3) o peo
0id ®S55 o [p3 o (p2 0id ®S5 o p3) ®id] 0 id ® id ® id ®p1
Next, write the term in the square bracket as (pz 0 id ®55 o p3) ® id ops, so we can
delete po and ps. Therefore the above term becomes:
id ®1id ®S5] 0 id ®(p2 0 id ®S] 0 Sy ® id 0S53) o pao
0id®S53 0id®55 ®idops 01d®id® ® id ®p; =
=1d®id®S] 0 id ®(p2 0 id ®S] 0 S2 ®id 0S53) o pgo
0id®(S53 0 S5 ®idoid ®S] 0 p2) 0id ®id ®ST 0 pg 0 id ® id ® id ®p1
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adding in the last equality id ®p», id ® id ®S5; and id ® id ®ST in the suitable posi-
tion. It is possible to do that thanks to the well-known properties of the projections.
We set now S" = pooid ®S} 0S5 ®id 0S5 another orthonormal system of isometries.
In this way we get:

id®id ®S1 0id ®S" 0 py 0id ®S5"" 0id ®id ®S} 0 py 0 id ® id ® id ®py

which coincides with the matrix defining the left hand side of the identity (4.4.10).
d

Remark 4.4.6. We have already noticed that @ is endowed with a quasi coassociative
structure but not coassociative. We can say that this structure is a little bit stronger
than quasi coassociative. In fact, there is also a simple relation between the iterated
coproducts:

A1) = A®id® o, 0 A®idoA([)

and arbitrary iterated coproducts A(™ of order n. More precisely, iterated coproducts
can be obtained as compositions:

CoC®RC— .. . —ontl

where the maps €%/ — €%7+! can be an arbitrary translates id®” @A @id®/ """ of
A. Therefore, for all possible choice of A(™) we have:

AP () = AP (DA @) AT (1)
We derive the above identity. The left hand side is:

A An
AP @) gy 00 ) =
= w(¢f .o (ﬁ; Oph)\1+~“+h)\n ®ph>\1+u_+h)\n o 1/)1 . ’(ﬁn)

The right hand side is:

AP AP @) AT (D (03 o 0hm ) = DTy @ @ Lwn L (03 o vhn ) =

=hHowell®..ol, ®wn®l’([¢’{®£m]

[€(1) ® 0y [61) @], ... [¢n®§(n] (€0 ®5(n)] [000) ® ¥n]) =

= (B1 - Pns Py, +.th, & ) (0(1) -+ On)s Phy, +.thn, Y1 - - - )
W€y Ey o T ®T°5<1) n>)

where {(;)} and {d(;)} are orthonormal basis of V), and T' = py o T", where T" is
a composition of isometries S, ; and projections p;, (we have dropped out many in-
dices). Proceeding as in the proof of the last Theorem and setting p,, = Phy,+..+hx,,
we get:

W(P7 - P oppopi™ o T opp @ pyoT o pf™opyothr...¢n)

Now we can conclude using the well-known properties of the projections.
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Proposition 4.4.7. C is a weak quasi Hopf algebra. More precisely, it is endowed
with an anti-automorphism S such that:

m(id @S(A(W))) = (a)I = m(S @ id(A(w))) (4.4.14)
le Dz =1=> 5(p;)q;S(r;) (4.4.15)

J

where ® = ZZ Ti QY @z and U = ZZ pi ® q; ® ;. Therefore S is an antipode
witha = = 1.

Proof. We define S by duality on C:

S(w) (V) = w(S(W) ) = w(v)y i)

We prove now that S is anti-multiplicative. Let {7, }; be an orthonormal basis of V)
and {¢;}; be an orthonormal basis of V. We have:

S(wr)([¢* @ ¢]) = wr([(iay)* @ (rg)]) =
=wT([(a)* @&l [6 @ (1)) = w([(a)” @ &€ © (Ire)])

On the other side:

S(r)S(w)([¢* @ ¢]) = S(7) @ S(w)([¢" @ mil, [n; @Y]) =
= 7([(am)" @ (a@)Dw([(ry)" @ (ami)])

Identifying &; with j\7; we obtain S(wT) = S(7)S(w). The relation (4.4.14) is also
a consequence of the duality, since it is a self-dual relation and it has been proved on
C. It remains to check (4.4.15). We omit, as usual, the summation symbol on :

xiS(yi>zi(vg7¢) =x;5(yi) ® zi(vgmj,vgj’w) =
=z; @ S(yi) ® zi(véf,gk, ng,nngj,w) =
= (0] e Vi e V) =
= (¢ @ (Junj) @ nj,idp, @Syi © Ph,+h, © idp, @S] ; 0 P3n, &k @ (Juék) @ V)

We now that 7(1) = >, & ® (ju&k) as arrow in (C, V, ® V), so

(¢ ® (§uny) @ ny,idn, @Sy, © Ph,h, ©idp, @S5 ;0 pan, &k @ (4.8k) @ ) =
= (¢ ® (Junj) ® nj,idp, ®Sy,i © Phy+h, © ldhu ®57 ;0 p3n,T(1) @)

We know that the range of 7 in V,, ® V,, is a copy of C in it. Hence 7(1) ® ¢ is an
element in Ve ® V), = V,,, where Vc = C. Therefore the projections are trivial:

(¢ ® (Junj) @ nj,idp, @Sy, © pr,+h, ©idp, ®S7 ;0 p3p, T(1) @) =
= (¢ & (j,unj) XNy, & ® (]uék) & ¢) (¢ §k)(],u77]7]u§k)(nja ¢)
= (¢, ¢) =1(v},)

)

The right part of the identity can be proved in the same way. O
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Proposition 4.4.8. C is a weak quasz Hopf -algebra. In other terms, there exists an
involution map * : C — Csuchthat Cisa *-algebra with respect to it and a partially
invertible element ) such that:

Q=0 (4.4.16)
QA(I) = Q= A(1)*Q (4.4.17)
Alw)* = QA" Yw e € (4.4.18)

£ ®id(Q) = I = id () (4.4.19)

1 = (I2Q)(idRAQ)P(ARIdQ Qe (4.4.20)
(4.4.21)

More precisely, * is the dual involution of * on C, and {2 = wg, where S = RophA+hu
Proof. First of all, we know that * is defined on the simple tensor of € in the following
way:
Ak A
Yo = Uio
Therefore we define * on C by duality:
w*(v%w) = w(v$’¢)
We want to prove that * is anti-multiplicative. On one side:
(W)™ ([¢" @ ¢]) = wr([P* ® ¢]) = w @ 7([¥* @ ], [0} @ ¢]) =
= w([y* @ ni])([ni x @¢])

On the other side:
w ([¢" ©@¢]) = 7" @ WX ([¢* @ mil, [ni @ ¢P]) =
= 7([nf ® ¢))w([v* @ mil)
Next we check the relations involving 2. We define €2 in the following way:
QUvg o vE,) = (6 ® & Rppyn, ¥ ©1)

where R is the coboundary matrix introduced in the Chapter 3. We start with the
self-adjointness of 2. Set p = pp, 11,:

Q* (Ué,w’ Ug,ﬁ) = Q(’U;};@a U:;’w) = (77/) ® ,’77§p¢ ® f)p =
= (Rpp &Y @nN), = (9 Q&P RY @)y =
= (@& RpRa R @ ), = (6 @ &, Rpy @)y = vy, 0F,)

where we used the fact that p is self-adjoint w.r.t the modified hermitian form and

hence p* = RpR»;. Proceeding in the same way we have:

AU)*(U@;, ve,) = (6@, Rph, 4h, Ro1t @ 1)

Using Lemma 4.4.4 we have (4.4.17). Next we prove (4.4.18) in the form A(w)*Q) =
QA(w*). The left hand side is:

AW) Q[¢* @ 9], 1€ ®@1]) = (wa)) " @ (wiz)) " Qa([0” @ Y], [€" @ 1)) =

= (w1)" @ @ (wz)" @ (" @xi], i @], [§" ®

A
A

(
w)*([¢" @ xil, [ @ 6] @ ¥, [0 @ n)) =
) [

(
W) ([x; @ 9l [05 @ €))(xi ® 65, Rpyp @ 1) =

651, (07 ®@n]) =

w(x; 05 0 p @ po ¢€)(xidj, Rpym) = w(¥*n* o Rp @ p o $€)
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On the other side:

QA W) ([¢* @ ¥, [€" @n]) = Q[¢" @ xi], [€ @ 6] A(W)([X] @, 07 @n]) =
= (¢ @&, Rpxi ® 6;)w* (X607 op@poin]) =
= w*([¢*¢ o Rp@poyn]) =
= w([y*n* o p* o R® peé]) = w([tp*n* o Rp @ pg€])

(4.4.19) is merely a consequence of the identity ¢ ® id(R) = I = id ®e(R). In fact:

e® id(Q)(vg7w) = Q(v%l, vﬁ’w) =
= (1® ¢, Rpp, 1 @¢) = (¢, e @ id(R)Y) = (¢, 1))

The right part of (4.4.19) can be proved in the same way. It remains to prove (4.4.20).
First of all, there is an equivalent formulation of the identity:

o7 = ([deAQ)) I @ Q)e(Q " @ (A eidQ™))

This allows us to see that it is not restrictive to multiply on the right by A®id(A(1))*.
Now we turn back to the original formulation. The right hand side is wr, where:

T =id®Roid®ps 0 p1 ® pj @ pf 0id ®S; 0 Rpy 0 id @S]0
op1 ® py @ pi op1 @ P} @ pf 0id®Sj 0 py 0id @S] opzopr @ Py @pf oSy ®ido
opaRa1 0 S ®idopy @ p @ pf 0 paRy1 @ id opy @ pi @ pff o E(B)PSES)
Using the well-known properties of the projections we get:
T=p ®id®idoid ®R 0 id ®ps 0id ®S; 0 Rps 0 id ®S; 0id @S0
0id @57 01d ®S), 0 Ra1 0id @S] 0 id @Ry 0 R ps Ry

Now, it is possible to use the properties of the isometries and omit the first projection.
We have:

T =id ®R o id ®ps 0 id ®5; o RpaRa1 o id ®S; oid ®Ra; © E(g)pgﬁ(ﬁ)

