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Preface

In this thesis we study partition functions given by matrix integrals from the point of view of isomon-
odromic deformations, or more generally of Riemann—Hilbert problems depending on parameters.

The partition functions under investigation are relevant in particular because of their applications
to Combinatorics and Enumerative Geometry. They are known to be tau functions in the usual sense
of Integrable System Theory. Our method mainly differs in that we consider them as tau functions of
isomonodromic type.

This approach proves to be an efficient way of studying these partition functions. Possible applications
which are explored, to various extents, in this thesis can be outlined as follows.

e Direct and general derivation of non-recursive effective formule for the combinatorial /geometric
content of the partition function.

e A new derivation of Virasoro constraints of the partition functions, directly connected with the
action of the Witt algebra of infinitesimal conformal transformations of the plane.

e Rigorous study of analytic aspects of the matrix integrals, e.g. large-size limits, resummation of
formal generating functions and their corresponding nonlinear Stokes’ phenomenon.

The thesis contains several reviews of non-original results. The original contributions are based on
the following works of the author (in chronological order).

e [BRc]: M. Bertola and GR. The Kontsevich-Penner matrix integral, isomonodromic tau functions
and open intersection numbers. Annales Henri Poincare, 20(2):393-443, 2019. arxiv.org/abs/
1711.03360

e [BRb]: M. Bertola and GR. The Brezin-Gross-Witten tau function and isomonodromic deforma-
tions. To appear in Communications in Number Theory and Physics. arxiv.org/abs/1812.02116

e [BRa]: M. Bertola and GR. Matrix models for stationary Gromov-Witten invariants of the Riemann
sphere. In preparation.

e [GGR]: M. Gisonni, T. Grava and GR. Mixed correlators of the Laguerre Ensemble and monotone
Hurwitz numbers. In preparation.

The organization of the thesis is as follows.
e In Chapters 1 and 2 we review the general theory of tau functions of isomonodromic type.

e In Chapter 3 we review the general theory of matrix models and associated orthogonal polynomials.
We also present a review of recent results of [DYb] as well as original results of [GGR].

e In Chapter 4 we give a review of the Kontsevich-Witten tau function and of [BCal.
e In Chapter 5, 6 and 7 we report the original results of [BRb; BRc; BRa] respectively.

e Appendices A and B contain review of background material on integrable hierarchies and matrix
integrals.
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Introduction

Overview

Tau functions. There are many interrelated concepts of tau function, each appearing in specific,
sometimes very far, branches of Mathematics. Among them we mention the following ones.

Tau functions of integrable systems. Historically, tau functions first occurred in the study of infinitely-
dimensional integrable systems, viewed as families of commuting symmetries of an integrable equation.
To give a simple example, the Korteweg—de Vries equation

3u? Uy

1
= Uy - wwz:awL s Li=— 1
Uy U —|—4u (Ly) 1 5 + 1 (1)

describes waves in shallow water and possesses an infinite set of symmetries (z = tg,t = t1)

3uz  w 5u  Hu? Suu Uy,
=0.(L;), Lo=u, L4=— QJI, [o — x xx x
" ( J) 0= ! 2 4 2 2 8 + 4 16

where more generally the Lenard—Magri differential polynomials in u are defined by the recursion
1
OxLji1 = <4a§ + 2ud, + ux) Lj. (3)

Such symmetries of the KAV hierarchy are in involution, in the sense that they commute, i.e. 0,0, u =
04,0, u. The tau function in this case is defined by

2021logT = u (4)

and can be regarded, along with u, as a function of the infinitely many variables tg,t1,... which takes
the KdV equation, as well as all the equations of the hierarchy (2), into a bilinear form [Hc];

3Ta:29c + A7, T — ATy Tone — AT Tyt + TTae = 0. (5)

This example is particular case of a much more general universal hierarchy, known as the Kadomtsev—
Petviashvili (KP) hierarchy; it represents in a similar way an infinite set of commuting symmetries of
the KP equation

Uyy + (duy + 120Uy + Upgy)s = 0. (6)

and the tau function is defined exactly as in (4). Again, it takes all the equations of the KP hierarchy
into a bilinear form. There is a beautiful description of the space of KP tau functions in terms of an
infinite-dimensional grassmannian [SS; SWa|, which is suggested by the analogy of this bilinear form of
the equations with the classical Plicker relations.

Tau functions of isomonodromic systems. A fundamental idea, due to Riemann, is that of considering
transcendents defined by linear ODEs with rational coefficients as functions of their monodromy, oppor-
tunely defined. The setting of Isomonodromy Theory is to consider deformations of these transcendents
in such a way that their monodromy remains constant. This beautiful classical topic goes back to the
beginning of the XXth century to the work, among the others, of P. Painlevé, R. Fuchs, B. Gambier.
There was a great renewal of interest in this theory starting from the 1980’s, because of the appearance
of Painlevé transcendents in certain correlation functions of Conformal Field Theories, see e.g. [JMMS].
A cornerstone in the theory has been the introduction of isomonodromic tau functions in a very general
setting [JMU]. Since then the theory of isomonodromic deformations has been a very active field of

ix



x INTRODUCTION

research, with fundamental applications to a wide variety of topics, ranging indeed from the study of
correlation functions in several physical theories to Random Matrix Theory.

Tau functions as generating functions. Tau functions also appear in various contexts in Geometry and
Combinatorics, as formal generating functions. It is well known indeed that generating functions are a
fundamental tool in Mathematics, where deep nontrivial recursion relations are often encoded in simple
form of (algebraic, differential, or difference, etc) equations involving generating functions. A plethora of
examples where generating functions of interesting geometric/combinatorial invariants satisfy the same
equations as a tau function of some integrable equation is known. The Witten conjecture [W¢]| is one
of the most notable examples, which has been greatly generalized with the theory of Gromov-Witten
invariants [KM] and of Frobenius manifolds [Dd; DZa]. Many important cases are related with matrix
models, and this has been the source of inspiration for the Topological Recursion Theory [EO].

Isomonodromic method. Much of the work done during the doctoral program at SISSA under the
supervision of Prof. M. Bertola concerns the definition of suitable isomonodromic systems whose isomon-
odromic tau functions coincide with matrix integrals related to interesting combinatorial/geometric ob-
jects. Then one can exploit this underlying isomonodromic system to study these matrix integrals.

This was motivated by the description in [BCa] of the Kontsevich matrix integral [Kb] in terms of an
isomonodromic tau function.

It turns out that this method can be applied to several interesting models (see below). Incidentally, let
us comment on the interesting fact that such models which are of interest in Combinatorics and Geometry,
coincide with models which are of interest in Random Matrix Theory. This connection was unveiled in
[ODb] where intersection theory on the moduli spaces of curves was related with the edge-of-the-spectrum
model, i.e. with the Airy kernel, and was actually used to provide formule for intersection numbers
[Oc]. Let us point out that, in a similar way, the examples examined in this thesis present this double
nature; on one side combinatorial /geometric quantities and on the other side Riemann—Hilbert problems
related with Random Matrix Theory (e.g. Bessel and discrete Bessel process, appearing respectively in
connection with Norbury intersection numbers and with stationary Gromov—Witten invariants of the
Riemann sphere). We do not know a general explanation for this connection, and we believe that this
point deserves further study.

Relation with topological recursion theory. Many theoretical and computational aspects of the
theory of tau functions are deeply connected with the topological recursion of Eynard and Orantin [EO].
Indeed very similar formulee (in this context they are called determinantal formule) appear also in works
related to the topological recursion, see e.g. [BE; BBE].

Let us point out that our approach is completely explicit and non-recursive and starts directly from
the matrix models under investigation, therefore it is is completely independent from the topological
recursion. Moreover, to the best of our knowledge, the determinantal formule of loc. cit. have never been
used to derive mized correlators, i.e. logarithmic derivatives of multi-pole tau functions with respect to
time variables related to different poles, as we derive in Chap. 1 and apply in Chap. 3 to the Laguerre
Unitary Ensemble.

Structure of the thesis. In Part I where we give an account of the general theory of tau functions,
following the perspective which is most suited to our purposes. The content of this part is not new, but we
felt necessary to give a fairly self-contained introduction to the subject. There are two main points of views
explored in this part, one more formal (Chap. 1) and one more related to analytic aspects (Chap. 2). Part
II is the core of the thesis and we present the isomonodromic method at work in several instances. Part
IIT contains two appendices where we review some background material, on the Kadomtsev—Petviashvili
hierarchy mentioned earlier in this introduction and on some standard techniques about matrix integrals.

More details on the contents of this thesis are described below, distinguishing between original and
non original results.

Original contributions

Our original contributions mainly consist in the study of certain interesting tau functions by means of
the aforementioned isomonodromic method, providing in particular explicit formulee for them.
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Laguerre Unitary Ensemble (LUE). According to a result of Bertola, Eynard, and Harnad [BEH],
partition functions of one matrix models coincide with the isomonodromic tau function of the associated
2 x 2 ODE of the associated orthogonal polynomials. We apply this result (reviewed in general in Chap.
3) to study the LUE. The main result is Thm. 3.5.7, providing explicit formulae for mized correlators of
the LUE. This result is contained in the work [GGR], which is in preparation, and is presented in Sec.
3.5.2.

Brézin—Gross—Witten tau function and Norbury intersection numbers. We have applied the
isomonodromic method to the study of the Brézin—Gross—Witten tau function. The main result is given
by the formulse of Cor. 5.3.5 for Norbury intersection numbers!. In particular let us report the following
simple expression for one-point intersection numbers

_ 2g — DH(2g — )N
I ] ™

g,1

Moreover, we make the small observation that the Brézin—Gross—Witten tau function provides a solu-
tion to the Painlevé XXXIV hierarchy, see Prop. 5.3.16. (This parallels the connection of the Kontsevich—
Witten tau function with the Painlevé I hierarchy.)

This study is contained in the paper [BRb] and is presented in Chap. 5.

Kontsevich—Penner tau function and open intersection numbers. The isomonodromic ap-
proach can be applied to the Kontsevich-Penner tau function, a generalization of the Kontsevich-Witten
tau function, whose algebro-geometric interpretation should be found, conjecturally, in the intersection
theory on the moduli spaces of open Riemann surfaces. The main result is Thm. 6.3.3, providing explicit
formulee for open intersection numbers. Let us report by way of example the following formula for a
generating function of one-point open intersection numbers

/\
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VBN
|
~_—
o
e
[0}
=}
8
[VIEN
I
0]
o,
N\
[\v]
e
7 N
ol
ol |
O
(SIS
(I —|—

z8 5 1— 1+
Q‘8> +ng 2F2( @ 3
2

I-5) o

which generalizes the classical formula for (closed) intersection numbers (134_9) = . An alternative

formulation of the above result is

_1
249g!

g & 4;(Q) =
Z <T%_2>openm2 e jgo (] J— 1)”x ’ (9)

>0

where the coefficients A;(Q) are defined by

(222) - @ (10)

320

13 . .
where again the reduction to the closed generating function ez for () = 0 is manifest.
This study is contained in the paper [BRc] and is presented in Chap. 6.

Matrix models for stationary Gromov—Witten theory of the Riemann sphere. Explicit for-
mulze for stationary Gromov—Witten invariants of P! have been recently discovered in [DYa], see also
[Mc; DYZa). Such formulee can be very naturally identified with the general formulae expressing logarith-
mic derivatives of a tau function of isomonodromic type. Applying then the isomonodromic method in

I The same formulze are derived by a different approach (matriz resolvent approach) to tau functions of the KdV
hierarchy in [DYZb].
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reverse, we construct the following Kontsevich-like matrix model for stationary Gromov—Witten theory
of P, which is slightly different from the ones proposed in the literature.

Define the function f(z;e€) of the complex variable z, depending on a parameter € > 0;

F(zie) = ﬂ% [ o (1 (:,; _ ;) - (z + ;) log x) dz. (11)

The contour C; starts from 0 with |argz| < § and arrives at oo with § < arga < 7 (see Fig. 7.1). The
function has the following asymptotic expansion as z — oo within the sector [argz| < § —4, § > 0;

€2\~ 24 — €2 € 452862 + 576 1003€8 + 95400¢* + 406080€? + 69120

(7) flze ~ 1+ 2+ — n (12)

e 2462z 1152¢42 414720€523

Introduce N

det (ke (2)7 (s + k= 15))
TN(Zl,...,ZN) = j7k:1. (13)
H1§i<j§N(Zj — %)
Then the expansion of log 7x (21, ..., 2n ), expressed in terms of the scaled Miwa variables
k! 1 1

Tklzelc(ZfH-‘r""i‘Z]]%H) (14)

stabilizes as N — oo to the generating function (see (7.1)) of stationary GW invariants of PL.
This study is part of the work in preparation [BRa] and is presented in Chap. 7.

Review contributions

According with the spirit of this thesis outlined above, we have also included some (to a various extent)
original proofs of non original results. In particular:

Averages of products and ratio of characteristic polynomials. In Thm. 3.4.1 we re-derive, from
the general theory of Schlesinger transformations (reviewed in Chap. 2), the formula of [BHa; BDS] for
expectation values of products and ratios of characteristic polynomials of random matrices.

Virasoro constraints. As a direct consequence of the Jimbo-Miwa—Ueno formula one may derive
Virasoro constraints for an isomonodromic tau function. The complete proof of Virasoro constraints by
this approach is presented for the case of the Brézin—Gross—Witten tau function in Chap. 5, where the
Virasoro constraints where already known from [Ab]. However, the methods exposed there following
[BRb] are of much more general applicability. A slightly different approach can be used to derive the
first Virasoro constraints (corresponding to shifts and dilations in the plane), exploting translation and
dilation covariance of the relevant Riemann—Hilbert problems, as illustrated in Chap. 6 following [BRc].

Gaussian Unitary Ensemble (GUE). The methods of Chap. 3 find a natural application to the
study of the GUE partition function. We re-derive from this approach some results from [DYb] about
the GUE in Sec. 3.5.1.

Witten—Kontsevich tau functions. The isomonodromic interpretation of the Kontsevich matrix
integral [BCa] was the first motivation for our investigations. We give a review of some of the results of
loc. cit. in Chap. 4.
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CHAPTER 1

Tau differential

In this first chapter we introduce a formal notion of tau function, as the (logarithmic) potential of a

closed differential. The latter is termed tau differential, and can be considered whenever a certain type of

compatible deformations system arises; we review the important cases of isospectral and isomonodromic

deformations and of Gelfand—Dickey hierarchies. The relation with Hirota bilinear equations is illustrated,

and logarithmic derivatives of arbitrary order (in a subset of times) of the tau function are computed.

More analytic aspects and more examples of the notion of tau function are explored in the next chapter.
The material of this chapter is mainly extracted from [BBT; BDYa; Db; JMU]J.

1.1 Tau differential and tau function

Let us start with a notation that will be employed everywhere in this work.

Notation 1.1.1. z denotes a complex variable, and t = {t;} a (possibly infinite) vector of parameters.
We shall denote ' := 0, the derivative with respect to z, and we shall denote § the exterior derivative in
the parameters t (but not in z), i.e. 6f ==, %dti.

The ingredients to build a tau differential can be summarized as follows (see [Db, Chap.11] and [BBT,
Chap.3]). Fix integers N > 1 and m > 0.

—_
—

1. A diagonal N x N matrix valued function = = Z(z;t) (possibly multivalued in z) such that its z
derivative Z’' is rational in z with poles at some finite points z = 21, ..., 2 = z,, and at z = co only.
Concretely, we consider

2= Z =, (1.1)

v=1,...,m,00
where
ditg(h1, oo Aro) 08(2 = 2) + 2 ditg (bt oo b v) gy ¥ = Ly
k>1
=, = (1.2)
diag(Aoo 1, ---s Ao, ) lOg (%) + > diag(too k.1 ...,too,k,N)zk V= 00.
k>1

We agree that the set of parameters t comprises the points z1,...,2, and the t,o’s for v =
1,...,m,00, k > 1, and o = 1,..., N, and not the A, ,’s; i.e. we assume that the variation ¢ does
not involve the parameters A, o, 0A, o = 0.

2. A collection ', =T, (z;t) of formal matrix valued series in z for v = 1, ..., m, oc;
Lu(2i8) = Gu(t) + Oz = ) = Golt) (14 Ly TV (®) (2 = 2)) v =1,.0m
To(zit) =1+ 0" =1+, T () V=00

where G, (t) are invertible.



4 CHAPTER 1. TAU DIFFERENTIAL

The type of dependence of T',(t) on the times t is formal in this general discussion; however in the
following chapters we will also consider ', (t) as analytic functions of t.
We require that the following equation is satisfied;

or, = MI', —T,6=Z,. (1.4)
Here M is an N x N matrix valued differential in t reading

M(z58) = 3 xes Fu(f;t)5Eu(§;t)F;1(€;t)% (1.5)

where we introduce notations

Zoo 1= 00, Z = Z (1.6)
v v=1

yeeey M, 00

which will occur frequently in the following.

Examples where equations (1.4) appear naturally are considered below, see Sec. 1.4. Let us point out
that the residues in (1.5) extract the irregular parts of the series I',d=I'; !; we remind that if f(z) is a
formal series of the form f(2) =,z fi(2 — 2.)7 then

res f(g)% =Y filz—2) (1.7)

=2,
¢ 7<0

and if f(z) is a formal series of the form f(z) =3 ;5 f;77 then

res £(6) 75 =3 £+ (19)

= 320
Let us make a few comments on this setting.

1. The system (1.4) is compatible!. This follows from the zero-curvature condition M = M A M
(Prop. 1.1.2 below); indeed

S(MT, —T,6Z,) = (M) T, — M A ST, — 6T, A 65,
= MAML, — MAMD, + MATLSZ, — ML, ASZ, — [,6Z, ASZ, =0

as in the last step the terms cancel pairwise and we note 0=, A 0=, = 0 as =, is diagonal.

2. In (1.2) we have implicitly set to zero the constant term of =, as it would give rise to parameters
too,0,o that can be absorbed by a common conjugation of the I',’s. Indeed, replacing the definition
of Zoo in (1.2) by Y diag(tk.co.1s - th.oo.n) 2" (note the range of summation including k = 0), we

k>0
have new flows

0
atoo,O,oz

T (z;t) =M ( ) Tu(z;t) —Ty(2;t)Eqa = [Eaa, I'v] (1.9)

atoo,O,oz

(where we use M ( ) = Eqnqa) which are just global conjugations.

0
8too,0,o¢

3. The ratio
ST, Iyt =M -T,6=,T,! (1.10)

is regular at z = z, for v = 1,...,m and vanishes at z = oo for v = co; compare with (1.5).

4. There is a gauge freedom in (1.4) consisting of transformations multiplying each I', on the right
by a diagonal matrix series in z constant in t (with constant term 1 when v = o).

5. One can introduce formal germs of matrix valued wave function ¥, = I',e=: equation (1.4) is
then equivalent to 0¥ = MU,

Proposition 1.1.2. The zero-curvature condition M = M A M holds true for the matriz valued
differential (1.5).

1By compatible we always mean integrable in the sense of Frobenius.



1.1. TAU DIFFERENTIAL AND TAU FUNCTION 5
It will be convenient hereafter to use the graded commutator
[A,B] == AAB— (-1)*BA A (1.11)
for matrix valued differential forms A, B of degrees a, b respectively.

Proof. First off we compute

SM(z:) = 3 res [0 (& 6L, (€:1). T (€ )02, (& tﬁf(é;t)]j—ff
= 3 s M. (6 D56 0TS (66 (1.12)

where we use [[',6=2,I',1,T,6=,T, 1] = 0. Now, since 6T, T, is regular at z1, ..., z,,, and vanishing at co
we have, for all v =1, ..., m, 00,

0= ges TGO, 60,06 O, 60) %
= 2o M) ~ L (660, (6 08, 66). MG - LGOI (6 Or, (6 0) -2
which implies
res [M(&;t) M(g't)}i =2 res [M(&t), T, (& )02 (§~t)F’1(§-t)}£. (1.13)
&_:ZV 9 b b z _ 5 E:zu b 9 v ) v b 1z b z _ 5

Finally, summing over v = 1,...,m, 0o the left-hand side of the last equation gives, using the fact that
the sum of residues of a globally defined meromorphic differential on the Riemann sphere vanishes,

3 res (M), M(z: )] -2 = — res[M(E:t), M(z: )] >

£=2, z—¢ E=z z2—=¢

= [M(z;t), M(z;t)] = 2M(2;£) A M(2;t)

v

and the right hand side equals 26 M (z;t) by virtue of (1.12), and the proof is complete. |

Definition 1.1.3. The tau differential Q is the differential in the space of parameters {t} defined by

Q:=— Z res tr (L' (2;t)0, (23 )02, (2; 1)) dz. (1.14)

Theorem 1.1.4. If the T',’s satisfy (1.4), the tau differential is 0-closed;

6T, = ML, — [,6Z, = 6Q = 0. (1.15)

Proof. We compute §Q2 using (1.4) and its differentiated form 6T, = M'T", + MI"), — T 62, — T',6=),

80 =—Y " res tr (-I,' 0T, I''T}, AGZ, + T, 16T, AGZ,) dz
== res tr (-I'MT), AOE, + 65,1, 'T), AOE, + T,' M'T, A 65,
+I, ' MT, A 62, — T, ', 62, A 6Z, — 65], A0S, dz

= fz res tr (M’ AT, 0E,I)") dz (1.16)
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where we have used the cyclic property of the trace together with 62, A 0=, = 0 and that 6=/, A 45, is
residueless. Hence

N =— Z res tr (M’ A (M —60,T,1)) dz

=— Z res tr (M’ A M) +Z res tr (M’ AST,T;, ") dz. (1.17)

=0
In the last expression the first sum vanishes as it is the sum of residues of a (globally defined) meromorphic

differential on the Riemann sphere. For the remaining term the crucial point is the following identity

res tr (M — 0T, I, A(M = 60,T,1)) dz = res tr ([L62,T,") A ([L62,T,"))dz=0 (1.18)

2=z, 2=z,

where we have used the cyclic property of the trace, the identity 62, A0Z, = 0 and the fact that §=/, A6Z,
is residueless. Finally, summing over v = 1, ..., m, 00,

0=> res tr (M—=6L,I,") A(M=0L,T,"))de=-2)" res tr (M AST,I,7)

where we have used again that the sum of residues of the rational differential tr (M’ A M) dz vanishes,
that 6T, T, ! is regular at 21, ..., z,, and vanishes at oo, and the following consequence of integration by
parts

res tr ((6T,T,") AM)dz= res tr (M' A6, I, dz. (1.19)

zZ=2z, Z=ZzZv
The proof is complete. |
We close this section with the central definition.

Definition 1.1.5. The tau function 7(t) is introduced according to
dlogT =2 (1.20)

where § is the tau differential evaluated along (1.4).

It is important to stress that the tau function just defined is not really a function; indeed (1.20) only
defines 7(t) locally as a function of the parameters ¢; 7(t) is in general a multivalued function of the
parameters t.

The tau function of Def. 1.1.5 is of course introduced up to multiplicative constants. Moreover, recall
the gauge freedom of (1.4) mentioned above which consists in multiplying I, on the right by a diagonal

matrix A, of unit determinant and constant in t; writing I', = I' A, we note that the tau differential
transforms as

Q== res tr (T7'TL05, ) de = = 3 res tr ([T, + A7 A,)05,) d
v 1%
Q- res tr (A;'AL0E,) d.
Notice however that the difference 2 — € is a constant and hence this amounts to a transformation

7(t) = O r(t) (1.21)

for some f(t) linear in the times; in particular, logarithmic derivatives of order > 2 are unaffected by
this gauge freedom (compare with Thm. 1.2.1 and Thm. 1.2.2).

1.2 Higher order derivatives of the tau function

Remarkably, as it was first discovered in [BDYa], arbitrary logarithmic derivatives of the tau function
with respect to the times t, 1 o can be expressed in terms of our main ingredients {I',,E,} and not of
their t-derivatives.
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Introduce matrices
Ryo(z;t) :=T,(2;t)Eaal’, t (2 t) (1.22)

foralla=1,...,N and v =1,...,m, co.

Theorem 1.2.1. Second logarithmic derivatives of the tau function with respect to the ¢, ’s can be
expressed as

82 IOg T tr (Rul,al (€la t)RVQ,Otz (52, t)) - 6011,(12 d€1d§2

= res res

1.23
atv17k1,a1atu2,k2,a2 §1=20; §2=20, (51 - §2)2 (51 - Zvl)kl (52 - Zuz)k2 ( )

where we agree that 5_%” =& when v = 0.

Let us comment on the fact that the order in which the residues are carried over in (1.23) is immaterial.
This is in principle not clear when v; = v5 = v; however note that the function

tr (Ru,al (51? t)Ru,az (£2§ t)) - 5041,&2 (1'24)

vanishes when & = &, because tr (Ry o, (§1;8) Ry, (€151)) = tr (Eayay Easas) = Oay,ae- Now (1.24) is
symmteric in £, &, therefore it must vanish to second order when £; = &5; hence the function whose
residues have to be extracted at & = & = z,, in (1.23) is regular along & = & and so the residues may
be switched.

Proof. Let us denote 9;

P = 8tu7 ki o

for i = 1, 2. Repeating essentially the computation of 6 in (1.16),
we have

3182 IOg’T = 781 res tr (le(gg;t)FLQ(gg;t)EaQaQ)]w) dfg

2=2vy (52 — Zu,
= — Tres ftr (-r—lalr r'r, __FPosas__ +T,, (&5 )T, (§2~t)E"2“2> dé
52:%2 12 V2= v (52 _ ZVQ)kQ 12 ’ va ? (52 _ ZDQ)
Ty, (€25 t)Eaza, Iy (625 1) ( Eoya ) Eaza
— . t M/ 7t 8 2 2002+ py 1001 20 d
Zrzezb“z ! < (52 )( 1) (62 - ZVQ)kz (52 ZVI) (52 - ZVQ) §2
Ru « (5271—') Ea « Ea «@ >
=~ res tr [ M/(&;t)(0)) T2 +k dés.
521‘2622 ' < (52 )( 1) (52 - ZVz)kz ! (52 - ZVl)kH_l(g? - sz)kz 52

Directly from the definition (1.5) we find

Eq,a _ d&,
M (£3;4)(01) = — res T, (&15t)——22 T (g,
(62 )( 1) =m0, 1 (61 ) (51 — Zl,l)kl 1 (51 ) (61 52)
1 d&
=— res R, o it
§1=21, e (fl )(51 - Zl/l)kl (§1 - 62)2
and then using the identity
EOt]CKlEOtQCKQ ) 1 1
r |ki—————————— ) = =0, res 1.25
< ' (52 - ZVl)lirl pe §1=2u (51 52)2 (51 - ZVl)kl ( )
we obtain the claimed formula. |

It turns out that we can inductively compute higher order logarithmic derivatives of the tau function
in the times tj; . To this end it is convenient to introduce the functions

r2§a1 (e
_ 1 _ Or20a, 1.26
r 2 G —&@) Gy &) &) (G = &) (1.26)

TeS

' _,) 1 tr (Ru,r(l),ozyw(l) (571'(1); t) e RV.,r(T>,al,7r<T) (57\'(7’); t)) )

where we denote 7 = (vq,...,v,.),d = (a1, ...,ar),g: &1y &r)-
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Note that due to the cyclic property of the trace and of the denominator in each summand, the sum
in the right side of (1.26) involves only (r — 1)! terms. More precisely, we can alternatively sum over the
permutations that fix r, i.e.

S, <_' g g) Z " (R”’Wl)va"w(l) (Er(1)i t) -~ RVW(T‘*l)’auﬂ'(T‘fl) (Err—1)i t) Ry, (615 t)) 0r,200; 0
o (7,a€) = - - ~
oo, ra) —&r@)  Erera1) — &) (& — Er1)) (&1 — &2)?
(1.27)

E.g., for r = 2,3 we have
- tr (RV1,041 (51; t)RV2-,042 (52; t)) — 5011,042

Sy(7,@;€) = GRTAE
S = o =) tr (RVl,Oél (él;t)RVQ,Oéz (527t)R5§’ (5371—’) - RVZ,QQ (§2§t)Rul,o¢1 (§1§t)Rl/3,o¢3 (53713))
3(V7 a; ) -

(61— &) (& — &3)(§2 — &3)

Theorem 1.2.2. Logarithmic derivatives of the tau function with respect to the t,  o’s can be expressed
forr>2 as

ol = d -d
2l = res --- res S.(V,a;¢) il & (1.28)
8tl’17k170¢1 U 8tl’7‘7k57‘70‘r &1=21 &1=21 (§1 - ZVI) ! (ET - ZVT) "
where, as above, we agree that =& forv=

The order in which the residues are carried out in the above formula is immaterial. For » = 2 it was
explained right after the statement of Thm. 1.2.1. For r > 3 we can reason as follows. The only case to
consider is when some of the v;’s coincide, hence let us assume that v,._; = v, = v and we want to show
that (1.26) is regular for &,._; = £,.. We introduce the convenient notation

Ri = Rui,ai(gi;t) (129)

—

and, looking at (1.27), we collect only summands in S, (7, @;§) which are singular for &._1 = &,

1 Z tr (Rﬂ'(l) e Rﬂ(r—2)Rr—1Rr)
fr - 57‘71 €G3 (fw(l) - 57r(2)) T (5#(7"72) - grfl)(gr - gﬂ"(l))
_ tr (RT—lRTI'(l) co RTF(T'—Q)RT)
(frfl - gﬂ(l)) e (571'(7"72) - 67“)

but this is manifestly regular for &._1 = &, as due to the cyclic property of the trace the two terms
cancel exactly when &,._1 = &,.. Therefore the residues in (1.28) may be arbitrarily interchanged.

Proof. Let us use the short notation (1.29) and denote 0; := 5; i -. Preliminarily we note that

[Rr+17 Rj] d£T+1
Ori1R; = M (0r31),Rj] = res 1.30
+14Y5 [ ( +1) J] Erprm =2 f] §T+1 (€T+1 _ ZVT+1)kT+1 ( )

and so

Ory1tr (Re(1y -+ Ru(r—1)Rr)
Opy1Sy =
i Z ry = &n(2)) - (&r — 577(1))

TeES,r_1
R, Riy1,Ry(iy] -+ R» dg,
- s Y Z () [Brsrs Brip] - Rr) ST
Erp1=2u,. | 1reG, 4 j=1 €7r(1 571'(2 ) (§T - fw(l))(&r(]) - fr-i—l) (fr-‘rl - Zw+1) T
where we set 7(r) := r for notational convenience in the j-summation. Expanding the commutator

[Rry1, Re(jy] = Rry1Rr(j) — Ry(jyRry1 We note that each expression tr (R,r(l) o Rpp1 Ry -+ Rr) ap-
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pears twice, with different denominators. Collecting these pairs of terms gives

1y [Rri1, Rﬂ(j)] . R'r‘)
TFE; 1 ]Zl €7"(1) - 6#(2)) (57 - §W(1))(§W(j) — §r+1)

- o (Req) - Bria Reg) -~ By) ( o 1 )
Z Z §7r &) & —&ray) \&rg) — &1 Srg—1) — &t

_ tr (Re) Rrg1Ruy) - Rr)
B Z Z 577(1) —&r@2)  Eri—1) = &ri1) G — &x(i)) - (& — Erq1))

TES,—1 J=1
_ Z Z '(1) Rw'(r)Rr+1)
it §7r/(1 &) (G — &)

where the last step is just a re-parametrization of the sum, using the cyclicity of the trace; explicitly we
are considering the bijection

S, x{l,.nr} =6, (m,j) > (1.31)
where 7’ € &, is defined by
T(l+j—1) 1<é<r—j
w'(0) =< r b=r—j+1 (1.32)

7(l—r+j—1) r—j+2<4<r
We can summarize the computation above as

LR " . - d&ri1
Or1Sr(30;8) = tes S 1 (U, vrg13 A, g1 6,6 41) SRy
Ert1=20, 4 (€T+1 - ZV7-+1) Tt

(1.33)

and now the proof is straightforward by induction, the induction base r = 2 being proven in Thm. 1.2.1.
]

1.3 Sato formula

There are classical formule computing the entries of I'), in terms of the tau function. For example for
diagonal entries we have

r({tone — )

7 ({tvk,0})

= (FU(Z;t))Bﬁ (1.34)

for all § = 1,..., N. Formule of this type computing all entries of I, in terms of the tau function
exist, however we will deduce them as special (“elementary”) cases of Schlesinger transformations in
the next chapter, see Sec. 2.4, in particular (2.48). For the same reason we also omit the proof at this
formal level, which can be found e.g. in [BBT]. Let us mention that these formulee are relevant, among
other reasons, as one can use them to establish the connection with the KP hierarchy and in general
with hierarchies of Hirota bilinear equations, see e.g. [BBT, Sec. 8.9]. (Compare also with App. A, in
particular Cor. A.2.2.)

1.4 Examples

We consider here some examples where the system of equations (1.4) arises naturally, leading to the
introduction of a tau function.
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1.4.1 Isospectral deformations
Lax equations. The Laz equation is

OiL(z:1) = [M(z:t), L(z: 1) (1.35)
for N x N matrices L, M which are rational in z. It defines an isospectral deformation in the sense that
the spectrum of L is an integral of motion, as we have

oitr LF = ktr [M, L1 = 0. (1.36)

In particular, the spectral curve det(L(z) — w) = 0 is a constant of motion of (1.35).
Suppose that the poles of L and those of M are at z = 21, ..., z,, 00 only, hence we decompose

L LI — —1,..
L= 1L, L, = res ZOME )= A ol Yo e (1.37)
P =2 2= |LP+LPz+ -+ L2 2> v=o0
M(£)dg
M=S"M,, M, = res . 1.38
2 s (1.38)

Assuming that the leading orders Lj are semisimple (we can lift this assumption, see Rem. 1.4.2)
we can find analytic germs?

G,(t)+0(z— 2z, =1,..,
Iy(2) = \ )+, =) v " (1.39)
1+0(:z71) v =00
which are analytically invertible and such that
L,=T,AT;! (1.40)

where A, is a meromorphic germ of diagonal matrix at z,, with a pole of order ¢,. Note that to have
I'ew = 1+ O(z7') we must preliminarily perform a constant global gauge transformation on L, M
diagonalizing L7° .

The local gauge transformation M ~ ', B,I';t — 9,I",T',;! maps (1.35) into

0tA, = [By, Ay (1.41)
hence B, must be diagonal (otherwise [A4,, B,| would have nonzero off-diagonal entries), hence
0A, =0 (1.42)
as expected, and M =" M, in (1.38) is given by

M, (z) = res T(€)B, () (¢)—2

e pir: (1.43)

as the term 9,I',I',! is regular at z, and vanishes at oo due to (1.39).

Elementary isospectral deformations. Summarizing, the Lax equation (1.35), for rational matrices

L, M with poles at z = 21, ..., 2;,, 00, implies that M is diagonalized by the same local gauge transfor-

mations as L, assuming that the leading orders Ly are semisimple. M is then equal to the sum of the

irregular parts at the poles z1, ..., 2;,, 00 (including the constant at co), computed as in (1.43). This

suggests to consider elementary isospectral deformations, where M has the simplest possible form

Eaa o1 dé

M= resT',((t)————T b)) —— 1.44
{ZZV V(é‘a )(g_zy)k 14 (5 )Z—g ( )

for some choice of v =1, ..., m, 0o. In the notations introduced above, such elementary isospectral defor-

mations can be written all together as

0L =M, L], 021 = ... =02, =0 (1.45)

where M is given in (1.5), and we set A, o = 0, see (1.2). Note that the poles z, are not deformation
parameters (this will be the case for isomonodromic deformations, see below), and that the zero-curvature
condition M = M A M established in Prop. 1.1.2 also ensures compatibility of the system (1.45); for,
we have

SIM, L] = [bM, L] — [M,5L] = [fM, L] — [M,[M, L] = [fM — M AM,L] = 0. (1.46)

2In this setting the I',’s are not just formal series in z, they are germs of analytic functions, which extend up to the
nearest branch point of the spectral curve det(L(z) — w) = 0.
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The isospectral tau function. Let us prove that the Lax equation (1.45) can be written in terms of
I, as (1.4). To this end let us note that

[M,L] = 6L = [oT, T}, L] (1.47)

and so
[M =60, T, L] =0 (1.48)

which in turn implies, as we are assuming semisimplicity of L near z,, that
M-—ér,1T,; =1,D,T,! (1.49)

for some diagonal differentials D,. More precisely, D, is a formal Laurent series in z — 2z, forv =1,...,m
and in 27! for v = oo, whose irregular part coincides with 6=, see (1.49) and (1.5);
dg

res D,(&t)—— = 0=2,(z;t). 1.50

Jes (€ )z—§ (z:t) (1.50)
The zero curvature condition 6 M = M A M implies D, = D, A D, = 0, hence D, = §&, for some &,
diagonal analytic series in z (of unit determinant). Note that the I',’s are defined only by the requirement
that T',;1 L, T, is diagonal and so they are defined only up to right multiplication by a diagonal matrix.
This gauge freedom I', — T', A, implies the following gauge freedom on D,

D, — D, + A, '0A, (1.51)
and therefore also the following gauge freedom on &,
E,— &, +1logh,. (1.52)

Then it is clear that we can choose A, so to kill the regular part of £, and due to (1.50) and (1.49) we
conclude that in this gauge the I',’s must satisfy (1.4). Therefore, under this gauge fixing of the I',’s,
we can introduce a tau function by Thm. 1.1.4.

Hamiltonian aspects. The Lax equation (1.35) admits an hamiltonian representation. For simplicity
we consider the case where the only pole is at z = oo, but this discussion generalizes straightforwardly to
the multipole case. Introduce the Lie algebra g := gly ® 2~ 'C[z71]. It is associated with the loop group,
formed by the elements T'(2) = 1+ )", T'j277 with the usual multiplication. The space g* := gl @ C[2]
can be injected into the linear dual of g via the nondegenerate pairing

(L, X) := res tr (L(2)X(2))dz, L=L(z)eg" X =X(z) €gy. (1.53)

Z=00

Therefore the Lax matrix L(z) is an element of g*. We claim that the Lax equation (1.35) is hamiltonian
with respect to the Lie—Poisson bracket on g*. Let us remind that the Lie—Poisson bracket on g* is
defined by

{f,9}(L) == L([df,dg)) (1.54)

for all f, g smooth functions on g*; indeed df,dg are linear functionals on g* hence they belong to g>.
We claim that the hamiltonian
H = tes tr(AEqq2")dz (1.55)

generates the Lax equation (1.35), with respect to the Lie—Poisson bracket. To prove this claim we first
compute the differential of H as follows; given the variation L +— L 4+ dL we have

A A+dA, dA=T"'LT — [[1dT, 4] (1.56)
and so

Hw H+dH,  dH = res tr(Eqaz"dA)dz = res tr (TEaol'"'dL) 2Fdz = (M, L) (1.57)

3There are some inconsequential subtleties and possibly misleading notations here, due to infinite-dimensionality. g* is
not properly the linear dual of g, it just injects in it. However, g is the linear dual of g*, hence the Lie—Poisson bracket is
well defined.
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therefore dH = M. Writing each entry of L as L, = Zkzo Lﬁbzk, the coordinates Lﬁb on g* are identified
with —Epa2 7%~ € g, as for the pairing (1.53) we have

st = <L7 _Ebaz_k_1>' (158)
Therefore the Hamilton equation
O Lk, ={H, L} = (L,[dH, —Epaz~ ")) = — res tr (L[M,Epa)) 2" 'dz

= — res tr ([M, L|Ey,) z~*1dz
zZ=00
is equivalent to the Lax equation (1.35) 0;L = [M, L], and the claim is proved.
It is well known that the Lie—Poisson bracket is degenerate, and that its symplectic leaves are the
coadjoint orbits

. - dg

03 = { ges T AT O | (1.59)
=00 z — 5

where A is in g* and T in the loop group. This agrees with the fact that the spectrum of L is invariant

under the Lax flow. The restriction of the Lie-Poisson bracket to a coadjoint orbit is nondegenerate so

it comes associated with a symplectic form w, which reads in general

w(ady n,myn) = n([z,y]) (1.60)

(denoting ad® the infinitesimal coadjoint action) and it is called Kirillov—Konstant symplectic form.
Parametrizing the coadjoint O% by the loop group element I' we can write the symplectic form at the

point L = Jes F(f)A(f)F_l(defg5 as

w= (d[T"' AdIT™", L) = res tr (AT""dI' AT"'dI') dz. (1.61)

The regular (i.e. Ly semisimple) coadjoint orbit O3 through L = Lo + L1z + --- + Lyz* can be
parametrized by the germ I' = 1 + 127! + -+ + T'yz~¢ and up to diagonal germs of the same order,
hence the dimension of the orbit is N(IN — 1)¢ (in fact it is even).

One can further perform a symplectic reduction with respect to the conjugation of L by a constant
(in z) diagonal matrix, which is a symmetry of every Lax equation (1.35). Letting 0 the Lie algebra of
traceless diagonal matrices, associated with the group of unit-determinant diagonal N x N matrices, the
moment map p :€ OF — 0" of this hamiltonian action is given as

p; = res tr(AD)dz (1.62)

where L € O3 is L(z) = Jes T(£)A(E)D1(¢) jfé, with A diagonal; this can be shown by the same

computations above in the proof of the hamiltonian representation of the Lax equation. The symplectic
quotient of the coadjoint orbit with respect to this moment map is the relevant phase space of isospectral
deformations; the dimension of this phase space is computed as N(N —1){—2(N —1) = (N —1)(N{—-2).
We will see an example below.

Isospectral tau functions and theta functions. It can be shown that the spectral curve det(L(z) —
w) = 0 (compactified as usual for algebraic plane curves) is a Riemann surface of genus % (N —1)(N¢—2),
half the dimension of the phase space introduced above. We remind that this Riemann surface is invariant
under the Lax flow (1.35). Moreover, it can be shown that the solution L, as well as the associated
isospectral tau function, can be expressed in terms of theta functions on the spectral curve. For the
general situation we refer to the literature [BBT, Chap. 5], and we content ourselves with one simple
example.

Example 1.4.1. Fiz N =2 and consider
L(2) = Lo + L1z + Ly2? (1.63)

with Lo semisimple. Without loss of generality we can assume L(z) is traceless (tr L is constant along
the Lax flow, and adding a scalar constant in t to the Lax matrixz L does mot affect the Lax equation
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0L = [M, L]); hence without loss of generality we set Ly = %03. As explained above, the coadjoint orbit
through L has dimension 4; using the following parametrization with coordinates x1,y1, T2, Yo

_ 0 x| 1 0 zof 2,
I‘(z)—l—k[y1 O]Z +[y2 O]Z + (1.64)
we have
-1 2 -1 93
L(z) =T(2)A(2)I' " (2), A(z) = (P 4+az+ag+a_1z " +--) > (1.65)
Up to the rescaling z — z — %~ and renaming the a;’s, we can assume a; = 0. Hence
22 | a _ _
L(z)= |2 + 5 . Zﬂvi T2 (1.66)
zy1 + Yo -5 -3 —nyn
Note that the condition that L = TAT ™! is a polynomial uniquely determines a_1,a_s, ..., as well as the
higher order terms in (1.64). E.g.
a_1 = —2(x1y2 + x2u1), a_g = 2(xTy} — Tay2 + aor1y1). (1.67)
Moreover, we can compute the Kirillov-Konstant symplectic form (1.61) from
1 | 0 dry| o1, |—odyn dzs —2
Idl = |:dy1 0 * + dyg —y1d$1 * + ’
I ATHT = 27 205day A dyy
+273 (o3 (dz1 Adys + dao Adyr) + (104 — yro—)dxy Adyp) + -+
as
w= res tr (A(z)I'dI' AT7'dT) = dy; A dag + dyz A day.
The only nonzero Poisson brackets are
{y1, 22} = {y2, 21} = 1. (1.68)
As an example we shall consider the Laz flow
; 0310 §4€ r —961}
L=[M,L], M = res I'(§)—=T =2 > 1.69
1.1} s TGO = |2 T (1.69)
denoting f := Oy f throughout this example. This flow is written down explicitly as
i1 =2, 1= —y2, do=—aow1— 223y, G =aoy + 2137 (1.70)

As predicted by the general theory, (1.70) is hamiltonian with respect to the bracket (1.68), with hamil-
tonian

H = res tr (A(z)@z) de =222 = —23Y% 4 Toyo — apT1Y1 - (1.71)
zZ=00 2 2

To solve these equations we perform the aforementioned symplectic reduction of (1.70) with respect to
the hamiltonian action of constant diagonal conjugation. This hamiltonian action is generated by the

Hamiltonian flow

o =x; ={F,z} (i=1,2) o3 a_y
. _ , F := res tr (A(z)—) dz = ——= = z1y2 + x211. (1.72)
{yi =-yi={Fy} (i=12) #=o0 2 2

The quotient under the conjugation action can be parametrized (away from x1 = 0) with reduced variables

~ ~ ~ X9
Y1 = 211, Y2 = T1Y2, T2 = —

z (1.73)

and the Poisson bracket of these reduced variables is

{v1, 72} =1, {Z2, 92} = 2o, {U1,92} = -1 (1.74)
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F, H descend to well defined functions ﬁ7 H on the quotient

F =y + 4129, H = % + %o — aol1.- (1.75)

F is a Casimir of the reduced Poisson bracket (1.74); the symplectic leaf F = f is parametrized by
Darboux coordinates y1, T2 and the flow (1.70) is given by the reduced Hamiltonian

Hy = —% — agy + T2 — T35 (1.76)
obtained by the substitution ys = f — y1Z2. Performing the canonical change of variables
2
~ ap q ~
n=r-5 -5, T=-¢ {pa=1 (1.77)

the reduced Hamiltonian and the reduced equations of motion (1.70) read

4 2 —
~ q ag a q =—2p
Hy=—p'+° + 50— fa+ T X (1.78)
P=—% =0 —aq+f

Using the first integral fNIf = FE, we obtain q up to quadratures in elliptic functions as

‘I(t) dq
b=to= / : (1.79)
ato) V4" +2a0q®> —4fq+ a3 —4E

Then p = —g, variables To, Y1, Yo are found by direct substitution, and original variables x1,y1, T2,y are

recovered by (1.73), where 1 is found from (1.70) as
jﬁl ] ~
dt 0871 X I 2 ( )

Finally, using(1.66) we compute the spectral curve det(L(z) —w) =0

4 2

2 z ap o a_1 a_o ag
_ % 1.81
w 1 + 5 % + 3 z 4+ 5 + 1 (1.81)

It coincides with the elliptic curve }NIf =FE by w + p,z < q (recall that f = —% and E = —‘12;2) The
coincidence with the elliptic curve in the solution (1.79) of the isospectral deformation is a manifestation
of the general fact that isospectral deformation equations can be solved in terms of theta functions on
the spectral curve; more precisely, the flow linearizes on the Jacobian of the spectral curve and this is

probably one of the most crucial points in the whole theory of integrable systems.

Remark 1.4.2. It is not possible to find T', if Ly is not semisimple; geometrically this happens when
z = z, 18 a branch point of the spectral curve det(L(z) — w) = 0, considered as a ramified cover of
the z-plane. One can nevertheless generalize the previous discussion; the completely general case is quite
involved, so we shall focus here on an example which will be of particular interest in the following of this
thesis. Namely, we restrict to the case in which L(z) has only one pole at z = 0 (and vanishes at 0o)
with a mazximally non semisimple leading order, i.e.

4
L(z)=> Lz (1.82)
j=1

where Ly is a single N x N Jordan block with eigenvalue O

(1.83)

and we work under the genericness assumption that (Ly—1)n,1 (the Lidskii pseudovalue [Lb]) is nonzero;
up to rescaling z we assume (Ly—1)n1 =1, i.e. we assume

Ly 1= . (1.84)
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We perform the shear transformation

L(z) =272 5L(2)25, §:= %diag((), 1,..,N—1) (1.85)
and now
0 1 0
L(z)=Tz"1+0(z¥)), H=|: = " (1.86)
o o0 --- 1
10 - 0

has a semisimple leading order I1. Therefore, up to considering the variable z'/N in place of z the theory
of isospectral deformations proceeds similarly to the generic case treated above.

1.4.2 Isomonodromic deformations

Preliminaries on linear matrix ODEs with rational coefficients. We consider a linear matrix
ODE with rational coefficients
U =LV (1.87)

where L(z) is, as before, a rational matrix with poles only at z = z1, ..., 2,,, 00, see (1.37). Note that now
it is best to regard L(z) as a differential L(z)dz, therefore some care must be paid about the point at
00, considering that dz has a double pole at z = co.

As before, up to assuming semisimplicity of Ly° (however one can proceed similarly as in Rem. 1.4.2
to lift this assumption) we can perform a constant gauge transformation diagonalizing Ly

We recall the following standard facts about (1.87); for their proof and more details we refer to the
literature, e.g. [JMU; HS; FIKN].

1. Let 2o be any regular point of the differential L(z)dz and ¥ a constant N x N invertible matrix.
There exists a unique germ at zy of fundamental matrix solution ¥(z) to (1.87) such that ¥(zy) =
Uq. As the ODE is linear, this germ W(z) can be analytically continued to the whole universal cover
of C\ {21, ..., zm}. In particular, analytic continuation around closed loops yields the monodromy
representation;

M : 1 (C\ {21,y 2m}; 20) — GLy : [y] = U510 (20 + [1]) = M (1.88)

where U(zo+[7]) denotes the analytic continuation of ¥(z) along the homotopy class [v] of the loop
7 based at 29. The monodromy representation M is a group anti-homomorphism, i.e. M, j,] =
M, M,,); moreover M transforms by conjugation if we change the initial value o and/or the
base-point ag. We call M, := M|, ; for a simple loop -, encircling 2, and no other pole, in counter-
clockwise direction; as we are on the Riemann sphere we have the relation in the fundamental
group
Y1 Ym = Yoo (1.89)
implying the constraint
My, - My = M. (1.90)

2. We can formally solve (1.87) near any singularity z1, ..., 2, 00 by the ansatz
¥, =T, (1.91)

where I')(2) as in (1.3) for v = 1,...,m,00 and =Z,(z) as in (1.2); here the matrices I, are con-
stant invertible matrices diagonalizing the leading orders Ly . This formal solution exists and is
unique (once the G,’s have been fixed) under the assumption of semisimplicity of the L ’s and of
nonresonance:

when L(z) has a simple pole at z = z,, Ly = LY is semisimple with eigenvalues distinct modulo
integers.

