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Abstract

Locally convex quasi *-algebras, in particular Banach quasi *-algebras,
have been deeply investigated by many mathematicians in the last decades
in order to describe quantum physical phenomena (see [7, 8, 9, 15, 21, 35,
46, 47, 61, 68, 70]).

Banach quasi *-algebras constitute the framework of this thesis. They
form a special family of locally convex quasi *-algebras, whose topology is
generated by a single norm, instead of a separating family of seminorms (see,
for instance, [14, 19, 20, 22]).

The first part of the work concerns the study of representable functionals
and their properties. The analysis is carried through the key notions of fully
representability and *-semisimplicity, appeared in the literature in [9, 14, 20,
38]. In the case of Banach quasi *-algebras, these notions are equivalent up
to a certain positivity condition. This is shown in [3], by proving first that
every sesquilinear form associated to a representable functional is everywhere
defined and continuous. In particular, Hilbert quasi *-algebras are always
fully representable.

The aforementioned result about sesquilinear forms allows one to select
well behaved Banach quasi *-algebras where it makes sense to reconsider
in a new framework classical problems that are relevant in applications (see
[13, 25, 44, 49, 58, 69, 72, 73, 74]). One of them is certainly that of derivations
and of the related automorphisms groups (for instance see [4, 6, 12, 17, 26]).
Definitions of course must be adapted to the new situation and for this reason
we introduce weak *-derivations and weak automorphisms in [4]. We study
conditions for a weak *-derivation to be the generator of such a group. An
infinitesimal generator of a continuous one-parameter group of uniformly
bounded weak *-automorphisms is shown to be closed and to have certain
properties on its spectrum, whereas, to acquire such a group starting with
a certain closed * derivation, extra regularity conditions on its domain are
required. These results are then applied to a concrete example of weak *-
derivations, like inner qu*-derivation occurring in physics.

Another way to study representations of a Banach quasi *-algebra is to
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construct new objects starting from a finite number of them, like tensor
products (see [5, 36, 37, 41, 43, 52, 53, 59]). In [2] we construct the tensor
product of two Banach quasi *-algebras in order to obtain again a Banach
quasi *-algebra tensor product. We are interested in studying their capac-
ity to preserve properties of their factors concerning representations, like
the aforementioned full representability and *-semisimplicity. It has been
shown that a fully representable (resp. *-semisimple) tensor product Ba-
nach quasi *-algebra passes its properties of representability to its factors.
About the viceversa, it is true if only the pre-completion is considered, i.e.
if the factors are fully representable (resp. *-semisimple), then the tensor
product pre-completion normed quasi *-algebra is fully representable (resp.
*-semisimple).

Several examples are investigated from the point of view of Banach quasi
*-algebras.
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Introduction

In the last century, many mathematicians put their effort in describing
quantum systems with rigorous mathematical models. Among them, in a
celebrated paper [40] about algebraic formulation of Quantum theories, R.
Haag and D. Kastler employed C*-algebras as suitable tools in order to de-
scribe physical phenomena. Despite this, there are quantum models not
fitting in this formulation. For instance, in certain spin lattice system with
long range interactions, the thermodynamical limit does not converge in any
C*-topology (see [9, 21, 50, 51]).

In order to give a rigourous mathematical formulation of this kind of
problems G. Lassner introduced and studied locally convex quasi*-algebras in
[50, 51]. The simplest example is given by the completion of a locally convex
*-algebra with separately continuous multiplication [9, 15, 35]. Clearly, in
this case the multiplication is not necessarily everywhere defined.

For what concerns representations of locally convex quasi *-algebras,
bounded operators are not enough, despite they have nice properties and they
can be handled without any trouble. For this aim, the family of L†(D,H)
is employed. It is made of closable operators with the same domain D, i.e.
a dense subspace of a Hilbert space H, such that the domain of the Hilber-
tian adjoint contains D. This family of unbounded operators can be made
into a partial *-algebra by defining a partial product between operators. The
latter were introduced by J.-P. Antoine and K. Karwowski in [8] and then
extensively studied by many authors (see [9]).

This thesis aim to present results about continuity of representable func-
tionals, i.e. those functionals that admit a GNS-like construction, and their
applications to derivations arising as infinitesimal generators of *-automor-
phisms groups and topological tensor products in the special context of Ba-
nach quasi *-algebras.

Representations constitute an important tool to look at abstract struc-
tures (see [3, 9, 16, 17, 23, 24, 38, 71, 65]). In the case of C*-algebras,
*-representations have a deep link with positive functionals, because these
can be regarded as ”blocks” used in the process of building *-representations,
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namely the GNS -construction. The lack of an everywhere defined multipli-
cation makes it impossible to deal with positive functionals. However the
notion of representable functional, introduced in [65] plays a similar role in
this context. A representable functional is positive on the core *-algebra and
some appropriate conditions guarantee the existence of a GNS-like triple, as
in the classical case.

In spite of this reasonable behaviour, complete results on the continuity
of representable functionals are still missing and no example of a discontinu-
ous representable functional is known so far, whereas examples of continuos
functionals that are not representable do exist. (see, for instance, [9, 38]).

Prior to investigation, Chapter 1 is devoted to background material need-
ed for the ongoing work in the thesis. Chapter 2 concerns representable func-
tionals on Banach quasi *-algebras and some related concepts like full repre-
sentability and *-semisimplicity, devoting a special attention to the case of
Hilbert quasi *-algebras, i.e. completions of Hilbert algebras under the norm
defined by their inner product. The investigation of the problem concerning
continuity starts looking at sesquilinear forms associated to representable and
continuous functionals. These forms turn out to be everywhere defined and
bounded, hence the notion of full representability reduces to the sufficiency
of the family of these functionals, in the sense that they distinguish points
in the Banach quasi *-algebra. In the case of a *-semisimple Banach quasi
*-algebra, the family of representable and continuous functionals is shown to
be always sufficient, thus *-semisimple Banach quasi *-algebras are always
fully representable. The converse is true under the condition of positivity,
satisfied in many examples.

Having a representable functional at hand, it is possible to associate to
it a second sesquilinear form defined through the GNS-representation of the
functional (see [3, 65]). This form is everywhere defined and, in the case
the functional is also continuous, it coincides with the closure of the above
sesquilinear form defined through the funcitonal. This remark suggests that
these sesquilinear forms might be useful to characterize continuity. Indeed,
it has been shown that every representable functional is continuous if, and
only if, there exists another representable and continuous functional less or
equal to the given representable functional. Nonetheless, the results gives no
algorithm to construct such a functional.

Our investigation continues focusing on the case of Hilbert quasi *-alge-
bras, that turn out to be fully representable. In this situation, representable
and continuous functionals are in 1-1 correspondence with bounded and weak-
ly positive elements of the Hilbert quasi *-algebra. The definition of weakly
positive element is indeed a generalization of the notion given in [38].

Positivity plays an important role in studying the continuity for repre-
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sentable functionals. Indeed, the existence of a continuous module function,
i.e. a sort of generalization of the absolute value in the case of Hilbert quasi
*-algebras, owning certain invariance properties, guarantees the continuity of
representable functionals that are positive on the set of all weakly positive el-
ements. The latter condition is difficult to verify though, hence we examine in
details the Hilbert space of square integrable functions, that is a Hilbert quasi
*-algebra over continuous functions first and then over essentially bounded
functions. In these examples, it is shown that every representable functional
is continuous.

The previous chapters show the particular role of *-semisimple and fully
representable Banach quasi *-algebras. These properties motivate the study
of specific problems usually treated in the context of C*-algebras, in particu-
lar those more relevant for applications such as derivations and the generation
of groups of automorphisms (see [10, 11, 18]). For this reason in Chapter 3, we
examine derivations obtained as infinitesimal generators of automorphisms
groups. We employ sesquilinear forms in order to define what a derivation on
a Banach quasi *-algebra is. In this framework, the main point is to define
a suitable Leibnitz rule for the derivation, since a priori its image doesn’t
belong to the universal multipliers, i.e. those elements for which the left and
right multiplication operators are everywhere defined.

Our first step is to look at densely defined derivations on a Banach quasi *-
algebra (A,A0), starting our investigation from inner qu*-derivations, namely
those that can be written as δh(x) = i[h, x] for x ∈ A0 and fixed h ∈ A. In
the *-semisimple case, it is shown that every inner qu*-derivation is closable,
independently by the nature of h ∈ A. The closure, in general, is not again a
derivation in the classical sense, because the domain is not a quasi *-algebra
over A0. Therefore, we need to weaken the Leibnitz rule through the employ-
ment of sesquilinear forms, achieving a more general kind of derivation, i.e.
a weak *-derivation.

As for weak *-derivations, we need a suitable notion of *-automorphisms,
namely weak *-automorphism, in order to extend the well known result
of Bratteli-Robinson about the 1-1 correspondence between certain closed
*-derivations and continuous *-automorphism groups in a C*-algebra (see
[25, 26]). In our case, in order to get a closed weak *-derivation as infinites-
imal generator, we have to ask the group to be made of uniformly bounded
weak *-automorphisms, condition automatically verified for C*-algebras. On
the other hand, for a weak *-derivation to be the generator of a weak *-
automorphisms group as before, stronger conditions have to be required, as
for instance the domain should consist of bounded elements A

b
. Despite that,

these extra conditions are verified in some classical examples, thus appear to
be reasonable for our work.
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The last step consists of computing one parameter group generated by
inner qu*-derivations and give a physical examples motivating our choice
to examine derivations in a more general context when the implementing
element is unbounded.

In the last chapter, Chapter 4, we construct the tensor product Banach
quasi *-algebra and we explore its properties in relation with its factors.
There is few literature about tensor products of unbounded operator algebras,
despite the wide applications of topological tensor products (see [36, 37, 41]).
This construction aims to study representations of the factors through the
tensor product.

We first analyse the algebraic candidate for the tensor product Banach
quasi *-algebra. A quasi *-algebra A over A0 can be regarded as a bimodule
over A0. The problem is that two quasi *-algebras are bimodules over different
rings. In order to solve this problems, one might sum the rings and construct
a bimodule structure of the direct sum, but this leads to a trivial tensor
product, if one of the factor is unital. Then, we suppose the existence of an
embedding between the *-algebras involved in the tensor product. In this
way, both the quasi *-algebras are bimodules over the same ring. Moreover,
if we extend the scalars and compute the tensor product, what we obtain is
the same structure obtained constructing the tensor product on the smallest
*-algebra.

Having at our hands a notion of tensor product quasi *-algebra, the defi-
nition of topological tensor product of normed (resp. Banach) quasi *-algebra
is given. We endow the tensor product quasi *-algebra with an admissible
norm, for instance the injective or the projective norm, in order to get a
tensor product normed quasi *-algebra. The completion of the latter will be
for us the tensor product Banach quasi *-algebra.

At this point, the existence and the relation between representations of a
tensor product normed (resp. Banach) quasi *-algebra and those of the tensor
factors are explored. If the tensor product Banach quasi *-algebra possesses
*-representations, hence representable functionals, then also the tensor fac-
tors do. Although, the converse is true if we consider the pre-completion, i.e.
the tensor product normed quasi *-algebra possesses *-representations if the
factors Banach quasi *-algebras admit them.

4



Chapter 1

Brief review on quasi *-algebras
and their representations

1.1 Partial *-algebras of operators

Partial *-algebras of unbounded operators play a relevant role in repre-
sentation theory. We recall here the basic definitions and facts; for further
details, see [8, 9].

Let D be a dense subspace of a Hilbert space H[〈·|·〉]. Denote with
L†(D,H) the set of all closable linear operators X : D → H for which
D(X∗) ⊃ D, where X∗ indicates the adjoint of X. In symbols,

L†(D,H) := {X : D → H : D(X∗) ⊃ D}.

L†(D,H) is a complex vector space with respect to sum and scalar product
defined in the canonical way.

In L†(D,H), it is possible to identify the following subspace

L†(D) = {X : D → D : D(X∗) ⊃ D, X∗D ⊂ D}.

If we define an involution as X 7→ X† ≡ X∗
�D and a partial multiplication

X�Y := X†∗Y whenever YD ⊂ D(X†∗) and X†D ⊂ D(Y ∗) on L†(D,H),
then L†(D) equipped with the involution † is a *-algebra, whereas L†(D,H)
is a partial *-algebra in sense of the following definition

Definition 1.1.1 A partial *-algebra is a complex vector space A endowed
with an involution such that (x + λy)∗ = x∗ + λy∗ for λ ∈ C and x∗∗ = x,
coupled with a subset Γ ∈ A× A such that

(i) (x, y) ∈ Γ if, and only if, (y∗, x∗) ∈ Γ;
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6 1. Brief review on quasi *-algebras and their representations

(ii) (x, y) ∈ Γ and (x, z) ∈ Γ then (x, λy + µz) ∈ Γ for all λ, µ ∈ C;

(iii) whenever (x, y) ∈ Γ, there exists an element x · y ∈ A that satisfies the
following

x · (y + λz) = x · y + λ(x · z) and (x · y)∗ = y∗ · x∗

for (x, y), (x, z) ∈ Γ and λ ∈ C.

Definition 1.1.2 A †-invariant subspace O of L†(D,H) such that X�Y ∈ O
wheneverX, Y ∈ O andX is a left multiplier of Y is called partial O*-algebra.

If F is a †-invariant family of operators of L†(D,H), the weak commutant
(F,D)′w of F is defined as follows

(F,D)′w = {B ∈ B(H) : 〈BXξ|η〉 = 〈Bξ|X†η〉, ∀X ∈ F, ξ, η ∈ D}. (1.1)

(F,D)′w is stable under involution and it is weakly closed, but it is not an
algebra, in general.

A rich collection of examples of partial *-algebras of interest might be
analysed. For this aim, provide D of a locally convex topology τ finer than
the topology induced by the Hilbert norm, then the conjugate dual D× of
D[τ ], i.e. the linear space of al continuous conjugate linear functionals on
D[τ ], contains a linear space isomorphic to H.

If we endow D× with the strong dual topology τ× = β(D×,D) generated
by the family for semi-norms

D× 3 f 7→ sup
ξ∈B

|f(ξ)|

for B running over the family of all bounded subsets of D[τ ], then H is dense
in D×[τ×] and we achieve a rigged Hilbert space

D[τ ] ↪→ H ↪→ D×[τ×],

where all the inclusions are continuous and have dense range.
A familiar example of rigged Hilbert space is given by triplets of distri-

bution spaces; for further details, see [9].

Consider now the following family of operators

L(D,D×) = {X : D[τ ] → D×[τ×] : X is continuous}.

In general, L†(D,H), as well as L†(D), is not contained in L(D,D×), because
the operators X ∈ L†(D,H) need not to be continuous when D is endowed



1.1 Partial *-algebras of operators 7

with its original topology. Hence we denote by L†(D,H), respectively L†(D),
the subspaces of those operators that are continuous.

If X ∈ L(D,D×), then X can be interpreted as a separately continuous
sesquilinear form βX : D×D → C defined as βX(ξ, η) = 〈Xξ|η〉 for ξ, η ∈ D.
In particular, if X ∈ L†(D), then βX is jointly continuous.

With the above identification, it is easy to see that (L(D,D×),L†(D)) is
a special partial *-algebra, named quasi *-algebra.

Definition 1.1.3 A partial *-algebra A containing a *-algebra A0 is called
quasi *-algebra with distinguished A0 (or shortly over A0) whenever (x, y) ∈ Γ
if, and only if, x ∈ A0 or y ∈ A0. Since the structure is determined by A and
A0, we will denote by (A,A0) a quasi *-algebra.

If D is a dense subspace of a Hilbert space H, we have seen the partial
*-algebra L†(D,H). The mentioned partial *-algebra of operators can be
provided of several locally convex topologies.

Among them, we introduce the weak topology τw, the strong topology τs,
the strong *-topology τs∗ .

These topologies are generated respectively by the following families of
semi-norms

τw: L†(D,H) 3 X 7→ pξ,η(X) = |〈Xξ|η〉| for ξ, η ∈ D;

τs: L†(D,H) 3 X 7→ pξ(X) = ‖Xξ‖ for ξ ∈ D;

τs∗ : L†(D,H) 3 X 7→ pξ(X) = ‖Xξ‖+ ‖X†ξ‖ for ξ ∈ D.

If we denote with L†
b(D) the bounded part of L†(D), i.e.

L†(D)b := {X ∈ L†(D) : X ∈ B(H)},
then the couples (L†(D,H)[τw],L†(D)b) and (L†(D,H)[τs∗ ],L†

b(D)) are locally
convex quasi *-algebras.

Definition 1.1.4 Let (A,A0) be a quasi *-algebra and τ a locally convex
topology on A. (A,A0) is called locally convex quasi *-algebra if

(i) the map a 7→ a∗ is continuous;

(ii) for every x ∈ A0, the multiplication operators a 7→ ax and a 7→ xa are
continuous in A[τ ];

(iii) A0 is τ -dense in A.

If A0[τ ] is a locally convex *-algebra, then the completion Ã0[τ ] is a locally
convex quasi *-algebra, if the multiplication is not jointly continuous.
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1.2 Concrete examples of quasi *-algebras

In this section we give some further examples to give the reader the flavour
of (locally convex) quasi *-algebras.

Example 1.2.1 Let S(R) be the Schwartz space, i.e. the space of all rapidly
decreasing C∞-functions on R. If we provide S(R) of the locally convex
topology generated by the family of semi-norms

pk,r(f) = sup
x∈R

|xkDrf(x)|, f ∈ S(R); k, r ∈ N,

then its topological dual S ′(R) is the space of tempered distributions. S ′(R)
endowed with the strong dual topology can be thought as a locally convex
quasi *-algebra over S(R) with partial multiplication defined as

(F · f)(g) = (f · F )(g) = F (fg), F ∈ S ′(R); f, g ∈ S(R).

Example 1.2.2 Consider the commutative von Neumann algebra L∞(I, dλ)
for I to be a compact interval of the real line and λ the Lebesgue measure.
Define on L∞[0, 1] the usual norm p for p ≥ 1 as

‖f‖p :=
(∫

I

|f |pdλ
) 1

p

, f ∈ L∞(I, dλ).

In this situation, Lp(I, dλ) = ˜L∞(I, dλ)[‖ · ‖p] and (Lp(I, dλ), L∞(I, dλ)) is a
proper CQ*-algebra for every p ≥ 1 (see Definition 1.3.3).

We want to stress that the Banach space Lp(I, dλ) can be coupled with
several *-algebras of functions to obtain a Banach quasi *-algebra, for in-
stance, the space C∞(I) of all smooth functions over the interval I, the
Sobolev space W 1,p(I) of all Lp-functions admitting a first weak derivative
in Lp(I, dλ) or the space C(I) of all continuous functions over I.

Example 1.2.3 Let M be a general von Neumann algebra and ϕ a normal
faithful finite trace defined on M+, the cone of all positive operators in M.
For each p ≥ 1, let us define now a norm through ϕ in the following way

‖X‖p := ϕ(|X|p) 1
p , X ∈ M.

We indicate with Lp(ϕ) the completion of M with respect to ‖ · ‖p and with
L∞(ϕ) = M. By [22, Proposition 2.1], (Lp(ϕ), L∞(ϕ)) is a Banach quasi
*-algebra and, then (Lp(ϕ), L∞(ϕ)) is a proper CQ*-algebra.



1.3 A special case: Banach quasi *-algebras 9

1.3 A special case: Banach quasi *-algebras

Some of the examples in Section 1.2 are Banach quasi *-algebras, a special
case of locally convex quasi *-algebras in which the locally convex topology
is generated by a single norm.

Definition 1.3.1 Let (A,A0) be a quasi *-algebra. (A,A0) is called normed
quasi *-algebra if a norm ‖·‖ is defined on A for which the following conditions
hold

(i) the involution a 7→ a∗ is isometric, i.e., ‖a‖ = ‖a∗‖, for every a ∈ A;

(ii) A0 is ‖ · ‖-dense in A;

(iii) the map Rx : A 3 a 7→ ax ∈ A is continuous.

If (A, ‖ · ‖) is a Banach space, we will refer to (A,A0) to a Banach quasi
*-algebra. The norm topology of A will be denoted by τn.

Remark 1.3.2 Certainly, if the right multiplication operators Rx for ele-
ments x ∈ A0 are continuous, then also the left multiplication operators
Lx : A 3 a 7→ xa ∈ A are continuous.

If the Banach quasi *-algebra (A,A0) is unital, , i.e. there exists a unique
element 1 ∈ A0 such that a1 = a = 1a for every a ∈ A, then we can assume
that ‖1‖ = 1 without loss of generality. As well as for quasi *-algebras, it is
always possible to embed a Banach quasi *-algebra without unit in a Banach
quasi *-algebra with unit.

To avoid trivial situations, we assume that

If a ∈ A and ax = 0 for every x ∈ A0, then a = 0. (A)

This is clearly true if 1 ∈ A.
Let us define now a new norm on A0: if x ∈ A0, we put

‖x‖0 := max{‖x‖, ‖Lx‖, ‖Rx‖},

where ‖Lx‖, ‖Rx‖ are the familiar operator norms defined for bounded op-
erators. Then A0[‖ · ‖0] is a normed *-algebra and

‖ax‖ ≤ ‖a‖‖x‖0, ‖xa‖ ≤ ‖x‖0‖a‖, ∀a ∈ A; x ∈ A0.

Definition 1.3.3 Let (A,A0) be a Banach quasi *-algebra. (A,A0) is called
a proper CQ*-algebra if A0[‖ · ‖0] is a C*-algebra.
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The definition of CQ*-algebra is more general than that given above. It
involves two different *-algebras and A0 usually denotes their intersection. In
the proper case the two *-algebras coincide with A0. For further information,
see [9, 20].

Let (A,A0) be a normed quasi *-algebra. Suppose that the norm is in-
duced by an inner product 〈·|·〉. In this case, we deal with a Hilbert quasi
*-algebra.

Definition 1.3.4 A Hilbert algebra is a *-algebra A0 which is also a pre-
Hilbert space with inner product 〈·|·〉 such that

(i) the map y 7→ xy is continuous with respect to the norm defined by the
inner product;

(ii) 〈xy|z〉 = 〈y|x∗z〉 for all x, y, z ∈ A0;

(iii) 〈x|y〉 = 〈y∗|x∗〉 for all x, y ∈ A0;

(iv) A2
0 is total in A0.

Let H denote the Hilbert space completion of A0 with respect to the norm
defined by the inner product, then (H,A0) is a Banach quasi *-algebra named
a Hilbert quasi *-algebra.

Remark 1.3.5 The property

(ii)’ 〈xy|z〉 = 〈x|zy∗〉 for all x, y, z ∈ A0

is a consequence of properties (ii) and (iii) in Definition 1.3.4.

1.3.1 Bounded elements

In order to study the structure properties of Banach quasi *-algebras,
we discuss bounded elements, i.e. well behaved elements with respect to the
multiplication defined on A. For further details, we refer to [66, 67].

Definition 1.3.6 Let (A,A0) be a Banach quasi *-algebra and a ∈ A. We
say that

• a is left bounded if there exists γa > 0 such that

‖ax‖ ≤ γa‖x‖, ∀x ∈ A0.

• a is right bounded if there exists γ′a > 0 such that

‖xa‖ ≤ γ′a‖x‖, ∀x ∈ A0.
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• a is bounded if it is left and right bounded.

The collection of all bounded elements will be denoted by A
b
.

Clearly every x ∈ A0 belongs to A
b
. If a ∈ A is left-bounded (right-

bounded respectively), then the multiplication operator La (Ra respectively)
will be bounded. If a ∈ A is a general element in A, we don’t know a priori
whether Ra and La are closable or not. In the case they are closable for all
a ∈ A, we have the following

Definition 1.3.7 Let (A,A0) a Banach quasi *-algebra. (A,A0) is said to
be fully closable if La is a closable operator for every a ∈ A.

Remark 1.3.8 If all the left multiplication operators La are closable, then
all the right multiplication operators are closable as well.

In the case in which a is left bounded, it is possible to define the element
Lab for every b ∈ A. As well, if b is right bounded, we can compute the
element Rba. In general these two elements do not coincide.

Definition 1.3.9 A Banach quasi *-algebra (A,A0) is said to be normal if
Lab = Rba for every a, b ∈ A

b
. In this case, we can define a weak multiplica-

tion • between bounded elements as

a • b := Lab = Rba, ∀a, b ∈ A
b
.

On A
b
we define the norm

‖a‖
b
= max

{
‖a‖, ‖La‖, ‖Ra‖

}
.

Proposition 1.3.10 [66] Let (A,A0) be a Banach *-algebra. If (A,A0) is
normal, then (A

b
, ‖ · ‖

b
) is a Banach quasi *-algebra with respect to the mul-

tiplication •.
Bounded elements of a normal unital Banach quasi *-algebra (A,A0) can

be characterized through their spectrum.

Definition 1.3.11 Let (A,A0) be a normal Banach quasi *-algebra with
unit 1. For every a ∈ A, two important subsets of the complex plane can be
defined

• the resolvent set ρ(a) := {λ ∈ C : ∃b ∈ A
b
such that Rba = Lba = 1};

• the spectrum σ(a) := C \ ρ(a).
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Similar properties to the classical case hold for the spectrum and the
resolvent in a normal unital Banach quasi *-algebra (A,A0).

Proposition 1.3.12 [66] Let a ∈ A. Then:

(i) the resolvent ρ(a) is an open subset of the complex plane;

(ii) the resolvent function Rλ(a) : λ ∈ ρ(a) 7→ (a− λ1)−1 is ‖ · ‖
b
-analytic

on each connected component of ρ(a);

(iii) σ(a) is non-empty set;

(iv) if r(a) = sup
λ∈σ(a)

|λ| is the spectral radius of a, then a ∈ A
b
if, and only

if, r(a) <∞.

1.4 *-Representations of quasi *-algebras

If (A,A0) is a quasi *-algebra, we wonder whether it might be represented
as a certain class of operators introduced above. For this aim, a different
notion of representation is needed.

Definition 1.4.1 A *-representation of a quasi *-algebra (A,A0) is a *-ho-
momorphism π : A → L†(Dπ,Hπ), where Dπ is a dense subspace of the
Hilbert space Hπ with the following properties

(i) π(a∗) = π(a)† for all a ∈ A

(ii) if a ∈ A, x ∈ A0, then π(a)�π(x) is well-defined and π(a)�π(x) = π(ax).

If (A[‖ · ‖],A0) is a Banach quasi *-algebra, then we will say that π is
a (‖ · ‖-τ)-continuous *-representation if π is continuous from A[‖ · ‖] into
L†(Dπ,Hπ)[τ ].