We know that p, = ), S5/, so using this expression in place of the first py and the
properties of the isometries again we obtain:

T=1id ®§Sl o Epzﬁgl oid ®S;‘R21 © R(g)p:*ﬁg)
On the other side, we know that ®~ 1" = ¥* = wy e, where:
(3

V° = id @RS; Ra1 0 RpaRo1 0 id @RS  Ra1 0 B ps RS

We use ¢ to indicate the adjoint with respect to the product form. In order to obtain
V¢ =T, we can see that:

ES’iR21 - ESZ and ES:EZl = S,;.kﬁ21

In fact, if S; € (V5, VenN ) for some v and some N, we have that Ry acts trivially
on V. For the same reason we can omit R in RS} Ry, since S7 € (VN V). O
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Proposition 4.4.9. ® and VU satisfy the following identities:
O =id®A(A))A ®id(A(])) (4.4.22)
U =A®Iid(A{))idA(A(I)) (4.4.23)
Therefore, Cis a weak Hopf *-algebra.
Proof. 1t is straightforward to prove using Lemma 4.4.4. O

We can see that C is endowed with a R-matrix R € €2, defined in the following
way:
R0}, 0 ) = (6 @ & S nprrn Sk Ronr (1 @ )y
where ¢,1) € V& and &, € VEF,

Proposition 4.4.10. R satisfies the following relations:

RA(I) =R = AP(I)R (4.4.24)
AP(w)R = RA(w) (4.4.25)
id @A(R) = ®55R13P213R120 ! (4.4.26)
A® ld(fR) = @2313313(1);3129323@ 4.4.27)
R*Qoy = QR! (4.4.28)
Finally, R is invertible and its inverse is:
R (034, g ) = (0@ & pryk R S b nZnkth ©1)p (4.4.29)

Proof. Recalling that:

A(D) (V) V) = (9 @ & pryat @ 1)
AP(1)(v3 ve ) = (6 ® & B hPrn k) @ 1)
and using Lemma 4.4.4 the first assertion is very easy to prove. We pass to the second

one. Suppose that {J;}; is an orthonormal basis of V) and {x;}; is an orthonormal
basis of V,. The left hand side is:

AOp(w)iR(v%w, vgm) =wiR ® w(l)iRg(vé,‘M vgn) =
= w)([¢" @ &) R1([6] @ Y)wa)([§" @ x;])Ra([x; @ 1)) =
= (Xj0i> Pk+h 2 h e Rpn k)W ([E7 D" © Pran @ Dran © X503)) =
= w([£70" 0 P @ PrnXn ke Bpnyrn])

On the other side:

RA(w) (03,5, g ) = (§0, Pt nZh ke BPR+10i X5 )w ([05 X © Proth @ Pren 0 Ym]) =
= w([£" 0" 0 prynSnk Rphik @ Pryn oY1)

Since pppSppRpnir € (VEHE VEk+h) we can conclude. Next, we treat the
identities (4.4.26) and (4.4.27). We focus on the first one, since the second can be
proved in the same way. We will use the well-known computation rule shown in
Lemma 4.4.4, but with a slight modification. In fact, we know that if w = wgwr,

(n)

then w = wy, where V = Sop| ®...®p; ' oT. In the next calculation we omit
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the projections in the middle, since they will soon disappear thanks to the properties
of the projections. So, the right hand side is wp, where T is:

T =%310p301®S;0pr01®85;01®prol®@Lol®Rol®@prol®Sjo
oppol®Siopsopa@lor®loR®lopy®@1lop3ol®Spoprol® Sy

using the short notation. We can delete all the projections except the first and the last
one, so:
T=3%10p301l®XRoYXR®101®S,opr0l® S},

using the relations involving the isometries. We know that the R-matrix R on the
extended form of U, (g)®? satisfies the identity:

id ®A(R> = Ri3R12
which can be rewritten in the following way:
Y12id®A(R) = (I @ XR)(XR®I)

So:
T=3%310p30%X120id@A(R)01® Spoprol® S

Since id ® S}, is U, (g)-linear, we have:
T =3310p30%120id®@S,0Ropyoid®S), =
:2271 Op3OSk®102Rp201®SZ =
=321085,®1opXRprol® Sy =
=1®S,oXpXRprol® S; =T

where T" is such that id @ A(R) = wqv. It remains to check that R*Qy; = QR~L. If
R = wy, then R* = wye, where U? is the adjoint of U w.r.t. the product form. So:

U°® = Rp2Ro1 R*SRpy Ro1 &
Therefore, using Lemma 4.4.4, we have that the left hand side is wg, where S is:
S = RpyRo1 R*SRpaRo1 0 p1 ® p o SRps Y

Using the well-known relations Ry RO? =TI ®1I, R* = R;ll, YR = Ry Y and
R = RO we get:

S = RpaR21021 R* R21021Xp2R21Y 0 p1 ® pl o TRpeY =

= Rp2R2103,SpaRo1Y o py @ Pl 0o ERpoY =

= Rpa(RO?*)21XpaRo1 Y o py ® p) o SRpoY =

= RpaR ' SpaRon Y 0 p1 @ py o T RpaY.
Using Lemma 3.7.4 we obtain:

S = RpaR™ 'SRy EERpeY = Rpo R 'Epe %
On the other side, QR ™! = wy, where:
T =Rpyop1 ®p)opoR'Epe¥ =8

using again Lemma 3.7.4 and Lemma 4.4.4. Finally, similar calculations allow to
prove that R~ can be defined as in (4.4.29). ]
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We next briefly discuss a relation between the original quantum group U,(g) and

@ ). There is a natural map:

™ : Uy(g) = €(G.1)
taking an element a € U,(g) to the functional:
m(a)(v5,4) = (¢, av)
where ¢, 1 € Vy and A € A;.
Proposition 4.4.11. 7 is a surjective homomorphism of *-algebras satisfying:
Pr®@m(A(a)) = A(n(a)) = 7 @ 7(A(a))P (4.4.30)
Proof. We first check that 7(a)* = m(a*). In fact:
m(a*)(v3 ) = (¢,a"%) = (ag,v) =
= (¥,a¢) = m(a)(v), ) = 7(a)*(v},4)

)

Secondly we prove that 7w(ab) = m(a)mw(b). The left hand side is ﬂ(ab)(% W) =
(¢, abrp). The right hand side is:

()7 (b)(v3,) = (@) @ w(b)(vy5,, V5, ) =
(¢, adi)(0i, bp) = (¢, aby))

In the same way it is easy to prove (4.4.30). Finally, surjectivity is a consequence of
the identification of C with ., B(V)) and of the irreducibility of the V). O

4.4.3 Comparing the groupoids associated to different sections

Let s : C(G,l) — D(V,l) and s' : C(G,l) — D(V,l) be different sections of
the quotient map D(V,l) — C(G,1). Correspondingly, we can put two different
structures (A, @, R) and (A’, &', R) of weak quasi Hopf *-algebras on €, noticing
that the antipode S is the same because it does not depend on the choice of the section.
We claim that these algebras are related by a tw1st1ng procedure as shown in Chapter
1, induced by special quasi invertible elements in e®e.

Proposition 4.4.12. Set P = A(I) and P' = N'(I). Then for w € €:
PA'(w)P = A(w) , PPA(w)P' = Al(w)

Proof. To show the first relation, we first write P in a different way, as follows.
Let s and s’ be defined by two choices of irreducible summands V) and V; both of
highest weight A in V2" and Ve, respectively. For each ) there exists a unitary
intertwiner Uy : V{ — VA, umque up to a scalar multiple by an element of T. We
associate the element G € € ® C defined by:

G(”g’ﬂpH Ug/m/) - (UA¢/ ® U/L’l/}lvph)ﬁ*hu o UAT// ® U,U«T]/)p

where ¢/, € V{, &'\ € V;i- On one hand we may use the defining identifications
in C(G, 1) and write, for ¢, ¢ € V), vq’}ﬂp = vi\,;qj’U;w, and this shows that G = P.
On the other hand, we can develop the usual calculations and derive the relation
GA'(w)G = A(w). We can proceed similarly in order to prove the second identity.

O
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Remark 4.4.13. ¢/ = Cp, where F = A/(I)A(I) and F~' = A(I)A/(I). We need
to check that:
e®id(F) =1 =id®e(F)

and F7'F = A(I), FF~! = A’(I). In order to prove the first assertion, it is
sufficient to prove that:

e®id(A'(I)) = I = id®e(A'(1))
We have:

e @1d(A'(I))(vg,,) = A'(I)([1* @ 1], [¢* @ ¢]) =
= (1®Uxg,pn, 0 1@ U\Y) = (¢,7)

Next we check that F~'F = A(I). It is equivalent to prove that A(I)A'(I)A(I) =
A(I). Using the well-known Lemma 4.4.4, we have A(I)A'(I)A(I) = wyp, where:

T = Phy+h, © Phy @ pu o Ux @ U0 ppy py, © Ux @ Uy © phy @ Phy, © Phythy,

which is equal to pp, +p,. The identity FF~1 = A’(I) can be checked in the same
way.

—

4.4.4 The *-tensor equivalence between F; and Rep,, (C(G,1)).

In this subsection we s/ho\w that if C(G, 1) is cosemisimple then the smallest full tensor
subcategory Repy, (C(G, 1)) of the representation category of € containing the fun-
damental representation is a tensor C*-category equivalent to the fusion category J;.
Let Rep(é) be the category of unital representations of Con f.d. vector spaces. In the

~

first chapter we showed that Rep(C) can be made a tensor category. Moreover, if we
restrict to the f.d. vector spaces endowed with an inner product, we get that Rep, (@)
is a *-tensor category. Now if u and v are Hilbert space representations, then v ® v
is still a Hilbert space representation provided v ® v(£2) is a positive operator with

respect to the product form. We consider the map V:C— B(V') defined by:

(& V(w)n) = w((&" @)

where w € € and &,n e V,and (-,-) is the inner product on V. We restrict to the ca-

~ ~

tegory Repy(€), which is the smallest full tensor subcategory of Rep,(C) containing

V. The objects of Repy (C) are the trivial representation, V and all the representa-
tions of the formw = V ® ... ® V o A (w), n > 1. We have:

~

Theorem 4.4.14. Repy,(C) is a tensor C*-category.