This means that the numbers A, o and ¢, j  in (1.2) are completely determined from the equation

' = LV, as well as the terms T'Y in (1.3) (the nonresonance condition, and in general the
semisimplicity of the leading order, ensure that the Fy Vs are computed by a well defined recursion).
If L(z)dz has a pole of order r, +1 (r, > 0 “Poincaré rank”) at z, (as a differential) then ¢, o # 0

only for k < r,.
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3. When L(z)dz has a simple pole at z, (i.e. r, = 0, “regular singularity”) the formal solution (1.91)
actually converges, and it defines therefore a genuine (possibly multivalued) analytic solution to
(1.87) in a neighborhood of z,. Due to linearity such solutions extend to the whole universal cover
of C\ {z1, ..., 2m}. In particular, such solutions can be compared with any chosen solution ¥(z),
i.e. (implying analytic continuation)

U(z) =T,(2)e= 0, (1.92)

for some C,, € GLy, called connection matrices. It is convenient to compare everything with the
solution at z = oo, i.e. to require Co, = 1. Moreover, due to the form of =, see (1.2), we find the
following expression for the monodromy M, around z,;

MV _ 01716271—1diag(/\"'l""’)\”’N)CV. (193)

Correspondingly, the numbers A, 1, ..., A,y are called formal monodromy exponents in this context;
it can be proved that they coincide with the eigenvalues of the residue of L at the simple pole z = z,,.

4. When L(z)dz has a pole of order greater than 1 (i.e. r, > 0, “irregular singularity”) the formal
solution (1.91) does not converge. It represents however asymptotic expansion of genuinely analytic
solutions in suitable sectors. To be precise on this point, let us introduce the notation R :=
C\ {z1,...,2} and R for the universal cover of R. Fix 2r, + 1 open sectors ., 1, ..., % 2,41 In R
with vertex at z, and opening angle slightly more than TL such that their union projected down
to R is a punctured neighborhood of z,, and such that every pair of non-adjacent sectors do not
intersect in R; let us also assume that ., ; and .%, 2, 41 project down to the same sector in R.
Then, for every ¢ = 1,...,2r, + 1 there exists an analytic solution ¥, , of ¥ = LW¥ such that
Vyr~W¥, a8 2 — 2z in R within S0, where ¥, = ', e= is the formal solution (1.91). We can
compare these analytic solutions in adjacent sectors as

\IJV,£+1 = \I/V,ZSV,Zv l= 1,...,2r, (194)

for some S, € GLy (¢ =1,...,2r,), called Stokes’ matrices.

Let us now explain the triangularity of Stokes’ matrices. Multiplication on the right by S, ¢ takes a
linear combination of the columns of ¥, ,, and since in the overlap of adjacent sectors both ¥, ¢,
and ¥, , have the same asymptotic expansion ¥,, it follows that S, , can only add to a column
o of W, ¢ some scalar multiple of another column 3 of ¥, , which is subleading in the overlap of
the sectors, i.e. a, 3 must be such that Re (Zti’;”/’)’iu < Re (;f;”u')‘iu for all z € .7,y NS, 0+1. More
explicitly, if we define a total order (depending on v, ¢) on the set {1, ..., N} by saying a < 5 if and
only if Re 48 < Re ‘2w for all 2 € ., N.%, 441, then

(z=z)™ (z=z)™v

1 a=p
Sy,e—{o a< . (1.95)

We can define connection matrices also in this case, by

leoo,l = \ij,lcu- (196)

Finally, we note that traversing all these sectors from S, 1 to 7, 2, 41 in R we come back to the
same sector in R and so we infer the following refined expression for the monodromy matrices M,,,
generalizing (1.93);

M, = C, te?m dimsOvn - Aen) G0 L ST, (1.97)

Monodromy map, essential monodromy map, and isomonodromic deformations. The cor-

rect point of view on monodromy is then to look at the refined (usually called generalized) monodromy

data suggested by (1.97), consisting of formal exponents A, o, connection matrices C,,, and Stokes’ ma-

trices S, ¢. We say correct in the sense that if two ODEs share the same generalized monodromy data
then they coincide. We now go for a more precise formulations of this statement.

Let . = {L(z)} be the set of all rational matrices L(z) such that the differential L(z)dz has poles

at m finite points and oo only, of orders r, + 1 (r, > 0, v = 1,...,m,00), and such that the leading
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orders at these singularities are semisimple, and with eigenvalues distinct modulo integers if the pole is
simple (r, = 0). Then we have a well-defined monodromy map which maps L € £ to the collection of
generalized monodromy data (t, S, C, A) introduced above, where we denote

S = (Sl/,lv ceey Su,2r,,)1/:1,..‘,m,oo (198)
A= (Au,la cey AV,N)u:l,.uﬂn,oo (1100)

and as before
t= ({tu,k,a}uzl,..‘,mpo, k=1,...,r,, a=1,...,N, {ZV}V:L...,m) (1101)

where 21, ..., 2z, € C are the poles of L € Z. It can be proven that the monodromy map is injective,
namely if two L1, Ly € £ have the same generalized monodromy data then Ly = Ly. The proof of this
fact goes roughly as follows; let Ly, Lo have the same generalized monodromy data, then let ¥y, W5 be
the solutions of W, = L;¥; for i = 1,2 normalized at the same regular point zp € C, ¥;(z9) = ¥ for
some fixed ¥y € GLy (¥; are holomorphic in the universal cover of C\ {z1, ...,z }); consider the matrix
ratio g := WU, !, Tt easily follows from the definition of generalized monodromy data that g(z) actually
extends to an entire function on the Riemann sphere; for instance, g(z+[v,]) = U1 M, M 1¥5* = g(2) due
to the fact that ¥, ¥y have the same monodromy around z,, and so g(z) is meromorphic on the Riemann
sphere with poles at worst at the 2/, s, and similarly we can actually prove that the latter are removable
singularities of g. Finally, we conclude by Liouville theorem that g is a constant, g(z) = g(z9) = 1, i.e.
W, = Wy, Therefore also L; = \1/’1\111*1 = \11/2\1/2*1 = Lo and the claim is proved. For more details the
reader is referred to the literature, see e.g. [FIKN].

Define the essential mondromy data of L € % as the set (S, C, \), i.e. we are neglecting the position
of the poles of L and the parameters ¢, j . The goal of isomonodromic deformations is to describe the
fibers of the essential monodromy map, i.e. to describe how should L € £ depend on t in such a way
that the essential monodromy stays constant in t. In this case we say that L depends isomonodromically
on t. Note that, contrarily to the isospectral case (1.45), the finite poles z1, ..., z,, are now deformation
parameters.

This problem of describing isomonodromic deformations of L has a long history, as it dates back to
Riemann in the simplest cases, and was fully addressed and solved in complete generality in [JMU]. The
result is that L depends isomonodromically on t if and only if L satisfies the following compatible system
of nonlinear ODEs;

0L =M, L]+ M’ (1.102)

where M has been introduced in (1.5). The compatibility of (1.102) follows from the zero curvature
equation IM = M A M of Prop. 1.1.2; indeed

SIM, L) 4+ 6 M’ = [6M, L] — [M,5L) 4+ 6 M’ = [M, L] — [M,[M, L]] — [M, M'] + M’
=[oM — MAM,L]+ (M - M AM) =0. (1.103)

We now briefly sketch the proof of the fact that L depends isomonodromically on t if and only if (1.102)
is satisfied. First, assume that L depends isomonodromically on t; then for each analytic solution ¥, ,
defined above of ¥/ = LU, the ratio 6%, - \I/;}Z is independent of v,/ = 1,...,2r, + 1, because of
0C, = 0 = 65, In particular by Liouville theorem we must have é¥, , = MV, , where M coincides
with the sum of singular parts in (1.5). Then

SL=0(W, - W, )= (0W,,) W,y =W, - W, -0, ¥ § =M + ML— LM (1.104)
and (1.102) is proved. Conversely if (1.102) is satisfied then the system
U = LU
(1.105)
oV = MU

is compatible. Let ¥, , be the solutions of this system, in particular solution of ¥’ = LU, as specified
above. Then, by definition of Stokes’ matrices (1.94) we have

M=6U, 0105 =00,V +U,065,0-S,, ¥, = M+3,,58,,-5,,;%,; (1.106)

and so 65, ¢ = 0, that means all Stokes” matrices are constant. Similarly comparing solutions at z, and
at oo we have, by definition of connection matrices (1.96)

M=V U =0V, -V 1+ 0,160, -C,U, 1 =M+, 16C,-C 0] (1.107)



18 CHAPTER 1. TAU DIFFERENTIAL

and so 0C,, = 0, that means all connection matrices are constant as well. Finally A must also be constant,
as otherwise M would have logarithmic singularities at the z,’s, which is not the case by assumption.
For more detail we refer to [JMU].

Example 1.4.3. Let us consider the (“Fuchsian”) case where L(z)dz has just simple poles at points
Lj

215 ey Zm, and not at oo, t.e. L = Z] 1=z with Ly + -+ - + Ly, = 0. In such case the only parameters

are zi, ..., zm and we have
Ej = diag(/\jJ, ceey )‘j,N) log(z — Zj), j = 17 ey M (1108)

from (1.2). Moreover, in this case the monodromy exponents \; . coincide with the eigenvalues of Lj,
7 =1,...m, as it can be shown by plugging the ansatz ¥ = I‘jeEJ into the ODE W' = LW. Hence we can

compute .
M (3) — _ res F(g)dlag(A]J")\LN)F71(§) df — _ Lj (1109)

0z E=z; £—2z; z—¢ zZ—zj

from (1.5). The isomonodromic deformation system (1.102) reads as

1 L, L,
9, _ i _ |-ty 1.11
0z; Z:z—zZ 8,2] %zj)2 { 2 — 2.’ ] + M (1.110)

J

for the dependent matriz variables Ly = Lj(z1,..., zm). This system can be rewritten more concretely
matching the polar parts of both sides in the above equation as

dL; __ [Li,Lj] . .
-y (3

{aZj "R 7 (1.111)
0z; _Zl;ﬁj zi—2j

which is the standard form of the Schlesinger system [Sb].
One can always use the Mébius group to fix three of the points z, to 0,1, 00; the first interesting case
corresponds then to m = 4, which has a one-dimensional space of deformation parameters (the cross-ratio

of the four poles) and it can be shown that the relevant nonlinear ODE which one obtains in this case is
the Painlevé VI equation, see e.g. [C; FIKN].

Example 1.4.4. This example should be compared with the isospectral version, Ex. (1.4.1). Fix N = 2
and consider V' = LV for

L(2) = Lo + L1z + Ly2* (1.112)
with Ly semisimple. Without loss of generality we can assume L(z) is traceless (for if w' = —3tr L(z) then
the transformation W +— eV sends L — L — %tr L which is traceless); hence without loss of generality we

(L1)11
2

set Ly = Lo5. Moreover, by a translation z — z — we can assume Ly off-diagonal. Summarizin
203 j ’

we assume
22
Lz =| ft% botbz ) (1.113)
co+crz —ly— %
Since it is interesting to compare the present example of isomonodromic deformations with the isospectral

case of Ex. (1.4.1), comparison of (1.113) with (1.66) suggests to perform the change of coordinates

a
by = 30 +x1y1, bo=-—22, bi=-—x1, co=1Y2, C1=1Y1. (1.114)

The ODE W' = LV has an irregular singularity of Poincaré rank 3 at co; plugging the ansatz (1.91) into
the equation we obtain the formal solution

3
= T2Y2 z1 -1 -2 = 27\ 93
¥ =Te~, r=1 O , Z=(Al tz+ — | — 1.115
¢ +( Y1 —Ta2Y2 )Z +0GT) ( ogztizt 3) 2 ( )

with
A= —Z(xlyg + Igyl), t= ap. (1116)

Let us note that we have one isomonodromic time, t which corresponds to the Casimir ag of the Lie—
Poisson bracket discussed in the previous section about isospectral deformations; it is in this sense that
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it is usually said that isomonodromic deformations are a de-autonomization of isospectral deformations.
Explicitly, in this case the de-autonomization consists in the identification

ag — t (1.117)

of a Casimir with the time of the deformation. Note that with the notations of Ex. 1.4.1 we have A = a_1,
which remains a constant of motion.

Let us write down the isomonodromic deformation equation in t; first compute directly from the
definition (1.5) of M as the singular part of TSZL ! at z = oo (including the constant term)

. 9 — . 93— fdf _ 7]
M:=M <8t> —Elfsof(f) 5 r 1(§)Z_5 = ( y21 _: ) (1.118)

which obviously coincides with (1.69). The isomonodromic deformation is described by (1.102) which
reads in this case as

L=[ML+M = [M,L]Jr% (1.119)

where we denote f := Ouf throughout this example. This flow is written down explicitly exacly as in
(1.70), provided the idenfication (1.117);
B =29, 1= Yo, do=—taxy —22%y1, o=ty + 211y (1.120)
The equations are hamiltonian with respect to the bracket (1.68) with time-dependent hamiltonian
H= —x%y% + T2l — t$1y1 (1121)

obtained from (1.71) by the identification (1.117).

Let us reduce the isomonodromic equations (1.120) to the canonical form of the Painlevé II equation.
To this end perform the symplectic reduction of (1.120) with respect to the hamiltonian action of constant
diagonal conjugation, as in Fx. 1.4.1. This hamiltonian action is generated by the Hamiltonian flow

vo— xs = {F i =1.2 A
ti=w={Pay (=12 o A (1.122)
Ui =—yi={Fy} (i=12) 2

and indeed the formal monodromy exponent X is a constant of motion. The quotient under the conjugation
action can be parametrized (away from x1 = 0) with reduced variables (1.73) whose Poisson bracket is
given in (1.74). F, H descend to well defined functions F,H on the quotient

F=1+nZ,  H=—7+T0—th (1.123)

and F is a Casimir of the reduced Poisson bracket (1.74); the symplectic leafﬁ = f is parametrized by
Darbouzx coordinates §1, T2 and the flow (1.120) is given by the reduced Hamiltonian

Hp =~ — 1 + [T2 — 530 (1.124)

obtained by the substitution yo = f — y1T2. We continue in the analogy with Ex. 1.4.1, however now the
canonical change of coordinates (1.77) is a time-dependent canonical change of coordinates

_ oS _ t ¢ 08 ~ t 13\ -

— ) = —— — - = —— = ==, S:S s ’t = _ = = — 5 B :1 1125
h=—g=50 h=p-5 -G =g (p, T2, 1) (p 575 )% nd) (1.125)
hence the hamiltonian H t needs to be corrected to

- 4t 1 t2
HY = Hi+ 5=+ L 4 24+ (o= f)a+ = (1.126)
4 2 2 4
Hence we have finally obtained the Painlevé II equation
G=2¢>+2tqg+1—2f (1.127)
directly in its hamiltonian form [Oa; JM]
. omPU
- - _9
1 o =P (1.128)
. 8Hf 3 1
P=—"% = ¢ —tg—5+f

The Painlevé II equation appears in various applications, ranging from random matrixz theory [TW; CKV]
to nonlinear optics [GJ].

Let us mention that all Painlevé equations arise from isomonodromic deformations of a 2 x 2 linear
ODE with rational coefficients [JM].



20 CHAPTER 1. TAU DIFFERENTIAL

The isomonodromic tau function. Painlevé property. The isomonodromic deformation equa-
tions (1.102) imply that the formal solutions ¥, = I',e satisfy (1.4); hence we can introduce the
isomonodromic tau function as in Def. 1.1.5.

Solutions of the isomonodromic deformation equations enjoy the Painlevé property, namely they have
only movable poles [I] off the critical locus where z,, = z,, for some 1 <wv; #vo <morty,, o =tur, s
for some 1 < a # B < N. Correspondingly, the isomonodromic tau function is holomorphic in the
universal cover of the complement of this critical locus, and its zeros correpond to poles of the solutions
of the isomonodromic deformation equations. This was soon conjectured [JMU] and goes under the name
of Malgrange-Miwa—Palmer theorem [Mf; Mb; Pa]. We will review this point in the next chapter in the
general framework of Riemann—Hilbert problems.

Let us mention that the solutions of these isomonodromic deformations provide very interesting mero-
morphic functions, due to their Painlevé property. These functions occur in a wide range of applications.
Just to name a few instances, the six Painlevé transcendents [I] appear:

e in the study of correlation functions of impenetrable Bose gases [JMMS] and of the 2D Ising model
[DIK], and more generally in Conformal Field Theories [GIL];

e in 2D Quantum Gravity [DS], and more generally 2D Topological Field Theories [De];

e in Random Matrix Theory [TW].

1.4.3 Gelfand—Dickey tau functions

We connect here with some more classical notion of tau functions for integrable hierarchies. The results
of this thesis are derived independently of the general results presented below, which we include however
to give more context to our discussion.

Here we consider for simplicity a strictly formal setting for Kadomtsev—Petviashvili (KP) tau func-
tions. Let us first recall the definition of KP tau functions from the Sato Grassmannian perspective. For
a short introduction to the KP hierarchy and its tau functions we refer to App. A.

Consider an infinite set of variables t = (¢1, ¢, ...), and define a grading degt; := j. The algebra C[t]
of formal series is the completion of the algebra C[t] of polynomials with respect to the filtration

Ct]D s/ D HH D (1.129)

where %, is the ideal of polynomials in t of degree at least d, i.e. it is the inverse limit

Clt]
C[t] := lim ——. (1.130)
den 7d
More concretely, we have to think of a formal series in C[[t] as a well defined rule to give the complex
number which is the coefficient of any (finite) monomial in t.
Introduce the algebra C((27!)) of formal Laurent series at z = oo, i.e. its elements are expressions

ZnGZ an,z"™ for which there exists n, such that a,, = 0 as soon as n > n,. Denote R the C-algebra

. “1yy o, Clt]
R :=LImC((z —. 1.131
()@ (1131)

More concretely, an element of R assigns to every (finite) monomial in t a formal Laurent series.
Denote & := Y o, 2°t; € R, and recall the elementary Schur polynomials [Ma] p;(t), j = 0,1,2, ...
defined by a

et = p;(t)s’ (1.132)

Jj=0
e.g.

1 1
po(t) =1, pi(t) =t1, pa(t) =ta+ it%’ p3(t) =tz +tita + gti cee (1.133)

Noting that p;(t) is homogeneous of degree j in t, we conclude from (1.132) that e € R. More
generally:

Lemma 1.4.5. If f € C((271)) the element e f is well defined in R.



1.4. EXAMPLES 21

This is evident, as up to terms of degree d in t this amounts to the well defined multiplication of the
polynomial 1+ p;(t)z + - - - 4+ pa(t)z¢ with the formal Laurent series f.
Let us now introduce the Sato grassmannian [SS; SWa).

Definition 1.4.6. A Sato subspace of C((z7')) is a subspace spanned by f; € C((271)) for j =1,2,...
such that f; = 27=1(1 4+ O(z~")) for j large enough. The Sato grassmannian Gr2 is the set of all Sato
subspaces of C((271)). The big cell Gro% of the Sato grassmannian consists of Sato subspaces where
[i =271+ 0(z™1)) for all j > 1.

We will always restrict to the big cell of the Sato grassmannian.
For f = (f;)j>1 € Gr# one defines the tau function as the formal expression

o NeSfaneSfoNeSfiAZT I AN
e ANZZAZALANZTLAZTZA

() = (1.134)

to be computed using skew-symmetry and multi-linearity of the wedge product A. We now contend that
7(t) is an honest element of C[t]. Incidentally, notice that expression (1.134) depends only on the linear
subspace generated by fi, f2,... in C((271)), and this explains the grassmannian terminology.

To this end introduce the Schur polynomials [Ma] s (t) for each partition A € Y

sx(t) = det (pa, -k (£)) 0L, (1.135)

where £(\) denotes the length of A. For every d, Schur polynomials sy with |A\| = d form a basis of the
homogeneous part of degree d of C[t].

Lemma 1.4.7. Formula (1.134) defines an element in C[t]); it is more explicitly expressed as

T(t) = Fisa(t) (1.136)

AEY

where Fy (“Pliicker coordinates”) are given as
A
Fy = det (fjari—#) by (1.137)

where fj = 2771435 fiez™b).

The Schur polynomials sy (t) are closely related to characters of GLy

dor (Y ()
A2,y ) = ’ L ’ A=l (1.138)
T A(ml,...,xN) det (IN—k)N
J Gk=1

see App. B, in particular (B.12). The relation goes as follows; we have
sa(t(z1, ..., zn)) = xa(@1, oo, TN) (1.139)

for all A € Y of lenght ¢(A) < N, where the Miwa times (or Newton polynomials) are defined as
t(z1, . on) = (@1, o), ta(T, N ), )y (@, o) = = (2] 4+ 2). (1.140)

(This explains the grading of the variables t.)
We can exploit this relation as follows. For a Sato subspace f = (f;);>1 and all N > 1 set

_ det(fion)) iy det (f(mn)) s

det (:ci‘l)Nk Mi<jenen(@r —5)
Jrk=1

(1, ) : (1.141)

As 7'}:, is the ratio of two alternating polynomials in x1, ...,z it is a symmetric function. As such it can
be expressed in terms of the Miwa times (1.140). Let us call 7'1{, (t) the result of this substitution.
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Proposition 1.4.8 ([Kb; 1Zb]). Terms of degree d in T]{[(t) do not depend on N as soon as N > d, and
moreover under the same assumption these terms coincide with the same terms in 7/ (t).

First we establish the following lemma, consequence of the Binet—Cauchy formula. We formulate it
separately as it will be useful later on.

Lemma 1.4.9. Let g;(z) = ,o, 9j.0x". Then

det (g; (1))} 4y

N
A = 20 et gauem ) X2 ) (1142

(V<N
where the sum is over partitions A of length £(\) < N. , and x\(x1,...,xN) are the characters (1.138).

Proof of Lemma 1.4.9. It follows directly by the Binet—Cauchy formula, as

; ; |
det (g;(wr)); ) = det : : |22 a2
91,1 91,2
and we have to take the determinant of the product of an N X oo times an co X N matrix. |

Proof of Prop. 1.4.8. We write z;, := ¢, ' and g;j(z) := V=1 f;(2™!), hence

vav-n det(fi(Ce))Memy  det(gy(zr)) ez N
2 2 = 2 — det - _ . L1yeeey L
A(Cry - CN) Axy, ., zN) g(/\ZKN (524N -1)j =1 Xa (21 N)

(=1)

where the last step is due to Lemma 1.4.9 with g;(z) = >, gj.ex’. Since f;(¢) = ¢t (1 + 2 01 fMC?Z)
we have
9j.e = fje-n+j (1.143)

with the understanding that f;,, := 0 for n < 0 and f; ¢ := 1. Directly from Lemma 1.143 and (1.139)

we can write
N
() = Z det (fjne+i—k)j p—y Sx(t)
)N
N
k=1
N as soon as N > d. This follows because the matrix (ij)\k+j*k).§yk:1 has the following block structure,
provided N > d so that \; = 0 for ¢ > d;

and the proof is complete by the observation that the coefficients det (f;x,+j—k) do not depend on

f17A1 fl,)\d—d+1 0 0
faxi+a—1 - faxg 0 0
fa+1 244 - fa+1. 2041 1 0
N eN—1 N+ N—d—1 | N grN—d - 1
hence
det (Finetii) ey = det (finesin)"
JAeti—k)j k=1 — JMeti—k) j k=1
and this completes the proof. |

Let us now consider Gelfand-Dickey (GD) tau functions; by definition, a tau function of the rth GD
hierarchy (r = 2,3,...) is a KP tau function associated with f = (f;);j>1 € Gry? of the form

Fi) =271 14 fre (1.144)
>1

satisfying the periodicity property
fivre = fie (1.145)
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Lemma 1.4.10. Tau functions of the rth GD hierarchy do not depend on variables t,,to,, t3., - -

This lemma can be guessed directly by looking at (1.134). One can give a more explicit proof following
[IZD)].

The connection with the tau functions considered in this chapter can be expressed as follows. We
consider for simplicity the KdV case, which is the r = 2 case of GD hierarchies. So, let us consider
f=(fj)j>1 € Grg satisfying the periodicity property fji2, = fj,£. Introduce the 2 x 2 matrix-valued
formal series

r(tf[i)—ln T(t+[§)‘11)
D(zit):=| (i +Z§ ) (i Ve |0 t=(utsts,) (1.146)
Bty 7(t) oty 7(t)
and o .
E(z;t) = 7‘5 >tz (1.147)
Jj=>0

Theorem 1.4.11 ([BDYa]). The KdV tau function (1.134) (for a point in the big cell of the Sato
grassmannian satisfying the KdV periodicity) satisfies

SlogT(t) = — res (I''IV62) d2 (1.148)

Z=00

These methods can be applied to Gelfand-Dickey and Drinfeld—Sokolov tau functions as well, we
refer to [CW; BDYD] for further informations.
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CHAPTER 2

Malgrange differential

A Riemann—Hilbert problem (RHP) is the problem of analytic factorization of a matriz J defined on a
contour 3. RHPs are intimately related with singuar integral equations and appear in a large number of
diverse problems of Mathematical Physics. In this chapter we follow [Bc] and, given a RHP depending
analytically on some parameters, associate a differential in the space of parameters, termed Malgrange
differential. When the Malgrange differential (or some simple modification of it) is closed, it can be used to
introduce a tau function as a logarithmic potential. This approach to tau functions unveils their meaning
as reqularized determinants of the associated singular integral equations; namely, the tau function is a
section of a line bundle whose zero locus coincides with the set of points in the parameter space for which
the RHP is not solvable. Finally, some formal aspects are related with the content of the previous chapter.
The material for this chapter is mainly extracted from [Be; Bd; BCe; Mb].

2.1 Introduction

A complete and precise discussion of the general theory of Riemann—Hilbert problems (RHPs) goes far
beyond the scope of this thesis. In this chapter we consider a fairly simple setting for RHPs with very
mild analytic assumptions, so that much of the machinery of Operator Theory involved in the general
theory of RHPs will not be needed; this setting is however enough for the rest of this thesis.

We refer to the monographs [CG; Ga; Mi] for the general development of the theory of RHPs, or [Da]
and [AF, Chap. 7] for more introductory discussions.

In this introduction we overview some general facts about RHPs and outline the content of the rest
of this chapter.

Riemann—Hilbert problems. Suppose we are given an oriented contour ¥ in the complex z-plane,
which we assume sufficiently smooth (precise formulations below). Then at each point of 3 the orientation
defines two sides of ¥ which will be denoted with a + sign (to the left of ¥) and with a — sign (to the
right of ). Suppose we are also given a jump matrix J : ¥ — GLy. The RHP amounts to finding an
N x N matrix valued function I' = I'(z) such that both T',T'~! are analytic and bounded in C \ ¥ and
satisfy the jump condition T'y =T'_J at X, where I'+ denote the boundary values of I' from the =+ sides
of .

Below we will specify better the analytic details of the RHPs we are going to work with; we antici-
pate that we always consider jump matrices which admit (piecewise) analytic continuation to a tubular
neighborhood of 3. Under this assumption the jump condition I'y = I"'_J has an obvious meaning, as
T';+ analytically extend slightly across X. For the general case we refer to the mentioned literature.

The transformation I'(z) — CT'(z) with C' € GLx constant invertible matrix sends solutions of the
RHP to solutions. It is thus convenient to normalize the solution by I'(zg) = 1, usually zg = co. Under
this normalization the solution of the RHP, as stated above, is unique. Indeed for two solutions I'y, Ty
consider the ratio R := I'}T; ! (by assumptions T; are bounded and invertible in C\ X so we can consider
this ratio). This ratio R has no jump on ¥, for we have

Ry = (T)4 (T3 1)y = (T1)-JJ (T3Y)- = (T)_ (T3 Y- = R_. (2.1)

Hence R is an entire bounded matrix function of z, therefore by Liouville theorem and our normalization
Ti(z0) =1 (i =1,2) we have R =1, i.e. I'; = T's and the solution is unique.

We will see below that when ¥ has endpoints then the solution does not necessarily exists, as stated;
in such a situation we can only require I',T~! to be bounded far from the endpoints, and to ensure
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uniqueness of the solution we have to fix suitable growth conditions at the endpoints. General analysis
of this problem is not needed in the following.

Sokhotski—Plemelj formulae, scalar RHPs, index of matrix RHPs. Let ¥ be a contour in the
z-plane (in this section it may either be a loop or an arc, in any case it is assumed to be smooth and
non self-intersecting) and f a function defined on ¥ which is Hélder continuous, i.e. we have

|f(&1) = f(&2)] < Ol&r — & (2.2)

for some 0 < a < 1 and for all &;,&; € ¥. In this situation, define the Cauchy principal value integral

P.V./ 1O e = tim / 1O g¢. (2.3)
b))

§—=z 50 n{le—z>e) § — 2

Of course, when z € ¥, the Cauchy principal value integral (2.3) coincides with the standard Cauchy
integral F(z) := [, o £ ~d¢. However (2.3) is well defined also for z € X. It is a classical fact, see e.g. [AF,
Chap. 7], that under such circumstances, the Cauchy integral F(z) is a sectionally analytic function of
z € C\ X. By this we mean that F(z) is analytic off ¥ and admits limiting values Fi(z) for z € X°
(X° := X\ {endpoints}) from the left (+) and the right (—) of 3, where the limit is taken along any path
lying entirely in the 4 side of . Moreover we have the following expressions for the limiting values Fy,
that go under the name of Sokhotski—Plemelj formulae;

f(;) —&—%P.V /ng(@ d,  zexe. (2.4)

Fi(z) ==

Clearly the two identities in (2.4) are equivalent to

f(©)
£ —
With the aid of the Sokhotski—Plemelj formulae we are able to determine the condition for solvability

and to provide the solution to scalar (N = 1) RHPs. Indeed suppose we are given the contour ¥ and the
jump J(z) : ¥ — C\ {0}. Taking the logarithm we have

Fo(z)— F_(2) = f(2),  Fi(2)+F_(2) = %P.V /E g zes (2.5)

logT'y —logI'_ =logJ (2.6)

and by the first identity in (2.5) we would like to find the solution in the form

['(z) = ex p< ! /ZlogJ(g)d£> (2.7)

27i E—z
However we run into the following problems.

1. When ¥ is a loop in P! then log J(z) must be Holder continuous, see (2.2). This can only happen
if the index

1
— ¢ dlogJ 2.8
3 ) dloz () (28)
which in principle is an arbitrary integer, vanishes (otherwise log J(z) cannot possibly be even
continuous).
logJ

2. When ¥ has endpoints, in general f d§ has logarithmic singularities as z —endpoints [Ga;
Mi; AF], hence the solution I" cannot posmbly be bounded analytic with bounded inverse near the
endpoints of ¥. Moreover, if we do not require boundedness, we loose uniqueness of the solution;
indeed for any solution I'(z) then g(2)I'(z), where g(2) is analytic in P! but for isolated singularities
at the endpoints of ¥, is again a solution.

To overcome the second issue one has to complement the RHP with suitable boundary conditions at
the endpoints, if any.
Regarding the first, we note that actually the index condition

. 1
indy, log J := Q—Fi?{xdlog J(&) =0 (2.9)
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when 3 is a loop is a necessary condition for the existence of a solution I'; indeed if T" is a solution

1 1 1
indy; 1 =— ¢ dl =— ¢ dlogl' . — — ¢ dlogT'_ 2.1
indy, log J 27rij{2 og J(§) QWi]i ogl 27rijé 0g (2.10)

and by Cauchy’s argument principle each of the last two terms vanishes, as it is equal to the number of
zeros minus the number of poles of I'y in the respective domains of definition; as I'y are by assumption
bounded with bounded inverse, they have nor zeros nor poles and the index vanishes.

We content ourselves with this simplified overview of these general features of scalar RHPs and refer
for more details to the aforementioned literature.

For matriz RHPs, the index condition (2.9) should be replaced by

1
indy log det J := —7{ dlogdet J =0 (2.11)
2mi »

(for instance note that the determinant solves a scalar RHP and apply the considerations above). Similar
considerations about the endpoints apply to this case too.

However, when ¥ is a loop in P! the index condition (2.9) is not enough to guarantee in general the
existence of a solution (compare with Thm. 2.2.1 below). In the following we will always consider case
by case the issue of solvability of the RHPs we will consider.

Outline. For this chapter we have the following main goals.

1. Introduce the Malgrange differential for a RHP depending on parameters, following [Bc]. The
Malgrange differential is not closed in general; there is however a general formula for its exterior
differential [Bc; Bd], see Prop. 2.2.5 and Prop. 2.3.2. However in several interesting cases the
Malgrange differential is either closed or closed up to a simple explicit modification. In the latter
cases one can introduce the tau function as a logarithmic potential for the Malgrange differential.
We also hint at the connection between zeros of the tau function and non-solvability of the RHP.
We will first consider the case when X is the unitary circle (or any finite union of disjoint circles)
(Sec. 2.2), and then the case where we allow much more general contours (Sec. 2.3).

2. Study Schlesinger transformations of RHP, which namely consist in looking for sectionally mero-
morphic matrix function I' satisfying the usual jump condition I'y = I'_J on ¥ with poles and
zeros at some fixed points away from Y. Locations of these points play the role of new parameters in
the RHP; this procedure is related to the dressing method [ZS] in the theory of integrable systems.
We then study the effect of Schlesinger transformations on the Malgrange differential; the main
result, which was dates back in some less general and detailed form to [JM], is reported in Sec. 2.4
following the analysis of [BCc].

3. Connect some computational aspects of tau functions from RHPs to the formal aspects examined
in the previous chapter, see Sec. 2.5. E.g. this will permit to use the formulse of Thm. 1.2.2 for
logarithmic derivatives of the tau function, and this will be used extensively in the sequel of this
work.

2.2 RHPs on the circle, Toplitz operators and Malgrange dif-
ferential

RHPs on the circle and Bikhoff theorem. We start with the case ¥ = S! = {|z| = 1}. We
consider jump matrices J : S' — GLy which are actually analytic for z in a annulus 1 — e < |2| < 1 +e.

The solution I' of the RHP consists of a sectionally analytic matrix function satisfying I'y = T'_J;
by definition, this means a pair of N x N matrix valued functions 't : Dy — GLy analytic for
z €Dy :={|z] <1}, D_ := {|z| > 1} admitting boundary values T'y. at S! related as Ty =T'_.J.

Due to our assumption regarding analyticity of I we infer that I' 1 actually extend to analytic functions
in wider domains I'y : D(ie) — GLy, Dgf) ={]z| < 1+¢€}, D' = {|z] > 1 —¢€}, and then the identity of
boundary values I' . = T'_J has the meaning of identity of functions in the annulus 1 —e < |z] < 1 + €.

Note that more or less by definition this situation corresponds to finding the space of holomorphic
sections of a rank N vector bundle on P! defined by the transition function J.
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One can address very explicitly the problem of solvability of this type of RHP, by the following funda-
mental theorem of Birkhoff [Be], later generalized and put into context of vector bundles by Grothendieck
[GD].

Theorem 2.2.1 (Birkhoff [Bel]). For every J(z) as above, i.e. J a GLy-valued function analytic for
1—e < |z| < 1+e¢, there exist a unique set of integers ky > --- > ky and a unique sectionally analytic
matriz function I' = T'(z) such that

J@=T@)| : . : | (2.12)

0 ... 2k~

We omit the proof of this classical result, which can be found e.g. in [CG].

The numbers k; > --- > ky are called (right!) partial indexes, and clearly the total index is the sum
of the partial indexes, indylogJ = k1 + - -+ + ky. Therefore, necessary and sufficient condition for the
existence of a solution to the RHP on S! is the vanishing of all partial indexes (in particular the index
condition (2.11) is not sufficient to guarantee the existence of the solution).

To6plitz operators. Introduce the Hilbert space H := L?(S',dz) = H, & H_ where H, consists of
functions with only nonnegative Fourier modes (i.e. functions admitting analytic continuation to the
interior of S') and H_ consists of functions with only negative Fourier modes (i.e. functions admitting
analytic continuation to the exterior of S* and vanishing at infinity). H, and H_ are mutually orthogonal,
and the associated orthogonal projectors can be represented by the Cauchy integrals

C:t cH — Hy f(z) — (Cif)(z) = % o ff—(i?i % (2.13)

where z4 denotes the corresponding boundary value. Indeed by the Sokhotski—Plemelj formula and its
consequence (2.5) we have C, — C_ = idy. Moreover C3 = +Cy, hence +Cy are the orthogonal
projectors on their range which is Hy (we refer for more details to the literature, see e.g. [Da]).

In the following we denote by H + the spaces H+ ® CV | intended as the space of row-vector valued L2-
functions on S* with only nonnegative (4) or negative (—) Fourier modes; similarly let H:= ﬁJr ®H_.
In the interest of lighter notations, we denote by the same symbol C'y the extension Cy ® 1 : H— ﬁ+.

Introduce the Toplitz operator T : ﬁ+ — ﬁ+ with (matriz) symbol ® € H @ Matn;
f©@(6) de

(Ta)(z) = (CulFON () = § T2 0 (2.14)

Proposition 2.2.2. The Riemann—Hilbert problem on the unit circle S* with jump matriz J admits a
solution if and only if T;-1 is invertible; in this case the inverse is given as

AOT_(OT4(2) d¢

(T727) @) = @I () = ¢ T2 (215)

For the proof see e.g. [CG].

Let us also mention the following important fact, for which we refer to [CG]. Under our assumption
of J analytic in a tubular neighborhood of S*, then T is a Fredholm operator (by definition, it has
finite dimensional kernel and cokernel); moreover, its Fredholm index (by definition, dimension of kernel

!There is of course a dual result stating that there exists a factorization of the form J(z) =
2k L. 0
T4(2) : T'='(2), the numbers k1 > --- > ky termed left partial indices.

0 oo ZkN
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minus dimension of cokernel) coincides to the winding index indys logJ. As we are working under the
assumption of vanishing index (2.11) the Fredholm index is constantly equal to zero; however this does
not automatically imply that T);-1 is invertible, as combining Thm. 2.2.1 and Prop. 2.2.2 the invertibility
of T';-1 is equivalent to vanishing of all partial indices.

Widom constants and dual RHP. It is natural to try to find some notion of determinant for the
Toplitz operator T';—1 whose invertibility governs the solvability of the RHP. As a matter of fact, there is
no notion of determinant in general for T6plitz operators. In this paragraph we discuss one first natural
proxy for a determinant of the T6plitz operator. This is not however the object we shall be mostly
interested in the following of the thesis, however the topic is closely related and indeed relevant to us.
Widom [Wh] observed that the operator T;-:1T; differs from the identity by a trace-class operator
hence it admits a Fredholm determinant. Before explaining this point, let us stress the meaning of the
Toplitz operator Ty; directly by Prop. 2.2.2 its invertibility is related to the existence of a sectionally
analytic matrix I such that
ry=r_J" (2.16)

The problem of finding a sectionally analytic " satisfying (2.16) is called dual RHP.
T;-1T; admits a Fredholm determinant because we have, using Sokhotski—-Plemelj formula Cy =
C_ +idg, for all f € Hy,

— —

Ty Tsf = CL((CL(fI) ) = CL(C-(fNT )+ F) = F+ Ce(C_(F) T (2.17)
and we have the following lemma.

Lemma 2.2.3. Under our assumptions of J analytic and invertible in a tubular neighborhood of St
having vanishing winding index, see (2.9), the operator C((C_(fJ))J 1) is trace-class.

Hence it is natural to define the Widom tau function (see also [CGL])
TWidom(J) = detH+(TJ71TJ) (218)

where the Fredholm determinant dety, is defined thanks to Lemma 2.2.3. Let us stress again that
Twidom = 0 if and only if J fails to have one of the two factorizations

J=TI2'Ty =T]'T_ (2.19)

i.e. if and only if either the direct of dual RHP are not solvable. This is particularly useful when J admits
by construction the dual factorization J = I_’Ilf‘,, so that Ty is always invertible and so Ty ;gom = 0 if
and only if the (direct) RHP is not solvable.

For future reference it is worth pointing out the following variational formula, see [Wb; CGL].

Proposition 2.2.4. Assume that J depends on parameters t and let as usual & be the differential in
these parameters. We have;

5108 TW idom = f or [(TLT2! 417, ) 78] dz (2.20)
D) 27

The proof is a computation using Jacobi variational formula, for which we refer to loc. cit.

Let us make once for all the following remark. In the most general setting for RHPs one requires
existence of the boundary values I'x but nothing is said about I'/,. However in our comfortable setting,
I' extends analytically slightly across S! hence the boundary values of I/ also exist.

In the following paragraph we shall consider instead a different object, the Malgrange differential,
directly related to the solvability of the direct RHP only.

Malgrange differential. The setup is as above that of a jump matrix J(z;t) jointly analytic for z in
the annulus 1 — € < |2| < 1+4¢ and for t € U some open domain in some C%. We always assume the index
condition indg: det J = 0 identically in /. In this section we omit the proofs and refer to the literature.

Let us recall the following facts from [Mb]. The locus in ¢ where the RHP I'y = I'_.J on S? is solvable
is open; its complement O is called Malgrange divisor. In other words

© = {t: T;-1() is not invertible}. (2.21)
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Denoting ¢ the differential in the parameters t € U, the operator (recall the notation (2.14))
T;N0T 1 + Tsyyn : Hy — Hy (2.22)

defined for t € U \ O is trace-class; its trace reads

tr g, (T 46T -1 + Tsy5-1) :f tr (DZ'TJ16J) dz (2.23)

S1 2mi ’
(It is interesting to compare this expression with (2.20).) The differential (2.23) is logarithmic, namely
it has simple poles along the Malgrange divisor ©. Moreover if t, € © the Poincaré residue of (2.23) at
t. equals dim ker Ty(¢,y [MDb].
Now let us follow [Bc] and consider a simple modification of the differential (2.23)

dz
Q:i=¢ tr (TZ'T6J771) = 2.24
o 220
and term it Malgrange differential. Indeed we have
Q :?{ o (07T, I ter) & 7% o (s tsa0 ) L& (2.25)
St + o 2mi St 27 '

as it is easy to check using the cyclic property of the trace and the jump condition 'y =T _J, TV, =
r.Jj+r_J.
In the following we will invariably consider the definition above (2.24) for the Malgrange differential.

Proposition 2.2.5 ([Mb; Be|). The exterior derivative of the Malgrange differential (2.24) can be ex-

pressed as

50 :7( tr (800 A (67071Y) 2
Sl

o (2.26)

Therefore what is gained with respect to the previous paragraph is that the poles of €2 are only
at points where the direct RHP is not solvable; however a feature of this construction is that dQ # 0
generally and so for the introduction of a tau function one has to pay additional care.

Let us note however the important fact that d€2, even if nonzero, has no pole along the Malgrange
divisor ©, and so extends to the whole parameter space . Moreover, in several cases of interest, non-
vanishing of §(2 is actually a hint at the fact that the tau function should be regarded as a section of
an appropriate line bundle. Somewhat more concretely, cover U with simply connected open sets U, and
by applying Poincaré lemma write 62 = §6, in U, for some holomorphic differentials 6,. In each U,
introduce 7, as

dlogT, =Q —0,. (2.27)

Assuming we can integrate dlog gqp = 0y — 0, to functions ggqp : U, N Up — C\ {0} which satisfy the
cocycle condition gupghe = gac, we can therefore regard the tau function 7 := {7,} as a section of the line
bundle with transition functions gup, T = TbGab-

Finally let us mention that all results of this section extend straightforwardly to the case of RHPs
posed on a finite union of circles, just by taking direct sums (over the set of circles) of spaces and
operators involved. We omit the details as we now go for a discussion of much more general contours.

2.3 General RHPs and Malgrange differential

Setting. Let us describe the general setting, which includes all RHPs considered in this thesis.

We allow the contour ¥ to have transversal self intersections and endpoints; points where ¥ has
self-intersections or endpoints are called vertices. Let ¥° := X \ V be the complement in ¥ of the set V'
of vertices, and let y; be the connected components of ¥°. We assume that the number of vertexes and
the number of connected components of £ are finite. Finally, we assume that the «y;’s are smooth and
oriented, hence defining =+ sides at every point of 3°, as explained before (+ on the left, — on the right).

Let J : ¥° — GLy(C) be a matrix valued function defined on X¢ = (J;v;. We shall always assume
that J|7j is the restriction of a matrix J;(z) analytic for z in a neighborhood of ;.

Finally, for all 7, extending to z = oo we assume that J;(z) =1+ O(2~>°) as z — occ.
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Let us set the following notations. At a vertex v € V of X, denote n, the number of components
of ¥° incident to v; we will denote 7, 1,...,7v,n, such components of ¥£° and assume that the cyclic
order implied in this notation is the one induced by the standard orientation of the z-plane. Introduce
Ouv,1s-,Oun, = 1 according to the fact that ~, ; is oriented toward v (in which case set o, ; 1= —1)
or outward v (in which case set o, 5 := +1). Denote J, 1(2), ..., Jun, (#) the restrictions of J(z) to
Yoy Yon,- We shall always assume that J satisfies the no-monodromy condition at v € V, i.e. that
Jo I =140 ((2 = v)®) (=140 (27%°) if v = 00). Note that this condition at an endpoint v € V/
(i.e. np, = 1) means that J(2) =14+ O ((z —v)®) (=1+ 0 (27>°) if v = 00) as z — v.

The solution of the RHP defined by the data (X, J) is, by definition, an N x N matrix valued function
I' = T'(2) such that both T',T~! are analytic and bounded in C \ X, which satisfies the following two
conditions;

e for all v; and all P € v;, I'(2) must admit the limit I'{ (P) as z — P from the left of v; (not
tangentially to X) and I'(z) must admit the limit I'_(P) as z — P from the right of 7; (not
tangentially to X), and these limits must be related as T'y. =T'_J;

e We have a Poincaré asymptotic expansion I'(z) — 1 + O(z7!) as z — oo uniformly in every
subsector of C\ X.

Let us make a comment on the last (normalization) condition. Due to the assumption J = 1+0O(z~°°)
as z — oo then actually I'(z) = 1+ 3, -, Tx2~" in the sense of a Poincaré asymptotic series (see e.g.
[HS]), whose coefficients 'y, do not depend on the sector of C\ ¥ at co. If ¥ does not extend to co then
this is a genuine Taylor expansion.

RHPs are very often formulated in slightly different ways; in all the cases considered in this thesis,
they can be recast in this form by simple modifications.

RHPs and singular integral equations. We have a connection with singular integral equations,
generalizing Prop. 2.2.2

Proposition 2.3.1. The RHP ', =T'_J is solvable if and only if so is the following singular integral
equation in L*(3,dz) @ Maty > F;

F(z) -1 :/EF(@g‘j(g)_l)dg_ (2.28)

zZ_ 2mi
where z_ denotes the boundary value to take in the singular integral.

For the proof see e.g. [CG].

Malgrange differential. In [Bc], inspired by the results for RHPs on a finite disjoint union of circles,
the differential

Q::/tr (P:lrLaJJ—l)% (2.29)
3

27

was posited as an object of interest for general RHPs depending analytically on parameters t € . Again,
it has poles on the (generalized) Malgrange divisor where the solution I does not exists, i.e. where the
corresponding singular integral equation (2.28) is not solvable.

We have a slightly more involved formula for the exterior derivative, generalizing Prop. 2.2.5; however
remarkably the two-form §2 extends again to the whole parameter space U, as it depends explicitly on
J only, and not on T".

Proposition 2.3.2 ([Bc; Bd]). The exterior derivative of the Malgrange differential (2.29) can be ex-

pressed as
dz

o0 = / tr (0JJ'ABTT ) ==+ n, (2.30)
) 2mi
veV
where the contributions n, at the vertices v € V are given as

Moy

1 _
W= 1= > My_16My_y ASNN; ! (2.31)
(=2
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where we set (with the notations introduced above)

My := lim J7Y(2), Ny:=M;---M,,. (2.32)
Z—v 7

The localized terms 7, vanish for endpoints. Note also that due to the no-monodromy condition 7,
only depends on the cyclic ordering of rays of ¥ meeting at v.

Therefore in general 0€) is not zero; the considerations exposed after Prop. 2.2.5 regarding the defi-
nition of the tau function as a section of an appropriate line bundle apply equally well here.

We limit ourselves to this brief overview of the topic and refer to the original literature for more
details.

2.4 Schlesinger transformations

The notion of Schlesinger transformation goes back to Schlesinger [Sb]; roughly speaking it is a discrete
isomonodromic deformation of the data in (1.2) in that we shift the formal monodromy exponents A, 4
by integer multiples of 27i. In more recent time it was reconsidered in [JM] and later extended and
studied in depth in [BCc].

The results of this section are actually the core of the computations which we will perform in the
applications of later chapters.