Remark 1.4.2 In general, π(A0) is non a subspace of L†(D). However, it is
always possible to construct an associated *-representation π̂ through π that
verifies the pointed out condition. π̂ is called a qu*-representation (see [65]).

If (A,A0) has a unit 1, then π(1) = ID for every *-representation π of
the quasi *-algebra (A,A0).

Definition 1.4.3 Let π be a *-representation of the quasi *-algebra (A,A0).
π is said to be faithful if π(a) = 0 implies a = 0.
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Definition 1.4.4 If π is a *-representation of the quasi *-algebra (A,A0),
then π is said to be cyclic if there exists ξ0 ∈ Dπ such that π(A0)ξ0 is dense
in Dπ, whereas π is said to be ultra-cyclic Dπ = π(A0)ξ0 for some ξ0 ∈ Dπ.

In order to define the closure of a *-representation π, consider the graph
topology τπ defined by the family of semi-norms

ξ 3 Dπ 7→ ‖π(a)ξ‖, a ∈ A.

Now, let us indicate the completion of Dπ with respect to τπ with D̃π[τπ].

The closure π̃ of π is defined as the restriction of π(a) to D̃π, for all a ∈ A.
If π = π̃, then π is said to be closed.

In the case of a C*-algebra, a way to obtain *-representations is to build
them through positive functionals (see Theorem A.3.8). Due to the structure
of Banach quasi *-algebras, we need to introduce representable functionals.

Definition 1.4.5 Let (A,A0) be a quasi *-algebra. A linear functional ω on
A is said to be representable if the following conditions hold

(R.1) ω(x∗x) ≥ 0 for every x ∈ A0;

(R.2) ω(y∗a∗x) = ω(x∗ay) for every x, y ∈ A0, a ∈ A;

(R.3) for all a ∈ A, there exists γa > 0 such that

|ω(a∗x)| ≤ γa ω(x
∗x)

1
2 , ∀x ∈ A0.

The family of all representable functionals of the quasi *-algebra (A,A0) is
indicated with R(A,A0). Furthermore, if (A[‖ · ‖],A0) is a Banach quasi
*-algebra, we denote with Rc(A,A0) the family of all representable and con-
tinuous functionals on A[‖ · ‖]. ω is said to be continuous if there exists a
positive constant γ such that |ω(a)| ≤ γ‖a‖ for every a ∈ A.

Remark 1.4.6 If ω1, ω2 ∈ R(A,A0), then we have ω1 + ω2,∈ R(A,A0) and
λω1 ∈ R(A,A0) for every λ ≥ 0. If y ∈ A0 and ω ∈ R(A,A0), then the linear
functional ωy(a) := ω(y∗ay) belongs to R(A,A0).

Theorem 1.4.7 [65, Theorem 3.5] Let (A,A0) be a quasi *-algebra with unit
1 and let ω be a representable linear functional on (A,A0). Then, there exists
a triple (πω, λω,Hω) such that

(i) πω is an ultra-cyclic *-representation of A with ultra-cyclic vector ξω;
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(ii) λω is a linear map of A into Hω with λω(A0) = Dπω , ξω = λω(1) and
πω(a)λω(x) = λω(ax);

(iii) ω(a) = 〈πω(a)ξω|ξω〉 for every a ∈ A.

By Theorem 1.4.7, if ω is a representable functional on the quasi *-algebra
(A,A0), then it is associated with the triple (πω, λω,Hω). Through the
*-representation πω, it is possible to define a sesquilienar form Θω on A
as

Θω(a, b) := 〈πω(a)ξω|πω(b)ξω〉, a, b ∈ A.

Θω belongs to the family QA0(A) of all sesquilinear forms on A×A such that

(i) Θω(a, a) ≥ 0 for every a ∈ A;

(ii) Θω(ax, y) = Θ(x, a∗y) for all a ∈ A, x, y ∈ A0.

Through ω, another sesquilinear form can be defined in the following way

ϕω(x, y) := ω(y∗x), x, y ∈ A0. (1.2)

Clearly, Θω extends ϕω. Moreover, if ω is continuous, then the sesquilinear
form ϕω is closable (see [38]).

A positive sesquilinear form ϕ : A0 × A0 → C is said closable if for a
sequence {xn} in A0, the following condition is verified

xn
‖·‖−−→ 0 and ϕ(xn − xm, xn − xm) → 0 ⇒ ϕ(xn, xn) → 0.

If ϕ is closable, then the sequence {ϕ(xn, xn)} is Cauchy. Therefore, ϕ can
be extended to a positive sesquilinear form ϕ on D(ϕ)×D(ϕ) through a limit
procedure

ϕ(a, a) := lim
n→∞

ϕ(xn, xn),

where D(ϕ) is given by

D(ϕ) = {a ∈ A : ∃{xn} ⊂ A0 such that xn
‖·‖−−→ a

and ϕ(xn − xm, xn − xm) → 0}.

Example 1.4.8 Not every Banach quasi *-algebra has non-trivial repre-
sentable and continuous functionals. For instance, consider the Banach quasi
*-algebra (L1(I, dλ), L∞(I, dλ)), where I = [0, 1] and λ is the Lebesgue mea-
sure. Then, every representable and continuous functional on L1(I, dλ) would
be of the form

ω(f) =

∫ 1

0

f(x)w(x)dx, f ∈ L1(I, dλ),
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where w ∈ L∞(I, dλ), w ≥ 0. In this case, the only way to satisfy the
condition (R.3) is for w ≡ 0. Indeed, the condition (R.3) in Definition 1.4.5
translates into

|ω(f∗ψ)| =
∣∣∣∣
∫ 1

0

f(x)ψ(x)w(x)dx

∣∣∣∣ ≤ γf

(∫ 1

0

∣∣ψ(x)2
∣∣w(x)dx

) 1
2

, ∀ψ ∈ L∞(I, dλ).

This condition has to be true for every f ∈ L1(I, dλ), hence L1(I, dλ) ⊂
L2(I, wdλ) for w ∈ L∞(I, dλ), w ≥ 0 . This is never true for w 6= 0.

In general, a continuous functional ω satisfying (R.1) and (R.2) need not
to satisfy (R.3) and therefore it is not representable, as the next examples
show.

Example 1.4.9 Let us consider the Banach quasi *-algebra L2(I, dλ) over
C(I) (I and λ as in Example 1.4.8). Let w ∈ L2(I, dλ), w ≥ 0. We define

ω(f) =

∫

I

f(x)w(x)dλ(x), f ∈ L2(I, dλ).

It is clear that ω satisfies (R.1) and (R.2). Condition (R.3) requires that, for
every f ∈ L2(I), there exists γf > 0 such that

∣∣∣∣
∫

I

f(x)φ(x)w(x)dλ(x)

∣∣∣∣ ≤ γf

(∫

I

|φ(x)|2w(x)dλ(x)
) 1

2

, ∀φ ∈ C(I).

Since w(x) > 0 a.e., this inequality implies that f ∈ L2(I, wdλ). Were
L2(I, dλ) ⊆ L2(I, wdλ) then we should have that f

√
w ∈ L2(I, dλ), for every

f ∈ L2(I, dλ). This in turn implies that w ∈ L∞(I, dλ). So it suffices to pick
w ∈ L2(I, dλ) \ L∞(I, dλ) to get the desired example.

Example 1.4.10 Let D be a dense domain in a Hilbert space H and ‖ · ‖1
a norm on D, stronger than the Hilbert norm ‖ · ‖. Let B(D,D) denote
the vector space of all jointly continuous sesquilinear forms on D × D, with
respect to ‖ · ‖1. The map ϕ 7→ ϕ∗ with

ϕ∗(ξ, η) = ϕ(η, ξ),

defines an involution in B(D,D) (see, [65, Example 3.8]).
We denote by L†(D) the *-subalgebra of L†(D) consisting of all operators

A ∈ L†(D) such that both A and A† are continuous from D[‖ · ‖1] into itself.
Every A ∈ L†(D) defines a sesquilinear form ϕA ∈ B(D,D) by

ϕA(ξ, η) = 〈Aξ|η〉, ξ, η ∈ D.
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Indeed, we have, for every ξ, η ∈ D,

|ϕA(ξ, η)| = |〈Aξ|η〉| ≤ ‖Aξ‖‖η‖ ≤ γ‖Aξ‖1‖η‖1 ≤ γ′‖ξ‖1‖η‖1.
We put

B†(D) = {ϕA : A ∈ L†(D)}.
We have that ϕ∗

A = ϕA† , for every A ∈ L†(D). Indeed, for every ξ, η ∈ D,

ϕ∗
A(ξ, η) = ϕA(η, ξ) = 〈Aη|ξ〉 = 〈ξ|Aη〉 = 〈A†ξ|η〉 = ϕA†(ξ, η).

For ϕ ∈ B(D,D), ϕA ∈ B†(D), the multiplications are defined as

(ϕ ◦ ϕA)(ξ, η) = ϕ(Aξ, η), ξ, η ∈ D
(ϕA ◦ ϕ)(ξ, η) = ϕ(ξ, A†η), ξ, η ∈ D.

With these operations and involution, (B(D,D),B†(D)) is a quasi *-algebra.
A norm on B(D,D) is defined by

‖ϕ‖ := sup
‖ξ‖1=‖η‖1=1

|ϕ(ξ, η)|.

Then the pair (B†(D),B†(D)), where B†(D) denotes the ‖·‖-closure of B†(D),
is a Banach quasi *-algebra.

For every ξ ∈ D, we define

ωξ(ϕ) = ϕ(ξ, ξ), ϕ ∈ B(D,D).

Then ωξ is a linear functional on B(D,D). Moreover,

ωξ(ϕ
∗
A ◦ ϕA) = (ϕA† ◦ ϕA)(ξ, ξ) = 〈Aξ|Aξ〉 ≥ 0.

ωξ(ϕB† ◦ ϕ ◦ ϕA) = ϕ(Aξ,Bξ) = ωξ(ϕA† ◦ ϕ∗ ◦ ϕB).
Hence, ωξ satisfies (R.1) and (R.2) of Definition 1.4.5.

The functional ωξ is representable if, and only if, for every ϕ ∈ B(D,D),
there exists γϕ > 0, such that

|ϕ(Aξ, ξ)| ≤ γϕ‖Aξ‖, ∀A ∈ L†(D).

Indeed, ωξ satisfies (R.3) if, and only if, for every ϕ ∈ B(D,D), there exists
γϕ > 0 such that

|ωξ(ϕ∗ ◦ ϕA)| = |(ϕ ◦ ϕA)(ξ, ξ)| = |ϕ∗(Aξ, ξ)| = |ϕ(ξ, Aξ)| = |ϕ(ξ, Aξ)|
≤ γϕωξ(ϕ

∗
A ◦ ϕA)

1
2 ≤ γϕ‖Aξ‖.

The previous condition is clearly satisfied if, and only if, ϕ is bounded in
the second variable on the subspace Mξ = {Aξ;A ∈ L†(D)}. If this is the
case, then there exists ζ ∈ H, such that

ωξ(ϕ ◦ ϕA) = 〈Aξ|ζ〉, ∀ A ∈ L†(D).

Hence, every ωξ is continuous but it need not be representable.
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1.4.1 Full representability

Example 1.4.8 suggests us the necessity of a new definition in order to
discern those Banach quasi *-algebras that have enough representable and
continuous functionals, i.e. fully representable Banach quasi *-algebras.

Definition 1.4.11 Let (A,A0) be a Banach quasi *-algebra. Let A+
0 be the

wedge of positive elements of the *-algebra A0

A+
0 =

{
n∑

k=1

x∗kxk, xk ∈ A0, n ∈ N

}
.

We call a ∈ A positive if there exists a sequence {yn} in A+
0 that converges

to a. The set of all positive elements in A is denoted by A+ := A+
0

‖·‖
.

The wedge A+ is a cone if A+ ∩ (−A+) = {0}.

Definition 1.4.12 Let ω : A → C be a linear functional. ω is called a
positive functional if ω(a) ≥ 0 for every a ∈ A+.

Positivity is preserved by certain *-representations and continuous repre-
sentable functionals.

Proposition 1.4.13 [38] Let (A,A0) be a Banach quasi *-algebra and con-
sider a ∈ A+. Then

(i) π(a) is positive for every (‖ · ‖-τw)-continuous *-representation;

(ii) ω ∈ Rc(A,A0) is a positive functional.

Definition 1.4.14 Let (A,A0) be a Banach quasi *-algebra. A family of
positive functionals F on A is called sufficient if for every 0 6= a ∈ A+ there
exists a functional ω ∈ F such that ω(a) > 0.

We are interested in studying the sufficiency of the familyRc(A,A0). This
property can be characterized using positive elements.

Proposition 1.4.15 [38] Let (A,A0) be a Banach quasi *-algebra. The fol-
lowing statements are equivalent:

(i) A+ is a cone;

(ii) Rc(A,A0) is sufficient.

Definition 1.4.16 A Banach quasi *-algebra (A,A0) will be said fully rep-
resentable if Rc(A,A0) is sufficient and D(ϕω) = A for every ω ∈ Rc(A,A0).
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If Rc(A,A0) sufficient and a condition of positivity is valid, we can obtain
the reverse statement of Proposition 1.4.13.

Proposition 1.4.17 [38] Let (A,A0) be a Banach quasi *-algebra for which
Rc(A,A0) is sufficient. Suppose the following condition (P ) holds

b ∈ A and ω(x∗bx) ≥ 0 ∀ω ∈ Rc(A,A0); ∀x ∈ A0 ⇒ b ∈ A+. (P)

Then the following are equivalent for a ∈ A+

(i) a ∈ A+;

(ii) ω(a) ≥ 0 for all ω ∈ Rc(A,A0);

(iii) π(a) is positive for every (‖ · ‖-τw)-continuous *-representation.

1.4.2 *-Semisimplicity

Another approach to the problem of finding *-representations and study-
ing their continuity is to investigate a certain set of continuous sesquilinear
forms.

Definition 1.4.18 Let (A,A0) be a Banach quasi *-algebra. We denote by
SA0(A) the family of all sesquilinear forms Θ : A× A → C such that

(S.1) Θ(a, a) ≥ 0 for all a ∈ A;

(S.2) Θ(ax, y) = Θ(x, a∗y) for all a ∈ A, x, y ∈ A0;

(S.3) ‖Θ‖ = sup
‖a‖=1=‖b‖

|Θ(a, b)| = 1.

Remark 1.4.19 In other words, SA0(A) is the subset of QA0(A) of all the
sesquilinear forms with unit norms.

Lemma 1.4.20 [20] Let (A,A0) be a Banach quasi *-algebra. Then the fol-
lowing sets

R1 = {a ∈ A : Θ(a, a) = 0, ∀Θ ∈ SA0(A)} ;
R2 = {a ∈ A : Θ(ax, y) = 0, ∀Θ ∈ SA0(A); ∀x, y ∈ A0}
R3 = {a ∈ A : Θ(ax, ay) = 0, ∀Θ ∈ SA0(A); ∀x, y ∈ A0}

are equal, i.e. R1 = R2 = R3 =: R∗.
The set R∗ is called the *-radical of A.
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Definition 1.4.21 We call *-semisimple any Banach quasi *-algebra (A,A0)
for which R∗ = {0}.

Definition 1.4.22 A *-semisimple Banach quasi *-algebra (A,A0) is said to
be regular if

‖a‖ := sup
Θ∈SA0

(A)

Θ(a, a)
1
2 , ∀a ∈ A.

Example 1.4.23 [19] For p ≥ 2, any Banach quasi *-algebra Lp(I, dλ) over
L∞(I, dλ)) is both fully representable and *-semisimple. Indeed, all the
sesquilinear forms of the form

Θξ(f, g) := ‖ξ‖2−pp

∫ 1

0

f(x)g(x)|ξ(x)|p−2dx, f, g ∈ Lp(I, dλ)

for ξ ∈ Lp(I, dλ), belong to SA0(A) and constitute a sufficient subset in
SA0(A).

If (A,A0) is a *-semisimple Banach quasi *-algebra, then it is possible to
introduce a partial multiplication on A.

Definition 1.4.24 [20] Let (A,A0) be a *-semisimple Banach quasi *-alge-
bra and let a, b ∈ A. We define the weak product a�b of a, b if there exists
c ∈ A such that

Θ(bx, a∗y) = Θ(cx, y), ∀Θ ∈ SA0(A), ∀x, y ∈ A0.

The element c, if it exists, is unique and a�b := c.

We will denote with Rw(A) (respectively Lw(A)) the space of universal
weak multipliers of A, i.e. the space of all b ∈ A such that a�b (b�a respec-
tively) is well-defined for every a ∈ A. Clearly, A0 ⊆ Rw(A) and A0 ⊆ Lw(A).

Proposition 1.4.25 [20] Let (A,A0) be a *-semisimple Banach quasi *-
algebra. Then (A,A0) provided with the weak multiplication � is a partial
*-algebra.

It is worth to introduce some topologies originated by the sesquilinear
forms in SA0(A), in the case (A,A0) is *-semisimple. These topologies are
similar to those introduced in Section 1.1, but the semi-norms are essentially
given by the sesquilinear forms.

τw: A 3 a 7→ |Θ(ax, y)| for all ω ∈ Rc(A,A0), x, y ∈ A0;

τs: A 3 a 7→ Θ(a, a)
1
2 for all ω ∈ Rc(A,A0);
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τs∗ : A 3 a 7→ max{Θ(a, a)
1
2 ,Θ(a∗, a∗)

1
2} for all ω ∈ Rc(A,A0);

*-Semisimplicity has a plenty of interesting implications, that we collect
in a unique proposition.

Proposition 1.4.26 [20, 66] Let (A,A0) be a *-semisimple Banach quasi
*-algebra. Then

(i) A0 is *-semisimple;

(ii) (A,A0) is fully closable;

(iii) (A,A0) is normal.

Theorem 1.4.27 [15, 66] Let (A,A0) be a Banach quasi *-algebra with unit
1. The following statements are equivalent

(i) There exists a faithful (‖·‖-τs∗)-continuous *-representation π of A and
A

b
= {a ∈ A : π(a) ∈ B(H)};

(ii) (A,A0) is *-semisimple.

Corollary 1.4.28 Let (A,A0) be a *-semisimple Banach quasi *-algebra with
unit 1. Then the Banach quasi *-algebra (A,A0) is continuously embedded
into a locally convex quasi *-algebra of operators. Moreover, if π is the faithful
*-representation that realizes the embedding, then

A
b
=
{
a ∈ A : π(a) ∈ B(H)

}
.



Chapter 2

The continuity of representable
functionals

In the case of a C*-algebra, the counterpart of representable functionals
are positive functionals. The condition of positivity automatically implies
the existence of non-trivial functionals and continuity of them.

Theorem 2.0.1 [63] Let A0[‖ · ‖0] be a unital C*-algebra and let x ∈ A0.
Then there exists a positive functional ω such that ω(x) = ‖x‖0. Moreover,
ω is continuous and ‖ω‖ = ω(1).

For representable functionals on locally convex quasi *-algebras no similar
theorem is known, neither for the special case of Banach quasi *-algebras.
Our aim is to investigate when representable functionals on a Banach quasi
*-algebra (A,A0) are automatically continuous.

Representable functionals on certain Banach quasi *-algebras are indeed
continuous. The existence of a noncontinuous representable functional is still
an open question.

2.1 Full representability vs *-semisimplicity

As we have seen in Chapter 1 in Theorem 1.4.27, the existence and the
continuity of *-representations on Banach quasi *-algebras is related to the
notion of *-semisimplicity.

All the examples of *-semisimple Banach quasi *-algebras are also fully
representable, therefore we ask ourselves if there is any relationship between
them.

It is know that if ω ∈ Rc(A,A0) for a locally convex quasi *-algebra
(A,A0), then ϕω is closable by [38].

21
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In the case (A,A0) is a Banach quasi *-algebra, we are able to show that
ϕω can be extended continuously to all A.

Proposition 2.1.1 Let (A,A0) be a unital Banach quasi *-algebra, ω in
Rc(A,A0) and ϕω the associated sesquilinear form on A0 × A0 defined as
ϕω(x, y) = ω(y∗x) for every x, y ∈ A0. Then D(ϕω) = A; hence ϕω is
everywhere defined and bounded.

Proof. Since ω is representable, by Theorem 1.4.7, there exists a Hilbert
space Hω, a linear map λω : A0 → Hω and a *-representation πω with values
in L†(λω(A0),Hω) such that

ω(y∗ax) = 〈πω(a)λω(x)|λω(y)〉, ∀a ∈ A, x, y ∈ A0.

Then, by continuity of ω and the properties of the norm on (A,A0), for every
a ∈ A and x, y ∈ A0,

|〈πω(a)λω(x)|λω(y)〉| = |ω(y∗ax)| ≤ γ‖y∗ax‖ ≤ γ‖y∗‖0 ‖ax‖ (2.1)

≤ γ‖a‖‖x‖0‖y‖0.

Now, consider the sesquilinear form Θω defined as Θω(a, b) = 〈π(a)ξω|π(b)ξω〉
for all a, b ∈ A. As already noticed in Section 1.4, Θω extends ϕω. It remains
to show that Θω is closable.

Suppose now that {an} is a sequence in A such that ‖an‖ → 0 and
Θω(an− am, an− am) = ‖πω(an− am)ξω‖2 → 0. Then the sequence πω(an)ξω
converges to a vector ζ ∈ Hω. Thus,

〈πω(an)ξω|λω(y)〉 → 〈ζ|λω(y)〉, ∀y ∈ A0.

By Theorem 1.4.7, the *-representation π is ultra-cyclic, thus π(A0)Dπ = Dπ

is dense in Hω. Employing (2.1), we obtain ζ = 0. Indeed

|〈ζ|λω(y)〉| = | lim
n→∞

〈πω(an)ξω|λω(y)〉| = lim
n→∞

|〈πω(an)ξω|λω(y)〉|
≤ lim

n→∞
γ‖an‖ ‖x‖0 ‖y‖0 = 0, ∀y ∈ A0.

Hence Θω(an, an) → 0; i.e., Θω is closable. Thus Θω is closed and every-
where defined, hence bounded. We conclude that Θω = ϕω by the uniqueness
of continuous extension. Indeed, if a ∈ D(ϕω), then there exists a sequence
{xn} of elements in A0 such that ‖xn − a‖ → 0 and

ϕω(a, a) = lim
n→∞

ϕ(xn, xn) = lim
n→∞

Θω(xn, xn) = Θω(a, a). �
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Corollary 2.1.2 Let (A,A0) be Banach quasi *-algebra with unit. Then
(A,A0) is fully representable if, and only if, Rc(A,A0) is sufficient.

Proposition 2.1.1 suggests us a deep link between full representability and
*-semisimplicity. Indeed, they differ only by the condition (P) introduced in
Chapter 1.

Theorem 2.1.3 Let (A,A0) be a Banach quasi *-algebra with unit 1. If the
condition of positivity (P) holds, then (A,A0) is *-semisimple if, and only if
(A,A0) is fully representable.

Proof. Assume that the condition of positivity (P) is valid. Let SA0(A) be as
in Definition 1.4.18. First, we notice that every Θ ∈ SA0(A) can be written
as ϕω, for some ω ∈ Rc(A,A0). If we put

ωΘ(a) := Θ(a,1), a ∈ A,

then ωΘ is continuous and representable. Indeed, (R.1), (R.2) in Definition
1.4.5 are given by the positivity and the invariance of Θ, i.e. by conditions
(S.1) and (S.2) in Definition 1.4.18. For (R.3), consider a ∈ A

|ωΘ(a
∗x)| = |Θ(a∗x,1)| = |Θ(x, a)| ≤ Θ(a, a)

1
2Θ(x, x)

1
2

≤ γaΘ(x∗x,1)
1
2 = γaωΘ(x

∗x)
1
2 , ∀x ∈ A0,

where γa := Θ(a, a)
1
2 + 1 > 0. Therefore, ωΘ ∈ Rc(A,A0) and

ϕωΘ
(x, x) = ωΘ(x

∗x) = Θ(x, x), ∀x ∈ A0.

Therefore, by Proposition 2.1.1, ϕωΘ
= Θ.

On the other hand, consider a linear functional 0 6= ω ∈ Rc(A,A0) and
let ϕω be the sesquilinear form associated to it as before in (1.2).

By Proposition 2.1.1 D(ϕω) = A and ϕω is bounded. If ϕ′
ω = ϕω/‖ϕω‖,

then ϕ′
ω ∈ SA0(A).

Assume that (A,A0) is fully representable. Let a ∈ A be such that
Θ(a, a) = 0 for every Θ ∈ SA0(A). For what we have just shown, it is
enough to prove that, if ϕω(a, a) = 0, for every ω ∈ Rc(A,A0), then a = 0.
We have

|ω(a)| = |ϕω(a,1)| ≤ ϕω(1,1)
1/2ϕω(a, a)

1/2 = 0

Then by Remark 3.10 of [38] employing condition (P), we get the statement.
Assuming now that (A,A0) is *-semisimple, it is possible to show that

(A,A0) is fully representable with a similar argument used in [38] as follows.
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For this aim, let Θ ∈ SA0(A) and define a functional ωΘ(a) := Θ(a,1) for
a ∈ A. For every h ∈ A+ ∩ (−A+), we have ωΘ(h) = 0 for every Θ ∈ SA0(A).
Indeed, h ∈ A+, hence

ωΘ(h) = lim
n→∞

ωΘ(xn) ≥ 0

for {xn} a sequence in A+
0 such that ‖xn − h‖ → 0 as n → ∞. As well,

h ∈ (−A+), therefore ωΘ(h) ≤ 0.
Consider now x ∈ A0 such that ‖x‖ ≤ 1. Then, Θx(a, b) := Θ(ax, bx) for

a, b ∈ A belongs to SA0(A) and ωΘx(h) = 0. Hence Θ(hx, x) = 0 for every
x ∈ A0 and then Θ(hx, y) = 0 for all x, y ∈ A0. We obtain

Θ(h, h) = lim
n→∞

Θ(h, xn) = 0, ∀Θ ∈ SA0(A)

and, from the *-semisimplicity of (A,A0), h = 0.
We showed that A+ is a cone and thus by Proposition 1.4.15, Rc(A,A0)

is sufficient. We conclude by Proposition 2.1.1. �

Remark 2.1.4 We stress that in Theorem 2.1.3, the condition of positivity
(P) is used only in the proof that a fully representable (A,A0) is *-semisimple.

Example 2.1.5 As well as for the commutative case, for p ≥ 2, the Banach
quasi *-algebra (Lp(ϕ), L∞(ϕ)) for ϕ a finite faithful normal trace on the von
Neumann algebra L∞(ϕ) is *-semisimple by Proposition 2.6 in [22] . Hence,
(Lp(ϕ), L∞(ϕ)) is also fully representable by Theorem 2.1.3.

