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Università del Salento

Dottorato di Ricerca in Matematica e Informatica

- XXXI CICLO -

—————————————————————————————————

Tesi di Dottorato

NUMERICAL TREATMENT OF NEARLY SINGULAR AND

BISINGULAR INTEGRAL EQUATIONS BY MEANS OF

SUITABLE QUADRATURE/CUBATURE FORMULAS

Settore Scientifico Disciplinare MAT/08 Analisi Numerica

—————————————————————————————————

TUTORS DOTTORANDA

Prof.ssa Donatella Occorsio Dott.ssa Giada Serafini

Prof.ssa Maria Grazia Russo



A Marmy,
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Abstract

English version.

In the first part of this thesis we propose quadrature/cubature rules of
“product”and “dilation”type determining conditions under which the rules
are stable and convergent in suitable weighted spaces. We diffusely treat the
numerical approximation of integrals with weakly singular, nearly singular
and/or highly oscillating kernel functions, both, in the degenerate and not-
degenerate cases. These kernels are of interest since in these cases standard
rules like the Gaussian are inefficient or can fail. Some numerical examples,
which confirm the theoretical estimates, are also proposed.

In the second part of the thesis, we consider numerical methods for inte-
gral equations, both, in one and two dimensions. First of all, we consider the
generalized of univariate and bivariate Love’s integral equation. After study-
ing the mapping properties of the involved integral operators, in order to
approximate the solution of Love’s equation, we propose a Nyström method
based on a revisitation of the quadrature/cubature rules previously shown.
We prove the stability and the convergence, in suitable weighted spaces, of
the described numerical procedures and we show the efficiency of the two
methods through some numerical tests.

At last, we investigate the numerical solution of Cauchy bisingular in-
tegral equations of the first kind on the square. In particular, we propose
two different methods based on a global polynomial approximation of the
unknown solution. The first one is a discrete collocation method applied to
the original equation and hence defined as a “direct”method. The second
one is an “indirect”procedure of discrete collocation-type since we act on the
so-called regularized Fredholm equation. In both cases, the convergence and
the stability of the methods are proved in suitable weighted spaces of func-
tions, and the well conditioning of the involved linear systems is shown. Also
for this topic, we propose some numerical tests which confirm the efficiency
of the proposed procedures.
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Italian version.

Nella prima parte di questa tesi sono state proposte formule di quadratu-
ra/cubatura di tipo “prodotto”e “dilation”per le quali sono state studiate
la stabilità e la convergenza in opportuni spazi pesati. È stata trattata in
maniera diffusa l’approssimazione numerica di integrali con funzioni nucleo
debolmente singolari, quasi singolari e/o fortemente oscillanti, sia separabili
che non separabili. Questi nuclei sono di interesse poichè le formule di tipo
gaussiano, in tali casi, risultano poco efficienti o addirittura falliscono. A
conferma delle stime teoriche dimostrate sono stati riportati alcuni esempi
numerici.

Nella seconda parte della tesi sono stati considerati metodi numerici per
equazioni integrali in una e due dimensioni. Innanzitutto, è stata considerata
una generalizzazione dell’equazione integrale di Love, sia nel caso univariato
che bivariato. Dopo aver studiato le proprietà di mappa degli operatori
integrali coinvolti, per approssimare la soluzione dell’equazione integrale di
Love, è stato proposto un metodo di Nyström basato su una rivisitazione delle
formule di quadratura/cubatura introdotte in precedenza. È stata provata la
stabilità e la convergenza delle procedure numeriche descritte in opportuni
spazi pesati ed è stata confermata l’efficienza dei metodi proposti mediante
alcuni test numerici.

Infine, si è investigato sulla soluzione numerica dell’equazione integrale
bisingolare di Cauchy di prima specie sul quadrato. In particolare, sono stati
proposti due diversi metodi basati sull’approssimazione polinomiale globale
della soluzione incognita. Il primo metodo è un metodo di tipo collocazione
discreta, applicato direttamente sull’equazione originale e per questo chia-
mato metodo “diretto”. Il secondo metodo, sempre di tipo collocazione dis-
creta, è una procedura “indiretta”dal momento che agisce sull’equazione re-
golarizzata di Fredholm. In entrambi i casi sono state provate la stabilità e
la convergenza dei metodi in opportuni spazi di funzione pesati ed è stato
dimostrato il buon condizionamento dei sistemi lineari coinvolti. Anche per
questo topic, sono stati riportati alcuni esempi numerici che hanno confer-
mato l’efficienza delle procedure proposte.
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Introduction

English version

The proposed research line has been strongly motivated by the growing
and recent attention paid to the singular problems, i.e. those problems that
lead to equations (integral, differential, integral-differential) whose solution
has an “abnormal”behavior in terms, for example, of loss of regularity, un-
boundedness, etc. As demonstrated by the scientific community, which dedi-
cates several national and international conferences to the topic, the proposed
research plan is very topical and concerns the numerical approximation of in-
tegrals before, and then of integral equations, showing in the known functions
(kernel and/or right-hand side), and therefore in the solutions, singularities
on the domain.

In particular, this thesis proposes quadrature and cubature rules in order
to compute integrals with weakly singular, nearly singular and/or highly os-
cillating kernel functions [O1, S1] and their applications to Fredholm integral
equations of the second kind [F2] and Cauchy bisingular integral equations
of the first kind [F1].

The reader interested in the description of the applications from which
the above mentioned numerical problems arise, can consult the introductions
of Chapters 2, 3, 4.

The methods for the Fredholm linear integral equations of the second
kind are well known in the literature. In particular, the numerical treatment
of Fredholm equations is detailed in Atkinson’s book [2], which illustretes the
main numerical methods (projection, Galerkin, Nyström). In the last twenty
years, the research group of Numerical Analysis of the University of Basili-
cata, has considered these equations, in the univariate case, in non-classical
spaces of functions, to which the functions belong. Indeed the involved func-
tions may have singularities, at one or both the endpoints of the definition
interval (which can also be unlimited), and inside the interval itself. From a
functional point of view, this means considering spaces in which the functions,
multiplied by a weight, are then continuous or measurable. The literature on
the subject is very wide. A survey, from which it is possible to deduce many
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other references, is [16]. Recently, the two–dimensional case was focused. In
particular, Fredholm equations of the second kind defined on plan domains,
both in the limited and unlimited cases ([66, 48, 67, 68]), were considered.

The extension to the two–dimensions requires a further effort because the
multivariate polynomial approximation tools are very few and not immedi-
ately applicable. Since, as mentioned, in this thesis the study of Fredholm
and Cauchy equations in the multivariate case has been discussed, it has been
necessary to face functional problems, in order to understand which are the
“correct”functional spaces in which to consider the solution of the equations,
and also to solve problems related to the multivariate approximation and to
the suitable cubature formulas.

The thesis has been structured as follows:

• Chapter 1: Notation and Preliminary Results;

• Chapter 2: Product and Dilation Quadrature/Cubature Rules for some
kinds of kernels;

• Chapter 3: Numerical Treatment of the Generalized Univariate and
Bivariate Love Integral Equation;

• Chapter 4: Numerical Methods for Cauchy Bisingular Integral Equa-
tions of the first kind on the Square.

More precisely: in Chapter 1 tools, notation and preliminary results,
used along all the thesis, are collected. For the univariate and bivariate
case, Chapter 1 follows the same structure in the presentation of contents.
In particular, for the univariate case some well-known theoretical results
have been recalled, while, for the bivariate case, given the poorness of the
results present in the literature, it has been necessary to prove some new
preliminary theoretical results. In fact, the behavior of the bivariate Lagrange
and Fourier operators in suitable weighted spaces has also been proved and it
has been estimated the Gaussian cubature formula for analytical functions.
These auxiliary results are completely new and can be used elsewhere even
in contexts different from those taken into consideration in this work.