Elementary Schlesinger transformations. Suppose we are given a RHP I'y. = I'_J. Then we twist

it as follows. Fix points a,b € C\ ¥ and indices «, 8 € {1, ..., N}. The elementary Schlesinger transform

T { b }, which we denote shortly as T = I'(2), is a matrix function of z such that I, T~ ! are bounded and
ap

analytic in the complement of small disks around a, b in P!\ ¥, satisfying the jump condition I =L J
along 3, the growth conditions

o) (z—a)fee,  z—a
L(z)= {O(l)(z by B s b (2.33)

and also the normalization I'(c0) = 1. We allow a to coincide with b, in which case we have to assume
a # B.

By an application of Liouville theorem, the elementary Schlesinger transform is unique if any exists
(again, for any pair of solutions I';, 'y the ratio £1£§1 has no jump on ¥ and is bounded as z — a,z — b
hence it is analytic and bounded everyhwere; it is equal to 1 at oo therefore it is 1 everywhere by Liouville
theorem).

The simple key observation to study solvability of the twisted problem (2.33) is that if L =T { a g

(0%
then the ratio R := I'T! is a rational function with a simple pole at z = b only. This is easily seen
again by the Liouville theorem (because R has no jump on X). Therefore we may consider the ansatz
I'(z2) = R(2)I'(z) where R(z) is rational with a simple pole at z = b and, due to the normalization

I'(0c0) =1, tends to 1 as z — oo. So it is convenient to set

R(z) =1+ % (2.34)

for a yet unspecified matrix U. We claim that U is completely determined then by the growth conditions
(2.33). First, the pole condition at z = b in the column g implies

UT(b)&; =0,  je{l,..N}\ {5} (2.35)

denoting €; the standard basis of column vectors €; := (0, ..., 1, ..., 0) T, the 1 being in the jth position.
This implies that U is actually rank one of the form

U= fejr1(v) (2.36)

where f is some column vector. Finally the zero condition at z = a in the column « implies

. FETTL(b)T(a)Es

I'(a)én
(a)e p—

=0 (2.37)
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which is solved as f = (F,l(g);lf(aml"(a)é'a and finally

b—a I'(a)Easl~1(b)
I=1(b)l(a))pa z=b

R(z)=1+ (2.38)

It is now easy to show that if (71(b)['(a))ga # 0 then I'(2) := (1 + (F,l(g)}“(a))ﬁa F(Q)E;”fl;il(b)) I'(z) is

the Schlesinger transformation of I" as defined above.

-1

Note that everything remains true in the coalescing case a = b by replacing the scalar %

1 -1
with (F_l(a)f"(a))ﬁa a (Z)_F;a))ﬁa _ (b){_(z)fl)”“ and this
claim follows simply by taking the limit b — a).
Z1

The scalar w governs therefore the solvability of the twisted problem and it is legitimate
to suppose that it is related to the tau function; we now show that this is indeed the case.

First, let us translate the elementary Schlesinger transformation into a RHP of the usual form; this
can be done by augmenting the contour ¥ to ¥ := XU ID, UID;, where D, := {|z — | < €} for € small

enough so that X, 0D,, 0D are mutually disjoint, and extending J : ¥ — GLy to J : ¥ — GLy by

(in this case we must have a # § and so

J(2) z€X
a)fee 2 € 0D, (2.39)

J(z) =4 (2 —
(z—b)"Ess 2 € 0D,

and then solving the RHP f+ =T_Jis equivalent to finding the Schlesinger transform I' = T’ { abl;
afB

indeed I exists if and only if r exists, and in such case they are related as

[(z)(z —a)B zeD,
L(z) = T(2)(z—b)"Fs» -eD, (2.40)
r otherwise.

Consider the associated Malgrange differentials;

0= [ (M @06 ) 5
Q:= /i tr (f:l(z)f'_ (z)aj(z)fl(z)) ;—;. (2.41)

Let us stress that the deformation § now acts also on the parameters a,b; of course it is always
understood that this infinitesimal variation does not move the disks D,, Dy, but just act on the jump
matrix J.

Proposition 2.4.1. We have
~ r—4(r o
Q-Q=56log I O)(@)sa (2.42)
b—a
The proof of this result is an explicit computation using I'(z) = R(2)I'(z) with R(z) found as above.
We omit it as we shall consider a more general case below, see Thm. 2.4.7, including this elementary
case as a special case. B
Note that as a consequence of this proposition, if §2 = 0 = §Q and so we have tau functions
dlogT =Q and dlog7T = Q, then
T r-1(r o
T_IOr@)se (2.43)
T b—a
Before going for this general case let us stress more closely the connection with the Sato type formulae
of Sec. 1.3.

Schlesinger transformations and Sato formulse. We can consider, similarly as above, the case
where (informally speaking) we add a pole at oo and a zero at a. More precisely, this time the matrix
I is required to be bounded with bounded inverse away from a and oo, to satisfy the jump condition
L', =T Jon %, and the growth conditions

o) (z — a)Fee, z—a
L) = {(1 +0(z71H))2Be, 2 — 0o (2.44)
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Note that the condition at oo is also a normalization condition. Similarly to above, we are looking for a
rational matrix R(z) with a pole at co only such that I = RT. It is easy to see that R(z) must be in the
form R(z) = Ry + Eggz; denoting I'(z) =1+ 127! + O(272) as z — oo, we find from the condition at
oo that

Ro+Egsly = 1+ fé} (2.45)

for some column vector f Finally from the condition at z = a we obtain
feiT(a)és = (Eps(Ty — a) — 1), (2.46)

hence the solution for R, and so for I, requires inverting the matrix element é'gF(a)é’a =TI'ga(a). Again
this suggests the following formula, which can be actually verified (and follows from the general result
below), expressing the difference of the Malgrange differentials (2.41);

Q— Q= dlog(I'(a))ga (2.47)

implying the relation of tau functions (if they can be defined as dlog7T = Q,dlog T = Q)

= Tpala) (2.48)

SR

The analogy (for 5 = a) with the Sato formula (1.34) is now manifest.

General Schlesinger transformations. A general Schlesinger transformation is a composition of
elementary ones. It is interesting to study directly the effect of this composition on the Malgrange
differential, following the same strategy used above for the elementary case. The arguments below are
recalled from [BCc], to which we refer for further details.

First the definition. Let A, B be two collection of points in CP!\ X, not necessarily disjoint. Note that
we allow the points in A, B to be at infinity (including therefore also the case of the previous paragraph).

For each a € A let L, = diag({4,1, ..., {e,n) and for each b € B let K, = diag(ky 1, ..., kp, v ), matrices
of nonnegative integers. Informally speaking we will twist a RHP by adding zeros at A and poles at B,
with multiplicities prescribed by the diagonal matrices L, K.

Assume the following consistency conditions;

e ifce ANB, then L. K. =0, and

° ZaeAtrLa = ZbeBter'

Generalizing the above definition, the Schlesinger transform I'y 4 gy, which we denote shortly as
L K

I' = I'(2), is a matrix function of z such that T, E_l are bounded and analytic in the complement of
small disks around the points of A, B in P! \ ¥, satisfying the jump condition I . =TL_J along ¥, the
growth conditions

o) (z = ¢)femEe, z—=cel\ {0}
E(Z) - {(1 + (’)(z_l))zK“_L“, 2= 00 (249)

where we set

C:=AUB. (2.50)

The condition at co includes a normalization condition. In the interest of shorter notations we agree that
ifce A\ Bthen L.:=0 and if ¢c € B\ A then K. = 0. Similarly for the point at infinity, i.e. if co & A
then L., := 0 and if co &€ B then K, :=0

As before, the key observation to study solvability of (2.49) is that the ratio R(z) := L(2)'"*(z) is
a rational function of z, with poles at B only; this is a consequence of Liouville theorem as before, since
R has no jump on X.

Again, we can translate the Schlesinger transformation into a RHP of the usual form; this can be
done by augmenting the contour ¥ to X := ¥ U JdD where

D= [J D. (2.51)
ce AUB
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where again D, := {|z — x| < €} for € small enough so that all these disks are are mutually disjoint and
disjoint from X, and extending J : ¥ — GLy to J : ¥ — GLy by

J(2) z€X
a)le  2€0D, (2.52)

J(z) = ¢ (2 —
(z—b)"Kv € 0D,

and then solving the RHP f+ =T_Jis equivalent to finding the Schlesinger transform I' = T’ { abl;
apB

indeed T exists if and only if r exists, and in such case they are related as

- — ¢)leKe D.
B {(z ¢) z€D, ceC (2.53)

1 z€C\D.

Consider the associated Malgrange differentials exactly as in (2.41).

Let us stress that the deformation § now acts also on the parameters A, B; of course it is always
understood that this infinitesimal variation does not move the disks D,, Dy, but just act on the jump
matrix J.

We want to find an expression for the difference of the Malgrange differentials akin to that of Prop.
2.4.1. The first (easy) part is the following computation.

It is convenient to introduce P : 0D — GLy as

P(2) := (2 — c)keKe (2.54)

for z € D, ¢ € C. In this way we have

= JJ(z) zeX
(@) = {P(z) z € 0D. (255)

Proposition 2.4.2. We have

Q-0= 7{ tr (R™'R'§(CP)(TP)~ ' +T'I"6PP) d—z. (2.56)
oD 2mi
where D is defined in (2.51) and P is defined in (2.54).
Proof. We have, using (2.55),
o 177 _1\ dz 17V _1\ dz —1v _1y dz
G-0= | w (T os ) ot ¢t (FTaPPY) 22— [ o (DTTL00070) 25 (257)
» 2mi oD 2mi » 2mi
and then using that I_ =Rl (as we are always on the — side of dD) the above is rewritten
~ d
Q-0 :/ tr (RTRT_6JJ7'T_) —
) 2mi
—1 “1pe1y 4z —1pv _1y dz
+ tr (R7'RT_6PP™'TZY) — + tr (PZ'T_6PP™) —=. (2.58)
oD 1 oD 2mi
The first term can be rewritten as follows; introducing the jump operator Ax[F] := F} — F_ we have
I_6JJ'T'"' = Ag(6TT ). Moreover by Cauchy theorem
—1pr -1 dz —1p/ _1y dz —1p/ —1y dz
tr (RT'RT_6JJ 'T_) —— = [ Ag[tr (RT'ROIT )] —==¢ tr (R'RIT ") —— (2.59)
> 2mi » 1 oD 2mi
and the proof is complete. |

The characteristic matrix. We wish now to find conditions under which there exists a rational
matrix R for which I’ = RI provides the solution to the general twisted problem described above.

This rational matrix R is defined, analogously to the examples examined above, by its expansions
near its poles and zeros. Therefore it is natural to consider the following (more general) setting as follows;
let T' be a collection of formal germs of analytic functions at the points ¢ € C and at oo of the form
F=1+0(z"1).

We seek a rational matrix R such that:
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R1: R(z) is analytic and analytically invertible for z € C\ C;
R2: R(2)['(2)(z — ¢)~Fe=Ke) is a formal analytic germ for every ¢ € C \ {oo};
R3: R(2)T(2)zbeKeo =14 0(271) as 2 — 0.

The solution R to such problem is unique (by an application of Liouville theorem). Let us now
translate this problem into a finite dimensional linear problem.
To this end introduce the Hilbert space

H := L*(0D,dz) @ CV (2.60)

where its element are row-vector valued L? functions on 9D; as D is a disjoin union of disks, H decom-
poses as an orthogonal direct sum of the Hilbert spaces L?(0D,,dz) ® CV for ¢ € C. Hence an element
of H is a collection of Fourier expansions for every circle centered at ¢ € C; accordingly, let us introduce
the spaces ﬁ+, H_ C H where elements of ﬁ+ (resp. H ) have only nonnegative (resp. negative) Fourier
modes in L2(0D,,dz) for all ¢ € C. ﬁ+, H_ are mutually orthogonal, and let +C1. the associated Cauchy
projectors;

—

(CLF)(z) = ?i 1 @f@df (2.61)

- Zi)Qﬂ'i.

Introduce the finite dimensional spaces
V=0 (ﬁ+(PP)‘1) . W=0o (fLrP) (2.62)

where P is defined in (2.54).

Remark 2.4.3. Let us comment once for all on the following point (which will be relevant in the ap-
plications). It is convenient to allow both X to extend to oo and oo € C. Recalling that we are assuming
J=14+0(z") as z = o0 along %, in this case T is only formally analytic at oo, namely it has an
asymptotic expansion in the sense of Poincaré and not a properly convergent Taylor expansion; even
though strictly speaking the spaces V,W are not properly defined as ﬁ+(FP)’1 Z ﬁ+ and similarly
ﬁ+FP g Ebr (i.e. the series are not necessarily square-summable), however we interpret Cy as the
projectors on the nonnegative (+) or negative (-) tails; moreover, strictly speaking, the integral represen-
tation (2.61) of Cx cannot be used in such case. All the results below clearly extend to this case with no
modification and we will omit any further remark of this kind.

It is convenient to introduce the local parameters, for ¢ € C,

{Zl —¢ eF oo (2.63)

ol Cc = Q.
z

Lemma 2.4.4. The spaces V,W have the same finite dimension ) trL, =), tr Ky. More precisely,
they admit bases as follows;

V= @ (Cva’a’g, W = @ (Cwb”&k (2.64)
acA beB
1<a<N 1<B<N
1<0<ly o 1<k<ly 5
where
. _ _ eI 1z

s = O (Galea) = OP) ) = O (5t ) (269

. _ €
wy, g,k = C_ (@ﬁ(zb)kb,ﬂ kP) =C_ ((zb)k55b=°¢> . (2.66)

The proof of this lemma is immediate, we refer to [BCc| for more details; let us note however that in
writing the basis for W we have used the fact that ﬁ+ = ﬁ+F_1 as I' is a collection of formal germs of
analytic functions for all ¢ € C, and therefore H,T'P = H, P.

Introduce the linear map

G: VoW :¥— C_(vI'P). (2.67)
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Proposition 2.4.5. The map G is well defined. It is invertible if and only if the rational matriz R
satisfying R1, R2, R3 above exists; in such case the inverse G~ is expressed in terms of R as

G '(w)=C_(w(RTP)™HR (2.68)

and the rational matriz R is expressed in terms of G~1
R(z)=1-G Y(C_(T'P)) (2.69)
where in the last term we mean the matriz formed adjoining the rows G=1(C_(€,T'P)) fora=1,...,N.

For the proof we refer to [BCc].

Hence the existence of R is equivalent to the invertibility of the linear map G. We shall now follow
loc. cit. and prove that the determinant of the linear map G with respect to the bases of Lemma 2.4.4
provides the difference of the Malgrange differentials (2.41).

It is almost immediate to write down the matrix G = (G(a7a7g)7(b757k)) representing the linear map G
with respect to the bases of Lemma 2.4.4 (up to a reordering of the basis for W)

Voot = Y, Ga) b8k W3k 5kt (2.70)
beB
1<B<N
1<k<hy g

as

(F_l(w)r(y))ﬁa
G0, (b.p.k) = TeS TCS () E=5e (w0p ) F =000 (w — 1))

Proposition 2.4.6. Denoting again § the differential in the parameters of the original RHP for T (if
any) and in the location of the points c € C, we have

dwdy. (2.71)

dlogdet G = tr (R™'R'§(CP)(TP)~ ' +T~'I'éPP™) %. (2.72)
oD ™

For the proof we refer to [BCc].
Finally, combining Prop. 2.4.2 with Prop. 2.4.6 we immediately get the following result regarding the
difference of the Malgrange differentials (2.41).

Theorem 2.4.7. We have _
Q—Q=/logdet G. (2.73)

Rational dressing. For later convenience we consider a very similar situation, where we dress a RHP
I'n=T_Jto F+ =T_J with J = D=1JD with a rational diagonal matrix D. We leave full generality
at this point and shift the focus to the case which we will need to consider in the applications of the
following chapters, that of a polynomial diagonal matriz D.

Fix n points za.1, ., Zam, (@ =1,..,N, n:=ny + ..+ ny) in C\ X and consider the polynomial
diagonal matrix

ni nN
D = diag H zZ—215), H z—2zn;) | - (2.74)
j=1 j=1

Let us also assume that all the points 2o ; (o =1,...,N, j =1,...,n,) are all distinct; this is just to
simplify the exposition, and the final result Thm. 2.4.8 below extends to the case of coalescing points in
the sense of the limit.

Given a RHP I'y = I'_J posed on a contour ¥, I'(z) = 1 + O(271) as 2 — oo, consider the dressed
RHP

~

T, (z) =T_(2)J(2), z€ %, [(2)=14+0(:z""), z— (2.75)
where J := D~1JD.
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The matrix R := GD~'T'~! has no jump at X, hence it is a rational matrix. Moreover, this is nothing

new with respect to the general Schlesinger transformations studied above. Indeed ' =Ty 4 5 } := Rl =
L K

D1 is the Schlesinger transformation corresponding to the data

A = {zeros of D71(2)} = {o0} (2.76)
B = {zeros of D(2)} ={23;: B=1,..,N, j=1,...,n} (2.77)
with (recall the simplifying assumption of distinct points z4, ;)
loo,a = Na, a=1,..,.N (2.78)
ko, =1, B=1,.,N, j=1,..,nga. (2.79)

We can therefore use the previous results to compute the difference of Malgrange differentials (note
the difference with (2.41))

O:= /Etr (F:l(z)FL(z)éJ(z)J_l(z)) %
Qﬁiéu(ﬁ?@ﬁL@wﬂ@f4@0§% (2.80)

in terms of the n x n characteristic matrix (2.71) associated with this type of Schlesinger transformation,
which reads

y I W) (Y)) 4, v (T (26.0)T W) 4

Gy iy = res res dwdy = — res dy 2.81
009 = S o= 20— y) T =
where the indexes are o, 8 =1,...,N, £ =1,...,n4, j =1,...,ng.
Theorem 2.4.8. We have
~ det G
Q- Q=dlog ( — )
Hﬂ:l A(Zﬁyla ooog Zﬂ,nﬂ)
+/ tr (D~'D'JD~'6DJ' —D™'D'D~*'6D+ D 'D'6JJ"' — D~'6DJ ') % (2.82)
» 1
where A(2g,1, .-, 28,n5) = H1§j<j’§n5 (28,5 — 28,5)-
Proof. We start by computing, using I = R['D and J = D~1JD,
"' =D 'T"'R'RT_D+D'I"'I" D4+ D 'D (2.83)
6JJ '=D'JD'6DJ'D - D '$D+ D'6JJ'D (2.84)

hence tr (f:lf’_ 6jj*1) is expressed as

tr(J'T'RT'RT_JD 6D ~T'R'RT_6DD ' +T_R'RT_6JJ !
+J T2 JeDD — T2 T 6DD 4+ T2 T 5T !
+D'D'JD"'%$DJ ' —D'D'D'$D + D7'D'6JJ )

and using again the jump operator Ax[F|:= F, — F_, the identities

I =I"J+T_J, T_0JJ'T" = Ag[6TT ] (2.85)
and the cyclic property of the trace we compute
Q-0 :/ tr (Ag[['R'RTD 16D + R7'R'6TT' + T7'T"D~16D] (2.86)
2
—J YD %D +D'D'JD DSt — D 'D'D'6D + D—1D’5JJ—1)% (2.87)

2mi
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Note that T"'R™'R'TD"16D + RT'R/STT~! = R~'R'6(T'D)(I'D)~!. Moreover the integral over % of
the jump can be rewritten thanks to Cauchy theorem as

/ tr (Ag[R™'R'§(D)(I'D)~! +r*1F’D*15D}d—Z, = 7{ tr (R™'R'§(I'D)(I'D)~* +F*1F’D*15D)d—z,.
> Tl oD 271
(2.88)
Summarizing, we have proved
Q-0 :% tr (R"'R'6(I'D)(TD)~* + r*lr’DflaD)d—Z.
oD 2mi
+ / tr(—=J 'J'D 6D+ D 'D'JD"'$DJ' — D 'D'D7'6D + D*1D’5JJ*1)¥ (2.89)
» Tl

Our goal is to compare this expression with the expression (2.72) of Prop. 2.4.6. To this end let us
introduce the diagonal matrix U (piecewise defined on D) according to D = PU and note that U is by
construction regular in the interior of 9D. Therefore we analyze the two terms in (2.72).
o tr (I I"6PP~1) = tr (I VDD~ 1) — tr (I ~'IV6UU 1) and the last term is analytic in D there-
fore by Cauchy theorem

d d
f tr (0-'6PP~Y) = = 7{ tr (0~'I6DD ™)~ (2.90)

oD 2 oD 2

1 1

e Inserting D = PU we have

tr (R"'R'6(I'D)(TD)™ ) = tr (R"'R'S(TP)(TP)~ 1) + tr (R‘lR’FPéUU_lP‘1F‘1)¥ (2.91)

i
hence let us introduce Ry = RI'P, which is analytic in D by construction, so to write

tr (R™'RTPSUU ' P'T™) = tr (RI' R, 6UU ) —tr (L' TVSUU ) —tr (P~ P'SUU ) (2.92)
and in the right side of the last identity the only term which is not analytic in D is the last one,

and therefore we have
dz

d
?{ tr (R™R'§(DD)(ID)~1)~= :]{ tr (RT'R'§(TP)(TP)~! —tr (PTIPSUUY)) (2.93)
oD 2mi oD 2mi
Summarizing again, comparing with (2.72) we have proved
~ d
Q- Q=6logdetG — ¢ tr (P PU16U)—=
oD 271'1
d
+ / tr(—=J'J'D7'6D+ D 'D'JD"'6DJ ' — D'D'D76D + D*1D'5JJ*1)2—Z,. (2.94)
p) i
It remains to show that
dz N
74 tr (P PUTSU) = = dlog [[ A(z8.1, s 28m)- (2.95)
oD 2mi 51
To this end we compute
N mng
dZ 1 dZ K’
tr (P~P'UTOU) = = res Bk
%8]3 27 /3z=:1 ; z=zp.k Z — 2B,k k,z;;k 2Bk — %
k’:l,... ng
Yy e
B=1 k,k'=1,....,ng5 2Bk T 2Bk
k#k'
Yy et
321 k:,k‘/zl,.. sna ZB}k B Zﬁ’k/
k<k’
N
= Z 0log(zgk — 2,7) = 0log A. (2.96)

The proof is complete. ]
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2.5 DMalgrange and tau differentials

We briefly outline how the formal situation of the first chapter arises naturally in certain situations where
the jump matrix J of a RHP 'y = I'_J, which depends on parameters J = J(z;t), can be conjugated
to a matrix Jy which is constant in t.

To simplify the discussion let us consider explicitly the case where = of (1.2) has a single pole at
z = 0o, but the following facts admit a straightforward generalization to the multi-pole case. More
concretely, introduce

[1]

(2:6) = Y diag(ti, - tnp)2"s = (tak)azt, N, k21 (2.97)
k>1

and suppose that J has the form
J(z;t) = S Jy(2)e EEY), (2.98)
It follows that W is analytic off ¥ and satisfies the jump condition
U, =V_J (2.99)

hence M = §U¥ ! is a single valued in z differential in t. By Liouville theorem it must be given by the
expression (1.5). It follows also that I" satisfies (1.4); we finally claim that the tau differential coincides
up to a simple term with the Malgrange differential in this situation.

Indeed, using (2.98) we have 6JJ ! = 62 +eZdJods e = — JOZJ ! and so the Malgrange differential
is rewritten as

—11v —1 dz_/ -1y 5= p—11v/ =71 dz
/Etr (PZ'TL67T7) 5= = b (PZ'TL6= — TZITL 0BT ) o= (2.100)
_ 1 dz _ _\ dz
:_/EAE [tr (D7'TY62)] %—I—/Etr (J 1J’6:)% (2.101)

where we use again the jump operator Ax[F| := Fy — F_. By Cauchy theorem the first integral reduces
to the formal residue at z = oo
d
—/ As [tr (T2 T7.62)] == = — res tr (I 'T6%) dz (2.102)
) 2mi z=00
which is the tau differential. Summarizing, we have the following relation between Malgrange and tau
differentials;

/tr (Tz'r6JJt) . (F~'I'62) dz +/ tr (J7'J'62) dz (2.103)
» 27 » 2

2=00 1

Note that when the Malgrange and tau differentials coincide, then we can use the formulase of Thm.
1.2.2 to compute the logarithmic derivatives of the tau function.
Finally, let us observe that if Jy is actually constant, i.e. independent of z, then we also have an ODE

V=LV (2.104)

and we get an isomonodromic system in the sense of [JMU], as explained in Sec. 1.4.2. Moreover, referring
for more details to [Bc], one can formulate a RHP associated with the monodromy data of the ODE
for which the Malgrange and tau differentials coincide in this case (due to particular structure of the
jump matrices the difference term in (2.103) vanishes). Let us stress that this isomonodromic context
was actually the original motivation for the introduction of the Malgrange differential [Mb; Bc]; indeed
the Malgrange differential is a generalization of the isomonodromic tau differential, as it can be used to
encode the dependence on the monodromy data, which must be kept fixed in the isomonodromic setting.
We refer to the original literature for more details about this point.
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CHAPTER 3
Ensembles of normal matrices with
semiclassical potentials

We consider unitarily diagonalizable matrices with spectrum on some contour Y. The set of such matri-
ces is endowed with a (complex) measure ™V M AM , where V'(2) is a rational function (V is termed
semiclassical potential ). Following [BEH] we show that the partition function of this model, as a function
of (the parameters entering) V, coincides with the tau function associated with the standard Fokas—Its—
Kitaev RHP for the (pseudo)orthogonal polynomials associated with the measure eV dz. As applications,
we prove classical formule for the expectation values of products and ratios of characteristic polynomials
and we obtain formule for the correlators of these models; the latter are then applied to the Gaussian
and Laguerre ensembles, for which these correlators have a geometric/combinatorial relevance.
Main references for this chapter are [BEH; BHa; Da; DYb; GGR].

3.1 The partition function and orthogonal polynomials

Let V(2) be a (possibly multi-valued) function of z such that V’(2) is rational, let us say with poles at
21y ey Zm, 00 Of order dy, ..., dp,, doo Tespectively. With a notation similar to (1.2), we write

dy,
> (ZTZZ)IQ + A log(z—2) v=1,..m
V(i) =Vt = Y Vilxmt),  Ve=q5
Y=o > thoo?® v = o0.
k=1

(3.1)

We consider the (complex) measure exptr (V (M;t))dM" on the set of normal matrices (see App. B)
Hy (%) = {Udiag(z1,...,2n)UT: U €Uy, 2z €%} (3.2)

where ¥ is a smooth contour in the complex plane, avoiding branch cuts, if any is needed for the
logarithms in (3.1). We assume that ¥ is a (finite union of) non self-intersecting smooth contour(s),
possibly with endpoints. In the case an endpoint of ¥ is located at a pole z, of V’(2) then:

e if d, > 0 we assume that X lies in the region ReV > 0 in an open neighborhood of z,;
e if d, = 0 we assume Re A\, > —1.

Under these assumptions, the partition function is defined as

N(N-1)

Zn(t) ::/ et (VM) qpr = %/ AQ(zh....,zN)eV(Zl)+"'+V(ZN)dz1 co-dzy (3.3)
Hn (%) | AR L

where here and elsewhere A(z1, ..., 2n8) 1= [[1 <, cp<n (26 — 2a) is the Vandermonde determinant, and we
refer to (B.10) in App. B for the last identity.

11t would be more appropriate to consider the measure e~ V(M)dM | but we want to avoid tedious signs in the formulee
of Sec. 3.5
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This model is intimately connected with the theory of orthogonal polynomials, as we now review?.

These are a sequence of monic polynomials 7o(2), 71 (2), ..., me(2) = me(2;t) = 2° + - - -, satisfying
/Z mo(2)me (2)eV Fdz = hedy e (3.4)
for some hy = hy(t). Note that in particular [y, m¢(2)zFeV(*)dz = 0 for all k < £, and so we also have
he = /Z Zmp(z)eV ) dz. (3.5)
Assuming that that ¢V (*)dz has finite moments
m; = /Ezjev(z)dz (3.6)

(at least for j < 2¢ — 1 for some ¢ > 0), the orthogonal polynomial 7¢(z) = z* +c,_127 1 + -~ + ¢o is
uniquely determined by the linear system

c me mo my me—1
0 m mo N my
D, : = : , Dy := . . ) ) (3.7)
Co_ Mo '
et 2t Me—1 Mygy1 -0 M2e—2
hence by Cramer rule
mo my my
1 mi mo - mMy41
T = — det 3.8
- (33
Mme—1 Mg --- M2e—1
1 AR P

Therefore the orthogonal polynomial 7(z) exists and is unique provided that det D, # 03.
In the following we assume that mg(z), ..., man—_1(2) exist; this is true in a full-measure open set in
the space of parameters t, by the above discussion.

Lemma 3.1.1. Let [ n2(2)eV#)dz = hy = hy(t) as in (3.4), then the partition function (3.3) admits
» e

the expression
N(N-1) N-1

T
=1
N
Proof. Recall the Vandermonde determinant A(z1,...,28) = [[1<ocpen (26 — 2a) = det (zf ) L
=T i,j=
By the properties of the determinant, since m(z) = 2° + ... are monic polynomials, we may write

A(z1,...,z2n) = det (wj,l(zi))f,vj:l. Expanding the square of the determinant in (3.3) we have

N(N-—1)

N
™ 2 o Zj
Zn(t) E (—1)lellet /EN | I 7Ta(j)—1(2j)7fp(j)—1(Zj)ev( J)dzy* (3.10)
j=1

= A N,
|
HZ:I 2 o,peEGN

Due to orthogonality, terms in which o = p give the only nonzero contributions, hence

N(N-1)
T p)
Zn(t) = T|N!h0(t) <o hy(t) (3.11)
[T ¢
and the proof is complete. |

We now recall two fundamental properties of orthogonal polynomials, the three-term recurrence and
the Christoffel-Darboux formula.

2A better name would be pseudo-orthogonal; orthogonality should be understood in the L2 sense, i.e. fz memgreY dz =
h¢ég ¢ Note however that when 3 C R these are really orthogonal polynomials.
3Note that this is always the case when ¥ C R as in this case Dy is a symmetric positive-definite matrix.
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Lemma 3.1.2 (three-term recurrence). The monic orthogonal polynomials satisfy the following recur-

sion, as long as they ezist;
h
zme(2) = mpg1(2) + Beme(2) + ﬁm_l(z), £>1. (3.12)

Proof. As orthogonality implies linear independence, the polynomials 7g(z), ..., m¢(2) form a basis of
the space of polynomials of degree < ¢. The difference zm;(z) — mp41(2) is a polynomial of degree < ¢
hence it must be a linear combination of my(2), ..., m¢(z), let us say

zmy(2) — mog1 (2 Z Bimj(z (3.13)

Then, exploiting the orthogonality property (3.4),

4
1 Z . 1 2
fo = ho /Ej—o Bymj(2)e¥Pdz = o /Z(ZW(Z) —mi4(2))e’Pdz =0

¢
1 1

By = —/ E Zﬁjﬂ'j(z)ev(z)dz = — / (22me(2) — zﬂe+1(z))ev(z)dz =0
hl 2j=1 v hl »

_ -2 V(z) _
Be—o = h£2/z Bim;(z dz =

/( r(z) — 22 mpp0(2)eV Bz = 0
)

he—2
1 1 h
Be—1 = —/ Z Z1Bimi(2)eV Pdz = —— [ (Zfmi(z) — 25 tmpga(2))eV Fdz = L.
he-1 Je 52, he-1 Js he—
where we used (3.5). The proof is complete. |
Lemma 3.1.3 (Christoffel-Darboux formula). For all N > 0 we have
Ni m()m(w) 1 mn(z)mna(w) — v () (w) (3.14)
=0 hg hN_1 zZ—w ' '

Proof. We exploit the three-term recurrence (3.12) as follows;

= me(2)me(w) i e me(2)wme(w) wﬂ'g
Eow) ; he - g =0

_ N me(@)me(w) | ﬂewe<z>/m@e>r+ w1 (2)me(w)

= he he he—1
()T (w)  Beme(z)melw)  m(2)me—1 (w)
he he he—1

N e @mw)  m@)mea () ml2)men (w) | Te=1(2)me(w)

= he he—1 he he—1

but this is a telescopic sum, hence only the term with £ = N — 1 survives (observe that we must set
m_1 := 0 to make the three-term recurrence valid for £ = 0) and so
(Z - w) Nz—l WN(Z)'R—E(U}) _ 7TN(Z)7TN_1(U)) — 7TN_1(Z)7TN(U/) ) (315)

he hy_1

=0
The proof is complete. |
Note the confluent Christoffel-Darboux formula

N-1
mp(2) _ N () 1 (2) — v (2) 7Ty (2)
; = P (3.16)
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which is obtained from (3.14) by taking the limit w — z.

Let us point out that the results exposed here and below (with the main exception of Sec. 3.5) hold
true for much more general weights than e (*) with V’(z) rational in z; our choice is dictated by the
fact that under this assumption the isomonodromic method applies and the results of Chap. 1 become

available. For more general informations about orthogonal polynomials we refer to the literature, e.g.
[Da).

Probabilistic interpretation for real contours. If ¥ is a finite union of intervals in R and V is real,
the measure %etrV(M )dM is actually a probability measure on the space Hy of hermitian matrices of

size N. Using (B.10) the joint probability density of the N eigenvalues z1, ..., 2y can be expressed as*

1 ot V(@ 1
?NA2(I17 cey ‘TJV)GV(II)+ V) - ﬁ det (KN(:CM x]))i\,zjil
= 1
ZN = ﬁhO"'hN—l
where K (z,y) is called correlation kernel and is defined as
N-1
Kn(z,y) == Me%(v(z)ﬂ/@)) _ 1 mv@)mnay) - 7rN_l(gs)mv(y)e%(V(ac)JrV(y))

he hn_1 =y

~
I

0
(3.17)

where we used (3.14) in the last equality. This is the integral kernel of the orthogonal projector of
L?(X,dx) onto the span of Wo(x)eév(x), ...,WN_l(x)e%V(x). The square of a projector concides with the
projector itself, hence we have the self-reproducing property

/EKN(Q:,t)KN(t,y)dt = Kn(z,y) (3.18)

which in turn allows to write all correlation functions of the eigenvalues in a determinantal form

det (KN(miaxj))ﬁjzl
(N—Fk+1) (319

1
pk(xl, ,CCk) = ﬁ /]Rka det (KN(.IIi,IEj));szl da:k_H . 'd.TN =

in terms of the same kernel, whence the name correlation kernel.

Let us mention that (3.19) implies that this statistical model for the eigenvalues is a determinantal
point field, which is by definition a random point field whose correlation functions admit the expression
(3.19) for some kernel, for all £ > 2 [Sc]. For the same reason, appropriate scaling limits as N — oo of
this model give rise to determinantal point fields as well. Finally we point out that all such examples
that we shall encounter belong to the integrable type of Tts—Izergin—Slavnov—Korepin [ITKS].

3.2 The standard RHP for orthogonal polynomials

We now define the standard RHP for orthogonal polynomials of Its—Fokas—Kitaev [IKF]. First off, intro-
duce the Cauchy—Hilbert transforms

~ 1 mp(w)e? (W)
me(2) == 27Ti/2 p— dw. (3.20)

Lemma 3.2.1. We have the Poincaré asymptotic expansion
To(z) ~ S > 1 w g (w)e” ™ dw (3.21)
2mi 201 — 2 [y
J>

as z — 00, uniformly within any sector of C \ 2.

The above with the understanding that if ¥ does not extend to z = co then the expansion is valid in
an open neighborhood of z = oo, and is in particular a Taylor expansion.

4 According to the fact that in this paragraph ¥ C R we use the variable = instead of z.
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Proof. For any J > 0 we have the identity

J-1
1 1 i1 w!
e (3.22)
w—z Z zJ zlw—z
j=0
and so i
1 «— 1 , 1 w’eV ()
7 — > = [ w V) dy = d 3.23
me(2) + o ; P /Ew me(w)e” dw 2m-f/E w—z (3:23)
In any open subsector at z = oo of C\ ¥ the above remainder can be estimated as
1 w,]eV(w) 1 1 wJeV(w)
dw| = — dw| < K27 3.24
27‘(12"]/2 w—z w‘ z I+l 271’/2 1-% w‘ : (3:24)

for some K depending on the opening of the subsector and J only. Hence we have proven the asymptotic
expansion
To(2) ~ s Z = aji= —5— Zw]m(w)e “dw (3.25)
J=0

as z — 0o, uniformly within any open subsector of C\ X. Uniformity in all sectors of C\ ¥ is proven by
slightly rotating the contour of integration ¥ at z = oo, thanks to Cauchy theorem. Finally, a; = 0 for
7 =0,...,¢ —1 by orthogonality and the proof is complete. |

In a similar way one can analyze the behavior of the Cauchy—Hilbert transform 7,(z) near the
endpoints of X. When the endpoint is located at a pole z, of V’'(z) then 7y(2) is bounded near z, (and
has an asymptotic expansion which is computed as in Lemma 3.2.1). When the endpoint is not located
at a pole of V'(z) then 7,(z) has a logarithmic singularity.

Next, by the Sokhotski—Plemelj formulae (2.5) we also note that the Cauchy—Hilbert transforms 7,(2)
admit boundary values 7y(z+) for z € ¥ from the two sides of X, and the latter are related as

To(zy) = 7To(2) 4 m(2)e” P, z€X. (3.26)

Introduce the matrix

I(z) = < . 27r7;rN(Z) 2#?]\[’\(2) (2) ) (3-27)

An_1 mN-1(z) — Fin_

omitting the dependence on N. A direct corollary of Lemma 3.2.1 and (3.26) is that I'(z) is the unique
solution to the following

RHP 3.2.2 (Its-Fokas-Kapaev [IKF]).

(3.28)

“IleIe tlle .] LlIIlp IIlatIl:: 18 gl €1 as
I el (Z)

RHP 3.2.2 must be complemented with suitable growth conditions at the endpoints of ¥, provided by
the analysis sketched after the proof of Lemma 3.2.1.

Remark 3.2.3. The growth condition at z = oo in RHP 3.2.2 is not exactly as in the general setting of
the last chapter; the understanding here and in similar situations which will occur below, is that this type
of RHP can be recast in the prototypical form (with the normalization condition T'(c0) = 1) by adding a
Jjump condition on a large circle. More explicitly in this case we take R > 0 and set

. {F(z) 2| <R (3.30)
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which solves the RHP f+ =T_J and f(oo) =1 with the new jump matriz

V(=)
J@):(é 1 ) zenn{z < R}

J(z) == 2Nos |zl =R (3.31)

1 ZQNGV(Z)
2Nos J(2)z=Nes = 0 ) z € XNnA{lz| > R}.

Finally, let us note that det I'(z) has no jump along ¥, and goes to 1 as z — oo, therefore det I'(z) = 1;
in particular
hn_-1

T ()N (2) = Ty ()N () = - (3.32)

Connection with a system of monodromy-preserving equations Note that the jump matrix
(3.29) can be conjugated to a constant matrix

J(z) = ( é evl(z) ) — RV ( (1) } >e'723V(z)' (3.33)
Define
U= U(zt) :=D(z;t)e? V=Y (3.34)
which is a (possibly) multi-valued function, analytic in z € C\ (X U{z1, ..., 2m}). The ratio
L:=vy! (3.35)
is continuous on ¥ because
qu:sz(é 1) \Ifgzm’((l) }) (3.36)
hence
Ly =0 0 ' =0 0 =L_. (3.37)

Therefore L extends to a function which is analytic in z € C\ (90X U {z1, ..., 2 }). Moreover it is easy to
see that L has at worst a pole of order d,, at z = z,, see (3.1), and a simple pole at the endpoints of ¥
which are not located at zeros of V’(z). Therefore L is actually a meromorphic function of z. Similarly,
the differential in the parameters M := §¥¥~! depends rationally on z and by Liouville theorem

oV (w;t)os 4 dw
- T, (w; t) o I3 =1 (e ) 3.38
M VZlZmoowr:egu (w5 6) = =T, (wi t) — (3.38)
Hence the compatible system of linear ODEs
U =LV, oV = MU (3.39)

is an isomonodromic system in the sense of [JMU] (compare with Sec. 1.4.2 and Sec. 2.5).

Here the isomonodromic times t include ¢ ,,2, and the endpoints of ¥. The latter are fuchsian
singularities of ¥/ = LW, whose motion is governed by the relative isomonodromic deformation equations.
This can be used for applications in the context illustrated in 3.1 in connection with gap probabilities
[TW].

3.3 The partition function as a tau function

The following theorem was originally proven in [BEH].

Theorem 3.3.1. The partition function Zy defined in (3.3) coincides with the isomonodromic tau
function of the monodromy-preserving deformation system of orthogonal polynomials (3.39), i.e. the
following relation holds true

dlog Zy = Q (3.40)

where Q denotes the Malgrange differential of the RHP for orthogonal polynomials (3.2.2).
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Proof. We start by differentiating the orthogonality relation (3.4) as
Shy = / 72(2)0V (2)eV *dz (3.41)
b

where we note that the term 2 [, 7(2)0me(2)e” ¥)dz vanishes due to orthogonality; indeed the degree of

dme(z) as a polynomial in z is strictly less than ¢, as my(2) is monic. Hence, using Lemma 3.1.1, we have

g She P TNTN_1 — TNTN-1
SlogZy = —— =Y / “LsveVdz = / Nl N §VeVdz
S R s hn-1

where we have used the confluent Christoffel-Darboux formula (3.16). Finally we see that, using (3.32),

1 - -
7t (T~'r'sJJ—)

Ltr -2 RN TN T Tn (O VeV (1 —eV
2 2rian g own ) \ ey TNe e -1/ \0 0 0 1

/ /
. TNTN_1 —TNTN-1 5VeV
hn-1

and the proof is complete. |
Note that the Malgrange form is invariant under the transformation of the RHP in Rem. 3.2.3.

3.4 Expectation values of products and ratios of characteristic
polynomials

We can provide a first application of Thm. 3.3.1 and of the theory of Schlesinger transformations (Sec.
2.4) giving an alternative proof of the following formula for expectations of products and ratios of
characteristic polynomials, originally proven in [BHa; BDS].

Introduce the notation

FOMD)) = ——

_ tr V(M;t)
= 5w /H e aM (3.42)

for any scalar function f € L'(Hy(X),e" V(M)dM). Note that we are omitting the size N in the notation
(3.42).

Theorem 3.4.1. For any aj,...,ag,b1,...;0, € C\' X with 0 < £,0 < m < N we have

<Hf_1 det(a;1 — M) >
N

T, det(b,1 — M)

(71)@+mngn:1hinjjdt TN-m(a1) - Tn-m(ar) wN,,.n(bl) oo AN-m(bm)
= (]
A(CLl,...,a,g)A(bl,...,bm)

TNye—1(ar) -+ mnge—1(ag) Tnie—1(b1) - Tnge—1(bm)
(3.43)

Note the case £ = 1, m = 0 which recovers the formula of Heine
(det(al — M))ny = 7n(a) (3.44)

expressing the monic orthogonal polynomial as the expectation value of the characteristic polynomial.

Proof. We have

Hf:1 det(M — a,;1) B z
< [T2, det(M — b;1) >N - ;TZ (3.45)
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where

14
ZAN — / Hz;l det(M — ail)etrV(M)dM _ etrf/(M)dM (3.46)
Hy () [[iZ; det(M —b;1) Hy (2)

the potential V(z) being defined by the relation

7e-vio ,_ Lima(z —a0)
) ST (e = 0i) (3.47)
=1 %

Note that V’ (z) is rational again, hence Thm. 3.3.1 applies to Zy and ZAN. More precisely, let J, J be

the jump matrices of the RHPs 3.2.2 associated with the measure eV(Z)dz,e‘A/(z)dz on X, respectively.
Then

S ( 1 eV > 5 ( 1 eV ):D_lJD7 D(z) = ( [T (= =) , ! )

0 1 0 1 0 [[ii(z —as)
(3.48)
so that denoting I', T" the solutions of the respective RHPs, Thm. 3.3.1 implies that
Slog 2N Q-0 (3.49)
ZN
where
d ~ ~ ~ ~ d
0= /Etr (T () (2)8J(2) ] (2)) 2—;, 0= /Etr (F_l(z)F’(z)ciJ(z)J_l(zD 2—7:1 (3.50)

and ¢ is the differential with respect to all parameters t, aq, ..., ag, b1, ..., by, This is precisely the setting
of Thm. 2.4.8, hence translating to the present situation we have

§N ~ det G
log—=0-Q =941 51
dlog ZN 0log (A(ala ~-aaZ)A(b17 7bm)) (3 ° )

(all the other terms in the statement of 2.4.8 vanish due to the structure 1+strictly upper triangular
of the jump matrix J). Here the matrix G is found directly from the general form (2.81)°; it has the
structure

G =(A|B) (3.52)

where A = (Ag ;) (k=1,...,0+m,j=1,...,0) is a ({+ m) x £ rectangular matrix with entries

yN (I (0T (y))
y=o00 Y —aj

22 4y (3.53)

while B = (B ;) (k=1,...,04+m,j=1,...,m) is a ({ +m) x m rectangular matrix with entries

—N+Ek—-1 Ffl b\ T
Bij = — res Y ; b( D)y, (3.54)
res. =,

Therefore the entries of A are found from the expansion as y — oo of

(Fil(aj)r(y))m _ 21 v (aj)TN-1(y) — nv—1(a;)7Tn(y) (3.55)
Y —a; hn_1 y—aj ’
and those of B from that of
(CHOITW)y, 2w an(@)Fn-1(by) — v -1 (y)7n (by) (3.56)
y—b; hn-1 y—b; . -

It is convenient at this point to interrupt the proof and to state and prove the following consequence of
the Christoffel-Darboux identity.

5With a minor modification due to the expansion T'(y) ~ y™V?3 as y — co; here we are really using the RHP as formulated
in Rem. 3.2.3.
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Lemma 3.4.2. For all N > 0 we have

N-1

1 WN(Z)%N_l(w) — WN_l(Z)%N(’LU).

T (2)Tk (W) _
Z k hkk _

k=0

hn-1

zZ—w

(3.57)

Proof of lemma. Let us start from the right side of (3.57) and apply first the definition of Cauchy—
Hilbert transform and then the standard Christoffel-Darboux identity (3.14);

1 anv(@)an_1(w) — N1 (2)TN (w)

hyn_-1 Z—w

:L/ 1 an()anva (W) —mn-—1(2)an (W) v,
2mi hN 1

dw’

(z —w)(w' —w)

2)Tn—1(w

/hN1

)—7TN,1(Z)7TN(’LU/) ( 1 1

Z—Ww

!/

~ o Z/ (w — Z_1w> (2 )th( W) V)’ — %Zk(w)

where in the last step we have used that [, m(w

eV @)’ = 0.

(3.58)
(3.59)

(3.60)

(3.61)

Let us return to the proof of Thm. 3.4.1. Due to (3.55)-(3.56) and to the lemma, the entries of A are
to be found from the expansion at y = oo of

hn_-1

and those of B from that of

2mi wn(y)TN—1(bj) — mN—1(y)TN

hn_-1

Therefore, using 7% (y) =

y—bj

— ey k=11 4+ O(y~!

)) (see Lemma 3.2.1) and 7 (y) =

: ~ ~ N-1 ~
2mi mn(aj)TN-1(y) — mv-1(a)Tn(y) _, T T (a;) 7k (y)
Y —aj P b
Nl )R
= —27i k
k=0

(+0(

(3.62)

(3.63)

1), the

formula of the statement follows, up to an integration constant independent of the a;’s and b;’s; this
constant is uniquely fixed analyzing the behavior for a;,b; — oo, again using the same asymptotic
expansions for my, 7y of large argument. More explicitly, for a;,b; — oo we have

Hle det(a;1 — M) H§:1 a; N
[T, det(bit =) /" \TT)Z, b

and
TN —m(a1) TN —m(ar)
det : :
7TN+271(01) TNA£— 1(az)
a11V—m é\/ m
~ det : :
af[”_l aéVH_l
m ay’
~T] (_ hg‘1> det :
=1 m N44—1

~

%me(bl) Wme(bm)

TN+e—1(bm)

hN an N+m—1
2mi

%N+Z 1 (bl)

hN mb—N+m 1
27i

hN+z 1b—N ¢ hN+€ lb—N l

2mi 27i
N N+m—1 —N+m—1
ay bl bm
det :
N+€ 1 —-N —N
al b; b

I1; Yo

_ ([ 1=1% H( Nj>( 1D A

- m - P - A 1,...,&[)A(b1,...,bm).
<||j_1 bj> e 2mi

The proof is complete.

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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3.5 Connected correlators

Using the formulze of Thm. 1.2.2 we can provide expressions for the logarithmic derivatives of the partition
function (3.3). Let us first comment on the interpretation of these derivatives; indeed

O"Zn(t .
N(t) / tr (M — z,,) 7" - otr (M — 2, ) Fre" VI g (3.69)
atkl,vl e 8tkr,l/r Hy (%)
where we agree that
(M — 2,)7% := M* when v = . (3.70)
Therefore, using the notation (3.42),
1 0" Zn(t
n(t) =(tr (M —z,)) "t (M = 2,) %) (3.71)

ZN(t) Otiy v, - O,
Recalling the formula
d
J" log Z _ HiGIT/M Z
Ve Wi > C AN | | (Z) (3.72)

‘P partition of {1,...,r} IeP

for logarithmic derivatives and introducing the connected expectation values

(fiy oo fr) = > ()P (P - H<Hfz>, (3.73)

‘P partition of {1,...,r} IeP \iel

we have
0" log Zn (t)

atk17’/1 T atkm’/r
We call (tr (M — z,,) "% - tr (M — zyr)*kr>c connected correlators. E.g.