We have just shown in Proposition 2.1.1 that for every representable and
continuous functional ω on a Banach quasi *-algebra (A,A0) the sesquilinear
form ϕω associated to ω is everywhere defined and continuous.

For a representable functional, not surely continuous, nothing is known
about the closability or continuity of ϕω. Through the *-representation πω as-
sociated to ω, it is still possible to define Θω, an everywhere defined sesquilin-
ear form.

By means of Θω, we define a partial order in R(A,A0) in the following
way: if ω, ψ ∈ R(A,A0) we say that

ψ ≤ ω if Θψ(a, a) ≤ Θω(a, a), ∀a ∈ A.

Before demonstrating a result on the continuity of representable function-
als through the partial order we introduced above, we need a characterization
of representability.
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Proposition 2.1.6 Let (A,A0) be a quasi *-algebra with unit 1 and ω a
linear functional on A satisfying (R.1) and (R.2). The following statements
are equivalent.

(i) ω is representable.

(ii) There exist a *-representation π defined on a dense domain Dπ of a
Hilbert space Hπ and a vector ζ ∈ Dπ such that

ω(a) = 〈π(a)ζ|ζ〉, ∀a ∈ A.

(iii) There exists a sesquilinear form Θω ∈ QA0(A) such that

ω(a) = Θω(a,1), ∀a ∈ A.

Proof. (i) implies (ii) by Theorem 1.4.7. Suppose now that (ii) holds and
define:

Θω(a, b) := 〈π(a)ζ|π(b)ζ〉, a, b ∈ A.

Then Θω(a,1) = 〈π(a)ζ|ζ〉 = ω(a) and by the properties (R.1) and (R.2) of
ω, Θω ∈ QA0(A). This proves (iii).

Finally suppose that (iii) holds. Properties (R.1) and (R.2) clearly come
from Θω ∈ QA0(A). What remains to show is (R.3). For every a ∈ A

|ω(a∗x)| = |Θω(x, a)| ≤ Θω(a, a)
1
2Θω(x, x)

1
2 ≤ γaω(x

∗x)
1
2 , ∀x ∈ A0,

where, for instance, γa := 1 + Θω(a, a)1/2. Hence, ω is representable. �

Lemma 2.1.7 Let ω, ψ ∈ R(A,A0) with ω ≤ ψ. Then ψ − ω ∈ R(A,A0).

Proof. The conditions (R.1) and (R.2) are satisfied by the properties of Θψ

and Θω. What remains to check is (R.3). For every a ∈ A and x ∈ A0, using
the Cauchy-Schwarz inequality for the positive sesquilinear form Θψ − Θω,
we get

|(ψ − ω)(a∗x)| = |(Θψ −Θω)(a∗x,1)| = |(Θψ −Θω)(x, a)|
≤ (Θψ −Θω)(x, x)1/2(Θψ −Θω)(a, a)1/2

= (ψ − ω)(x∗x)1/2(Θψ −Θω)(a, a)1/2

≤ γa(ψ − ω)(x∗x)
1
2 ,

where γa := (Θψ −Θω)(a, a)
1
2 + 1 > 0. �
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Theorem 2.1.8 Let (A,A0) be a Banach quasi *-algebra. The following
statements are equivalent.

(i) Every ω ∈ R(A,A0) is bounded; i.e., R(A,A0) = Rc(A,A0).

(ii) Every *-representation π of (A,A0) is weakly continuous from A[‖ · ‖]
into L†(Dπ,Hπ)[τw].

(iii) For every ω ∈ R(A,A0), ω 6= 0, there exists a non-zero ψ ∈ Rc(A,A0)
such that ψ ≤ ω.

Proof. (i) ⇒ (ii): Let π be a *-representation of (A,A0). Then, for every
ξ ∈ Dπ the linear functional ω(a) = 〈π(a)ξ|ξ〉 is representable by Proposition
2.1.6 and, therefore bounded. Hence π : A[‖ · ‖] → L†(Dπ,Hπ)[τw] is contin-
uous. Indeed, if {an} is a sequence of elements in A such that ‖an − a‖ → 0
for n→ ∞, then

〈π(an)ξ|ξ〉 = ωπ,ξ(an) → ωπ,ξ(a) = 〈π(a)ξ|ξ〉, ∀ξ ∈ Dπ (2.2)

where ωπ,ξ is the functional associated to the *-representation π and the
vector ξ ∈ Dπ.

(ii) ⇒ (iii): Let ω ∈ R(A,A0) and πω the corresponding GNS-representa-
tion (which is weakly-continuous by assumption) with cyclic vector ξω. Then
for every ξ, η ∈ Dω there exists γξ,η > 0 such that

|〈πω(a)ξ|η〉| ≤ γξ,η‖a‖, ∀a ∈ A.

In particular, for the cyclic vector ξω, we have

|ω(a)| = |〈πω(a)ξω|ξω〉| ≤ γξω ,ξω‖a‖, ∀a ∈ A.

Then (iii) holds with the obvious choice of ψ = ω.
(iii) ⇒ (i): By the assumption, the set Kω = {ψ ∈ Rc(H,A0) : ψ ≤ ω} is

a non-empty partially ordered (by ≤) set. Let W be a totally ordered subset
of Kω. Then

lim
ψ∈W

ψ(a)

exists for every a ∈ A. Indeed, the set of numbers {Θψ(a, a);ψ ∈ W} is
increasing and bounded from above by Θω(a, a). We set, for every a ∈ A,

Λ(a, a) = lim
ψ∈W

Θψ(a, a).

Then Λ satisfies the equality

Λ(a+ b, a+ b) + Λ(a− b, a− b) = 2Λ(a, a) + 2Λ(b, b), ∀a, b ∈ A,
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hence we can define Λ on A × A using the polarization identity. By the
properties of Θψ ∈ QA0(A) for every ψ ∈ Kω, then Λ ∈ QA0(A).

If we put ω◦(a) = Λ(a,1), then ω◦(a) = limψ∈W ψ(a). We now prove that
ω◦ ∈ R(A,A0). It is clear that ω◦ is a linear functional on A and ω◦ ≤ ω.
The conditions (R.1) and (R.2) are satisfied by the properties of Λ. We prove
(R.3). Let a ∈ A. Then

|ω◦(a∗x)| = lim
ψ∈W

|ψ(a∗x)| ≤ lim
ψ∈W

(1 + Θψ(a, a)
1
2 ) lim

ψ∈W
ψ(x∗x)

1
2

≤ (1 + Λ(a, a)
1
2 )ω◦(x∗x)

1
2 , ∀x ∈ A0.

We show now that ω◦ is bounded. For every a ∈ A the set {|ψ(a)|;ψ ∈ W}
is bounded; indeed, for every ψ ∈ W , we get

|ψ(a)| = |Θψ(a,1)| ≤ Θψ(a, a)
1
2Θψ(1,1)

1
2 ≤ Θω(a, a)

1
2Θω(1,1)

1
2 .

By the uniform boundedness principle, we conclude that there exists γ > 0
such that |ψ(a)| ≤ γ‖a‖, for every ψ ∈ W and for every a ∈ A. Hence,

|ω◦(a)| = lim
ψ∈W

|ψ(a)| ≤ γ‖a‖, ∀a ∈ H.

Then, W has an upper bound. Then, by Zorn’s lemma, Kω has a maximal
element ω•. It remains to prove that ω = ω•. Assume, on the contrary
that ω > ω•. Let us consider the functional ω − ω•, which is non-zero and
representable by Lemma 2.1.7. Then, there exists σ ∈ Rc(A,A0) such that
ω − ω• ≥ σ. Hence, ω ≥ ω• + σ, contradicting the maximality of ω•. Then
ω = ω• and, therefore, ω is continuous. �

Remark 2.1.9 The equivalence of (i) and (ii) of the previous theorem holds
also in the case when (A,A0) is only a normed quasi *-algebra. Indeed, no
properties related to the completeness are needed to prove that (i) implies
(ii). The other direction can be shown again through the computation in
(2.2).

The proof of (iii) ⇒ (i) is inspired by a well known result of the theory
of Banach *-algebras [33, Lemma 5.5.5].

2.2 Representable functionals on a Hilbert

quasi *-algebra

Theorem 2.1.8 provided us conditions for the continuity of representable
functionals based on the existence of a certain continuous representable func-
tional, but it does not provide any algorithm to build the mentioned func-
tional.
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This remark encourages us to continue our investigation about the prob-
lem of continuity, focusing on the particular case of Hilbert quasi *-algebras
on which the structure is richer.

For the reader’s convenience, we remind that we assume the following
condition (A)

(A) If ξ ∈ H and ξx = 0, for every x ∈ A0, then ξ = 0.

As in Definition 1.3.7, we consider, for every ξ ∈ H, the following opera-
tors:

Lξ : A0 → H, Lξx = ξx

and

Rξ : A0 → H, Rξx = xξ.

Lemma 2.2.1 Every Hilbert quasi *-algebra (H,A0) is fully closable and, in
addition, Lξ∗ ⊂ L∗

ξ, Rξ∗ ⊂ R∗
ξ for every ξ ∈ H. Hence, Lξ ∈ L†(A0,H), for

every ξ ∈ H. Moreover, the map

ξ ∈ H → Lξ ∈ L†(A0,H)

is injective and, if η ∈ D(Lξ) then ηx ∈ D(Lξ), for every x ∈ A0.

Proof. In order to show that Lξ is closable, let {xn} be a vanishing sequence
in A0 such that ξxn → η ∈ H. We want to prove that η = 0.

For every y ∈ A0, ‖yx∗n‖ → 0. Therefore, on one hand we have

〈ξxn|y〉 → 〈η|y〉 ∀y ∈ A0

and on the other
〈ξxn|y〉 = 〈ξ|yx∗n〉 → 0 ∀y ∈ A0.

We conclude that 〈η|y〉 = 0 for every y ∈ A0, hence η = 0.
If x, y ∈ A0, we have

〈Lξx|y〉 = 〈ξx|y〉 = 〈x|ξ∗y〉 = 〈x|Lξ∗y〉.

This proves the inclusion Lξ∗ ⊂ L∗
ξ . Symmetrical arguments can be employed

for Rξ, ξ ∈ H.
The injectivity of the map H 3 ξ 7→ Lξ ∈ L†(A0,H) comes from the

condition A. �
Among multiplication operators, a distinguished role is played by those

whose closure is everywhere defined.
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2.2.1 Partial multiplication and bounded elements

If (H,A0) is a Hilbert quasi *-algebra, then the sesquilinear form ϕ

ϕ(ξ, η) := 〈ξ|η〉, ∀ξ, η ∈ H

belongs to SA0(A). Hence, every Hilbert quasi *-algebra is *-semisimple.
Therefore, Definition 1.4.24 can be rephrased in the following way, due to
Riesz representation theorem for bounded sesquilinear forms.

Definition 2.2.2 Let ξ, η ∈ H. We say that ξ is a left-multiplier of η (or, η
is a right-multiplier of ξ) if there exists ζ ∈ H such that

〈ηx|ξ∗y〉 = 〈ζx|y〉, ∀x, y ∈ A0.

In this case we put ξ�η := ζ.

Clearly, ξ�η is well-defined if and only if η∗�ξ∗ is well defined. Moreover
(ξ�η)∗ = η∗�ξ∗.

If ξ�η is well-defined then Lξ �Lη is well defined in L†(A0,H) and we have
Lξ�η = Lξ �Lη. For ξ ∈ H, we denote by Lw(ξ) (resp., Rw(ξ)) the set of left-
(resp., right-) multipliers of ξ.

Proposition 2.2.3 Let (H,A0) be a Hilbert quasi *-algebra. Then H is a
partial *-algebra with respect to the multiplication �.

Proof. By the above discussion, (H,A0) is *-semisimple. Hence, apply Propo-
sition 1.4.25. �

Remark 2.2.4 ξ�η is well defined if Lξ �Lη is well defined in L†(A0,H) and
vice-versa. Moreover, Lξ �Lη = Lζ for some ζ ∈ H. If (H,A0) is unital, the
second condition is automatically satisfied whenever Lξ �Lη is well defined,
since one can put ζ = (Lξ �Lη)1. In this case, LH := {Lξ; ξ ∈ H} is a partial
O*-algebra on A0, according to Definition 1.1.2.

Proposition 2.2.5 Let (H,A0) be a Hilbert quasi *-algebra and ξ ∈ H. The
following statements hold.

(i) Rw(ξ
∗) = {η ∈ D((Lξ �A2

0
)∗) : ηy ∈ D(L∗

ξ), ∀y ∈ A0}.

(ii) If (H,A0) is unital, then Rw(ξ
∗) = D(L∗

ξ).

(iii) If (H,A0) is unital and ξ∗ is a universal right multiplier (i.e. Rw(ξ
∗)

is equal to H), then Lξ and Lξ∗ are bounded operators.
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Proof. (i): Let η ∈ Rw(ξ
∗). Then,

〈Lξx|ηy〉 = 〈ξx|ηy〉 = 〈x|(ξ∗�η)y〉.

Hence ηy ∈ D(L∗
ξ) and L

∗
ξ(ηy) = (ξ∗�η)y, for every y ∈ A0.

Moreover, since

〈ξx|ηy〉 = 〈ξxy∗|η〉 = 〈x|(ξ∗�η)y〉 = 〈xy∗|ξ∗�η〉,

we also have that η ∈ D((Lξ �A2
0
)∗).

Conversely, let η ∈ D((Lξ �A2
0
)∗) be such that ηy ∈ D(L∗

ξ), for every
y ∈ A0. Then,

〈Lξx|ηy〉 = 〈x|L∗
ξ(ηy)〉, ∀x, y ∈ A0

On the other hand,

〈Lξx|ηy〉 = 〈Lξxy∗|η〉 = 〈xy∗|(Lξ �A2
0
)∗η〉 = 〈x|(Lξ �A2

0
)∗η)y〉.

Thus,
〈ξx|ηy〉 = 〈x|(Lξ �A2

0
)∗η)y〉.

This implies that η ∈ Rw(ξ
∗) and ξ∗�η = (Lξ �A2

0
)∗η.

(ii): This follows immediately from the closed graph theorem.
(iii): In this case, A2

0 = A0. Now if η ∈ D(L∗
ξ) and y ∈ A0, then ηy ∈ D(L∗

ξ).
Indeed, we have

〈Lξx|ηy〉 = 〈Lξ(xy∗)|η〉 = 〈xy∗|L∗
ξη〉 = 〈x|(L∗

ξη)y〉.

Hence, ηy ∈ D(L∗
ξ) and L

∗
ξ(ηy) = (L∗

ξη)y. �
For some ξ ∈ H it may happen that the operator Lξ (resp. Rξ) is bounded

on A0. Then its closure Lξ (resp. Rξ) is an everywhere defined bounded
operator in H. In this case, we say that ξ is a left- (resp. right-) bounded
element.

The following result is inspired by [56, Proposition 11.7.5]:

Proposition 2.2.6 Let (H,A0) be a Hilbert quasi *-algebra. Then ξ ∈ H is
left-bounded if and only if it is right bounded. Moreover, Lξx = (Rξ∗x

∗)∗, for
every left-bounded element ξ ∈ H.

Proof. Indeed, ξ is left-bounded if, and only if, ξ∗ is right-bounded, since

‖xξ∗‖ = ‖ξx∗‖ ≤ γ‖x∗‖ = γ‖x‖, ∀x ∈ A0.

On the other hand, by Lemma 2.2.1, ξ is left- (resp. right-) bounded if, and
only if, ξ∗ is left- (resp. right-) bounded. �



2.2 Representable functionals on a Hilbert quasi *-algebra 31

From now on, we speak only of bounded elements. The set of bounded
elements is denoted by H

b
(see Definition 1.3.6).

Let ξ, η ∈ H
b
. Then the multiplication ξ�η is, in this case, well-defined.

Indeed, for every x, y ∈ H, we have

〈ηx|ξ∗y〉 = 〈Lηx|ξ∗y〉 = 〈x|L∗
η(ξ

∗y)〉 = 〈x|Lη∗(Lξ∗y)〉
= 〈x|(Lη∗Lξ∗)y)〉 = 〈(Lξη)x|y)〉.

Hence, ξ�η = Lξη. Thus H
b
is a *-algebra containing A0. It is natural to

define a norm in H
b
by ‖ξ‖

b
= ‖Lξ‖ where the latter denotes the operator

norm of B(H). We notice that there is no ambiguity in this choice, because,
as it is easy to check, ‖Lξ‖ = ‖Rξ‖, for every bounded element ξ. Indeed, by
Lemma 2.2.1 Rξ∗ = R∗

ξ for ξ ∈ H
b
, we have

‖Lξ‖ = sup
‖x‖≤1

‖Lξx‖ = sup
‖x‖≤1

‖ξx‖ = sup
‖x∗‖≤1

‖x∗ξ∗‖ = ‖Rξ∗‖ = ‖R∗
ξ‖ = ‖Rξ‖.

Proposition 2.2.7 H
b
is a pre C*-algebra. If, in addition, (H,A0) has a

unit 1, then H
b
[‖ · ‖

b
] is complete and, therefore, it is a C*-algebra.

From (iii) of Proposition 2.2.5 we get

Proposition 2.2.8 If (H,A0) has a unit 1, then the space Hb of bounded
elements coincides with the set Rw(H)(= Lw(H)) of the universal multipliers
of H.

Remark 2.2.9 If (H,A0) has no unit, then Hb[‖ · ‖b] need not be complete.
As an example take A0 = Cc(R) the algebra of continuous functions with com-
pact support with the L2- inner product. Then H = L2(R, dλ), where λ indi-
cates the Lebesgue measure on the real line. In this case Hb = L∞(R, dλ) ∩
L2(R, dλ) which is not complete in the L∞-norm. If L∞(R, dλ) ∩ L2(R, dλ)
was complete with respect to the L∞-norm, this norm would be equivalent
to the projective norm ‖ · ‖2 + ‖ · ‖∞. This implies ‖ · ‖2 ≤ C‖ · ‖∞ on
L2(R, dλ) ∩ L∞(R, dλ) and this is not happening (consider, for instance, the
case of characteristic functions χ[−n,n] of the interval [−n, n])

Remark 2.2.10 In [67] a notion of strongly bounded element was also intro-
duced: an element a ∈ A is called strongly bounded if there exists a sequence
{xn} ⊂ A0 such that

sup
n

‖xn‖0 <∞ and lim
n→∞

‖xn − a‖ = 0.

In the case of a Hilbert quasi *-algebra (H,A0) the two notions are equiv-
alent: every bounded element of H is strongly bounded (see, [67], and [56,
Proposition 11.7.9]).
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Let us now consider the following two sets of bounded operators in H.

L := {Rx; x ∈ A0}′, R := {Lx; x ∈ A0}′,

where A′ denotes the usual commutant of the set A of bounded operators in
H. Then, as proved in [67, Section 3], one has the equalities

L′ = R, L′′ = L, R′′ = R,

Hence L and R are both von Neumann algebras and they are the commutant
of each other. In fact, if we consider the closable multiplication operators Lξ
for ξ ∈ H and we compute the weak commutant, i.e.

{Lξ; ξ ∈ H}′w := {S ∈ B(H) : 〈SLξx|y〉 = 〈Sx|Lξ∗y〉, ∀ξ ∈ H, ∀x, y ∈ A0} ,

we obtain again a von Neumann algebra, as it is proved in the following

Proposition 2.2.11 Let (H,A0) be a Hilbert quasi *-algebra with unit 1.
Then, {Lξ; ξ ∈ H}′w = R. Hence {Lξ; ξ ∈ H}′w is a von Neumann algebra.

Proof. Let T ∈ R and {xn} a sequence in A0 converging to ξ. Then,

〈TLξx|y〉 = 〈T (ξx)|y〉 = lim
n→∞

〈T (xnx)|y〉
= lim

n→∞
〈TLxnx)|y〉 = lim

n→∞
〈LxnTx|y〉

= lim
n→∞

〈Tx|Lx∗ny〉 = 〈Tx|Lξ∗y〉.

Hence T ∈ {Lξ; ξ ∈ H}′w. The converse inclusion is obvious. �
This result opens up the possibility of classifying Hilbert quasi *-algebras

following the classification of their bounded part as von Neumann algebras.
We leave this problem for further investigations.

2.2.2 Positive elements and representable functionals

A notion of positivity has already been introduced in Definition 1.4.11.
In this subsection we introduce a weaker notion of positivity that helps us
to characterize representable and continuous functionals on a Hilbert quasi
*-algebra. A natural question is as to whether these two notions coincide.

Definition 2.2.12 Let (H,A0) be a Hilbert quasi *-algebra and ξ ∈ H. We
say that ξ is w-positive if Lξ (or, equivalently Rξ) is a positive operator; i.e.,
if

〈Lξx|x〉 = 〈ξx|x〉 ≥ 0, ∀x ∈ A0.
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If ξ is w-positive, then ξ = ξ∗. Moreover Lξ is positive, if and only if, Rξ

is positive. The latter statement is due to the equalities

〈Lξx|x〉 = 〈ξx|x〉 = 〈x∗|x∗ξ〉 ≥ 0 if Lξ ≥ 0 and x ∈ A0.

We put

H+
w = {ξ ∈ H : 〈ξx|x〉 ≥ 0, ∀x ∈ A0} = {ξ,∈ H : ξ is w-positive}.

The wedge H+
w defines in a standard way a partial order in the real space

Hh = {ξ ∈ H : ξ = ξ∗}: if ξ, η ∈ Hh we write ξ ≤ η when η − ξ ∈ H+
w .

The notion of w-positive element plays a role in the description of repre-
sentable and continuous functionals on (H,A0).

By means of this new notion of w-positivity, we can show the 1-1 corre-
spondence between representable and continuous functionals on (H,A0) and
bounded and w-positive elements in (H,A0).

Theorem 2.2.13 Let (H,A0) be a Hilbert quasi *-algebra. Then, ω is in
Rc(H,A0) if, and only if, there exists a unique w-positive bounded element
η ∈ H such that

ω(ξ) = 〈ξ|η〉, ∀ξ ∈ H. (2.3)

Proof. Let ω be a representable and continuous functional on (H,A0). Then
there exists a unique vector η ∈ H such that

ω(ξ) = 〈ξ|η〉, ∀ξ ∈ H. (2.4)

We want to show that η is w-positive and bounded. The condition (R.1)
implies that η is w-positive, i.e. the operator Rη is positive (but not neces-
sarily self-adjoint). Indeed,

0 ≤ ω(x∗x) = 〈x∗x|η〉 = 〈x|xη〉 = 〈x|Rηx〉, ∀x ∈ A0.

This in turn implies that η = η∗.
In the situation we are examining, the condition (R.3) reads as follows

∀ξ ∈ H, ∃γξ > 0 : |〈ξ∗x|η〉| ≤ γξ〈x∗x|η〉1/2, ∀x ∈ A0.

By Proposition 2.1.1, ϕω(x, x) = 〈x∗x|η〉 has an everywhere defined closure
ϕω in H, therefore for every ξ ∈ H there exists cξ,η > 0 such that

|〈ξ∗x|η〉| ≤ cξ,η‖x‖, ∀x ∈ A0.
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This implies that there exists a vector η′ ∈ H such that

〈ξ∗x|η〉 = 〈x|η′〉, ∀x ∈ A0.

Hence, for every x, y ∈ A0 we get

〈ξ∗x|ηy〉 = 〈ξ∗xy∗|η〉 = 〈xy∗|η′〉 = 〈x|η′y〉.

Therefore, ξ�η is well defined for every ξ ∈ H. Thus Lw(η) = H and, since
η = η∗, Rw(η) = H. Taking into account Lemma 2.2.1, both Lη and Rη are
bounded operators on H.

For the sufficiency, let η ∈ H be a w-positive bounded element and define
the linear map ω(ξ) := 〈ξ|η〉. We want to show that ω is representable and
continuous.

(R.1) and (R.2) can be proven easily. As for (R.3), denoting by Rη the
continuous extension of Rη to H, we have, for every ξ ∈ H,

|ω(ξ∗x)| = |〈ξ∗x|η〉| = |〈x|Rηξ〉| ≤ 〈x|Rηx〉1/2〈ξ|Rηξ〉1/2

= ω(x∗x)1/2〈ξ|Rηξ〉1/2, ∀x ∈ A0

due to the generalized Cauchy-Schwarz inequality for positive operators.
Thus (R.3) is fulfilled. �

Theorem 2.2.13 allows to compare the two sets of elements H+ and H+
w

related to the notion of positivity.

Lemma 2.2.14 Let (H,A0) be a Hilbert quasi *-algebra. Then, H+ ⊆ H+
w .

Proof. Let η ∈ H+; i.e. there exists a sequence {xn} of elements of A+
0 (thus

each xn has the form xn =
∑N

k=1 z
∗
nkznk, znk ∈ A0) τn-converging to η. Then,

〈Lηy|y〉 = 〈ηy|y〉 = lim
n→∞

〈xny|y〉

= lim
n→∞

〈
N∑

k=1

z∗nkznky|y〉 = lim
n→∞

N∑

k=1

〈znky|znky〉 ≥ 0. �

Lemma 2.2.2 implies that the wedge H+
w is actually a cone. Indeed,

(H,A0) is fully representable by the discussion in Subsection 2.2.1. By Corol-
lary 2.1.2 Rc(H,A0) is sufficient and hence H+ is a cone, by Proposition
1.4.15. By Lemma 2.2.2, H+ ⊆ H+

w , thus Hw is also a cone.

Proposition 2.2.15 Let (H,A0) be a Hilbert quasi *-algebra. If the condi-
tion (P) holds and H+

wb := {ξ ∈ Hb : 〈ξx|x〉 ≥ 0, ∀x ∈ A0} ⊆ H+, then
H+ = H+

w .
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Proof. Suppose now that the condition (P) is valid and let η ∈ H+
w . We want

to show that η ∈ H+.
By weak positivity, 〈ηy|y〉 ≥ 0 for every y ∈ A0. This implies that η ∈ H

is w-positive if, and only if, 〈η, h〉 ≥ 0 for every h ∈ A+
0 , so by the continuity

of the inner product, 〈η, ξ〉 ≥ 0 for every ξ ∈ H+.
For the assumptionH+

wb ⊆ H+, the previous claim is valid in particular for
every χ ∈ H+

wb and, by Theorem 2.2.13, every χ corresponds to a functional
ω ∈ Rc(H,A0) defined as ω(ζ) := 〈ζ|χ〉, for every ζ ∈ H. Therefore, for
every ω ∈ Rc(H,A0), we have

ω(η) = 〈η|χ〉 ≥ 0.