In Chapter 2 new and efficient quadrature/cubature rules are introduced
for the computation of univariate integrals of the type

I(f, y) =

∫ 1

−1

f(x)k(x, y)w(x)dx, y ∈ [−1, 1]

and bivariate of the type

I(f ,y) =

∫ 1

−1

∫ 1

−1

f(x)k(x,y)w(x)dx, y ≡ (y1, y2) ∈ [−1, 1]2,

8



where k is the bivariate kernel function in the variables x and y, k is the
kernel function of four variables since x = (x1, x2) and y = (y1, y2), w is
a Jacobi weight and w is the product of two Jacobi weights. Moreover,
the kernels k and k depend on a parameter that can make pathological the
behavior of the kernels themselves. Infact, our attention is devoted to kernel
functions k and k weakly singular, nearly singular and/or highly oscillating.
We also considered the combination of two aspects, i.e. integrals with nearly
singular and oscillating kernels. All the results concerning the bivariate case
are new and have recently been published in [O1, S1]. For completeness, the
univariate case, recently presented in [F2] in a revisited form, has also been
studied.

In this Chapter we propose a product quadratute/cubature formula in
order to approximate the numerical solution of the above mentioned inte-
grals. These formulas are obtained by replacing the function f , respectively
f , by a univariate/bivariate Lagrange polynomial based on a set of knots
(made by zeros of univariate Jacobi ortogonal polynomials) chosen such that
the stability and the convergence of the rule is assured. For such quadra-
ture/cubature formulas, stability and convergence in suitable weighted spaces
are shown. Although the proposed approach, for these formulas, may seem
to be very “simple”, the computation of their coefficients is not yet an easy
task. In the analogous univariate case, in order to compute the correspond-
ing coefficients, it is necessary to determine modified moments by means of
recurrence relations, and to examine the stability of such relations (see for
instance [26, 73, 41, 81, 53]). This approach, however, does not appear feasi-
ble for not degenerate kernels, mostly in the multivariate case. In this thesis
we present a unique approach for computing the coefficients of the aforesaid
quadrature/cubature rule when k (respectively k) belongs to the types de-
scribed above. Such method, that we called Dilation Method, is based on a
preliminary “dilation”of the domain of definition and, by suitable transfor-
mations, on the successive reduction of the initial integral to the sum of ones
again defined on [−1, 1] ([−1, 1]2 respectively). These manipulations produce
a “relaxation”in some sense, of the “too fast”behavior of k (respectively k)
when the parameter appearing in the definition of the kernel grows. After
that, the problem is reduced to compute the integrals appearing in the sum
by a suitable Gaussian rules. The proposed method is a generalization of
the one–dimensional Dilation quadrature method proposed in [71] for nearly
singular kernels and in [17] for highly oscillatory functions, both of them
considered in the unweighted case (the integrand does not contain weight
functions and all the estimates are proved in standard spaces of functions).
The possibility of generalizing everything into weighted functional spaces is
totally new, as well as new is the possibility to treat kernels that are a combi-
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nation of the two previous kernels (i.e. nearly singular and highly oscillating).
For a correct use of the 1D/2D Dilation Method, which could be also applied
directly to compute integrals with kernels of the kind described above, we
stated conditions under which the rule is stable and convergent.

In Chapter 3 numerical methods solving Love’s integral equation [F2]
were developed, both in the univariate:

f(x)− 1

π

∫ 1

−1

ω−1

(x− y)2 + ω−2
f(y)w(y)dy = g(x), |x| < 1,

and bivariate cases:

f(x)− 1

π2

∫ 1

−1

∫ 1

−1

ω−1

|x− y|2 + ω−2
f(y)w(y)dy = g(x), x = (x1, x2) ∈ [−1, 1]2,

where 0 < ω ∈ IR is a parameter, w is a Jacobi weight, w is the product of
two Jacobi weights, g and g are the right-hand sides, f and f are the unknow
functions. These equations present nearly singular behaviors in a fixed point
of the domain.

The idea is to apply a revisitation of the quadrature/cubature formulas
introduced in Chapter 2 [O1], in order to approximate the integral operator
of Love’s integral equation. The extension to the bivariate case was not
immediate and it has required further studies. The needed tools are not
trivial at all and required the use of “ad hoc”results of the functional analysis
and of the approximation theory. In fact, the equation has to be studied
in a proper functional space and this goal involves the study of mapping
properties of the involved integral operators. All the results presented in
Chapter 3 are original and can be found in [F2].

Chapter 4 has been devoted to the development of numerical methods
solving Cauchy bisingular integral equations, defined on plane domains. The
bisingular equation of the first kind was therefore considered

(D +K)f = g

where f is the bivariate unknown function and g is a given functions defined
on the unit square S = [−1, 1]× [−1, 1], D is the dominant operator defined
as

Df(t, s) =
1

π2

∮

S

f(x, y)

(x− t)(y − s)

√
1− x
1 + x

√
1− y
1 + y

dx dy

where here and in the sequel the symbol
∮

means that the integral has to be
interpreted in the Cauchy Principal Value sense and K is the perturbation
operator

Kf(t, s) =

∫

S

k(x, y, t, s)f(x, y)

√
1− x
1 + x

√
1− y
1 + y

dx dy,
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where k is the kernel function defined on S2. For the numerical treatment
of the equation, we propose two different approaches, both based on a global
polynomial approximation of the unknown bivariate function f . The first one
is a direct method since we act directly on the equation, while the second one
is an indirect procedure, since it solves an equivalent regularized Fredholm
equation. As a preliminary study, we show the mapping properties of the
operator D and K in suitable weighted space equipped with the 2-norm, and
we give a complete analysis of the proposed methods in suitable weighted L2

subspaces. In details, we examine the stability, show the related convergence
results and error estimates, and discuss the condition numbers of the involved
linear systems. All the results presented in Chapter 4 are original and have
been recently published in [F1].

For more details, the reader can consult the prefaces of the individual
Chapters. Moreover, some numerical examples, which confirm the theoretical
estimates, are also proposed at the end of Chapters 2, 3 and 4.

Italian version

Il filone di ricerca proposto è stato fortemente motivato dalla crescente
e recente attenzione ai problemi singolari, ossia a quei problemi che si con-
cretizzano in equazioni (integrali, differenziali, integro-differenziali) la cui
soluzione ha un comportamento “anomalo”in termini, ad esempio, di perdita
di regolarità, illimitatezza etc. Come dimostrato dalla comunità scientifica,
che a questo argomento dedica diversi convegni in ambito nazionale e inter-
nazionale, il piano di ricerca affrontato nel presente lavoro di tesi, è molto
attuale e riguarda la risoluzione numerica di integrali prima, e di equazioni
integrali poi, che presentano nelle funzioni note (nucleo e/o termine noto), e
quindi nelle soluzioni, delle singolarità sul dominio di definizione.

In particolare, sono state trattate formule di quadratura e cubatura per
integrali con nuclei debolmente singolari, quasi singolari e/o fortemente os-
cillanti [O1, S1] e loro applicazioni alle equazioni integrali di Fredholm di
seconda specie [F2] ed equazioni integrali bisingolari di Cauchy di prima
specie [F1].

Per i dettagli relativi alle applicazioni dalle quali scaturiscono i suddetti
problemi numerici, si rimanda alle introduzioni dei Capitoli 2, 3, 4.