Olog Zn(t)
Otk 0

0?log Zn(t)

Otk .10 Oty v,

= (tr (M = 2,,) ™", ot (M = 2,) ) (3.74)

= <t1" (M - ZV1)7k1>C = <t1‘ (M - ZV1)7k1>a

= (tr (M — z,,l)_’“,tr (M — Zl,2)_k2>c

= (b (M = 2,) 70 (M — 2,)7") = (tr (M — 20,) 7" ) (b0 (M = 2,) "),
93 log Zn (t)
6tk1,,,18tk2,,,28tk3,,,3

= (tr (M — zyl)_kl,tr (M — z,,z)_kQ,tr (M — zl,B)_k3>c

= (tr (M — 2,,) "1tr (M — zl,z)_]”tr(M — z,,S)_k3>
= (b (M = 2,,) M (M = 2,,) 7" (b0 (M = 2,5) ™ k3>
= (b (M = z,,) M (M = 2,,) ) (b (M ZVz) %)
= (tr (M = 2,) 772t (M = 2,,) ") (tr (M = 2,) ™)
+ 20t (M = 2,) M) (tr (M = 2,)72) (tr (M = 2,) "),

From Thm. 1.2.2 we obtain the following formulee for the connected correlators. Let I' be as in (3.27)
the solution of the RHP (3.2.2), and introduce the matrix R = R(z;t) as®

. hN 1 2mi g3 27 7TN—1%N —WN%N
R:=d 1,— r=3r-1q = — — = 2 3.75
1ag( T 27 ) 2 1ag( hN_1> 2 hy_1 \ TN-1TN-1 —TN_1TN ( )

where we use (3.32), and the functions

S1(z;t) := tr (F_l(z;t)F'(z;t)%) , (3.76)
Sr(zla ez t) === Z (R(’Z‘T(l)’t) U R(Z”(T)’t)) B 1 57’,2 (377)

r 52 Go) = Zo@) (Fo(r-1) = 20() (o) — 20n))  2(21 —22)%

61t is convenient to get rid of some constant (in z) factors in the matrix I'Z3T'~! by conjugation with a constant
diagonal matrix; this transformation does not spoil the formulae of Thm. 3.5.1, as it is follows by the Ad-invariance of the
trace.
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Theorem 3.5.1. We have

dzp---dz
tr (M —z,)) " tr (M — 2, )7 k) = S (21, ., 2p r
< I'( Z 1) I‘( Z r) >c erzezsul zlleSVl (Zl Z )(Zl — Zul)kl . (zr — Zur)kT
(3.78)
where S,. is defined in (3.76)-(3.77) and, as above, we agree that w_lzu == w for v = oo.

Applications of this Theorem to the Gaussian and Laguerre Unitary Ensembles are considered below.

3.5.1 Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble (GUE) is the statistical model of a random hermitian matrix of size N
distributed according to the probability measure

1 M?2
_ t ——— ) dM. 3.79
ZE(0) P ( 2 ) (3:79)

The normalization Z$VE(0) is a gaussian integral;

28%0) = [

H

2

M 2
exp tr (_2) dM = / i e*% S M= cachen |1Wa,b|2dM = \/iN\/?rN . (3.80)
N RN

The monic orthogonal polynomials are given in terms of the Hermite polynomials”

me(z) =27 % H, (é) — (~1)e* <§;ef). (3.81)

The last identity is the Rodrigues formula; using it and integrating by parts we obtain

Foeo 22 too 2 gt 0 k<t
K - _ —z k _
/_Oo Zmi(z)em T dz = /_Oo ¢ (dzez ) == {\/%E! k=4 (3.82)

Hence we have proven the orthogonality property (3.4) in the form

N‘N

+oo 2
/ m(z)m/(z)ef%dz = QWEECSLW (383)

ie.
he = V2wl (3.84)

We have a linear ODE (compare with (3.39), the parameters are absent for the time being)

iv2m z

(N-1)T 2

_z iN!
U'(2) = L(2)¥(2), L(z):( g m) (3.85)

for the matrix

= 26—7203 2) = ) WN(Z) .%Nfl(z)
U(z) :=T(2) ;. D(2):= ( Sy () AN () ) (3.86)

compare with (3.27) and (3.34). The linear ODE (3.85) has an irregular singularity of Poincaré rank 2

at z = oo and no other singularity; the irregular singularity is generic in the sense of Sec. 1.4.2, as the

leading order at z = oo of L is %* which has distinct eigenvalues.

Proposition 3.5.2. 1. We have the explicit formal expansion
(71)]‘N! i - n .
1 2751 (N—25)! 2z (2.7 1)"(2] + 1)N No
D)~ 5 ( EE (1Y (2j— D2+ x s = (3.87)
j>0 z 2 (N—=2j—1)! (N=1)!

as z — oo within any of the two sectors in C\ (—oo,4+00).

"The notation Hey(z) is also used in the literature for the monic orthogonal polynomials 7,(2).
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2. We have the formal expansion

3 1 NAyny —2NByni1
# Y (R A (359

where

Ay = (20+ 1) zé:%' (E) ( .N ) = NQ20+ 1) Fy (757N 2)

= J+1

Byn = N(2¢—1)! ZK: 27 (6) <N N 1) = N(2¢ - Dl F (417N ]2).

=\ J

as z — oo within any of the two sectors in C\ (—o0, +00).
Proof.

1. The first column follows from the formula
)y 1
S
Z 2]3 z 27 (3.89)

for monic Hermite polynomials. For the second column let us apply Lemma 3.2.1, Rodrigues formula
(3.81) and integration by parts to compute

= o (w)e %
7e(z) ~ — 27r1z£+1§ zﬂ/ w? T (w dw

+oo w w2
_ j w?
27 z“‘l Z 2d / (dwéw > T dw
1 (+ 1 w2
= _ﬁzeﬂ Z 2 / we™ = du.
Jj=0

— 00

In the last expression we see that j must be even; redenoting 5 — 25 and using the gaussian integral

/m w¥em s = 2r(2j — 1) (3.90)

— 00

we have

_ i1 (25 — D)N(25 + 1),
~ - 3.91
71—E(Z) \/ﬂ S+1 ]go 227 ( )

from which the expansion of the second column of I" follows too.

2. The statement follows from (3.89) and (3.91). For instance for the entry R1; we have to compute

2ri 2ni Z 1 (=1 (2k— D2k + 1)
_ e A
hy_1 NN T T 1\/27r 22G+R+2 2551 (N — 1 — 2j)!

—7)=DN2¢-75+1)
Zz2z+2z QJJI j(N—1—2j)!J -

£>0

—erony st e () (30)

€>0

where in the last step we used trivial simplifications, e.g.

(2(€—4))! U—gN'CUl—j)+ N _ (N+2(0—3)
Q=7 - =352 i(e =3y (N —1—2j)! N‘( 20+1 ) (3:92)
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and then replaced summation index j — ¢ — j. Now in principle

¢ )
_ O\ (N +2j5 N 01y N 4N
_1\¢—J — 1 2T 2 2
2 (-1 (j)(%—i—l) (2£+1)“<2£+1)3F2( Yooy

=0

1) (3.93)

but we have a nice simplification to a Gauss hypergeometric function;
¢ ¢
N +2j (L N
27 = NoFy (517N 12). 3.94
2 ()G -2 () (T - ma . o

To prove (3.94) we note the identity

0
Bk =BB+1)---(B+k—-1)= %xf’“@*l (3.95)
r=1
so that the left side of (3.94) is
¢
N 25 d2€+1 N 1— 2\¢
> (-1 ") =y v l-a) (3.96)
2041 dz2ttt (20+ 1) | _
j=0 x=1
hence it must be equal to (changing variable z = 1+ y)
(1 4+y) N2y + 97 42+t > Z 0 ( ) ( ) s+20—j
dy2iH1 20+ 1)! o (Qg + 1)1 dg2t+t S »
I
= (-1)'NFy (75N 2).
() -
This proves the statement for the entry R;1. The other entries are computed likewise.
|
Consider now the deformed GUE partition function
2 .
ZCUE(t) = / o (S M) g, ) (3.97)
Hy

assuming that ¢; = 0 for j > 2K for some K > 1 and Retox < 0 so that the integral in (3.97) is well
defined; the results below are unaffected by this arbitrary truncation of the times. The deformed GUE
partition function serves as a generating functional of connected correlators of the GUE. The following
result, originally proven in [DYb], follows directly by the results of this chapter, and it provides an
effective way to compute the generating function (3.97).

The interest of this result is that the deformed GUE partition function (3.97) is known to be related
to the enumeration of ribbon graphs on surfaces [Hd; BIPZ], see also [DYb, App. A.3]. This connection
is expressed, for ki, ..., k. > 3 as

[%]

N
(tr MP e ME)SVE = N N2, (ky, o ke), (R = ket Ry (3.98)
7“. 950
where 5 CUE
"log ZSYVE(t
(tr M™ ... tr M) SUE .= (%Og—Nat() (3.99)
RTINS
and
1

ki, k) = 3.100
ag( 150 ) Z |AutG| ( )

connected oriented ribbon graphs G of genus g
with r vertices of valencies k1,...,k,

where | Aut G| is the order of the automorphism group of the ribbon graph G.
Introduce the (formal) generating functions (for r = 1,2, ...)

(tr M*: ..., tr MFr)GUE
]:EUE(Zh ey 2p) = Z TS B c . (3.101)
bitl .k
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Theorem 3.5.3 ([DYDb]). We have

[ (Rii(w) — %) dw r=1
tr (R(zl)R(zz))—l _
]:rGUE(Zh...,Zr) = (21—22)2 r=2

1 Z : tr(R(Zw(l))"'R(zw(r))) r>3

r 2 Zr(1)—2n(2)) (Zr () —Zn (1)) =

where R(z) is identified with the formal series in the expansion (3.88).

Equivalent formule for the cases r = 1,2 were given in [HZ; MS]. Note that the case r = 1 boils down
to the explicit expression

14
o 120\ CUE _ _ il N _ _ By (—b1N
(tr M) (20 1)!!;2 (;) (j+1) (20— D)IN o Fy (~51-N2). (3.102)

Let us make the trivial observation that this reduces for N = 1 to the usual scalar gaussian integral
(3.90), where ribbon graphs are not weighted by their genus. We also note that we have the well-known
planar limait

RGO e RO,
N NET (z) (3.103)
to the Catalan numbers, moments of the celebrated Wigner semicircle law [F]; this follows by the trivial
. G41
estimate (jjil) ~ % for large N.

Proof. Let us first consider the case r = 1. By Thm. 3.5.1 and definition (3.76) we have

= — res tr (F_I(Z)F'(z)%) 2Fdz = — res tr (L(z)R(z)S) ZFdz (3.104)
£=0 Z=00 2 zZ=00 2

where L is given in (3.85), R=T%I"" as in (3.75), and we use the identity
I =IT — grag. (3.105)
Note therefore that, denoting FCUE =: F; for short,
Fi=tr (LR) + % — (tr (LR)), (3.106)

where we have to subtract the singular part at z = oo of tr (LR) = —% + (tr (LR)), + O(z~'), denoting
(tr (LR)), the constant term. Here we are identifying R with its formal expansion at z = co. Taking one
derivative in z we obtain

1
Fi=tw (UR)+ 5 (3.107)

as, due to R' = [L, R], tr (LR') = tr (L[L, R]) = 4tr ([L?, R]) = 0. Finally, we have L’ = —%, see (3.85),
hence

1 1 1
Fi=—gtr(o3R) + 5 = — (Ru - 2) (3.108)

where we use tr R = 0, which integrates to the claimed expression for FZUE.
The cases r > 2 follow from Thm. 3.5.1 by the following computation;

Z <tI'Mk1,...,tI‘MkT>SUE

Pt = ) = ki1 Bt 1 (3.109)
kiyeskr>1 Z1 cr 2
res - res Sp(E,.., & )ERde - hrde,
B Z . ki1 Tt 1 (3.110)
k1,..okr>1 Zq ez

=5:(21y 0y 21) (3.111)
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which is the desired formula, by definition (3.77). |

E.g. we have

3
(tr M, tr MO, tr MO)SUF = 3600(3421N? + 4803N* + 1160N° + 60N®) = 3IN® >~ N?7294,(6,6,6)
g=0
(3.112)
computing the (weighted) numbers of connected oriented ribbon graphs of genus g = 0, ..., 3 with three
6-valent vertices. For more applications and examples see [DYD].

3.5.2 Laguerre Unitary Unsemble

In this section we review the results obtained in collaboration with Massimo Gisonni and Tamara Grava.
The Laguerre Unitary Ensemble (LUE) is the statistical model of a random positive definite hermitian
matrix of size IV distributed according to the probability measure

1

—=—det* M exptr (—M)dM. (3.113)
ZE(0)

The normalization Z5YE(0) is computed below, see (3.118).

The parameter « will be left implicit. For the time being it is enough to assume Rea > —1; in the
following discussion we can either assume that « lies in a suitable right half-plane of the complex plane
or that o € C\ Z; see Rem. 3.5.5 on this point.

The monic orthogonal polynomials are given in terms of the generalized Laguerre polynomials

4
mo(2) i= (1) 0L () = (1) 2% (ddze(za“eﬁ)) . (3.114)

The last identity is the Rodrigues formula; using it and integrating by parts we obtain

“+oo +o00 4 k
/ Frg(2)2% *dz = / 202 (Clezk) dz = 0 <t (3.115)
0 0 dz Ma+l+1) k=L

Hence we have proven the orthogonality property (3.4) in the form

+oo
/ me(2)me (2)2%e *dz = T (e + £+ 1)0¢ ¢ (3.116)
0

i.e.

hy = OT(a+ £ +1). (3.117)

This allows to compute the normalization Z5YE(0) from Lemma 3.1.1 as

ﬂ_N(J\;—l) N—-1 N(N-1) N—-1
ZWEQg) = — hy =7z r £+1). 11
LR (0) év:ﬁzl}o =m0 E (o +0+1) (3.118)

We have a linear ODE (compare with (3.39), the parameters are absent for the time being)

a NII(N+a+1)
1 N4 2 _ MIM(Nta+1)
U(z) = L(2)¥(z), L(z) = —% 4= L 2mi . (3.119)
zZ i @
(N—DIT(N+a) -N-35
for the matrix
() =T(2)zE7e 37, T(2) = ( () T-a(s) ) (3.120)
N (Nfl)!F(NJra)ﬂN—l(Z) - (Nfl)!F(NJra)ﬂ-N—l(Z)

compare with (3.27) and (3.34). The linear ODE (3.119) has an irregular singularity of Poincaré rank
1 at z = oo and a regular singularity at z = 0, with Frobenius indices +%; the irregular singularity at

z = 00 is generic in the sense of Sec. 1.4.2, as the leading order at z = oo of L is §* which has distinct

eigenvalues. The regular singularity at z = 0 is generic (“nonresonant”) in the sense of Sec. 1.4.2 if and
only if «/ is not an integer (compare with Rem. 3.5.5).
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Proposition 3.5.4. 1. We have the explicit formal expansions
ro~3 L YW Ha—j+ D) —1gplV+ati+ DG+ |y,
J i i (N—1 (j+1)N—
207\ oy GG VH (N + ), (3.121)
3.121
as z — oo within C\ [0,4+00), and
Ny () (a+j+y-,;  Hegity (3.122)
, 2mi (—1)i (N—l) C(a—§) [+ n—1 ’
Jj>0 (N—D)T(a+j+1) j (N-1)ID(N+a)
as z — 0 within C\ [0, +00).
2. We have the formal expansions
(00) (00)
—zN(N + a)B{N, )
2+ N (3.123)
; z+2 < 2By, N) _AE,N
where
’
A(Oo)il lj ¢ N . N - 1 j3 —¢,1-N,1-a—N 1
N '_EZ(—) j (N =Jes1(N + o= jes1 = 7372 N Ztea-N
§=0
¢
B = 07 () v = v o O vt S B
N =g (-1) i ( Je(N+a—j)= é,d 2\ 1—-N1—t—a-N
b=
as z — oo within C\ [0,400), and
0) (0)
—N(N +a)B; vy
S+ ( & 0" (3.124)
£>0 By n (N

where

J4 .
1 O (N = J)esr (N)e41 —01—N,a—¢
— = F. ; ’ 1
d 223 (y) (0= L+ ferr o= O ()

0
¢ .
(0) 1 ¢ (N —J)e (N)e —01-N,a—t
- = _ F. ’ ’ 1
Bew ¢! Z <J) (@ =€+ ) o - £)e+13 ? ( 1~é-N,a+l ‘ )

as z — 0 within C\ [0, +00).

Remark 3.5.5. We have to comment on the nature of the expansions as z — 0. If o is an integer then
the expansions for my contain divergent coefficients; this can be seen in particular from (3.127). However,
if we retain only the non-divergent coefficients we obtain a valid asymptotic relation, up to the order of
the first divergent coefficient. If o is mot an integer, then the expansions are valid in their entirety.

Proof.

1. The first column follows from the formula

ZZ (> +0+1—-3j); zl: () +j+ 1) (3.125)

7>0

for monic Laguerre polynomials. For the second column let us apply Lemma 3.2.1, Rodrigues
formula (3.114) and integration by parts to compute

~ 1 1 1 e j o —w
(D)~ g X / W (w)w e duw
7>0 0
1 1 1 [t/ db
. +-¢ o+l —w
__%72“_12;/ <(ij )w e “dw
7>0 0

1 1 (] + 1)@ oo a+ji+l —w
__%%H;) o | w e “dw.
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Hence

~ 1 1zr(a+j+£+1)(j+1)£
z

>0

from which the expansion of the second column of I' at z = oo follows. For the expansion at z = 0
of the Cauchy—Hilbert transform we reason as in Lemma 3.2.1 and compute, using again Rodrigues
formula (3.114) and integration by parts,

400 ( ) —w +<>o —w
-~ J AT 2
/0 - —dw Z z / wJH dw

3>0

+oo dZ 1
a+€ —w
szJ/ <(Ww3+1>d

7>0
= Z (=14 + l)g/ w7 e dw
0
hence
_1)\¢ )
To(z) ~ !szf(afj)(jﬂrl)g (3.127)
and the expansion at z = 0 is proven.

2. The statement follows from (3.125) and (3.126) and (3.127). For instance for the entry Ri; at
z = 0o we have to compute

Jomi 5 1 ()TN +a+k+1)(k+ 1)

hy—1 530 ZItk+2 ZN — DIN(N 4+ a —j)
vy Z N+a+£—g+1)(f—j+1)N(N;1)
= 2”2 (N +a—j) (N -=1)!
) Z JIN+a—Jlesi(N = jes
= 22“2 (€ = j)!

where in the last step we have used the following elementary identities

- N-1
I(N+a+l—j+1 ) =i+ N N—j
( J ):(N+Ozfj)g+1, (5 ):(, Dest (3.128)
I(N +a—j) (N —1)! JHe =)
This proves the statement about the expansion at z = oo for the entry Rj;. The expansions for
the other entries of R are computed likewise. The expansion at z = 0 is derived in a completely
similar manner.

|
Let us observe a reciprocity phenomenon between the expansions at z = 0, co.

Lemma 3.5.6. We have the identities;

involving the coefficients defined right after (3.123) and (3.124). Here

colfa):=(a—0) - (a—1Dafa+1) - (a+ ). (3.129)
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Consider now the deformed LUE partition function

ZWE(t) = H+det°‘Mexptr —M 4> M| AM, b= (o tog bttty ) (3.130)
N 3#0

denoting HE the cone of positive definite hermitian matrices of size N. Here we are assuming that ¢; =0
for 5 > Ky and j < K_ for some K ,K_ > 1 and Retg, < 0, so that the model is well defined;
the results below are unaffected by this arbitrary truncation of the times. The deformed LUE partition
function serves as a generating functional of connected correlators of the LUE. The following result has
been derived in [GGR] and it provides an effective way to compute the generating function (3.130).
The interest of this result is that the connected correlators of the LUE are known to be related
to weighted double monotone Hurwitz numbers [CDO]. This connection is expressed as follows. Let
M1 > -+ > pp > 1 be a fixed partition of length r and weight |u| := p1 + -+ + .. Substitute the

parameter a by C' := 1+ ; then

w(tr M# e M YEVE =N N2TRICIHTR 20 2 (4 )
Zu g>0
N7 N

(tr M—H | tr MR )EUE — Z

z
w g>0

HZ (11;C)

(C —1)lul+29-2+r

where z, 1= [[,~, m;!i"™ (m; :=multiplicity of 7 in ),

r LUE
(tr M*r L tr MPr)LUE = 9" log Zy ~(t)

c Din. - Ol (3.131)

t=0

and HJ (u; C) (vesp. HZ (u; C)) are the strictly (resp. weakly) weigthed double monotone Hurwitz num-
bers; their definition goes as follows.

First, for u = (p1,..., ttr), v = (¥4, ..., Vs) partitions of the same integer |u| = |v|, define the strictly
(vesp. weakly) monotone double Hurwitz numbers hy (p;v) (resp. hZ(u;v)) as the number of (m + 2)-
tuples (o, 3,71, ..., Tn) of permutations in &), such that:

(i) m=r+s+2g—2;
(ii) «, 8 have cycle type pu, v respectively, 71, ..., T, are transpositions;
(iii) we have a7y -+ Ty = 5;
(iv) @, 71, ..., Tmm generate a transitive subgroup of S),;
(v) writing 7; = (a;, b;) with a; < b; we have

by < -+ < by, (resp. by < - < bp,). (3.132)

Then the weighted double monotone Hurwitz numbers are finally defined as

Hy (1;C) = > hy (s v)C*
s>1 partitions v of length £(v)=s
and weight |v|=vi++vs=|u|
1
HE (1:0) =) > h (s ey

5>1 partitions v of length ¢(v)=s
and weight |v|=vq+-+vs=|u|

It would be very interesting to understand whether mized type correlators (tr M*:, ... tr M*r)LUE
where the k;’s do not necessarily have the same sign, have an analogous combinatorial interpretation in
terms of factorizations in some symmetric group.
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To formulate concisely the result below let us introduce the following (formal) generating functions

1 LUE _ _ 1.\ LUE
Frote) =) g (e MF) ™, FoR(e) = Y A (e M) T

k>1 k>1
1 LUE
F50f(z1,20) = > gy (tr MM Mb2)
S )
LUE 7! k ko \LUE
Fia (21,22) i= Z T <trM or M~ 2>
k1 ko, >1 “1
f(l)_’gE(21,22) Z 2l kel (tr M~ Frer M k2>LUE,
k1,k2>1
and in general for all r =r  +r_>1
1 LUE
LUE L o1k ork,
Frf (e z) = Y T T (tr MLty MRy (3.133)
F1yero ke >1 71 r
where
Ol =...=0p, =+, Op 4l = oo = 0Op = —. (3.134)
Theorem 3.5.7. (/[GGR]) The generating functions (3.133) can be expressed as
LUE L[ 1 LUE L/ 1
Fro (2) = - (Ry(w))yy — 5 | dw, Fop (2) = - (R-(w))y, dw — 5,
Z J, 2 Z Jo 2
tr (R (1) Ry (22) — § r (Re(21)R_(22) — }
UE +\PL) A 2 LUE _ + 2
Fao (21,22) (21 — 22)2 ’ ]: (21,22) = (21 — 22)? 2
tr (R_(21)R_(=2)) — }
UE 2
Fo (21,22) (21 — 22)2 2
and in general
FLE (o) = — | 0 ) o (Rowey (2n 1) -~ Ry (2r(r) __ bre
T r 52 G~ z@)  (Ereen) — Z) (e — ) 221 - 22)°
(3.135)

where r = ry +r_ > 2, &, is the group of permutations of {1,...,r}, and we use the signs o1, ...,0, of
(3.134). Here Ry (z) are the formal series

1% 1 Al —2N(N + « B
R_;,.(Z) - j+z ( 4, N (oo>) ¢,N+1

2 = 22 zB(°°) Ay N
0) (0)
—N(N +a)By 11
R_ S+ ( © O
£>0 B, LN

compare with (3.123) and (3.124).

The proof is below; let us first make a few comments about one-point correlators.

Thm. 3.5.7 generalizes formulae for one-point correlators which are already known in the literature,
see [HSS] for the case k > 1 and [CMOS] for the general case (i.e. k also negative). Indeed, our formulee
for the generating series Fy LUE and Foi LUE boil down to the following identities, for £ > 1;

(br )" = Az == g.Z <£1><N — )N +a—j)e (3.136)

7=0

A 1 {— N—j
<t1“M7£>LUE Z SARE =7 Z < . 1>(CY—(£+‘17)‘|€])2 (3.137)
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In particular, for £ > 1 we have from Lemma 3.5.6

LUE <tr M€>LUE

co(a)

Let us note an equivalent formula to (3.136) for (tr M*)'VE which is more suited to take the planar
limit N — oo in the regime C' := 1 + § fixed. Using the identity (3.95) we rewrite

(tr M) cla) =(a=0)--(a—Dafla+1)---(a+ ). (3.138)

aé aé N N+a($y_1)£—1

—1
(o MY E %Z(_l)j (f; 1)(N DN +a=ile= goas . (3.139)
P .

rx=1,y=1
and then changing variable 1 + ¢ = x,1 4+ n = y the last expression is equal to

1 Z N N+« 012
~ 7 at+1)\ b1 )abit—1—a—pr

§=0,n=0 a,b>0
a+b<i—1

" O A+ N+t En+ e+t
9zt oy’ 14

(3.140)
Then the leading order, in the aforementioned regime N + o = CN, is easily found using the trivial
asymptotics (J,Z) ~ A,i—,k for N — oo; it occurs for the terms for which a +b=/¢—1 as

C’b+1g|2 N L ov+t ; - ¢ )
DIE—b—1)! Z < )<b+ 1> = Ny N C (3.141)

s=1

N£+1

M

:0

involving the Narayana numbers Ny 5 := }(5/1)( ) (£ >0,s=1,..,£), reproducing a result of Wigner

[F]. This is related to the positive moments of the equilibrium measure

Vs ;:c)*(; —T) o (1 VOR (3.142)

The large N limit of negative one-point moments then follows from (3.138); these are related to the
negative moments of the equilibrium measure (3.142).

Proof of Thm. 3.5.7. Again, it follows from 3.5.1, with the definition (3.76)-(3.77). We begin with
the case r = 1. Let us first consider the case k > 1, for which by Thm. 3.3.1 and the discussion of formal
residue expression for the Malgrange differential of Chap. 2 we have

Z=00 Z2=00

= — res tr (Ffl(z)l“’(z)%) 2Pdz = — res tr (L(z)R(z)%) 2Fdz (3.143)

where L is given in (3.119), R = T%I'! as in (3.75), and we use the identity

1 «
/ — J— —_— — —_—
I"=LTI <2 2z> Tos. (3.144)
Note therefore that 1
Frot =tr (LR) + 3 (3.145)

where we have to subtract the constant term tr (— (”3 )2> = —% at z = oo of tr (LR). Multiplying by =z

and taking one derivative in z we obtain
1
(zF10F) = tr ((2L)R) + 3 (3.146)

as, due to R’ = [L, R}, tr (LR') = tr (L[L,R]) = 1tr([L2 R]) = 0. Here we are identifying R with its

expansion Ry at z = co. Finally, we have (L)' = —%, see (3.85), hence

1 1 1
(Z.FLUE) = —itr (o3R) + =" (Rn — 2) (3.147)
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where we use tr R = 0, and the proof is complete integrating this expression.
Similarly, for £ < —1 let us rename k — —k > 1 and consider

0 ]
FTan log ZLVE(t) . = —res tr (F_l(z)f"(z)%) 27 Fdz = — Tes tr (L(z)R(z)%) 2z kdz + %
(3.148)
where we used again (3.144). Note therefore that
1
FoiF =tr (LR) + 3 (3.149)

where this time we are identifying R with its expansion R_ at z = 0. This is formally identical to (3.145)
and so from this point on the proof proceeds exactly as in the previous case.
Finally, for r > 2 we have

k orkr\GUE
LUE _ (tr M7", . tr M)
FE ()= Y T e (3.150)
Fipkezt C1 A
res .- Tes  TeS_ .- res S (€, ey E)ETRIAE, - - - £07Hm dE,
51200 €T'+:OO €T»++1:O § =
= Z SR okt (3.151)
Ky k1
(-1

= )"~ Z R" <1)(Zw(1)) B (zﬂ(r))) _ Or2
e G Zﬂ(z)) “(Zr(r=1) = Zn() (Zn(r) — Zx(n)  2(21 — 22)?

(3.152)

which is the desired formula, where in the last step we replaced the analytic function S, with its formal
expansion for z1,...,2,4 — oo and 2, 41, ...,2, — 0, compare with (3.77). |

For more applications and examples see [GGR].
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CHAPTER 4

Kontsevich—Witten tau function

The Kontsevich matriz integral was introduced by Kontsevich [Kb] as a tool to prove Witten conjecture, as
it provides a bridge between combinatorics of intersection numbers over the moduli spaces of curves and
the KdV hierarchy. In this chapter we review Witten conjecture and and then focus on the interpretation
of the Kontsevich matrix integral as an isomonodromic tau function, following [BCaf; applications of
the isomonodromic approach are effective formule for the intersection numbers first obtained in [BDYa],
which we recall.

Main references for this chapter are [We; Kb; BDYa; BCal.

4.1 Witten Conjecture

Inspired by physical intuition about 2D quantum gravity, in 1991 Witten [Wc] proposed his celebrated
conjecture, establishing a very prolific connection between algebraic geometry and integrable systems.
This conjecture was first proven by Kontsevich [Kb], by the use of the matrix model that now bears his
name; other proofs were later given by Okounkov and Pandharipande [Ob; OP], Kazarian and Lando
[KL], Mirzakhani [Md; Me].

We first introduce the moduli spaces of curves. As there are many excellent reviews [Ha; Lc; Zc; LZ],
and more extended references [ACG; HM] on the topic, we content ourselves with the following brief
overview.

Moduli spaces of curves. Peculiar to algebraic geometry is the study of families [Mh]. Indeed it is
often the case that a parameter space for certain varieties it is naturally a variety (e.g. grassmannians,
conics in the plane). Already Riemann [R] noted that algebraic curves over C (what we call Riemann
surfaces') of a fixed genus g can be parametrized, up to isomorphism, by 3g — 3 complex numbers, as
soon as g > 2. It is natural to expect that the set of isomorphism classes of Riemann surfaces of genus g
carries a variety-like structure of complex dimension 3g — 3.

More precisely, the modern rigorous statement is the following (more precisely, see Thm. 4.1.2 below).
Fix g,n > 0 with 2g—2+n > 0 (stability condition). Then the set M, ,, of isomorphism classes of compact
and connected Riemann surfaces of genus g, with the additional structure of n distinct ordered marked
points on it (the isomorphisms are then required to fix these marked points), carries the structure of a
complex orbifold of dimension 3g — 3 + n.

For the general definition of orbifold we refer to the aforementioned literature, let us just say that
an orbifold is a natural generalization of manifold in the following sense. Recall that the quotient of a
manifold by a free smooth proper group action is a manifold itself (properness ensures the Hausdorff
property). The notion of (basic) orbifold arises lifting the freeness property; somewhat more precisely,
a basic orbifold is a pair (X,G) where X is a connected and simply connected manifold and G a finite
group acting properly, smoothly and with finite stabilizers on X. Then one can define more general
orbifolds by gluing in a suitable way basic orbifolds.

The precise definition is a bit more technical and goes beyond the scope of this basic explanation, so
let us see one example that illustrates the situation.

Example 4.1.1 (elliptic curves). An elliptic curve is a Riemann surface of genus 1 with the choice of a
marked point on it. It is well known that an elliptic curve £ is represented as €, = /;L where A := ZHTZ

1For us a Riemann surface will be a one-dimensional compact connected complex manifold.

65
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is a lattice in C, with 7 € H := {r € C: Im7 > 0}; this is proven by the fact that the Abel map is an
isomorphism in this case. The marked point is given by the class of 0 € C.
Moreover, it is well known that any isomorphism &, — E.+ : z — 2z’ must be of the form

, ar+b , z , a b
= = = — Lo (Z 4.1
T otd T otd a—er), (C d)es2( ) (4.1)
(i.e. a,b,c,d € Z and ad — bc = 1). Therefore we can identify
H
[ — 4.2
M= 51, (4.2)

It carries naturally the structure of (basic) orbifold, as the action of SLo(Z) is proper, smooth, and with
finite stabilizers. It is really an orbifold and not just a manifold, as generically the stabilizer is {1}, but
for the square lattice T = i and the hezagonal lattice T = €'™/3 the stabilizers are bigger, respectively cyclic

0 1 > for the square lattice and cyclic of order 6 generated by < _1 L >

of order 4 generated by ( 1 0 10

for the hexagonal lattice.

Note that we always have to assume 2g — 2 + n > 0; this stability condition ensures that the auto-
morphism group of the Riemann surfaces of genus g with n marked points is finite (compare with Thm.
4.1.2). This rules out the unstable cases g = 0, n = 0,1,2 (with continuous families of Mobius trans-
formations) and the case g = 1, n = 0 (with the translation as a continuous family of automorphisms).
From the point of view of uniformization, 2g — 2 + n > 0 is equivalently expressed as the fact that the
universal cover of a Riemann surface of genus g with n points removed is the Poincaré disk.

There are (at least) two approaches to define the orbifold complex structure on general moduli spaces
Mg, with 29 — 2 +n > 0. One is via Teichmiiller theory [He], the other via Mumford’s Geometric
Invariant Theory [Mg].

The first one is more explicit; basically it realizes M, (usually in this theory n = 0) as the quotient of
the Teichmiiller space (the space of all conformal structures up to isotopy on a fixed orientable topological
surface 3, of genus g; such space is homeomorphic to a ball in C3973 by Bers theorem [Bb]) with respect
to the mapping class group (the group of orientation preserving diffeomorphisms up to isotopy of X,).
This naturally displays a real orbifold structure on M, (stabilizers are automorphism groups of the
curves), and various types of explicit coordinates; with more work one also obtains the the complex
structure.

The second one is more direct, although more abstract, and has the advantage of directly providing
the structure of a quasi-projective algebraic variety to and a natural compactification of M ,,, which we
now turn our attention to.

Deligne-Mumford compactification The orbifolds M, ,, are not compact (compare with Ex. (4.1.1),
about M 1). However they admit a convenient compactification, by adding nodal curves. A nice heuris-
tic explanation of the appearance of nodal curves is obtained considering the simplest case My4 >
[(C;p1,p2,p3,p4)] where C is a rational curve and p; € C are distinct point on it and [] denotes the
equivalence class of the equivalence relation (C;p;) ~ (C,p}) if and only if ¢ : C — C” is a biholomor-
phism such that ¢(p;) = p.

Fixing py = 0,p2 = 1,p3 = oo by a Mdbius transformation, Mg 4 is parametrized by ps = t €
C\{0,1}, and taking the limit ¢ — 0 (which must be defined for any compactification) we obtain p; = p4
and p; # po. However for any nonzero t we have, by definition of equivalence class,

(€PY;0,1,00,0)] = [(CP';0, 7,00, 1) (43)
and in the same limit ¢ — 0 we now have ps = p3 and p; # p4. This suggests that for any reasonable
compactification, the limit ¢ — 0 should include both configurations; this is achieved declaring the limit
to be a singular rational curve with one separating node, and p1,p4 in one component and po, ps in the
other one. For more details about this example see [Zc; LZ].

We now give the precise definition and statement of existence.
A stable curve with n marked points (n > 0) is a tuple (C;p1, ..., p,) consisting of a connected curve
C and n distinct points p; € C, p; # pj, such that



4.1. WITTEN CONJECTURE 67

e (' is smooth but for a finite set of nodes? away from py, ..., p,, and
e (C has no nontrivial infinitesimal automorphisms, or (equivalently) has a finite automorphism group.

The second condition admits a more effective formulation; recall that any curve C' whose only singu-
larities are nodes can be normalized by detaching all pairs of disks attached at a node. By this procedure
one obtains a smooth (disconnected in general) curve, which is called normalization of C, and denoted
C. Then C has a finite automorphism group if and only if any connected component of the normalization
C has genus ¢ and number 7 of marked points (i.e. preimages of the marked points p; and of the nodes
of C) satisfying 2 — 2+ n > 0.

Then we recall the following fundamental result, see the original work [DM] or the more recent
reference [HM, Chap.4].

Theorem 4.1.2 (Deligne and Mumford, 1969). For each g > 0,n > 0 fulfilling 2g—2+n > 0 there exists
a compact complez orbifold Mg, of complex dimension 3g — 3 +n such that M, ,, C ./\/lq n 1S an open
dense Zariski subset. Moreover, there exists a compact complez orbifold C, , and a map 7 : Cyn — Mgn
such that

e the fibers of m are stable curves of genus g with n marked points,

e cvery stable curve of genus g with n marked points is isomorphic to one and only one fiber of ,
and

o the stabilizer at p € ﬂgyn is isomorphic to the automorphism group of the stable curve = *(p).

_In the language of algebraic geometry, the map Eg,n — ﬂg,n is called universal curve, and it realizes
M., as a fine moduli space in the category of complex orbifolds [HM].

Psi-classes. An orbifold vector bundle w : E — X of rank r over a basic orbifold (X, G) (we recall
that this means that X is a connected and simply connected complex manifold and G is a finite group
acting properly, smoothly, and with finite stabilizers on X) is a vector bundle 7 : E — X where F is
also endowed with an action of G on F, lifting that on X in the sense that  is G-equivariant. For more
general orbifolds one makes out an orbifold vector bundle by gluing several of these pieces.

Over M, ,, there are natural orbifold line bundles Ly, ..., £, the fiber of £; over (the equivalence
class of) a stable curve (C;py, ..., p,) being the cotangent line 7 C. There is no problem in extending
these orbifold line bundles to the Deligne-Mumford compactification ﬂgm, as the marked points p; are
away from the nodes, and let us denote L£; also these line bundles.

The orbifold (co)homology ring are defined as the (co)homology ring of the underlying topological
spaces. The main important feature of orbifold (co)homology is the use rational coefficients instead
of integral coefficients. E.g. the homology class of an irreducible sub-orbifold Y of X is defined as
+[Y] € H, (X Q) where Y and X are the underlying topological spaces of the orbifolds Y and X,
respectively, and k is the order of the stabilizer of a generic point in Y. Accordingly, Characterlstlc
classes are rational and not integral; for instance, the Chern class of an orbifold line bundle is a weighted
count of zeros of a generic section, the weight being the inverse of the order of the stabilizer at the zero.
For more details we refer to the literature (see also Ex. 4.1.3).

Let 9; := c¢1(L;) the Chern class of the line bundles over Mg,n introduced above. The Witten
conjecture concerns the Witten intersection numbers

(Tyy = o Ty ) 1= /M e € Q. (4.4)

g,n

In (4.4) the integration over My, on the right side denotes pairing with the orbifold fundamental class
[Mg 5], however the notation as an integral is normal practice in the literature. We agree that in the right
side of (4.4) g == £ (r1+...+ n— n)+ 1 (so that 7' - - -9/ is a cohomology class in the top-dimensional
cohomology space H%9~6+2" (M, ,: Q) and can be paired with the orbifold fundamental class) with the

2A point of C is called a node if and only if it is locally analytically isomorphic to a neighborhood of (0,0) in {(x,y) €
C? : zy = 0}. Locally, a node is diffeomorphic to the disjoint union of two disks glued at the respective origins.
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implicit assumption that (7, ---7. ) := 0 whenever ¢ is not a nonnegative integer or in the unstable
cases g =0,n =1,2.

Example 4.1.3 (elliptic curves and modular forms). The orbifold line bundle L1 — My 1 is easily
described. Indeed, in view of Ex. 4.1.1 it is obtained from the trivial vector bundle

Cdz x H — H (4.5)
by the following lift of the action of SLa(Z) of (4.1);

a b dz ar+b
(d = )= . 4.
(& 0)@an =@ = (S5 ) (16

Sections of L1 are sections of the trivial bundle (4.5) equivariant with respect to the action (4.6), i.e.

T+ b d T+b
F(r)dz = f(+)de = f (ZTICJ CTjd = f (ZTICJ — (cr+d) f (7). (4.7)

More generally, section of tensor powers E?k should satisfy

ke naok . faT+bY  dz®F ar +b\ N
f(1)dz®% = f(r)d""" = f <c7'—|—d> o 1 = f (CT-&-d) = (et +d)" f(7). (4.8)

These are precisely modular forms of weight k, with respect to the full modular group SLa(Z) [Za).

This picture can be extended so to include the point (cusp) at T = 0o (which is not an orbifold point,
i.e. it has stabilizer equal to the stabilizer at a generic point); holomorphic sections of E?k over the
compactification My 1 = HU {oo} are precisely modular forms of weight k holomorphic also at oo (in
the sense that the Fourier series® f(1) =Y., < an€® ™ satisfies a,, = 0 for alln < 0).

It is well known [Za, Prop. 2 on page 9] that for a holomorphic modular form of weight k, which is
holomorphic at oo too, we have

> niTordT( f) +ordo(f) = 1—’“2 (4.9)

H
TESL, @

where ord, (f) is the order of vanishing of f at T (the modular transformation property (4.8) it is well
defined for T € %@, as it only depends on the SLa(Z)-orbit of T) and

2 7=1
ny =13 7=¢/3 (4.10)

1 otherwise.

The proof is just an integration of the logarithmic form dlog f along the boundary of the fundamental
domain of the SLa(Z) action on H, paying attention to poles at the boundary of the fundamental domain
and at the orbifold points T = i,e'™/3; see loc. cit.

As holomorphic modular forms exist (for k > 4) we can apply this argument to compute the Chern

number fﬂ1 a (,C‘l@k) = k(m), compare with the definition (4.4). Indeed this number is precisely the

orbifold weighted count of zeros of an holomorphic section of E?k, as in (4.9); recalling that the generic
stabilizer of M1 1 is* {£1} of order 2, pairing with the orbifold fundamental class of My 1 gives an extra
factor of 2, and so we obtain the identity

1 k

Kr)=5-15= (4.11)

(r1) = 2%
For an alternative derivation of (4.11) using a pencil of elliptic curves see [LZ, Ex. 4.6.6].

Example 4.1.4 (genus zero). It can be verified explicitly for low n and proven in general (see e.g. [We;
Ze; LZ; ACG]) that we have the following formula for genus zero Witten intersection numbers in terms
of multinomial coefficients;

=

3As a consequence of the modular transformation property f(7 + 1) = f(7).
4Every elliptic curve has the elliptic involution as a nontrivial automorphism.

-3 —3)!
n _ = ol (4.12)
T1yeyTh rleory!




4.1. WITTEN CONJECTURE 69

The proof is a simple induction based on the string equation, see below. It is worth noting that rational
curves with n > 3 marked points are strongly rigid, i.e. they have trivial automorphism group; correspond-
ingly the spaces Mo, and Mo, are really smooth projective varieties (they admit very mice description
and combinatorial structure in terms of iterated blow-ups of P2 [Ka]). Accordingly, the genus zero
Witten intersection numbers (4.12) are integer (rather than just rational) numbers.

Witten conjecture. In principle the problem of computing Witten intersection numbers (4.4), beyond
the examples in genus 0 and 1 which we have considered above, is general very hard.

However, in 1990 Witten surprised the mathematical community with the following conjecture [Wc],
now called Kontsevich—-Witten theorem. To formulate it, collect the Witten intersection numbers into
the generating function (“free energy”)

T....T. T3 T, T3T, ToTy, T2
F(T) := e Y e 20 20 0 1o 4.13
(T) Z>1 Z>O<Tl T ) 6 Toator Tog Ty (4.13)
nz21ry,...,Tn2

where T = (Tp, T4, ...).

Theorem 4.1.5 (Witten conjecture). The exponential 7(T) := exp F(T) is a tau function of the KdV
hierarchy® in the variables t = (t1,ts,ts,...) defined by

J92k+1

t2k+1 o= —mTk (414)

Let us briefly comment on the origin of this conjecture, which connected for the first time two
seemingly very far subjects (infinite dimensional integrable systems, the KdV world, with the world of
algebraic geometry). The bridge is the theory of 2D quantum gravity.

2D quantum gravity is to be regarded as a theory of random metrics on a topological surface, the
path-integral extending also to a summation over all possible topologies of the surface (i.e. to a summation
over the genus of the surface). One approach to such a theory considers a discretization of the surfaces
and related combinatorics, and it was well known in the 80s that the correlators for such a theory
were intimately related (via matrix models) with integrable hierarchies of PDEs, in particular with the
KdV hierarchy (see for instance [DGZ] or the more mathematics oriented review in [LZ, Sec. 3.6], and
references therein). Yet another approach to such a theory considers a supersymmetric localization of the
path-integral to a finite-dimensional integral over the moduli space of metrics over a topological curve,
equivalent to an integration over complex structures.

Witten [Wc|, motivated by the fact that the same string equation (see below) appeared in both
approaches to 2D quantum gravity, conjectured the equivalence thereof, expressed as an identity of the
correlators of each theory.

Virasoro constraints. The fact that the exponential of the generating function (4.13) is a tau function
of the KdV hierarchy implies highly nontrivial recursion relations at the level of Witten intersection
numbers (4.4). It was soon realized [DVV] that such recursions can be best expressed in terms of the so
called Virasoro constraints.

Introduce the family of differential operators L, for n = —1,0,1,2,... as
T? 0n.0 (2(i +n)+ 1! 0
Ly="26, 1+ RSk G il s R
g Om1 g +Z (2i — 1)1 ( ’l)aTm
>0
1 n—1 82
- 2+ )N 2n—4) — D) —nv——
g 2 DM =) = Dl
2 5 2 0 1 & 9>
= an | g, 4 0 2i4+1) (o1 + 5001 ) o P Y
2 n,—1 + 3 +;( 1+ ) 2i+1 + 3 i,1 at2(i+n)+1 + 9 ; 8t2i+18t2(n,i),1
(4.15)

called Virasoro operators. We have used the variables T = (T, T4, ...),t = (t1,t3,...) related as (4.14).
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Theorem 4.1.6 ([DVV]). The following two facts about the formal series T(t) := exp F(t), with the
generating function defined in (4.13), are equivalent.

o 7(t) is a tau function of the KAV hierarchy, satisfying the string equation L_17 = 0.
e 7(t) satisfies all Virasoro constraints, in the sense that LT =0 for all j > —1.

For the proof we refer to the original work [DVV] or for a review to [ACG, Thm. 3.2, Chap. XX].

It can be readily checked that the operators (4.15) satisfy the Virasoro® commutation relations

(Lo, Ln] = (m — 1) Lyngn. (4.16)

Actually this is just half of the Virasoro algebra, and the central charge is invisible therefore the com-

mutation relations are the same of half of the Witt algebra. Incidentally, let us recall that the Witt

algebra is generated by the infinitesimal holomorphic transformations L; := —z7 +1%, which commute

as [Ly,,L,] = (m — n)Ly,4,. Below we shall connect directly the Virasoro constraints L;7 = 0 for the

Kontsevich-Witten tau function with the Witt algebra of infinitesimal holomorphic transformations.
The first Virasoro constraint L_17 = 0 reads as

T2 9 o= [ 3 2 +1 2 )
04 § (T; = 0i1)=— | 7(T)=V2 [ 2 + § T (toip1 + =0ia 7(t) =0, (4.17)
2 4 T, 4 2 3 Otoi1

and is called, following physical terminology, string equation; it is related to the vector field % of
translations in the z-plane (see below).
The second constraint LoT = 0 reads as

1 1 2i+1 2
g + 2(22 + 1)(E - 61‘,1)% T(T) =2 E + Z % (tgi_;,_l + 35@1) 8tj'+1 T(t) =0,
>0 i>1
(4.18)
and is called, again following physical terminology dilaton equation; it is related to the vector field z%
of dilations in the z plane (see below).
Witten [Wec| proved the string equation L_;7 = 0 for the generating function 7 = exp F, with
geometric methods. This point was one of the first strong motivations of his conjecture.
Without going much more into the details, let us note how the Virasoro constraints express recursion
relations between Witten intersection numbers (4.4).

For instance, the string equation L_17 = 0 is equivalent to the following relation

(Mo - Tr) = 30 A+ Tyt o) (419)
j=1,....,n
T‘jZl

from which, together with the trivial case (73) = fﬂo , 1 =1, it is easy to establish the formula (4.12).
The dilaton equation LyT = 0 is equivalent to the following relation

(T1Tpy o Tr,) = (29 = 24+ 1) (70, -+ - T, ) (4.20)

More generally the Virasoro constraints L,,7 = 0 for n > —1 allow in principle to compute recursively
all Witten intersection numbers (4.4) from the initial datum (73) = 1. For more details see e.g. [ACG,
Lemma 2.10, Chap. XX]. Below we use our formalism of tau functions to derive explicit generating
functions for the same intersection numbers; such formulse were first considered in [BDYa] and are very
effective for computations of the Witten intersection numbers (4.4).

6The Virasoro algebra is generated by elements L, for n € Z commuting as
c
[Lm, Ln] = (m —n)Lm4n + E(m + )m(m — 1)0m+n,o0-

The parameter ¢ € C is called central charge and it gives the one-parameter family of all possible central extentions of the
Witt algebra, recovered for ¢ = 0.
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4.2 Kontsevich matrix integral

Kontsevich matrix integral. In his proof of the Witten conjecture [Kb], Kontsevich introduces the
following matrix integral which now bears his name;

Sy exptr (i — YM?) M
Ju, exptr (=Y M?2)dM

2K (v) = (4.21)

where Y = (y1, ..., yn) (“external source”) is a diagonal matrix with positive entries, y; > 0, so that the
integrals in (4.21) are absolutely convergent.
The Kontsevich matrix integral can be regarded as a matrix version of the Airy function”

. 1 .
Ai(z) = o ) exp | i +izz | dz (4.22)
+ie

where the integral is independent of € > 0, which is added to make the integral absolutely convergent.
Indeed it can be easily seen from this integral representation of the Airy function that ZX_,(y) =

2, /ﬂ'ye§93 Ai(y?). More generally we have the following determinantal expression.