By condition (P) it follows that η ∈ H+. �

2.2.3 Integrable Hilbert quasi *-algebras

Let (H,A0) be a Hilbert quasi *-algebra. As we have seen, in general, if
ξ ∈ H and ξ is not bounded, we have Lξ ⊆ L∗

ξ∗ , but we do not know if the
equality holds for every ξ ∈ H. For this reason we introduce the following
definition.

Definition 2.2.16 A Hilbert quasi *-algebra (H,A0) is called integrable if
A0 is a core for L∗

ξ , for every ξ ∈ H.

It is clear that, if (H,A0) is integrable, then, for every ξ ∈ H, Lξ = L∗
ξ∗ ,

since Lξ∗ ⊆ L∗
ξ . In particular, if ξ = ξ∗, then Lξ is essentially self-adjoint.

Definition 2.2.17 Let (H,A0) be a Hilbert quasi *-algebra with unit 1. We
say that (H,A0) admits a module function if there exists a map µ : H → H
with the following properties:

(i) µ(ξ) ∈ H+
w , for every ξ ∈ H;

(ii) µ(ξ) = ξ, for every H+
w ;

(iii) ‖µ(ξ)‖ = ‖ξ‖, for every ξ ∈ H.

Remark 2.2.18 Condition (iii) of Definition 2.2.17 obviously implies that
µ is continuous at 0.

Proposition 2.2.19 Let (H,A0) be an integrable Hilbert quasi *-algebra with
unit 1. Assume that for every ξ ∈ H, the operator H(ξ) = (L∗

ξLξ)
1/2 has the

following property:

H(ξ)(xy) = (H(ξ)x)y ∀x, y ∈ A0. (2.5)
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Then (H,A0) admits a module function.

Proof. H(ξ) is a positive self-adjoint operator with D(H(ξ)) = D(Lξ). By
choosing x = 1 in (2.5), we get H(ξ)y = (H(ξ)1)y for every y ∈ A0; that is,
H(ξ)y = L(H(ξ)1)y, for every y ∈ A0.

The module function is then defined everywhere in H by the following
map

µ : H 3 ξ 7→ µ(ξ) := H(ξ)1 ∈ H.
We check the conditions (i)-(iii) of Definition 2.2.17. We have µ(ξ) ∈ H+

w .
Indeed,

〈µ(ξ)x|x〉 = 〈(H(ξ)1)x|x〉 = 〈H(ξ)x|x〉 ≥ 0, ∀x ∈ A0

As for (ii), for every ξ ∈ H+
w , the operator Lξ is essentially self-adjoint

and positive by the integrability. Hence H(ξ) = (L∗
ξLξ)

1/2 = Lξ. This implies
that µ(ξ) = ξ.

Finally, for every ξ ∈ H,

‖ξ‖2 = 〈ξ|ξ〉 = 〈ξ1|ξ1〉 = 〈Lξ1|Lξ1〉 = 〈H(ξ)1|H(ξ)1〉 = ‖µ(ξ) ‖2.

So (iii) holds. �
A case in which (2.5) verifies is the following. Assume that ω is trace,

i.e. ω(xy) = ω(yx) for every x, y ∈ A0. Then, in Proposition 2.1.1, we
proved that if ω ∈ Rc(H,A0), then ϕω is everywhere defined and bounded.
Therefore, there exists a bounded operator B : A → A such that

ϕω(a, b) = 〈Ba|b〉, ∀a, b ∈ A.

If x, y, z ∈ A0, then we obtain

〈B(xy)|z〉 = ϕω(xy, z) = ω(z∗xy) = 〈λω(x)λω(y)|λω(z)〉
= 〈λω(x)|λω(z)λω(y)∗〉 = ϕω(x, zy

∗) = 〈Bx|zy∗〉 = 〈(Bx)y|z〉.

The density of A0 in H implies

B(xy) = (Bx)y, ∀x, y ∈ A0.

Hence B is verifying the assumption 2.5 in Proposition 2.2.19.
Assume now that A0 has unit 1. Then, if we put ξ := B1, we obtain

Bx = Lξx for every x ∈ A0. This element ξ ∈ H is uniquely determined.
Moreover, ξ is a bounded element by the fact that B is bounded.
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Lemma 2.2.20 Let (H,A0) be a unital integrable Hilbert quasi *-algebra
with a module function µ. Then, for every ξ ∈ H, with ξ = ξ∗, there exists
two elements ξ+, ξ− ∈ H+

w such that ξ = ξ+ − ξ−; µ(ξ) = ξ+ + ξ−; ξ+�ξ− and
ξ−�ξ+ are both well-defined and ξ+�ξ− = ξ−�ξ+ = 0.

Proof. Let us define the following two operators on D(Lξ) = D(H(ξ)):

P(ξ) :=
1

2
(H(ξ) + Lξ), N(ξ) :=

1

2
(H(ξ) − Lξ).

Put ξ+ = P(ξ)1 and ξ− = N(ξ)1. We want to show that these elements are in
H+
w . Indeed, for every x ∈ A0 we have

2〈ξ+x|x〉 = 〈(H(ξ)1+ Lξ1)x|x〉 = 〈µ(ξ)x|x〉+ 〈ξx|x〉. (2.6)

Our aim is to show that the above quantity (2.6) is nonnegative for every
x ∈ A0. The worst case happens when 〈ξx|x〉 ≤ 0 for every x ∈ A0, i.e. when
−ξ ∈ H+

w , but in this case µ(ξ) = µ(−ξ) = −ξ. Hence, (2.6) becomes

〈−ξx|x〉+ 〈ξx|x〉 = 0

and the claim is proved. The proof for ξ− is similar and clearly ξ = ξ+ − ξ−
and µ(ξ) = ξ+ + ξ−.

Let x, y ∈ A0. We want to show that ξ+�ξ− = 0, i.e.

〈(H(ξ)1− Lξ1)x|(H(ξ)1+ Lξ1)y〉 = 0.

Computing in the expression above, we obtain

〈(H(ξ)1)x|(H(ξ)1)y〉+ 〈(H(ξ)1)x|Lξy〉 − 〈Lξx|(H(ξ)1)y〉 − 〈Lξx|Lξy〉
=〈µ(ξ)x|µ(ξ)y〉+ 〈µ(ξ)x|ξy〉 − 〈ξx|µ(ξ)y〉 − 〈ξx|ξy〉.

Now, we can show that ‖µ(ξ)x‖ = ‖ξx‖, for every x ∈ A0. Indeed,

‖ξx‖2 = 〈ξx|ξx〉 = 〈Lξx|Lξx〉
= 〈H(ξ)x|H(ξ)x〉 = 〈(H(ξ)1)x|(H(ξ)1)x〉
= ‖µ(ξ)x ‖2, ∀ξ ∈ H.

By the polarization formula, 〈µ(ξ)x|µ(ξ)y〉 = 〈ξx|ξy〉 for every x, y ∈ A0.
Notice that, by (ii) of Definition 2.2.17, µ2 = µ, i.e. µ (µ(ξ)) = µ(ξ) for

every ξ ∈ H. Hence, if µ2(ξ) := µ (µ(ξ)),

〈µ(ξ)x|ξy〉 = 〈µ2(ξ)x|µ(ξ)y〉 = 〈µ(ξ)x|µ2(ξ)y〉 = 〈ξx|µ(ξ)y〉.
From what we have just shown, we have that ξ−�ξ+ is well-defined and

ξ−�ξ+ = 0. Using the same argument, it is easily proven that ξ+�ξ− = 0.
Then ξ+ and ξ− have the desired properties. �
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Remark 2.2.21 Suppose that (H,A0) is integrable and unital. Suppose in
addition that the Hilbert norm of H is increasing; i.e.,

0 ≤ ξ ≤ η ⇒ ‖ξ‖ ≤ ‖η‖.

and that
µ(µ(ξ)− µ(η)) ≤ µ(ξ − η), ∀ξ, η ∈ H. (2.7)

Then we get

‖µ(ξ)− µ(η)‖ = ‖µ(µ(ξ)− µ(η))‖ ≤ ‖µ(ξ − η)‖ = ‖ξ − η‖

This obviously implies that µ is continuous.

Proposition 2.2.22 Let (H,A0) be a Hilbert quasi *-algebra with a continu-
ous module function. Suppose that µ(A0) ⊆ A+

0 . Then every positive element
is the limit of a sequence of elements of A+

0 ; i.e., H+ = H+
w .

Proof. Let ξ ∈ H+
w then by density there exists a sequence {xn} ⊂ A0 such

that xn → ξ. By the assumptions µ(xn) ∈ A+
0 and µ(xn) → µ(ξ) = ξ. �

Proposition 2.2.23 Let (H,A0) be a unital integrable Hilbert quasi *-alge-
bra with a τn-continuous module function. Suppose that µ(A0) ⊆ A+

0 . Every
ω ∈ R(H,A0) which is positive on H+

w is continuous.

Proof. As shown in [65], every positive functional on H+
w = H+ (by Propo-

sition 2.2.22) is bounded on positive elements. The statement then follows
from Lemma 2.2.20. �

2.3 Intertwining operators and representable

functionals

After describing the set Rc(H,A0), a second natural step consists in look-
ing for conditions for ω ∈ R(H,A0) to be continuous on H, at least in some
particular situations.

Before proceeding, we remind the reader of the definition of critical eigen-
value.

Definition 2.3.1 [62, Definition 3.1] A complex number µ is said to be a
critical eigenvalue of a couple of operators (A,B) in a Banach space X if
(A− µI)X has infinite codimension and µ is an eigenvalue of B.

Critical eigenvalues are important in order to study the continuity of a
linear operator T which intertwines a couple (A,B), i.e. TA = BT .
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Proposition 2.3.2 [62] Let A and B be normal operator on a Hilbert space
H. Then every linear operator T satisfying TA = BT is continuous if, and
only if, the couple (A,B) has no critical eigenvalues.

Proposition 2.3.3 Let (A,A0) be a quasi *-algebra with unit 1 and ω in
R(A,A0). Then there exists a linear operator Tω : A → Hω such that

ω(a) = 〈Tωa|ξω〉, ∀a ∈ A,

where ξω is the cyclic vector of the GNS representation associated to ω.

Proof. Let ω ∈ R(A,A0). Let Nω = {x ∈ A0 : ω(x∗x) = 0} and Hω the
Hilbert space completion of A0/Nω with respect to the inner product

〈λω(x)|λω(y)〉 = ω(y∗x), x, y ∈ A0,

where λω(x) = x + Nω. Hω is nothing but the carrier space of the GNS
representation constructed in [65].

For every a ∈ A, the linear functional Fa on λω(A0) defined by

Fa(λω(x)) = ω(a∗x), x ∈ A0

is well-defined and bounded by (R.3). Indeed,

|Fa(λω(x))| = |ω(a∗x) ≤ γaω(x
∗x)

1
2 = γa‖λω(x)‖, ∀x ∈ A0

Hence there exists a unique ξ(a) ∈ Hω such that

Fa(λω(x)) = ω(a∗x) = 〈λω(x)|ξ(a)〉, ∀x ∈ A0.

We define a linear map Tω : A → Hω by Tωa = ξ(a), a ∈ A. Then we have

ω(a) = ω(a∗) = 〈λω(1)|ξ(a)〉 = 〈ξ(a)|ξω〉 = 〈Tωa|ξω〉, ∀a ∈ A,

where ξω = λω(1) is the cyclic vector of the GNS representation associated
to the functional ω. �

Proposition 2.3.4 Let (H,A0) be a commutative Hilbert quasi *-algebra
with unit 1. Assume that A0 is a Banach *-algebra with respect to ‖ · ‖0

and that there exists an element x of A0 such that the spectrum σ(Rx) of the
bounded operator Rx of right multiplication by x consists only of its contin-
uous part σc(Rx). If ω ∈ R(A,A0), then ω is bounded.
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Proof. By Proposition 2.3.3, there exists an operator Tω : H → Hω such that
ω(η) = 〈Tωη|ξω〉 for every η ∈ H. Then, if we put

λω(x) · λω(y) = λω(xy),

This multiplication · is well-defined on λω(A0) and makes it into a commu-
tative *-algebra. Moreover, if A0 is a Banach *-algebra with respect to ‖ · ‖0,
by Theorem A.3.5, we have

‖λω(xy)‖2 = ω(y∗x∗xy) ≤ ‖y‖0ω(x
∗x) = ‖y‖0‖λω(x)‖2. (2.8)

The inequality (2.8) implies that the right multiplication operator Rλω(y) by
λω(y) is bounded on λω(A0) and therefore it has a unique bounded extension
to Hω denoted by the same symbol.

By the condition (R.3) on ω, the functional Fη(z) = ω(ηz) for z ∈ A0 is
bounded on A0 with respect to ‖ · ‖ω, so it can be extended on the whole H
and there exists χ ∈ H such that ω(ηz) = 〈λω(z)|χ〉 for every z ∈ A0.

On the other hand, ω(ηz) = 〈Tω(ηz)|ξω〉. Therefore, for z = 1, we have

〈ξω|χ〉 = ω(η) = 〈Tω(η)|ξω〉

and so χ = (Tωη)
∗. By the definition of Tω, Tωη

∗ = (Tωη)
∗ for every η ∈ H.

Hence, for every η ∈ H and z ∈ A0

〈Tω(ηz)|ξω〉 = ω(ηz) = 〈λ(z)|Tωη∗〉 = 〈λ(z)|(Tωη)∗〉 = 〈Tωη · λω(z)|ξω〉.

By the density of λω(A0), we have the following equalities

Tω(ηz) = Tωη · λω(z), ∀η ∈ H, z ∈ A0; (2.9)

Tωz = λω(z), ∀z ∈ A0. (2.10)

In particular (2.9) reads as follows

Tω(Rzη) = Rλω(z)Tωη, ∀η ∈ H, z ∈ A0; (2.11)

i.e., Tω intertwines the couple (Rz, Rλω(z)), for every z ∈ A0. Then the
continuity of Tω can be deduced from Proposition 2.3.2.

By the assumption, there exists x ∈ A0 such that σ(Rx) = σc(Rx). Hence,
for every µ ∈ C, the range of the operator Rx − µI is either H itself or a
dense subspace of H. Thus no critical eigenvalue for the couple (Rx, Rλω(z))
may exists. �
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2.3.1 Two peculiar examples

Let I be a compact interval of the real line and λ the Lebesgue measure
on it. In this section we will show that every representable functional over
(L2(I, dλ),A0), where A0 = C(I) or A0 = L∞(I, dλ), is continuous, as appli-
cation of Proposition 2.3.4. In this case, more can be said about representable
functionals over these Hilbert quasi *-algebras.

(L2(I, dλ), C(I)) and (L2(I, dλ), L∞(I, dλ)) are Hilbert quasi *-algebras
and, as it is easy to see, both are integrable in the sense of Definition 2.2.16.
A description of representable functionals on (L2(I, dλ), C(I)) is provided by
the following representation theorem.

Proposition 2.3.5 Let ω be a representable functional on (L2(I, dλ), C(I)).
Then there exists a unique Borel measure µ on I and a unique bounded linear
operator T : L2(I, dλ) → L2(I, dµ) such that

ω(f) =

∫

I

(Tf)dµ, ∀f ∈ L2(I, λ). (2.12)

The operator T satisfies the following conditions:

T (fφ) = (Tf)φ = φ(Tf) ∀f ∈ L2(I, dλ), φ ∈ C(I); (2.13)

Tφ = φ, ∀φ ∈ C(I). (2.14)

Thus, every representable functional ω on (L2(I, dλ), C(I)) is continuous.
Moreover, µ is absolutely continuous with respect to λ.

Proof. By definition ω is positive on C(I). Therefore by the Riesz-Markov
theorem, there exists a unique Borel measure µ on I such that

ω(φ) =

∫

I

φdµ, ∀φ ∈ C(I).

By condition (R.3), for every f ∈ L2(I, dλ), there exists γf such that

|ω(f ∗φ)| ≤ γfω(φ
∗φ)

1
2 = γf

[∫

I

|φ|2dµ
] 1

2

= γf‖φ‖2,µ, ∀φ ∈ C(I).

Hence, the linear functional Lf defined by Lf (φ) = ω(f ∗φ), φ ∈ C(I), is
bounded on C(I), with respect to ‖·‖2,µ. Thus, it extends to a bounded linear
functional on L2(I, dµ) and there exists a unique function hf ∈ L2(I, dµ) such
that

ω(f ∗φ) =

∫

I

φhfdµ, ∀φ ∈ C(I). (2.15)
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We can define a linear map T : L2(I, dλ) → L2(I, dµ) by putting Tf = hf ,
f ∈ L2(I, dλ). With this definition we have

ω(f) =

∫

I

(Tf)dµ, ∀f ∈ L2(I, dλ).

It is straightforward to show that the map T has the following properties:

T (fφ) = (Tf)φ = ϕ(Tf) ∀f ∈ L2(I, λ), φ ∈ C(I); (2.16)

Tφ = φ, ∀φ ∈ C(I). (2.17)

In particular, (2.13) can be rewritten as follows

TRφf = R′
φTf, ∀f ∈ L2(I, λ), φ ∈ C(I),

where Rφ and R′
φ denote the multiplication operators by φ in L2(I, dλ) and

L2(I, dµ), respectively. This means that T intertwines the couple (Rφ, R
′
φ)

for every φ ∈ C(I). The operator T is continuous if, and only if, there
exists φ ∈ C(I) such that the couple (Rφ, R

′
φ) has no critical eigenvalues by

Proposition 2.3.2.
In L2(I, dλ), (λ the Lebesgue measure) the operator Rφ has continuous

spectrum. Indeed, this depends on the fact that, if φ is not constant, for
every z ∈ C, we have Ran(Rφ− zI)⊥ = {0} where Ran(Rφ− zI) is the range
of Rφ− zI. Hence, the couple (Rφ, R

′
φ) has no critical eigenvalues unless φ is

a constant function. Therefore the statement follows from Proposition 2.3.2.
Since T is bounded, it has an adjoint T ∗ : L2(I, dµ) → L2(I, dλ). Hence,

if we denote by u the unit function in C(I) (i.e., u(x) = 1, for every x ∈ I),
we get

ω(f) =

∫

I

Tfdµ =

∫

I

(Tf)udµ = 〈Tf |u〉2,µ = 〈f |T ∗u〉2,λ

=

∫

I

f · (T ∗u)dλ, ∀f ∈ L2(I, dλ).

(2.18)

It is easily seen that T ∗u is a nonnegative function and by (2.18) it follows
also that ω is necessarily positive on positive elements of L2(I, dλ).

Put w = T ∗u. From (2.18), we get, in particular,

ω(φ) =

∫

I

φdµ =

∫

I

φwdλ, ∀φ ∈ C(I).

The previous equality implies by the uniqueness of the measure associated to
a positive linear functional on C(I) us that dµ = wdλ; i.e., µ is λ-absolutely
continuous with Radon-Nikodym derivative w. �
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Let us now consider the Banach quasi *-algebra (L2(I, dλ), L∞(I, dλ)).
In this case we have more information about the measure that allows us to
represent the functional.

Proposition 2.3.6 Let ω be a representable functional on the Banach quasi
*-algebra (L2(I, dλ), L∞(I, dλ)). Then there exists a unique bounded finitely
additive measure ν on I which vanish on subsets of I of zero λ-measure and
a unique bounded linear operator S : L2(I, dλ) → L2(I, dν) such that

ω(f) =

∫

I

(Sf)dν, ∀f ∈ L2(I, dλ). (2.19)

The map S has the following properties:

S(fφ) = (Sf)φ = φ(Sf) ∀f ∈ L2(I, dλ), φ ∈ L∞(I, dλ), ; (2.20)

Sφ = φ, ∀φ ∈ L∞(I, dλ). (2.21)

Proof. The proof of this statement is essentially the same as that of Propo-
sition 2.3.5. Indeed, by [32, Theorem IV.8.16], there exists a complex valued
measure ν absolutely continuous with respect to λ, for which ω has the fol-
lowing form

ω(φ) =

∫

I

φdν φ ∈ L∞(I, dλ).

Since the functional ω is positive, i.e. ω(φ∗φ) ≥ 0, for every φ ∈ L∞(I, dλ),
the measure ν is positive.

Following the proof of Proposition 2.3.5, one can show that there exists
a unique linear map S : L2(I, dλ) → L2(I, dν) such that

ω(f) =

∫

I

(Sf)dν, , ∀f ∈ L2(I, dλ).

The boundedness of S follows directly from the analogous statement used for
T in the proof of Proposition 2.3.5, taking into account that S intertwines
the multiplication operators for a function φ ∈ L∞(I, λ). In particular φ can
be chosen to be continuous. �

It is clear that the continuity of the operators T and S implies the conti-
nuity of the corresponding representable functionals. Thus, we can conclude
with the following

Corollary 2.3.7 Every representable functional over the Banach quasi *-al-
gebras (L2(I, dλ), C(I)) or (L2(I, dλ), L∞(I, dλ)), where I is a compact in-
terval of the real line and λ be the Lebesgue measure on it, is continuous.
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Remark 2.3.8 (The Banach case) It would be desirable to extend the
results about the continuity of representable functionals we had before for
Hilbert quasi *-algebras to the case of Banach quasi *-algebras, using the
same strategy of intertwining operators.

In the case of a Hilbert quasi *-algebra, we applied a result of intertwining
operators for Hilbert spaces for which the operators of the intertwining couple
had to be normal and no eigenvalues.

For the Banach case, beside other assumptions like that on critical eigen-
values, the second operator of the intertwining couple has to posses countable
spectrum, in order to apply Theorem 4.1 of [62] and get continuity for repre-
sentable functionals.

Let us consider for a moment the case of Banach quasi *-algebras of
functions, for instance (Lp(I, dλ), C(I)) and (Lp(I, dλ), L∞(I, dλ)) for p > 2,
where I is the unitary interval of the real line and λ is the Lebesgue measure.
In this case, we deal with commutative Banach quasi *-algebras and this
allows us to define a multiplication on the Hilbert space associated to the
representable functional through the GNS construction.

What we search for is a continuous function ψ such that the spectrum
of Rλω(ψ) is countable and ψ doesn’t posses any eigenvalue, i.e. it is not
constant function. The spectrum of ψ is the essential image of ψ, that cannot
be countable unless ψ is constant. In the latter case, ψ would posses critical
eigenvalues. Hence, requiring a countable spectrum would mean to allow
critical eigenvalues and viceversa.

This is an evidence of the difficulty of finding an example that verifies all
the assumptions of Theorem 4.1 of [62]. This suggests that that the approach
with interwining operators is not appropriate, in general.



Chapter 3

Unbounded derivations and
*-automorphism groups

As application of the study of continuity performed in Chapter 2, we
investigate (unbounded) derivations on Banach quasi *-algebras, focusing
our attention in particular on those arising as infinitesimal generators of
one-parameter groups of *-automorphisms.

For the case of Banach *-algebras, a derivation is a linear map for which
the Leibnitz rule holds. In this case, having a partial multiplication, the
Leibnitz rule needs to be adapted or weakened.

When A0 is a C*-algebra, Bratteli and Robinson proved in 1975 the exis-
tence of a deep relationship between certain closed derivations and continuous
one parameter group of *-automorphism {βt}t∈R (see [25, 26, 27]).

Definition 3.0.1 [26] A derivation δ of a C*-algebra A is a linear map-
ping from a dense *-subalgebra D(δ)(A), named the domain, to a subspace
R(δ)|subsetA, called the range, satisfying the two properties

1. δ(xy) = δ(x)y + xδ(y), x, y ∈ D(δ),

2. δ(x∗) = −δ(x)∗, x ∈ D(δ).

Theorem 3.0.2 [26] Let δ be a derivation of a C*-algebra A0[‖ · ‖0]. The
following are equivalent

1. δ is the infinitesimal generator of a strongly continuous one-parameter
group of *-automorphisms of A.

2. δ is closed, its resolvent set ρ(δ) contains R \ {0} and

‖δ(x)− zx‖ ≥ |Im z| ‖x‖0, x ∈ D(δ).

45
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Other criteria for closability can be given. Among them, there is one that
involves states of C*-algebras.

Theorem 3.0.3 [26] Let δ be a derivation of a C*-algebra A. Assume that a
state ω generates a faithful cyclic representation (Hω, πω, ξω) and also satisfies

ω(δ(x)) = 0, x ∈ D(δ).

It follows that δ is closable and there exists a symmetric operator Hδ on Hω

such that

D(Hδ) = {ψ;ψ = πω(x)ξω, x ∈ D(δ)}
πω(δ(x))ψ = [Hδ, πω(x)]ψ, x ∈ D(δ), ψ ∈ D(Hδ).

These two theorems of Bratteli and Robinson published in the mentioned
paper of 1975 highlight the relationship between unbounded derivations, one-
parameter groups of automorphisms and states on a C*-algebra. Our target
would be to study in depth how these theorems can be generalized to the
case of Banach quasi *-algebras.

In the previous Chapter, we already studied representable functionals and
sesquilienar forms associated to them. At this time, our aim is to investigate
how the definition of derivation can be adapted to a framework in which the
multiplication is only partially defined and therefore examining its properties.

3.1 Densely defined derivations

In this section we are interested in studying derivations defined on A0

with values in the A0-bimodule A. Indeed, it is clear that the properties
required in the definition of quasi *-algebra (Definition 1.1.3) endow A with
a structure of a bimodule over A0 where the left and right actions are given
respectively by left and right multiplication.

Definition 3.1.1 Let (A,A0) be a quasi *-algebra and δ a linear map of A0

into A. We say that δ is a qu*-derivation of (A,A0) if

(i) δ(x∗) = δ(x)∗, ∀x ∈ A0

(ii) δ(xy) = δ(x)y + xδ(y), ∀x, y ∈ A0

Example 3.1.2 The easiest example of a qu*-derivation on a quasi *-algebra
is provided by the commutator; i.e., if h = h∗ ∈ A we put

δh(x) = i[h, x] := i(hx− xh).
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Motivated by this example we give the following

Definition 3.1.3 Let (A,A0) be a quasi *-algebra and δ a qu*-derivation of
(A,A0). We say that δ is inner if there exists h = h∗ ∈ A such that

δh(x) = i[h, x].

Qu*-derivations are indeed a special case of derivations from a *-algebra
A0 with values on a A0-bimodule. Hence, as a consequence of a celebrated
theorem of J. Ringrose (Theorem 2 of [57]) every qu*-derivation δ is contin-
uous if (A,A0) is a proper CQ*-algebra and we provide A0 the norm ‖ · ‖0

instead of the induced norm ‖ · ‖.
Therefore, from now on we will be interested in studying densely defined

qu*-derivations δ : A0[‖ · ‖] → A[‖ · ‖].
A natural question is whether a qu*-derivation could be extended to a

larger domain D ⊃ A0. If it is possible to extend δ beyond A0, then we
wonder about the closability of δ.