I metodi per le equazioni integrali di Fredholm di seconda specie, di
tipo lineare, sono ben collaudati e appartengono oramai alla letteratura clas-
sica sull’argomento. In particolare, la trattazione numerica delle equazioni
di Fredholm è dettagliatamente esposta nel libro di Atkinson [2], in cui
sono raccolti i principali metodi risolutivi (di proiezione, di Galerkin, di
Nyström). Negli ultimi venti anni, il gruppo di ricerca di Analisi Numerica
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dell’Università degli Studi della Basilicata, ha considerato tali equazioni, nel
caso unidimensionale, in spazi di funzioni non classici, ai quali apparten-
gono funzioni che possono avere singolarità, sia agli estremi dell’intervallo
di definizione (che può anche essere non limitato), sia interne all’intervallo
stesso. Dal punto di vista funzionale, questo significa considerare spazi nei
quali le funzioni, moltiplicate per un peso, risultino poi continue o misurabili.
La letteratura sull’argomento è davvero molto ampia. Un lavoro di survey
dal quale possono essere desunte molte altre indicazioni bibliografiche è [16].
Recentemente l’attenzione si è spostata sul caso bidimensionale. Sono state
in particolare considerate equazioni di Fredholm di seconda specie definite
su domini piani, sia limitati che non limitati ([66, 48, 67, 68]).

Il passaggio alle due dimensioni richiede un ulteriore sforzo in quanto
gli strumenti di approssimazione polinomiale in più variabili sono pochi e
non immediatamente applicabili. Poichè, come detto, in questo lavoro è
stato affrontato lo studio di equazioni lineari di Fredholm e singolari di
Cauchy nel caso multivariato, è stato necessario affrontare problemi sia di
tipo funzionale, per capire quali fossero gli spazi di funzione “corretti”nei
quali considerare le funzioni soluzione delle equazioni, sia problemi legati in-
vece all’approssimazione in più variabili e a formule di cubatura opportune.

Il lavoro di tesi è stato strutturato nel seguente modo:

• Capitolo 1: Notazione e Risultati Preliminari;

• Capitolo 2: Formule di Quadratura e Cubatura di Tipo Prodotto e
Dilation per Alcuni Tipi di Nuclei;

• Capitolo 3: Trattamento Numerico dell’Equazione Integrale Generaliz-
zata di Love nel caso Univariato e Bivariato;

• Capitolo 4: Metodi Numerici per le Equazioni Integrali Bisingolari di
Cauchy di Prima Specie sul Quadrato.

Più precisamente: nel Capitolo 1 sono stati raccolti strumenti, notazioni e
risultati preliminari, usati poi nel resto della tesi. La trattazione del Capitolo
1 segue la stessa struttura, per il caso univariato e bivariato, per ciò che
concerne la presentazione dei contenuti. In particolare, per il caso univariato
sono stati riportati alcuni risultati teorici ben noti in letteratura, mentre,
per il caso bivariato, data la scarsità dei risultati presenti in letteratura,
è stato necessario dimostrarne anche di nuovi. È stato infatti provato il
comportamento degli operatori bivariati di Lagrange e di Fourier in opportuni
spazi pesati ed è stata fornita una stima per la formula di cubatura gaussiana
nel caso di funzioni analitiche. Questi risultati ausiliari sono del tutto nuovi
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e possono essere usati anche in contesti diversi da quello preso in conside-
razione.

Nel Capitolo 2 sono state introdotte nuove ed efficienti formule di quadratu-
ra/cubatura per la computazione di integrali univariati del tipo:

I(f, y) =

∫ 1

−1

f(x)k(x, y)w(x)dx, y ∈ [−1, 1]

e bivariati del tipo:

I(f ,y) =

∫ 1

−1

∫ 1

−1

f(x)k(x,y)w(x)dx, y ≡ (y1, y2) ∈ [−1, 1]2,

dove k è una funzione bivariata nelle variabili x e y, k è una funzione di
quattro variabili dal momento che x = (x1, x2) e y = (y1, y2), w è un peso
di Jacobi e w è il prodotto di due pesi di Jacobi. Inoltre, i nuclei k e k
dipendono da un parametro che può rendere patologico il comportamento
del nucleo stesso. Infatti, la nostra attenzione è stata focalizzata su funzioni
nucleo k e k debolmente singolari, quasi singolari o fortemente oscillanti.
Abbiamo inoltre considerato la combinazione di due aspetti, cioè integrali
con nuclei che presentano ambedue le patologie: quasi singolari e fortemente
oscillanti. Tutti i risultati inerenti il caso bivariato sono originali e sono
stati recentemente pubblicati in [O1, S1]. Per completezza di trattazione,
è stato anche studiato il caso univariato, recentemente presentato, in forma
rivisitata, in [F2].

Quello che proponiamo in questo Capitolo è una formula di quadratura/cu-
batura di tipo prodotto in grado di fornire una soluzione approssimata dell’in-
tegrale iniziale. Tale formula, è stata ottenuta rimpiazzando la funzione
f , analogamente per f , con un polinomio univariato/bivariato di Lagrange
basato su un set di nodi (zeri di polinomi ortogonali univariati di Jacobi)
scelti in modo da assicurare la stabilità e la convergenza della formula. Per
tali formule è stata provata la stabilità e la convergenza in opportuni spazi
funzionali pesati. Nonostante l’approccio proposto possa apparire molto
“semplice”, il calcolo dei coefficienti, della formula di quadratura/cubatura
proposta, risulta complicato. Per analoghe problematiche nel caso univari-
ato, sono state determinate relazioni di ricorrenza per i momenti modificati
[26, 73, 41, 81, 53]. Tali tecniche risultano però inapplicabili in presenza
di nuclei non degeneri, soprattutto per il caso multivariato. Quello che
proponiamo, dunque, è la possibilità di computare i coefficienti della for-
mula di quadratura/cubatura con un unico approccio quando il nucleo k
(analogamente per k) presenta, una o più delle patologie sopra descritte.
Tale metodo, che abbiamo chiamato Dilation Method, è basato su una pre-
liminare dilatazione del dominio, in grado di ridurre le problematiche della
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funzione integranda. Successivamente, l’integrale iniziale viene splittato nella
somma di un certo numero di integrali e, ciascuno di questi, viene poi ap-
prossimato con un’opportuna formula di quadratura/cubatura gaussiana op-
portunamente pesata. Queste manipolazioni hanno lo scopo di “rilassare”, in
un certo senso, il comportamento rapidamente oscillante e/o con picchi ele-
vati intorno alla singolarità x0 (analogamente per x0 = (s0, t0)), del nucleo k
(analogamente per k) al crescere del parametro presente nella definizione del
nucleo. Il metodo proposto risulta essere una generalizzazione del Dilation
Method unidimensionale proposto in [71] per nuclei quasi singolari e in [17]
per nuclei fortemente oscillanti. In entrambi i lavori però, gli autori si sono
occupati soltanto del caso non pesato (la funzione integranda non contiene
funzioni peso e tutte le stime sono state fatte in spazi di funzioni non pesati).
La possibilità di generalizzare il tutto in spazi di funzioni pesati è totalmente
nuova, come nuova è la possibilità di trattare, con un unico approccio, nuclei
che siano una combinazione dei due nuclei precedenti (i.e. quasi singolari
e fortemente oscillanti). D’altra parte, il Dilation Method in 1D/2D, può
essere applicato direttamente per il calcolo approssimato di integrali del tipo
descritto sopra e, in ogni caso, per un corretto utilizzo di tale approssimazione
nel calcolo dei coefficienti della formula prodotto, è stato necessario provare
la stabilità e la convergenza anche per la formula di quadratura/cubatura di
tipo dilation.