Lemma 4.2.1. The Kontsevich matriz integral (4.21) can be expressed as follows:

det VY exp tr (2Y3) , N
25(7) = (2vm)™ 2 det (A0 (47 4.23
K) = (2v7) AT et (AU V@h) (4.23)
where we denote AiV™ (z) := % derivatives of the Airy function (4.22).

Proof. Let us consider first the gaussian integral in the denominator of (4.21). We have

N N N N
tr (YM?) = > yiMi My = > yil Mig|* = (i + )| M [* + > vil My (4.24)
ij=1 ij=1 i<j i—1

where we use the identity M;; = Mj;; as M is hermitian, therefore writing M;; = M, + 1M} we have

/ exp tr (=Y M?)dM
Hy

/ et Mt an T / elbitus)Mi; dM”H / eV MiaM;,
R

1<i<j<N 1<i<j<N

N2
-] i A< ) (4.25)
1<icj<n ¥ y]i 1 vi det\F vz)
For the numerator of (4.21) instead we have the following chain of equalities;
M3
/ exp tr (i - YM2> dM (4.26)
Hy 3
2 M”
D exp (trY?’) / exptr (i +iM'Y? | dM’ (4.27)
3 e 3
@ 1 2 N s
= —exp trY3> A2(X) | e / dUexptr (iY2UXU' 4.28)
. 2 N
- pCE 9 A(X) det (e”"]‘“) N s
= —— “try? 2R=1 ’ 4.2
Nt P <3 g >/RN A(iY?) ]1;[16 ’ (4.29)
2¢.y3 ‘3 N
(4) N(N-1) eXp (gtrY ) / Nei ir . 9
= ———>——det J — d . 4.30
T2 AGY?) e Rx exp { +izy; | dz . (4.30)

7We use this particular integral representation (4.22) for the Airy function as it is the most convenient for our purposes.
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In (1) we perform a shift M’ := M+iY and an analytic continuation: the integral is now only conditionally
convergent, it is absolutely convergent only when understood as integration over H,, + iel for any € > 0.
In (2) we apply Weyl integration formula (Prop. B.1.1) and we use the notation X = diag(x1, ..., z,). In
(3) we apply Harish-Chandra formula (B.11) and in (4) Andreief identity (Lemma B.3.1). The proof is
completed by the identity

. 3 2
/ z‘exp <1:§ + ixz) dz = %Ai(z)(z) (4.31)
R 1

which directly follows from (4.22). [ |

Asymptotic expansion and intersection numbers Recall [AS] that the Airy function has the
asymptotic expansion

Z 65 — DN (=1)
VA = (21729 2%

Ai(22) ~ (4.32)

for z — oo, uniformly in closed subsectors of |arg z| < 5. From the expression of Lemma 4.2.1 we obtain

that we have an asymptotic expansion
ZR(Y) ~ 1L (4.33)

where, with the notation of Sec. 1.4.3, we set

det (f3(z)) ey det (f5(20)) 10y

f
T3 (21, ooy 2N) 1= = (4.34)
N det ( Jj— 1) H1§j<k§N(zk — 25)

(compare with (1.141)) where f = (f;);>1 € Gr? with the formal series f;(z) = 277114+ O(z71))
defined by

3
Jledz

Vinz

as z — oo within |argz| < 7. We recall from Sec. 1.4.3 that TN(Zl, .., 2N gives a well defined limit

7 (t). Moreover it follows from the Airy differential equation

Ai"(2) = zAi(2) (4.36)

AIVTY(E?) ~ (1) fi(2) (4.35)

that writing f; = 2/ 71(1 + D1 fi02™")
Fivar = fiu (4.37)

and therefore 7/ (t) is a KdV tau function. This is called Kontsevich-Witten tau function.
We are finally ready to state the main result of Kontsevich, in particular implying Thm. 4.1.5.

Theorem 4.2.2 (Kontsevich, 1991 [Kb]). The series 74 (t) coincides with 7(T) = exp F(T), where F(T)
is the generating function (4.13) of Witten intersection numbers, and the variables t = (t1,ts,...) and
T = (Ty, 11, -..) are related as in (4.14).

The proof in [Kb] uses a combinatorial description of (a top-dimensional stratum in) the moduli
spaces M, ,, based on a theorem of Strebel [Sd] about decomposition of Riemann surfaces by horizontal
trajectories of suitable quadratic differentials.

4.3 Isomonodromic method

The bare system. Fix three angles 84, 8y such that

7 7 T oo
3 —§<50<§7 §<ﬁ+<7r (4.38)

and define four sectors I, I1,111,1IV in the complex z-plane, with —7 < arg z < 7, as follows

—T<p<—

zel «— —m<argz<f_, zell <= p_ <argz < Py,
zelll < [y <argz < B4, z€lV <= py <argz <. (4.39)
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Let ¥ :=R_U (l—lje{o,ﬁ:} ei51R+) be the oriented contour delimiting the sectors I,...,IV, as in figure
and define

i

6.1. Let w := e’3

W Ai(w™'z) w2 Ai(wz)
wA'(W™12) w2 Al (w2)

(2) iw~™ 2A1(wz) ) cII
z

(z)  iwzAi'(w2)
(4.40)

Ai'(2) —iw 2 AV (w1z)

w2A1 (wz) —iw 2Ai' (W 12)

(Alz —iw? Ai(wtz) ) e IIT

wAi(w —iwz Ai(w'2) ) Le IV

eiﬁ+ R+
L 111

Sg - iR
R_ t % ¢ +

eiB* R+

Figure 4.1: Jump M of U along ¥: U, = U_M.
Consider the matrix form of the Airy ODE
V(z) = < o )\I/(z). (4.41)
Proposition 4.3.1. 1. ¥(z) solves (4.41) in all sectors I,...,IV .
2. U(z) has the same asymptotic expansion in all sectors I,..., 1V
U(z) ~ 2°G (1 +0 (2_%)) =) (4.42)

where S, G, 2 are defined as

. 11 1 /1 1 - 2 323
S::dlag<—4,4>, G:z\/§<_1 1), :()—dmg( 3% 2,32;2). (4.43)

3. U(z) satisfies a jump condition along ¥
U, (2)=V_(z)M, z€% (4.44)
where boundary values are taken with respect to the orientation of ¥ shown in figure 6.1 and

M:% — SL(2,C) is piecewise defined as

(4.45)

M — S()i, S eiﬂo’iR+
M, zeR_
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S = (} ?) So = ((1) i) S, = (} ?) M = (fl Bi>. (4.46)

4. The identity det U(z) =1 holds identically in all sectors.

where

We omit the elementary proof.

In the terminology of linear complex ordinary differential equations (reviewed in Sec. 1.4.2) Sy ¢ are
the Stokes matrices (note their triangular structure) and M the formal monodromy of the singularity
z = oo of (4.41). Notice the no-monodromy condition MS1SyS— = 1. Note also that we are in a
non-generic case in the sense explained in Sec. 1.4.2, as the eigenvalues of the leading order at co of the
connection matrix in (4.41) are all 0; this explains the appearance of non-integer powers in the asymptotic
expansions of solutions, compare with Rem. 1.4.2.

Remark 4.3.2. The RHP associated with the Stokes’ phenomenon of the Airy equation appears in
random matriz theory, in the context of universality as the local paramatrix at the edge of the spectrum.
The connection of intersection theory on the moduli spaces of curves with the edge of the spectrum matriz
model was first proposed by Okounkov [Ob], and lead to an independent proof of Witten conjecture. In
loc. cit. the GUE 1is considered, but the Kontsevich model is actually universal in the sense explained in
[BCY].

Extension of the Kontsevich matrix integral to all sectors. We have seen that ZK(Y) admits
a regular asymptotic expansion for large Y when Rey,; > 0. As Ai(z) are entire functions we could try
to analytically continue Z¥ (V) to the region Rey; < 0 via the right side of (4.23). However, this would
result in the fact that ZK(Y) does not admit a regular asymptotic expansion in the region where some
Rey; <0.

It is convenient for our purposes to have a regular expansion near infinity also in the sector Rey; < 0
(and, in fact, the same expansion), therefore we need to consider the following extension of ZK (Y). To
this end we start from the representation of Lemma 4.2.1 in terms of the function p(z, N) defined in
(6.2); in the left plane we replace them by other solution to the ODE (6.3) in appropriate way so as
to preserve the regularity of the asymptotic expansion. The logic is completely parallel to the one used
in [BCa] (and reviewed in the previous chapter) and is forced on us by the Stokes’ phenomenon of the
solutions to the ODE (4.41), which is closely related to the Airy differential equation of the previous
chapter.

Definition 4.3.3. We order the variables y; so that Rey; > 0 for j = 1,...,n1 and Rey; < 0 for

j=mni+1,...n +ny = N. We denote X = My Any) and @ = (pa, .oy fony) With y; = /A for
j=1,.,n1 and yp,4; = —+/fi; for j = 1,....,n2, all roots being principal. We define the extended
Kontsevich partition function by the expression

(w%Ai(j_l)(w_lx\kD
(A9 0)
1<k<mni, \g€IIUIII
) det (w%AiU*l)(mk)) (4.47)
1<k<ni, \y€IV
1 A§0-D)
(w ' (wuk))n1+1<k<n, pur€IUIT

<w*%Ai(j71)(w’1,uk)>

1<k<ni, \p€T1

ZNO ) = 2vm)Ne" I A,

7;1

n1+1<k<n, up€III1UIV 1<j<n

where

- 2 3 2 3
U f7) =5 PR 3 > pz (4.48)

and

AN, i) = =t = - (4.49)
I Vv=vN) I (W?—f)g (\fhﬁ)

1<j<k<n; 1<j<k<ns

u ::1m
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We deduce that Z]Pf, (X, fi) as defined in (4.47) has a regular asymptotic expansion when \;, p; — oo
in the indicated sectors. This regular asymptotic expansion coincides with the already discussed regular
asymptotic expansion of ZK(Y) for Reyr = Rey/Ar > 0. As analytic functions, ZK (X, @) = ZK(Y)
provided that no =0, A, € ITUIIT and y, = VA forallk=1,..,N.

We point out that the definition (4.47) depends not only on the belonging of y; to the left/right half-
planes but also on the placement of the boundaries between the sectors I-IV, i.e. on the angles 8y, 5+
n (4.38). If we move the boundaries within the bounds of (4.38) then this yields different functions
z}@(X, ) but all admitting the same asymptotic expansion as X, i tend to infinity within the respective
sectors. We opted to leave this dependence on the sectors understood.

Rational dressing. We fix points (compare with the paragraph above) X = (A1, ooy Any) and [ =
(41, +ey fhn,) and the matrix

D(z;X, i) = diag (7y,m_), T4 1= 1_1[ (\Fi f) H NITERVE) (4.50)
and J : ¥ — SL(2,C)
J:=(D"'e%) M (e =D), (4.51)

M and the notation + for boundary values being as in (4.45).

The boundary value specifications =+ in (4.51) give different values along the cut R_ only. In particular
it is easy to check that J|g_ does not depend on X, fi. The angles By + can be chosen so that none of
zeros of D occur along the three rays e/?0+R .

The construction is such that along the three rays e®.=R, the jump matrix .J is exponentially close
to the identity matrix; J(z) =1+ O (27>°) as z — 0.

We now formulate the dressed RHP.

RHP 4.3.4. Find a Mat(2,C)-valued function I' = T'(z; X, i) analytic in z € C\ X, admitting boundary
values Ty at ¥ (as in figure 4.1) such that

IFi(z)=T_(2)J(z) z€X
{I‘(z) ~ 2°GY (2) z — 00 (4.52)

1

where S, G are as in (4.43), J as in (4.51) and Y (2) a formal power series in z~2 satisfying the nor-
malization (we explain it below)

Y(@)=1+( " %)z i4+06™. (4.53)
(% )

We will see that the existence of the solution to the RHP 4.3.4 depends on the non-vanishing of a
function of X, which is (restriction of an) entire function. Hence the Malgrange divisor (see Chap. 2),
i.e. the locus in the parameter space where the problem is unsolvable, is really a divisor and the problem
is generically solvable.

Remark 4.3.5. We observe that we can analytically continue I'|jy beyond arg z = 7 so that the asymp-
totic expansion T' ~ z9GY remains valid in a sector up to argz = 7 + e. Similarly said for T|r, in a
sector from arg z = —mw — €. By matching the expansions in the overlap sector, we obtain

XS IQY (267 = 25GQY (2) M. (4.54)
By trivial algebra (4.54) implies the following symmetry relation for the formal power series Y, (z)
Y (2e*™) = 01Y (2)0;. (4.55)

In terms of the coefficients of the expansion of Y, we find that the coefficients of the fractional powers
must be odd under the conjugation (4.55), while those of the integer powers must be even. In particular
this implies the following form for'Y

V(z) =1+ (_“b K ) L Loe, (4.56)

a
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Remark 4.3.6. The normalization condition (4.53) is necessary to ensure the uniqueness of the solution
to the RHP 4.3.4. To explain this, consider the identity

1 0 S~ __ _S 1 - —« ,%
(a 1)2 G=z G(1+2(a a)z > (4.57)

1

This identity shows that the simple requirement Y (z) = 1+0O (z_f) leaves the freedom of multiplying

on the left by the one-parameter family of matrices indicated in (4.57). The normalization a = b of (4.53)
fizes uniquely the gauge arbitrariness implied by (4.57). It is chosen because of certain later convenience
in the computations (as it will be explained in Chap. 5), but this or any other particular choice is otherwise
irrelevant (more precisely, it does not affect the expression T =TI and hence it does not affect the tau
function).

The extended Kontsevich partition function as the isomonodromic tau function. We can
interpret the RHP 4.3.4 as an isomonodromic deformation problem. Indeed by construction it amounts to
consider the rational connection on the Riemann sphere with an irregular singularity at co with the same
Stokes’ phenomenon as the bare system, and N Fuchsian singularities with trivial monodromies. This
connection is unique if any. The dependence on the parameters X, iL is contrained by the isomonodromic
equations reviewed in Sec. 1.4.2.

We explain this point a bit more in detail. The matrix ¥ := I'D~'e® satisfies a jump condition on
3 which is independent of z and of the parameters X, ji. Hence the ratios ¥/¥~! =: [ and §T¥~! = M
have no discontinuities along ¥ and are rational functions by Liouville theorem; then the system ¥’ = LU
and 0¥ = MWV is an isomonodromic system in the sense explained in Sec. 1.4.2; it has a fixed Stokes’
phenomenon at co and N Fuchsian singularities of trivial monodromy at the points X, i

Following the considerations of Chap. 2 we define the tau function of this isomonodromic system as

ny 6 na 8
Slog7 =0,  §:=> d\iz—+ > dpis— (4.58)
i=1 N i=1 Opi

in terms of the Malgrange differential

d
Q:= / tr (Fle’(SJJ*l) —Z (4.59)
> 2mi
for the RHP 4.3.4.
Due to the construction of this RHP by a dressing of the jump matrices (rational in 1/z) the consid-
erations of Thm. 2.4.8 can be applied. In particular we have the following result.

Theorem 4.3.7 ([BCal). The isomonodromic tau function (4.58) coincides with the extended Kontsevich
partition function, i.e. .
SZR(N ) = Q. (4.60)

There are however some not entirely obvious modifications to Thm. 2.4.8 to be considered in order
to derive this result; they are due to the different normalization at co and to the formulation of the RHP
in terms of the square root variable /z. It is remarkable that the additional pieces in the Malgrange
differential for this RHP (that appear because of this modifications) are precisely designed to reproduce
the (extended) Kontsevich matrix integral.

For the details of the proof we refer to [BCa] and to Chap. 6 where we shall consider a more general
model and the corresponding version of this result.

4.4 Applications

Limiting RHP. The ratio of the products w1 in (4.50) can be rewritten as

™ epotngv 22k+1 (4.61)
™

- k>0
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where we have introduced Miwa variables t = (t1,t2, ...)

k
- 1L (1 1 1\ o1& 1 1
te(N ) =7 ) () +2) ( > =Y = Yk (4.62)
kg \WVA o\ =V kisv k

VHi

More precisely, the expression above is actually convergent for |z| < min{|\;], |x;]}.
Consequently, the matrix D,, can be rewritten formally as

D' ocexp % z tog41V 22k +1 (4.63)

k>0

up to a scalar factor constant in z; since the jump matrices of RHP 4.3.4 are obtained by conjugation via
D this constant factor is irrelevant. This suggests to consider in the limit N — oo (formally regarding
variables t1,ts, ... as independent) a new RHP as follows. Set

(z;t) := Z <tk + gék,3> Vz2k+1lgg, (4.64)

k>0

(1]

RHP 4.4.1. Let t denote the infinite set of variables t = (t1,ta,...). The formal RHP amounts to finding

a 2 X 2 analytic matriz-valued function T' =T'(z;t) in z € C\ X admitting boundary values Ty at ¥ such
that

Fi(zt)=T_(2;t)J(z; ¢t ex

{ +(z8) =T_(58)J(5t) = (4.65)

T'(z;t) ~ 2°GY (2;t) z — 00

where J(z;t) := == Me=EGER+ | M as in (4.45), and Y (2;t) is a formal power series in z~2 satis-
fying the normalization

—C

Y(zt) =1+ (2 ‘C) P40z (4.66)

for some function ¢ = ¢(t).

Remark 4.4.2. Remark 4.3.6 applies here as well for the uniqueness of the solution to the RHP 4.4.1.
Moreover, the symmetry relation (4.55) holds true similarly here, namely

Y (2e*™t) = 01V (2;t)0;. (4.67)

We now explain a meaningful setup where the RHP 4.4.1 can be given a completely rigorous analytic
meaning. The driving idea is that of truncating the time variables to some finite (odd) number.

Fix now K € N and assume that t;, = 0 for all £ > 2K + 2. Set t = (t1,...,t2x+1,0,...) with
torct+1 # 0. In addition, the angles So 1 (satisfying (4.38)) and the argument of o1 must satisfy the
following condition:

Re \/221(74—1152[(_’_1 <0, ZEeiﬁiR+

‘ (4.68)
Re (v 22K+1t2K+1 > 07 z € 6150R+.

Under this assumption, given the particular triangular structure of the Stokes matrices Sp +, the
jumps M = e=- Me~=+ are exponentially close to the identity matrix along the rays e/’o+R .

Formula for Witten intersection numbers. The Malgrange differential of the limiting RHP de-
scribed above can be expressed as a(n isomonodromic) tau differential. This follows directly from the
considerations of Sec. 2.5. Proceeding exactly as in the proof of Thm. 1.2.2 we can obtain the following
formulae for Witten intersection numbers, first derived in [BDYal.

To formulate them introduce the matrix

1 1

_ 65+ [ =55 —&51

Jj=0 65—1 2x
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Theorem 4.4.3 ([BDYal). The following formula for a generating function of n-point open intersection
numbers holds true for n > 2;

3 @ri+ D1 Cro + YW, - 7,) 1 > tr (R(@x@)  R(@xm))  Gnals +x2)
s gt n L8 (@) = Tr@)  @x) —Tn)) (31— 22)?
(4.70)

They follow directly by the arguments used in the proof of Thm. 1.2.2. We omit the details of the
computation; we refer to [BDYa] and to Chap. 6 where we consider a more general model.

Explicit formulae for Witten intersection numbers have been previously considered in [Oc; BBE; Zb].

Of course, the simple expression for one-point Witten intersection numbers [IZb]

1
(r) = { Zo =392 (4.71)
0 otherwise

can be recovered by this method as well.

Virasoro constraints. The Virasoro constraints for this model can also be deduced purely by this
isomonodromic approach. The proof is completely similar to the one for the Brézin—Gross—Witten model,
which we report in the next chapter following [BRb].

KdV and Painlevé I hierarchies. It was originally observed in [DS] that Kontsevich-Witten KdV
tau function provides a solution to the Painlevé I hierarchy. We now review this point, as it was also one
of the main motivations of [BCa] to find the analytic properties of this solution (for details about this
point we refer to loc. cit.).
More precisely, let us call x := t; and introduce
- 52 I

u(z,t) = a2 log7(z,t), t:=(ts,t5,...) (4.72)

which is a solution to the KdV hierarchy

ou d
= £L£+1[u]7 £>1. (4.73)

Otors1

In (4.73) we denote Ly[u] the Lenard-Magri differential polynomials, defined as

d - ld;’; 2u-d -
Cofu] =1, 4 ke (e 20 ) £l for £ > 0. (4.74)
£e+1[u = 0] =0

Incidentally, let us compute the initial datum of the KdV hierarchy (4.73) corresponding to the
Kontsevich-Witten solution.

Lemma 4.4.4. The solution u in (4.72) of the KdV hierarchy (4.73) satisfies the initial condition
u(z,t =0)=—-=. (4.75)

Proof. We only sketch the proof, for more details see [BCal; the idea is that I'(z; (z,0,...)) = ¥(z +
x)e_%‘/;g_””ﬁ is the solution to RHP 4.4.1 for the times t = (z,0,...), where ¥ is the matrix solution
to the Airy equation introduced in (4.40). From this and the explicit expansion of ¥(z) it is easy to

compute
1 e x?
O, log 7(x,0,...) = —5 Jres tr (T7'IMo3) 2dz = —— (4.76)

z2=00 4

and the proof is complete. |
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Remark 4.4.5. The above computation also shows that 7(x,0,...) = e
zero, as indeed RHP 4.4.1 is always solvable for any t = (z,0,...).

Let us now write the string equation L_;7 = 0, see (4.17),

22 2 oF
— 21+ 1) ( to; —0; =0
5 +i§>:1(2+ )<2+1+3 ,1> Btors

where F' = log 7 is the free energy (4.13) as before, and differentiate it once in z to get

O*F

— =90
8x8t2i_1

. 2
T+ 2(22 + 1)(t2it1 + 552‘,1)

i>1

and substituting the integrated form %ﬁ_l = L, of (4.73) we obtain

. 2
2+ Y (24 1) (taigr + 30i1)Li =0,
i>1

Hence we have proven the following

Proposition 4.4.6. If we set t; = 0 for £ > 2K + 3 as above, then u(x;ts,...,tax+1,0, ..

Kth member of the first Painlevé hierarchy

K
2
xr + Z(QZ A 1)(1’21‘4,_1 4 55%1)£1[’UJ} =0

i=1

which is an ODE in x, where ts,...,tax 11 are regarded as parameters.

The case K =1 gives (up to simple scalings) the Painlevé I equation.
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12 ; this is always different from

(4.77)

(4.78)

(4.79)

.) solves the

(4.80)
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CHAPTER 5

Brézin—Gross—Witten tau function

The Brezin—Gross—Witten (BGW) model was introduced by physicists in the 80s, in the context of QCD.
Under a simple scaling, its partition function gives in the weak coupling regime a KdV tau function,
termed BGW tau function; it is in many ways a close cousin of the Kontsevich—Witten tau function of
last chapter. Recently, Norbury has discovered a remarkable analogue of the Witten conjecture, expressing
certain intersection numbers on the moduli spaces of curves as coefficients of the BGW tau functions.

In this chapter we apply the methods developed so far to the BGW tau function, and in particular we
deduce explicit formule for Norbury intersection numbers.

Main references for this chapter are [Ab; N; BRb].

5.1 The Brezin—Gross—Witten partition function

The Brezin—Gross—Witten (BGW) partition function is defined by the following unitary matrix integral
[BG; GW]

Z8W(Tv) = det”(UJ) exptr (UJT +U'J) d.U. (5.1)
Un

Here d,U is the normalized bi-invariant measure on the unitary group Uy, fUN d.U = 1. The partition
function depends on an external N x N matrix J; however it depends only on the eigenvalues of v Jt.J,
as clarified in the next proposition.

The integer parameter v € Z in (5.1) was absent in the original formulation of the model and is added
here to match with the generalization introduced in [MMS; Ab]. Interestingly, this type of generalization
had appeared also in the Physics literature on QCD, see e.g. [LS; JSV; AW].

The unitary integral (5.1) can be regarded as a matrix Bessel function; indeed for N = 1 we have

*\ U J*+L dU v
ZBW () = 74 UJrel’ Hf il |J|“1,(2|J]) (5.2)
lUl=1 m

where we have used an integral representation for is the modified Bessel function of the first kind I, ()
[AS]. More generally we have the following.

Proposition 5.1.1. Denote A1, ..., \y be the eigenvalues of vV JTJ. Then the partition function (5.1) is
a function of A1, ..., AN only, and it can be explicitly expressed for v >0 as

. N . N
N=1 N det (A T IN 4, (20) ) N=1 N det (ML, (20))

v = []* == (] 2=
=1 A()‘%v e )‘?\7) =1 H1§j<k§N(>‘i - )‘3)

ZRW(J;
(5.3)

The proof is based on the character expansion method [Ba], reviewed in App. B; in the same ap-
pendix we also sketch a slightly different proof of this proposition, by seeing it as confluent version of a
generalization of the Harish-Chandra—Itzykson—Zuber matrix integral.

Proof. We use the formula (B.17) with ¢(t) = t“e’ to obtain (here we use that v > 0)

N
det"TexptrT = Z det < ( ! ) Xa(T) (5.4)

k)
acY, ((a)<N ak+j—k=v)l) ;5

81
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and the same formula with ¢(t) = e’ to obtain

1 N
exptrT = Z det | ———— Xa(T). (5.5)
)

Y]
€Y, l(a)<N ak +j = k) Jik=1

In both expressions the sum on the right runs over partitions a = (ayq, ..., ay) with length ¢ < N, and
Xao(T) are the characters, compare with (B.12),

det ( gartN= k)

T) := k=1 5.6
xel(T) NG (5:6)
where t1, ..., ty are the eigenvalues of T. Hence, using the orthogonality property (B.16)
5 ’
/ XU T o (UT 1) AU = 22y (J1) (5.7)
Un a,N

where, see (B.13),

o + N k’) 1 N
do,n = Xa(1yn) = (H ) det ((ak - k)!>j,k_1’ (5.8)

we integrate over the unitary group to obtain the following expression

N kE—1)! 1 o
Z8W(Jv) = Z (H M) det ((ak +j—k— u)!)mlﬂ_1 XalJ1)

a€Y, l(a)<N \k=1
N—1 1 N
= k! det < . ) Xa(J1J).

<k1i[0 ) aeY,ez(a)gN (g + N =kl ap+j—k—v)! k=1

Finally an application of Lemma 1.4.9 with
Z >\2Z N—j+
= ATV N0 (2X) (5.9)
(¢ — J

concludes the proof (note that I,(z) =1_,(x) for v € Z). |

The representation (5.2) holds true for v € Z only; it is well known that for arbitrary complex v one
has to consider suitable contour integrals to analytically continue Bessel functions. Incidentally, let us
note that there exists a similar analytic continuation for the matrix case N > 1 as well, in the form of a
generalized Kontsevich integral [KMMMZ] of the form

Jit (o Pt (A2M + M~! — (v + N) log M) dM
fHN(’Y) exptr (M—1 — (v+ N)log M)dM

(5.10)

where v is a contour from —oo encircling zero counterclockwise once and going back to —oco and A =
diag(A1, ..., Ay) where A1, ..., \y are the eigenvalues of v/ J1.J; for more details see [MMS; Ab].

BGW tau function and Norbury theorem. Recall [AS] the asymptotic expansion of Bessel func-
tions

2V/mze % 1,(22) ~ 14+ 0(z71) (5.11)
as z — oo in a suitable sector (more details below). Introducing, with the notations of Sec. 1.4.3,
J = ()1 £5(2) = 28711 + O(=~1)) according to

2/mzd e Ty, (22) ~ fi(2),  i=1,2, ... (5.12)

we see that the following modification of the BGW partition function (X = (A1, e, An) With A, Ay
the eigenvalues of v JT.J), where we also replace v — —v to match with the convention of [Ab],

det (2\/7T)\k672)"“)\iilfjflf,,(Q)\k))
A()‘la ) AN)

N

ZBOW (1) = Jh=1 (5.13)
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has the asymptotic expansion
ZRVNv) ~ (M M) (5.14)

where as in the previous cases, see (1.141), we have defined

_ det (fj—l(/\k))j'\szl

LAy ey AN) — = (5.15)
det (X7
k=1
Recall that T]J:,()\l, .., An) has a formal limit for N — oo in the Miwa times
LAk
t = (tl,tg, ), tk = EtI‘A (516)

which we call 7(t).

As a consequence of the Bessel differential equation, 7(t) is a tau function of the KdV hierarchy. As
such it does not depend on the even variables to, 4, ---. It is called BGW tau function.

Norbury [N], starting from previous study about topological recursion on the Bessel curve [DN], has
found the following beautiful result, paralleling the Witten—Kontsevich theorem (Thm. 4.1.5) for the
KDV tau function just introduced, for v = 0.

To formulate the result let us review a natural web of maps between moduli spaces of curves.

1. Forgetful map. m : Mgy n+1 — M, sends a stable curve with n + 1 marked points to the same
curve with only the first n marked points (i.e. 7 forgets the last marked point).

2. Gluing map (I). p: ﬂg_MH_g — ﬂg,n sends a stable curve with marked points p1, ..., ppt2 to the
curve with the points p,y1, prao identified, and the first n marked points.

3. Gluing map (II). For any choice of indexes 0 < n’ < n and any 0 < ¢’ < g the map ¢y s :
My i1 X My_gr p—nry1 — My, sends a pair of curves C,C’ with marked points pi, ..., Pp/41
and py, ..., P}, /4, to the curve (CLUC")/ ~ where ~ is the smallest equivalence relation identifying
P41 ~ Py_prg1, With the n marked points py, ..., ps, Py, .-, P}, _,,, (in this order).

There is a small caveat to complete the above definitions; the results of the forgetting and gluing proce-
dures outlined above are not necessarily stable curves (in the sense of their automorphism group being
finite). In such a case one further shrinks to a point the unstable components. For more details see the
literature mentioned in Chap. 4. Note that the image of gluing maps p, ¢ ; are contained in the boundary
divisor in My ,,, consisting of stable curves with at least one node.

Theorem 5.1.2 ([N]). 1. There exists a family of cohomology classes ©4, € H*(Mgy,,Q) (“Nor-
bury classes”), for all pair of indezxes g,n > 0 satisfying the stability property 29 — 2+ n > 0, such
that

(a) ©4.n is of homogeneous, i.e. ©(g,n) € H¥9™ (M, ,,,Q) for some d(g,n) € N,
(b) the family is closed with respect to pullbacks via gluing maps, i.e.
p*@g,n = ®g—1,n+2; (b;’,n’@g,n = (W*@g',n’) (ﬂ'*@g_g/’n_n/) (517)

where the gluing maps p, ¢g ' are recalled above, and

(c) the family behaves as follows under pullback via the forgetful map

O i1 = Vi1 (T*Oy0) (5.18)
where the psi-classes 1; € H?*(Mg.n, Q) have been reviewed in Chap. 4.

Moreover, for any such family we have d(g,n) = 4g — 4+ 2n and the family is unique provided we
normalize ©1 1 = 3¢ € H*(M11,Q).
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2. Define the following generating function

F(T) := Z Z (©,7r, - T0) Ly, - Tr,

n21ry,...,rn20

introducing the notation

<®7T’I’1 5o .Trn> = / @g’n ;1 .. r(/};n

My.n

(5.19)

(5.20)

for “Norbury intersection numbers”, normalized as above as ©1,1 = 3y and with the understanding
that they vanish unless the dimensional constraint r1 +---+r, = g — 1 + n is met. Then defining

the scaling
(2k + 1)

Ty, = Wtzkﬂ

(5.21)

between the sets of variables T = (Ty,Th,...) and t = (t1,ts,...), we have 7(t) = exp F(t), where

7(t) is the BGW tau function introduced above.

It is an open problem to understand whether the deformation switching on v also has a similar

algebro-geometric interpretation.

5.2 Isomonodromic method

The bare system. Fix two angles (81, 52 in the range

— TP <P

(5.22)

and define ¥ to be the contour in the z—plane consisting of the three rays z < 0, arg z = 31, argz = fs,

see Fig. 5.1. Introduce the following 2 x 2 matrix ¥(z), analytic for z € C\ X:

( Tl (2y/7) + iV K_,(2y/2) —K_,(2V/7)
mVZh_y(2v7) — 16V TVEK L, (2V7)  VEKI-,(2V7)

\I/(Z) — 2 % 77]—1/(2\/5) *K—u(2\/z)
' Vzhoy(2vz) VZK1-,(2VZ)

( w1, (2V7) —ie VT K, (2//2) —K_,(2//7)
Tzl (2V/7) +ie VT VEK L, (2V7E)  VEKI-,(2V7)

) - <argz <[
B1 < argz < (2

> Bo <argz <m

(5.23)

where I, (z), Kq(x) are the modified Bessel functions of order a of the first and second kind respec-
tively [AS] and we stipulate henceforth that all the roots are principal. Note that we are implying the

dependence on v.
The following proposition is elementary and the proof is omitted.

Proposition 5.2.1. In every sector of C\ X the following statements hold true.

' (z) = <12 5) W(z).

2. We have the asymptotic expansion below;!

1 [(—(1-2v)2 2—4v
16y/z \ —2+4v  (1—-2v)?

1We use the Pauli matrices o1 = ((1) (1)) and o3 = (é _01)

1. The following ODE is satisfied;

U(z) ~ PaEe (1 +

(5.24)

) +0 (z—1)> e?VFr 2500 (5.25)
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where
G = % G _11> : (5.26)
3. We have det ¥U(z) =
Moreover, the matrix ¥(z) satisfies the following jump condition along 3;
U(zp) =U(2_)S(z), z€X (5.27)

where £ denote boundary values as in Fig. 5.1 and S(z) is the following piecewise constant matrix defined
on X;

ioq z2<0
1 0
s argz = (1
S(z) = <1e”’7r 1> (5.28)
1 0
< ie—iVﬂ' 1) arg z = 62
Nt
+ e
B ‘B
+¥_

Figure 5.1: Contour X, and notation for the boundary values.

In the terminology of linear ODEs with rational coefficients (see Sec. 1.4.2) this piecewise analytic
matrix U displays explicitly the Stokes’ phenomenon at co of the matrix ODE (5.24). The jump along
the rays e'#1.2 are the Stokes’ matrices (note their triangular property) while the jump along R_ is the
formal monodromy matrix.

Note that the no-monodromy condition is not satisfied, and there is an additional pole at z = 0 of
the ODE (5.24), which is a Fuchsian singularity.

Extended BGW partition function. For later convenience we introduce an extension of ZA[%GW(X; v),

having the same regular asymptotic expansion when the A;’s go to infinity within arbitrary sectors of

the A-plane, not only uniformly within a sector |arg A\;| < 5. The strategy is parallel to that in Chap. 4.
We introduce, for —w < arg A < w and k > 1, the functions

1Ky ,—1(2 ”r)\) if —7m<argA<-—7%
5 Tleoy—1(2)) — i *F=I7R,1(20) if — T <argh < 2
&(N) = \/;)\kl X ¢l —1(2X) if G <argh < % (5.29)
Tlho—yo1(2A) +1eFTITERG 1 (20) if 2 <argh < T
—iKg_,—1(2e717N) if T <argA <.

The motivation behind this convoluted definition is that the above functions have the same asymptotic
expansion

() ~ AN 14+ 000), A= o (5.30)

in every sector of —7 < arg A < 7 appearing in the definition (5.29).
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Remark 5.2.2. Note that

\1111(>\2) Zf — g < arg)\ < g \1121()\2) Zf — g < arg)\ < %
51 ()\) = . 2 2 o ) 52()\) = . 2 2 T
+iWp(Ne™™) if T < fargA <7 Filar(AeT™) if T < fargA <.

(5.31)
For arbitrary Ay, ..., Ay in C\ X, we define
. det (v/2he~2g(A))
Zv(Xv) = (V2 )ikt (5.32)

A()\l, ceny )\N)

and call it extended BGW partition function.
__ By construction the extended BGW partition function has the same regular asymptotic expansion,
Znv(Av) ~ TJJ:,()\l, ..., An), when the \;’s go to oo in every sector of the complex plane, see (5.30). Notice

that ZAN(X; v) = ZN(X; v) provided that % <arghj < % forall j=1,...,N.

Rational dressing. Following the strategy already discussed in Chap. 4 for the Kontsevich—Witten
tau function, we consider the following dressing of the RHP associated with the Stokes’ phenomenon of
the bare ODE (5.24).

Fix A1, ..., Ay € C\ X; from now on we imply dependence on X. Introduce

N
D(z) := E (Aj ﬂ(L)\/E N _0\/2> (5.33)
J(2) := D7 (21)e*73VF §(2)e 273V - D(z_) (5.34)

where the notation + refers to the boundary values as in Fig. 5.1; the distinction between boundary
values is only important along z < 0. The matrix J reads more explicitly

io z2<0
1 0
N _ ﬁ
7ieiuﬂef4\/5 Xi+vVz 1 arg z 1
J(z) = jl;ll AimVE (5.35)
1 0
N —_—
_je—ivme—4vE 11 iﬂ:é 1 arg z = [s.
]:1 J

Notice that J(z) =14 O(2~°) as z — oo along the rays argz = (1, fa.

RHP 5.2.3. Find a 2 X 2 matriz I'(z) = T'(z; X), analytic for z € C\ X satisfying the following jump
condition for z € ¥
Iy (z) =T_(2)J(2), (5.36)

the growth condition at zero
I'(z) ~O(1)¥(z), z—0, (5.37)

where U(z) was introduced above in (5.23), and the normalization condition at infinity
T(z) ~ 2~ TGY(2), 2z— o0, (5.38)
where
1 /1 -1 a a) 1 1 1
= — Y(2)=1 — - L2 — .
6 ) o de(eatell) o

for some a = a(X) independent of z.
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Remark 5.2.4. The jump on the negative semi-azxis z < 0 in RHP 5.2.3 is due to the multi—valuedness
of \/z. The position of this cut is completely arbitrary. By considering the analytic continuation beyond
this cut we find that

(2™~ F QY (2e>™) = 2~ T QY (2)ioy (5.40)

which in turn implies the following symmetry property

Y (2e*™) = 01V (2)0;. (5.41)

Hence the coefficients in front of even, resp. odd, powers of \/z have the form <Z Z) , TeSp. (_uv _vu>
Remark 5.2.5. The conditions (5.37) and (5.38) are required to ensure uniqueness of the solution to
the RHP (5.2.3). The growth condition (5.37) is necessary as the product of the jump matrices at z =0
is not the identity matriz (the no-monodromy condition is not fulfilled in this case). The necessity of
the normalization condition (5.38) is explained as follows; indeed one may require the simpler boundary
behavior T'(z) ~ A G (1 + 0O (2_1/2)). However this would not uniquely fix the solution as follows from

the identity
L OY 2o a1+ 2( ~@) e (5.42)
a 1) 7 = 2\la —a)” '

which would leave us with a one—parameter family of solutions, obtained one from the other by left

multiplication by a matriz , a € C. This is completely analogous to the case considered in Chap.

1
4. It follows from the same identity (5.42) that the condition (5.38) removes this ambiguity. This gauge
fizing is chosen purely because of certain later convenience (see Lemma 5.3.7) and is otherwise entirely
arbitrary. Indeed the tau function to be defined shortly is invariant under any transformation multiplying
T on the left by an arbitrary constant (in z) matriz.

The matrix ¥(z)e~2V?%s satisfies the jump condition (5.36) and the growth condition (5.37) for N = 0
but the asymptotic expansion (5.25) does not meet the requirement (5.38). However we have

1 0 9z o3 1-4?% /1 1 1
(381{g4u2 1) P(z)e ~z 4G<1+32\/E 1 1 +0(z7) ), z—00 (5.43)

which does fulfill (5.38), with a = 1_3‘;”2. This provides the solution to RHP 5.2.3 for N = 0.

The extended BGW partition function as the isomonodromic tau function. We can interpret
the RHP 5.2.3 as an isomonodromic deformation problem. Indeed by construction it amounts to consider
the rational connection on the Riemann sphere with an irregular singularity at co with the same Stokes’
phenomenon as the bare system, and IV Fuchsian singularities with trivial monodromies. This connection
is unique if any. The dependence on the parameters X is contrained by the isomonodromic equations
reviewed in Sec. 1.4.2.

We explain this point a bit more in detail. The matrix ¥ := I'D~1e2V273 gatisfies a jump condition
along Y which is independent of z and of the parameters X. Hence the ratios /¥~ =: [ and §¥¥~! = M
have no discontinuities along ¥ and are rational functions by Liouville theorem; then the system ¥’ = LW
and 0¥ = MWV is an isomonodromic system in the sense explained in Sec. 1.4.2; it has a fixed Stokes’
phenomenon at co and N Fuchsian singularities of trivial monodromy at the points X

Following the considerations of Chap. 2 we define the tau function of this isomonodromic system as

ny 6 na a
SlogT =9,  §:= ;dkiaj + ;duia—m (5.44)
in terms of the Malgrange differential
dz
Q= [ tr (076071 = 5.45
/E r ) o (5.45)

for the RHP 5.2.3.
Due to the construction of this RHP by a dressing of the jump matrices (rational in 1/z) the consid-
erations of Thm. 2.4.8 can be applied. In particular we have obtained the following result.
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Theorem 5.2.6 ([BRb]). The isomonodromic tau function (4.58) coincides with the extended BGW
partition function, i.e.
SZBW(X;v) = Q. (5.46)

We postpone the proof to Sec. 5.4.

5.3 Applications

Limiting RHP. Consider the (2,1)-entry of the jump matrix (5.35); the following identity

_ A +\f 1

4

fH —exp 22[()\2”1 ~-~+>\22+1>—25e,0
N

>0

\/2264-1

B — 4
20+1 (5.47)

holds uniformly over compact sets in |z| < min; |A;|?. Together with the definition of the Miwa times

t ! < ! + 1t ! > (5.48)

2001 = o 7 | Yoo T T Y2i1 ’
20+1 \ a3t YT

it suggests to consider the phase function

D(z:t) = (tarsr — 2000) V22IHL, £ = (t1,13,...) (5.49)

£>0
and to formulate the following limiting RHP. Set, for some fixed but arbitrary K > 0,

K

V(zit) = ) (tae1 — 200,0) V22H, (5.50)
£=0
iO’l z2<0
1 0 3
. arg z =
J(z;t) = e V=it G ()l (#+it)os — —ielrme2?(z:t) 1 8 ! (5.51)
1 0
(ieiuﬂ'eQﬁ(z;t) 1) argz = BQ'
To give strictly non-formal sense to this discussion, we agree that t := (t1,ts,...,t2x+1,0,0,...) for

some fixed (but arbitrary) K. We also assume that tox 1 # 0 satisfies
Re (\/ 22K+1t2K+1) <0, for argz = a2 (5.52)

so that J(z;t) ~ 1+ O(z~>°) along arg z = f1 2.

RHP 5.3.1. Find a 2 X 2 matriz T'(z;t), analytic for z € C\ X satisfying the following jump condition
along %
[(z4;t) =T(2-;t)J (2 1), (5.53)

the growth condition at zero
[(z;t) ~ O(1)¥(z), z—0 (5.54)

where U is defined in (5.23), and the normalization condition at infinity

L(z;t) ~ z*%aGY(z;t)7 z — 00, (5.55)
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where

G = % G —11> V() =1+ (_“flz) _“é%) % +0 (i) € GL (2,@ H\;ﬂ) . (5.56)

for some a = a(t) of t independent of z.

The considerations regarding the uniqueness exposed in Rem. 5.2.5 apply equally well here.

Formula for logarithmic correlators. Directly from Thm. 1.2.2 we have obtained the following
result. Introduce the matrix R(z;v)

11 1 1 1
2k — 1) §(§_U>k+1(§+y)k (i_y)k(i'i'y)k
R(zv) = ('7,1 (5.57)
550 k!(8z) 1 1 11 1
= (3 G+Hv)y 3G V) (GHY),
Theorem 5.3.2 ([BRb]). For all £ > 0 we have
or(t;v) _(2e-1) 1 1
ot o 2 i\2 "), 27, (5.58)
and for all n > 2 we have
Z 1 o7 (t;v)
el,...,enzoZ%Hl o bl Oty - Oty o
(—1)n-1 tr (R(2ay5v) -+ R(2x,5V)) 21+ 29
= 2 z = On.2- 5.59
D D e P | oy Rt e L

TeES,

Remark 5.3.3. The same formule have been derived independently in [DYZb].

Note that R(z;v) is a power series in z whose coefficients are polynomials in v. Moreover, R(z;v)

satisfies the following identity
1 0 1 0
R(z;—v) = (_V 1) R(z;v) (V 1) (5.60)

from which we conclude that the BGW tau function is invariant under v — —v, namely all the coefficients
in the expansion of the BGW tau function are even polynomials in v.

In particular when v is a half-integer, R(z;v) is actually a Laurent polynomial in z which reflects
the fact that the BGW tau function is a polynomial in this case; see [Ab] for a description of these
polynomials in terms of Schur polynomials.

The proof is a simple application (for the precise details of this case see [BRb]) of the formulee derived
in Thm. 1.2.2, evaluated at t = 0 by means of the following lemma, simplifying the products of Bessel
functions appearing in the relevant expansion at oo which we need for R.

Lemma 5.3.4. We have, at the level of asymptotic expansions,
V2V (2)o30 1 (2) = R(z;v) (5.61)
where R(z;v) is defined in (5.57).

Proof. We compute R(z;v) in the sector oy < argz < as, the result holds in every sector due to the
fact that W(z) has the same asymptotic expansion in every sector by construction. Hence we compute

R R Riy = 2vz2 (12, (2V2) K10 (2V7) — L1y (2V2) K-, (2V/7))
VZU(2)o30 7 z) = /2 (Ri _151) . Ria(2) =41, (2v2)K_,(2V/2)
R 1= 42[171,(2\/E>K1,,,(2\/E).

i (5.62)
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From the ODE (5.24) we deduce

(3)-[+

from which we obtain the system of ODEs

(5.63)

N
| I
h
Il
/-‘\
Hﬁt
w‘tl\lh—t
N———

2ZR111 = —2ZR12 + 2R21
2ZR/12 = —4R11 — 21/R12 (564)
2zR5 = 4zR11 + 2vRa;.

Consider, at the formal level, the following integral transform

fR) =) fiz 2 flt) =3 (Jz).t”ﬁ f(2) = / f(peV=dt (5.65)
k>0 k>0 ’
for which
//\ d ~ — d2 -~

27G) =~ (T ), ) = 3 o). (5.66)
Hence, by (5.64) and (5.66), the formal series Eﬁ(t), @(t), Ro1(t) satisfy the system

—4r (R (1)) = 28 Raz(t) + 2R (1)

— 4 (tR15(t)) = —4Ry1(t) — 2vR12(t) (5.67)

4 (tRo1 (1)) = 4L Ry1 () + 20Ran (8).

Solving for ﬁl\l(t) and Ryp (t) from the first two equations in (5.67) we obtain

— 1—-2v d —

Ri(t) = 1 Ris(t) + 1&312(0, (5.68)
— w—1-— 2w —3 d— 2\ d? —

Ry (t) = 3 Rya(t) + 3 tERm(t) + (1 - 8) @312(75)

and inserting this in the third equation in (5.67) we obtain ODE
2 d® — 2 d? — 2 d —— 2 23N
t (16 — %) @ng(t) +2 (16 — 3t?) @Rlz(t) + (4 =7) tang(t) + (4® = 1) Ri2(t) = 0. (5.69)

Now, from the expansions [AS]

1 G-v),G+v) T oo~V GHY)
Io(z) ~ e” k ko Ko(z)~y/=—e " k ko (5.70)
V2nx é k!(2x)k 2z ]%% k!(2x)k
we see that ) )
Riale) =41, (VAR 2v3) = - (140 (1)) (5.71)
is a power series containing only negative odd powers of v/z and so, from (5.65),
Ria(t) =1+ 0 () (5.72)

is a power series containing only positive even powers of . Hence we are interested in even power series
solutions Rya(t) = 1+ O(t?) of the ODE (5.69); by the Frobenius method it is possible to conclude
that there exists exactly one such solution, which can be written in closed form in terms of the Gauss
hypergeometric function

— LY (), (),
=2l |z —v, s+l — | = kl2 k. 5.7
Rix(t) =2 1(2 SRS 716) kz;; (kD)2 16 (5.73)
Finally, recalling transformation (5.65) we have
(3-v), (3+v), (k) 2—F
VZR1p(2) =) -2 ’“(]j,)z T (5.74)
k>0 '

which simplifies to the (1,2)-entry in (5.57) by the identity (2k)! = 2¥k!(2k — 1)!!. The other entries of
(5.57) are obtained by substituting (5.74) into (5.68). |
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Formula for Norbury intersection numbers. Just setting v = 0 in the previous result we obtain
the following formulae for Norbury intersection numbers. Indeed, by Norbury’s theorem we have

Orn oo 92r1+1 . 92r,+1 orr(t)],_, (5.75)
T " @r+ 1) 2r, + DI Oty -+ Oty t—ol '
Note that R(z;v = 0) has the following simple expression
BT
R(ziv=0)=) e | s _sen | (5.76)
k>0 2k—1 2
Corollary 5.3.5. For all g > 1 we have
(29 — (29 — 3)!
(0,T4—1) = S5l (5.77)
and for all n > 2 we have
(2ry + DM (20, + 1!
. ZT: - 22r1+1 . 22T”+1Z%+r1 . Z%L—’_T" <®, Trqy =" Trn>
(—=1)nt tr (R(2q,50 =0) -+ R(2g, ;v =0)) 21 + 22
= Z = 1. — — — — —50n2. (5.78)
n (2m, — 2my) ++ (Zrpy = 2 ) (2, — 2m) (21 — 22)

TeS,

Virasoro constraints. The identification of the Brezin-Gross-Witten tau function as an appropriate
isomonodromic tau function allows us also to derive independently the Virasoro constraints for this
model, already known in the case v = 0 from [GN; MMS; DN] and in the general case from [Ab] by other
methods. In concrete terms, we introduce the following differential operators;

20+ 1 1 — (1 — 41/2)
Ly, = t — 26 Z + Smo, m>0. (5.79
EZ% 9 ( 20+1 Z,O) 8t2g+2m+1 4 z:% at2€+1at2m 201 16 ,0 ( )

They satisfy the Virasoro commutation relations
[Lin, L) = (M —n)Lpygn, m,n > 0. (5.80)

Note that, contrarily to the Kontsevich—-Witten case considered in Chap. 4 there is no L_; = 0 constraint.
This can be seen as the isomonodromic system now does not possess a translation symmetry z — z + ¢,
as now the Fuchsian singularity z = 0 must be fixed.