Proof. 1t is sufficient to prove that Ve XA/(Q) is a positive operator on V ® V. We
use the notation 2 = Zl c; ®d;. Set&1,& € V. We have:

(G @&, VeVQa©&) =Y (6, V(&) (& V(d)é) =

(2

= Zci([ii‘ ® &1))di([&5 ® &) = Q6] @ &1], (65 ®@ &2]) =

= (61 ®& Rp2o&i ®&) = (P01 ® &, Rpro&l ®&) >0

using the positivity of the Wenzl’s form. O
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We finally discuss the relation between the original (strict) fusion category J;
and Repv(@). Let X = VE" be regarded as an object of F;, meaning that X is the
truncated U, (g)-submodule of V®", endowed with a Hilbert space structure, as we
showed in the Chapter 3 of this work. We associate to X the map:

C(G,1) = B(X), (¢, X (w)) = w((¢* @]

for ¢,1p € VE", w € GTG?) This formula extends the previously introduced V to

all objects of J7, and, as before, it is easily seen that X is a unital *-representation of
C(G,1) on VE™, One has:

X=Ve&..eVoAl™"Y

Hence X is an object of Repv(é).

Theorem 4.4.15. The functor € : F; — Repv(@)) sending X to X and acting
identically on the arrows is a tensor *-equivalence.

Proof. An arrow T' € (X, X') in F} is an intertwiner of the corresponding modules
of Uq(g). But it also lies in the arrow space (X, X') of Rep(C(G,1)), as

(6, TX (w)¥) = (T*¢, X (W) = w([(T*$)* @ Y]) =
= w([¢* o T @ 4]) = w([¢* ® TY]) = (¢, X' (w)TW)

hence € is a functor between the stated categories, and it is easy to see that it is ac-
tually a *-functor since in a *-category the involution acts trivially on the objects.
€ is obviously faithful, so we verify that it has full image. In fact, let X be a
*-representation of €. It is a routine computation to see that X = Xomisa*
representation of Ug(g), where m : Uy(g) — C is the surjection introduced before.
Soif T € (X,X'), then TX(r(a)) = X'((a))T, and therefore T is an inter-
twiner of the corresponding U, (g)- representatlons Essential surjectivity is very easy
to prove, since the /é-representatlon X=V®..oVoAMis equivalent to £(X),
where X = p,V®". Finally, it remains to prove that & is a tensor functor. Ex-
plicitly, since J; is strict while Repy, (@) is not, we look for natural isomorphisms
Exy € (X ® ?,m) such that:

Ewxey oidiy @Exy 0 Py ¢ o = Ewaxy 0 Exy ®idy
For W =V&m X =V&" Y = V& we write:
EX,Y - f}@(n—i—'r) (Qn,r)

and we are reduced to look for a quasi invertible @, , € eentr) satisfying the
intertwining relation:

Qnr n 1) ® A(r 1)(A(w)) _ Aén—i_r_l)(w)Qn,r
It is solved by:

Qny = AT (AT @ AV (AD)
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which also allows to obtain naturality. So it remains to check that @, , satisfies the
tensorial equation:

Qm,n+r (Im ®Qn,r)A§m_1) & Agn_l) ®A§T_1) (‘I)) = Qern,r(Qm,n ®Ir) (4431)
Using now the short notation, we have that ), , = wr, ,.» where:
Tn,'r = Pnyr 0idy, ®SW O pp+1 0idy ®Sj;

and this expression shows that @, » is quasi invertible, so € xy are isomorphisms.
Furthermore Agmfl) ® Aénil) ® Agil) (®) corresponds to:

So' X So-/ ® So‘” oid ®Sfy opg o 1d®5’; op3 o Sa‘ (4] SU/ X So'”
and we next check the validity of the relation (4.4.31). At the left hand side we obtain:

Pm+n+r © ]-m ® S’y O Pm+h., © 1m ® S:; °Pm & 1n+r o 1m & PngrO
Olern X 56 0l,® Pn+hgs © 1m+n ® S:Sk o So ® SU‘/ & Sa'“o
ol ® Sa © Phygtha © 1@ S5 0 Phyth,ith,n © S5 @S5 & Sou

which equals
Pm+n-r © ]_m X Sg’ &® Sa'” Opm—i—ha/—l—ha// o 1m & S;’ ® S;”
by repeated use of Lemma 3.7.1 and Lemma 3.7.4. The right hand side becomes:

Pmtntr © lmgn ® Sgrr 0 Pm+n+h_n © Lntn ® S;” © Pm+4n & Pro
Olm ® SU’ ® 1, Opm—l-ha/ b2y ]—7" © 1m b2y S;/ & 1r

which in turn equals:
pm+n+r01m+n®sa”o[pm—&—n—l—hau O(pm+n01m®sa’ 0pm+h0/ )®1ha//]olm®5;’ ®S;”

It is easy to see that the expression in the square brackets can be rewritten as:

(Pm+n © 1m ® Sor 0 pm—l—hal) ® 1hgu O Pm+h i+hgi

Substituting it in the right hand side formula and using the usual properties of pro-
jections we get the desired identity. O

4.5 Cosemisimplicity in type A case.

Crucial in the construction we carried out in the previous pages was the cosemisim-
plicity of C(G, ). In this section we will verify it for G = SU(N). Our condition
appeals to the existence of a Haar functional on C(G, 1), and of the associative fil-
tration ék built in this chapter. We prove the cosemisimplicity just in type A case
because it is the easiest and most common case, but maybe not so much work will be
required to prove the same result for the other Lie types (but not Eg).
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4.5.1 A sufficient condition for cosemisimplicity.

It turns out useful to face the cosemisimplicity problem at the level of the filtration
ék, as this is a better behaved structure, in that it is provided with a multiplication. Of
course, this involves the question of non-triviality of this filtration, or, more precisely,
whether the image of M /’\“ of M in ék under the quotient map C, — ék is a matrix
coalgebra for some k > n and sufficiently many A € A;.

Linear indipendence can be easily settled.

Proposition 4.5.1. (a) The subcoalgebras M) are linearly independent in C as A
varies in Aj;
(b) M), are linearly independent in Cj, as \ € Af for all k.

Proof. 1t is sufficient to prove (b). (a) is easier and can be done along similar lines.
Let V), be the isotypic submodule of p,V®" of type V), with orthogonal com-
plement Vi, . The subspaces Vi, @ Vil (Vi})* ® Van, and Vi, @ Vi, for
n = 0,...,k, are linearly independent in Dy. Let W) denote their span. Consider
the projection E : D, — W) with complement:

k

n=0

The main point is that ij is stable under E). This can be seen noticing that ij is
linearly spanned by ¢* ® Ay — ¢p* A ® ), withp € V) , and ¢ € V), or ¢ € me
and ¢ € V/\l’m; and also by ¢* ® Z% and ¢*Z ® 1), where ¢ € V) ,, and ¢ € V/\l,n,
or ¢ € V)\L’n and ) € V), 0r 9,0 € V)\J,_n' Therefore if E/) acts on elements of these
types, then it annihilates them or it acts as the identity. Hence E (ij) C JNk 0

Cosemisimplicity in the generic case was studied by means of the Haar func-
tional. We look for a generalisation of that approach to the present setting. Notice
that if one can establish that M f is a matrix coalgebra in ék then M) is a matrix
coalgebra in C(G, ¢) as well, by dimension count. We shall verify cosemisimplicity
in this stronger form.

Definition 4.5.2. A linear functional  on €y, is said to be a Haar functional if h(I) =
1 and h annihilates the subcoalgebras M¥ for A € AF\{0}.

Obviously a Haar functional on ék is unique. Furthermore, if ék admits a Haar
functional then so does ), for h < k. For a given A € A, let deg()\) denote the
smallest integer k such that A € A¥, or, in other words, such that V) is a summand of
V®k_ Furthermore, set:

m(g,!) := max{deg(\), A € A}

Definition 4.5.3. We will say that the pair (g, [) satisfies the cosemisimplicity condi-
tion if

(1) there is m > m(g, ) such that ém admits a Haar functional,

(2) every A € A, has a conjugate A € A; satisfying deg(\) + deg(\) < m.
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Lemma 4.54. Let \ € Af have a conjugate \ € A? such that éh+k admits a Haar
functional. Then M )’f is a matrix coalgebra in Cy,.

Proof. Let V) be a summand of V&, n < k. Letr : C — V5 ® V) be asin (3.6.2).
The composed arrow r*r : C — V5 ® V) — C is nonzero since A € A;. More
precisely:

N

rr(l) = Y (6 Ky, &) = (K1) = dim(Vy) = N
i=1

In particular, the trivial submodule defined by 7 is a summand of V5 ® V). But
(1 = ph4n)V5 ® V) can not contain a trivial submodule, as otherwise it would be
a summand, by multiplicity count. This shows that r € py,,VE"*". If a linear
combination x = Z” um-e;\d- = 0 vanishes in ék then h(az) = 0 forall a € éh,
where h is a Haar functional for éh+k. Now computations analogous to those at the
end of the proof of the Theorem 4.1.8 show that y; ; = 0. U

Theorem 4.5.5. If (g,1) satisfies the cosemisimplicity condition in Definition 4.5.3,
then:

(a) ]\7;\“ is a matrix coalgebra in Cr Sfor k = deg()\),

(b) My is a matrix coalgebra in C(G, 1), forall A € Ay, hence C(G, 1) is cosemisim-

ple:
C(G, 1) = P My
AEA;
Proof. The proof follows from Proposition 4.5.1 and Lemma 4.5.4 O

4.52 Thecase G = SU(N).

The rest of the section is dedicated to the proof of the following theorem, which
concludes the main result of the paper.

Theorem 4.5.6. If g = sl then (g, 1), satisfies the cosemisimplicity condition for all
N >2andl > N + 1 withm(g,l) = (N —1)(Il — N) and m :=m(g,l) +1— 1.