Nel Capitolo 3 sono stati sviluppati metodi numerici per la risoluzione
dell’equazione integrale di Love generalizzata [F2], sia nel caso univariato:

f(x)− 1

π

∫ 1

−1

ω−1

(x− y)2 + ω−2
f(y)w(y)dy = g(x), |x| < 1,

che bivariato:

f(x)− 1

π2

∫ 1

−1

∫ 1

−1

ω−1

|x− y|2 + ω−2
f(y)w(y)dy = g(x), x = (x1, x2) ∈ [−1, 1]2,

dove 0 < ω ∈ IR è un parametro, w è un peso di Jacobi, w è il prodotto
di due pesi di Jacobi, g e g sono le funzioni termine noto, f e f sono le
funzioni incognite. Tale equazione presenta comportamenti quasi singolari
in un punto fisso del dominio di definizione.

L’idea è quella di applicare una rivisitazione delle formule di quadratu-
ra/cubatura introdotte nel Capitolo 2 [O1], per l’approssimazione dell’opera-
tore integrale dell’equazione di Love. Il passaggio al caso bivariato, non è
stato immediato e ha richiesto ulteriori approfondimenti. Infatti, dopo una
preliminare familiarizzazione con gli operatori integrali in due dimensioni, è
stato necessario studiare le proprietà di mappa degli operatori integrali bi-
variati coinvolti, in opportuni spazi di funzioni pesati. Gli strumenti necessari
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per questa impostazione sono stati non banali e hanno richiesto l’utilizzo di
risultati “ad hoc”sia di analisi funzionale che di teoria dell’approssimazione.
Tutti i risultati del Capitolo 3 sono originali e sono contenuti in [F2].

Il Capitolo 4 è stato dedicato allo sviluppo di metodi numerici per la
risoluzione di equazioni integrali bisingolari con nucleo di Cauchy, definite
su domini del piano. È stata considerata quindi l’equazione bisingolare di
prima specie

(D +K)f = g

dove f è la funzione bivariata da determinare, g è il termine noto definito
sul quadrato unitario S = [−1, 1]× [−1, 1], D è l’operatore dominante:

Df(t, s) =
1

π2

∮

S

f(x, y)

(x− t)(y − s)

√
1− x
1 + x

√
1− y
1 + y

dx dy

dove il simbolo
∮

significa che l’integrale doppio è da intendere come com-
posizione di due integrali nel senso del valor principale di Cauchy e K è
l’operatore di perturbazione definito come segue

Kf(t, s) =

∫

S

k(x, y, t, s)f(x, y)

√
1− x
1 + x

√
1− y
1 + y

dx dy,

con k funzione nucleo definita su S2.
Per la risoluzione dell’equazione iniziale sono stati sviluppati due metodi:

il primo, di tipo collocazione discreta, agisce sull’equazione originale e per-
tanto è detto diretto; il secondo, sempre di tipo collocazione discreta, è indi-
retto e risolve un’equivalente equazione regolarizzata di Fredholm. Entrambi
i metodi sono di tipo globale e si basano sull’approssimazione polinomiale
della soluzione incognita. Nel corso del capitolo sono state dimostrate pro-
prietà di mappa degli operatori D e K in opportuni spazi L2 pesati, risultati
di convergenza, stabilità e buon condizionamento del sistema lineare equiva-
lente all’equazione finito dimensionale che risolve il problema. Tutti i risultati
del Capitolo 4 sono originali e sono stati recentemente pubblicati in [F1].

Per ulteriori dettagli, si rimanda il lettore alle prefazioni dei singoli Capi-
toli. Inoltre, a conferma delle stime teoriche dimostrate, alla fine dei Capitoli
2, 3 e 4, sono stati riportati alcuni esempi numerici.
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Chapter 1

Notation and Preliminary
Results

In this Chapter we collect the main notation and tools we will use from
now on. For the univariate case some well known results have been recalled,
while, for the bivariate case, given the poorness of the results present in the
literature, it was necessary to prove some new preliminary theoretical results
with respect to the behaviour of the bivariate Lagrange and Fourier operators
in suitable weighted spaces. Moreover, the Gaussian cubature formula for
analytical functions was estimated. These auxiliary results are completely
new and can be used elsewhere even in contexts different from those taken
into consideration in this work.

Along all the thesis the constant C will be used several times, having
different meaning in different formulas. Moreover from now on we will write
C 6= C(a, b, . . .) in order to say that C is a positive constant independent of
the parameters a, b, . . ., and C = C(a, b, . . .) to say that C depends on a, b, . . ..
Moreover, if A,B > 0 are quantities depending on some parameters, we write
A ∼ B, if there exists a constant 0 < C 6= C(A,B) such that

B

C ≤ A ≤ CB.

1.1 The univariate case

In this Section we collect the main notation and tools we will use in
the univariate case. From now on Pm denotes the space of the univariate
algebraic polynomials of degree at most m. In what follows we use the
notation w := vα,β for a Jacobi weight of parameters α, β > −1, i.e.

w(x) := vα,β(x) = (1− x)α(1 + x)β, x ∈ (−1, 1). (1.1.1)
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Moreover we will denote by Nm
1 the set {1, 2, . . . ,m}.

1.1.1 Functional spaces

Let
σ(x) := vγ,δ(x) = (1− x)γ(1 + x)δ, (1.1.2)

with γ, δ ≥ 0. Define

Cσ =

{
f ∈ C((−1, 1)) : lim

x→±1∓
(fσ)(x) = 0

}
,

equipped with the weighted uniform norm

‖f‖Cσ = ‖fσ‖∞ = max
x∈[−1,1]

|(fσ)(x)|,

and in the sequel we denote by ‖fσ‖∞,A = max
x∈A
|(fσ)(x)| the uniform norm

on the set A ⊂ [−1, 1]. The limit conditions in the definition of Cσ guarantee
that Cσ is a Banach space. Whenever one or more of the parameters γ, δ,
are greater than 0, Cσ includes functions that can be singular on one or both
the endpoints of [−1, 1]. In the case γ = δ = 0, Cσ = C0([−1, 1]). i.e. Cσ
reduces to the space of continuous functions.

For smoother functions, i.e. for functions having some derivatives which
can be continuous on (−1, 1), for r ∈ IN we introduce the following Sobolev–
type space

Wr
σ,∞ =

{
f ∈ Cσ :

∥∥f (r)ϕrσ
∥∥
∞ <∞

}
,

where the superscrit (r) denotes the rth derivative of the function f and
ϕ(x) =

√
1− x2. We equip Wr

σ,∞ with the norm

‖f‖Wr
σ,∞ = ‖fσ‖∞ +

∥∥f (r)ϕrσ
∥∥
∞ .

Furthermore, for any p ∈ IN0 ∪ {∞}, we denote by Cp ([−1, 1]) the set of
all continuous functions having p continuous derivatives.

Denoted by Em(f)σ,∞ the error of best polynomial approximation in Cσ,
i.e.

Em(f)σ,∞ = inf
P∈Pm

‖(f − P )σ‖∞,

the following iterated Favard’s inequality holds true [47] for each function
f ∈ Wr

σ,∞

Em(f)σ,∞ ≤
C
mr

∥∥f (r)ϕrσ
∥∥
∞ , 0 < C 6= C(m, f). (1.1.3)
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Moreover for any f, g ∈ Cσ, the following inequality can be easily proved

Em(fg)σ,∞ ≤ ‖gσ‖∞EM(f)σ,∞ + ‖fσ‖∞EM(g)σ,∞, (1.1.4)

where M =
⌊
m
2

⌋
.

From now on, let us denote by L2
w ≡ L2

w([−1, 1]) the weighted Hilbert
space, with inner product

〈f, g〉w =

∫ 1

−1

f(x)g(x)w(x) dx,

equipped with the norm

‖f‖L2
w

= ‖f√w‖2 =
√
〈f, f〉w. (1.1.5)

In L2
w, for a integer r ≥ 1, we introduce the following Sobolev-type sub-

space

Wr
w,2 = {f ∈ L2

w : f (r−1) ∈ AC((−1, 1)), ‖f‖Wr
w,2

= ‖f‖L2
w
+‖f (r)ϕr‖L2

w
<∞}
(1.1.6)

where AC((−1, 1)) denotes the set of all continuous functions f which are
absolutely continuous on every closed subinterval of (−1, 1).