If δ : A0[‖ · ‖] → A[‖ · ‖] is closable as a linear map, then the closure is
defined in the usual way by

δ(a) := lim
n→∞

δ(xn), a ∈ D(δ),

where D(δ) is the following set

D(δ) = {a ∈ A : ∃{xn} ⊂ A0, w ∈ A s.t. ‖a− xn‖ → 0 and

‖δ(xn)− w‖ → 0}.

In order to have a well-defined Leibnitz rule, we should have some reg-
ularity property on D(δ), i.e. (D(δ),A0) should be a quasi *-algebra. This
is certainly true if D(δ) is made of bounded elements, as in the following
example.

Example 3.1.4 Consider the Banach quasi *-algebra (Lp(R), C∞
c (R)). For

p ≥ 2 (Lp(R), C∞
c (R)) is a *-semisimple Banach quasi *-algebra.

Define on C∞
c (R) the derivation δ(f) = f ′ for every f ∈ C∞

c (R), where f ′

is the classical derivative of f . Then δ is closable and its closure is the weak
derivative in W 1,p(R). In this case the Leibnitz rule is still valid because
W 1,p(R) is made of essentially bounded functions.

The use of representations (and/or representable functionals) allows us
to get the following first result of a purely algebraic nature.
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Let (A,A0) be a quasi *-algebra, δ a qu*-derivation of (A,A0) and π a
*-representation of (A,A0). Assume that

whenever x ∈ A0 is such that π(x) = 0, then π(δ(x)) = 0. (3.1)

Under this assumption, the linear map

δπ(π(x)) := π(δ(x)), x ∈ A0

is well defined on π(A0) with values in π(A) and it is easily checked that δπ
is a qu*-derivation of A0 named induced by π.

Definition 3.1.5 Let (A,A0) be a quasi *-algebra and δ a qu*-derivation of
(A,A0). Furthermore, let π be a cyclic *-representation of (A,A0) with cyclic
vector ξ0 satisfying the assumption (3.1). The induced qu*-derivation δπ is
spatial if there exists H = H† ∈ L(Dπ,Hπ) such that

δπ(π(x)) = i[H, π(x)], x ∈ A0.

Proposition 3.1.6 Let (A,A0) be a quasi *-algebra with unit 1 and let δ
be a qu*-derivation of (A,A0). Suppose that there exists a representable
linear functional ω with ω(δ(x)) = 0 for x ∈ A0 and let (Hω, πω, λω) the
GNS-construction associated to ω. Then there exists an element H = H† of
L†(λω(A0)) such that

πω(δ(x)) = −i[H, πω(x)], ∀x ∈ A0.

Proof. Define H on λω(A0) by

Hλω(x) = iπω(δ(x))ξω, x ∈ A0

where ξω = λω(1). We first prove that H is well defined. We have

〈πω(δ(x))ξω|πω(y)ξω〉 = 〈πω(y∗)πω(δ(x))ξω|ξω〉
= 〈πω(y∗δ(x))ξω|ξω〉
= 〈πω(δ(y∗x)− δ(y∗)x)ξω|ξω〉
= −〈πω(δ(y∗)x)ξω|ξω〉
= −〈πω(x)ξω|πω(δ(y))ξω〉.

Hence if λω(x) = πω(x)ξω = 0, it follows that 〈πω(δ(x))ξω|πω(y)ξω〉 = 0, for
every y ∈ A0. This in turn implies that πω(δ(x))ξω = 0.

The above computation shows also that H is symmetric. Indeed,
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〈Hλω(x)|λω(y)〉 = i〈πω(δ(x))ξω|πω(y)ξω〉
= −i〈πω(x)ξω|πω(δ(y))ξω〉
= 〈λω(x)|Hλω(y)〉.

Finally, if x ∈ A0,

πω(δ(x))λω(y) = πω(δ(x)) � πω(y)ξω

= πω(δ(xy))ξω − πω(x) � πω(δ(y))ξω

= −iHπω(x)λω(y) + iπω(x)Hλω(y)

= −i[H, πω(x)]λω(y), ∀y ∈ A0. �

Remark 3.1.7 In Proposition 3.1.6, if (A,A0) is a Banach quasi *-algebra
and ω is a representable and continuous such that the *-representation πω
in the GNS construction is faithful, then it is possible to show that δ is a
closable qu*-derivation (see [1]).

3.2 Extension of a qu*-derivation

In the framework of Banach quasi *-algebras, we have a reasonable defini-
tion of derivation at hand. We are interested in studying them, in particular
the question concerning the closability.

The simplest case to start with is that of inner qu*-derivations. Not
surprisingly, δh is continuous whenever the element h ∈ A that generates the
qu*-derivation δh is bounded in the sense of Definition 1.3.6. Indeed it is
possible to write δh as difference of the bounded operators Lh and Rh in the
following way

δh(x) = i[h, x] = i(Lh −Rh)(x), ∀x ∈ A0.

We wonder if it is possible to remove the hypothesis of boundedness on
the generating element h ∈ A. It turns out that if (A,A0) is a *-semisimple
Banach quasi *-algebra in the sense of Definition 1.4.21, we get the following

Proposition 3.2.1 Let (A,A0) be a *-semisimple Banach quasi *-algebra.
Let h ∈ A be a fixed element in A such that h = h∗ and δh the qu*-derivation
defined as δh(x) := i[h, x] for x ∈ A0. Then δh is closable.

Proof. Let {xn} ⊂ A0 be a sequence that vanishes as n → ∞ and such that
δh(xn) is ‖ · ‖-Cauchy, i.e. there exists w ∈ A such that ‖δh(xn)−w‖ → 0 as
n→ +∞. We want to show that w = 0.
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On one hand, for every Θ ∈ SA0(A) and for every u, v ∈ A0,

Θ(δh(xn)u, v) = iΘ(hxnu, v)− iΘ(xnhu, v)

= iΘ(xnu, hv)− iΘ(hu, x∗nv) → 0.

On the other hand, by the hypotheses Θ(δh(xn)u, v) → Θ(wu, v), for every
Θ ∈ SA0(A) and for every u, v ∈ A0. We conclude by Lemma 1.4.20 and the
arbitrary choice of Θ ∈ SA0(A). �

3.2.1 Weak multiplication and weak topologies

Proposition 3.2.1 highlights that the existence of certain sesquilinear
forms to work with is crucial when dealing with this problem. For this rea-
son, we will assume that (A,A0) is a *-semisimple Banach quasi *-algebra.

Sesquilinear forms Θ ∈ SA0(A) are employed in the definition of a weak
multiplication (see Definition 1.4.24), and locally convex topologies coarser
than the norm topology (see Section 1.4.2).

As we shall see below, the weak multiplication in Definition 1.4.24 can be
characterized through some closedness properties with respect to the men-
tioned topologies defined by means of the sesquilinear forms Θ ∈ SA0(A).

Remark 3.2.2 From the continuity of Θ ∈ SA0(A) it follows that all the
topologies τw, τs, (and also τs∗ , if the involution is τ -continuous) are coarser
than the initial norm topology of A.

Proposition 3.2.3 The following statements are equivalent.

(i) The weak product a�b is well defined.

(ii) There exists a sequence {yn} of elements in A0 such that ‖yn − b‖ → 0
and ayn

τw−→ a�b ∈ A.

(iii) There exists a sequence {xn} of elements in A0 such that ‖xn− a‖ → 0
and xnb

τw−→ a�b ∈ A.

Proof. We prove only that (i) ⇔ (ii). The proof of (i) ⇔ (iii) is very similar.
Assume that a�b is defined. By the ‖·‖-density of A0, there exists a sequence
{yn} in A0 approximating b. Then for every z, z′ ∈ A0 and for all Θ ∈ SA0(A)

Θ((ayn)z, z
′) = Θ(ynz, a

∗z′) → Θ(bz, a∗z′) = Θ((a � b)z, z′),

i.e. ayn
τw−→ a � b. Conversely, assume the existence of a sequence {yn} in A0

approximating b such that ayn
τw−→ c ∈ A. Then, for every z, z′ ∈ A0 we have

Θ(bz, a∗z′) = lim
n→∞

Θ(ynz, a
∗z′) = lim

n→∞
Θ((ayn)z, z

′) = Θ(cz, z′),

i.e. a�b is defined. �
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Remark 3.2.4 In Proposition 3.2.3, if a, b ∈ A are such that a�b is well-
defined, then every sequence {yn} in A0 such that ‖yn − b‖ → 0 verifies
condition (ii). Indeed, let {yn} be a generic sequence in A0 that verifies
‖yn− b‖ → 0. Then we show that ayn → a�b for n→ ∞: for every z, z′ ∈ A0

and Θ ∈ SA0(A)

lim
n→∞

Θ(aynz, z
′) = lim

n→∞
Θ(ynz, a

∗z) = Θ(bx, a∗z) = Θ((a�b)z, z′).

Likewise, the same holds for a sequence {xn} is A0 such that ‖xn − a‖ → 0.

Let (A,A0) be a Banach quasi *-algebra. To every a ∈ A there corre-
sponds the linear maps La and Ra defined as

La : A0 → A Lax = ax ∀x ∈ A0 (3.2)

Ra : A0 → A Rax = xa ∀x ∈ A0, (3.3)

as seen in Section 1.3.
If (A,A0) is a *-semisimple Banach quasi *-algebra, then the weak mul-

tiplication � allows us to extend La, (resp., Ra) to Rw(a) (resp., Lw(a)). Let

us denote by L̂a, (resp. R̂a) these extensions. Then L̂ab = a�b, for every

b ∈ Rw(a) and R̂ac = c�a, for every c ∈ Lw(a).

Lemma 3.2.5 If (A,A0) is a *-semisimple unital Banach quasi-*algebra, the
set A

b
of bounded elements is a *semisimple Banach algebra. Moreover, A

b

coincides with the set Rw(A) ∩ Lw(A).
Proof. The first statement and the inclusion A

b
⊂ Rw(A)∩Lw(A) were shown

in [9]. Let a ∈ Rw(A) ∩ Lw(A) then Rw(a) = Lw(a) = A. Thus L̂a (resp.,

R̂a) is closed and everywhere defined. Hence both La and Ra are bounded.
�

Remark 3.2.6 Lemma 3.2.5 shows that the set of bounded elements with
respect to the weak multiplication � (in the sense of Definition 1.4.24) coincide
with the set of universal multipliers for the multiplication • (Definition 1.3.9),
in the case of a *-semisimple Banach quasi *-algebra. Therefore, there is
only one notion of boundedness, no matter which weak multiplication is
considered, � or •.

3.2.2 Inner qu*-derivations

Let us now assume that δ is a closable qu*-derivation. We consider the
question as to whether its closure δ is a *-derivation in some weaker sense;
i.e.; if a sort of Leibniz rule still holds.
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Proposition 3.2.7 Let (A,A0) be a *-semisimple Banach quasi *-algebra
with A[τw] sequentially complete. Let δ be a closable qu*-derivation of (A,A0)
with closure δ. Then, if a, b ∈ D(δ) and a�b is well-defined, there exists an
element δw(a�b) ∈ A such that

Θ(δw(a�b)u, v) = Θ(bu, δ(a)∗v) + Θ(δ(b)u, a∗v) ∀u, v ∈ A0,Θ ∈ SA0(A).

Proof. Suppose that δ is a closable qu*-derivation and let δ be its closure.
Let a, b ∈ D(δ), then there exist sequences {xn}, {yn} of elements in A0 such
that ‖xn−a‖ → 0, ‖yn−b‖ → 0 and ‖δ(xn)−δ(a)‖ → 0, ‖δ(yn)−δ(b)‖ → 0.

The sequence {xnyn} ⊂ A0 is τw-convergent to a�b and thus {δ(xnyn)} is
τw-Cauchy. Indeed,

δ(xnyn)− δ(xmym) = δ(xn)yn + xnδ(yn)− δ(xm)ym − xmδ(ym)

= δ(xn)(yn − ym) + (xn − xm)δ(ym)

+ (δ(xn)− δ(xm))ym + (xn − xm)δ(ym)

Hence, for every z, z′ ∈ A0 and for all Θ ∈ SA0(A),

Θ ((δ(xnyn)− δ(xmym))z, z
′) = Θ ((yn − ym)z, δ(xn)

∗z′)

+ Θ (δ(ym)z, (xn − xm)
∗z′) + Θ (ymz, (δ(xn)− δ(xm))

∗z′)

+ Θ (δ(ym)z, (xn − xm)
∗z′) → 0

By the sequential completeness of A[τw], there exists c ∈ A such that
δ(xnyn)

τw−→ c. Computing the τw-limit

Θ(δ(xnyn)u, v) = Θ(δ(xn)ynu, v) + Θ(xnδ(yn)u, v)

= Θ(ynu, δ(xn)
∗v) + Θ(δ(yn)u, x

∗
nv)

→ Θ(bu, δ(a)∗v) + Θ(δ(b)u, a∗v),

for every u, v ∈ A0, for all Θ ∈ SA0(A), we obtain

δw(a�b) := c = τw − lim
n→∞

δ(xnyn)

and therefore

Θ(δw(a�b)u, v) = Θ(bu, δ(a)∗v)+Θ(δ(b)u, a∗v) ∀Θ ∈ SA0(A), u, v ∈ A0. �

Remark 3.2.8 Let (A,A0) be a Banach quasi *-algebra as in Proposition
3.2.7. Let h ∈ A and δh(x) := [h, x] for x ∈ A0. If a ∈ D(δh) and x ∈ A0,
then there exists an element of A, denoted by δ̂h(ax) such that

Θ(δ̂h(a�b)u, v) = Θ(bu, δh(a)
∗v) + Θ(δh(b)u, a

∗v) ∀u, v ∈ A0,Θ ∈ SA0(A).
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Let {xn} ⊂ A0 be a sequence approximating a fixed element a ∈ D(δh) such
that δh(a) = lim

n→∞
δh(xn).

By the classical Leibnitz rule we have δh(xnx) = ih(xnx) − i(xnx)h, for
all x ∈ A0 and for every n ∈ N. Then, for every u, v ∈ A0 and Θ ∈ SA0(A)
we have

Θ (δh(xnx)u, v) → i [Θ(axu, hv)−Θ(hu, x∗a∗v)] =: Θ(δh(ax)u, v).

If a�h is well defined, δh(a) is given by δh(a) = i(h�a− a�h).
We want to stress that if a, b ∈ D(δ) and the products a�h, b�h, a�b

are well-defined, then it is not true a priori that the products (a�b)�h and
h�(a�b) are well-defined. Even if the mentioned products are well-defined,
the associative law for the weak multiplication may fall.

In the case A is sequentially complete and h is bounded, then

Θ(h�(a�b)u, x) = Θ(bu, (h�a)∗v), ∀Θ ∈ SA0(A), ∀u, v ∈ A0

applying Proposition 3.2.3. Therefore, for h bounded we have

δ̂h(a�b) = δh(a)�b+ a�δh(b),

for every a, b ∈ D(δ) for which a�b is well-defined.

3.2.3 Derivations as infinitesimal generators

Closed densely defined *-derivations on a C*-algebra A0 often occur as
infinitesimal generators of norm continuous *-automorphisms one parameter
groups. We first need a suitable definition of *-automorphism in the case of
Banach quasi *-algebras.

Definition 3.2.9 Let (A,A0) be a *-semisimple Banach quasi *-algebra and
ψ : A → A a linear bijection. We say that ψ is a weak *-automorphism of
(A,A0) if

(i) ψ(a∗) = ψ(a)∗, for every a ∈ A;

(ii) ψ(a)�ψ(b) is well defined if, and only if, a�b is well defined and, in this
case,

ψ(a�b) = ψ(a)�ψ(b).

By the previous definition it follows that if ψ is a weak *-automorphism,
then ψ−1 is a weak *-automorphism too.
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Lemma 3.2.10 If ψ is a weak*-automorphism of a *-semisimple Banach
quasi *-algebra (A,A0), then ψ(Ab

) = A
b
.

Proof. Let a ∈ A
b
, then a�b is well defined for every b ∈ A by the boundness

of a ∈ A. Hence, ψ(a) ∈ Rw(ψ(A)) = Rw(A). Similarly, ψ(a) ∈ Lw(A).
Thus ψ(a) ∈ A

b
, by Lemma 3.2.5. Applying this result to ψ−1 one gets the

converse inclusion. �
In the case of a C*-algebra, every *-automorphism is automatically con-

tinuous and furthermore isometric (see Theorem A.3.3). In the case of a
CQ*-algebra, it is unknown whether this statement is true. However, we con-
jecture that similar strategies used to study the continuity of representable
functionals on Banach quasi *-algebras could be employed in the study of
continuity for weak *-automorphism, as the following example shows.

Example 3.2.11 Let us consider the Banach quasi *-algebras L2(I, dλ) over
C(I) or L∞(I, dλ), where, for instance, I = [0, 1] and λ is the Lebesgue
measure.

As in [3], by [62, Theorem 5.5], if we find a couple of continuous operators
(R1, R2) intertwining with the weak *-automorphism ψ such that (R1, R2)
have no critical eigenvalues, then ψ is automatically continuous.

ψ : L2(I, dλ) → L2(I, dλ) is an intertwining operator with the couple
(Rη, Rψ(η)), i.e. ψ ◦ Rη = Rψ(η) ◦ ψ for every η ∈ C(I). By the fact that ψ is
a weak *-automorphism, σ(Rη) = σ(Rψ(η)) for every η ∈ C(I).

It remains to show thatRψ(η) is continuous. By Lemma 3.2.10 ψ(A
b
) = A

b

so the operator Rψ(η) is everywhere defined. To prove that it is continuous
it suffices to show that it is closed. Thus, if {ηn} is a sequence in C(I) that
vanishes such that Rψ(η)(ηn) = ηnψ(η) converges to f ∈ L2(I, dλ), then

Θ(ηnψ(η)u, v) = Θ(ψ(η)u, η∗nv) → 0

and, on the other hand,

Θ(ηnψ(η)u, v) → Θ(fu, v)

for every Θ ∈ SC(I)(L2(I, dλ)) and for all u, v ∈ C(I). By the *-semisimplicity
of (L2(I, dλ), C(I)), we conclude that f = 0.

In order to apply Theorem 5.5 of [62], choose η̂ ∈ C(I) such that η̂
has only continuous spectrum in L2(I, dλ). Hence ψ is continuous by the
aforementioned theorem.

To show a similar statement (L2(I, dλ), L∞(I, dλ)), it is enough to employ
the same argument used for (L2(I, dλ), C(I)).
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Definition 3.2.12 Let (A,A0) be a *-semisimple Banach quasi *-algebra.
Suppose that for every fixed t ∈ R, βt is a weak *-automorphism of A. If

(i) β0(a) = a, ∀a ∈ A

(ii) βt+s(a) = βt(βs(a)), ∀a ∈ A

then we say that βt is a one-parameter group of weak *-automorphisms of
(A,A0). If τ is a topology on A and the map t 7→ βt(a) is τ -continuous, for
every a ∈ A, we say that βt is a τ -continuous weak *-automorphism group.

The definition of the infinitesimal generator of βt is now quite natural. If
βt is τ -continuous, we set

D(δτ ) =

{
a ∈ A : lim

t→0

βt(a)− a

t
exists in A[τ ]

}

and

δτ (a) = τ − lim
t→0

βt(a)− a

t
, a ∈ D(δτ ).

If the involution a 7→ a∗ is τ -continuous, then a ∈ D(δτ ) implies a∗ in
D(δτ ) and δ(a

∗) = δ(a)∗. Clearly, D(δτn) ⊆ D(δτs∗ ) ⊆ D(δτw).
What we expect is D(δτ ) to be a partial *-algebra and δτ a *-derivation

in a sense to be specified. Hence we should decide which form of Leibniz rule
must be taken to define conveniently derivations on a partial *-algebra. The
following proposition suggests an answer to that question.

Proposition 3.2.13 Let (A,A0) be a *-semisimple Banach quasi *-algebra
and βt a τs∗-continuous weak *-automorphism group of (A,A0). Then the
following statements hold.

(i) δτs∗ (a
∗) = δτs∗ (a)

∗;

(ii) If a, b ∈ D(δτs∗ ) and a�b is well defined, then a�b ∈ D(δτw) and

Θ(δτw(a�b)x, y) = Θ(bx, δτs∗ (a)
∗y) + Θ(δτs∗ (b)x, a

∗y),

∀a, b ∈ D(δτs∗ ), a ∈ Lw(b); x, y ∈ A0.

(iii) If D(δτw) = D(δτn) then D(δτn) is a partial *-algebra with respect to the
weak multiplication.

Proof. We start proving (i). By definition of δτs∗ and the τs∗-continuity of
the involution, we have

δτs∗ (a∗) = τs∗ − lim
t→0

βt(a
∗)− a∗

t
= τs∗ − lim

t→0

βt(a
∗)− a∗

t
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=

(
τs∗ − lim

t→0

βt(a)− a

t

)∗
= δτs∗ (a)

∗.

Let us now prove (ii). Let a, b ∈ D(δτs∗ ), with a ∈ Lw(b). If x, y ∈ A0, then

lim
t→0

Θ

(
βt(a�b)− a�b

t
x, y

)
= lim

t→0
Θ

(
βt(a)�βt(b)− a�b

t
x, y

)

= lim
t→0

1

t
[Θ((βt(a)�βt(b))x, y)−Θ(βt(b)x, a

∗y)]

+ lim
t→0

1

t
[Θ(βt(b)x, a

∗y)−Θ(bx, a∗y)]

Now, for the first term on the right hand side, we have
∣∣∣∣
1

t
[Θ((βt(a)�βt(b))x, y)−Θ(βt(b)x, a

∗y)]−Θ(bx, δτs∗ (a)
∗y)

∣∣∣∣

≤
∣∣∣∣Θ
(
βt(b)x,

βt(a)
∗ − a∗

t
y

)
−Θ(βt(b)x, δτs∗ (a)

∗y)

∣∣∣∣
+ |Θ(βt(b)x, δτs∗ (a)

∗y)−Θ(bx, δτs∗ (a)
∗y)|

≤ Θ(βt(b)x, βt(b)x)
1/2Θ

(
βt(a)

∗ − a∗

t
y − δτs∗ (a)

∗y,
βt(a)

∗ − a∗

t
y − δτs∗ (a)

∗y
)1/2

+Θ((βt(b)− b)x, (βt(b)− b)x)1/2Θ(δτs∗ (a)
∗y, δτs∗ (a)

∗y)1/2 → 0.

because of the τs∗-continuity of βt and of the involution. As for the second
term we have, taking into account that b ∈ D(δτs∗ ),

lim
t→0

1

t
[Θ(βt(b)x, a

∗y)−Θ(bx, a∗y)] = Θ(δτs∗ (b)x, a
∗y).

This proves at once that if a, b ∈ D(δτs∗ ) and a�b is well-defined, then
a�b ∈ D(δτw) and

Θ(δτw(a�b)x, y) = Θ(bx, δτs∗ (a)
∗y) + Θ(δτs∗ (b)x, a

∗y), ∀x, y ∈ A0.

For (iii), let a, b ∈ D(δτn) such that a�b is well defined. By (ii), a�b ∈ D(δτw).
We conclude by the hypothesis that D(δτn) = D(δτn). �

Proposition 3.2.13 suggests the following definition inspired by the one
given in [11, 12] for partial *-algebras of unbounded operators.

Definition 3.2.14 Let (A,A0) be a *-semisimple Banach quasi *-algebra
and δ a linear map of D(δ) into A, where D(δ) is a partial *-algebra with
respect to the weak multiplication �. We say that δ is a weak *-derivation of
(A,A0) if
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(i) A0 ⊂ D(δ)

(ii) δ(x∗) = δ(x)∗, ∀x ∈ A0

(iii) if a, b ∈ D(δ) and a�b is well defined, then a�b ∈ D(δ) and

Θ(δ(a�b)x, y) = Θ(bx, δ(a)∗y) + Θ(δ(b)x, a∗y),

for all Θ ∈ SA0(A), for every x, y ∈ A0.

Clearly, every qu*-derivation is a weak *-derivation with the assumption
D(δ) = A0.

Example 3.2.15 The space Lp(R), p ≥ 1, can be coupled with many *-al-
gebras of functions (for instance, C∞

c (R), Co(R)∩Lp(R),W 1,2(R)) to obtain a
Banach quasi *-algebra. For p ≥ 2, (Lp(R), C∞

c (R)) is a *-semisimple Banach
quasi *-algebra: the corresponding set SA0(A) is given by the form Θw defined

for w ∈ L
p

p−2 (R) (for p = 2, p
p−2

= ∞), w ≥ 0,

Θw(f, g) =

∫

R
f(x)g(x)w(x)dx.

The weak multiplication f�g is well defined if, and only if, fg ∈ Lp(R). Let
us define for v ∈ R, βt(f) = ft where ft(x) = f(x+ t), f ∈ Lp(R). Then βt is
a weak *-automorphisms group. Its infinitesimal generator is, formally, the
derivative operator with domain W 1,2(R). If we change the *-algebra taking
for instance Co(R) ∩ Lp(R) we see that the domain of δ does not contain A0,
in general.

3.3 Integrability of weak *-derivations

In the previous Section we gave a suitable definition of *-derivation and
*-automorphism in the framework of *-semisimple Banach quasi *-algebras.
This investigation allows us to prove analogous results about closability of δ
as in the celebrated Bratteli - Robinson Theorem in [26], for a *-semisimple
Banach quasi *-algebra.

First we prove a technical lemma useful for the results we are going to
prove (see [55]).

Lemma 3.3.1 Let (A,A0) be a *-semisimple Banach quasi *-algebra and let
{βt}t∈R be a uniformly bounded τn-continuous group of weak *-automorphisms
of (A,A0). Let δ be the infinitesimal generator of {βt}t∈R. Then
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1. for a ∈ A

‖ · ‖ − lim
h→0

1

h

∫ t+h

t

βs(a)ds = βt(a);

2. for a ∈ A,
∫ t
0
βs(a)ds ∈ D(δ) and

δ

(∫ t

0

βs(a)ds

)
= βt(a)− a;

3. for a ∈ D(δ), βt(a) ∈ D(δ) and

d

dt
βt(a) = δ(βt(a)) = βt(δ(a));

4. for a ∈ D(δ)

βt(a)− βs(a) =

∫ t

s

βr(δ(a))dr =

∫ t

s

δ(βr(a))dr.

Proof. By norm continuity of t 7→ βt(a) for every a ∈ A, we have

lim
h→0

∫ t+h

t

βs(a)ds = βt(a).