We start fixing notation of type Ay _1 root systems [Humphreys]. Consider RY
with the usual euclidean inner product, and let ey, . . ., ey be the canonical orthonor-
mal basis. Consider the subspace E C RY of elements pi1eq + - - - + ey such that
p1+ -+ pn = 0. The Ay_ root system is & = {e; — e;, 7 # j}, the simple roots
are o; = e; — e;41, and the fundamental weights are w; = e; +---+¢; — %e, where
e:=e1+---+eyandi=1,..., N — 1. The weight lattice and the dominant Weyl
chamber of (E, ®) are respectively:

M4 AN
N )

A:{)\:)\1€1+"'+/\N—1€N—1_ /\iGZ}

and:
A+:{)\€AZA1Z)\QZ"'Z)\N_lzo}

The highest root is § = e; — ey, and:

p=12(62'—6]'):%((N—1)61—l—...—|—(N—Qi—i—l)ei—i-...-i-(—N-i-l)eN)
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In general we know that:
Ay={AeAT: (N\+p,0) <dl}
Direct computations bring to:
AN={ eAT: N <I-N+1}, A={AeAT: N <I-N+1}

We consider the vector representation V' = V/,,, . Its weights are:

.
71=w1,7i=6¢—ﬁe,z:2,...,]\7

In the next lemmas we shall make use of the decomposition into irreducibles:

VoV~ Vi, Ach

in the category J; of tilting modules, where the sum is extended to all ¢ such that
A +; € A; (Theorem 3.5.13). We derive two simple consequences.

Lemma 4.5.7. For any A € Ay, the negligible submodule Ny of V\ ® V is non-zero
ifand only if \1 =1 — N, and one has Ny ~ V.

Proof. We set A =)\ 4 ~; when ¢ > 2. We have:

)\1+...—|—)\N_1—|-1e
N

AD = Xer+. . A imrei1 N+ D ei+Nip1€ir1+ - AAN_1eN_1—
Since \; < I — N +1and A® € A;\ A; if and only if \; = [ — N + 1, we conclude
that \(®) ¢ A; \ A;. We focus now on A(Y) = \ 4 w;. We have:

M+ ...+ A1+ 1
)\(1):()\1+1)€1+/\2€2+---+)\N—1€N—1_ : — €

N
Therefore A() € A; \ A; if and only if \; =1 — N. O
Lemma 4.5.8. m(siy,l) = (N —1)(l— N).
Proof. Let A € A; be determined by non negative integers A1,..., Ay_1 as above,
and let us identify A with (A1, ..., Axy_1). The dominant weight with coordinates all

(N=1)(=N) and this is the smallest

equal to [ — N lies in Ay, it is a summand of V'
possible power. This fact is merely a consequence of the decomposition V) @ V' =~
D, Vat,, with A € A;. We need to show that every module V), with A € A;is a
summand of some p, V"™ with n < (N — 1)(I — N). Notice that (1,0,...,0),...,
(/\1,0,...,0), ()\1,1,0,...,0),..., ()\1,)\2,...,0), ceey ()\1,...,)\]\[_1) is a se-
quence of A\; +Aa+- - -+ An_1 dominant weights of A; starting with w; and obtained
from one another by adding a weight of V. The fusion rules then show that V) is a

summand of p, V", wheren = A\; + Ao + -+ + Ay_1 < (N = 1)(I — N). O

We next derive information on the negligible summands of V®", including the
non-canonical ones, for the bounded values of n. The following Lemma plays a
crucial role for the Haar functional.

Lemma 4.5.9. No negligible summand of V", with n up to m = m(sly,1) +1—1,
contains the trivial module among the successive factors of its Weyl filtrations.
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Proof. A negligible summand of V" is isomorphic to a summand of:
N, = (id —p,)V®"

Furthermore the inductive procedure described in Sect. 3.7 shows that N, is in turn
spanned by the summands:

Np, V¥ @V)oVer—Tr-b -1 .. n-1 4.5.1)

where N (p,V®" ® V) is the canonical negligible summand of p,V®" @ V, hence
we are reduced to show the statement for these modules. Using Lemma 4.5.7, we
know that N (p,V®" @ V) is completely reducible and the dominant weights of the
irreducible components are of the form A +w; = (I = N + 1, A9,..., An—1). On
the other hand, the dominant weights appearing in the Weyl filtrations of (4.5.1) are
the same as those appearing in the irreducible decomposition of the corresponding
module at the level of the semisimple category Rep(g), see Prop. 3 and Remark
2 in [Sawin]. Hence we are reduced to show that the smallest integer ¢ such that
Viiw; ® VO contains the trivial module in Rep(g) satisfies:

t+r+1>(N-1)(I—-N)+1—1

where A 4 w; has the form shown above. We compute ¢. For a general dominant
weight © = (u1,...,pun—1), the shortest path to the trivial module is obtained as
follows. If pny—1 > 0 we consider the path:

p+yN, Bt 29n, .., g+ UN-1YN

which lowers p to:

p = (1 — pN—1,- - iN—2 — iN—1,0)
and we have thus used py—1 powers of V. In fact, recall that vy = en — %e. Then:

/~L+7N:N1€1+...+MN_16N_1—Ml s 16+€N_N€:

N
1—N+1
:(Ml_1)61+-"+(MN—1_1)6N—1_ pat +M]<[V ! + e

So previous calculation explains the expression of /. At this stage we need no powers
of Vif uy—_1 = 0. We proceed in the same way for the N — 2 coordinate and the
new weight 1/, but we now need to follow a longer path, due to vanishing of the last
coordinate, and the shortest is:

fWotan-t, W Aav-i N, WA 2yvar o, W+ 2yN-1 + 29,
using 2(pun—2 — piy—1) more powers of V. Continuing in this way, we find:
t=pun—1+2(pN—2—puN_1) +3(uN—3 — pun—2) + -+ (N = 1)(p1 — p2)

Now we know that yz = A\ +w; and appears as dominant weight in V" +1, Therefore
w1+ ... +punv—1 <r+1,so:

t+r+1>t+m+--+puva1=Num=N{I-N+1)=(N-1)(1—-N)+I

which finally gives the desired estimate. O
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Remark 4.5.10. Using the last Lemma and Lemma 4.5.7 we have:
Np V¥ @V)=0if r<l—N
Corollary 4.5.11. Let n < m.
(@) ey, is a central element of (V& VO,
(b) e, o0idye ®(1 —pj) @idyw =0, g+ j+u=n.

Proof. (a) The multiplicity of the trivial representation in p, V'™ is the same as that of
the classical case, by the proof of the previous lemma, hence e, is the specialisation
of a central intertwiner of the generic case. (b) We know that:

en 0 idye ®(1 — pj) @ idyw opp, = po © €, 0 idye ®(1 — pj) ® idyw opy,
Now, using Lemma 3.7.4, we have:
P0 © ep 0 idye ®(1 — pj) @ idyw opy, = P © €y, © Py — Po © €y, © idye ®p; ® idyw opy, =
=P0O€nOPn —PoOenopy =0

50 ey, 0 idye ®(1 — pj) ® idyw opy, = 0. Putting together this fact with the centrality
of e,, we get:

en 0 idyq ®(1dv7 _pj) ®idyu = e, 0 idyq ®(1dV7 _pj) ® idyu O(idvn _pn) =
= idye ®(idy; —pj) ® idyw oey, o (idyn —p,) =0
O

We next consider the m-th term, ém of the associative filtration ék corresponding
to €(SU(NV), 1). For convenience we recall that Cj;, = D, / J, where 7 is spanned
by elements of the form ¢ ® A o1 — ¢ o A ® 1), together with ¢ ® Z o)/, and
¢ o Z' ® 1), where:

Ac (V@my V@n)v Z, z" = Pg+j4u © lye ® (1 _p]) ® lyw

withm, n, ¢+ j +u < m.
‘We define the linear functional:

h: 'Dm —C
setting:

h(p @) = dleny)), ¢@¢ e (V") 'p,@p, V", n<m

where e, € (p, V", p, V") is the orthogonal projection onto the isotypical compo-
nent of the trivial representation.

Theorem 4.5.12. The functional h annihilates ﬁm Hence it gives rise to a Haar
functional on Cg,.

Proof. Using the centrality of e,, it is clear that h annihilates elements ¢ ® Ay —
»A®1). Furthermore, it also annihilates elements of the form ¢® Z1)/, ¢/ Z' @) € I3,
by (b) of the last Corollary. ]
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We finally verify the needed upper bound for deg()\) + deg()) for all A € A;. It
will be given by (c) of the following:

Proposition 4.5.13. If A\ = (\1,...,A\y_1) € AT then:
(@) deg(A) = At + -+ An-1,
B A= (A, M = AN_1, A1 — An—2, ..., A1 — Ag),

(c) deg(A) +deg(A\) = N\y <mfor X € A;.

Proof. (a) is a classical result. Let us pass to (b). Let wy be longest element of the
Weyl group. For slj, this is the permutation group Py and wq is the permutation
reversing the order of (eq,...,ex). Then:

Mt Ay

A= —wor = —(M\eny + Aoey_1 + -+ An_1€2) + N

= (AL, A = AN—1, A1 — AN—2, .., AL — A2)



Chapter 5

The quantum groupoid
C(SU(2),1): generators and
relations.

5.1 Representation theory of U,(sl;) for ¢ root of unity

We shall write down C(G, 1) introduced in previous chapter by generators and re-
lations, in the case g = slp and [ = N + 1. The presentation of C(SUs, N + 1)
will be obtained simply passing to the dual, and we will do it in a peculiar example.
The case sls is the most workable, since the decompositions of the tensor products
of irreducible representations are multiplicity free, and there is a canonical choice
of truncated tensor products. Our main references in this chapter are the works of
Andersen and his collaborators: [2]-[7]. For classical results about Lie theory we
refer to [32], and [35] for the quantum case. Other very useful references for specific
results about sy case are [25] and [70]. First of all, we recall the definition of U,(g)
in the case g = sls.
Definition 5.1.1. We denote by U, = U,(sl2) the associative, unital C(x)-algebra
generated by E, F, K, K~ subject to the following relations:
KK '=K'K=1
K—-K!
EF —FE = —— (5.1.1)
x—x
KE=2EK ,KF =2°FK
It is well-known that U, has the following Hopf *-algebra structure:
AE)=E@1+K@E,AF)=FK '+19F,A(K)=K®K
S(E)=-K'E,S(F)=-FK,S(K)=K!
e(B)=¢e(F)=0,¢(K)=1
E*=F,FF=F, K=K
(5.1.2)
As we did in the general case, we want to specialize this definition in the case of ¢
root of unity. We set A = C[x, z~!] and define for all j € N the j-th divided powers:
EJ Fi

B0 =2 g - L
7! 7]!