1.1.2 Fourier and Lagrange operators

Let us consider the weight function w = vα,β defined in (1.1.1) and let
{pm(w)}∞m=0 be the corresponding sequence of orthonormal polynomials with
positive leading coefficients, i.e.

pm(w, x) = γm(w)xm + terms of lower degree, γm(w) > 0, (1.1.7)

and let {ξwi }mi=1 be the zeros of pm(w, x).

Fourier sums

For a given function f ∈ L2
w, where L2

w is defined in (1.1.5), let

Sm(f, w, x) =
m−1∑

i=0

ci(f, w)pi(w, x) (1.1.8)

be the mth Fourier sum, where

ci(f, w) =

∫ 1

−1

f(x)pi(w, x)w(x)dx = 〈f, pi〉w, i = 0, ...m− 1,

are the Fourier coefficients.
Next two propositions (see [10, 15, 47]) show the behaviour of Sm(f, w)

in the case f ∈ L2
w or f ∈ Wr

w,2, where Wr
w,2 is defined in (1.1.6).
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Proposition 1.1.1. Let f ∈ Wr
w,2 and let Sm(f, w) be the mth Fourier sum

with respect to the weight w defined in (1.1.8). Let r1 and r be two positive
integers such that r1 ≤ r. Then there exists a positive constant C 6= C(m, f)
such that the following estimates hold true

‖f − Sm(f, w)‖Wr1
w,2
≤ C
mr−r1 ‖f‖Wr

w,2
, (1.1.9)

‖Sm (f, w) ‖Wr
w,2
≤ C ‖f‖Wr

w,2
, (1.1.10)

where in all the inequalities C 6= C(m, f).

Let us define now the error of best polynomial approximation in L2
w as

Em(f)w,2 = inf
P∈Pm

‖f − P‖L2
w
.

The following proposition shows the connection between Sm(f, w) and
Em(f)w,2.

Proposition 1.1.2. Let f ∈ L2
w. Then

E2
m(f)w,2 = ‖f − Sm(f, w)‖2

L2
w

= ‖f‖2
L2
w
−

m−1∑

i=0

c2
i (f, w). (1.1.11)

Thus, according to the previous result (see [51] and the reference therein),
Sm(f, w) is the best polynomial approximation of f ∈ L2

w and, if the Weier-
strass Theorem holds true, by (1.1.11) we get the Parseval identity

‖f‖L2
w

=

√√√√
∞∑

i=0

c2
i (f, w)

and, consequently

Em(f)w,2 =

√∑

i≥m
c2
i (f, w).

Lagrange interpolating polynomials in [−1, 1]

For a given function f ∈ C((−1, 1)), let Lm(f, w, x) be the Lagrange
polynomial interpolating f at the zeros {ξwi , i ∈ Nm

1 } of the mth Jacobi
polynomial pm(w, x), i.e.

Lm(f, w, ξwi ) = f(ξwi ), i ∈ Nm
1 .
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The polynomial Lm(f, w) ∈ Pm−1 and Lm(P,w) = P , for any P ∈ Pm−1.
An expression of Lm(f, w) is given by

Lm(w, f, x) =
m∑

i=1

`wi (x)f(ξwi ), (1.1.12)

where

`wi (x) =
pm(w, x)

p′m(w, ξwi )(x− ξwi )
(1.1.13)

is the ith fundamental Lagrange polynomial. It is known that `wi can be
expressed in equivalent form as [47]

`wi (x) = λwi Dm(w, x, ξwi ), (1.1.14)

where Dm is the Darboux kernel defined as

Dm(w, x, t) :=
γm−1

γm

pm(w, x)pm−1(w, t)− pm(w, t)pm−1(w, x)

x− t

=
m−1∑

k=0

pk(w, x)pk(w, t).

About Lm(w, f, x), the following estimates hold true [10, 15, 47].

Proposition 1.1.3. Let f ∈ Wr
w,2 and let Lm(f, w) be the Lagrange polyno-

mial defined in (1.1.12). Then, the following estimates hold true:

‖f − Lm(f, w)‖L2
w
≤ C
mr
‖f‖Wr

w,2
, (1.1.15)

‖Lm(f, w)‖L2
w
≤ ‖f‖L2

w
+
C
mr
‖f‖Wr

w,2
, (1.1.16)

‖[f − Lm(f, w)](r)ϕr‖L2
w
≤ C

(
‖f (r)ϕr‖L2

w
+mr‖f − Lm(f, w)‖L2

w

)
,

(1.1.17)

where in all the inequalities C 6= C(m, f).

1.1.3 Gauss-Jacobi quadrature rules

Let w = vα,β be defined as in (1.1.1). The Gauss-Jacobi quadrature rule,
which will be essential for our aims, takes the following expression

∫ 1

−1

f(x)w(x) dx =
m∑

i=1

λwi f(ξwi ) +RGm(f)

:= Gwm(f) +RGm(f), (1.1.18)
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where {ξwi }mi=1 are the zeros of the Jacobi polynomial pm(w, x) defined in
(1.1.7), λwi , i = 1, . . . ,m, denote the Christoffel numbers with respect to w,
i.e.

λwi =

∫ 1

−1

`wi (x)w(x)dx =

∫ 1

−1

(`wi (x))2w(x)dx,

and the remainder term RGm(P ) = 0 for any P ∈ P2m−1. About the error
estimate, the following result is well known (see, for instance, [47])

Proposition 1.1.4. Let f ∈ Cσ. Under the assumption

∫ 1

−1

w(x)

σ(x)
dx < +∞,

we have ∣∣RGm(f)
∣∣ ≤ CE2m−1(f)σ, (1.1.19)

where C 6= C(m, f).
Moreover if f ∈ C2m ([−1, 1]) then

∣∣RGm(f)
∣∣ ≤

∥∥f (2m)
∥∥
∞

(2m)! γ2
m(w)

, (1.1.20)

where γm(w) is the positive leading coefficient of pm(w, x) introduced in (1.1.7).

1.2 The bivariate case

In this Section we collect the main notation and tools we will use in the
bivariate case. From now on Pm,m denotes the space of the two–dimensional
algebraic polynomials of degree at most m in each variable and S := [−1, 1]2,
Ṡ = S\∂S = (−1, 1)2, where ∂S denotes the boundary of S, x = (x1, x2),
y = (y1, y2) ∈ S. Moreover, we use the notation

w(z) := w1(z1)w2(z2) = (1− z1)α1(1 + z1)β1(1− z2)α2(1 + z2)β2 , (1.2.1)

where z = (z1, z2) ∈ S, for denoting a product of two Jacobi weights of
parameters α1, α2, β1, β2 > −1.

Finally we will denote by Nm
1 ×Nm

1 the set {1, 2, . . . ,m}×{1, 2, . . . ,m}.