Theorem 5.3.6 ([Ab]). The Virasoro operators annihilate the BGW tau function;

L, 7(t;v) =0, m > 0. (5.81)

We now give a proof of this theorem, solely by means of our approach. We stress that the same
computations, with very little modifications, can be used to prove the Virasoro constraints for the
Kontsevich—-Witten tau function considered in Chap. 4.

First, we need to study more in detail the (limiting) isomonodromic system. Introduce for convenience

E(z;t) :== —9(z;t)03. (5.82)

Repeating similar arguments as before, we find the following compatible system of ODEs for the matrix
T(z;t) := I (z;t)e=EH)
0¥ (z;t)
0z

0¥(z;t)

= L(z;t)U(z;t), Dtares

= My(z;t)¥(z;t), £=0,..,K (5.83)
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Lemma 5.3.7. The matrices My(z;t) are polynomials in z of degree £ + 1 which can be written as
My(z;t) = — (\Il(z;t)oglllfl(z;t)\/gy-i_l) (5.84)
+

where ()4 denotes the polynomial part® of a Laurent expansion in z around z = oo. The matriz L(z;t)
is a rational matriz with a simple pole at z = 0 which can be written as

1 g3 20 +1
L(Z, t) = ; —Z + Z T(t2g+1 — 2(5(70)M£(Z, t) . (585)
£>0
Proof. In this proof we omit the dependence on (z;t). The matrix M, = 6t‘zzp+1 U~! has no jumps along

3. In principle it may have an isolated singularity at z = 0 (a pole or worse); however this cannot happen
because of condition (5.54). Therefore M, has a removable singularity at z = 0 and thus extends to an
entire function. From inspection of the asymptotic behaviour of ¥ at oo, it follows that M, is an entire
function of z with polynomial growth at z = oco. By the Liouville Theorem M, is a polynomial of z,
which coincides then with the polynomial part of its asymptotic expansion;

Mg_< ov qfl) - <ZG oY Ylalz"f) 99
Otars1 " Otars Otarya

_ (‘I’O’g‘ljl > - _ (\110_3\1171\/220‘1-1)
+

" +

=0
(5.86)
where the first term vanishes thank to our choice of normalization in (5.55).
The same reasoning applies to L = U/¥~! with the only exception that, in view of growth condition
at z = 0 (5.54), L has a simple pole at z = 0. It follows by the Liouville Theorem that L is a rational
function of z, which coincides then with the Laurent expansion at oo truncated at the term in z71;

namely

1 ro—-1y 03 1 —23 Iy—1—1_ %38 1 —1.q/
L—;(z\II\I/ )+__@+;(ZZ TGY'Y G 24)+—;(z\1103‘11 1‘})+ (5.87)
=0
o3 20+ 1 _1 20-1 1 o3 20+ 1
=——— —(te — 26 (\I/ v ) =—|-—— ——(te — 284,0) M,
1 2 (te 00) (200302 Ml 1 +Z 5 (te 0,0)Me
£>0 £>0
where again the term indicated vanishes thank to our choice of normalization in (5.55). |

The compatible system (5.83) is the isomonodromic system whose tau function, defined as

8T(t) — res tr (F_l(z;t)l—‘/(z;t)dg\/g%Jrl) dz7 ! = 1, ...7K7 (588)
Otapr1  z=00

reproduces the BGW tau function, up to truncating the times as t = (¢1,ts, ..., tax+1, 0, ...) (hence there
is no confusion in denoting both 7(t)).

Hereafter we drop the explicit notation of dependence on z,t and denote
0 0

Oty  Otarsr

to:=topr1 — 2000, Op: (5.89)

We collect below some simple preliminary results that will be needed below for the proof of the
Virasoro constraints.
Lemma 5.3.8. The following identity holds true for all k > 0;

2k +3
2

res tr (ZL/\IIO'3\I/71\/E2IC+1) dz + O logT = 0. (5.90)
Proof. The (formal or not) residue of a total differential vanishes, hence

!/
res tr (\I"crg\IJ*l\/EQkH) dz=0 (5.91)

2Note that by (5.41) the expression ¥(z;t)o3¥ 1 (z; t)\ﬁzu_1 has an expansion in integer powers of z only.
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and computing the left hand side using ¥/ = LY we have

2k 3
res tr ((L\I/) o UL /2 L e w2 ; 1[”““)
+3
= res tr (L Toy O~ + L20os T — L )Lg/{‘lf‘/‘/) VR, dlogT  (5.92)
where the two terms indicated cancel out thanks to the cyclic property of the trace. |

Lemma 5.3.9. The following formule hold true, for all a,b,c > 0;
OpOclog T = res tr (Mblllog\ll 1f26+1) z, (5.93)
Dulhelog T = res tr ((aaM,, + M, M,)) \1/03\1:*1\/226“) dz. (5.94)
Proof. We start from (5.88)
OclogT = Tes tr ( 'o3 U™ \/z%ﬁ) (5.95)
and applying 0, using 9,V = M,V we get
e logT = res tr ((Mqu)’agqf—l\/gzc“ - \I//Jg\Il_le\/Echrl) d

= ros tr (M,;qfagqu\/?c“ +W—W dz (5.96)

where the two terms cancel due to the cyclic property of the trace; (5.93) is proven. Now apply 9, to
(5.93) to obtain

0,040, log T = Tes tr (((aaM,;) Vg0~ + MM, Wos 0" — M{ oz~ M,) \/22““) dz  (5.97)

which simplifies to (5.94), once again thanks to the cyclic property of the trace. |

As a last preliminary, let us use the expansion

L a a| -1 b c| _4 d e —3
Y(z,t)—l—i—{_a _a]z —l—[c b]z +[—e _d}z +

with a = a(t),..., g = g(t), to compute

B ﬂ ‘2+(’)< *) (5.98)

—2a -1
Mo = [—z —2c Za} (5.99)
B 2(ab — ac —e) — 2az 4a% + 2c — z
M, = {2((16 —ad—c®+bc—g)—2z2c—2° 2(—ab+ac+e)+ 2az} ’ (5.100)
and, by direct use of (5.88) we also find
0o log 7 = 2a, (5.101)
01log T = —4ab+ 3d +e. (5.102)
Proof of Lo =0. We compute from (5.85)
o3 1 20+ 1~ 1 20+ 1~ 204+ 1~
2L =2 @+;Z 5 thg—;Z 5 teM => o teM;— L. (5.103)
>0 £>0 £>0
Substitution in (5.90) shows that for all k¥ > 0 we have
20+ 1~ 2k
0= Z ;r ty res tr (Mé\I/O'3\IJ\/22k+1)dZ— res tr (L\Ilog\Pfl\/EQkH) Jr Ok log T
2041~ k L
= Z ;_ te0,0y log T + ak log T = 0y ( OT) (5.104)
T

£>0
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where we use (5.93) and the fact that LU = U’; the last identity implies % = C for some constant C;
evaluation at t, = 0, i.e. ty = —20¢,0, using the definition of Ly in (5.79) shows that

Lot 1— 402 1—4v? 1 — 42
C=— = —0pl =— =0 5.105
|y T T8 The=o g 6 16 (5.105)
where we use dplogT|,_, = 1_1%”2, which follows from the explicit formula (5.58).

Remark 5.3.10. The constraint LoT = 0 follows also from the dilation covariance of the RHP 5.5.1.
Concretely, the matriz U(ez;t) (u € R) satisfies the same jump condition as ¥(z;t), as the latter
satisfies a jump condition with matrices independent of z,t; further we have the boundary behaviour

W(ehz) ~e §7,7 7@ (1 + [acgz,z) a&z)} e ErT 4 O(z_l)) e VEtWles 50 (5.106)

. It follows that e193T(e“z;t(—u)) solves RHP 5.3.1, the solution of which is

+1
where ty(u) = e 2
unique, hence

[(z;t) = 173 (e%2; t(—u)). (5.107)
Therefore, for all k > 0 we have

res tr (Ffl(z;t)l“/(z;t)ag\/gzmrl) = res tr (Ffl(e“z;t(fu))I"(e“z;t(fu))agﬁ%ﬂ) (5.108)

2=00 2=00

and the last expression does not depend on u by construction; setting the first variation in u equal to zero
we recover O (LOT) =0 for all k > 0, from which we can derive LoT = 0 as above.

Note that due to the special point z =0, RHP 5.3.1 does not have a translation covariance property.
Therefore it lacks a Virasoro constraint of the form L_1 as in the case of the Kontsevich—Witten tau
function.

Proof of L17 =0 As a consequence of the recursion
ZM£:M£+1 —(Mz+1)0=>ZMé=Mé+1 — M, (5.109)

where ()¢ denotes the constant term in z, we multiply (5.103) by z to get

204+ 1~ 20+ 1~ 2041~
z L/ = 9 thMZ —zL = 9 t(Mé+l 9 thg —zL
£>0 >0 >0

2f+1~ 204+ 1~ o3 o3 204+ 1~ o3
=> My — | Y tMy— = | == —z2L=>) o teMiypy =220 — -

2 4 4
£>0 >0 >0
=zL
(5.110)
and we use (5.90) with k — k + 1:
2k
0= Tes tr ( 2y \1103\1171\/2%“) dz + + Ok log T
2£ ;
= Z tg Tes tr (MZH\IIU;),\I'[%JF )dz — res tr (2zL\IIU3\IJ_1\/§2k+1)
£>0 =
2k +5 1
+ Opy1logT — 7 xes tr (03\1103\11_1\&%—&-1) dz
Z=0Q
20+ 1~ 2k +1 1
— Z ; tyOpy10k log T + 2+ Ok+1logT — 1 res tr (03\1103\1171\/22]6“) dz (5.111)
>0 -

where we have used (5.93) and LV = 0.
Lemma 5.3.11. We have

— IZBS tr (0'3\110'3‘1/71\/22]“_1) = ak ((907') (5112)
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Proof of Lemma 5.3.11. Note that
Ok (327> = 0 (85 log T + (0o log 7)?)
= 0xO3 log T + 2(0 log 7) (90 log T) = k03 log T + 4ady.dp log T (5.113)
where we have used (5.101) in the last step. Using Lemma 5.3.9 we obtain
0,02 log T + 4ady0p log T = Tes tr ((50M6 + [M{, Mo + 4aMy) \Ilaglﬂ_l\/EQkH) dz (5.114)

and the statement (5.112) boils down to the identity
QoM + [ My, Mo] + 4aM} = —o3 (5.115)

which is easily checked using (5.99). |

Back to the proof of L7 = 0, we see from the last line of (5.111) together with Lemma 5.3.11 that we
have proven J (L”) = 0 for all £ > 0. Hence L17 = CT for some constant C; evaluation at t = (0,0, ...)
shows that C' = 0 (e.g. using the explicit formulse we have obtained for logarithmic derivatives of the tau
function) and so Li7 = 0.

Proof of Lyr = 0. Using the recursion (5.109) we see that
ZMy = My o — Moy = My o — 2My — (Mpy), (5.116)

where again we denote ()o the constant term in z; we then compute from (5.110)

2€+ 1~ g3
AL =Y 5 tezMy, ., —22°L — =2

4
£>0
204+ 1~ 2£+1~ 20+ 1~
= Z 5 thZJrZ Z toMy — Z 5 ty (Mg+1) —22%L — ZZ
£>0 £>0 £>0
2041~ 2041~ o3
= S teMyy s > 5 te (Mesa)g - 322L — -2 (5.117)
£>0 £>0
Lemma 5.3.12. We have the identity
2€ + 1~ —b —|— cC —a
*Z to (Mes1)g = {g(d_e) b (5.118)

£>0
where a = a(t),...,e = e(t) are as in (5.98).

Proof of Lemma 5.3.12. Since (2?¥)’ satisfies the same jump condition as ¥ along ¥, it follows that
the ratio (22¥)'¥~! is an entire matrix—valued function; indeed from (5.54) we see that this ratio is
analytic also at z = 0. Since this ratio has polynomial growth at z = oo, see (5.55), we conclude that
(22W)' ¥~ is actually a polynomial, which coincides with the polynomial part of its expansion at z = oo;

(20 = (2z1 - 22% +227 QY'Y IGT T 4 22\1119'03\1171)
z +

o o 204+ 1~
=221 — z% + (ZQZ_T%GY’Y_IG“Z 4%) + Z + teMyyq. (5.119)
£>0

However, it is trivial to compute (22W)'®~! = 221 + 22L, which has no constant term in z. Therefore
also the constant term in z in (5.119) vanishes and hence

21€+1~ - 9 _23 1 1 o3 . —b+c —a
_ g M _( Fay'y-lao )0_ S0 b (5.120)

0

and the Lemma is proven. |
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Back to the proof of Lym = 0, we obtain from (5.117) together with Lemma 5.3.12

f 20+ 1~
AL =Y 5 teMyy, — 3220 + (5.121)

>0

and inserting this expression in (5.90) with & — k + 2 we have

2k + 7

0= res tr (z3L’\IfagxIr1\/22’““) dz + Opoyolog T

204+ 1~
- Z a te res tr (Mé+2\1’03‘1’_1\/52k+1) dz — 3 res (z?’L\I/ag,\IJ_l\/Z%H) dz
s 2 = 2=00

—s-b+c —a
+ res tr 3
z=00 5(d—e) 5—-b—c

20+ 1~ 2k +1
=D 5 t0kOralog T+ T —OkyzlogT

2k +7

Ok42log T

\1:03\1/1\/52’”1) dz +

-5-b+c —a
+ res tr 3
s(d—e) 5—-b—c

\pagwl\&Q’“*l) de. (5.122)

The final part is the computation of the last term in the above equation. This is done in the following
Lemma.

Lemma 5.3.13. We have

—zZ_} _
res tr 32 te “
z=00 5(d—e) S—-b-c

Proof of Lemma 5.3.13. Note that

2T

%3\11—1\/22’““) dz = 9, (W) . (5.123)

% (30217> = Oy, (8p01 log T 4 (9plog 7) (81 log 7))

= 00001 log T + (0r0p log 7) (01 log 7) + (9o log 7) (0x01 log T)
= 00901 log T + (—4ab + 3d + ¢e) (0100 log 7) + 2a (9,01 log 7) (5.124)

where we have used (5.101) and (5.102). Using Lemma 5.3.9 and the explicit expressions (5.99) and
(5.100) we obtain

1
O <808”> =g Ios tr ((alMg, + [M), My] + (—4ab + 3d + €)M/, + 2aM]) xpagqu\/zz’““) dz

2T z=00
—2+4c —a _1 2k+1
_ 2
= res tr (E(dJr e - c] Vo U™ '/2 ) dz (5.125)
. -b 0 1 1
and the proof is complete, as tr 0 —b Yo W = —btr (\1103\11 ) = —btr(o3) = 0. |

From the last line of (5.122) combined with Lemma 5.3.13 we obtain 0y (£27) = 0, for all k > 0. It
follows that Lo = CT for some integration constant C'; evaluation at t = (0,0, ...) shows that C = 0
(e.g. using the explicit formulee we have obtained for logarithmic derivatives of the tau function) and so

LQT =0.

Proof of Thm. 5.3.6. We have proven L, 7 =0 for n = 0,1, 2. It remains to show that L, 17 =10
for n > 2. The proof is given by induction on n > 2: assume that L,,7 = 0 for some n > 2, then exploiting
the Virasoro commutation relation (5.80) we have

1

Ln+17' =

and the proof of Thm. 5.3.6 is complete.
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KdV and Painlevé XXXIV hierarchies. As we briefly reviewed in Chap. 4, the Kontsevich—Witten
KdV tau function provides a solution to the Painlevé I hierarchy. We now observe that the BGW tau
function is instead related with the PXXXIV hierarchy.

More precisely, let us call z := ¢; and introduce

2

u(z,t) == 32 log 7(z,t), t:=(t3,ts5,...) (5.127)

which is a solution to the KdV hierarchy

ou d
= — > 1. 12
xl:g 1[u], ¢ (5.128)

Otart1
In (4.73) we denote Ly[u] the Lenard-Magri differential polynomials, defined as
d 1 d® d
oo = (dis +2ugd +w) L
Lofu] =1, {dw e = s £ 20y b ) Lalul s (5.129)
£4+1[u = 0] =0
Lemma 5.3.14. The solution u in (4.72) of the KdV hierarchy (4.73) satisfies the initial condition

1— 402

u(z,t =0) = Se_a7

(5.130)

Proof. The time z = ¢; is related to shifts of the variable z in the RHP 5.3.1; more precisely, restricting
to real values of x for simplicity, we easily see that

D(z (2,0,...)) = (1 - g) 1, ((1 - g)z z) (5.131)

is the solution to (5.3.1) for this choice of times t; = z, t = 0. Here we assume —2 < z < 2 and
take the principal branch of the square roots. At the level of asymptotic expansions, we are replacing
vz = (1= %) \/z in the asymptotic expansion of I'g(z); from (5.43) we see that

Iz (2,0,...)) f%G1+1_“ﬂ<1 1>+ouﬂ 2= o (5.132)
i (2,0, ... RO vE -1 -1 ) . :
Using (5.132) a direct computation shows that
-1 / 1-— 41/2
9z log7(x,0,...) = res tr (D71 (2; (2,0,..))["(2; (2,0, ...))o3v/z) dz = 2= (5.133)
which completes the proof. |
Remark 5.3.15. Note that (5.133) implies that
v2_1
7(2,0,...) = C(2 — x)4 5 (5.134)

for some nonvanishing integration constant C' # 0, which indicates that RHP 5.3.1 for t = (z,0,...) is
solvable for all values of x # 2.

Let us now write the Virasoro constraint Lom = 0, see (5.79), as

dlog T Ologt 1—412
-2 204+ 1)t =0 5.135
(=T + T Dty B+ 2 (5.135)
and taking two derivatives in x we have
Ologr _0%logT 0 logT
-2 : 2 20+ 1)t ——— =0. 5.136
(x —2) B3 + 52 + Z( + D)torsa P20torr ( )

>1

The following proposition then follows from the definition (4.72) of u and the KdV hierarchy equations
(4.73).



98 CHAPTER 5. BREZIN-GROSS-WITTEN TAU FUNCTION

Proposition 5.3.16. If we set t; = 0 for £ > K + 1 as above, then u(x;ts,...,tax+1,0,...) solves the
Kth member of the PXXXIV hierarchy;

K
d
2u+ (2 — 2ug + »_(20+ Dtarp1g-Lega[u] =0 (5.137)
=1

which is an ODE in x, where ts,...,tax 1 are regarded as parameters.

The Painlevé XXXIV hierarchy has been considered in [CJP] and it is related by a Miura transfor-
mation to the Painlevé IT hierarchy, first introduced in [FN].
For example, the case K = 1, denoting t3 =: ¢, in (5.137) is

3
Ztuul + Ytuu, + (x — 2)u, + 2u = 0. (5.138)
By the simple scaling
1 1
3t\? 2 \?
c=2= ()0 o= (g) v (5.139)
(5.138) reads
Vyyy + 60V — yvy — 20 =0 (5.140)

which we call, following the literature, see e.g. [CJP], the Painlevé XXXIV equation.
It is known [I; FA] that (5.140) is equivalent to the Painlevé II equation

Wy, = w’ + yw + a, (5.141)

in the sense that the Miura transformation

v=—w? —w,, w= byt (5.142)
20—y

is a one-to—one map between solutions to (5.140) and to (5.141).
Using (5.98), (5.99) and (5.100) we can write down explicitly the Lax pair for (5.138) as

Ly 0 —2a —1
L(z) = Liz+ Lo + — M= M <ax> _ (_Z 2 2a) (5.143)
where
0 0 —3ta st
= = 2
b= <—3§3 0)  fo= (6ta2 +3ta, — 241 3m) ; (5.144)

L_, =

7(172)a76taza7%tazzfi 727_27315(11
2(z—2)a’+12ta, a2+6tamca+a+12ta§+2(m—2)am+%tamm (z—2)a+6tazatStag+3 ) °

Indeed, the compatibility of ¥/ = LW and ¥, = MV implies the zero curvature condition

1 0 0
p— I_ —_ - =
Ly =M= [M,L] = — (;tam 361000t + 25 — 2)ass + da, 0) 0 (5.145)

which, identifying u = 2a, from (5.101), gives (5.138). Setting t = —3, v — 2 = y and 4a(z) = a(y) we
obtain the following Lax pair for (5.140);

200y —ya+2aa,—1 200, —Y
o + SyymyoTLaay T2 9 4 2oy
— . 4z 22
= <2Z oy e o + 2a+ya2+4yo¢y72a2ay—8a§74aayy74ayyy o — 200, —yot2any,—1 |
2 2 Yy 82 1z

-g -1 U =LV
M = ( o, ) , {\Py _yw T Cwww Bayayy — yay, — 20, =0 (5.146)



5.4. PROOF OF THM. 5.2.6 99

which is (5.140) for v := «,,. Finally we note that after a gauge transformation on (5.146) of the form

L=GLG™, M = GMG™ + G, G with G = (i

2

2v,—1 2v—y
- Y42 — 0 -1
— 4z 5 2z M =
L= (22 —u— Yy + =207+ Yv—vyy 1—2v, ) I (1} — 2 0 > (5147)

2 2z 4z

(1)> we obtain a Lax pair

for (5.140) in v directly.

5.4 Proof of Thm. 5.2.6

Schlesinger transform matrix R and characteristic matrix. Consider the bare matrix ¥ defined
in (5.23) and introduce

Ty = U(z)e 278, (5.148)

Ty is, up to a simple gauge fact in front, the solution of RHP 5.2.3 for N = 0 (and consequently no
parameters ).

Suppose RHP 5.2.3 has a solution I'(z) = I'(z; X). Then there exists a rational matrix R(z) = R(z; \)
with simple poles at z = A}, ..., A%, only such that

I'(z) = R(2)y(2)D(2). (5.149)

This is easily seen by Liouville theorem as R(z) := I'(2) D=1 (2)T; ! (2) is continuous along ¥, while having
at worse simple poles at z = A2, ..., \%.. This falls within the theory developed in Chap. 2.

Hereafter we employ the short notation 0; := a%j and we consider the case Re A; > 0 only for clarity’s
sake; the general case is a straightforward generalization.

Following the strategy outlined in Chap. 2 one can seek a characterization in terms of a finite-
dimensional linear map for the existence of a rational function R such that I' = RI'¢D is the solution of
RHP 5.2.3. Referring for more details about the modification of the general Thm. 2.4.8 for the present
situation to [BCa, App. B], let us state that such a rational functions exists if and only if the following
characteristic matriz is nondegenerate;

G=(G )N G — - res zi’;? egral()\?)ro(Z)G_lz%er if -3 <argA< 73
— k) g, k=1> J,k — _ I;GS Tfk)\g eirro_l()\?e:':%ri)FO(Z)Gilz%el_«_k if g < iarg)\ <7
(5.150)

where e; = ey = and the index in ey is understood mod 2 (e.g. e3 = e1, €4 = €3); 'y(2)

1 0
of o= 1]
is as in (5.148), and note that the gauge factor of (5.148) is irrelevant here, as G, ; is invariant under
Iy — BT for any B € GL(2,C).

The residue in (5.150) is by definition a formal residue, i.e. we regard

93 73
4 4

To(2)G 27 =2~ F QY (2)G 27 =14+ 0(z"!) € GL (2,C[=7"]) (5.151)
as a formal power series and the formal residue is simply the coefficient of z='. It can be checked that
thanks to the property (5.41) the expression (5.151) contains integer powers of z only.

The following variational formula has been proven in [BCc, App. B, and is a direct corollary of Prop.

2.4.6;

N N
9;logdet G = er:efz tr (RUR'0; I, 1) + res tr (RTIR; 0 1) + ) ves tr (g 'Th0; Uil )

k=1"""% o1 A
(5.152)
where
1 0 1 e 1 0
Ji :=Ty(z) [0 2 z} . Joo i =D0(2)D(2)G7 27T, Uy = {0 L )‘%] , kE=1,..,n. (5.153)
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Malgrange differential and extended Kontsevich—Penner partition function. The following
manipulation of the determinant of the characteristic matrix is the main step in order to prove Thm.
5.2.6.

Proposition 5.4.1. We have

n
jk=1

det G = C'det (e "2 &,())) (5.154)

where the proportionality constant C (irrelevant in the following) is

C = (fl)L%J (—i)o+i’=, a:= #{j : fgarg/\j < g}, by = #{j : g < farg); < 7T}. (5.155)
Proof. Let us consider the case —F < arg); < 7 first; by the definition (5.150) and simple algebra
using (5.31), we see that the (2m + 1)th, resp. (2m + 2)th, column of G is the second, resp. the first,

m

entry in the row vector coefficient of z=™ in
e—2)\j 1 672>‘j \2m 1
17“[—62(/\3‘)761(&)](1 4CIEDY 16 (), G0+ 0ET), (5.156)
_ 2 m>0

z

where j is the row index of the columns of G. Hence we note that the first column of G is given by
[e722€1(A;)]L, and the second one by [—e™?% & ()]

For the next columns we proceed by induction. Indeed, as the O(z~1) term in (5.156) does not
depend on the row index j, it follows that the (2rm + 1)th column is [e=2* A3™&; (A;)]%L; up to a linear
combination of the previous (odd) column. Similarly the (2m + 2)th column is [—e™2* X3 & ()7L, up
to a linear combination of the previous (even) columns. Now we recall [AS]

Toi1(2)) = La_1(2)) — %10(2)\), Koi1(2)) = Ko_1(2)\) + %Ka@)\) (5.157)
which implies
Eera(N) = N265 (V) — (k — )€1 () when — g <arg\ < g (5.158)

and so

N (N) = Eamir (V) mod (1(N), ..., E2m(N))
NE(N) = Eami2(N)  mod (§1(N), . E2mr1(N)  (m >1). (5.159)

It follows that the matrices G and [(—1)k~1le=2N §k(Aj)]T% = differ by multiplication by a unimodular
matrix, more precisely by a triangular matrix with 1’s along the diagonal; in particular they have the
same determinant and Proposition is proven when —35 < arg\; < 5.

The case when § < +arg \; < m is completely analogous so we just briefly comment on the differences;
expression (5.156), in view of (5.150) and (5.31), must be replaced by

672)‘7' e—2>\j 2m
17)\2[35520\3')7 HOGA)(1+0GE)) =Y e [FL (), FHO ()] + O(z"1)  (5.160)
- m>0
while the recursion (5.158) must be replaced by
Err1 (V) = A6 (\) + (k — )& (N, g <targh<nm (5.161)

which is again a consequence of (5.157). Hence (5.159) holds true in the case § < £arg\; < 7 as well
and as above, taking care of the +’s and +i’s, we have the thesis. |

We are finally ready to complete the proof of Thm. 5.2.6. Let us compute the Malgrange form

1
Q(09,) := o [ (T(22) ' (22)0; 0 (2) ' (2)) d= (5.162)
b
by using I' = R[oD~! and J = D~1JyD where Jo(z2) := e2VZ-935(2)e"2vV*+73 with S defined in (5.28).
After some elementary algebra we obtain
0(9;) = > res tr (R™'R'Ty0; DD 'Ty"' +Ty'T,0,DD™") (5.163)

Z=Zx
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and by using the identities

0j It = T00; DD'T (5.164)
we obtain (comparing with (5.152))
N
0(9;) = d;logdet G+ Y _ res tr (T 'R RTo(9; DD~ — 0;UU; 1)) (5.165)
=17
as res tr (I'y'T(9;DD) = 0. Introducing now the matrices
It 0 .
To=DU = || uwOw—va) |+ BE = B0Uk k=1 .0 (5.166)
Ae+vVz

which are analytic at z = A} and satisfy 9;DD~! — 9,U, U, 1 - 0,131, ! we compute each summand in
the right—hand side of (5.165) as

res tr (R™'RTod; Ty Ty, 'Tg") = res tr (Uy 'Tg R (RToU)O, T T, )

z:)\i Z2=A7
= res tr (U 'Tg ' R™Y)((RToUk) — RTWUy — RTG UL T Ty )
F=A
-1 -1 -1 -1 -1 -1
= e tr (RY) ™' (R;)) 0,101, )fzgsi tr (Tg ' Lo0T% T, )er:esi tr (U, 'ULO T T, )

=0 =0

C e 1 (8' (Hk’;&ko‘k’ - ﬁ)) Ae + /2 >

2:/\§ z— )\% )\k + \/E Hk,?ék()\k/ — \/E)
1 oo 1 e
1 —— if k —— if k
— _ res SxQNTVE iEk_ T i (5.167)
z:)‘iz_)\k W lf]:k e lf]:k/’
From (5.165) we get, after a simple integration,
HN—1 Vv )‘j
Q(0;) = 09,1 — 1= Y - _detG | . 5.168
( j) 708 (A()‘lva)\N) ¢ ( )

In view of (5.154) and (5.32) the proof of Thm. 5.2.6 is complete.
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CHAPTER 6

Kontsevich—Penner tau function

The Kontsevich matriz integral can be generalized with addition of a logarithmic term to the cubic po-
tential. The resulting model is called Kontsevich—Penner model, and is a tau function of the modified
KP hierarchy. The interest in this model is motivated by a conjecture of Alexandrov, Buryak and Tessler
relating it to open intersection numbers. In this chapter we apply the methods developed so far to this
model, by identifying the partition function with the isomonodromic tau function of an appropriate 3 x 3
system.

Main references for this chaper are [ABT; BRc].

6.1 The Kontsevich—Penner model and open intersection num-
bers

The Kontsevich—Penner matrix integral is

ZRP(V;Q) =

det(iY)? / exptr (M3 — Y M?) Y (6.1)
Hn

Ju,, exptr (=Y M?) det(M + 1Y)

It is a function of the diagonal matrix ¥ = diag(y1, ..., y~) satisfying y; > 0, so that the integrals are
absolutely convergent. We assume for simplicity that @ is integer, but it can be regarded as an arbitrary
complex parameter. For @ = 0 it reduces to Kontsevich matrix integral (4.21).

It is a deformation of the Kontsevich matrix integral by addition of a logarithmic term in the potential;
purely logarithmic potential was first considered by Penner [Pc|, whence the name.

It has attracted some interest [Aa; Ac; BHb] due to Conjecture 6.1.5 below, formulated in [ABT],
relating this matrix integral to intersection numbers over the moduli spaces of open Riemann surfaces
in a similar way as the Kontsevich matrix integral (4.21) is related to Witten intersection numbers, see
Chap. 4.

Similarly to Lemma 4.2.1 we have the following determinantal expression for the Kontsevich-Penner
matrix integral (6.1).

First, introduce the sequence of functions (Q € Z)

i@ exp (% + iacz)
B V 27 R+ie xQ

The integral is absolutely convergent for any € > 0 and it defines an entire function of z (independent of

€).
The functions (6.2) are close relatives of the Airy function (4.22); note that ¢(z; Q = 0) = v27wAi(z).
Moreover, for arbitrary @ they satisfy a third order linear differential equation

" (2Q) = 2¢'(z,Q) + (Q — 1)o(2; Q) = 0. (6.3)
Combining it with the trivial identity

(2 Q) :

dz (6.2)

P (2Q) = —p(2;,Q — 1) (6.4)

we obtain
P(2;Q —3) — 2¢(2;,Q — 1) — (Q — 1)g(2;,Q) = 0. (6.5)

We shall return to the properties of these functions below.
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Lemma 6.1.1. The Kontsevich—Penner matrixz integral (4.21) can be expressed as follows:

\/2—Ndet VY?2Q+lexptr (2Y3)

ZV(Y;Q) = AY)

det (6V V(5% Q)) (6.6)

N
k=1
where the functions ¢(z; Q) are defined in (6.2).

Proof. The gaussian integral in the denominator of (6.1) has already been computed in the proof of
Lemma 4.2.1, hence we only report report the result;

2 _ vaVt A(Y)
/HN exptr (=Y M*)dM = et A (6.7)

For the numerator we also proceed analogously to the proof of Lemma 4.2.1; we have

/ exptr (;MS —YM? - Qlog(M + iY)) dM (6.8)
Hn
2 M
D exp (trY3> / exptr [ it +iM'Y? — Qlog M’ | dM’ (6.9)
3 e 3
N ix3
@ 1 (2 3) 2 e R
= —exp| strY A%(X) dz; dUexptr (iY*UXU (6.10)
N! 3 RN j1;[1 x? ! Un/(UN) ( )
N
(@ = 5 A(X) det (e”ﬂ'yi) 4 N
R “try® L dz; 6.11
NU P (3 ' )/RN A(iY?) ;1;[1 P (6.11)
2 3 .3 N
(4) NN-1) €exp (gtrY ) (/ N—j—Q <1:L‘ . 2) )
=g 2 ——=_—— 2 det VI %exp | — +izyj | do . (6.12)
A(iY?2) R 3 k ket

In (1) we perform a shift M’ := M+iY and an analytic continuation: the integral is now only conditionally
convergent, it is absolutely convergent only when understood as integration over H,, + iel for any € > 0.
In (2) we apply Weyl integration formula (Prop. B.1.1) and we use the notation X = diag(x1, ..., z,). In
(3) we apply Harish-Chandra formula (B.11) and in (4) Andreief identity (Lemma B.3.1). The proof is
completed by the identity

i@ , iz 1
-Q ; — —4®
x ex +izz | dz = - z 6.13
5 . p( 3 ) 797 (2) (6.13)
which directly follows from (6.2). |

Asymptotic expansions and open intersection numbers. Similarly to Airy functions, (6.2) admit
explicit asymptotic expansions as z — co within |argz| < =

Proposition 6.1.2. When z — oo within the sector |arg z| < m we have

exp (—%z%>
d(2:Q) ~ WF_(Z;Q) (6.14)
where
5 23 _1\b . 1 .
P =1+ Y 0G@s Y, o@= 0 (2j @ b) F(jﬁr”) (6.15)

i>1 b=0

Proof. Let us first consider z € R, 2 — +00. According to Laplace’s method the main contributions to
¢(z; Q) for large z come from the saddles of the exponent i“—; +izz, provided that the contour of integration
can be deformed into the curve of steepest descent through some of the saddles in a neighbourhood of
the saddle points. In the present case there are two saddles, +i\/z. The identity

3 2 :
i% —|—ixz=:F§z% :F\/E(x:Fi\/E)Q—l-% (zZFi\/Z)S (6.16)
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shows that the direction of steepest descent at iy/z is horizontal, while at —i/z is vertical. Hence we
deform the contour of integration passing through iy/z along the direction of steepest descent. Using the
expansion

2 exp (3@ - i\/E)S) =2 <_Q> O 2 izt (6.17)

a b13b
a,b>0

L) 5 (e [T
a,b>0

a ) b3v” oo

gzg> ba (618)
3 Z —Q\i r 1+a+3b L—3(a+h) _
Vorz3+i a ) bl3b 2

a,b>0, a+b even
exp (—%z%) Z ) 5.
=—F——5 2 (1)CQ)%
Va3 7>0

I\

where, in the second line, £ = x — iy/z, in the last step a + b = 2j and C;(Q) is as in (6.15).

The asymptotic expansion holds in the whole sector |argz| < m by standard arguments that are
completely parallel to the well-known case of the Airy functions. Roughly speaking, this follows from the
general asymptotic theory of solutions to a linear ODE with rational coefficients, see [Wal; indeed, since
@(z; Q) is a solution to such an ODE, see (6.3), the asymptotic expansion is valid in a sector including
the positive real semiaxis. In principle, this sector is ! |argz| < &> but as that ¢(z;Q) is subleading
with respect to all other solutions, its asymptotic expansion must be valid also across the Stokes’s lines
arg z = +¢. For more details see loc. cit. |

Remark 6.1.3. In different sectors (e.g. in m < argz < 3m) a formal analytic continuation of the
expression in the right-hand side of (6.14) is needed, so we shall consider also the power series

F(zQ) =1+ C(Q)= 7. (6.19)

Jj=1

Remark 6.1.4. As a corollary of the recurrence relation (6.5) we obtain the following recurrence relation
for the formal series Fy(z;Q):

Fi(%Q—2)— Fi(%Q) £ Q2 2 Fi(%Q +1) =0. (6.20)
From the expression of Lemma 6.1.1 we obtain that we have an asymptotic expansion
ZRP(Y) ~ 7, (6.21)
where, with the notation of Sec. 1.4.3, we set

()Y
T]C(Zl,...,ZN) = M (6.22)

TN
det (ziil)
jk=1

(compare with (1.141)) where f = (f;);>1 € Gr(? with the formal series f;(z) = 2/71(1 + O(z71))
defined by

$U=1(22) ~ (_1)1'—1ij<23) (6.23)

as z — oo within |argz| < §. We recall from Sec. 1.4.3 that T]":,(zl, ., 2N) gives a well defined limit
71 (t). Tt is called Kontsevich-Penner tau function.

ISince, up to a shearing transformation, as in Rem. 1.4.2, the Poincaré rank at oo in the square root variable vz is 3.
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We now briefly introduce the conjecture of [ABT], which has been proposed as an analogue of the
Witten—Kontsevich theorem, Thm. 4.1.5, to explain the algebro-geometric and combinatorial meaning
of the coefficients of the Kontsevich—Penner tau function. To formulate it, consider rescaled times T =
(Th,T5, ...) defined by

Ty = (—1)F k275 1, (6.24)
L5z
where we have used the double factorial £!! := [] (k — 2j) for any nonnegative integer k. Then the
3=0
expansion
T3 2 2 2
log 7/ (T) = 61 + (24 + %) T3+ QThTs + Q—T2T4 + (24 % > T2 + QT?Ty + - (6.25)

is a deformation of the generating function (4.13) of Witten intersection numbers (4.4), up to a change of
variables; the Thi11’s of this chapter are the T’s of Chap. 4 (kK =0,1,2,...), the even variables T, Ty, ...
of the present chapter have no analogue in Chap. 4. Define the polynomials in () with rational coefficients

<Td1 c

2

i )open € QIQ) (6.26)

for all n > 1 and d; > 0 by the expansion

Tayv1Ta,+1
log 7/ (T) =) Z <T%...T%>Open¥. (6.27)

|
n>1dy,--,d s
Conjecture 6.1.5. The polynomials (6.26) are the open intersection numbers.

The open intersection numbers [PST; T; BT] are a generalization of Witten intersection numbers(4.4);
the generalization consists in considering moduli spaces of open Riemann surfaces (by definition, compact
connected Riemann surfaces with a finite number of holomorphically embedded open disks removed) with
n marked points, which may belong to the boundary.

Rigorous definition of open intersection numbers is a challenging topic, whose grounds were laid in
[PST]. The main difficulties arise because such moduli spaces are non-compact real orbifolds, hence their
compactifications produce real boundaries and then integration of cohomology classes is in general an
ill-defined problem as it stands. Moreover, such moduli spaces are in general not orientable.

A more detailed introduction to the topic of open intersection numbers, which is a very recent and
active field of research, goes beyond the possibilities of this thesis. Let us just comment on the fact
that they are polynomials in @ defined in terms of a combinatorial formula [T], the coefficient in front
of Q" representing the contribution from the moduli space of open Riemann surfaces with b boundary
components.

Remark 6.1.6. In [Sa] the author provides an alternative construction of the open intersection num-
bers and proves that their generating function is precisely log ZK[P(t;Q). The relation between the two
definitions is still not clear.

Let us also mention that the conjecture, which reduces to Witten—Kontsevich theorem (Thm. 4.1.5)
for @ = 0, has been proven by Alexandrov [Aa] in the case Q = 1 (where the intersection numbers are
not weighted by the number of boundary components); the proof exploits a formula of Buryak for open
intersection numbers [Bg].

6.2 Isomonodromic method

The bare system. For a reason that will be clear below, we shall start from the formal adjoint® of
the ODE (6.3), namely

u"(2) — zu(z) — Qu(z) = 0. (6.28)
Note that u(z) = ¢(z;1 — Q) solves (6.28).

K K
2Let us remind that the (formal) adjoint of a linear differential operator Y aj(2)0% is > (—02)Fak(z).
k=0
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We need to introduce another linearly independent solution of (6.28). To this end we consider the
case (Q > 0 only; the other case Q < 0 is completely similar. Let us define

e e 23
9(z;0):=1, g(%;Q):= (F(IQ))) /0 29 Yexp (U; + ixz) dz, Q=12.... (6.29)

(Note that g(z;0) is also the limit as @ — 0 of g(z;@)). The integral is absolutely convergent for any
0 < e < § so it defines an entire function of z (independent of €). Using integration by parts it is easy to
check that u(z) = g(z; Q) satisfies the ODE (6.28).

Proposition 6.2.1. When z — oo within the sector —% < argz <m

9(zQ)~ 29 (1+0(z7%). (6.30)

Proof. Use the Cauchy theorem to rotate the contour

_i)@ +oo w3 .
9(%Q) = (é 1)1)' / 297 te T o dr (6.31)
TN

(now the integral is only conditionally convergent). The series expansion 29! e az>:o pojadet@l

together with Watson’s lemma (see e.g. [Od]) gives

(_i)Q i s \—3a—Q 7T . ™
9(z;Q) ~ QD Z 3aa'F(3a + Q)(—iz) , —5 < arg(—iz) < ) (6.32)
D & 30l

Rotating the contour of integration within the sector 0 < argx < % we infer that the above asymptotic
expansion holds in the bigger sector —% < argz <. ]

Fix three angles 4, 5y such that

o ™ o ™
—7r<5,<—§, —§<50<§, §<ﬁ+<7r (6.33)

and define four sectors I, 11,111, IV in the complex z-plane, with —7 < arg z < 7, as follows
z€l «— —mw<argz< P, z€ll < [_<argz < fy,

z€Illl < f[y<argz< By, z€I1V << [, <argz<m. (6.34)

Let ¥ :=R_U (l_lje{o,i} eiﬁ-7R+) be the oriented contour delimiting the sectors I, ..., IV, as in figure
6.1. Let w := e2§ri, V= (1 0, 8§)T, and define

( w@Vg(w 1z Q) ‘ WwVo(w'z;1-Q) ‘ W% Vo(wz;1 — Q) ) zel

( W@ Vg(wz; Q) \—V¢A1—Q)\w—%v¢(m;1—c})) cell
W(z) = (6.35)
( Q) | ~Vor1-Q) | —iw? Vo a1 - Q) ) 2 eIl

( w 9Vg(w1tzQ) ‘ W Vo(wA;1 - Q) ‘ —iw? Vo(w ™ 1 -Q) ) ze€IV.
Consider the matrix form

0 1
V()= 0 0 U(z). (6.36)

Q
Proposition 6.2.2. 1. U(z) solves (6.36) in all sectors I,....,IV.

o = O

2. U(z) has the same asymptotic expansion in all sectors I, ..., IV

U(z) ~ 259G (1 +0 (2_%)) 2Le?(®) (6.37)
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eiﬁ+R+
n 17
v g3
R4 S R
- M
I
S
+¥_ 17
eiB*R+

Figure 6.1: Jump M of U along ¥: U, = U_M.

where S, G, L,9 are defined as

11 | (V2 000
S := diag (—2,—2,0>, G::ﬁ 0 1 1
0 -1 1 (6.38)
L := diag (—Q + %, % + i, % + i) , ¥(z) := diag <0, —%z%, §zg> )
3. U(z) satisfies a jump condition along ¥
U (2)=U_(z)M, z€Xx (6.39)

where boundary values are taken with respect to the orientation of ¥ shown in figure 6.1 and
M : ¥ — SL(3,C) is piecewise defined as

M — 8071, S ei5°>iR+
M, z€R_
1 0 0 1 0 0

S_ = 0 1 0 Soi= | -2 1 i(-1)%9
_neyer . ’ () : 6.40
e ?(Q{T (-9 1 0o 0 1 (6.40)

1 0 0 1 0 0

S, = OQF 1 0], M:=1o0 0 —i(—1)@
-2 (-9 1 0 —i(-1)@ 0

4. The identity det ¥(z) = 1 holds identically in all sectors.

Proof. The differential equation follows from the discussion above. The asymptotic expansion (6.37)
follows by analytic continuation of the expansions (6.14) and (6.30). For the jump use the following
identities, consequence of the Cauchy Theorem

$z;1 - Q) +w (w21 - Q) +w Yg(w 21 - Q) =0, (6.41)
iv2r
9(2 Q) — w9 (w2 Q) = — = (21 - Q). (6.42)
I'(Q)
Finally, det ¥(z) is constant in z as it follows from the fact that the connection (6.36) is traceless;
moreover it tends to 1 at z = oo. |

In the terminology of linear complex ordinary differential equations (reviewed in Sec. 1.4.2) Sy ¢ are
the Stokes matrices (note their triangular structure) and M the formal monodromy of the singularity



6.2. ISOMONODROMIC METHOD 109

z = oo of (6.36). Notice the no-monodromy condition MS;SyS— = 1. Note also that we are in a
non-generic case in the sense explained in Sec. 1.4.2, as the eigenvalues of the leading order at co of the
connection matrix in (6.36) are all 0; this explains the appearance of non-integer powers in the asymptotic
expansions of solutions, compare with Rem. 1.4.2.

Remark 6.2.3. Note that for Q = 0 the jump matrices in (6.40) are block-diagonal of the form
1 —
( Y ) where My are the jump matrices (4.45). This illustrates the reduction to the Kontsevich—
0
Witten case of Chap. 4 from the RHP point of view.

Extension of the Kontsevich—Penner matrix integral to all sectors. We have seen that ZKP(Y; Q)
admits a regular asymptotic expansion for large Y when Rey; > 0. As ¢(2; Q) are entire functions we
could try to analytically continue ZKF(Y;Q) to the region Rey; < 0 via the right-hand side of (6.6).
However, this would result in the fact that ZXP(Y’; Q) does not admit a regular asymptotic expansion in
the region where some Rey; < 0.

It is convenient for our purposes to have a regular expansion near infinity also in the sector Rey; < 0
(and, in fact, the same expansion), therefore we need to consider the following extension of ZXP(Y; Q).
To this end we start from the representation of Lemma 6.1.1 in terms of the function ¢(z, N) defined
in (6.2); in the left plane we replace them by other solution to the ODE (6.3) in appropriate way so as
to preserve the regularity of the asymptotic expansion. The logic is completely parallel to the one used
in [BCa] (and reviewed in the previous chapter) and is forced on us by the Stokes’ phenomenon of the
solutions to the ODE (6.36), which is closely related to the Airy differential equation of the previous
chapter.

Definition 6.2.4. We order the variables y; so that Rey; > 0 for j = 1,...,n1 and Rey; < 0 for
j=n1+1,.,n+ny = N. We denote A\ = (A1,..., n,) and @ = (11, ..s finy) With y; = /A for
j=1,..,n1 and yn,+; = —/f; for j = 1,....,n2, all roots being principal. We define the extended
Kontsevich—Penner partition function by the expression

Q+3 U1 (1A, -
<w ¢ (w k’Q>)1<k<n1 el
(d’(rl)o‘k; Q))lgkgm, A €ITUIIT

U A(X, 7 Q) det (wafééb(j*l)(W)\k;Q))
w
2

Q1 (i
( 2+i¢(] 1)(W,Uk7Q))n +1<k<n, up€IUIT
1 k

<w—7—i¢(j—1)(w—lﬂk; Q))

1<k<ni, \g€IV

n1+1<k<n, prelITUIV 1<j<n

(6.43)
where
. 2 ni % 2 no %
UX; i) := §Z>\j -3 > p (6.44)
j=1 j=1
and
ni l+* na 1 Q
) _71&‘-‘ > _ﬂ(-w)ﬁ2
AN i Q) == - : T : (6.45)
I WR-vA) T (- vim) I+ vm)
1<j<k<n, 1<j<k<ny j=1k=1

We deduce that ZKP (X, ii; Q) as defined in (6.43) has a regular asymptotic expansion when A;, 1; — 0o
in the indicated sectors. This regular asymptotic expansion coincides with the already discussed regular
asymptotic expansion of ZKP(Y;Q) for Reyr = Rey/Ay > 0. As analytic functions, Z]'f,P(X, i;Q) =
ZKRP(Y; Q) provided that no = 0, A\, € ITUIIT and y; = /g for all k=1,.., N.

We point out that the definition (6.43) depends not only on the belonging of y; to the left/right
half-planes but also on the placement of the boundaries between the sectors I-1V, i.e. on the angles
Bo, B+ in (6.33). If we move the boundaries within the bounds of (6.33) then this yields different functions
zZKP (X , i1; Q) but all admitting the same asymptotic expansion as X, i1 tend to infinity within the respective
sectors. We opted to leave this dependence on the sectors understood.
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—

Rational dressing. Similarly as in Chap. 4 we fix points (compare with the paragraph above) A =
(A eees Any) and £ = (p1, ..., fin,) and the matrix

—

D(Zv /\7 ﬁ) = dlag (017 T+, ﬂ-—)

a—ﬂfnm, Wi::ﬂ(\/rj:i:\f)H (Va5 F V) (6.46)
i=1 j=1
and J : ¥ — SL(3,C)
J:=(D'e")_ M (e’ D), (6.47)

M and the notation + for boundary values being as in (6.40).