This proves (1). Moreover, if h > 0, by the properties of uniform boundedness
in t and norm continuity of βt for a fixed t, then we have

βt − I

h

(∫ t

0

βs(a)ds

)
=

1

h

∫ t

0

(βs+h(a)− βs(a)) ds

=
1

h

∫ t+h

t

βs(a)ds−
1

h

∫ h

0

βs(a)ds→ βt(a)− a

as h→ 0. By the previous argument, (2) is proved.
In the same setting as above,

βh − I

h
(βt(a)) = βt

(
βh − I

h

)
(a) → βt (δ(a))

as h→ 0. Thus βt(a) ∈ D(δ) and δ (βt(a)) = βt (δ(a)).
The above computation shows also that the right derivative of βt(a) exists

and it is equal to βt (δ(a)). We want to show that also the left derivative
exists and it is equal to the right one. Indeed, for h > 0,

lim
h→0

[
βt(a)− βt−h(a)

h
− βt (δ(a))

]
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= lim
h→0

βt−h

[
βh(a)− a

h
− δ(a)

]
+ lim

h→0
(βt−h(δ(a))− βt(δ(a))) → 0

by the uniformly boundedness of {βt}t∈R in t, a ∈ D(δ) and the norm conti-
nuity of t 7→ βt(a). Hence we deduce that

d

dt
βt(a) = δ(βt(a)) = βt(δ(a))

for a ∈ D(δ). This way we obtain (3) and then integrating the previous we
have

βt(a)− βs(a) =

∫ t

s

βr(δ(a))dr =

∫ t

s

δ(βr(a))dr.

This gives us (4). �
The proof of the following theorem is inspired by the proof of Theorem

3.0.2.

Theorem 3.3.2 Let δ : D(δ) → A be a weak *-derivation on a *-semisimple
Banach quasi *-algebra (A,A0). Suppose that δ is the infinitesimal generator
of a uniformly bounded, τn-continuous group of weak *-automorphisms of
(A,A0). Then δ is closed; its resolvent set ρ(δ) contains R \ {0} and

‖δ(a)− λa‖ ≥ |λ| ‖a‖, a ∈ D(δ), λ ∈ R. (3.4)

Proof. By (1) and (2) of Lemma 3.3.1, if a ∈ A, we define at :=
1
t

∫ t
0
βs(a)ds,

then at ∈ D(δ) for t ∈ R and at → a as t→ 0. We conclude D(δ) = A.
In order to prove that δ is closed, let {an} in D(δ) such that an → a and

δ(an) → w as n→ ∞. By (4) of Lemma 3.3.1,

βt(an)− an =

∫ t

0

βs(δ(an))ds.

Considering the limit on both sides of the equality and using again (4) of
Lemma 3.3.1, we obtain

βt(a)− a =

∫ t

0

βs(w)ds.

Dividing by t 6= 0 and taking the limit as t → 0, we conclude by (1) of
Lemma 3.3.1 that a ∈ D(δ) and δ(a) = w, i.e. δ is closed.

If λ = 0, the inequality is obvious. Now we consider λ > 0 and define the
operator

Rλ(a) :=

∫ ∞

0

e−λtβt(a)dt.
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The continuity of t 7→ βt(a) for every a ∈ A and the uniform boundedness of
βt in t for every t ∈ R guarantee that the above operator is well-defined and

‖Rλ(a)‖ ≤ 1

λ
‖a‖.

Moreover, (λI − δ)(Rλ(a)) = a, for every a ∈ A and Rλ((λI − δ)(a)) = a,
for every a ∈ D(δ). Indeed, the right hand side of the following

βh − I

h
(Rλ(a)) =

1

h

∫ ∞

0

e−λt [βt+h(a)− βt(a)] dt

=
eλh − I

h

∫ ∞

0

e−λtβt(a)dt−
eλh

h

∫ h

0

e−λtβt(a)

tells us that Rλ(a) ∈ D(δ) and it converges to λRλ(a) − a for every a ∈ A
and λ > 0. Thus, (λI − δ)Rλ = I.

By the closedness and again by Lemma 3.3.1, we obtain also the other
equality. Indeed,

Rλ(δ(a)) =

∫ ∞

0

e−λtβt(δ(a))dt =

∫ ∞

0

e−λtδ(βt(a))dt

= lim
y→∞

∫ y

0

e−λtδ(βt(a))dt = lim
y→∞

δ

(∫ y

0

e−λtβt(a)dt

)

= δ

(∫ ∞

0

e−λtβt(a)dt

)
= δ(Rλ(a)),

where the last passage is justified by the following computations

δ

(∫ y

0

e−λtβt(a)dt

)
= lim

h→0

βh − I

h

(∫ y

0

e−λtβt(a)dt

)

= lim
h→0

∫ y

0

e−λt
βt+h(a)− βt(a)

h
dt

=

∫ y

0

e−λt
d

dt
βt(a)dt =

∫ y

0

e−λtδ(βt(a))dt.

Hence, Rλ is the inverse of λI − δ and the conditions on the spectrum are
verified.

The case when λ < 0 can be handled in very similar way, by defining the
operator Rλ(a) as

Rλ(a) :=

∫ ∞

0

eλtβ−t(a)dt. �

In order to prove that a closed weak *-derivation is the infinitesimal gen-
erator of uniformly bounded, τn-continuous group of weak *-automorphisms
further assumptions on δ are needed.
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Theorem 3.3.3 Let δ : D(δ) ⊂ A
b
→ A be a closed weak *-derivation on a

*-semisimple Banach quasi *-algebra (A,A0). Suppose that the resolvent set
of δ, denoted as ρ(δ), contains R \ {0} and

‖δ(a)− λa‖ ≥ |λ| ‖a‖, a ∈ D(δ), λ ∈ R. (3.5)

Moreover, assume that A0 is a core for every multiplication operator L̂a for
a ∈ A, i.e. L̂a = La. Then δ is the infinitesimal generator of a uniformly
bounded, τn-continuous group of weak *-automorphisms of (A,A0).

Proof. We want to show that the norm limit

βt(a) := lim
n→∞

(
I − t

n
δ

)−1

(a)

gives us a uniformly bounded, τn-continuous group of weak *-automorphisms
of (A,A0).

This limit exists by applying the theory of C0-semigroups in Banach
spaces [44, Chapter 12]. Moreover, the map t ∈ R → βt(a) is norm con-
tinuous since [44, p. 362] the convergence is uniform in every finite interval
[0, t0].

By the condition on the spectrum of δ, βt is, for every t ∈ R, a bounded
operator in A and all its powers are well defined. By the condition (3.4), we
obtain, for every n ∈ N∗ and for every a ∈ A

∥∥∥∥∥

(
I − t

n
δ

)−n
(a)

∥∥∥∥∥ =

∥∥∥∥∥

[
t

n

(n
t
− δ
)]−n

(a)

∥∥∥∥∥ ≤
∣∣∣n
t

∣∣∣
n

·
∣∣∣n
t

∣∣∣
−n

‖a‖ = ‖a‖

Hence passing to the limit we have ‖βt(a)‖ ≤ ‖a‖ for every a ∈ A.
Let t ∈ R be fixed. Then βt is a continuous linear and bijective operator.

Moreover, βt preserves the involution, i.e. βt(a)
∗ = βt(a

∗) for every a ∈ A.
Indeed,

βt(a)
∗ = lim

n→∞

((
1− t

n
δ

)−n
(a)

)∗

= lim
n→+∞

(
1− t

n
δ

)−n
(a∗) = βt(a

∗).

Further δ commutes with all its negative powers, so for every a ∈ A
βt(δ(a)) = δ(βt(a)). Indeed, for every a ∈ A, we have

[
t

n

(n
t
− δ
)]−n

(δ(a)) =

[
n

t

(n
t
+ δ
)−1
]n−1 (n

t
+ δ
)−1

(δ(a))

=

[
n

t

(n
t
+ δ
)−1
]n−1

δ
(n
t
+ δ
)−1

(a)
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= . . .

=
(n
t

)n
δ
(n
t
− δ
)−n

(a).

βt(a) is the solution of the Cauchy problem β′
t(a) = βt(δ(a)) with initial

condition β0(a) = a, hence we achieve the group property, i.e. we have
βt+s(a) = βt(βs(a)) for every a ∈ A, t, s ∈ R.

The set of analytic elements, i.e. the set of all elements a ∈ D(δn), for
every n ∈ N, such that the power series

z ∈ C 7→
∞∑

n=0

zn

n!
δn(a) ∈ A

is well defined and analytic on a neighborhood of the origin, is dense in A by
[55, Theorem 2.7].

The last property we are going to prove is that βt is a weak *-automor-
phism, i.e. βt(a)�βt(b) is well defined if, and only if, a�b is well defined and,
in this case, βt(a�b) = βt(a)�βt(b).

By the hypotheses, D(δ) ⊂ A
b
is a partial *-algebra with respect to the

weak multiplication � . By the boundedness of a, b, we can rewrite the weak
Leibnitz rule as

δ(a�b) = δ(a)�b+ a�δ(b).

Now suppose that a, b are analytic elements. Therefore a, b ∈ D(δk) and
δk(a), δk(b) ∈ A

b
for every k ∈ N. Indeed, δk(a) ∈ D(δk+1) ⊂ D(δ) ⊂ A

b
.

Hence, all the products δm(a)�δn(b) are well-defined for every n,m ∈ N.
By the above argument, by induction we show that

δn(a�b) =
n∑

k=0

(
n

k

)
δn−k(a)�δk(b)

for every a, b analytic elements. Indeed, for n = 1, it is the Leibnitz rule.
Suppose it is true for n and prove it for n+ 1

δn+1(a�b) = δ(δn(a�b)) =

n∑

k=0

(
n

k

)
δ(δn−k(a)�δk(b)))

=

n∑

k=0

(
n

k

)[
δn−k+1(a)�δk(b) + δn−k(a)�δk+1(b)

]

= δn+1(a)�b+ δn(a)�δ(b) +

(
n

1

)
δn(a)�δ(b) + . . .

+ . . .+

(
n

k − 1

)
δn−k−1(a)�δk(b)
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+

(
n

k

)
δn−k+1(a)�δk(b) +

(
n

k

)
δn−k(a)�δk+1(b)

+

(
n

k + 1

)
δn−k(a)�δk+1(b) + . . .

+ . . .+

(
n

n− 1

)
δ(a)�δn(b) + δ(a)�δn(b) + a�δn+1(b)

=

n+1∑

k=0

(
n+ 1

k

)
δn−k+1(a)�δk(b).

In a very standard way we achieve the weak *-automorphism property in the
case a, b are analytic elements. For a, b analytic we have

βt(a�b) =
∑

n≥0

tn

n!
δn(a�b) =

∑

n≥0

tn

n!

n∑

k=0

(
n

k

)
δn−k(a)�δk(b)

=
∑

n≥0

tn

n!

n∑

k=0

n!

k!(n− k)!
δn−k(a)�δk(b)

=
∑

n≥0

n∑

k=0

tn

n!

n!

k!(n− k)!
δn−k(a)�δk(b)

=
∑

n≥0

n∑

k=0

(
tn−k

(n− k)!
δn−k(a)

)
�

(
tk

k!
δk(b)

)

=


∑

n≥0

tn

n!
δn(a)


 �


∑

m≥0

tm

m!
δm(b)


 = βt(a)�βt(b).

Using the density of the set of analytic elements and the boundedness of the
elements one proves the equality

βt(a�b) = βt(a)�βt(b), a, b ∈ A
b
.

Suppose first that a ∈ A
b
and b is analytic. Then there exists a sequence {an} of

analytic elements that approximates a and, by continuity of βt, we have

βt(a�b) = lim
n→∞

βt(an�b) = lim
n→∞

βn(an)�βt(b) = βt(a)�βt(b),

recalling that βt(b) is a bounded element by Lemma 3.2.10. In the case a, b are
both bounded, the conclusion can be obtained with the same argument.

Let a ∈ A and b ∈ A
b
. Approximating an unbounded element a through a

sequence an of bounded elements, the weak product a�b can be approximated by
the sequence an�b and we get

βt(a�b) = βt(a)�βt(b) for a ∈ A, b ∈ A
b
.
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Suppose now that both a, b ∈ A are unbounded. By hypothesis, A
b
is a core

for every La, then there exists a sequence {bn} ∈ A
b
that norm converges to b such

that ‖a�bn − a�b‖ vanishes as n increases. By norm continuity of βt we achieve
the weak automorphism property for βt, i.e.

βt(a�b) = βt(a)�βt(b) ∀a, b ∈ A. �

Remark 3.3.4 The additional hypotheses of Theorem 3.3.3 are satisfied by
the weak derivative in Lp(I, dλ), where I = [0, 1] and λ is the Lebesgue
measure.

In this case D(δ) = W 1,p(I, dλ) and it is well known (see [28, Theorem
8.8]) that if u ∈ W 1,p(I, dλ) then u ∈ L∞(I, dλ) and there exists c > 0 such
that

‖u‖∞ ≤ c‖u‖1,p

3.4 Examples and applications

In this section we present some examples of weak *-derivations and one-
parameter groups generated by them.

Let (A,A0) be a regular Banach quasi *-algebra (see Definition 1.4.22)
and consider again the example of inner qu*-derivations; i.e., δ : A0 → A is
a densely defined derivation determined as δh(x) := i[h, x] for a self-adjoint
element h ∈ A, i.e. h = h∗ and σ(h) ⊂ R.

3.4.1 Commutators for h self-adjoint

Case 1: Suppose first that h is a bounded element. As we have already
seen, in this case δh(x) is continuous.

Like in the classical case, what we would expect is a derivation that
generates a one-parameter group {βt}t∈R of weak *-automorphisms of (A,A0)
of the form

βt(a) = eith�a�e−ith for all t ∈ R.

Suppose that (A,A0) is a *-semisimple Banach quasi *-algebra with unit
1. Then we define the Taylor series eith as

eith :=
∞∑

n=0

(ith)n

n!
,

where the series on the right hand side converges with respect to ‖ · ‖b. We
stress the fact that hn is the weak product of h with itself n times. The above
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series is well defined, the exponential eith ∈ A
b
and all the known properties

remain valid.
For each t ∈ R, βt(a) := eith�a�e−ith is a weak *-automorphism of

(A,A0). We notice that by the separate continuity of multiplication and
the *-semisimplicity of (A,A0) the use of brackets is not needed.

If we fix t ∈ R, then it is routine to prove that βt is a linear map pre-
serving the weak multiplication when defined. Its inverse is given by the
expression β−1

t (a) = e−ith�a�eith = β−t(a) and β : t 7→ βt is in fact a weak
*-automorphism group of (A,A0) for every t ∈ R.

Self-adjoint elements of a regular Banach quasi *-algebra can be charac-
terized as those elements such that ‖eith‖

b
= 1. In this case, by Theorem 3.6

in [66], A
b
is a C*-algebra with respect to the norm introduced in Definition

1.3.9 (see also Remark 3.2.6). Following [33, Proposition 2.4.12], we have
that, for a *-semisimple Banach quasi *-algebra (A,A0) and h ∈ A

b
such

that h = h∗, σ(h) ⊂ R if, and only if, r
b
(eith) = 1.

Note that (eith)∗ = e−ith and eith�e−ith = 1 = e−ith�eith. Hence, eith ∈ A
b

is normal and then r(eith) = 1 = ‖eith‖
b
. Therefore we conclude that {βt}t∈R

is uniformly bounded in t by ‖βt(a)‖ ≤ ‖eith‖2
b
‖a‖ = ‖a‖.

By standard computations it is easy to check that {βt}t∈R is really a norm
continuous one-parameter group, i.e. β0(a) = a = Id(a), βt+s(a) = βt ◦ βs(a)
and ‖βt(a)− a‖ vanishes as t→ 0, for every a ∈ A.

We now compute the infinitesimal generator of {βt}t∈R. What we ex-
pect is the closure of the inner qu*-derivation δh for h ∈ A

b
. Indeed, it is

straightforward to prove that d
dt |t=0

eith = ih, so

lim
t→0

βt(a)− a

t
= lim

t→0

eith�a�e−ith − a

t
= ih�a− ia�h = δh(a)

for every a ∈ A = D(δh). Therefore δh is everywhere defined and continuous.

Remark 3.4.1 Note that δh is everywhere defined, that is D(δh) 6⊂ A
b
.

Hence the hypothesis on the boundedness of D(δ) is sufficient, but not nec-
essary, to obtain a uniformly bounded norm continuous one-parameter group
of weak *-automorphisms.

Case 2: We now consider the case in which h is self-adjoint, as before,
but unbounded, i.e. h ∈ A \ A

b
.

It is easy to check that λ ∈ ρ(h) if, and only if, λ ∈ ρ(Lh) ∩ ρ(Rh). We
suppose that the element h verifies the following condition

‖(h+ iγ)−1‖
b
≤ 1

|γ| , γ ∈ R.
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This, in turn, implies that

‖(Lh + iγI)−1‖B(A) ≤
1

|γ| , γ ∈ R

‖(Rh + iγI)−1‖B(A) ≤
1

|γ| , γ ∈ R.

For every t ∈ R, it ∈ ρ(h) implies it ∈ ρ(Lh) ∩ ρ(Rh). Then there ex-
ists {UL(t)}t∈R strongly operator continuous one-parameter group such that
‖UL(t)‖B(A) ≤ 1 for every t ∈ R and Lh is the infinitesimal generator of
{UL(t)}t∈R (see [48]).

In the same way, there exists a strongly continuous one-parameter group
{UR(t)}t∈R such that ‖UR(t)‖B(A) ≤ 1 for every t ∈ R and Rh is the infinites-
imal generator of {UR(t)}t∈R

Let us define

uL(t) := UL(t)(1) and uR(t) := UR(t)(1).

Since both uL(t) and uR are solution of the differential equation du
dt

= ihu
with boundary condition u(0) = 1 in A, uL(t) = uR(t) for every t ∈ R.

Hence we define

eith := uL(t) = uR(t), t ∈ R.

The exponential is a bounded element of (A,A0). Indeed, by [70, Lemma
2.5.3], it is easy to check that

(
I − it

n
Lh

)−n
(x) =

((
I − it

n
Lh

)−n
1

)
x, ∀x ∈ A0.

The element (I − it
n
Lh)

−n
1 is left-bounded with the bound not depending

neither on n nor on the element 1. Therefore it is possible to extend the
above equality for generic elements in A

(
I − it

n
Lh

)−n
(a) =

((
I − it

n
Lh

)−n
1

)
�a, ∀a ∈ A.

Hence, by the strong continuity of UL(t), we achieve

UL(t)a := lim
n→∞

(
I − it

n
Lh

)−n
a = lim

n→∞

((
I − it

n
Lh

)−n
1

)
�a
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and ‖UL(t)a‖ ≤ ‖a‖ for every a ∈ A.

Analogously, UR(t)1 is right-bounded, UR(t)a = UR(t)1�a for every a ∈ A
and ‖UR(t)a‖ ≤ ‖a‖. Then we conclude that eith is bounded and ‖eith‖

b
≤ 1.

By the previous properties, we obtain eith�eish = ei(t+s)h for every t, s ∈ R,
i.e. the group property for {βt}t∈R.

Since

((
I − it

n
Lk

)−1

(a)

)∗

=

(
1 +

it

n
Rh

)−1

(a∗), ∀a ∈ A,

uL(t)
∗ = ur(−t) = uL(−t). Then ‖eith‖

b
= 1.

Defining βt(a) := eith�a�e−ith, we already know that {βt}t∈R is uniformly
bounded in t τn-continuous one-parameter group of continuous weak *-auto-
morphisms. The infinitesimal generator is given by the weak *-derivation

δh(a) = lim
t→0

βt(a)− a

t
=

eith�a�e−ith − a

t
= i(h�a− a�h)

when a is bounded.

3.4.2 A physical example: quantum lattice systems

The study of derivations and automorphisms is important for physical
applications to quantum systems with infinitely many degrees of freedom as,
for instance, spin lattice systems. Without giving full details (for which we
refer to [9, 14, 19, 64]) we give an outline of their mathematical description
and show how the ideas developed here may give some help when dealing
with them.

Let V is a finite region of a d-dimensional lattice and AV the C*-algebra
generated by the Pauli operators ~σp = (σ1

p, σ
2
p, σ

3
p) at each point p of the finite

region V (the number of points of V is indicated by |V |) and by the identity
matrix Ip ∈ M2(C). It is easy to show that AV is isomorphic to M2|V |(HV ),
where HV = ⊗p∈VC2

p, and C2
p is the 2-dimensional space at p ∈ V .

If V ⊂ V ′, then there exists a natural embedding AV ↪→ AV ′ , defined in
obvious way. Hence A0 := ∪VAV is a C*-algebra, called the C*-algebra of
local observables; its norm is denoted by ‖ · ‖0.

To any infinite sequence {n} = {ni}∞i=1 of unit vectors in R3 there cor-
responds a state |{n}〉, constructed as in [9, Section 11.3.1]. This state de-
termines (GNS construction) a *-representation of A0 defined on the domain
D0

{n} = A0|{n}〉 whose completion is denoted by H{n}. Then one can define
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a family of vectors
{
|{m}, {n}〉 = ⊗p|mp, np〉;mp = 0, 1,

∑

p

mp <∞
}

which constitutes an orthonormal basis of H{n}. Each vector (|{m}, {n}〉 is
obtained by flipping a finite number of spins in the ground state |{n}〉.

Then, an unbounded self-adjoint operator M acting on H{n} is defined
by

M |{m}, {n}〉 =
(∑

p

mp

)
|{m}, {n}〉.

Roughly speaking, M counts the number of flipped spins in |{m}, {n}〉
with respect to the ground state |{n}〉.

Note that M is strictly depending on the chosen sequence {n}. We set
π{n} : A0 → L†(D{n}) to be the GNS *-representation defined by {n} and
we suppose that π{n} is faithful. The operator M is a number operator.
Therefore, the operator eM is a densely defined self-adjoint operator. Let
D denote its domain. Then D can be made into a Hilbert space, denoted
by HM , in canonical way. The norm in HM is given by ‖f‖M = ‖eMf‖,
f ∈ HM .

Let us assume that both ‖eMπ{n}(x)e−M‖0 and ‖e−Mπ{n}(x)eM‖0 are finite
for every x ∈ A0. Then the completion A of A0 with respect to the norm

‖x‖ := ‖e−Mπ{n}(x)e−M‖
is a *-semisimple Banach quasi*-algebra. Assuming that hV is the Hamilto-
nian of the finite volume system, then hV ∈ A0 and then eithV ∈ A0. Now we
define

δV (x) := i[hV , x] ∀x ∈ A0.

By Proposition 3.2.1, δV is closable. Moreover, hV ∈ A0, thus δV is ac-
tually continuous. Hence δV is infinitesimal generator of uniformly bounded
norm continuous one parameter group of norm continuous weak *-automor-
phisms

αVt (a) = eithV ae−ithV ∀a ∈ A.

The interesting point comes when considering the so-called thermodynamical
limit of the local dynamics; i.e. the lim|V |→∞ δV . This limit, in general, fails
to exists in the C*-algebra topology of A0. It is here that the Banach quasi
*-algebra structure plays a role, by taking the completion with respect to the
norm ‖·‖ of A. As shown in [9, 19], under certain conditions, this limit exists
and defines a weak *-derivation δ of (A,A0) which generates a one parameter
group of *-automorphisms.



Chapter 4

Tensor products of Banach
quasi *-algebras

In this chapter, we are interested in studying the structure of tensor
products constructed from two Banach quasi *-algebras (A,A0) and (B,B0)
having certain properties. We want the algebraic tensor product to be again
a Banach quasi *-algebra carrying structural properties of the factors, espe-
cially those related to *-representations and representable functionals.

Our first step consists of finding the best choice of algebraic tensor product
of two quasi *-algebras (see [29, 45]). We will use the fact that if A is a quasi
*-algebra over A0, A can be seen as a bimodule over A0.

Once we have the algebraic tensor product, we should decide which topol-
ogy has to be furnished to the tensor product in the way the resulting tensor
product would be a normed quasi *-algebra. For further details on topological
tensor products, see [31, 34, 39, 52, 54, 60, 63]..

After having a good notion of tensor product Banach quasi *-algebra, we
investigate the existence and the relation between representations of a tensor
product Banach quasi *-algebra and those of the tensor factors.

4.1 Algebraic construction

Let (A,A0) and (B,B0) be given quasi *-algebras. By definition, A and
B are bimodules over A0 and B0 respectively. A0 and B0 are *-algebras,
hence in particular they are rings. Thus, if R is a ring, X and Y are right
and left R-modules respectively, the tensor product X ⊗R Y is well defined
and it is a uniquely defined R-module.

In our case, A and B are bimodules over different rings A0 and B0, that
have no relations a priori.

69
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For this reason, we consider the direct sum A0 ⊕B0. It is still a ring and
it is possible to extend the action of A0 and B0 on A and B respectively to
an action of the direct sum, in the following way

(x, y) · a := xa and a · (x, y) := ax

(x, y) · b := yb and b · (x, y) := by,
(4.1)

for every (x, y) ∈ A0 ⊕B0, a ∈ A and b ∈ B. It is straightforward to show
that A and B are bimodules over A0 ⊕B0.

Now, A and B are bimodules over the same ring A0 ⊕B0. To construct
their tensor product and have again a bimodule over the same ring, we need
the concept of a balanced bilinear map (see [42, p. 104, Definition 3.1]).

Definition 4.1.1 If X, Y are right and left modules over a ring R and E is
a vector space, a bilinear map Ψ : X × Y → E is called balanced, if

Ψ(x · r, y) = Ψ(x, r · y), ∀ x ∈ X, y ∈ Y, r ∈ R.

In this respect, [42, p. 104, Definition 3.2], the pair (G,Φ), with G a vector
space and Φ : X ×Y → G a balanced bilinear map, is a tensor product of X
and Y , if the following condition is valid:

the pair (G,Φ) has the universal property, with respect

to all balanced bilinear maps from X × Y in some

vector space.

(4.2)

In particular, the pair (G,Ψ) exists and it is unique, in the sense that if
(G′,Ψ′) is another tensor product of the modules X, Y as before, then there
is an algebraic isomorphism i : G → G′, such that i ◦Ψ = Ψ′ (see again [42,
pp. 104, 105, Theorems 3.3, 3.5, respectively]). The resulting module tensor
product of X, Y will be denoted by X ⊗R Y .