1.2.1 Functional spaces

Let
σ(x) := σ1(x1)σ2(x2) = vγ1,δ1(x1)vγ2,δ2(x2), (1.2.2)
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with γ1, γ2, δ1, δ2 ≥ 0.Define

Cσ =
{
f ∈ C(Ṡ) : lim

x→∂S
(fσ)(x) = 0

}
,

equipped with the weighted uniform norm

‖f‖Cσ = ‖fσ‖∞ = max
x∈S
|(fσ)(x)|,

and in the sequel we denote by ‖fσ‖∞,B := max
x∈B
|(fσ)(x)|, the uniform norm

on the set B ⊂ S. Whenever one or more of the parameters γ1, δ1, γ2, δ2 are
greater than 0, functions in Cσ can be singular on one or more sides of S. In
the case γ1 = δ1 = γ2 = δ2 = 0 we set Cσ = C0(S). For smoother functions,
i.e. for functions having some partial derivatives which can be discontinuous
on ∂S, for r ∈ IN we introduce the following Sobolev–type space

W r
σ,∞ =

{
f ∈ Cσ : ‖f‖W r

σ,∞
= ‖fσ‖∞ +Mr(f ,σ) <∞

}
(1.2.3)

where

Mr(f ,σ) := max

{∥∥∥∥
∂rf

∂xr1
ϕr1σ

∥∥∥∥
∞
,

∥∥∥∥
∂rf

∂xr2
ϕr2σ

∥∥∥∥
∞

}

and ϕi(zi) =
√

1− z2
i , i ∈ {1, 2}.

Furthermore, for any p ∈ IN0 ∪ {∞}, we denote by Cp(S) the set of all
bivariate continuous functions having p continuous partial derivatives.

Denoted by Em,m(f)σ the error of best polynomial approximation in Cσ,
i.e.

Em,m(f)σ,∞ = inf
P∈Pm,m

‖(f − P )σ‖∞,

in [66] (see also [48]) it was proved that for any f ∈ W r
σ,∞

Em,m(f)σ,∞ ≤ C
Mr(f ,σ)

mr
, (1.2.4)

where 0 < C 6= C(m,f) and Mr(f ,σ) is defined in (1.2.3).
For f , g ∈ Cσ, the following inequality can be easily proved

Em,m(fg)σ,∞ ≤ ‖gσ‖∞EM,M(f)σ,∞ + ‖fσ‖∞EM,M(g)σ,∞, (1.2.5)

where M =
⌊
m
2

⌋
.

Let us define also the weighted Hilbert space L2
w ≡ L2

w(S) as the set of
all weighted square integrable functions f : S → IR equipped with the inner
product

〈f , g〉w =

∫

S

f(x)g(x)w(x) dx
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and define the norm

‖f‖L2
w

= ‖f
√

w‖2 =
√
〈f ,f〉w. (1.2.6)

In L2
w, for a integer r ≥ 1, we introduce the following Sobolev-type sub-

space

W r
w,2 = {f ∈ L2

w : f (r−1) ∈ AC(Ṡ), ‖f‖W r
w

= ‖f‖L2
w

+Mr(f ,w) <∞}
(1.2.7)

where AC(Ṡ) denotes the set of all continuous functions f which are abso-
lutely continuous on every closed subdomain of Ṡ and

Mr(f ,w) = max





(∫

S

∣∣∣∣
∂rf(x)

∂xr1
ϕr1(x1)

∣∣∣∣
2

w(x) dx

)1/2

,

(∫

S

∣∣∣∣
∂rf(x)

∂xr2
ϕr2(x2)

∣∣∣∣
2

w(x) dx

)1/2


 (1.2.8)

with ϕi(z) =
√

1− z2
i , i ∈ {1, 2}.

1.2.2 Fourier and Lagrange operators

Let us consider the weight functions defined in (1.2.1) and let {pm(wi)}∞m=0

be the corresponding sequence of orthonormal polynomials with positive
leading coefficients defined as in (1.1.7), with respect to the weights wi, for
i ∈ {1, 2}, respectively.

Fourier sums

For a function f ∈ L2
w, where L2

w is defined in (1.2.6), we define the
bivariate Fourier sum as

Sm,m(f ,w,x) =
m−1∑

i=0

m−1∑

j=0

cij(f ,w)pi(w1, x1)pj(w2, x2) (1.2.9)

where

cij(f ,w) =

∫

S

f(x)pi(w1, x1)pj(w2, x2)w(x)dx, i, j = 0, ...,m− 1,

(1.2.10)
are the Fourier coefficients.
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The next two propositions show the behaviour of Sm,m in the case when
f ∈ L2

w or f ∈ W r
w,2, where W r

w,2 is defined in (1.2.7). We underline that
these auxiliary results are new and can also be used elsewhere. In order to
state the results, let us define the error of best polynomial approximation in
L2

w as
Em,m(f)w,2 = inf

P∈Pm,m
‖f − P ‖L2

w
.

Proposition 1.2.1. Let f ∈ L2
w. Then

E2
m,m(f)w,2 = ‖f − Sm,m(f ,w)‖2

L2
w

= ‖f‖2
L2
w
−

m−1∑

i=0

m−1∑

j=0

c2
ij(f ,w). (1.2.11)

Proof. We only give the main idea of the proof since the thesis can be proved,
mutatis mutandis, in the same way of the univariate case (see [51] and the
references therein).

Let Qm−1,m−1 be an arbitrary polynomial of degree m−1 in each variable:

Qm−1,m−1(x1, x2) =
m−1∑

i=0

m−1∑

j=0

bij pi(w1, x1)pj(w2, x2).

Then, by standard arguments, we get

‖f −Qm−1,m−1‖L2
w

= ‖f‖L2
w

+ ‖Qm−1,m−1‖L2
w
− 2

m−1∑

i=0

m−1∑

j=0

bijcij(f ,w)

where cij(f ,w) are the Fourier coefficients of the function f defined in
(1.2.10). Then, since in virtue of the orthogonality of {pm(w1)}m and {pm(w2)}m,
we have

‖Qm−1,m−1‖2
L2
w

=
m−1∑

i=0

m−1∑

j=0

b2
ij,

we can claim that

‖f −Qm−1,m−1‖L2
w

= ‖f‖L2
w

+
m−1∑

i=0

m−1∑

j=0

(bij − cij(f ,w))2 −
m−1∑

i=0

m−1∑

j=0

c2
ij(f ,w).

Hence, by replacing bij with cij(f ,w) we get the thesis.

Thus, according to the previous result, as in the univariate case (see [51]
and the references therein), Sm,m turns to be the best polynomial approxi-
mation of f ∈ L2

w and, if the Weierstrass Theorem holds true, by (1.2.11)
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we get the Parseval identity

‖f‖L2
w

=

√√√√
∞∑

i=0

∞∑

j=0

c2
ij(f ,w) (1.2.12)

and, consequently

Em,m(f)w,2 =

√∑

i≥m

∑

j≥m
c2
ij(f ,w).

In order to prove the next proposition, let us note that the bivariate
Fourier operator defined in (1.2.9) can be thought as a composition of two
univariate Fourier operators, namely

Sm,m (f ,w,x) = Sm (Sm(fy, w1, x1), w2, x2) = Sm (Sm(fx, w2, x2), w1, x1) ,

where Sm identifies the univariate Fourier sum defined as in (1.1.8) and fx1
and fx2 denote the function f as a univariate function of the only variables
x2 and x1, respectively.

Proposition 1.2.2. Let f ∈ W r
w,2 and r1 and r be two positive integers such

that r1 ≤ r. Then there exists a positive constant C 6= C(m,f) such that the
following estimate holds true

‖f − Sm,m (f ,w)‖W r1
w,2
≤ C
mr−r1 ‖f‖W r

w,2
.

Proof. We write

‖f − Sm,m(f ,w)‖W r1
w

≤ ‖f − Sm(f , w2)‖W r1
w

+‖Sm(f , w2)− Sm(Sm(fy, w1), w2)‖W r1
w

=

(∫ 1

−1

‖fx − Sm(fx, w2)‖2
Wr1
w2
w1(x) dx

)1/2

+

(∫ 1

−1

‖Sm(fy − Sm(fy, w1), w2)‖2
Wr1
w2
w1(x) dx

)1/2

.