The boundary value specifications + in (6.47) give different values along the cut R_ only. In particular
it is easy to check that J|g_ does not depend on X, fi. The angles fy 4+ can be chosen so that none of
zeros of D occur along the three rays e/?+R, .

The construction is such that along the three rays e®.=R, the jump matrix .J is exponentially close
to the identity matrix; J(z) =1+ O (27°°) as z — oo.

We now formulate the dressed RHP. In the interest of simpler notations, we drop the dependence on
N below.

RHP 6.2.5. Find a Mat(3,C)-valued function T = T(z; X, i) analytic in z € C\ %, admitting non-
tangential boundary values Ty at ¥ (as in figure 6.1) such that

Iy(z) =T_(2)J(z) z€X
{F(z) ~25QY(2)2Y A—> (6.48)

where S,G, L are as in (6.38), J as in (6.47) and Y (2) a formal power series in 272 satisfying the
normalization
0 a -—a
Y()=1+|0 ¢ ¢ |27 +0@E". (6.49)
0 —c —c

We will see that the existence of the solution to the RHP 6.2.5 depends on the non-vanishing of a
function of X, i which is (restriction of an) entire function. Hence the Malgrange divisor (see Chap. 2),
i.e. the locus in the parameter space where the problem is unsolvable, is really a divisor and the problem
is generically solvable.

Remark 6.2.6. We observe that we can analytically continue T'|1y beyond arg z = 7 so that the asymp-
totic expansion T' ~ 2°5GY 2z remains valid in a sector up to argz = 7 + €. Similarly said for T'|7, in a
sector from argz = —mw — €. By matching the expansions in the overlap sector, we obtain

25 278 Gy (Ae?™) 2E 02T = S QY (2) 2F M. (6.50)

By trivial algebra (6.50) implies the following symmetry relation for the formal power series Yy, (z)

_ 1 00 1 00
Y(ze?™ ) =[0 0 1|Y(2)|0 0 1 (6.51)
01 0 01 0

In terms of the coefficients of the expansion of Y, we find that the coefficients of the fractional powers
must be odd under the conjugation (6.51), while those of the integer powers must be even. In particular
this implies the following form forY

0 a -—a )
Y(z)=1+| b ¢ d|z2+0@1). (6.52)
-b —-d —c
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Remark 6.2.7. The normalization condition (6.49) is necessary to ensure the uniqueness of the solution
to RHP 6.2.5. To explain this, consider the identity

1.0 0 00 0
01 0|fSc=25G1+|-% -5 5| —=]. (6.53)
a B 1 o 8 8|V

NG 2 2

This identity shows that the simple requirement Y (z) = 1+0O (z’%) eaves the freedom of multiplying

on the left by the two-parameter family of matrices indicated in (6.53). The normalization (6.49) fizes
uniquely the gauge arbitrariness implied by (6.53).

The extended Kontsevich—Penner partition function as the isomonodromic tau function.
We can interpret the RHP 6.2.5 as an isomonodromic deformation problem. Indeed by construction it
amounts to consider the rational connection on the Riemann sphere with an irregular singularity at
oo with the same Stokes’ phenomenon as the bare system, and N Fuchsian singularities with trivial
monodromies. This connection is unique if any. The dependence on the parameters X, i1 is contrained by
the isomonodromic equations reviewed in Sec. 1.4.2.

We explain this point a bit more in detail. The matrix ¥ := I'D~'e? satisfies a jump condition on ¥
which is independent of z and of the parameters X, fi. Hence the ratios ¥'¥~! =: L and 0¥~ = M
have no discontinuities along ¥ and are rational functions by Liouville theorem; then the system ¥’ = LW
and ¥ = MV is an isomonodromic system in the sense explained in Sec. 1.4.2; it has a fixed Stokes’
phenomenon at co and N Fuchsian singularities of trivial monodromy at the points X, .

Following the considerations of Chap. 2 we define the tau function of this isomonodromic system as

SlogT =Q, 6_Zd/\ +Zduz_ (6.54)

in terms of the Malgrange differential

Q::/Z r (076771 =

dz

o (6.55)

for the RHP 6.2.5.
Due to the construction of this RHP it is clear that the considerations of Thm. 2.4.8 can be applied.
In particular we have obtained the following result.

Theorem 6.2.8 ([BRc]). The isomonodromic tau function (6.54) coincides with the extended
Kontsevich—Penner partition function, i.e.

-

SZKP (X i Q) = Q. (6.56)

The proof is postponed to Sec. 6.4. It is reported as again there are some substantial modifications
with respect to the general Thm. 2.4.8, due to the different normalization at z = co and the formulation
of the RHP in terms of the square root variable 1/z.

6.3 Applications
Limiting RHP. The products 7+ in (6.46) can be rewritten formally as

— = expz tkz%, Wi = epotkz% (6.57)

k>1 k>1

where « is as in (6.46) and we have introduced Miwa variables t = (t1,ta,...)

k n2 k n
: 1 1 111
D) +Z<> P (6.58)
kz( J) U ANV kigy K
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Consequently, the matrix D,, can be rewritten formally as

D' =a ! exp Ztk\/gﬁk ) 0 := diag(0, (—=1)%, 1). (6.59)
k>1

More precisely, the expression above is actually convergent for |z| < min{|\;|, |x;]}

Note that D,, acts by conjugation on the jumps of T';, and hence the scalar constant « in (6.59) is
irrelevant. In the limit n — oo we can formally consider the variables ¢y, ¢s, ... as independent. We then
arrive at a (formal) limit of the RHP (dropping « as explained above) for the matrix

U(z;t) = F(Z;t)eE(z:,t), H(z;t) = Z (tk + §5k,3> @Qk. (6.60)

E>1

Consequently, the matrix I'(z; t) solves a new RHP as follows:

RHP 6.3.1. Lett denote the infinite set of variables t = (t1,ta,...). The formal RHP amounts to finding
a 3 x 3 analytic matriz-valued function T = T'(z;t) in z € C\ X admitting non-tangential boundary values
'y at X such that

{F+(z;t) =T_(2t)J(2t) 2€X (6.61)

T'(z;t) ~ 2°GY (2;t) 2% z — 00

where J(z;t) = ==~ Me==Et+ M as in (6.40), and Y (z;t) is a formal power series in 2~ satis-
fying the normalization

0 a —a )
Y(z;t)=1+ [0 ¢ —c|z24+0(z7") (6.62)
0 ¢ —c

for some functions a = a(t),c = c(t).

Remark 6.3.2. Remark 6.2.7 applies here as well for the uniqueness of the solution to the RHP 6.5.1.
Moreover, the symmetry relation (6.51) holds true similarly here, namely

_ 1 00 1 00
Y(ze?™t) = [0 0 1|Y(zt) [0 0 1 (6.63)
01 0 010

We now explain a meaningful setup where the RHP 6.3.1 can be given a completely rigorous analytic
meaning. The driving idea is that of truncating the time variables to some finite (odd) number.

Fix now K € N and assume that t;, = 0 for all £ > 2K + 2. Set t = (t1,...,t2x+1,0,...) with
tar+1 # 0. In addition, the angles By + (satisfying (6.33)) and the argument of o5 1 must satisfy the
following condition:

2K+1 .
Re (277 tog4+1) <0, zeelﬁiRJr

) (6.64)
Re z2K2+1t2K+1 > 0, z€e160R+.

Under this assumption, given the particular triangular structure of the Stokes matrices Sp 4+, the
jumps M = =~ Me~=+ are exponentially close to the identity matrix along the rays e!®+R, .

Formulz for open intersection numbers. The Malgrange differential of the limiting RHP described
above can be expressed as a(n isomonodromic) tau differential. This follows directly from the consid-
erations of Sec. 2.5. Proceeding exactly as in the proof of Thm. 1.2.2 we have obtained the following
formulee for the (conjectural) open intersection numbers.

To formulate them introduce ngb(Q) (polynomials in @, a,b =0,+£1, j = 0,1,2,...) by the generating
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functions®
1—a—b—2Q 1+a+b+2Q
zZm Z
Zpaml?(Q) 1+ta—b =e3 3l 2 2 -
S0 (5 am 3 Leg=b | 4
Z P2m+1(Q) zZm _ _2Q +a+ be% F 270‘721772@ 2+a+2b+2Q _ g (6 65)
a,b (2+a7b) 2 242 3 2ba—b 4 :
m>0 2 /3m+1 2 2
and the matrix
i _3j+2 i _3 i _3j+1
QPfil(Q)m 3:’1 Pilﬁl(Q)fEsfl P&fl(Q)m 3?
R@):=) | QPLy(Q " PL(@u "= Flo(Qa (6.66)
20 QP (@7 Pl ,(Q)r 2 Py Q)"

Theorem 6.3.3 ([BRc|). The following formula for a generating function of one-point open intersection
numbers holds true;

a 23 1_ 1 3 3 — 3
(ot (1% 119-5)sarn(5 19-2).

The following formula for a generating function of n-point open intersection numbers holds true for
n>2;

D i O VL S % (%7 )
el’...’gnzo 1

6.68

gt 5E1%+1 gt (6.68)

_ Ly @ (Rzo@)  BEa))  dng -
n cEB,, (.130(1) - xa(2)) e (xo(s) - xa(l)) (\/ﬂ — \/l‘g)z

Remark 6.3.4. It is possible to prove that the generating function (6.67) is equivalent to the following
formula;

> <Tg_2> 5 =ebr LQ)”K (6.70)
>0 open >0 (] - ].)

where the coefficients A; are defined by

(2”)Q =5 4,(Q). (6.71)

2—x :
j=0

23
Let us remark that €23 is the generating function of Witten (closed) intersection numbers, compare with
(4.71).

The above theorem follows directly by the arguments used in the proof of Thm. 1.2.2 and by the
identification with an isomonodromic tau function, and consequent possibility of using the explicit for-
mula provided by the tau differential (as the bare solution is explicitly known in terms of the functions
b, 9).

For more details on the application of the arguments of Thm. 1.2.2 to this situation we refer to [BRc],
where it is proven that the relevant matrix is R = WE3 3% 1. However, to give more explanations about
the final formulee, let us report the following lemma from loc. cit., which provides a simplification of
certain products of asymptotic expansions of the functions ¢(z;@Q), appearing in the matrix WE3 30~

3 Note that for a—b+1 = 0 or a—b+2 = 0 both sides of (6.65) have simple poles, and then the meaning of the identity
is that of the residue.
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Lemma 6.3.5. Fora,b € {0,+1}, let

Fo(Q+a)Fy(Z;-Q—b) =Y PF(Q)%. (6.72)
k>0
Then the polynomials Pf’b(Q) in the indeterminate Q coincide with those in (6.65).

1

Proof. The expression 2~ F_(z,Q + a)Fy(z;—Q — b) is the formal expansion of the product of a
solution to 82 — 20, + Q + a — 1 and of a solution to 82 — 29, — Q — b+ 1. As such it is annihilated by
the following ninth-order differential operator;
(a—b=2)(a—b+1)(a—b+4)+ (3(a—0b)? —3(a—b) —46) 20, — 302292+
+(102-3(a—b)+3a*+21ab+3b>+27Q (a+b+Q)Q —42°) 92 +3 (23 —a+b)z0; (6.73)
49229 +3 (=11 +a — )35 — 6207 + 2.

Introduce the power series (a formal Laplace transform)

3k+a—-b—1
2

Glz) =Y Pf’b(Q)W. (6.74)

k>0

Then G(z) is annihilated by the third-order differential operator

333_2 6 _ _ 3 _ _ 2 _
5 (3 )8§+3(2m (7T+a—b)a® — ((a—b) a+b+2))aw+
4x 42
+—m9+3(a—b+3)x6—(3(a+b)2+15ab+9(a—b)+6+27Q(a+b—|—Q))x3+(a—b+2)(a—b—2)

4a3
(6.75)

obtained from (6.73) by replacing z with 9, and 9, with —z. We are therefore interested in power-series
solutions around the Fuchsian singularity z = 0 of (6.75). It is easily checked that for a,b € {0,+1}
the equation (6.75) is resonant and the Frobenius solutions at z = 0 span a two-dimensional space®
generated by the two series below;

3 1—a—b—2Q 14+a+b+2Q 3
Ie. — T e LR 2 2 _r
(@) =x €2 2l 1 1+a—b 4
2 2 (6.76)
ebrn a8 2-a-b-2Q  2+a+b+2Q| .3
Go(z):=x 2 e7 oF, 3 sta—b | T
2 2 4

By matching with F_(2;Q 4+ a)Fy(2;—Q —b) =1 — w,z_% + O (273) we obtain

Gl(l') _2Q+a+b GQ(J?)

TE) 2 () o

G(z) =

The proof is complete. |

Virasoro constraints. For simplicity we derive only the first two Virasoro constraints, again going
under the name of string and dilaton equations; they are a deformation of the Virasoro constraint for
the Kontsevich-Witten tau function discussed in Chap. 4.

They read as

e+ — + ~ 4+ Qt t) = .

Qkatk_2+at1+4+Q2 T(t)=0 (6.78)
k>3

Lo 9 1 30°

—t — — — t) = 0. .
;2katk+at3+16+ | =0 (6.79)

There is actually a family of Virasoro constraints [Aal; it is possible to prove higher Virasoro con-
straints also along the lines of the proof in Chap. 5.

4The expansion of the third solution involves logarithms.
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Let us introduce the following action of the shifts and dilations on the times t, tg(z;t), tp(z;t)
according to
E(zits(z,t)) =E(z +a3t)4,  E(zitp(z,t)) =E(e"2t)4 (6.80)

where + denotes the polar part at z = 0o, i.e., we keep only strictly positive powers of 22 in the Puiseux
expansion at infinity. At first order in x we have

ts(z,t) =t + 2L 1t + O(x?), tp(z,t) =t +zLet + O(2?) (6.81)

where the vector fields L_; and Lg are

E0 ) E o 0

Lo, =S ¢ L= S 4 = 82

! oo, T O Zz’“atk+at3 (6.82)
k>3 k>1

Lemma 6.3.6. The following identities hold true

U(z + x;t) = diag(1,e",eM)W(z;ts(x;t)), n:= Z aFtoy, (6.83)
k>1
ez t) = "OHDW (2 tp (2 t)). (6.84)
Proof. Consider the sectionally analytic matrix @(z;t) := U(z + z;t); it has constant jumps on the

sectors translated by —x. In each of these sectors, the restriction admits entire analytic continuation
under the assumption that t = (¢4, ...,t2x+1,0,...) and the condition (6.64) on Sy +. We denote by the
same symbol \Tl(z, t) the piecewise analytic matrix function with the same sectors as ¥(z;t). Now, the
jumps of l/I\/(z:;t) are the same as those of ¥(z;t). Hence the matrix f(z;t) = U(z;t)e =(=ts) (with
ts = tg(x,t) for brevity) necessarily solves a RHP with jumps equal to those of T'(z;tg) but with a

different normalization at z = oc;

T(z:t) ~ (z+2)5 GY (2 + 23 t) (2 + x) " EETot) —S(5ts) (6.85)
The trailing factor has the form:

exp(Z(z + z;t) — E(21ts)) = diag(L,e”,e")(1+ O(z71)), n=Y_ a"tx. (6.86)
E>1

The prefactor diag(1,e",e") in the right side of (6.86) commutes with GG, hence it follows from the unique-
ness of the solution to the RHP 6.3.1 that I'(z; t) = diag(1, ¢, ¢")['(z; ts) and (6.83) is proved. The proof
for the dilations follows along the same lines; the sectionally analytic matrix I'(z;t) := W(e”2; t)e =(=itp)
(with tp = tp(x;t)) solves a RHP with jumps equal to those of I'(z; tp) but with a different normaliza-
tion at z = oo;

[(z;t) ~ e"% 25 QY (%2 8) ¥l 2L (et —E(=itn) (6.87)

and taking "~ on the left (it commutes with @) one obtains I'(z;t) = e*STLT(z;tp). |

Now we are in position to derive (6.78) and (6.79). For the String equation we apply (6.83) of the
Lemma, writing tg = tg(z,t) for short,

_‘9 _ =10, .\ (2 +\9.) — LTw=1(s VU (» +\0.) —
glogT(t) = res tr (z I~ (z;¢)T (z,t)ﬁj) = res tr (z U™ (z;8)0 (z,t)@) =

J - - (6.88)
= res tr (z%\I/_l(z —x;t5)W (2 —x;tS)Hj) = res tr ((z—l—a:)%\lf_l(z;ts)\ll’(z;ts)@)
Z2=00 zZ=00
The last expression does not depend on x by construction, so its first variation in x vanishes:
res tr (Jz%_llll_l(z;t)\ll’(z;t)Hj) +L_4 res tr (z%\IJ_l(z;t)\If’(z;t)Hj) =0 (6.89)
z2=00 2 z=00
In terms of the tau function
I_0 ogr(t) + 26,100 + Q80 + Lot log r(t) = 0 (6.90)
20t 5 ° PR Yot; 8
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which gives
0

7
o (Ll log 7(t) + i Qt2> =0 (6.91)

2
for all j = 1,2,.... Therefore we conclude that L_; log7(t) + % 4+ Qty = const and the integration
constant is easily seen to be 0 by evaluation at t = 0 (we use the identity (79) = 0 which implies

8% log 7(t) . 0). The String equation (6.78) is established.
t=
The dilaton equation follows by very similar computations. Write tp = tp(x;t) and use (6.84):

- ilogT(t) = res tr (e%xz%\lf_l(z;tD)‘l"(z;tDD (6.92)
3tj z2=00

The first variation in x of the above vanishes:

res tr (;zgw_l(z;t)W’(z;t)9j> + Lo res tr (z%\Il_l(z;t)\I/’(z;t)Gj) =0. (6.93)

Z=00

In terms of the tau function:

o, 0 _
(2 o, + Lo atj) log 7(t) = o, Lolog7(t) =0 (6.94)

Therefore L log 7(t) = const, and the constant is easily evaluated at t = 0 as

2
_ 3y o P Re” (6.95)

0
Lolog7(t)|;_y = & log7(t) 5 6

Ots

t=0

and the dilaton equation (6.79) is established as well.

6.4 Proof of Thm. 6.2.8

Schlesinger transform matrix R and characteristic matrix. Let us call Ty := We™? where ¥ is
the solution to the bare system given in (6.35). This is the solution of RHP 6.2.5 for N = 0.

Introduce the matrix R := 'D~'T'y ! By the arguments already reviewed several times, the matrix
R(z) is a rational function of z, with simple poles at z € X, i1 only.

Again, existence of such a rational matrix R is equivalent to find the inverse of a finite-dimensional
linear map. Referring to [BRc| for more details, let us consider the following construction, analogous to
the general one in Chap. 2.

Let us introduce H := L?(0D,dz) @ C3, where C3 are row-vectors. The space H is isomorphic to
the direct sum of n + 1 copies of L?(S') ® C?, i.e. H has a basis given by

(Z - C)T XoD, (Z) e;_l', 27T71 XOD (Z) e;_l', re Za ] € {17 2a 3}a C € >‘a ,L_l: (696)
where e; is the standard basis of column-vectors in C* and yx the indicator function of the set X.
Consider the subspace H consisting of row-vectors which are analytic in Dy and vanish at z = oc;

equivalently, ., has a basis given by (6.96) restricted to r > 0. Let C1 : H — H the projectors defined
by the Cauchy integrals
dw f(w)
Ci[fl(z) :== o= . (6.97)
oD, 2miw — 24

The range of C, is H4 and we denote by H_ the range of C'_, namely, functions that admit analytic
extension to D_; from the Sokhotski-Plemelj formula C +C_ = Id, it follows that £Cy : H — H 4 are
complementary projectors. Introduce the following subspaces of H_

Vi=C_[H T, W= C_[H,J] (6.98)
where R
Jc(z) = FO()\)(C — Z)E33, AS 8D<, C €A

I(z) = { Je(2) = To(2)(¢ — =), z2€0D¢, CEf (6.99)

0
Joo(2) :==To(2)D(2)2" G275 2 € 0D..
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Note that Joo(2) = Goo(2) Hoo(2) where

(1 0 0
) 0 0 0 z% 0 N even
N
Hy:=23G |0 (-1)Nz2 o0 |G 12" 0 0 = (6.100)
0 0 %3 Lo ]9,1
0 0 A= N odd
0 A3 0

and Goo = Joo H ! is formally analytic at A = co. Actually, due to symmetry (6.51), one can check that

Goo =JooH ' =Tz "DG7 1275 ~ 25GY, DG~ 1275 (6.101)
D: = Ddiag(1,(-1)Nz"%, 27 %) (6.102)
has an expansion in integer powers of z only.
Then {vc} 5 ; and {we}Y, defined as
el T (O X o amgT -0 N—1
v = €3 — = C 9 C € Woam+1 = 27€y, M=U,.., L 2 J (6103)
2T f; (S )’ Ceiji Womio = 2"es, m=0,.., L#J

are bases of V and W respectively. To prove that {w,}2 , is a basis of W we use that Goo(2) is formally
analytic with formally analytic inverse at A = oo so that W = C_[H Hx], where Hoo(2) is as in (6.100).
Proceeding along the same logical steps as in Chap. 2, the linear operator

G:V—>W:v— C_[v]] (6.104)

is well defined. Moreover, its invertibility is equivalent to the existence of the Schlesinger transform
matrix R; in fact the inverse is given in such case by

G VW :w—C_ [wI'RR. (6.105)

This is a rephrasing of Prop. 2.4.5.
By expressing the operator G in the bases (6.103) we obtain the characteristic matric G = (Gk,e)kNe:1

= n e; F(Tl()\k) Goo(2) €24 (¢ mod Q)L X
=1,....,n1
G = . (6.106)
e R S
res & €2 F0 (Mk)Gm(Z) €24 (¢ mod 2)

z=00 *TH

k=1,...,n2 l=1,....n

As a consequence of Prop. 2.4.6 (see also [BCc, Theorem B.1]), the following variational formula holds
true;

§ logdet G = / tr (RTRGIIT) + > res tr (F51F55U<Ugldz) (6.107)

oD _ 27T1 -
CEN

where § is the differential with respect to the parameters as in (6.54), and
— ()Ess b
Ue = (z=0)", C€ (6.108)
(Z - C ’ H

and [, 4z is understood as the sum over the (formal) residues at z € {X, fi, 00}

Then we have the following manipulation of the determinant of the characteristic matrix.
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Proposition 6.4.1. The following formula holds

Q+3 =D (w1, }
[w i (W™ A Q) 1<k<ny, A\g€l

[¢('j_1) (Ak; Q)] 1<k<ny, \y€IIUIII

det G = eV det [W_Q_%¢(j_1)(W)\k§ Q)}
[w%+i¢(j*1)(wuk~ Q)]
D 1<k<n, prpelUll

i [w_%_i&j_l)(w‘luk;Q)}

(6.109)
1<k<ni, Ay €IV

n1+1<k<n, pp €l ITUIV Jd1<j<p

where U(X, i) has been defined in (6.44) and the explicit sign is irrelevant to our purposes.

The proof of this proposition is a rather lengthy manipulation of the characteristic matrix. We report
its proof after completing the proof of Thm. 6.2.8, which uses the result of this proposition.

Malgrange differential and extended Kontsevich—Penner partition function. The following
are computations similar to those of the previous chapter. From I' = RI'¢D and J = D~1JyD where
Jo(2) :=e?*-) Me=?G+) | with M defined in (6.40), one obtains

-1 = DTy 'R'R'Ty_D + DT, 'Ty_D + D™D’

6.110
§JJ =D JydDD ' J; D — D7D ( )

so that using (6.110) and the cyclicity of the trace,
tr (T_T"0JJ7 ) = tr (g 'R™'R'Ty_Jod DD J; ' — DT 'R™'R'Ty_6D+ 6.111)

+Ty Ty _JodDD Iyt — DT T, _0D + D'D~ ' Jo6DD ' J; ' — D'D'D'6D)

It is easy to check, thanks to the block—triangular structure of My in (6.47), that the last two terms
above are traceless and thus drop out. The remaining terms can be rewritten, using I'g; = To_Jo,
Loy =T Jo +To-Jy, as

tr (R'RTo.6DD Ty} — R™'R'To_ DD 'Ty! + Ty !T{ DD — Jy ' JiéDD~+ 6.112)
—To!T_6DD™ ") = Ay [tr (RT'RToDD Ty + T ' T{6DD )] '
where Ay is the jump operator Ax[f] = fy — f- and we have used tr (J; *Jj6DD~') = 0. Let us call

¥ =%\ R_ and let Y be the contour depicted in figure 6.2, which has the property that [, A[f]dz =
J5 f(2)dz, so that

Q= / Aftr(RT'RTosDD'Ty + Ty 'Th6 DD )] % =

1

1 (6.113)
— / tr (R"'RTodDD Ty + Ty 'Tp6DD ™) =
5 27i
Applying Cauchy’s Theorem we can deform ¥ as in figure 6.2 so that finally
d
Q= tr (R™\R'TodDD T ! + T T DD~ 1)~ (6.114)
oD _ 27i

with the understanding that [, 52 is the sum over the (formal) residues at A € {X, i, 0}. We want

1

to compare now the last expression (6.114) for Q with (6.107). To this end we note the identities
0Jocd ) =TodDD'T ! 63 I =TodU UL Tyt (6.115)
where U¢ has been defined in (6.108), and the identities

res Iy ThéDD ™t = res Lo TooUU Y, CeN (6.116)
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+7 . @
- / /\

Figure 6.2: On the left, contour %’ (dashed) and 3 such that fz'(er — fo)dz = fz z)dz; ¥ must leave

all poles of f (the dots in the picture) on the right. On the right, the deformation of 3 using the Cauchy
Theorem.

which follow from \/(El:ff/z = Cd_CZ + O(1) as z — (. We finally obtain

Q- dlogdet G =~ ) restr (R™'R'To (SDD™! — 6UUZ ') T5") + xes tr (T5'T4aDD™Y).

)\E)\,u
(6.117)
A simple computation for the last term in (6.117) shows that
d
res tr (T 'TH0DD ") dz = —tr (S + L)Eny)daa™ ' =N Y ﬁ. (6.118)

Ve

z=00 =
CEN

Define T := Uc_lD and Ry := RI'GU¢, for ¢ € X, ii. Notice that Ty, Ry are analytic at z € X, i and that
§DD™! — U U = 6T, T " and so for all ¢ € X, i

res tr (R—lR’roéTCTglrgl) = res tr ((UglrglR—l)(RTOUC)éTCTgl) dz =

z=(

= restn ((Ugll“alR_l)((RFoUC)’ — RT)U, — RroUg)aTCTgl) dz =

= restr (R RLOTT ) dz - res ir (rgThoTeTs ) dz - res tr (V7 0T ) dz = (6.119)

=0 =0

1 dv¢’
= res dz.
=2 —( Z VI =z
¢rer i
To summarize, we have proved
Q =Jdlogdet G + Z res Z dz+ N Z \—f—(ﬂogdetG—FélogA (6.120)
Ce/\u_ Z_C \/> f CGAM\/Z .

which completes the proof of Thm. 6.2.8, in view of Prop. 6.4.1.

Manipulation of the characteristic determinant: proof of Prop. 6.4.1. Denote

A 1<k< S 1<k<
Goi=14 " == A= _1(<’C) =h=m (6.121)
Pren, m+1<Ek<n el (%) m+1<k<n
so that we rewrite the characteristic matrix (6.106) as
Pl
G]“g = I;eb _ AkG ( )62_’_(@ mod 2)» k,f = 1, ...,N. (6122)
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First we compute Ay. Consider the pair of mutually adjoint (in the classical sense) differential oper-
ators L, L given by R

L:=0}-20,-Q, L:=-02+20,-Q+1. (6.123)

According to the general theory (see e.g. [I]) there exists a non-degenerate bilinear pairing between the

kernels of L,E that uses the bilinear concomitant identity; to express such identity we introduce the
matrix bilinear concomitant

—z 0 1
B(z):=10 -1 0 (6.124)
1 0 O

Given any solution u of Lu = 0 and any solution u of L4 = 0 we define their bilinear concomitant as the
bilinear expression

u

Blu,u):=[u @ W] Bz)|v | =uu"+70"u—uu - zuu (6.125)

u//

The above expression is, in fact, independent of z and we have:

Proposition 6.4.2 (Lagrange identity). The bilinear concomitant (6.125) is independent of z and gives

~

a non-degenerate pairing between the solution spaces of the operators L, L.
Proof. The independence of z follows from the identity

0 = @Lu — ult = Gu" + 0" — z (W + W'u) — tu = (W + 0" — ' — ztw) = (Blu,d]) . (6.126)
The nondegeneracy of the pairing follows from det B = 1. |
Proposition 6.4.3. Denote

Wz p(w N Q) 1<k <ny, \pel

i Q) 1<k<ny, A\ € ITUIIT NPT
O 1= w_Q_§¢(w)\k;Q) 1<k<n, €IV Qk = 3;% o
Wi oW Q) m 1<k <my, pyelUII “sMp mtlsksn

w E AP Q) M+ 1<k<ny, pp € IITUIV
(6.127)
Then the row-vectors Ay defined in (6.121) can be expressed as follows;

Ay = e ¢y, O, 11B(Cr) (6.128)

Proof. Let us consider the case k = 1,...,ny with A\, € ITUIII, the other cases are completely analogous.
The Proposition follows from the following identity in which we set z = Ag:

[f(Q), —f(Q = 1), f(Q — 2)]B(2)¥(z) = e; . (6.129)
The equation (6.129) follows from the fact that the left side is a constant row vector, because of Prop.
6.4.2, which tends to e; when z — +oo0. |

Therefore we can use the expansion (6.101) and write the characteristic matrix (6.106) as,

R _
z
P Ck er[¢k7¢);€a¢g] B(Ck)ZSGYE)DG_lz_SeQ+(Z mod 2) (14;7Z = 17"'7’”‘)' (6130)

le = res
Z2=00

(Here Y} is found from the expansion at z = oo of T'g.)

From now on we denote FiF := %Fi (z;7) for short.

Lemma 6.4.4. Let ¢ := ¢y as in (6.127) and ¢ := ( as in (6.121). For any integer J > 0 the following
identities of formal expansions hold true:
J

[0, ¢, (b//]B(Z)ZSGYO(Z) ey = — Zz—l—§¢(r)F_

z—C —Q+r+1

. =t (6.131)
(a8 _ _ 44 _ _ _
(z 3 ¢(J+1)F_Q+J L2 ¢(J+2)F_Q+J+1 —2 T (Q—-J - 1)¢(J)F_Q+J+2)

J+5

|
]
N
|
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i S Y; J
[d)v(b , P ]f(_Z)CZ G 0(2)63 _ Z( ) A 1*§¢(7‘)F Qtri1
r=1
4 Z %: <( )J+1>\7ﬁ¢ (J+1) F+ (=172 7ﬂ¢ (J+2) p _Q+J+1+ (6.132)
m>0

_J+5
(1) Q- T - 1D)BIF ).

Proof. The proof is inductive with respect to J. First compute (we are only interested in the second
and third columns)
—1p— —1+
* —z 1F_N+1 z IF—NH
25GYy(2) ~ |%  273F T, 273F Tt (6.133)
- +
*  —FTy FIy_y

where F¥ := Fy(z;r) = ijo(il)jCj(r)/\’% and C,(r) are introduced in Prop. 6.1.2 in formulas
(6.19), (6.15). Now we use the recursions (6.20) to write

x 273 Q-1)F, Q+2 HQ - 1)F, Q+2

B(2)2°GYy(z) ~ | —2"3F7, -z~ 2F+Q (6.134)
* F7Q+1 R e

z—

Inserting the last expression into [ ? ]B(Z)ZSGYO(Z)QQ’;), and expanding i =y % gives (6.131)
m>0

and (6.132) with J = 0.
We now proceed with the inductive step: we verify (6.131) only, (6.132) being completely analogous.
Assume that (6.131) holds true for an integer J > 0 and substitute

(Q—J = 1ot = (o — g+ (6.135)
(obtained by taking J derivatives of ¢"" — (¢’ 4+ (Q — 1)¢ = 0) into (6.131) to get:

J
SD DL ALY T
r=1
Cm _ﬂ _M _ J+5
_ Z > ()\ SV E, P OUIIE L+ 2 (U — (gUA) R Q+J+2)
m>0
(6.136)
We now re-organize the second summation

J
—1-Z (r) p— _J+3 —
_ <ZZ 1=3 g )FQ+T+1> — ¢>(J+1)F,Q+J+2+

r=1

I+4 J49 ’+5 J+3) m—

STTVF i AT VY )F—Q+J+2>'
(6 137)

Finally we substitute the identity F_, ; —F o, ; 5 = —273(Q—J—2)F~ N7+ obtained from (6.20)
with the replacement Q — —@Q + J + 2. This yields

C™ ([ _axs _ _
- m (Z TV (F g~ Flgyy) T 5

m>0

J+1 ,
— Z Z—l—§¢(r)F_—Q+T+1_|_
r=1
¢ pES _ T4
- Z Zm ( SoQ - T - F —Q+a+3 T A Rl Qv T 7 —Q+J+2)
m>0
(6.138)
This is the identity (6.131) under the substitution J + J 4 1. The proof is complete. |
In particular we shall use the following corollary of Lemma 6.4.4: for any J > 0 we have
[6r, ¢, PHIB(2)2° GYo (2 ) 1-2 (1) o L$2
Z_Ck Z)\ d)k FQ+T+1+O( )
=t (6.139)

J

/ " S
[QS]C, d)k:? ¢k]B(Z)Z G}/O(Z) e; = Z(f )r 7177¢(T)F+Q+r+1 1+ 0 ( ﬁ)

z = Ck —t
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By construction, the columns of the characteristic matrix are obtained as follows: the (2K — 1)-th
and 2K—-th columns of G correspond to, respectively, the second and first entries of the coeflicient in
front of =% in the 2-dimensional row-vector power-series (at z = oo) below (k is the row index of G)

0 0
@ [op, &y DI BN GYo DG 275 |1 0 (6.140)
77 Gk 0 1

Let us simplify the last expression: first compute

B 0 0 1 0 0
DGz |1 0| = —=| By27 By (6.141)
0 1 V2| 5 .t B
where 81 = 27%7T:|:. The power series (6.140) can be rewritten using the identity
B(¢k) B(z)
—~> =EK —_— 6.142
z = Ck T Gk ( )

(where Eq; is the elementary unit matrix). This gives the equation

0 0
@ [prs Bhr B (En + B(C) ) ZSG}/O% 5+z%1 B+
* —B_zb B

Qr N-1 oy x N-1 S N 1
N % [_ ;::0 Zﬁiqﬁé)F—Q—&-rH +0 (Z ’ )’ ;::o( e 2¢§€)F Q+r+1 +0 (Z ’ >] [ﬁtzzé gﬂ
[ ZZ_T (r) 1_|_(9 Z*Z T 1_|_(/)( ))—I—O(z_N;—Q)’
r odd r even
Z*z% 1—|—(9 Zz% 1+(9( ))—l—(’)(z_Nﬁ)}
ro o (6.143)

where we have used (6.139) with J = N — 1 and then the monodromy properties 84 (ze*™) = B+ (z),
F ei (ze*™) = F, "F(2); the expansions in the last expression contain only integer powers of z. The x denotes
an expression independent of z and of the index k and irrelevant to the discussion (we are interested in
the determinant). The O expressions are also independent of k and hence irrelevant.

From the last expression we obtain that the wedge of the columns in G is, performing triangular
transformations on G and up to an irrelevant sign,

go [ @ & oi" Y
et N IRAY I AR : (6.144)

oN Dy pN)

For example, if we look at the 2K ~th column of G we need to extract the coefficient of 2= from the first
component of (6.143): the main term comes from the term r = 2K — 1 in the first sum and then there
are other terms with r < 2K — 1 coming from both sums. These additional terms correspond to a linear
n
combination of the previous columns of G and hence do not affect the determinant. Using U = > Qy,

=1
the proof of Proposition 6.4.1 is complete.



Stationary Gromov—Witten theory
of the Riemann sphere

In this chapter we consider stationary Gromov-Witten invariants of P*. In particular, inspired by recent
formule of Dubrovin, Yang and Zagier, we make precise connections with matriz models; we obtain
results which are slightly different from those in the literature. Moreover, we make a connection with a
suitable scaling of the Charlier ensemble.

Main references for this chapter are [DYZa; BRa].

7.1 Stationary Gromov—Witten invariants of P! and Dubrovin—
Yang—Zagier formulae
One extremely important and far-reaching generalization of Witten—Kontsevich theorem, Thm. 4.1.5, is

Gromov-Witten (GW) theory [KM; BM]. A complete introduction to the topic can be found e.g. in [FP].
In the stationary GW theory of P! one is interested in the generating function

T ... T,
FIP’l (/I’()»TlvTQu sy € Z Z klilkn <Tk1 o .Tkn>P17d
n>1kq,... -
11 T2 T8 1 1 7€
= (- )Ty+-L+ %L 4 —4+— Ty +--- 1
(62 24) "t 5 +6€2+(462+24+5760) 2t 1)

of stationary GW invariants of P!

(Thy * " The ]pld —Z 29~ 2/ cpFneviw . eviw. (7.2)

g>0 M, "(Pl d

Here ﬂgm(ﬂj’l; d) denotes the moduli stack of degree d stable maps from Riemann surfaces of genus g
with n marked points to P!; [ﬂg,n(]P’l; d)] is the virtual fundamental class [BF], which allows integration
of characteristic classes, in this case the psi-classes ; as above (pulled back via the forgetful map
Myn(Phd) — M,.,) and the classes eviw (pullback of the normalized Kihler class w € H?(P';Z),
Jpr w =1, via the evaluation maps ev; : M, ,,(P';d) — P! at the ith marked point).

The dimensional constraint kq+...+k, = 2(g—1+d) allows to recover the degree d for every coefficient
of the generating function (7.1). The exponential exp Fp: is a tau function of the Toda hierarchy [OP;
DZb].

In this chapter we connect formulee discovered by Dubrovin and Yang [DYa] for the generating func-
tion (7.1) to matrix models, following (in reverse) the isomonodromic method of the previous chapters.
The motivation is to connect with certain matrix models that have been proposed in the Physics litera-
ture.

Dubrovin, Yang and Zagier formulse. Let us review explicit formulae for stationary GW invariants
of P, conjectured by Dubrovin and Yang in [DYa] and proven together with Zagier in [DYZa] (and also
proven independently by Marchal in [Mc] within the framework of topological recursion). This result can
be summarized as follows.

123
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Introduce the 2 x 2 matrix valued formal series

reo = s (30 ) (@ a@) = (3 0) s e

where J,, (%) are the Bessel functions of the first kind, identified with their formal expansions as z — +oo
[AS]. Introduce also the expressions’

1 ™ 2 2 32Jz—é (%)
S1 < (ecos(ﬂ'z) ( szf% (Z) sz+% (Z) ) ( 8ZJ2+% (%) ) +10g(€z)> ) (7.4)

S Z tr (R(zo1);€) - R(zo(n)i€)) . up 75)

ZU(l) 20(2)) (Za(n—l) - ZU(’!L))(ZO‘(TL) - Za(l)) (Zl - 22)2

066

understood as formal series in 27!, ..., 2, '; note that (7.5) is well defined in this sense, as it is regular
along the diagonals z; = z;.

The main result conjectured in [DYa] and proven in [DYZa] is that for the stationary GW invariants
of P! (7.2) entering the generating function (7.1), we have an expression in terms of formal residues,
namely for all n > 1, kq, ..., k, > 0 the following identity holds true;

1
ekitl, J+ de

Ty ThJprg = (D" res -+ res (a1, 07 H (e

Z1=00 =

(7.6)

In the case n = 1, (7.6) reproduces the explicit formula for one-point stationary GW invariants of P!
due to Pandharipande [PD].

We shall now recognize these formulae as the logarithmic derivatives of a tau function (of what
we called limiting RHP in the previous chapters). The motivation is to make connections with matrix
integrals, see Sec. 7.3

7.2 Isomonodromic method

Bare system. We shall consider the difference equation
1
Fe+ 0+ G- 10 e (4 3) fz0 (7.7)
or more conveniently its 2 x 2 matrix form
1 _
Uz 1) = A()U(2),  A() = < c(=+3) -1 ) (7.8)
which has a unique formal solution in the form?

a+oE) (£) (7.9)
as it can be easily shown by induction.

In this section we study asymptotics of solutions to the difference equation (7.7) so to encode its
general solution in a 2 X 2 matrix solution of (7.8), piecewise analytic in suitable sectors, and having the
same asymptotic expansion (7.9) in every sector. In other terms, we study the Stokes’ phenomenon of
the difference equation (7.8).

From now on we omit the dependence on the parameter € > 0, in the interest of clarity.

1'We denote &, the symmetric group over {1,2,...,n}.
2We use the Pauli matrix o3 = diag(1, —1).
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Solutions to the difference equation (7.7) can be expressed by Mellin contour integrals; in particular

we choose
f(z) = \/21;/01 exp (1 (:lc — i) — (z—i— 2) 10gx> dux,
g(z) == i\/;ﬁ /cz exp (1 (J: - ;) - (z + ;) logw) dux, (7.10)

where C,Cy are contours in the z-plane with a branch cut along z < 0, |argz| < m, for the definition
of log . More precisely

e () starts from 0 with |argz| < 5 and arrives at oo with 7 < arga < =, and

e (5 starts from oo with —7 < argz < —% and arrives at oo with § < argz < .
These contours are depicted in Fig. 7.1.

011;\ &
U

Figure 7.1: Contours C, Cs in the z-plane; the dashed line represents the branch cut along z < 0 for the
definition of log x in the integrand of (7.10).

Remark 7.2.1. g can be expressed in terms of the Bessel function of first kind [AS]

o) =y Zay (2) (.11)

€ €

while f can be expressed in terms of the Bessel function of first and second kind, or equivalently in terms

of the Hankel function H

flz) = \/i <1J2+§ (i) ~Y.. <z)> = i\/ZHSj; <§) . (7.12)

Note that the z-dependence is in the order of the Bessel functions.
Lemma 7.2.2. The following asymptotic relations hold true.
1. f(z) ~ (%)Z (1+0(z71)), as z — oo within |argz| < 5 — 6, for all § > 0.
2. g(z—1)~ (Z)7" (1+0(z7Y)), as z — oo within |arg 2| < 7 — &, for all § > 0.

The proof is based on the steepest descent method; we defer it to Sec. 7.4.
Let us fix angles aj, ..., ay satisfying

v T
—7T<a1<—§<a2<0<a3<§<a4<7r (7.13)
and corresponding sectors in the z-plane, with a branch cut along z < 0, |arg z| < ;

Si={-nm<argz<a}, Sj:={oj1<argz<a;}(j=2,3,4), S :={au<argz<m}. (7.14)
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Define a piecewise analytic 2 x 2 matrix ¥y = Wy (z) as

efifrzg(iz _ 1) 7ei7rzf(7z _ 1)
( —eTg(—z) e f(-2) ) e

2co§(ﬂz)g(_z - 1) g(z) ) 5
( gl ga-1) ) © o
._ f(2) g(2)
Wo(z) = ( A ) : 28y (7.15)
2cosl(7rz)g(_z - 1) g(z) ) 5
( gl ge-1) ) = o

eifrzg(_z _ 1) _efiﬂ'zf(_z _ 1)
_eiﬂ'zg(_z) e—ifrzf(_z) > » 2€ 85

and define also

To(2) = Wo(2) (%) o (7.16)

Proposition 7.2.3. The following statements hold in all sectors Sy, ..., S5;

1. The matriz Wo(z) solves the matriz difference equation (7.8), and

2. The matriz To(z) admits an asymptotic expansion T'g(z) ~ 1+ O(z71).

Proof.

1. Integrating by parts, we have (i = 1,2)

1
0= / 9. (e%(m—%)—(z+%)logz) dz — / 14 i _ z+ b e%(z_%)—(z-s-%)logzdx
Ci ’ c, x? x

_ / <ei(r;)(2+é)logz +e%(17%)7(2+2+%)10g1 — ¢ (Z+ 1) ei(mi)(z+1+;)logx) dx
o 2
which implies

Fe- VS (s45) f0=0=gle =D +at e (o4 5 ) gl @)

Therefore the statement is true for the sector S3. The statement in the remaining sectors is obtained

noting that if p(z) is any anti-periodic function p(z + 1) = —p(z), then f(z) := p(2)f(—z —1) and
d(2) :=p(2)g(—z — 1) solve the same difference equation;

f(z—l)—i—f(z—i—l)—e(z—i—;) f(z):0:§(z—1)+§(z+1)—e(z+;)E(z). (7.18)

. In the sector S3 the statement follows directly from Lemma 7.2.2. For the sector S; we exploit the

fact that f, g are entire function and note that 0 < arg(ei™z) < 5, due to (7.13), so that can apply
Lemma 7.2.2 as

ee'"z

e

e f(—z) = ™ f(e72) ~ 7 < >_Z a+oe")=(Z) Ta+oe)

e ™g(—z—1) = e MFg(elTz — 1) ~ 7T <ee:Z>Z (1+0(:"1Y) (%)Z (1+0(z"Y).

The statement is proven likewise in the sectors Sy, Sy, S5. |
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+A4l

Figure 7.2: Contour X, sectors Sy, ..., S5, and notation for the boundary values.

Denote ‘ .
Yi=eMRyU---Ue™Ry URL (7.19)

(rays oriented outwards) so that ', ¥ are analytic for z € C\ X =& U---US;

Lemma 7.2.4. U(z) satisfies the jump condition
Wy (2) = Wo_(2)Jo(2) (7.20)

where the boundary values are taken according to the orientation of ¥ (see Fig. 7.2) and the matriz fo(z)
is defined on % by

1 .
TV () = T 1 , z€eMR
0 ( ) 0 1+ q_l +
1 0 )
fé2) (2) = ( i ) ) z € 2Ry
14q 1
Jo(2) = ~: 1 0 . 7.21
0(2) %a>(z):< | ) s c R, (7.21)
- 1
74 == !
Jy ' (2) = +a , z € ™R
Pe= T :
jé5) (z) = q78, zeR_
where we denote ‘
q = e*™7, (7.22)
Proof. It is a computation based on the identity
g(—2z — 1) = 2cos(m2) f(2) — ie ™ g(2), (7.23)

which can be proven by performing the change of variable z — —% in the integral defining (7.10) and
applying the Cauchy theorem. Alternatively, in view of Rem. 7.2.1, this identity follows from the known
relation

J-(Q) = isin(m)H{Y (C) + 70, (C) (7.24)
of Hankel and Bessel functions [AS]. |
It follows that
€Z_\*?93 ~ €z —Z03
Pos(2) = To- (Do), =)= (S2) 7 Jola) (5F) (7.25)

where the notation for the boundary values in the definition of Jy is relevant only along z < 0.
The jump matrices Jy(2), Jo(2) satisfy the following properties.

1. J((,s)(z) =1, hence I'y extends analytically across y < 0.
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2. Jp is exponentially close to the identity as z — oo, i.e. Jo(z) = 14+ O (27°°) as z approaches oo
along any of the rays el R, , j =1,2,3,4.

3. The no-monodromy condition j(gl)(z) -+ J®)(2) = 1 holds true.

4. The jump matrices have unit determinant, det j\éi)(z) =1,i=1,..,5,det JV(2)=1,i=1,..,4.
Lemma 7.2.5. We have det Uy(z) = 1 = detTo(2) identically in z, €.

Proof. As det jo(z) is identically 1 on X, we infer that u(z) := det ¥o(z) is an entire function of z.
Moreover, i is periodic, u(z + 1) = u(z), as it follows from (7.8). Hence, u(z) = 1 everywhere. |

Remark 7.2.6. The results of Birkhoff [Bf] cannot be applied directly to the difference equation (7.8),

which is a non-generic case with respect to his usual assumptions.

Rational dressing. Let us denote ¥/ := e/ R, U---Ue!™R,.

Fix N > 0, points z = (21, ..., 2n) in the complex plane, | arg z;| < m; by the freedom in the choice
of the angles a;, compare with (7.13), we can assume that z1, ..., zy € C\ X’. Associated with this data,
introduce the jump matrix Jy(z;2z) : ¥’ — SL2(C) by

In(2;2) = Dy'(2;2)Jo(2) Dn(z; 2), Dn(zz) == ( (1] sz_l((i _z) ) . (7.26)

RHP 7.2.7. Find a 2 x 2 matriz T'n(z;2), analytic in every sector of C\ X', satisfying the following
jJump condition along X'
IPni(z;2) =Tn_(z;2)JINn(z2;2), (7.27)

and the following boundary condition at infinity

In(z2) ~1+ 0. (7.28)

Remark 7.2.8. As in Lemma (7.2.5) it can be shown that detT'y(z;2) = 1 identically in y, whenever
I'n(z;2) exists. Hence, the solution to the RHP 7.2.7 is unique, if it exists.

The tau differential

N
oD
On =) Qn;dz, Q= res tr (r]—vlrgv azN Dgﬁ) dz (7.29)
j=1 E=Ei J
and the Malgrange differential
N aJ dz
QO 0O o) - N o
Oy = ;QN,jdzj, Q= /E St (er_FGV_ 9, JN1> o (7.30)
are related as
Qn = Qn = 1N (7.31)
where
a DN 4\ dz
NN = ZWN,dej, NN,j = /, tr (JNlJ]/V&szN > G (7.32)

Jj=1

as it is easily shown. (Compare with Sec. 2.5.)
As the tau differential is closed (see Chap. 1) we introduce the tau function 7n(z) as

9
Qg = 5, - logn(2). (7.33)
J
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From the theory of Schlesinger transformations which we have recalled in Chap. 2 we know that a tau
function related to a rational dressing of jump matrices like (7.26), admits an explicit expression in terms
of the finite size determinant of the characteristic matriz Gy (z), with entries

2F=1dz
(Gn(2))jk = — res (Tg 1 (2)T0(2))

Z=00 272 z — Zj

., 1<jk<N (7.34)

compare with (2.81).
The following proposition is crucial in establishing the relations with matrix models.