In our case, if (A,A0), (B,B0) are given quasi *-algebras, then A⊗A0⊕B0
B

is a bimodule over the ring (*-algebra) A0 ⊕B0.
The tensor map Φ : A × B → A ⊗A0⊕B0

B, as well as its restriction
Φ0 : A0×B0 → A0⊗B0, is a balanced bilinear map, therefore (see also (4.1))

Φ(a · (x, y), b) = Φ(a, (x, y) · b)
⇔ Φ(ax, b) = Φ(a, yb)

⇔ ax⊗ b = a⊗ yb,

(4.3)

for all (x, y) in A0 ⊕B0 and (a, b) in A×B. Similarly, one obtains

xa⊗ b = a⊗ by, ∀ (x, y) ∈ A0 ⊕B0, (a, b) ∈ A×B. (4.4)
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The algebraic tensor product A0⊗B0 is a *-algebra. Indeed, an arbitrary
element z in A0 ⊗B0 has the form z =

∑n
i=1 xi ⊗ yi, where xi ⊗ yi are ele-

mentary tensors for i = 1, . . . , n. Let z′ =
∑m

j=1 xj ⊗ yj be another arbitrary
element in A0 ⊗B0 and set

zz′ :=
n∑

i=1

m∑

j=1

xix
′
j ⊗ yiy

′
j.

Then, zz′ is a well defined (associative) product on A0 ⊗B0. The involution
is defined by (x⊗ y)∗ = x∗ ⊗ y∗, for all (x, y) ∈ A0 ×B0.

A and B are complex vector spaces, hence the tensor product A ⊗ B
carries a natural structure of complex vector space defining the scalar multi-
plication in the following way

λ · z := λ
n∑

k=1

ak ⊗ bk =
n∑

k=1

ak ⊗ λbk,

for every λ ∈ C and every z =
∑n

k=1 ak ⊗ bk ∈ A⊗B. Note that, if (A,A0)
and (B,B0) are unital, the linear space structure is automatically given
identifying C with C1A0⊕B0 .

Since A, B carry an involution extending the involutions of A0, B0 re-
spectively, an involution is also defined on A ⊗A0⊕B0

B, in a similar way as
before, extending the involution of A0 ⊗B0. On the other hand, the module
multiplications in A⊗A0⊕B0

B, defined by

(x⊗ y)(a⊗ b) := xa⊗ yb, resp. (a⊗ b)(x⊗ y) := ax⊗ by,

for all (x, y) in A0 × B0 and (a, b) in A × B, satisfy the requirements of
Definition 1.1.3. Hence, (A⊗A0⊕B0

B,A0 ⊗B0) is a quasi *-algebra.

Proposition 4.1.2 Let (A,A0) and (B,B0) be quasi *-algebras. If (A,A0)
or (B,B0) is unital, then the quasi *-algebra (A⊗A0⊕B0

B,A0⊗B0) is trivial.

Proof. Let a⊗ b be an arbitrary elementary tensor in A⊗B and let (A,A0)
have an identity 1. Then, we have (see also (4.1) and (4.3))

a⊗ b = 1a⊗ b = [(1, 0) · a]⊗ b = a⊗ [b · (1, 0)] = a⊗ b0 = 0. �

Summing up, the construction of the quasi *-algebra (A⊗A0⊕B0
B,A0⊗B0)

has an interest, only in the case, where (A,A0) and (B,B0) carry no identity
elements.
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It may happen that we are given two quasi *-algebras (A,A0), (B,B0),
with A0 = B0. This time A and B are bimodules over the same ring A0.
Hence (A⊗A0

B,A0 ⊗B0) is constructed as before, without considering the
direct sum of the rings. The left and right actions of A0 on A ⊗A0

B are
defined as follows (see, e.g., (4.3), (4.4))

x · (a⊗ b) := xa⊗ b = a⊗ xb, resp. (a⊗ b) · x = ax⊗ b = a⊗ bx,

for all x in A0 and (a, b) in A×B.
In this case, even if (A,A0) is unital, A⊗B is not trivial, in general. Take,

for instance, the tensor product of the quasi *-algebra (Lp(I, dλ), C(I)) with
itself, where p is fixed such that p ≥ 1, I = [0, 1] and λ is the Lebesgue mea-
sure. The tensor product quasi *-algebra obtained is (Lp(I)⊗C(I)Lp(I), C(I))
and it is not trivial because it contains Lp(I, dλ) ' C(I)⊗C(I) Lp(I, dλ).

In the sequel, we consider the more general case, where A0 is embed-
ded in B0, but not equal to it. This will be denoted by A0 ↪→ B0. Such
an example is evidently provided by the quasi *-algebras (Lp(I, dλ), C(I)),
(Lp(I, dλ), L∞(I, dλ)). Then, it is possible to build the tensor product quasi
*-algebra (A⊗A0 B,A0 ⊗A0 B0) in a similar way as before, because B is also
a bimodule over A0. In this case A0⊗A0 B0 ' B0, hence we obtained another
quasi *-algebra over the same *-algebra B0.

Note that A⊗B0 B may not be defined. The crucial point here is that A
is not necessarily a B0-module. In this case, we may construct a B0-module
on which A is embedded, i.e., we may construct the tensor product of B0

and A over A0.
Having now two B0-bimodules, B0 ⊗A0 A and B, we build the tensor

product quasi *-algebra ((B0 ⊗A0 A) ⊗B0 B, (B0 ⊗A0 A0) ⊗B0 B0). Using
known tensor product properties, we have

(B0 ⊗A0 A)⊗B0 B = B⊗B0 (B0 ⊗A0 A)

= (B⊗B0 B0)⊗A0 A = B⊗A0 A

The previous computations show that if we have a sequence of embeddings
of *-algebras and we construct tensor products through the extensions of
‘scalars’, what we get at the end, it is always the tensor product built on the
smallest ring.

4.2 *-Admissible topologies

Prior to investigating the topological structure of the tensor product
normed (resp. Banach) quasi *-algebra, we give some notions about the
admissible topologies on the algebraic tensor product quasi *-algebra.
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Suppose now that A[τA], B[τB] are locally convex spaces and A⊗B their
vector space tensor product. Denote with A∗ and B∗ the topological dual of
A and B respectively.

Definition 4.2.1 A topology τ on A⊗B is called compatible [39] (with the
tensor product vector space structure of A ⊗ B) topology on A ⊗ B if the
following conditions are satisfied

(1) The vector space A⊗B equipped with τ is a locally convex space, that
will be denoted by A⊗τB;

(2) The tensor map Φ : A × B → A⊗τB : (x, y) 7→ x ⊗ y is separately
continuous;

(3) For any equicontinuous subset M of A∗ and N of B∗, the set M ⊗ N
given by {x′ ⊗ y′ : x′ ∈ M, y′ ∈ N} is an equicontinuous subset of(
A⊗τB

)∗
.

The completion of A⊗τ B is denoted by A⊗̂τ
B.

Let now A[‖ · ‖A], B[[‖ · ‖B] be Banach spaces. If a norm ‖ · ‖ on the
tensor product space A⊗ B satisfies the equality

‖x1 ⊗ x2‖ = ‖x1‖A‖x2‖B, ∀ x1 ∈ A, x2 ∈ B, (4.5)

is called a cross-norm on A⊗ B.

• The injective cross-norm on A⊗ B

Taking an arbitrary element z =
∑n

i=1 xi ⊗ yi in A⊗ B, we put

‖z‖λ = sup

{∣∣∣∣∣
n∑

i=1

f(xi)g(yi)

∣∣∣∣∣ : f ∈ A∗, ‖f‖ ≤ 1; g ∈ B∗, ‖g‖ ≤ 1

}
. (4.6)

The function ‖ · ‖λ is a well-defined cross-norm on A⊗ B, called the injective
cross-norm. It fulfills Definition 4.2.1 and it is the least cross-norm on A⊗B. The
normed space induced by A ⊗ B[‖ · ‖λ], will be denoted as A⊗λB; its respective

completion, which is a Banach space, will be denoted by A⊗̂λ
B.

When A[τA],B[τB] are given locally convex *-algebras (in this case we shall
always assume that involution is continuous and the multiplication is separately
continuous), then Definition 4.2.1 can be modified as follows

Definition 4.2.2 [34] Let A[τA],B[τB] be as before, with τA, τB respectively de-
fined by upwards directed families of seminorms {p} and {q}. Let A ⊗ B be
their corresponding tensor product *-algebra. A topology τ on A ⊗ B is called
∗-admissible (that is, compatible with the tensor product *-algebra structure of
A⊗B), if the following conditions are satisfied
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(1) A⊗B endowed with τ is a locally convex ∗–algebra, denoted by A⊗τ B;

(2) The tensor map Φ : A×B → A⊗τ B is continuous, in the sense that if τ is
determined by the family of ∗–seminorms {r}, then for every r there exist
p, q, such that r(x⊗ y) ≤ p(x)q(y) for all (x, y) ∈ A×B;

(3) For any equicontinuous subsets M of A∗ and N of B∗, the set M ⊗N given
by {x∗ ⊗ y∗ : x∗ ∈M,y∗ ∈ N} is an equicontinuous subset of

(
A⊗τ B

)∗
.

The completion of A⊗τB is a complete locally convex *-algebra denoted by A⊗̂τ
B.

Let us now assume that A[‖·‖A], B[[‖·‖B] are normed *-algebras with isometric
involution. We shall define on the tensor product *-algebra A⊗B the projective
cross-norm (see, for instance, [63, p. 189] and [54]).

• The projective cross-norm on A⊗B

Let z =
∑n

i=1 xi ⊗ yi be an arbitrary element in A⊗B. Put

‖z‖γ = inf

{
n∑

i=1

‖xi‖1‖yi‖2
}

(4.7)

where the infimum is taken over all representations
∑n

i=1 xi⊗yi of z. The function
‖·‖γ is a well-defined cross-norm that majorizes all other cross-norms on A⊗B and
it is called the projective cross-norm. The normed *-algebra induced by A⊗B[‖ ·
‖γ ], will be denoted as A⊗γB and its respective completion, which is a Banach
*-algebra, will be denoted by A⊗̂γ

B. Note that the cross-norm ‖ · ‖γ satisfies
Definition 4.2.2, therefore is a *-admissible cross-norm.

In particular, any compatible cross-norm ‖·‖ on A⊗B lies between the injective
and projective cross-norm, i.e.,

‖ · ‖λ ≤ ‖ · ‖ ≤ ‖ · ‖γ . (4.8)

Even more, a cross-norm ‖ · ‖ on A⊗B is compatible, if and only if, the inequality
(4.8) is valid.

• The maximal C*-cross-norm

Let A[‖ · ‖A], B[‖ · ‖B] be two C*-algebras. In the usual way (as above), A⊗B
becomes a *-algebra.

Given a C*-algebra A, denote by R(A) the set of all *-representations of A on
a Hilbert space H. Keep the same symbol for all *-representations of the *-algebra
A ⊗ B, on a Hilbert space H (see [63, Lemma 4.1]). For further details on the
definitions that follow, see [63].

The projective or maximal C*-cross-norm on A ⊗ B, denoted by ‖ · ‖max, is
defined as

‖z‖max = sup
{
‖π(z)‖ : π ∈ R(A⊗̂γ

B)
}
, z ∈ A⊗B (4.9)
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Thecompletion of A⊗B[‖ · ‖max] is a C*-algebra denoted by A ⊗̂
max

B.

From (4.9) and automatic continuity of representations on a C*-algebra (see
Theorem A.3.3), we obtain

‖z‖max ≤ ‖z‖γ , z ∈ A⊗B. (4.10)

• The minimal C*-cross-norm

If π1, π2 are *-representations of A,B acting on the Hilbert spaces H1,H2

respectively, then there is a unique *-representation π of A ⊗ B, acting on the
Hilbert space tensor product of H1,H2, denoted by H1⊗̂H2 (see [60] and/or [34]).
The *-representation π is defined by

π(z) =
n∑

i=1

π1(xi)⊗ π2(yi), ∀ z =
n∑

i=1

xi ⊗ yi ∈ A⊗B.

The injective or minimal cross-norm on A⊗B is denoted by ‖ · ‖min and given as

‖z‖min = sup {‖(π1 ⊗ π2)(z)‖ : π1 ∈ R(A), π2 ∈ R(B), z ∈ A⊗B} . (4.11)

The C*-algebra completion of A⊗B[‖ · ‖min] is denoted by A ⊗̂
min

B.

By the very definitions (4.9), (4.10) and (4.11), we have that

‖z‖min ≤ ‖z‖max ≤ |‖z‖γ , z ∈ A⊗B.

Now, taking into account that ‖ · ‖γ is a cross-norm, i.e, it fulfills (4.5), from the
definition of ‖ · ‖min above and the standard C*-algebra theory, we conclude that
both ‖ · ‖min and ‖ · ‖max satisfy (4.5), therefore they are cross-norms in the sense
that

‖x1 ⊗ x2‖min = ‖x1‖A‖x2‖B = ‖x1 ⊗ x2‖max, (x1, x2) ∈ A×B.

On the other hand (see [63]), ‖z‖λ ≤ ‖z‖min, z in A⊗B, therefore we finally obtain
that

‖z‖λ ≤ ‖z‖min ≤ ‖z‖max ≤ ‖z‖γ , z ∈ A⊗B. (4.12)

We observe that any C*-norm ‖ · ‖ on the *-algebra A ⊗B, is a cross-norm; this
can be seen from the following relation (see [63, Theorem 4.19])

‖x1‖A‖x2‖B = ‖x1 ⊗ x2‖min ≤ ‖x1 ⊗ x2‖ ≤ ‖x1 ⊗ x2‖max = ‖x1‖A‖x2‖B, (4.13)

for all (x1, x2) ∈ A×B.
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4.3 Topological tensor product

Given two normed (resp. Banach) quasi *-algebras (A,A0), (B,B0), with an
embedding A0 ↪→ B0, we will construct their tensor product normed (resp. Ba-
nach) quasi *-algebra.

We have already seen from the discussion in Section 4.1 that (A⊗A0 B,A0 ⊗A0

B0) is a quasi *-algebra. Hence, according to Definition 1.3.1, we still have to
show that A⊗A0 B becomes a normed (resp. Banach) space, under a tensor norm
that fulfills the conditions of Definition 1.3.1.

We start looking at the injective cross-norm (4.6) on A ⊗A0 B. We denote
the respective normed space by A⊗λ

A0
B := A⊗A0 B[‖ · ‖λ] and its completion by

A⊗̂λ
A0
B, which clearly is a Banach space. For distinction, we denote by ‖·‖A, ‖·‖B,

the given norms on A, B, respectively.

We prove that A0 ⊗B0 is dense in A⊗λ
A0
B. It suffices to show the existence of

an approximating sequence in A0 ⊗B0 for elementary tensors and then extend by
linearity.

By Definition 1.3.1, A0 in dense in A[‖ · ‖A] and B0 in B[‖ · ‖B]. Thus, if a is
in A and b in B there exist sequences {xn} in A0 and {yn} in B0, such that

‖xn − a‖A → 0 and ‖yn − b‖B → 0.

We prove now that the sequence {xn⊗ yn} in A0 ⊗B0 is ‖ · ‖λ-converging to a⊗ b.
Indeed: from (4.6), we have

‖xn ⊗ yn − xm ⊗ ym‖λ = sup
{
|f(xn)g(yn)− f(xm)g(ym)| :
f ∈ A∗, ‖f‖ ≤ 1, g ∈ B∗, ‖g‖ ≤ 1

}
,

where

|f(xn)g(yn)− f(xm)g(ym)|
= |f(xn)g(yn)− f(xn)g(ym) + f(xn)g(ym)− f(xm)g(ym)|
≤ |f(xn)| |g(yn − ym)|+ |f(xn − xm)| |g(ym)|
≤ ‖xm‖A ‖yn − ym‖B + ‖xn − xm‖A‖ym‖B
≤M1‖yn − ym‖B +M2‖xn − xm‖A → 0

for certain positive constants M1,M2 determined by the boundedness of the se-
quences {‖xn‖A} and {‖yn‖B}. This shows that A0 ⊗ B0 is dense in A⊗λ

A0
B.

Furthermore, by Definition 1.3.1 (ii), the (extended) involution on A and B is
isometric, therefore it defines a continuous involution on A⊗λ

A0
B and (by contin-

uous extension) on A⊗̂λ
A0
B, which is isometric for elementary tensors, since ‖ · ‖λ

is a cross-norm. Namely,

‖(a⊗ b)∗‖λ = ‖a∗ ⊗ b∗‖λ = ‖a∗‖ ‖b∗‖ = ‖a‖ ‖b‖ = ‖a⊗ b‖λ,
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for all a in A and b in B. With a similar argument, we get the same conclusion
for finite sums of elementary tensors.

It remains to show that for every z =
∑

i∈F xi⊗yi in A0⊗B0, F a finite subset
in N, the (right) multiplication operator

Rz : A⊗λ
A0
B → A⊗λ

A0
B defined as c 7→ cz

is continuous.
First observe that Rz is well defined and that Rx⊗y = Rx⊗Ry, for all (x, y) in

A0 ×B0. From the fact that Rx, Ry are continuous and ‖ · ‖λ is a cross-norm, we
deduce that the operator Rx⊗y is continuous. Indeed, without loss of generality,
consider a sequence {xn ⊗ yn} made of elementary tensors in A0 ⊗ B0 that is
λ-vanishing. Thus,

‖xnx⊗ yny‖λ = ‖xnx‖A‖yny‖B ≤ ‖x‖0‖xn‖A‖y‖0‖yn‖B
= ‖x‖0‖y‖0‖xn ⊗ yn‖λ → 0.

By linearity and continuity we deduce that for any z in A0 ⊗B0, Rz is continuous

on A⊗λ
A0
B and thus it is uniquely extended to a continuous operator on A⊗̂λ

A0
B

too. We conclude that (A⊗̂λ
A0
B,A0 ⊗B0) is a Banach quasi *-algebra.

Concerning, A⊗̂λ
A0
B we have

A0 ⊗A0 B0 ↪→ A⊗A0 B ⇒ A0 ⊗A0 B0

‖·‖λ = A⊗̂λ
A0
B

where A0 ⊗B0

‖·‖λ means the closure of A0⊗B0 with respect to ‖ · ‖λ, whereas the
arrow ↪→ indicates a dense embedding.

We conclude that the pair (A⊗̂λ
A0
B,A0 ⊗B0) is a Banach quasi*-algebra.

All the preceding arguments, as well as the fixed notation, can be equally well
applied for the projective cross-norm ‖ · ‖γ (see (4.7)) and all the generic cross
norms, to give that the pair (A⊗γ

A0
B,A0 ⊗B0) is a normed quasi *-algebra, while

(A⊗̂γ
A0
B,A0 ⊗B0) is a Banach quasi *-algebra.

4.4 Representations of tensor products quasi

*-algebras

If (A,A0) and (B,B0) are normed quasi *-algebras, with A0 embedded in B0,
a compatible tensor norm n on A ⊗ B that respects the involutive structure of
A⊗n

A0
B, i.e., n makes A⊗n

A0
B into a normed *-space, is called *-compatible (see

Definitions 4.2.1 and 4.2.2). If moreover n is a cross-norm (see (4.5)), then we speak
about a *-compatible cross-norm. The projective and injective γ, λ respectively,
tensor cross-norms, are *-compatible and any *-compatible tensor cross-norm n
lies between λ and γ.
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� From now on, we will assume that both (A,A0) and (B,B0) have unit 1A
and 1B respectively.

Lemma 4.4.1 Let (A,A0) and (B,B0) be Banach quasi *-algebras such that there
is an embedding A0 ↪→ B0. Let n be a *-compatible cross-norm on A ⊗A0 B. Let

π be a *-representation of the tensor product Banach quasi *-algebra A⊗̂n
A0
B into

L†(Dπ,Hπ). Then there exist unique *-representations π1 of (A,A0) and π2 of
(B,B0), such that

π(a⊗ b) = π1(a)π2(b) = π2(b)π1(a), ∀a ∈ A, b ∈ B; (4.14)

The *-representations π1, π2 are restrictions of the *-representation π to A, B
respectively.

Proof. Before defining the *-representation π1, we observe that there exists an
isometric *-isomorphism between A and A ⊗ 1B given by the map A → A ⊗ 1B

defined as a 7→ a⊗ 1B and then extended by linearity.

This map is linear and bijective by definition, preserves the involution and
the norm defined on A⊗ 1A is equivalent to that defined on A by the cross-norm
property: ‖a⊗ 1A‖ = ‖a‖A‖1B‖.

In the same way, it is possible to show that B is isometrically *-isomorphic to
1A ⊗B.

Let π : A⊗̂n
A0
B → L†(Dπ,Hπ) be a *-representation of A⊗̂n

A0
B. Then we

define a map π1 on A in the following way

π1(a)ξ := π(a⊗ 1B)ξ, ∀a ∈ A, ξ ∈ Dπ.

The map π1 is linear and it is a *-representation of A such that Dπ1 = Dπ. With
similar arguments, π2 defined as

π2(b)ξ := π(1A ⊗ b)ξ, ∀b ∈ B, ξ ∈ Dπ

is a *-representation of B such that Dπ2 = Dπ.

Let us now show the equalities 4.14. Take a ∈ A and b ∈ B, then

π(a⊗ b) = π [(a⊗ 1B)(1A ⊗ b)] = π(a⊗ 1B)π(1A ⊗ b) = π1(a)π2(b)

and also

π(a⊗ b) = π [(1A ⊗ b)(a⊗ 1B)] = π(1A ⊗ b)π(a⊗ 1B) = π2(b)π1(a). �

Proposition 4.4.2 In the hypotheses of Lemma 4.4.1, there exist representable
functionals ω1 on (A,A0) and ω2 on (B,B0). Moreover, if the *-representation of
Lemma 4.4.1 is (n̄-τw)-continuous, then ω1 and ω2 are continuous.
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Proof. Let π1 be a *-representation of (A,A0) defined as in Lemma 4.4.1. Define
now a linear functional ω1 : A → C as

ω1(a) := 〈π(a⊗ 1B)ξ|ξ〉 = 〈π1(a)ξ|ξ〉, ∀a ∈ A, ξ ∈ D.

We want to show that ω1 is representable. The conditions (R.1) and (R.2) are
easily verified. To show (R.3), consider a ∈ A and then we want to estimate
|ω1(a

∗x)|

|ω1(a
∗x)| = |〈π1(a∗x)ξ|ξ〉| =

∣∣∣〈π1(a)†π1(x)ξ|ξ〉
∣∣∣ = |〈π1(x)ξ|π1(a)ξ〉|

≤ ‖π1(a)ξ‖‖π1(x)ξ‖ ≤ (γa + 1) |〈π1(x∗x)ξ|ξ〉|
1
2

= (γa + 1)ω(x∗x)
1
2 ,

where γa = ‖π1(a)ξ‖ ≥ 0.
With a similar argument, it is possible to show that ω2 : B → C defined as

ω2(b) := 〈π(1A ⊗ b)ξ|ξ〉 = 〈π2(b)ξ|ξ〉, ∀b ∈ B, ξ ∈ D

is a representable linear functional on B.

Suppose now π : A⊗̂n
A0
B → L†(Dπ,Hπ) is (n-τw)-continuous. Hence, also π1

and π2 are (n-τw)-continuous *-representations of (A,A0) and (B,B0) respectively.
Indeed, let {an} be a sequence of elements in A such that ‖an − a‖A → 0 for
n → ∞. By the isometric *-isomorphism, then ‖an ⊗ 1B‖ → 0. Therefore, using
the τw-continuity of π, we have

〈π1(an)ξ|η〉 = 〈π(an ⊗ 1B)ξ|η〉 → 〈π(a⊗ 1B)ξ|η〉 = 〈π1(a)ξ|η〉

for all ξ, η ∈ Dπ.
If π1 is a (n-τw)-continuous *-representation of (A,A0), then ω1 is continuous.

Consider an, a ∈ A for every n ∈ N such that an → a in norm ‖ · ‖A. Hence,

ω(an) = 〈π1(an)ξ|ξ〉 → 〈π1(a)ξ|ξ〉 = ω1(a)

for every ξ ∈ Dπ.
Employing the same strategy, we show that π2 is (n-τw)-continuous *-repre-

sentation of (B,B0) if π is a (n-τw)-continuous of the tensor product. This allows
to show that ω2 is continuous representable functional on (B,B0). �

Proposition 4.4.3 Let (A,A0) and (B,B0) be Banach quasi *-algebras and sup-
pose A0 is embedded in B0. Let Ω be a representable and continuous linear func-

tional on A⊗̂n
A0
B (where n is as in Lemma 4.4.1). Then there exist representable

and continuous linear functionals ω1 and ω2 on A and B respectively, such that

Ω(a⊗ b) = ω1(a)⊗ ω2(b), ∀ a⊗ b ∈ A⊗B. (4.15)
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Proof. For every a ∈ A, let us define ω1 : A → C as

ω1(a) := Ω(a⊗ 1B), ∀ a ∈ A

and so extend ω1 by linearity. Since A[‖ · ‖] ' A⊗{1B}[‖ · ‖n], ω1 is representable
and continuous on A.

Analogously, define ω2(b) := Ω(1A⊗b) for every b ∈ B. By the above isometric
isomorphism, we can interpret ω1 as a functional ω1 : A ⊗ 1B → C and ω2 as a
functional ω2 : 1A ⊗B → C have (4.15). Indeed,

Ω(a⊗ b) = Ω [(a⊗ 1B)⊗ (1A ⊗ b)] = ω1(a⊗ 1B)ω2(1A ⊗ b) = ω1(a)ω2(b)

for every a ∈ A and b ∈ B. �
Adapting [14, Theorem 7.3], we can show that

Proposition 4.4.4 Let (A,A0) be a unital Banach quasi *-algebra. Then the
following are equivalent:

1. there exists a faithful (‖ · ‖A-τs∗)-continuous *-representation π of A;

2. (A,A0) is *-semisimple.

Theorem 4.4.5 Let (A,A0) and (B,B0) be Banach quasi *-algebras and suppose

A0 is embedded into B0. Let (A⊗̂n
A0
B,A0 ⊗ B0) be the tensor product Banach

quasi *-algebra of (A,A0) and (B,B0), where n is a *-compatible cross norm on

A⊗A0 B. Suppose (A⊗̂n
A0
B,A0 ⊗B0) is *-semisimple. Then both (A,A0), (B,B0)

are *-semisimple Banach quasi *-algebras.

Proof. By Proposition 4.4.4, there exists a faithful τs∗-continuous *-representa-
tion of (A⊗̂A0B,A0 ⊗ B0). Hence, by Lemma 4.4.1 there exist τs∗-continuous
*-representations π1 and π2 of (A,A0) and (B,B0) respectively. What remains to
show is that π1 and π2 are faithful. Let 0 6= a ∈ A. By the isometric *-isomorphism
between A[‖ · ‖] and A⊗ 1B[‖ · ‖τ ], we identify a ≡ a⊗ 1B. Thus, a⊗ 1B 6= 0.