Then, by applying (1.1.9) to the norm of the first term, (1.1.10) and again
(1.1.9) to the norm of the second one, we get

‖f − Sm,m(f ,w)‖W r1
w
≤ C

mr−r1

(∫ 1

−1

‖fx‖2
Wr
w2
w1(x) dx

)1/2

+
C

mr−r1

(∫ 1

−1

‖fy‖2
Wr
w1
w2(y) dy

)1/2

≤ C
mr−r1 ‖f‖W r

w
.
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Lagrange interpolating polynomials in [−1, 1]2

For a function f ∈ C(Ṡ), we define the bivariate Lagrange polynomial
Lm,m(f ,w,x) interpolating a given function f at the points

{
(
ξw1
i , ξw2

j

)
, (i, j) ∈ Nm

1 ×Nm
1 },

where {ξw1
i }mi=1 and

{
ξw2
j

}m
j=1

are the zeros of the univariate Jacobi polyno-

mials {pm (w1)}∞m=0 and {pm (w2)}∞m=0, respectively, i.e.

Lm,m(f ,w, ξw1,w2

i,j ) = f(ξw1,w2

i,j ), (i, j) ∈ Nm
1 ×Nm

1 , (1.2.13)

where, for the sake of brevity, {ξw1,w2

i,j } := {
(
ξw1
i , ξw2

j

)
}.

The polynomial Lm,m(f ,w) ∈ Pm−1,m−1 and Lm,m(P ,w) = P , for any
P ∈ Pm−1,m−1. An expression of Lm,m(f ,w) is given by

Lm,m(f ,w,x) =
m∑

i=1

m∑

j=1

`w1,w2

i,j (x)f(ξw1,w2

i,j ), (1.2.14)

where `w1,w2

i,j (x) = `w1
i (x1)`w2

j (x2) and

`wki (z) =
pm(wk, z)

p′m(wk, ξ
wk
i )(z − ξwki )

, k ∈ {1, 2}.

Next proposition shows the weighted-L2 convergence of the Lagrange in-
terpolating polynomial for every f ∈ W r

w,2. We underline that this auxiliary
result is new and can also be used elsewhere.

In order to prove the next proposition, let us note that as already un-
derlined for the bivariate Fourier operator, the bivariate Lagrange operator
defined in (1.2.13), can be thought as a composition of two univariate La-
grange operators, namely

Lm,m (f ,w,x) = Lm (Lm(fy, w1, x1), w2, x2) = Lm (Lm(fx, w2, x2), w1, x1) ,

where Lm denotes the univariate Lagrange polynomial defined in (1.1.12).

Proposition 1.2.3. Let f ∈ W r
w,2. Then there exists a positive constant

C 6= C(m,f) such that the following estimate holds true

‖f − Lm,m (f ,w)‖L2
w
≤ C
mr
‖f‖W r

w,2
. (1.2.15)
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Proof. We begin by writing

‖f − Lm,m(f ,w)‖L2
w

≤ ‖f − Lm(f , w2)‖L2
w

+ ‖Lm(f , w2)− Lm(Lm(fy, w1), w2)‖L2
w

=

(∫ 1

−1

‖fx − Lm(fx, w2)‖2
L2
w2
w1(x) dx

)1/2

+

(∫ 1

−1

‖Lm(fy − Lm(fy, w1), w2)‖2
L2
w2
w1(x) dx

)1/2

.

Hence by using (1.1.15) to the first term, (1.1.15), (1.1.16) and (1.1.17) to
the second one, we get

‖f − Lm,m(f ,w)‖L2
w
≤ C
mr

(∫ 1

−1

‖fx − Lm(fx, w2)‖2
Wr
w2
w1(x) dx

)1/2

from which we deduce the thesis.

1.2.3 Gauss-Jacobi cubature rules

Let w := w1w2 = vα1,β1vα2,β2 be defined in (1.2.1) and let {pm (wi)}∞m=0

be, for i ∈ {1, 2}, the corresponding sequences of orthonormal polynomials
with positive leading coefficients defined as in (1.1.7), with respect to the
weight w1 and w2, respectively.

The tensor-product Gaussian rule, which will be essential for our aims,
reads as [66]

∫

S

f(x)w(x) dx =
m∑

i=1

m∑

j=1

λw1
i λ

w2
j f(ξw1,w2

i,j ) +RGm,m(f)

:= Gw1,w2
m,m (f) +RGm,m(f), (1.2.16)

where ξw1,w2

i,j :=
(
ξw1
i , ξw2

j

)
with {ξw1

i }mi=1 and
{
ξw2
j

}m
j=1

the zeros of the

Jacobi polynomials {pm (w1, x1)}∞m=0 and {pm (w2, x2)}∞m=0 respectively, λ
wj
i ,

i = 1, . . . ,m, denote the ith-Christoffel numbers with respect to wj, j ∈
{1, 2}, and the remainder termRGm,m(P ) = 0 for any P ∈ P2m−1,2m−1. About
the error estimate, we get the following (see [66]):

Proposition 1.2.4. Let f ∈ Cσ. Under the assumption

∫

S

w(x)

σ(x)
dx < +∞,
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we have ∣∣RGm,m(f)
∣∣ ≤ CE2m−1,2m−1(f)σ, (1.2.17)

where C 6= C(m,f).

The following proposition gives a new estimate forRGm,m(f) which is useful
for analytical functions.

Proposition 1.2.5. Let f(x1, x2) be a bivariate function defined on S having
2m continuous partial derivatives with respect to each variable. Then

∣∣RGm,m(f)
∣∣ ≤ C Γ(f)

γ2
m(w1)γ2

m(w2)(2m)!
,

where γm(w1) and γm(w2) are the leading coefficients of pm(w1, x1) and

pm(w2, x2), respectively and Γ(f) = max
{∥∥∥∂2mf∂x2m1

∥∥∥
∞
,
∥∥∥∂2mf∂x2m2

∥∥∥
∞

}
.

Proof. In order to prove the thesis, let us denote by L2m,2m the bivariate
Lagrange polynomial of degree 2m− 1 in each variable [66] interpolating the
function f at the points (ξw1

i , ξw2
i ) and (ti, si) for i = 1, ...,m with {ξw1

i }mi=1

and {ξw2
i }mi=1 the zeros of pm(w1, x1) and pm(w2, x2), resepctively and {ti}mi=1

and {si}mi=1 the zeros, of the monic polynomials of degree m defined as

rm(x1) =
m∏

i=1

(x1 − ti), sm(x2) =
m∏

i=1

(x2 − si).

Taking into account that the Gaussian cubature rule is exact for algebraic
polynomials of degree 2m− 1 in each variable, we have

RGm,m(f) = Rm,m(f − L2m,2m) =

∫

S

[f(x)− L2m,2m(f ,x)] w(x)dx.