Proposition 7.2.9. We have

N
det Gn(z )—det< ! T(Lo(zj +k — 1)1, ) . (7.35)

jk=1

Proof. Introduce functions a(z), b(z), analytic in every sector Sy, ..., S5, according to

Wo(z) = ( a(z(i)l) b(Z(i)l) ) (7.36)

so that the entries (2.71) of the characteristic matrix are found as

. L —alz = 1) alz) b(z)
(%) J (%) ( — zj) ( b(z —1) ) _ XN:(GN(Z))j,kZ% + O (7.37)

k=1

where we use det I'y(2) = 1 from Lemma 7.2.5. Introducing the matrix

a(z; b(z
H(zz5) = ( a(z§ _)1) b(z(—)l) ) (7.38)

we rewrite (7.37) as

(ﬁ)*%’ (z)z det H(z;25)
e e z—z
Recalling the difference equation (7.8) we have

(a<zj+1> b<z+1>+e<zjz>b<z>>:(e<zj+;> —1)( (a@j) b@)) (7.40)

(Gn(2))jpz F+0O(E"N1), (7.39)

-

a(z; —1) b(z —1) 1 0 zj —1) b(z;)

hence we get

det H(z + 1;2; + 1) + €(z — zj)a(z; — 1)b(z) = det H(z; 2;) (7.41)
from which we obtain
N
det H(z+ N;zj + N) +€(z — z; Zb (z+0)a(z; +£—1) =det H(z; 2;). (7.42)
=0

~

Finally, from (%) b(z+0) = —by(2), b(z) = 1 + O(z71) we rewrite (7.39) as

(EZ)

N -~ N
€25\ % a(z; +€—1)be(z B e
(?J) > & 6571%) < = (Gn(@)z F+ 0N (7.43)
=1 k=1
and so ~
Gn(z) = Gn(z)By (7.44)
where we write Bg(z) =1+ Zj213zz*j and
1 b ... B2
0 1 - by° N v a(z +k—1)  (Tolz+k—1),
= | . G = () TS - — (7.45)
0 0 1

and the proof is complete by taking the determinant of identity (7.44), as det B = 1. |
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The limiting Riemann-Hilbert-Birkhoff problem For all N > 0, we have the identity

1 0 1
-1 _ o —¢
‘DN = ( 0 62521 t[(z)ze > 5 t@(z) = Zzlzj . (746)
=
This identity is non-formal provided min;—; _ n |z;| > |2
This prompts to introduce an independent set of times t1, to, ..., and?
J(2:6) = PGBz Jy ()e PGB g (nt) = g2t (7.47)

>1

and to consider the following RHP.

RHP 7.2.10. Find a 2 X 2 matriz T'(z;t), analytic in every sector of C\ X/, satisfying the following
gump condition along X'
Li(zt) =T_(zt)J(2t), (7.48)

and the following normalization infinity

[(z;t) ~14+0(z71). (7.49)

For the sake of definiteness, in the RHP 7.2.10 one must first assume that for some K > 1 we have
ty = 0 whenever ¢ > K. Therefore, from now on let us fix an arbitrary K > 1 and assume ¢, = 0 whenever
¢ > K. Under the assumption that

Retgelf% <0, j=23, Retgef% >0, j=1,4 (7.50)

we conclude that J(z;t) =1+ O(z~>°) as z — oo along any ray of 3. Hence, the solution to the RHP
7.2.10 exists and is unique for t¢1,...,tx in an open neighborhood of t = 0, with the argument of tx
further restricted by (7.50); it defines a matrix function I'(z;t), its specifications to each sector of the
z-plane being holomorphic in ¢y, ..., tx. Note that I'(t = 0) = I’y by construction.

In particular, this allows to introduce the tau and the Malgrange differentials as above, see (7.29)-
(7.30);

K

Q= Zmdu, Q= — res tr (I7'["Ey,) 2de, (7.51)
=1 =
K aJ dz

O — 0O O . —1yv 94 1) d=

Q=) Qudt,, Q= /ltr (r I at/ ) T (7.52)

~
Il
—_

Exactly as in (7.31), we have the relation

K
Q=0Q+n, n= Zzzlmdtg, N = — // tr (J_lJ’Egg) z;:f (7.53)
Moreover, the tau differential is closed (see Chap. 1)
a‘?jﬂk = 8%9]- (7.54)
and so we can introduce the tau function 7(t) as
Q= 9 log 7(t). (7.55)

Oty

3Here Egs is the elementary matrix ( g (1) )
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Identification of the limiting tau function with stationary GW invariants of P'. The simi-
larity of (7.6) with the general formulee of Thm. 1.2.2 suggests the following result.

Proposition 7.2.11. Logarithmic derivatives of the tau function 7(t), defined in (7.55), coincide, up to
a simple scaling, with the stationary GW invariants of P! (7.2);

0" log 7(t) 010!
Oty -+ Oty - elitHn—n (They - Tkn)]P’l,d : (7.56)
1 n

Proof. We first consider one-point intersection numbers, n = 1. To this end, applying definition (7.55),
using the notation of (7.36) and denoting ' := 9,, we compute

) b'(2) + b(z) log(ez)
e (( —a(z=1) a(z) ) ( b'(z—1)+b(z — lg) log(ez) )) 2de (7.57)

where we use the identity (%)72 ((E)Z)/ = log(ez). Since

e

0
87@ log 7(t)

t=0

det Up(2) = a(z)b(z — 1) —a(z — 1)b(z) =1 (7.58)

we can write

0
5% log 7(t)

~ res (( —a(z—1) a(2) )( b,(";(f)l) )—l—log(ez)) SLde. (7.59)

t=0 Z=00

The formal residue is independent of the sector in which we let z — oo by construction, as I'g(z) has
the same asymptotic expansion in every sector. E.g. we can assume, using the definition of I'g(z) in the
sector Sz, compare with (7.16), that

a(z) = f(z) = i\/iHSj; (i) N \/icos(lﬂz)JZé (i) L b =g(z) = \/?JH; (i) (7.60)

where we use the Hankel function Hf,l)(C) =J,(¢) +1Y,(¢), the identity

i

H{Y(¢) = (e™™7,(¢) = I-u(C)) (7.61)

sin(vm)

compare with (7.24) [AS], and the fact that the term involving J, | 1 (2) is sub-leading as z — 400, hence
inconsequential for the computation of the formal residue (7.59). Inserting (7.60) in (7.59) we obtain

0
5% log 7(t) o (7.62)
T 0.J,1 (g)
= — 3 _ J 1 (2 J (2 2t Me ¢ .
% <ec08(7rz) ( —#ths (?) e (2) ) ( 9:J. 1 (3) ) +log(ez)> sl (763)
!
= — res €S1(2)zdz = ef—_'l (Te-1)p1 g (7.64)

where we used (7.4) and (7.6). This proves Prop. 7.2.11 for n = 1.
In order to proceed with higher order derivatives, we first note that we have a compatible system of
ODEs of the form (compare with (1.4))

or oM, oM,
— = M,;T — 2‘TEqs, mo_ = [My;, M,, 7.65
o, e TR o oty Mo Ml (7.65)
where My = My(z;t) is a polynomial of degree £ in z;
['(w;t)Egel ~ ! (w; t U(w;t
My(z) == res (w; t)Eapl (w )wédw = res Mwédw, e>1 (7.66)
w=o0 w—z w=o00 W — Z
where
U(z;t) :=T(z;t)Eal "1 (2;t). (7.67)

This fact follows by a standard application of the Liouville theorem. The matrix T'e’®22 is piecewise
analytic in the complex z-plane and satisfies jump conditions independent of T along Y’. Hence the ratio
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6%[ (I‘eﬂE“) (FeﬂE“)fl =: My is analytic in z everywhere and grows like a polynomial of degree ¢ at
z = o00. It follows that M, can be found as the polynomial part of the expansion at z = oo, as in (7.66).

Then we compute second derivatives of log 7(t), using the cyclic property of the trace and denoting

fi= az;

9
Oty, Oty log(t) = T Oty, (T (213 )1 (21; t)Eg2) 21" d2

= — res tr (17" (21;6) My, (215 8)Eol' (213 1)) 27 dz1 + res (fzzfﬁb_l) dz
21=00

21=00
tr (U(z1;t)U(295t)) — 1
= res res r (Ua;6)U(z:t)) zflzbdzldzg.
21=00 22=00 (2’1 — 22)2

Lemma 7.2.12. In the sense of asymptotic expansions at z = oo, we have

U(z;t =0) =01R(2)01 (7.68)
where R(z) = R(z;¢€) is given in (7.3).
Proof. Using the notation of (7.36) we compute

Uzt = 0) = To(2)Eal's ! (2) = ( b(g(i)l) ) (—az—1) a(z)) (7.69)

and so the proof is complete by comparing with (7.60). |

Comparing with (7.5) and (7.6) for n = 2 we conclude that Prop. 7.2.11 is also true for n = 2.
To complete the proof of Prop. 7.2.11 one proceeds by induction exactly as in the general Thm. 1.2.2.
|

7.3 Connection with matrix models and discrete orthogonal
polynomials.

We can finally deduce some consequences of this isomonodromic interpretation of Dubrovin—Yang—Zagier
formulae.

External source matrix model. Define, as in Sec. 1.4.3,

1 €25\ TZj ) . N
det (= (22) 7 f(z5 +k—15¢) )
k=1 (7.70)

TN (21, ey 2N) 1= Y ——

where f has been defined in (7.10). Note the asymptotic expansion

24 — €2 n €* +528¢2 + 576 1003€% + 95400e* + 406080€2 + 69120 n
24€2 2 1152¢422 4147206623

(£) o ~14 (7.71)

e
where the coefficients can be computed either by a steepest descent analysis or by the difference equation
(7.7). Therefore, within the same sector we also have

€z

(;)%f(z—&—k;e) ~ (e2)F (1 + O(="1). (7.72)

for all £ = 0,1,2,.... Thus we fall within the class of KP tau functions considered in Sec. 1.4.3. In
particular there is a well defined limit as N — oc.

For connections of (7.70) with a matrix model with external source, see (7.79) below.

Directly by the isomonodromic interpretation of Dubrovin—Yang—Zagier formulae and by Prop. 7.2.9
we obtain the following.
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Proposition 7.3.1 ([BRa]). The limiting expansion as N — oo of log 7w (21, ..., 2n) in the scaled Miwa
variables

k! 1 1
. (/;H ot z;fw) (.73
coincides with the free energy of the stationary GW theory of P! (7.1).
Example 7.3.2. Using the first terms of the expansion in (7.71) we can compute Tn=4(21,...,24) up to

terms of order 3 in zfl, ...,z;l as

_ 2
TN:4(217 "'724) :1+2§4<2 <%+m+i)+(11152+222+ﬁ)<%+m+§+zﬁzz +"'+‘z32z‘4>

1003 265 47 1) 1441 (7 1 169 23 1) 11 2 2
+(414720+1152F2+4854+656 <z§+ +z§i>+ 27645 T 354¢2 T 161 T 20 z%z2+ +z3z§+212223+ MR

and then, in view of the relations

1 1 1 1 2 2
TO:i_F..._Fi7 Tg=7+-~~+—2+—+"'+—,
Z1 z4 21 7 Z1%2 Z324
2Ty 1 1 TO3 2Ty 1 1 2 2
7:734_..._’_73’ -0 :27—"_'”—'—72—’_ 4+ ,
2 z3 z3 3 6 2572 232§ 212223 292324

the expansion for log Tn=4(21, ..., 24) correctly reproduces the terms up to degree 3 given by example in
(7.1).

In [ADKMYV] the following analogue of the Kontsevich matrix integral for stationary GW invariants
of P! has been proposed?;

N
det (fR xkexzj—% cosh xdw)
N(N-1)

2 A
/ exp tr <MZ — — cosh M) dM =7" =2 Sh=1 (7.74)
Hy € H1§j<k§N(zk — 25)

The equality above can be derived as follows (see App. B). First we decompose integration in eigenvalues
and angular variables

N(N-1)

2 ;
/ exp tr (MZ — Zcosh M) am="_"— ( / e”(UXUTZ)dU) A?(X)e tr cosh(X)qx
Hy € I[LL, ¢ Jey \Juy
(7.75)
then we use Harish-Chandra-Itzykson-Zuber formula (B.11) to rewrite the previous expression as
N(N-1)

=2 1 2 N

—_— A(X)d t( ””Zj_?»wSh‘”) 7.76

Nl A(Z) Ja~ (X) det e i,j=1 (7.76)

and finally the equality in (7.74) is found by Andreief identity.

Noting that
9
/ ePrmicoshag, K () (7.77)
R €

where K, (¢) is the modified Bessel function of second kind of order v and argument ¢ [AS], the matrix
integral (7.74) can be alternatively expressed as

N
E—1 2
N(N-1) det (32_, K-, (€)>j k=1
2 2 .

H1§j<k§N(Z’f - zj)

™

(7.78)

4 Actually, the partition function fHN exp %tr (MA —eM _ qe*M) dM is considered. Up to minor modifications, the

1
parameters g, ¢ can be combined into a single parameter € = ¢~ 2 g; then (7.74) is recovered by the identification A = e¢Z.
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The main difference with the model (7.70) considered in this work is the presence of derivatives instead
of integral shifts. We observe that the following modification of (7.74)

N
9 A(eMydm  det (Ko, e-1) (2)).,_
/ exp tr (ZM—COShM) (") = (K-trio ( ))]’kfl (7.79)
Hy € A(M) H1§j<k§N(zk — 25)

(which coincides with (7.74) for N = 1 only) produces a result which is closer to the model (7.70)%; as
above, A(A) denotes the discriminant of the characteristic polynomial of the matrix A. The equality
in (7.79) is proven by the same arguments above, noting that after the angular integration using the
Harish-Chandra-Itzykson-Zuber formula the left side is written as

N(N—1)
2 1 A (eX) T;2;—2 cosh x; N
T AT /R \ Ape et (e : >m‘:1 (7.80)

and the equality follows again by Andreief identity.

™

Connection with the Charlier ensemble. Introduce a discrete measure

—a T

e Ta

e (7.81)

Ha = Z w(n; a)dp, w(z;a) =

n>0

supported on the nonnegative integers; here §, is the Dirac delta measure supported at x € R and a > 0
is a parameter. The monic discrete orthogonal polynomials 7y(x;a) = z° + - - - relative to the measure
(7.81) are known to be the (suitably scaled) Charlier polynomials;

7'('5(1’;(1) L= (70’)62F0 (67 —T5; 1) )
a

/Rw(ac; a)me (z,a)dpe(z) = Z me(n; a)me (n; a)w(n; a) = a0l .

n>0

The following result concerning a scaling limit of these orthogonal polynomials has been communi-
cated to us by P. Lazag.

Lemma 7.3.3 ([La]). For all ¢ € R and ¢ € Z we have

T (L+Gge) e 2
<) _ Lz 82
PN v ) B S (7.:82)

where w(x;a) has been introduced in (7.81).

Consider now a matrix model of L x I hermitian matrices with spectrum distributed according to the
discrete measure (7.81) (Charlier ensemble). In particular, the probability distribution of the eigenvalues
is given by

L ®L 2
Z, A% (z1, .y zp)dps ™ (21, ..., 2p), Z10 = A% (z1, .y xp)dpe(z1) - - dpg(xr). (7.83)
,a RL

According to Thm. 3.4.1 the expectation value of a product of characteristic polynomials admits the

following expression
N

N et (m —1\Uj)) ;.
<Hdet (w1 —M)> det (mrr-1(1))); (7.84)

Ia B H1§j<k§N(uk - uy)

in terms of the monic orthogonal polynomials g, 71, ...; here the expectation value is taken according to
the distribution (7.83).
Combining (7.84) with Lemma 7.3.3 we obtain the following interpretation of the model (7.70).

5Since Ky (¢) = gi”‘HH(Vl)(i() one concludes that the Wick rotation e — ie essentially converts (7.70) to (7.79)
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Proposition 7.3.4. For all N > 1, z1,....,z2ny € R, and all € > 0, we have the following scaling limit of
the expectation value of the product of N characteristic polynomials in the Charlier ensemble, as the size
L diverges;
N 1 1, N
(TI det (£~ 2 — )1~ M)>L7a: L det(cbah, (%))j .

lim L7 _ ’ (7.85)
L—rtoo Hf\il D(L—2z+3) [licjcren(ze — 2))

where the expectation value in the left side is taken according to the distribution (7.83), with the parameter
a being set to a = L%Q

We recognize the model (7.70), up to minor modifications (see also the arguments after (7.60)), in
the right side of (7.85).
This should provide a link to the matrix model proposed by Eguchi and Yang [EY].

7.4 Asymptotic expansions: proof of Lemma 7.2.2

It is convenient to introduce

Asymptotics for g. Let us write £ := € (z + %) so that

g(z—n:/ e%(f—*—flog@dz—|g|e"1°g\€\/ oS (r—e 05 2) o=t g (7.86)
Cg CQ

where ¢ = [¢]el?, |0] < 7; in the second equality we performed the change of variable 2 — z|¢| and applied
Cauchy theorem to deform the contour |¢|~1Cy back to Cy. Since Cy stays at a bounded distance from
x = 0, we can apply Fubini theorem and write

) 1y i
/ e'e (a=¢' 1°gw)e—de:Zﬂ/ 1 (et tog ) gy (7.87)
Co JleEl Je, 7

320

We study each integral in the series in right hand side of (7.87) by the steepest descent method. The
phase is go( ) := x — el log z, which has one saddle point at 2 = €. Expanding op(z) = €'(1 — if) +
%(m —e%)? + O((z — €%)3) we see that the steepest descent direction is T£2.

For all |6 < 7, the contour Cy can be deformed to the steepest descent contour Im ¢(z) = Im p(e'?)
in the vicinity of # = €' in such a way that the main contribution to the integral for large |£| comes

from the neighborhood of the saddle point (see Fig. 7.3), and is computed by the gaussian integral;

Gz — 1) ~ [gle™ < toslél- 1+19)Z |§\ 7y / . Qe (g
el eie-‘,-ei’r

J>0 zZ R

—iy/2Zndgle £05E (1 + O(g ),

Finally, we recall £ =€ (z + 1) and so \/|§|e’§(log§*1) ~ (£)
This completes the proof of the asymptotic for g(z — 1).

—Zz

Asymptotics for f. Let us write & := ¢ (z+ 2) and divide the contour C; in C}" := C; N {|z| < 1}
and C9% := Cy N {|z| > 1}. Performing two different scalings x — z|¢|*! we have

—~ glog\f\ i x
f(Z) — 67/ e*@(%*hsalogz)emdm_’_|£|67§10g\£\/ e\ﬁ\(z el logZ)e*ﬁdx (788)
€ Jiger jel-rcpe
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— 3m
0=

Figure 7.3: Steepest descent and ascent contours Im ¢(x) = Im ¢(e'?) for the phase ¢(z) = z — ! log
(red), and contour Cy (black, dashed), for 6 = 7, i = —3,...,3. Level lines of Rey are also shown.
In all cases it is clear how to deform Cj to the steepest descent contour in the vicinity of the saddle
point, so that the contributions from the tails at infinity are exponentially smaller than the saddle point
approximation.

where ¢ = |€]e!?, |0] < 7. Applying Fubini theorem, the first integral is

/ e—%(é#—eie logw)ee‘zﬂ doe = Z '; / xje—%(%—l-ew logm)dx (789)
gl = Il Jigiogn

and the second one is also written similarly as in (7.87).

We study each integral in the series in the right hand side of (7.89) by the steepest descend method.
The phase is p(z) = % — el%log 2, which has one saddle point at = = e~'. Expanding ¢(z) = €'?(1 —
i6) + %(m — e 192+ O((z — e71%)) we see that the steepest descent direction is —22.

Let us restrict attention to -

o] < 5- (7.90)

The contour C can be deformed so that |£|Ci"™ coincides with the steepest descent path in the vicinity
of the saddle point e i (see Fig. 7.4), therefore giving the contribution

£ (log |€|—1+i0) —i0\j 310 . V2
e (=) e e gy = YETCE(ome=) (1 4 0| 7Y))  (7.91)

[ .30 5

€] SN Jeo e Hn ¢

where we recall that £ = ¢ (z + %) so that E*%eg(log SN (%)Z The contribution from the other term,

relative to the contour |¢|~1C{%, is computed similarly as above for g and is subleading with respect to
(7.91), as long as we restrict to the range (7.90).

This completes the proof of the asymptotics for f.
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Figure 7.4: Steepest descent and ascent contours for the phase %—I—ew logz (red) for = i%,i = —-3,...,2.
When 6 = —%ﬂ' it is convenient to move the branch cut of log. Level lines of the real part of the phase
are also shown. In all cases it is clear how to deform |£|C%™ to the steepest descent contour in the vicinity
of the saddle point, so that the contributions from the tails at zero and infinity are exponentially smaller
than the saddle point approximation.
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APPENDIX A

KP hierarchy and its tau functions

An integrable hierarchy is a family of pairwise commuting flows; the notion generalizes finite-dimensional
integrable hamiltonian systems to infinite dimensions, so to apply to "integrable” PDEs, e.g. the Korteweg-
de Vries equation. A rather ubiquitous, and indeed universal, hierarchy in this context is the Kadomtsev-
Petvhiashvili (KP) hierarchy. In this appendiz we review the KP hierarchy and its tau functions.

A.1 Kadomtsev—Petviashvili hierarchy

Pseudo-differential operators and KP hierarchy. Let (R,0r) be a differential C-algebra, i.e. R
is a C-algebra and dr : R — R a C-linear map satisfying the Leibniz rule Og(rs) = (Orr)s + r(0rs).
The C-algebra WDO(R, ) of pseudo-differential operators over (R, dg) consists of elements!

A= > rd (A1)
Jj<Koo

which are called pseudo-differential operators, with product defined by enforcing the generalized Leibniz
rule

. JG=1 G =n+1), 0 oin _
aﬂr:Z( ) nf )(8R7’)3 .,  jel. (A.2)
n>0
Let us denote A=Ay + A_ forall A=5"

purely differential part of A.
In the following we mostly consider

oo r;07 € WDO(R,OR), where Ay := 2 0<j<oo r;07 is the

UDO := \I’DO(C[[LL',t1,t2,...]],8$) (A?))
for an infinite set of times ¢4, to, ....
On the subspace
L=0+> u;077 3 C¥DO (A.4)
Jj=>1

we consider the compatible system of nonlinear ODEs?

7]
L= [(L™)+, L], n=1 (A.5)
called Kadomtsev-Petviashvili (KP) hierarchy. For the name, see (A.8) below.

Note that from the identity 0 = [L", L] = [(L™)4 + (L™)_, L] we may write the KP hierarchy as
iL*[L (L™)_] n>1 (A.6)
ot, 7 v - '

We postpone the proof of compatibility, as it becomes more transparent after Prop. A.1.1 (although

it could be checked directly). Note however that (A.5) are well defined, for if L is in (A.4) then both
%L and [L, (L™)_] are in the form Zj21 0;077.

IWe use the notation > j<oo fi to denote Zj;"ioo f; and that there exists some K € Z such that f; = 0 whenever
i> K.
2[A, B] = AB — BA denotes the commutator in the algebra ¥DO.
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A solution L of the KP hierarchy satisfies in particular the n = 1 equation
0 0
L

which implies that L depends only on the combination t; + x; it is convenient and customary to set
2 = 0, the full dependence being restored by t; — ¢ + x. Accordingly, we restrict R to C[t1,ts,...].
Moreover, after some computations, one derives the following equation from n = 2,3 in (A.5);

3 82U1 8 6u1 8U1 1 8U1

— =— |5 —-3wm5 —~—= A8

4062 of <8t3 “ot, T 108 (4.8)
where L = d +u;0~! + - --. The nonlinear equation (A.8) is the KP equation, whence the name.
Gelfand—Dickey hierarchies. It can be shown that the condition (L")_ = 0 is invariant under the

KP hierarchy flows (A.5), see e.g. [Db]. The corresponding reduced hierarchies are called r-Gelfand—
Dickey (GD) hierarchies. From (A.6) it is clear that the flows ¢, ta,, t3,, ... are trivial; consequently we
can say that the solutions to the GD hierarchy do not depend on these times.

The case r = 2 it corresponds to the KdV hierarchy, and the case r = 3 to the Boussinesq hierarchy.

Undressing the KP hierarchy. As a fact, for any C-algebra of pseudo-differential operators, the
subset

G=1(1+> g;077 » CVDO(R,0g) (A.9)
j>1

is a multiplicative subgroup, assuming R has an identity element 1. Indeed one can easily show that the

coefficients of 1+ 375, ;077 = (1 + 35195077 ) are found by a well defined recursion;

G+hH=0, g+ figi+f2=0, g3+ fige+ for + f3 — f1OrRg1 =0,--- . (A.10)
Then every pseudo-differential operator L of the form (A.4) admits a representation as
L=MoM™! (A.11)

for some M =1+ 3,5, m;077 € G, whose coefficients m; are again found by a well defined recursion;

1
u; = —Opm1, us = —0R <m2 - 2m%) Ly (A.12)

The operator M € G in (A._ll) is unique up to the gauge arbitrariness M +— MC for some constant
CegG,ie. C=1+ 2]21 ¢;077 with Orc1 = Orca = ... = 0.
Let us go back to the setting (A.3) for the KP hierarchy.

Proposition A.1.1. L = MOM ™!, with M € G, solves the KP hierarchy (A.5) if and only if M solves
the compatible system

2TM+(M8"M*1)_M:(), n> 1. (A.13)

We skip the easy proof.

Proposition A.1.2. The KP hierarchy (A.5) is compatible;

0 0 0 0

——L=_——L. Al4

Oty, Oty Oty, Oty ( )
Sketch of proof. Writing X,, = —(Mo"M~')_ = —(L™)_, the proposition follows from the zero
curvature identity

8X7L 8X77L

— =X, X Al
Otm Oty Ko X (A.15)

which can be easily checked. |
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Wave functions and KP hierarchy. Introduce notation t = (¢1,ts,...) and

E(z;t) == thzj. (A.16)

i>1
The vector space W, of (formal) wave functions, consists of symbols ¢» € W
b=zt = [ D &t)a | Y (A.17)
Jj<Koo

where &; € C[t], endowed with the natural linear structure (sum the coefficients ;). There is a (left)
action of ¥DO on W, defined by setting

et it) = pnef(Eit) n ez’ (A.18)
and requiring that this action commutes with multiplication in ¥DO, i.e. (AB)Y = A(B). It can be
checked that this action is free and transitive, and therefore W is a free rank 1 (left) ¥ DO-module.

Therefore W can be identified with the vector space underlying W DO, where ¢ € W is identified with
the unique A € WDO such that 1) = Aef(**), Concretely, this is the trivial identification

wov=3 ) |0 wa={ Y ¢t)d | e vDO. (A.19)
j<oo Jj<Koo

Operators % W — W (n > 1) are defined in a natural way; for ¢ = (Zj<<oo fj(t)zj) et e W

9 () 5\ e
— ) = 5 . A.
ot j;o P 2 ]e + 2" (A.20)

Proposition A.1.3. L = MOM~"! in (A.4), with M € G, solves the KP hierarchy if and only if
= MeSY) € W satisfies
Ly =
{ =2y (A.21)

3%1 = (L")41.

We omit the easy proof. In case (A.21) holds true, we call 1) € W a KP wave function.

A.2 KP tau functions

For a KP wave function ¢ we introduce h,, ; by

9 ,
5V = Y hng | . (A.22)

Jj=1

E.g hn1 = 5-&1.

The following central result is due to Sato. To state let us first recall the elementary Schur polynomials
p;(t), which are symmetric homogeneous degree j polynomials (with respect to degty := k) defined for
7 =0,1,2,... by the generating function

exp» 8= Ap;(t) (A.23)
s>1 >0
e.g.
1 1
po(t) =1, pi(t) =t1, pa(t) =to+ =t], ps(t) =ts+tita+ 15, . (A.24)

2 6
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Theorem A.2.1. For any KP wave function v introduce the h, ; as in (A.22). There exists a function
7(t), called the KP tau function, such that all the h,, ; are expressed through derivatives of logT(t);

0 0
hpa = T log 7(t)
10 [0? 7]
hp2 = 20t (875% - 8t2> log 7(t)

and in general

hw:a ( o 10 1290

B P I | A2
at, P\ "ot T 20ty 30ty )OgT(t) (A.25)

where n,j > 1 and p; are the elementary Schur polynomials (A.23). The KP tau function is defined
uniquely by a KP wave function up to the gauge freedom

7(t) = e/ ®r(t) (A.26)
(not affecting (A.25)) for some f(t) = c1t1 + cata + ... linear in the times.

We omit the proof of this theorem (see e.g. [Dc]). Let us state also the following fundamental corollary
instead (for its proof we we refer again to [Dc]).

Corollary A.2.2. 1. The KP wave function v = (z;t) is expressed in terms of the KP tau function
as

t— —1
Y(z;t) = rt=[=7]) ])eg(”t) (A.27)
7(t)
where we employ the standard notation [z71] == (1, 555, 555, ...).

2. A wave function ¢ € W expressed as (A.27) is a KP wave function if and only if T satisfies the
Hirota bilinear equations defined by the following generating function;

1 1
ij(_lea —2ys, ---)ey1D1+y2D2+mpj+1 <D17 §D27 §D3a ) T-7=0. (A.28)
i>0

These equations can also be compactly written as

-1 rr—1 E(zt—t') _
Tes T (t+ [z )r(t'=[z7"])e 0. (A.29)
We remind that the Hirota derivatives D; := D, are bilinear operators® whose action on a pair of
functions f = f(t), g = g(t) is denoted D; f-g and is defined by the generating function in the parameters

Y = (Y1, 2, )
(@Pf-g)(6) = ft+y)g(t —y) (A.30)

where y - D =35, y; D;.

Sato grassmannian. In [SS] the authors proposed an interesting description of the space of solutions
as an infinite-dimensional grassmannian. Indeed the bilinear form of the KP hierarchy (A.29) can be
interpreted naturally as an infinite-dimensional generalization of the Pliicker relations [MJD].

This is the point of view considered in Sec. 1.4.3. For more details we refer to the literature, e.g. [SS;
SWhb; MJD].

3Contrarily to the potentially misleading notation D;f - g, D; does not act on the product of f and g.



APPENDIX B

Basics of matrix integration

We review some standard techniques for integrals over matrix spaces, namely Weyl integration formula,
Andreief identity, and applications of character expansions to evaluation of certain integrals over unitary
groups.

B.1 Hermitian matrices. Weyl integration formula

Let Hy be the set of N x N hermitian matrices. It is a real vector space of dimension N2, e.g. we have
real coordinates

Hy 3 M — (My;, Re Mgy, Im M) € RN
withi=1,..,N,1<a<b<N.
2
Given this identification we can endow Hy = RY" with the euclidean volume form

N
dM = [JdMi; [ dReMap ] dIm Me. (B.1)
i=1 1<a<b<N 1<a<b<N

By the spectral theorem, each M € Hy can be diagonalized by a unitary matrix U € Uy and has
real spectrum, i.e. for every M € Hy there exists U € Uy and real numbers z1, ..., xy such that

M = U diag(z1, ...,zn)UT. (B.2)

Here and elsewhere, Uy denotes the group of N x N unitary matrices, which is a real Lie group of
dimension N?2. The matrix U in (B.2) can be specified only up to a permutation action (permuting the
eigenvalues z;) and to a torus action of (U;)" (diagonal unitary matrices).

Introduce the subset H3} C Hy of hermitian matrices with distinct eigenvalues. HY is dense, open
(in the Zariski and hence in the euclidean topology), and it has full Lebesgue measure. To see this it is
enough to note that Hy \ H3} is a Zariski closed set in Hy = RY 2, whose components have codimension
greater or equal to 3. Indeed, Hy \ HY > M is cut out by an equation which is polynomial in the
entries of M, namely the discriminant of the characteristic polynomial of M should vanish. As for the
codimension, observe that

A:={M € Hy : M has eigenvalues x; < 23 < ... < x_1 where x; has multiplicity 2}

is a smooth submanifold of Hy and we have a diffeomorphism

_ Uy
U2 X (Ul)N72
(331, ey TN—1, [U]) — Udiag(xl,xl,xg, ...,JEN_l)UT (B3)

{(x17...7xN,1)ERN_1: .’L‘1<...<$N71} X — A

where we consider the diagonal embedding Uz x (U;)¥~2 < Uy. The codomain in (B.3) is a real smooth
manifold of dimension

N —1+dimUy — (dimUy + (N = 2)dimU;) = N — 14+ N? — (4+ N —2) = N? - 3.

Therefore, any integral over Hy with respect to a Lebesgue-absolutely continuous measure can be
restricted to HY;.
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As in (B.3), we have a diffeomorphism

gb:{(afl,...,l‘]v) E]RN: r < ... <xN} X % — }9\?

(1, ...z, [U]) = U diag(zy, ..., xn)UT (B.4)

where again we consider the diagonal embedding (U;)Y < Uy.

We now compute the Jacobian determinant of ¢, in order to derive useful formulse reducing the
integration over Hy to integration over eigenvalues and Uy. To this end, let us recall that the unitary
group Uy admits a bi-invariant volume form dU (Haar measure), any other bi-invariant volume form
being a nonzero scalar multiple of it. For us it is convenient to introduce dU as follows. Put a bi-invariant
riemannian metric on Uy C Maty (C) by restricting the standard bi-invariant euclidean metric

N
X ==Retr (XTX) = > [ X (B.5)
jok=1
on Maty(C) 3 X. Then let dU be the riemannian volume form on Uy associated with this riemannian
metrict. dU is bi-invariant by construction.
Due to bi-invariance, dU descends to a measure on the homogeneous manifold Uy /(Uy)Y, which by
abuse of notation we denote by the same symbol.

Proposition B.1.1. The pullback via the diffeomorphism ¢ in (B.4) of the restriction to HY of the
Lebesgue measure dM in (B.1) is

¢*dM = AQ(.’L‘l, ...,l‘N)d.L“l te dedU
where A(x1,...,zN) is the Vandermonde determinant and dU is the measure on UYN /(U1)N introduced

above.

Proof. We first prove tha statement at points of the form (z1,...,zy,[1]). In a neighborhood of the
identity 1 € Uy we can use coordinates U = 1 4+ iH where H is hermitian, and so in a neighborhood of
the point [1] € Uy /(U;)Y we can use the off-diagonal entries of an hermitian matrix H as coordinates. To
compute the differential of ¢ in this chart at the points (z1, ..., zn, [1]), we introduce a small parameter
€ and compute the linear part of the variation
¢(z1 + edwy, ..., zn + edzy, [1 +iedH]) — (21, ..., 2N, [1])
= e (diag(day, ..., dzy) +i[dH, X]) + O(€?).
This implies
d¢|(w17...,a:N,[1]) = diag(dajl, ey d.Z‘N) + l[dH, X]
or, more explicitly, with M = ¢(x1, ..., zn, [U]) and dropping the point (z1, ...,z n, [1]) from the notation,
dMii = dxi, dMab = i(l‘b — J,‘a)dHab.

Therefore

N
HdMZ-i H dRe M, H dIm M,
=1

1<a<b<N 1<a<b<N

N
=A%(z1,.an) [[dzs [ dReHs [ dimHg,.
=1

1<a<b<N 1<a<b<N

Note that in the chart [U] = [1 + iH] in a neighborhood of [1] € Uy/(U1)¥, restriction of the metric
(B.5) is written as tr (AHTdH), and so its volume form dU takes the form (recall that H is off-diagonal)

U= [ dReHs J] dIimHe (B.6)

1<a<b<N 1<a<b<N

at the point [1] € Uy /(Up)¥, and so the proof is complete at points of the form (z1,...,zx,[1]). The
statement at a general point (z1,..., 2N, [Up]) follows from the invariance dU = d(UU,) and from the
invariance of the euclidean structure on Hy, tr (MTM) = tr ((UOMUJ)TUOMUJ). [ |

1Recall that the riemannian volume form associated with a riemannian metric g = 9ij dz*dz? on a manifold of dimension
d is defined as y/det g;;(x1, oy xg)dzt A--- Adz?, in any coordinate chart (z?, ..., z%).
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Lemma B.1.2. For all N > 1 we have

N(N—1)
2
/UN/(Ul)N 113\1211 2!
Proof. Since Hy ~ RM and

N N N
wM? =) MaMp= Y MaMa=) Mi+2 )  |Muyf
a,b=1 a,b=1 i=1 1<a<b<N

M2
7= / exp (— o ) dM
Hy 2

2
is easily evaluated as 7 = ﬂNﬁN . However, denoting Voly = fUN/(Ul)N dU, we also have

the Gaussian integral

Vol 2 o
T="2N A%(zq, .. ay)e 2 2 dy - day (B.7)
N! [~

using Prop. B.1.1. The integral over RY is evaluated by introducing the monic Hermite polynomials
(compare with Sec. 3.5.1)

ﬂd@::Z5Hk(;%)::(-1y6f<£;ef>

which satisfy the orthogonality property

/ W@(Z)W@/(Z)eiédz = V2l 4. (B.8)
R

O\ N
Noting that A(xq,...,xn) = det 2t = det (m;_1(x; N and using the orthogonality property
g 7 J 1,j=1

ij=1
(B.8) we have (compare with Lemma 3.1.1)

2
r1

) .2 N-1 » N-1
/ A%(zq, .., an)e 2 "2 day - -day = NI H /ﬂg(z)e*sz:N!\@NﬁN H o2 (BY9)
RY =0 /R =0

and the proof is complete comparing (B.7) and (B.9). |

Hence we have the following basic result.

Corollary B.1.3 (Weyl integration formula). Let f(M): Hy — C a Uy-invariant scalar function, i.e.
F(M) = f(UMU?") for all U € Uy. Assuming f € L*(Hy,dM) then

N(N-1)
FOM)AM = =

Ni/ A2(zy, ..., zxn) f (diag(zy, ...,zn)) dzy - - doy.
Hy [L—, 0! Jrn

Proof. It follows from the chain of equalities, writing & = (z1,...,xx) for short,

fFM)AM = | f(M)dM = du A2(Z) f(diag Z)day - - - day
Hy HY Un/(Up)WN {z1<...<xnN}
N(N-1)
T2 1

_ 2/ . _

where we use that H% has full measure in Hy, we apply Lemma B.1.2, and we note that f (diag ) is a
symmetric function of x1,...,zx due to the Uy-invariance. |
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B.2 Normal matrices. Weyl integration formula

Let ¥ be a smooth contour in the complex plane. Define the following subset in the space of complex
N x N matrices M

Hy (%) := {M = U diag(z1, ...,2x)UT, U € Uy, 21,...,2x € 5}

Note that Hy(R) = Hy; moreover note that every M € Hy (X)) commutes with M1, i.e. they are normal
matrices.

As before, let us consider the subset H3#(2) C Hy(X) of matrices with distinct eigenvalues; this open
locus has a topological covering ¢ of degree N'!

U . .
¢ 2N x ﬁ — HE(D) : (21, ..., 2n, [U]) = U diag(z1, ..., 25U

In analogy with Prop. B.1.1 it is natural to introduce the measure

2(21, .0y 2N)

A
dM := ¢, N dzy -+ -dzydU

on Hy(X), declaring H3#(X) to have full measure. In particular if f € L' (Hx(X),dM) is a U y-invariant
complex valued function, i.e. f(M) = f(UMUT) for all U € Uy, then

N(N-1)
T 2

/HN(E) f(M)dM = IW/EN A2(Zl,7ZN)f (dlag(21,7ZN)) le dZN (BlO)

B.3 Andreief identity

Lemma B.3.1 (Andreief identity [Ad]). Let f1,91,..., fn,gn : X — C and let i be a measure on X. If
f,-(;c)gj(x) € LNX,dp(x)) for alli,j =1,..., N thendet (fi(x;));;_, det (gi(2;);;_; € LNXN, dp(ar) - - dp(an))
an

N
[ det Gty et o))y duon) -+ dutex) = Nden [ itargp0)auta) )
XN X

4,j=1

Proof. It follows from the following computation.
N N
[ det a2y det (g2 ) -+ )
XN

(definition of determinant)

- Z (_1)|7er\ /XN Fi@e@) - I (@) 91 (o)) - - g (@ oy )dpa(1) - - - dpa( )

m,pES N

(change of variables T; = ;) in the integrals)

> (=l /XN [1@1) - IN(EN) g1 (Tr-1p1)) -+ IN (T2 vy ) (@) - - - dp(ZN)

T,pES N

(rename o := 7~ !p and observe that the terms in the sum, now with indices 7,0 € Sy, do not depend
on )

= N! Z (—1)lel /XN fi(@1) - fn(@N) (Tony) - g (To(vy)dp(Z1) - - - dp(ZTw)

€GN

(rename o — o~ 1)

=N > (-l /X i@ N @N)Go ) (F1) - Gy () Ap(T) -+ dpa(F )

AN
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(the integrand is factorized)
= NI Z \‘Tl/ J1(@) 9oy (@)dp(z /fN T)go(n) (z)dp(z)
oceGN

(definition of determinant)
N

~ v [ fi(x)gj(w)dﬂ(w)l,j_l .

B.4 Character expansions. Harish-Chandra—Itzykson—Zuber and
other unitary integrals

In this section we consider the normalized bi-invariant measure on Uy
dU
fUN dU
where dU is any bi-invariant measure on Uy (for instance the one introduced above).

The following theorem (in a much more general form) is due to Harish-Chandra [Hb] and was subse-
quently rediscovered by Itzykson and Zuber [IZa].

d.U =

Theorem B.4.1. Let A = diag(as,...,an), B = diag(by, ...,bx) be diagonal N x N matrices. Then

AUBUM, 0 det (") i
exp tr (AUBUN A, U = — : B
/UN p ( H CL17...,CLN)A(b17"'7bN) ( )

The Harish-Chandra—Itzykson—Zuber formula (B.11) has many proofs, see for instance [ZZ]; we choose
to report here the one based on character expansion [Ba] so to introduce a method which is also relevant
to the discussion of the Brezin—Gross—Witten model, in particular to Prop. 5.1.1.

Let us recall that the Schur—Weyl construction [FH] associates to each partition A of length ¢(\) < N
a finite dimensional irreducible representations of GLy. We shall set A; := 0 for all ¢ > ¢(X\). The
associated characters are given by Weyl formula

o (P8 4)” e (k)
jk=1 _

= ph=1 (B.12)
A(tl,...,tN) det (tﬁyik);\szl

X)\(T) =

where t1,...,txy are the eigenvalues (in the standard representation) of T' € GLy. Note the following
formula for the dimension of these representations

N N
dyn = xa(ly) = (H W) det <w> (B.13)

k=1 J k=1

which follows directly by taking the limit 7" — 1 in (B.12). There are several alternative formulee for
dx,n, but this one is already convenient for our later purposes.

The remarkable fact we are going to use is that (B.12) are the characters also of the representation
restricted to Uy C GLy, hence we can apply Schur orthogonality. In the present case it reads

)

IV
A Rj)\k(U)R ’k/(U )d*U = d)\)\ 5jk’5kj’ (B14)

where R* is the aforementioned representation of GLy labeled by the partition A\. We note two useful
immediate consequences

| wan B - mAB)jAj’V (B.15)
/U XA(UAU*B)@U:%. (B.16)
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Proof of (B.15) and (B.16). Expanding the traces and using Schur orthogonality (B.14) we have

| o @B [ SRR AR O)RY, (54U

VL
Oxn
Z jo(A)Rk’ (B )d 05k Okjr
; N AN
J.k,3"k
_ A RN Y Oxn
= YRGB = xa4B) X
and
/ A(UAUTB)d, U = > R (AR (UNHR)N(B)A,U
Uy Uy i,7,k,1
0;%041
Z R Rlz ) é
ikl AN
Z _ X,\(A)X,\(B)
d,\ N dx, N

Below we are going to use only (B.15), although (B.16) comes in handy in the derivation of the
expression of Prop. 5.1.1 for the partition function of the Brezin—Gross—Witten model.
The last ingredient we need are the following consequences of the Binet—Cauchy formula.

Lemma B.4.2. Let ¢(t) = ano ont™. Then the following identities hold true.
1. Ifty,....,ty are the eigenvalues of T, we have
$(t) - b(tn) = D xa(T)det (brrj k) Ty (B.17)
LO)<N

where we set ¢; :=0 for j < 0.
2. Ifay,...,an and by,...,by are the eigenvalues of A and B respectively, we have

det (p(ajbg)),_, N
(e o e T RS (H %N-k) (AD(B) (B.13

(NN \k=1

In both statements, the sum on the right is meant over partitions A of length ¢(A) < N. In all cases
such sums come from an application of the Binet—Cauchy formula using the following identification

{partitions A of length ¢(\) < N} > {strictly increasing sequences ny > --- > ny > 0}
A= ng = N +N—k (B.19)
where we recall that we set A\; = 0 whenever i > £(\).
Proof.
1. We compute

N
_ N Ckin
Aty s tn)B(t1) - dtn) = det (6 5 o(t;)) |, = det | Y dut) *F
' n>0 .
= J,k=1
o 0o --- o - T |
N : tp - In
0 ¢(] e ¢N72

¢ P1 - N1
= Z det(¢n, +j7N)§Yk:1 det(t}’ );\,[k:l

n1>4..>nN20
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where in the last step we use the Binet—Cauchy formula (for we need to take the determinant of the
product of an N x co with an co x N matrix). The result then follows by the change of summation
indices (B.19) and by Weyl formula (B.12).

2. We compute

1 1
¢0 ¢1a1 ¢2a% by --- by
det (¢(azby)) =det | [+ 1 e oow
o Pran P2a% : :
hence from Binet—Cauchy formula we obtain
det (¢(ajbe)) = Y det (énpaf*) ) det (07%)

ni>..>nn2>0
N
N N
- Z <H (b)\k+Nk> det( AptN— k) det (b;\k—&-N—k)
j,k:l j,k:1
(NN \k=1

again using the change of summation indices (B.19). Dividing by A(aq,...,an)A(b1,...,bx) and
using Weyl formula (B.12) the proof is complete. |

We are now ready to give the proof of Thm. B.4.1.

Proof of Thm. B.4.1. Applying (B.17) with ¢(t) = expt, i.e. ¢; = %, and T = UAU' B we have

]H

exptr (VAU'B) = > det<( !

————— | xa(UAU'B)
(O Aj +k—3)>

hence using (B.15) we obtain

oxh tr t _ o 1 XA (A)xa(B)
/UN ptr(UAUTB)A.U = ) dt<( )

<N Aj+ k=)t dx,N
( ! )
= > (II XA (A)xa(B)
(yen \it (N —‘r )\k: - )

where in the last step we use the explicit formula (B.13). The proof is complete by applying (B.18). W

Identity (B.11) has several generalization, most notably to other groups. Confining ourselves instead
to unitary matrix integrals, a straightforward generalization goes as follows [HO, App. A].
Fix any sequence of complex numbers r = (r;)32; and denote

For all partitions A of length ¢(A) < N denote

) TN Ae—k il Tziv Ar—Fk al
T‘)\’N = H%: H + Y TARTR H TN+17}€...TN+/\)C*]C) <B20>
k=1 T"N-k k=1 TN k k=1
and set
o () = erxz =141z +rirex® + rirorsa® + - . (B.21)
£>0

Theorem B.4.3. Let A = diag(as,...,an), B = diag(by,...,bn) be diagonal N x N matrices. Then

1 det (¢, (a;5)) Y,
Hg:??"t A(ar,...,an)A(by, ..., by)

/ Z danTANXA(AUBU YU = (B.22)
Un,

(MEN



152 APPENDIX B. CHARACTER EXPANSIONS. HCIZ AND OTHER UNITARY INTEGRALS
Proof. Using (B.15) and the definition (B.20) of r n, we have

/ Z d)\ NTX NX,\(AUBUJf Z T, NX)\ (B)
U

N (NN NN

=Y 1
k

LN k=1 7°N
and now we conclude by using (B.18) and the definition (B.21) of ¢,. |
Note the confluent version of (B.22)

) det( B=1gk=1(q ))j\’k )

A(a‘la ) CLN)

Z dx NTANXA(A) = (B.23)

1 s
LN =1 (Klry)

obtained by taking B — 1 in (B.22).

We finally make two comments on this generalization. First, note that the Harish-Chandra—Itzykson—
Zuber formula (B.11) corresponds to the choice r; := %, for which (B.21) is ¢,.(z) = e®. Second, that the
expression of Prop. 5.1.1 for the Brezin—Gross—Witten partition function, which we have derived there
by the character expansion method using (B.16), can also be recognized as the confluent version (B.23)
in the case rj := 5 Indeed, in this case (B.21) is given in terms of the Bessel I function as

(J+V
b (z) = M L (2v7)
T \/Ef/'
and we note the identity
k—17(k—1) N k-1
det (:Uj I (2‘/$j)). = det (,/xj Lyk-1(2y/T )) (B.24)
Jk=1 Gk=1"

Identity (B.24) can be proved in the same spirit as in Prop. 5.4.1 by inductively using the identity

L(2VE) = Val,(2Va) + 5L(2V7)

to recognize that the ratio of the two matrices in (B.24) is in the form identity plus a strictly triangular
matrix.
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