125
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We call Uy the A-subalgebra of U, generated by K, K~', EU) and FU). We fix
now g € T, where q is a root of unity of order 2N + 2, with N > 0. This means that
we will work only with even roots of unity of order > 4.

Definition 5.1.2. Let ¢ be as above, and consider C as an A-module by specializing
x to q. Then we define:
Uy=Us®4C

So, the generators of U, will be I/ @) ® 1 and analogously for the others, but we will
abuse notation and keep on calling them EU ) and so on.

Remark 5.1.3. It is easy to see that U, has a Hopf structure inherited from U,.
Moreover, since ¢?N12 = 1, we have K2V*2 = 1 and EN*! = FN+1 = (. In fact,
EN+L = [N 4 1)l EOV+D = 0 because [j] = 0 iff [N 4 1] = 0. In this way we can
see that this approach is equivalent to the Reshetikhin-Turaev’s one, with the only
remarkable difference that we call ¢ what they call ¢ and ¢> what they call q.

Definition 5.1.4. Let V be a U;-module and A be a scalar. An elementv # 0in V' is
a highest weight vector of weight X if Ev = 0 and Kv = Av.

Proposition 5.1.5. A non-zero U;-module V' contains a highest weight vector.

Proof. Since C is algebraically closed and V' is finite-dimensional, there exists a
non-zero vector vg and a scalar « such that Kvg = avg. Let n be the lowest integer
positive number such that E™vg = 0. It is at most N + 1, since EN*! = 0. So,
setting v = E™ v, we have that v is a highest weight vector. O

Lemma 5.1.6. Let v be a highest weight vector of weight \. Set vo = v and v, =
A FPy for p > 0. Then:

[p]!
=(p=1) )\ = gp—1)\"1
Kv, = A\q"*Pv,, Bv, = g - qill Vp—1, Fup1 = [plvp
Proof. Tt is a direct consequence of (5.1.1). O

Theorem 5.1.7. Let V' be a U,-module generated by a highest weight vector v of
weight A\, such that diim(V') =n +1 < N + 1. Then:
(a) The scalar X\ is of the form \ = €q", where ¢ = £1.

(b) Setting v, = %v, we have v, = 0 for p > n and, in addition, the set {vy, . .., vy}
is a basis of V.
(¢) K acting on'V is diagonalizable with n+-1 distinct eigenvalues {eq™, eq" 2, ..., eq " }.

(d) Any other highest weight vector in V' is a scalar multiple of v and is of weight .
(e) The module V is simple.

Any simple finite-dimensional U -module V' is generated by a highest weight vector.
Two finite-dimensional Ug-modules generated by highest weight vectors of the same
weight are isomorphic.

Proof. (a),(b) Using (5.1.1), we have that the sequence {v, }, is a sequence of eigen-
vectors for K with distinct eigenvalues, so they are linearly independent. Since V'
is finite-dimensional, there has to exist a m such that v,,, # 0 and v,,+1 = 0 (and
v; = 0if [ > m using the last Lemma). Hence:
0=FEvp41 = Mvm
q—q
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which is equivalent to require that A = €¢". Since dim(V) = n + 1, m < n. But
m must be n, since V is generated as a module by vy, so any element in V' must
be a linear combination of v;. (c) is straightforward to prove now, using the Lemma
5.1.6 and (5.1.1). (d) Let v another highest weight vector. It is an eigenvector for the
action of K; hence, it is a scalar multiple of some v; because of (c). Using once again
Lemma 5.1.6 we have that v; is killed by E iff i = 0. (e) Let V' be a non-zero Ug-

submodule of V' and let v’ be a highest weight vector of V’. Then v’ is also a highest
weight vector for V. By (d), v/ has to be a scalar multiple of v. Therefore v € V”.
Since v generates V/, we have V' C V', which proves that V' is simple. Finally, we
can prove the last statement. Let v be a highest weight vector of V; if V' is simple,
then the submodule generated by v is necessarily equal to V. Consequently, V' is
generated by a highest weight vector. If V and V' are generated by highest weight
vectors v and v” with the same weight )\, then the linear map sending v; to v for all ¢
is an isomorphism of U,-modules. g

Remark 5.1.8. It is important to notice that there are two types of U,-module V;,, of
type 1 and type —1. In the first one, the highest weight vector has eigenvalue ¢", and
in the second one it has eigenvalue —q". Kassel usual indicates them with V7 ;,, and
V_1n. In [R-T] there are four types: 1, —1, 1, —, since they call g our ¢>. Anyway,
we can just deal with type 1 modules, since V7 ,, and V_1 ,, are unitarily equivalent
as objects in a C*-tensor category.

Proposition 5.1.9. Any simple non-zero Ug-module of dimension < N + 1 is isomor-
phic to a module of the form V,,, where 0 < n < N — 1. Moreover, there is no simple
finite-dimensional Ug-module of dimension > N + 1.

Proof. The first statement has been proved in the Theorem 5.1.7. More effort is
required to prove the second statement. Let us assume that there exists a simple
finite-dimensional module V' of dimension > N + 1. We shall prove that V' has a
non-zero submodule of dimension < NV + 1. It is possible to prove that there exists
a non-zero eigenvector v € V for the action of K such that F'v = 0. In fact, it is
well-known from the Lie theory that there exists a non-zero eigenvector vy for the
action of K, since K is semisimple, V' is finite-dimensional and C is algebraically
close. If we consider v = FNuy, it is still a K-eigenvector, and F'v = 0. We claim
that the subspace V' generated by {v, Ev, ..., ENv} is a submodule of dimension
< N. Itis enough that it is stable under the action of generators F/, F' and K. This is
straightforward using (5.1.1). O

According to the terminology used in the Chapter 3, V,, = V;,(q) will be called
the n-th Weyl module. This is the linear space with basis &, . . . , &, and the U, -action
defined by:

[n—k+ ]!
) [n — ]!

For g = sls we can explicitly give the Weyl modules which generate the quotient

[k —+ j]!

K&, = q" ¢, , BV¢, = Epj» FUg, = mmj

category. In this case we just have one simple root a. So d = 1, where d is the ratio
of the square length of a long root to a short root. Moreover, AT = Zq, p = 5 and
6 = «. Hence:

)\GKN+1<:><)\+%,04>§N+1
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Since (-, -) is linear on the left, (o, ) = 2 and A = ga (k € N), we get:
ANeAyi1 <= k<N

and A € Ay iff £ < N. So, every object in the quotient category is the direct
sum of some Weyl modules V,,, where n < N. The Weyl module V; is the vector
representation and it is the fundamental one. Vy is negligible. Now we want to know
how we can decompose V;;, ® Vj,, when ji + j2 < N.

Theorem 5.1.10. If j; + jo < N, then:

min(j1,52)

Vi, @Vj, = @ Viitja—2p

Proof. It is possible to prove the statement as for a generic g. All the highest weight
vectors in Vj; ® Vj, are of the following form:

. . p P —_ .
U(()g1+g2—2p) _ Z(_l i [jj Bz _];]+ i! g1i1=i+D),, ( )®U]()J_22
pars ! !

where p is an integer, 0 < p < min(jy, jo). It easy to see that v(()j 1+32729) pag weight
117272 since v(ﬂ) ® U(”) has weight ¢/t ~2i+72=2p+2i — 1+52=2P [ et us prove

now that A(FE) éﬂﬂ? ) = 0. Recall that A(E) = E® 1+ K ® E. It follows that:

L p i — 1 l[ o — 1+ @']l o . ;
A(E U(11+J2—2p) _ E : _1)¢ il 'Z]' ].2 p : z(]l—z+1)Ev(J1) ® U(h?—l—
( ) 0 izo( []1]![]2_]7]! q 1 p—

n Zp:(—l)i Ui =il —p+ i]!qi(jl—z‘ﬂ)Kv(jl) ® Eol
i=0 1] [j2 — p)! ’ P

(_1)1 [.]1 —i+ 1]'[j2 —pt 7’] ql(jl i+1)

p
; [j1)!lj2 — p)! P
P . . . .

L =iz —p i+ 1 GiyGi—i), G o G2)

+ —1)? ‘ ' 7 J1 1),0']1 Jz, _
ZZ:;( N P TR v
p+1 . R .

1=l —p+ i+ 1] Gy ) o o 02)

= —(=1) - . . J1 Z)'U-]l Jj2) 4

; R AT voR

P .
L=l —p i+ 1] G-, 0 g (Jz)
+ -1 ) 7 Ji1—1 =0
g( ) [31]-[]2 —p]- 4 -

So, for all p such that 0 < p < min(j, j2), there exists a non-zero morphism of
modules from V}, 1, op into V;; ® Vj,. Being Vj, 1,2, simple, the morphism must
be an embedding into V), ® Vj,, since its kernel must be zero. The submodules
Vi1 4j.—2p are simple and of distinct weights, so their sum in Vj, ® Vj, is direct.
Since their direct sum has the same dimension of V;, ® Vj,, we can conclude. O

Now it is time to shed light about some facts that will be useful later. Considering
the last theorem, it is clear that we have two interesting bases in Vj; ® Vj,. One is
inherited from the tensor product structure:

{U(jl)

(2)
® vy }0<i<ji 0<h<js
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and the other one is inherited from the decomposition:
(J1+j2—2p) _ i k, (j1+j2—2p)
vy = [k:]'F
where 0 < p < min(j1,72) and 0 < k < j; + jo — 2p. If we want to pass from
one basis to another, we need to introduce the so-called quantum Clebsch-Gordan

coefficients:

J1 J2 j1i+j2—2p
i h k

defined for 0 < p < min(j1,j2) and 0 < k < j; + jo — 2p by:

e S [J’} J; J +J’; - 219] o) @ o)

0<i<j1,0<h<j2
We discover now some properties of these coefficients, also called quantum 3j-symbols.