By faithfulness of π, we have π(a⊗ 1B) 6= 0. We conclude that

π1(a) = π1(a)IdHπ = π1(a)π2(1B) = π(a⊗ 1B) 6= 0.

With the same argument, we get the conclusion for (B,B0). �

Theorem 4.4.6 Let (A,A0) and (B,B0) be Banach quasi *-algebras and suppose

A0 is embedded into B0. Let (A⊗̂n
A0
B,A0 ⊗ B0) be the tensor product Banach

quasi *-algebra, where n is a *-compatible cross norm on A ⊗A0 B. Suppose that

Rc(A⊗̂n
A0
B,A0⊗B0) is sufficient. Then both Rc(A,A0), Rc(B,B0) are sufficient.
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Proof. Let a ∈ A be a positive element. Hence a = lim
n→∞

∑

finite

x∗nxn for xn ∈ A0 for

every n ∈ N. By the isometric *-isomorphism of A[‖ · ‖] and A⊗1B[‖ · ‖τ ], a⊗1B

is again a positive element, i.e. a⊗ 1B = lim
n→∞

∑

finite

x∗nxn ⊗ 1B.

Rc(A⊗̂n
A0
B,A0 ⊗B0) is sufficient by assumption, therefore there exists a rep-

resentable and continuous functional Ω̂ on A⊗̂n
A0
B such that Ω̂(a⊗ 1B) > 0.

By Proposition 4.4.3, there exist ω̂1 and ω̂2 such that

Ω̂ = ω̂1 ⊗ ω̂2, on A⊗B.

Hence Ω̂(a ⊗ 1B) = ω̂1(a)ω̂2(1B) > 0. Ω̂ 6= 0, then ω̂2(1) 6= 0. We conclude that
ω̂1(a) > 0 and Rc(A,A0) is sufficient.

With the same strategy, it is possible to prove that Rc(B,B0) is sufficient. �

Our aim would be to show that the following statements are equivalent

• (A,A0) and (B,B0) are fully representable;

• (A⊗̂n
A0
B,A0 ⊗A0 B0) is fully representable.

This statement involves positive elements of A⊗̂n
A0
B that cannot be easily

characterized in terms of positive elements of A and B. Thus we want to study
how *-semisimplicity passes from the tensor product to the factors and viceversa
in the case of normed quasi *-algebras.

Proposition 4.4.7 Let (A,A0) and (B,B0) be normed quasi *-algebras such that
A0 ↪→ B0. Then the following are equivalent

1. (A,A0) and (B,B0) are *-semisimple;

2. (A⊗̂n
A0
B,A0 ⊗A0 B0) is *-semisimple.

Proof. Before proving the equivalence, we show a bijective correspondence between
sesquilinear forms in the tensor product and in the factors.

If Θ ∈ SA0⊗A0
B0(A⊗n̄

A0
B), then we can define

θ1(a, a) := Θ(a⊗ 1B, a⊗ 1B), a ∈ A

θ2(b, b) := Θ(1A ⊗ b,1A ⊗ b), b ∈ B.

θ1 ∈ SA0(A) and θ2 ∈ SB0(B) as restrictions of Θ ∈ SA0⊗A0
B0(A⊗n̄

A0
B).

On the contrary, if θ1 ∈ SA0(A) and θ2 ∈ SB0(B), then it is possible to define
Θ ∈ SA0⊗A0

B0(A⊗n̄
A0

B) in the following way

Θ(a⊗ b, a⊗ b) := θ1(a, a)θ2(b, b), a ∈ A, b ∈ B.
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and thus extend Θ by linearity. By polarization identity we have the equality
Θ(a ⊗ b, c ⊗ d) = θ1(a, c)θ2(b, d) for every a ⊗ b, c ⊗ d ∈ A ⊗n̄

A0
B. We show

that the properties required are verified. Indeed, for a ⊗ b, c ⊗ d ∈ A ⊗n̄
A0

B and
x⊗ y, t⊗ s ∈ A0 ⊗A0 B0 we have

Θ(a⊗ b, a⊗ b) = θ1(a, a)θ2(b, b) ≥ 0.

Θ(ax⊗ by, t⊗ s) = θ1(ax, t)θ2(by, s) = θ1(x, a
∗t)θ2(y, b∗s)

= Θ(x⊗ y, a∗t⊗ b∗s).

|Θ(a⊗ b, c⊗ d)| = |θ1(a, c)| |θ2(b, d)| ≤ ‖a‖1‖c‖1‖b‖2‖d‖2
= ‖a⊗ b‖ ‖c⊗ d‖.

Hence there exists a bijection between SA0⊗A0
B0(A⊗n̄

A0
B) and SA0(A)⊗ SB0(B)

given by Θ ↔ (θ1, θ2) such that Θ = θ1 ⊗ θ2.

Suppose now 1. By hypothesis (A,A0) and (B,B0) are *-semisimple, then for
0 6= a ∈ A and 0 6= b ∈ B there exist θ̃1 ∈ SA0(A) and θ̃2 ∈ SB0(B) such that

θ̃1(a, a) > 0 and θ̃2(b, b) > 0.
If a⊗ b 6= 0, then a 6= 0 and b 6= 0. Then Θ = θ̃1 ⊗ θ̃2 ∈ SA0⊗A0

B0(A⊗n̄
A0

B) is
such that

Θ(a⊗ b, a⊗ b) = θ̃1(a, a)θ̃2(b, b) > 0.

We conclude that (A⊗n̄
A0

B,A0 ⊗A0 B0) is *-semisimple.

Suppose now 2. If 0 6= a⊗b ∈ A⊗n̄
A0
B, then there exists Θ̃ ∈ SA0⊗A0

B0(A⊗n̄
A0
B)

such that Θ̃(a⊗ b, a⊗ b) > 0.
On the other hand, Θ̃ ≡ (θ̃1, θ̃2). Hence for a 6= 0, θ̃1(a, a) > 0 and as well for

b 6= 0 we have θ̃2(b, b) > 0. Therefore, (A,A0) and (B,B0) are *-semisimple. �
*-semisimplicity has been characterized in Proposition 4.4.4 through the exis-

tence of faithful τw-continuous *-representations even in the normed case. Indeed,
the proof of Proposition 4.4.4 is not depending on the completion of the Banach
quasi *-algebra.

As a direct consequence of Proposition 4.4.7, we obtain

Proposition 4.4.8 Let (A,A0) and (B,B0) be normed quasi *algebras such that
A0 ↪→ B0. Then the following are equivalent

1. There exist faithful (n-τs∗)-continuous *-representations π1 and π2 of the
normed quasi *-algebras (A,A0) and (B,B0) respectively

2. There exists a faithful (n-τs∗)-continuous *-representation π of the tensor
product normed quasi *-algebra (A⊗n̄

A0
B,A0 ⊗A0 B0)

At this point, we want to investigate what happens for full representability.
For reader’s convenience, we recall the condition of positivity (P)

b ∈ A and ω(x∗bx) ≥ 0 ∀ω ∈ Rc(A,A0); ∀x ∈ A0 ⇒ b ∈ A+.
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For full representability we have to distinguish two cases, the equivalence is
not perfectly holding in this case.

Proposition 4.4.9 Let (A,A0) and (B,B0) be normed quasi *-algebras such that
A0 ↪→ B0. If (A⊗n̄

A0
B,A0⊗A0 B0) is fully representable, then (A,A0) and (B,B0)

are fully representable.

Proof. With a similar argument employed in Proposition 4.4.7, it is possible to
show that there exists a 1-1 correspondence between Ω ∈ Rc(A⊗n̄

A0
B,A0 ⊗A0 B0)

and (ω1, ω2) ∈ Rc(A,A0) × Rc(B,B0). Indeed, if Ω ∈ Rc(A ⊗n̄
A0

B,A0 ⊗A0 B0),
then ω1(a) := Ω(a ⊗ 1B) for a ∈ A and ω2(b) := Ω(1A ⊗ b) for every b ∈ B are
representable and continuous functionals over A and B respectively.

If ω1 ∈ Rc(A,A0) and ω2 ∈ Rc(B,B0), then Ω(a ⊗ b) := ω1(a)ω2(b) is rep-
resentable and continuous. Indeed, it is positive and invariant, so the first two
properties are verified. Let us check also the third property. Let a⊗ b ∈ A⊗n̄

A0
B

and x⊗ y ∈ A0 ⊗A0 B0, then

|Ω(a∗x⊗ b∗y)| = |ϕΩ(x⊗ y, a⊗ b)|
≤ ϕΩ(x⊗ y, x⊗ y)

1
2ϕΩ(a⊗ b, a⊗ b)

1
2

≤ γa⊗bΩ(x
∗x⊗ y∗y)

1
2

If a ∈ A+ and b ∈ B+, then a ⊗ b is positive. Indeed, there exist sequences
{xn} ∈ A0 and {yn} ∈ B0 such that

a = lim
n

∑

i

x∗ixi and b = lim
n

∑

j

y∗j yj .

Hence, combining the two sequences and using the cross-norm property, we have

a⊗ b = lim
n

∑

i,j

x∗ixi ⊗ y∗j yj ∈ (A⊗n̄
A0

B)+.

Indeed,
∥∥∥∥∥∥
a⊗ b−

∑

i,j

x∗ixi ⊗ y∗j yj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
a⊗ b−

∑

i

x∗ixi ⊗
∑

j

y∗j yj

∥∥∥∥∥∥

≤
∥∥∥∥∥a−

∑

i

x∗ixi

∥∥∥∥∥

∥∥∥∥∥∥
b−

∑

j

y∗j yj

∥∥∥∥∥∥
→ 0.

Therefore, by full representability of the tensor product A⊗n
A0
B, there exists a

functional Ω̂ ∈ Rc(A ⊗n̄
A0

B,A0 ⊗A0 B0) such that Ω̂(a ⊗ b) > 0, then there exist
ω̂1 ∈ Rc(A,A0) and ω̂2 ∈ Rc(B,B0) such that

Ω̂(a⊗ b) = ω̂1(a)ω̂2(b) > 0
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We conclude that ω̂1(a) and ω̂2(b) are both positive real numbers or both negative.
Hence the couple (ω̂1, ω̂2) is such that ω̂1(a) > 0 and ω̂2(b) > 0. If this is not the
case, it is enough to consider the couple (−ω̂1,−ω̂2) for our purpose.

Now what remains to be shown is D(ϕω1
) = A for every ω1 ∈ Rc(A,A0), as

well for ω2.

Let a ∈ A, then a ⊗ 1B ∈ A ⊗ 1B ↪→ A ⊗n̄
A0

B. Then, by full representability
of the tensor product, a ⊗ 1B ∈ D(ϕΩ) for every Ω ∈ Rc(A ⊗n̄

A0
B,A0 ⊗A0 B0).

Hence, there exists xn ⊗ 1B in A0 ⊗ 1B such that xn ⊗ 1B → a⊗ 1B and

ϕΩ(xn ⊗ 1B − xm ⊗ 1B, xn ⊗ 1B − xm ⊗ 1B)

= Ω((xn ⊗ 1B − xm ⊗ 1B)
∗(xn ⊗ 1B − xm ⊗ 1B))

= ω1((xn − xm)
∗(xn − xm))

= ϕω1(xn − xm, xn − xm) → 0.

Hence we conclude that a ∈ A belongs to every D(ϕω1
). The same argument holds

for ω2 ∈ Rc(B,B0), thus (A,A0) and (B,B0) are fully representable. �

For the other direction, we assume the condition (P) to be valid.

Proposition 4.4.10 Let (A,A0) and (B,B0) be normed quasi *-algebras such
that A0 ↪→ B0. If (A,A0) and (B,B0) are fully representable and the condition
(P) holds, then (A⊗n̄

A0
B,A0 ⊗A0 B0) is fully representable.

Proof. Following the same argument of Theorem 2.1.3, it is possible to show that
full representability and positivity condition (P) implies *-semisimplicity. Then
(A,A0) and (B,B0) are *-semisimple.

By Proposition 4.4.7, (A⊗n̄
A0

B,A0 ⊗A0 B0) is *-semisimple. Hence the family
Rc(A⊗n̄

A0
B,A0 ⊗A0 B0) is sufficient. We have to show that D(ϕΩ) = A⊗n̄

A0
B for

every Ω ∈ Rc(A⊗n̄
A0

B,A0 ⊗A0 B0).

Let a ⊗ b ∈ A ⊗n̄
A0

B. Then by full representability of the factors, there exist
sequences

• xn ∈ A0 such that ϕω1(xn − xm, xn, xm) → 0 for every ω1 ∈ Rc(A,A0)

• yn ∈ B0 such that ϕω2(yn − ym, yn, ym) → 0 for every ω2 ∈ Rc(B,B0).

Hence {xn ⊗ yn} converges to a⊗ b and

ϕΩ = ϕω1 ⊗ ϕω2 , ∀Ω ∈ Rc(A⊗n̄
A0

B,A0 ⊗A0 B0).

We conclude that a ⊗ b ∈ D(ϕΩ) for every Ω ∈ Rc(A ⊗n̄
A0

B,A0 ⊗A0 B0), thus
D(ϕΩ) = A⊗n̄

A0
B. �
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4.5 Examples of tensor product Banach quasi

*-algebras

Example 4.5.1 Consider I to be the unit interval in the real line and λ the
Lebesgue measure. Take the Banach quasi *-algebra (Lp(I, dλ), C(I)), where p > 2
and C(I) is the C*-algebra of all C-valued continuous functions on I.

Consider the tensor product of (Lp(I, dλ), C(I)) with itself. Then we get the
Banach quasi* algebra (Lp(I, dλ)⊗̂γ

C(I)L
p(I)Lp(I, dλ), C(I)).

The Banach quasi *-algebra (Lp(I, dλ), C(I)) is both fully representable and
*-semisimple. Also the positivity condition (P) holds. Hence, by Propositions
4.4.7 and 4.4.10, we know that Lp(I, dλ)⊗γ

C(I)L
p(I, dλ) is *-semisimple and fully

representable. Unfortunately, we are not able to say anything about the tensor
product Banach quasi *-algebra completion.

A non-commutative example is the following:

Example 4.5.2 Take two Hilbert quasi* algebras (H1,A0), (H2,B0), where A0

is embedded in B0 and both are *-algebras and pre-Hilbert spaces, with H1 the
Hilbert space completion of A0, with inner product 〈·|·〉1 and H2 the Hilbert space
completion of B0 with inner product 〈·|·〉2. Then, we get the tensor product

Hilbert quasi *-algebra (H1⊗̂h
A0
H2,A0⊗B0), where H1⊗̂h

A0
H2 is the Hilbert space

completion of the pre-Hilbert space (and *-algebra) A0 ⊗ B0, under the norm h
induced by the inner product

〈ξ, ξ′〉 :=
n∑

i=1

m∑

j=1

〈ξi, ξ′j〉1〈ηi, η′j〉2,

for any ξ, ξ′ ∈ H1⊗H2, with ξ =
∑n

i=1 ξi⊗ ηi and ξ
′ =

∑m
j=1 ξ

′
j ⊗ η′j (see [60, 34]).

In this case, the tensor product Hilbert quasi *-algebra (H1⊗̂h
A0
H2,A0 ⊗ B0)

is a *-semisimple and fully representable.





Conclusions

Locally convex quasi *-algebras have been widely studied in the last decades
for the mathematical description of physical systems, especially those coming from
Quantum Field Theory and Quantum Statistical Mechanics. They have been
investigated also as abstract mathematical structures for their own interest.

In this thesis we mainly focused on the case of a Banach quasi *-algebra,
i.e. the completion of a normed *-algebra for which the multiplication is just
separately continuous. The main problem of the thesis concerns the continuity of
representable functionals, i.e. those functionals that admit a GNS-triple made of
a Hilbert space, a *-representation and a coset map.

Various ways have been employed to give a positive answer to this problem
proving results about the continuity of representable functionals in the frame-
work of Banach quasi *-algebras. These structures constitute a special family of
locally convex quasi *-algebras. Hence, it would be interesting to consider the
same problem in this more general background, considering that no examples of
discontinuous representable functionals have been shown until now.

In this investigation a relevant role is played by sesquilinear forms, especially
those associated to a representable (and continuous) functional. The first issue to
face would be to find a different approach to prove analogous results in the locally
convex case, because the results obtained here are often closely related to the struc-
ture properties of Banach spaces. In the locally convex case, it would be a good
hint to prove a similar result about continuity of the aforementioned sesquilinear
forms. Indeed, continuity of representable functionals is strictly linked to conti-
nuity of the *-representation in the GNS-triple and the continuity of sesquilinear
forms associated to them.

As we have seen, a central role in the study of unbounded derivations is played
again by sesquilinear forms occurring in the notion of *-semisimplicity. Indeed,
*-semisimple Banach quasi *-algebras are those that possess a family of posi-
tive invariant continuous sesquilinear forms, shown to be related to the family
of sesquilinear forms coming from representable and continuous functionals. The
notion of *-semisimplicity is useful in extending classical results to the Banach
quasi *-algebras case. Indeed, in the *-semisimple case it is possible to define a
weaker notion of derivation and then give conditions on the weak *-derivation in
order to get an infinitesimal generator of a certain weak *-automorphisms group.

87



In particular, if a weak *-derivation is the infinitesimal generator of a continuous
one-parameter group of uniformly bounded weak *-automorphisms, then it is a
closed map enjoying certain spectral properties. Conversely, if in addition the do-
main of the weak *-derivation consists of bounded elements, then the derivation
generates such a weak *-automorphisms group. The condition of boundedness on
the domain is however only sufficient, but not necessary, as shown in examples.
Two main ingredients have been employed proving these results: the theory of
one-parameter groups on Banach spaces and the properties of a convenient family
of sesquilinear forms. In the literature, there are plenty of examples of locally
convex quasi *-algebras for which the class of positive, invariant and continuous
sesquilinear forms is trivial. Therefore, a direction for the future research con-
cerns locally convex quasi *-algebras and the non *-semisimple case. Moreover, it
would be interesting to investigate what happens if the continuity requirement on
the weak *-automorphisms group is weakened, for instance studying continuous
groups with respect to coarser topologies than the norm topology.

Constructing tensor product Banach quasi *-algebras could be a way to study
representations of Banach quasi *-algebras. Indeed, it is interesting to study how
related properties, like full representability and *-semisimplicity, pass from the
tensor product to the tensor factors and viceversa. One direction, concerning
properties passing from the tensor product to the factors, has been shown. About
the other direction, it is possible to show that representations pass to the pre-
completion, but nothing can be said about the completion. It is possible to show
that the tensor product of two representable and continuous functionals is again
representable and continuous functional on the pre-completion through sesquilin-
ear forms. The main issue of dealing with the completion is that representation
properties are not preserved through limits.

A possible approach to attack the problem could be constructing CQ*-envelop-
ing quasi *-algebra, like in the Banach *-algebras case, but there are examples of
CQ*-algebras with no representations. Hence, a more effective strategy would be
constructing a H*-enveloping quasi *-algebra, since Hilbert quasi *-algebras are
always fully representable.

We believe that this kind of construction could give a better glimpse on Banach
quasi *-algebras and also on more concrete tensor products, for instance those of
Lp−spaces, that remain mysterious at the moment.



Appendix A

Brief overview on Banach
*-algebras

For the reader’s convenience, we recall some notions about Banach *-algebras and C*-
algebras and Operator Theory useful in the Chapters of this Thesis. For further reading,
an introductory book on Operator Algebras is enough, for example see [63].

A.1 Banach *-algebras and C*-algebras

Definition A.1.1 Let A0 be a Banach space over the complex numbers. If A0 is an
algebra over C in which the multiplication is such that

||xy|| ≤ ||x|| ||y|| ∀x, y ∈ A0

then A0 is said to be Banach algebra.

Definition A.1.2 If a Banach algebra A0 is endowed with a linear map ∗ : A0 → A0

defined as ∗ : x 7→ x∗ with the following properties

1. (x∗)∗ = x;

2. (xy)∗ = y∗x∗;

3. ||x∗|| = ||x||;
for every x, y ∈ A0, then A0 is called Banach ∗-algebra. The map ∗ is called involution.

If the involution in A0 satisfies the further C*-property

||x∗x|| = ||x||2, ∀x ∈ A0, (A.1)

then A0 is said to be a C*-algebra.

Example A.1.3 Let H be a Hilbert space over C endowed with inner product denoted by
〈·|·〉, then the set B(H) of all the bounded operators on H is an algebra with the pointwise
sum and scalar product. Moreover, it is a unital C*-algebra, if we endow it with involution
given by X 7→ X∗, where X∗ is the adjoint operator of X, and norm given by

‖X‖ = sup
0 6=ξ∈H

‖Xξ‖.
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Example A.1.4 Let Ω be a compact space. The set C(Ω) of all continuous functions
defined on Ω is an algebra with the natural operation of sum and scalar product. Endowed
with the involution given by

f∗(ω) = f(ω), ∀ω ∈ Ω

and uniform convergence norm as follows

||f || = sup
ω∈Ω

|f(ω)|,

then C(Ω) is a unital C∗−algebra.

Example A.1.5 Let L∞[0, 1] be the Banach space of essentially bounded functions in
I = [0, 1]. L∞[0, 1] endowed with the norm of essentially supremum

||f ||∞ = ess sup
x∈I

|f(x)|.

L∞[0, 1] is an algebra with the canonical pointwise sum and scalar product. With this
norm, it becomes a unital C∗−algebra with involution ∗ given by the complex adjoint.

If the Banach ∗−algebra A0 is not unital, then A0 can be embedded into a unital
Banach *-algebra B0 as its ideal.

B(H) in Example A.1.3 and L∞[0, 1] in Example A.1.5 constitute prototypes of a
special class of C*-algebras, called von Neumann algebras.

If M is a subset B(H), then M′ denotes the set of all bounded operators on H
commuting with every operator in M. M′ is said to be commutant of M and it is always
a Banach algebra containing the identity operator I.

Definition A.1.6 A von Neumann algebra on H is a *-subalgebra M of B(H) containing
the identity operator I such that

M = M′′,

where M′′ is the double commutant of M.

To von Neumann algebras, it is possible to associate some unbounded operators called
affiliated operators. Although, these operators are densely defined and closed.

Definition A.1.7 Let H be a Hilbert space and D be a subspace of H. An operator
T : D(T ) → H is said to be closed if for every sequence {xn} in D(T ) such that xn → x
and Txn converging in H, then x ∈ D(T ) and Tx = lim

n→∞
Txn.

Definition A.1.8 Let M be a von Neumann algebra. An operator T is affiliated with a
von Neumann algebra and we will write TηM if T is densely defined, closed and TU ⊇ UT
for every unitary operator U in M′.
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A.2 Spectrum of a Banach *-algebra

Let (A,A0) be a unital Banach *-algebra. An important notion is given by the spectrum
of an element a ∈ A. The definition is purely algebraic, but it is related to topological
aspects of the Banach *-algebra

Definition A.2.1 Let A0 be a Banach *-algebra with unit 1. The following set, denoted
with σ(x),

σ(x) := {λ ∈ C : 6 ∃(λ1− x)−1 ∈ A0}
is said to be the spectrum. The resolvent set, indicated as ρ(x), is given by ρ(x) := C\σ(x).

σ(x) is always nonempty and closed, for every x ∈ A0. Hence, we can compute the
spectral radius r(x) defined below.

Theorem A.2.2 Let A0 be a C*-algebra. If a ∈ A, then

r(x) := sup{|λ| : λ ∈ σ(x)} = inf
n

‖an‖ 1
n = lim

n→∞
‖an‖ 1

n .

Moreover,

• if x ∈ A0 is normal, i.e. xx∗ = x∗x, then ‖x‖ = r(x);

• if x = x∗ then σ(x) ⊂ R;

• x ∈ A0 such that x = x∗ is positive if σ(x) ⊂ [0,+∞) and this is equivalent to the
existence of y ∈ A0 such that x = y∗y.

A.3 *-Representations and positive function-

als

According to Definition A.1.6, every von Neumann algebra is a *-subalgebra of B(H)
for a certain Hilbert space H. This is actually true also for C*-algebras, as proved in the
celebrated Gelfand-Naimark Theorem.

We need to introduce first a class of functionals useful to construct *representations.

Definition A.3.1 Let A0 be a C*-algebra. A *-representation of A0 is a *-homomorphism
π : A0 → B(H), i.e. a linear map preserving sum, product, scalar product and involution.

Definition A.3.2 Let A0 be a Banach *-algebra. A *-representation π is said to be

• faithful if π(x) 6= 0 implies x 6= 0;

• continuous if there exists γ > 0 such that ‖π(x)‖ ≤ γ‖x‖ for all x ∈ A0;

• isometric if ‖π(x)‖ = ‖x‖ for every x ∈ A.

Theorem A.3.3 Let A0 be a C*-algebra and π a *-representation of A0. Then π is
automatically continuous. Moreover, if π is faithful, then π is automatically isometric.

Definition A.3.4 Let A0 be a C∗−algebra. A linear functional ω on A0 is said to be
positive if ω(x∗x) ≥ 0 for every x ∈ A0.
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Positive functionals own many interesting properties. In particular, for every C*-
algebra, there exist as many functionals as many points in A0 and all of them are auto-
matically continuous.

Theorem A.3.5 Let A0 be a Banach *-algebra with unit 1 and let ω be a functional.
Then

• ω is continuous and ‖ω‖ = ω(1);

• |ω(y∗xy)| ≤ ‖x‖ω(y∗y) for every x, y ∈ A0;

Theorem A.3.6 Let A0 be a C*-algebra with unit 1. If x ∈ A0, then there exists a
positive functional ω on A0 such that ω(1) = 1 and ω(x∗x) = ‖x‖20 .

From *-representations, we can define positive functionals, i.e. those functionals that
are positive on positive elements.

Theorem A.3.7 Let A0 be a C*-algebra with unit 1. Let π be a *-representation of A0

in a Hilbert space H and let ξ be a unit vector in H. Then the map ω : A0 → C defined as
ω(x) = 〈π(x)ξ|ξ〉 is a positive linear functional.

Theorem A.3.8 Let A0 be a unital C∗−algebra. Given a positive functional ω, then there
exists a *-representation πω on a Hilbert space Hω and a cyclic vector ξω ∈ Hω, i.e.the
subspace πω(A0)ξω is dense in Hω, such that

ω(x) = 〈πω(x)ξω|ξω〉.

The *-representation πω is unique up to unitary equivalence.

Theorem A.3.9 Every unital C∗−algebra is isometrically *-isomorphic to a C∗−subal-
gebra of B(H). This is equivalent to the existence of a faithful *-representation of A0 on
a Hilbert space H
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