Lemma 5.1.11. Fix p and k. The vector v(ﬁﬂ2 P)

tors of the form UZ( i) & p192)

is a linear combination of vec-

Therefore, we have:

itk
J1 J2 j1tj2—2p —0
i1 h k

when i + h # p + k. We also have the induction relation:

B [i]g~ G220+ D) 4 [p 4 1]
B [k +1]

Ji J2 gitj2—2p
i h+1 k+1

i h k

Ji oJ2 Jg1t+j2— 217]

Proof. We prove this by induction on k. The assertion holds for £ = 0 thanks to the
Theorem 5.1.10. Supposing:

We have:

[k + Lol 272) = pyitia=20) -
e o 0 i)
= Zal ([i + 1]q~ G2—2=iFk) z(i—ll) ® U(]Qz)-s—k:"f'

+p—i+k+ 1]7]@1) ® “(]2@)+k+1)
_ Z ( —(j2—2(p—i+k+1)) | [p—i+k+ 1]) vgjl) & v;jngrkH

O]

Remark 5.1.12. From the proof of the last theorem it is possible to get an explicit
formula for quantum Clesbsch-Gordan coefficients when k = 0:

j.1 J2 . Ji+Jj2—2p| _ (—1) [j1 —'i}![jz —p+ i]!qi(jlfﬂ»l)
T p—1 0 [71]![72 — p]!

This fact together with the induction formula allows us to calculate all the possible
quantum Clebsch-Gordan coefficients.
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®Ul(lj2)}i7h in terms of the basis {U,(j 12— 2p) }p,k-

We need to introduce an alternative scalar product on V,, when n < NN, in order to do

We now want to express the basis { vl(j )

that. First of all, we need the following:

Proposition 5.1.13. There exists a unique unital algebra *-antiautomorphism T of
Uy such that T(E) = KF, T(F) = EK ' and T(K) = K. T is also a morphism
of coalgebras.

Proof. The following calculations will be sufficient to get the result:
) A(T(E) =AKF)=K®@KF+KF®1=
=TRTK®E+E®]l)=TT(A(R))
(i) A(T(F) =AEK Y)Y =19 EK '+ FK 'K ! =
=TRT1I®F+FK ') =TaT(A(F))

(iil) A(T(K)) = A(K) = K@ K =T @ T(A(K))

(iv) T(E*) =T(F) = EK ' = F*K* = (KF)* = T(E)*
(V) T(F*)=T(E)=KF =K VE* = (EK )" =T(F)*
(Vi) T(K*) =T(K Y =K' = K* =T(K)*

O

Theorem 5.1.14. On V,, withn < N there exists a unique non-degenerate symmetric
bilinear form such that (vo,vo) = 1 and:

(2v,v") = (v, T(x)v") (5.1.3)
Ifv, = [}%ﬁvo, then:

(vi, vj) = 8; ¢~ IV H (5.1.4)
i
Proof. We first assume that there exists this scalar product on V,,, and we want to
show that (v;, v;) is necessarily of the prescribed form. By definition we have:

A , 1 Y
(vi, vj) = [i]!(F’UOan) = [i]!(vo,T(F)ZUj) = W(vo’(EK )'vj)

It is easy to prove that (EK~1)* = ¢/ K—*E" for any i > 0. Consequently, the
vector T'(F')'v; is a scalar multiple of E‘v; which vanishes as soon as ¢ > j. By
symmetry, we also have (v;, v;) = 0if i < j. Now we compute (v;, v;). We need the
formula: : )

; n—7+1!

Bloi =" 2y

to compute (v;, v;). We have:

1 . o
(vi, v;) = —q" Y (vg, K" Ely;) =

]

(7 n ! _i
= ql(lﬂ)i[ . (vo, K™ "vg) =

[l — ]!

_ qi(i—i-l)—ni [7;] (v0, o)
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So, we have the uniqueness of this inner product. We need to prove now the existence.
In other words, we need to prove that the non-degenerate symmetric bilinear form
such that:

n

(vi,v5) = i jq~ N [z

satisfies (5.1.3). It is enough to check it on the generators F/, F' and K. We will prove
it for x = FE, since the other two will follow similarly. On one hand:

[n]!

) — [ — g , N o g1y
(EUZ’ U]) [n 1+ 1](U1—17U]) 51—1736—1 [Z — 1]|[n — Z}'

On the other hand:

(vi, T(E)vj) = (vi, KFv;) = ¢" 20D + 1](v;, v541) =

_ 5o~ (n—i—1)itn—2(j+1) [ [nt _
0i,j+14 [7+1] il
N |
S o O LG

BRCARE i — 1)1 — 4!

O]

Let us now equip Vj;, and V}, of the scalar product defined in the last Theorem.
We put on V;; ® V}, the following symmetric bilinear form:

(11 @ v}, v2 ®vh) = (v1,v2)(v], V) (5.1.5)
where v1,v2 € V}, and v], v§ € V.

Lemma 5.1.15. The symmetric bilinear form (5.1.5) is non-degenerate and the basis
{vfﬂ) ® U,(l”)} is orthogonal. Moreover, Vx € Uy and w1, w2 € Vj; @ Vj,, we have:

(zwy,wa) = (wy, T(x)ws)

Proof. All the assertions are very easy to prove. Regarding the last one, it is crucial
the fact that 7" is a morphism of coalgebras. O

The next result is what we were looking for:

Proposition 5.1.16. (a) The basis {v,gj 1+72-2p) }poke is orthogonal.
(b) Fix integers p, q, k,l. We have the following relations:

(i 1) Py (e B ' ] 1 J2 J1t+J2—2p| |7 J2 J1+J2—2q
0= i(j1—i—1)—h(jo—h—1) [J1| |J2| |J1 J2 J1
Z,Zj:q il lnlli & k i h I

when p # qand k # 1, and:

. . . . . . 2
—i(ji—i—1)—h(a—h—1) [J1| |J2| [J1 J2 1 +J2 = 2P| _ _k(ji+ja—2p—k—1)
E q . . =4q
7 7 h i h k

Ji+J2—2p
k
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(¢) Given i and h, we have:

vi(jl) ® U}(ng) _ q—i(n—i—l)—h(jz—h—l) []1] []é]

7

g2 i+ ja— 2p]
h k Ul(cj1+j2_2p)
J1+J2 — 229]

min(j1,j2) j1+j2—2p

[]1
Z Z qk(J1+J2—2p—k—1)
=0 k=0

k

(5.1.6)
Proof. (a) Arguing as in the proof of the Theorem 5.1.14 we have:

(vl(cj1+j2—2p) v(j1+j2—2p)) -0

U

when k £ [. We pass to the case p # q. First of all, we need to show that the highest

weight vectors v(()j 115272P) and v (J 1152720) are orthogonal. In fact:
(o 2720 g ) Zalﬁ] o) (0], o) =

= Zalﬁl(vz (1) ,UZ» n )(UI()J_21)7U(§J_QZ)) =0

since p — ¢ # q — 4. It remains to prove that:

(v](cj1+j2*2p)’ Ul(j1+j2*2f1)) -0

when k,l > 0. Since this form is symmetric, it is sufficient to prove it when k& > [.
We have:

(U](Cj1+j2—2p)’ Ul(j1+j2—2q)) = ~(Fhy (j1+j2—2p)’vl(j1+j2—2¢;()) _
=~/ (v} (J1+72—2p) Ekvl(j1+j2—2¢I))

for some scalars v and /. If k& > [, Ekvl(j1+j2_2q) 0;if k = [, then E*v (71+]2 20)

. . j1+j2—2
is a scalar multiple of U(j 1+ q), so we are back to the previous case.

(b) We calculate (v Gt ) l(j1+j2_2Q)). It is equal to:

Z Z [.71 J2 —i—j; - 229] [.h J2 1t g2— QQI (Ul(m)’vyl))(vl(jg)’Ugjz)) —

r s l
i+h=p+k r4+s=q+l

_ Z [Jl J2 J1+Jjo —2p] []1 J2 J1+J2—2q (U.(jl),U-(jl))(vlsz),U}(LjQ)) _

i+h=p+k h k i h k
_ Z —i(i—i—1)—h(ja—h—1) |J1| |J2| [J1 J2 Ji+J2—=2p| |71 J2 J1+J2—2¢
- ? i Inl i h k o h I
i+h=p+k ! L !
On the other hand:

i14jo—2 1452 —2
(Ul(gh J2 P)’Ul(ﬂl J2 q))

—k(j1+jo—2p—k—1
= 0p.q0kiq (J1+j2—2p )

J1+Jj2—2p
k
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(c) We have:
min(j1,j2) j14+j2—2p

vz(jl) ® U}(ljz) _ Z Z ok J1+J2 2p)
p=0
for some coefficients 7,. Therefore:

( (J1+72—2p) (j1+j2*2p)) _ (Uz(jl) ® U(jz) U(J'1+j2*2p)) _

Vpk\U » Ug h Yk

_ | J2 Jitia—2p (U(jl) (j1)
i h k

Applying (5.1.4) we get the explicit expression of 7,y

Now we are ready to build the quantum groupoids C(N) = C(SUsz, N + 1).

5.2 General setting

In this section we set the generators and calculate how involution, counit, coproduct
and antipode act on them. Let {11,12} a basis of V' = Vi, where 1) is a highest

weight vector and ¥9 = F';. Applying Lemma 5.1.6, we have:

Ky = qpr, Ev1 =0, Fipp = 99
Kty = q 1, By = b1, Fipy = 0

It is well-known that C(N) are the quotients of:

oo

D(N) = PVer) @ ver

n=0

All the elements in D have the form 1 ® 1 and ¢} ... Y] @ ¥y, ..

in

Vi, V5, € {11, 12}. Therefore the generators of C(IV) are:

I=1®1,e1 =9] @
ex =] R g, e3 =15 @ o

Let ¢, be in V;. Then:
(a) Involution Since (¢* ® )" = ¥* ® ¢, we have:

I"=1,ef=¢€1,e5=c¢3

and e5 = 15 ® ;.

(b) Counit We know that e(¢* ® 1) = (¢, ). So:

e(I)=1,¢e(e1) =1=c¢(es),e(ea) =0

(¢) Coproduct From the general theory we know that:

A" @) =) ¢" 05 RY

J=0

.j,, where
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where {fj}é’:o is a basis of V;. So:

Al)=1R1,A(e1) =e1 ®e1 + ez ® e
Aes) =e1 ®es+ea®esg, Aleg) =e5 Reg + e3 R e

The previous relations can be easily proved:

AD=A*el)=1I'lel'el=1g]
Ale1) = AW @1Y1) =] @Y1 @ Y] Q@ Y1 + Y] @ P2 @ Py @ Yy =

=e®e+ex®e;

Ae) = AT @ 12) =] @ Y1 @ Y] @ o + Y] ®@ 2 @ Py @ o =
=e1Rex+e2Res

Ale3) = Ay @ 1h2) = 15 @Y1 @ Y] @ ha + 15 @ P @ V3 @ 1Py =
=e5,Rey+e3®es

(d) Antipode We will prove that:
S(er) =e3, S(e3) =e1, S(ea) = —q tey (5.2.1)
We recall how the antipode .S acts on £, F' and K in U, (sls):
S(K)=K',S(E)=-K'E,S(F)=-FH
Moreover, we know that S acts on ¢* ® 1) in the following way:
S(¢" @) = (ji)" ® jip

and a € U,(sl2) acts on 7, where v € V;, in the following way:

a-y=.5(a*)y

adopting the Wenzl’s notation. Let .J; be the complex conjugation map from V; to V;,
such that J;(7) = 7 Vy € V;. It is well-known that V; is still a Weyl module, with
dim(V;) = dim(V;). Therefore, by the Theorem 5.1.7, we have V; = V;. j; is an
automorphism of V;, and it is obtained composing J; with U;, where U; is a unitary
intertwiner between V; and V;. We explicitly calculate j;. First of all, we write down
how K, E and F act on 91, s:

K = S(K*)y, = Kby = ¢ "y
By = S(E )1 = —FRir = q ' —Fiy = —q s
Fijy = S(F)in = S(E)i = —K 1By =0

(
Fipy = S(F*)py = —K 1By = =K1y = —¢~ "¢y
It is clear that the map Uy : Vi — V; defined in the following way:

Ur(¥1) = —¢ "2, Ui (¥2) = i1
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is a unitary intertwiner. So j; = Uj o Jj acts on the basis in the following way:

1 = —q "y, 12 = 1
Finally we obtain (5.2.1) after the following calculation:
S(er) = (191)* @ f1vhr = (—q3) @ (=g 'ha) = ¥5 @ by = e3
S(es) = (j1v2)* ® jivp2 = ] @ Y1 = €1
S(e2) = (j1v2)* @ jin = ¥ @ (—q 'th2) = —¢ ez

It is important to notice that generators, involution, counit, coproduct and an-
tipode do not depend on the order of the root of unity. Conversely, relations on the
products will be heavily influenced by the order of the root. More precisely, let 2N 42
be the order of the primitive root of unity ¢. In our treatment we will distinguish three
cases:

(i) N = 1 or, in other words, q is a fourth primitive root of unity;
(i) N = 2 or, in other words, ¢ is a sixth primitive root of unity;
>iii)) N > 2 or, in other words, ¢ is a nth primitive root of unity, with n > 6
From now on we will use the following notation:
ay = ay

where o,y € V1.
Moreover, we recall that in C(N) we have the following identification: if ¢ €
V1@n, (RS Vl@m and A € (Vl@n, VI@m), then:

VRAG) =9 o AR P

We will repeatedly use this fact in the following sections.

5.3 Case (i) and (ii): ¢ fourth and sixth root of unity

The case NV = 1 is very simple to analyze. In this case, the only Weyl modules are
Vo = C and V4, and V; is negligible. So, e; = e2 = e3 = 0, and C(1) = CI. Let
us pass to the case N = 2. In this case, we have three Weyl modules: Vj, V7 and Vs,
and V5 is negligible. Since V; @ V1 = Vj ® V3, we have:

Vigvr =V
We explicitly write down the decomposition of V; ® Vi:

Vo = (Y1 @ Yo — qip2 ® 1)
Vo = (1 @ Y1, 91 @ b2 + qipa @ 1,12 @ 1ha)
Since V5 is negligible, we have that:
P11 = 0 = Yoo (5.3.1)
For the same reason:
* )k — * OE — O
Y1y = (Y1¢1) " 5.32)
Yot = (Yoipe)" o R~ =0

Consequently:
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Proposition 5.3.1. We have the following relations:
e% = e% = e% = e1e9 = e9e] = egez = egeg = 0
Proof. 1t is straightforward using (5.3.1) and (5.3.2) ]

It remains to show the relations involving ejes, eze3 and e5es. We introduce the
morphism Ay : Vyp — V1 ® V4, such that:

Ap(1) = 1 @ b2 — qih2 @ Yy
Hence:
Proposition 5.3.2. We have the following relations:

eseq = eges = —1I

ejes = q_II
Proof. Let us start with ejes:
eres = P15 @ P1ihy
We want to decompose 11 ® 2 € V1 ® V7 as element in Vj & V5. We have:

Y1 @ P = AN¥1 @ o — qhe @ 1) + (1 @ o + ¢ b @ 1)

Since ¢ is a primitive sixth root of unity, we have ¢ + ¢~! = 2cos(5) = 1. So
A = ¢! and y = q. Therefore:

Y12 = Y1®@P2 = ¢ (Y1 ® b2 — qib2 @ 1)
Using the morphism Ay, we have:
iy @ ity = iy @ ¢ Ao(1) = ¢ iYs o Ag® 1 =g 1@ 1=q""1
since {15 o Ap is a linear functional on V;; which gives 1 on 1. We pass to e5ea:
ezez = Yo @ P1io
As we have just seen, 1112 = ¢! (1)1 ® ¥ — qipa ® 11). Using Ag, we have:
V3T @ 1t = Y5 @ ¢ T Ao(1) =g Pl o Ap @1 = —1@ 1 =]

since Y317 o Ay is a linear functional on Vj which gives —q on 1. Similarly we can
prove that egel = —1. O

The relations that are left are the adjoint relations. In fact, * is anti-multiplicative
on the products of simple tensor products, and it is enough. For instance:

ezer = (ere3)* = (¢ 1 I)* =gl

Resuming, we have the following:
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Theorem 5.3.3. C(2) is generated by two self-adjoint elements e; and e3 and one
normal element eo. Antipode, counit, coproduct and involution are as in the previous
section. The relations are:

e% = e% = eg = e1eg = ege] = e9egz = egeg = 0 (5.3.3)
eseg = egey = —1 (5.3.4)
eres =q ' (5.3.5)

Remark 5.3.4. It is quite easy to notice that C(2) is not associative and cannot be a
C*-algebra. Moreover, dim(C(2)) = 5, with {1, e1, ez, €3, e3} as linear basis. The
dimension of €(2) of course agrees with the general theory exposed in the previous
chapter.

—

We can also present C(2) as generators and relations.

(a) Generators The generators will be:
no=Tandm =&,ic{1,2,3}
where €;(e;) = d; j and &;(I) = 0.

—

(b) Involution We know that, if f € €(2), we have:
f(a) = f(a*)
where a € C(2). Applying the last formula to 7;, we get:

Mo =100 =01,03 =103

W%

while 7} = &* =

(¢) Counit We know that £(f) = f(I). So:

(d) Coproduct The general formula is:
A(f)(a®@b) = f(ab)
where f € (‘3/(5) and a,b € C(2). So:

3(770):770®770+771®7]3+773®771+77§®T]2+772®77§
3(77z‘) =n@n +n @n Vie {1,2,3}

(e) Antipode From the general theory we know that:
(S()(a) = f(S(a))
where f € (‘@ and a € C(2). So:

() =m0, S(m) =n3,S(n3) =m
(n2) = —q 'm2

»)y W)
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(f) Products It is well-known that:

fg(a) = f @ g(Aa))

—

where f,g € C(2) and a € C(2). So:

=m0t =m.n5=0,n3=n;

nomi =0 =mnino Vi € {1,2,3}

mns = n3m = n2n = n3n2 =0

N2 = N2, 10203 =12, MaN2 =03, 205 = M

It is easy to see that the unit in (‘3/(5) is I = N0+ M1+ 3.

5.4 Case (iii): ¢ nth primitive root of unity, with n > 6

Letn be 2N + 2, with N > 2. As we saw before, the Weyl modules are Vp, ..., Vy,
and Vyy is negligible. Moreover:

N
dim(€(N)) = 3 i2 = éN(N +1)2N + 1)
=1

The next result give us the commutation relations on our algebra. They do not depend
on N > 2:

Theorem 5.4.1. We have the following relations for all N € N, with N > 2:

(vii) eser = g *eres + (1 — g %)1

Proof. Remember that V; ® V] = V& Vs, and we have the following decomposition:

Vo = (1 ® Y2 — qh2 @ 1)
Vo = (1 @ ¥1,91 @ P + qipa @ 1,92 @ 1ha)

In comparison with the case (ii), we don’t have any truncation here, so Vl@2 = V1®2.
Let Ap € (Vp, V1®2) be a morphism, where Ag(1) = 11102 — q21)1. Therefore:

P11 @ (Y1he — qhatpn) = Y197 ® Ao(1) = Y1910 Ag® 1 =0
Consequently we get ejea — geae; = 0. Similarly:

VYaths @ (V1ha — qibathr) = 3105 @ Ap(1) = 39p50 Ag®@1 =0
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In this way we get e5esz — geges = 0. So we have proved (i) and (v), and (ii) and (iv)
immediately follow using the adjoint map. Going on with the same calculations, we
have:

Yy @ (P1ye — qibatpr) = Yivs @ Ao(l) = i 0 Ag@1=1®1

So erez — gezel = I, getting (vi). In the same way, taking 3] in place of ¢]3,
we obtain e5es — gese; = —ql. Now, taking the adjoint of the relation (v), we have:

ese] — q_lege§ =] = e3e1 = q_lege§ + 1
Hence:
—ql = eley — qese; = ebea — q(q Leael + 1) = ebeq — egel — ql

So e5ex = eze;. It remains to prove the relation (vii). Using (vi) and its the adjoint
relation we have:

eze; = q teges + 1 =q 2ejes —q I +1=q 2ejes + (1 —q )
O
Before going on, we need a very useful result about the representation theory of
Uy, (sl2). We need the following definition:
Definition 5.4.2. Let J](DN) the set whose elements are the maps ¢ : {1,...,N} —

{1,2}, with |i~1(2)| = p. o(4) is the minimum number of exchange we have to do
in order to pass from the ordered set {1,...,1,2,...,2} to {i(1),...,i(N)}.

Proposition 5.4.3. Vi is the summand with the highest index in the decomposition
of V1®N into the direct sum of irreducible representations, and its multiplicity is 1.

U(()N) = ?N is the highest weight vector, and.:
FP (V) N —o(t
WUO ZU,() ) = Z q ()¢i(1)®---®¢z‘(N)

iegtM)

Proof. The first part of the Proposition can be proved by induction. If N = 1 the
result is obvious. Suppose that the result is true for Vi, with 0 < k£ < N, and we
prove it for N:

VEN = yEN T g v = @ ViV | @Vh =
E<N-—2
=| P wen|esWwaen = P Ww|e VeV =
k<N-2 kK <N-1
- @ vieow
kK'<N-—1

using the theorem we proved before. It is quite easy to see that Kvy = ¢~ vy, using
that AV)(K) = K®N . Now we prove that Evy = 0. We can proceed by induction.
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If N = 1, obviously Evy; = 0, since ¢/ is the highest weight vector of V;. If it is
true for N — 1, let’s prove it for V:

By = BN @ g + KPPVl @ By = 0

It remains to prove the last statement. Before, we need to prove the following identity.
Ifp>1:
(N) = U(N 1 ® v( ) + q_pvz(,N_l) & vél) 5.4.1)

We proceed by induction on p. If p = 1:

,UEN) — (N) — (¢®N*1) ®K—11/}1 +,llz)i®N71 ®F¢1 —

—qle( N @ KM @1 + ¢ WPV T2 @ Fyr @ 1 + 9PN T @4y =
g RPN ) @ 9P + ¢ PN T2 @ ahy @ by + PN T @ 4hy =

N-1
= = _]l/)i@N_]_l ® w2 ® wi@] — Z q—O'(Z)wi(l) ®R...Q wZ(N)
J=0 iegt™)
On the other side:
véN ) (1)_|_q 1U§N 1)®v(())—
N-2 ‘ '
= wi@j\f—l ® ¢2 + qfl Z q*]wi@N_]—Q ® 1/}2 ® ,(/}i@] R 'l/}l —
=0
N-1 4
= g WP @y @y
=0

Now, we need to prove the induction step. We need the following identity:
glp— 1] +q "V = [p]

which can be easily proved:

e qpf]- — qf(pfl) (e
C][P—1]+q(p D= W‘FQ@ U=
- q— q_1 - [p]

At this stage it is easy to prove that, if (5.4.1) is true for p — 1, then it is true for p:

(1) (N 1)

F N F N—
(N) _ ()_7((1 (p1)( )®U0

T )

_ T(qu[p]véNfl) ® 1)(()1) + qf(pfl)v]()]lfl—l) ® vgl) + q[p . 1]1)1()N 1) ® U&l))

@ o)) =

= ¢ "oV @ ol + ol @ uf)

Now we can conclude. We proceed again by induction on N, proving that:

oV =3 Oy .. @i

icgtv)
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If N =1 itis obvious. We suppose that it is true for N — 1, and we prove it for N:

U](JN) — W=D

70 600 4 gl gl =

= Z q_o(i)’lﬁi(l) ®...® ¢7,'(N—1) @ ¢2+

ety
+q7 Z TPy @ . @Yoy | @ n
gV =1
and it is easy to see that this is exactly what we want to prove. O

Lemma 5.4.4.

n)* n_l)—nn=1) —a(i) % *
Ul( ) ql( ) 2 Z q ( )T/Ji@) cee wi(n)

ieg(™

where vl(n)* = (’Ul(n), -) is a functional on V,*™.

(n)

Proof. We need to understand how R acts on:

w= Ul(n) = Z qfa(i)i/’z‘(l) o Yin)

ieg(™

We follow what we did in Appendix [CP]. From there, it is well-known that E(n) =
RMO™) where © acts as scalar multiplication by:

S L e

1
q§
Moreover,
RM™ =%, 06, 10 (en—2en—1)0...0(E1...6n—1)
where ¢; = q_%gi andg; = 1,1 09gR®1,_j_1.9 € (Vl®2, V1®2) acts in the following
way:
g1 @1 = q1 ® Y
g2 @ 1ha = qipa @ 1o
e @ P = Y1 @ 1o
g1 @y =y @1+ (q — ¢ )1 @ ¢y

It is easy to prove that g;w = qw, so putting everything together we get:

R = 5 R =

=%,000-10...0(g1...gn—1)W =

n(n—1) n(n—1)
=q 2 XYp,w=¢q 2z w

where:

w = Z gD D0y iy

ieg™
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Now we want to write w™ in terms of @Z)Z’.‘(l) e w;‘(n). Roughly speaking, we look for
an explicit expression of \;, where:

w' = Z )‘ﬂibz(l) z(n

zef]l(")

We obtain it after the following calculation:

= Z Ay - Uiy (Yig(1) - Yig(m)) =

* —o(1 -(n)
=w (1/%0(1) e T%(n)) = (Zq ( )1/11'(1) . -Wn), R (1/%'0(1) e %’O(n))) =

p,n
-(n) —o(7
= (R Zq ()%(1) o Yin)s Yig(1) - - -wio(n)> =
i o
2n=1) 4 () —I(n—
= (Zq 2 to®)=I 1)1!11'(1) o Win)s Yio(1) - --wio(n)) =
% p,n
L )
[
Proposition 5.4.5. We have the following relations on C(N):
(i) eN =0 Vie{1,2,3}
(i1) kel 7% = ekesNF = ehel Tk = exkeN "k =0 Yk € {0,...,N — 1}

Proof. Using the Prop. 5.4.3, v(()N) = i@N and U](VN)

Y =y = 0 and:

= wS@N . Since Vy is negligible,

| 1
G = () o R =0= (s ) o R =y
Using this facts, it is straightforward to prove the above identities. O

It remains to discover the relations involving 616263 and 616’2‘363 when h + j +

k= N and hk # 0:
Proposition 5.4.6. We have the following relations on e’l”ej263 and efte}’ ek when
h+j+k= N and hk # 0:

min(h,k)
h—1_j k-l
g Crel ezes

where C; € CVI € {1,... ,min(h,k)}. We have analogous relations replacing e
by e5.
Proof. 1t is well-known that:
h h+j 1%k h, 1 J+k
etebel = 01" ust @ g
We focus now on @b?h ® @Z}?j ** It is an element in V1®N , but more precisely we
can see it as an element in V2" @ V27T where ¢ € V" and 37T € VEITF,
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Using the previous proposition, we have that ¢ is the highest weight vector in
Vi = V" and 57T is the lowest weight vector in Vj ;< V7%, So:

®h ® ¢%+k ( ) ® v](i'fl;k) cV,® Vj—&-k SN V®N
Using the Theorem 5.1.10, we know that:

min(h,j+k)
Vi@ Vigr = @ VN—2p

Using (5.1.6), we have:

min(h,j+k)
h j+k N-2 h—j—k
o) @l = D i) = doh ot i)
p=0
where:
h j+k N-—2p ]
d, = i Gk (1) 0 j+k jtk=p
N —2p
Jjt+k—p

So, if we consider the truncated product w?¢%+k, we have:

min(h,j+k)

h o j+k N-2 N-2 h—j—k
Py = Z dpv ](+k 5) = dlvy('—l—k—% +..F dj-i-k—min(hd-i'k)v(()l Ik
p=1

We can now use the map:
hj+k  y,ON=2p ‘N
AN % " V — VN,QP Vi ® V}'.,.k — Vl

where
h,j+k .
AN] 2p|VN—2p = 1d
and 0 elsewhere. Using the Prop. 5.4.3, we know that:
oWN=2p) _ —o(i
Yjtk—p = Z Cr(z)%’(l) - Yi(N—2p)
her 2

In particular, |i=*(1)| = h — pand |i7*(2)| = j + k — p. Itis easy to see now that:
YIHIYER o Ay gy = ()"
if £ > p, and 0 otherwise. After an easy calculation we have:
min(min(h, j + k), k) = min(h, k)

So:

min(h,k)
h+j k N—2p) N—-2
el = 3 T e =

min(h,k)

Z dy > Cij¥i1) - - Vin-2p) @ Vi) - - Vj(v-2p)

N—-2 . N—-2
=1 263271) ?) ,]€J§-+k7;)
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(N— QP)(N 2p—1) . .
where ¢; ; = gFP)hti=p)=a(i)=a(j)= . Using the commutation rules

we can reorder the above summation, obtaining:

min(h,k)
PPyt @ttt = N Gyttt TPy P @ g Pyl

p=1

O]

Remark 5.4.7. We are not able to give a concrete and explicit formula for Cj, but
following the proof of the previous theorem it is easy to understand what is the pro-
cedure in order to obtain them.

Corollary 5.4.8. The relations showed above together with the commutation rules
are all the possible relations on C(N), and the following set is a linear basis of

C(N):

B ={eielekli,jk € {0,...,N —1},i+j+k < N}U
U{eies’esli ke {0,...,N—2},je€{l,...,N —1},i+j+k < N}

Proof. Using the relations we found, it is easy to see that all the (non-commutative)
monomials in ey, e, €5, e3 are linear combinations of the monomials efejes and
eiesiek. i+ j+k = N, then elelel and elel/ek are equals to a linear com-

binations of monomials of degrees lower than N, because of truncation relations.

If:
N
Bl =>
=1

then we can conclude for a dimensional argument. It is sufficient to count how many
elements of the type € e%eéf and €’ e3¢k we have for fixed j > Oand n =i + j + k.
Elements of the first type are n — j 4+ 1 since i € {0,...,n — j} and k is completely
determined by ¢ and j, and the same for the element of the second type. So, if we

sumon j = 1,...,n, we have:
n n
. . n(n+1
S 2n—j+1) =22 — (S )+l = 22— 2D )

, ; 2
]:1 =1

It remains the case when 5 = 0. In this case we only have elements of the first type,
and they are n+ 1. Therefore, the elements of B of degree n are n(n+1)+(n+1) =
(n + 1)2. Now, summing up on n we have:

N-1 N
Bl=) (n+1)?=>) i
n=0 =1

putting ¢ = n + 1. In this way we obtain the desired result. 0
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