Then, being

f(x)− L2m,2m(f ,x) = C Γ(f)

(2m)!
pm(w1, x1)rm(x1)pm(w2, x2)sm(x2),

with Γ(f) = max
{∥∥∥∂2mf∂x2m1

∥∥∥ ,
∥∥∥∂2mf∂x2m2

∥∥∥
}

, we have in virtue of the orthonomality

|RGm,m(f)| ≤ C Γ(f)

γ2
m(w1)γ2

m(w2)(2m)!
.
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Chapter 2

Product and Dilation
Quadrature/Cubature Rules
for Some Kinds of Kernels

This Chapter deals with quadrature and cubature rules on [−1, 1] and
on the square S = [−1, 1]2 respectively, discussing on their stability and
convergence and on their numerical construction. In particular, we treat the
numerical approximation of integrals of the type

I(f, y) =

∫ 1

−1

f(x)k(x, y)w(x)dx, y ∈ [−1, 1]

and

I(f ,y) =

∫ 1

−1

∫ 1

−1

f(x)k(x,y)w(x)dx, y ≡ (y1, y2) ∈ [−1, 1]2,

where k is a bivariate function in the variables x and y and k is a function of
four variables since x = (x1, x2) and y = (y1, y2). We assume that the kernel
functions k and k can be weakly singular, nearly singular or highly oscillating.
We consider also the combination of two aspects, i.e. integrals with nearly
singular and highly oscillating kernels. We underline that, all the results in
this Chapter, for the bivariate case, are new and have recently been presented
in [69, 77]. For completeness, we also deduced some new results for the
univariate case. In particular, this Chapter is organized as follows. Section
2.1 is completely devoted to the product quadrature rule with results on the
stability and convergence for a wide class of kernels. In Subsections 2.1.1
and 2.1.2 we give some details for computing the coefficients of the product
quadrature rule when the kernels are weakly singular, nearly singular and/or
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highly oscillating and we describe the 1D-dilation rule in a general form,
proving results about the stability and the rate of convergence of the error.
In Subsection 2.1.3 we show some cases of complexity reduction. Section
2.2 is dedicated to the product cubature rule with results on the stability
and convergence for a wide class of kernels. Subsection 2.2.1 contains some
details for computing the coefficients of the product cubature rule when the
kernel functions are weakly singular. In Subsection 2.2.2 we give some details
for computing the coefficients of the product cubature rule when the kernel
functions are nearly singular and/or highly oscillating and we describe the
2D-dilation rule in a general form, proving results about the stability and the
rate of convergence of the error. In Subsection 2.2.4 we suggest some criteria
on the choice of the stretching parameter in the 2D-dilation formula and
in Subsection 2.2.3 we propose a test for comparing our cubature formulae
with respect to their CPU time. Finally, in Section 2.3, we present some
numerical examples, where our results are compared with those achieved by
other methods.

2.1 Product Quadrature Rules on [−1, 1]
Consider

I(f, y) =

∫ 1

−1

f(x)k(x, y)w(x)dx, y ∈ [−1, 1].

By replacing the function f with the Lagrange polynomial Lm(f, w, x) defined
in (1.1.12), we obtain the following product quadrature rule

I(f, y) =
m∑

h=1

Ah(y)f (ξwh ) +Rm(f, y) =: Im(f, y) +Rm(f, y) (2.1.1)

where

Ah(y) =

∫ 1

−1

`wh (x)k(x, y)w(x)dx, (2.1.2)

with `wh defined in (1.1.13), and

Rm(f, y) =: I(f, y)− Im(f, y)

is the remainder term.
We recall that the quadrature rule is exact for algebraic polynomials of

degree m− 1, i.e. Rm(P, y) = 0, ∀P ∈ Pm−1, ∀y ∈ [−1, 1].
In order to prove the stability and convergence of the product formula,

we use the following result, which can be deduced from a theorem of Nevai
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(see, for instance, [65, 47, 77]) and the interested reader can find it in [47]
for the case w = 1.

Theorem 2.1.1. Assume w = vα,β, σ = vγ,δ, γ, δ ≥ 0, ϕ(x) =
√

1− x2 and

sup
|y|≤1

∫ 1

−1

|k(x, y)|w(x)

σ(x)
log

(
2 +
|k(x, y)|w(x)

σ(x)

)
dx < +∞. (2.1.3)

Then, for all functions f ∈ Cσ, we have

sup
|y|≤1

∫ 1

−1

|Lm(f, w, x)k(x, y)| w(x) dx < C ‖fσ‖∞ , C 6= C(m, f), (2.1.4)

if and only if

sup
|y|≤1

∫ 1

−1

|k(x, y)|σ(x)√
w(x)ϕ(x)

dx < +∞ and

∫ 1

−1

√
w(x)ϕ(x)

σ(x)
dx < +∞. (2.1.5)

Remark 2.1.2. Let us remark that if the parameters of the weight w are
such that α, β < 3

2
, then the parameters of the weight σ could also be chosen

equal to zero.

About the stability of Im(f, y), the following theorem holds true.

Theorem 2.1.3. Under the same assumptions of Theorem 2.1.1, for any
f ∈ Cσ, the rule is stable, i.e.

sup
|y|≤1

|Im(f, y)| ≤ C ‖fσ‖∞ , C 6= C(m, f).

Proof. By Theorem 2.1.1, for any fixed y

∫ 1

−1

|Lm(f, w, x)k(x, y)|w(x)dx ≤ C ‖fσ‖∞ .

Therefore

|Im(f, y)| =
∣∣∣∣
∫ 1

−1

Lm(f, w, x)k(x, y)w(x)

∣∣∣∣ dx

≤
∫ 1

−1

|Lm(f, w, x)k(x, y)|w(x)dx ≤ C ‖fσ‖∞

and taking the sup on y ∈ [−1, 1], the thesis follows.

About the convergence, the following theorem holds true.
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Theorem 2.1.4. Under the same assumptions of Theorem 2.1.1, for any
f ∈ Cσ,

sup
|y|≤1

|Rm(f, y)| ≤ CEm−1(f)σ, C 6= C(m, f). (2.1.6)

Proof. Consider

Rm(f, y) =: I(f, y)− Im(f, y)

=

∫ 1

−1

f(x)k(x, y)w(x)dx−
m∑

h=1

Ah(y)f (ξwh ) .

Then, denoting by P ∗m−1 the polynomial of best approximation, by (2.1.4),
we get

|Rm(f, y)| =
∣∣Rm(f − P ∗m−1, y)

∣∣

≤
∫ 1

−1

∣∣(f(x)− P ∗m−1(x)
)
− Lm(w, f − P ∗m−1, x)

∣∣ k(x, y)w(x) dx

≤ C
∥∥(f − P ∗m−1

)
σ
∥∥
∞ ,

and taking into account the iphotesis (2.1.3), we have

sup
|y|≤1

|Rm(f, y)| ≤ CEm−1(f)σ,∞,

i.e. the thesis follows.

Now we provide some details about the computation of the coefficients of
the product rule presented in (2.1.1), for some choices of the kernel functions.

2.1.1 Computation of the 1D-product rule coefficients
for weakly singular kernels

In this Subsection, we give some details for computing the coefficients in
(2.1.2) when the kernel function is weakly singular, i.e. we consider integrals
of the type

I(f, y) =

∫ 1

−1

f(x)|x− y|λw(x)dx, y ∈ (−1, 1), −1 < λ < 0,

where the kernel function is given by

k1(x, y) = |x− y|λ, −1 < λ < 0. (2.1.7)
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These type of kernel functions appear, for instance, in one–dimensional weakly
singular integral equations (see, for instance, [6, 11, 40, 52, 61, 62, 60, 80]
and the references therein) and also in Volterra integral equations with
weakly singular kernel (Abel type) (see, for instance [5, 9] and the references
therein). Such equations arise from many applications such as reaction-
diffusion problems in small cells or from the semidiscretization in space of
Volterra-Fredholm integral equations with weakly singular kernel and of par-
tial Abel integral or integro-differential equations.

For these type of kernel functions, the coefficients in (2.1.2), can be com-
puted “exactly”via modified moment. More precisely, by (1.1.14), we have

Ah(y) =

∫ 1

−1

`wh (x)k(x, y)w(x)dx = λwh

m−1∑

j=0

pj (w, ξwh )Mw
j (ω)

where the modified moments

Mw
j (y) =

∫ 1

−1

pj(w, x)|x− y|λw(x)dx

satisfy the following recurrence relation (for more details see [52])

M0(y) =
1√
µ0

∫ 1

−1

|x− y|λw(x)dx, µ0 =

∫ 1

−1

w(x)dx, −1 < λ < 0,

M1(y) =
1

b1

(
√
µ0 − (y − a1)M0(y)) ,

Mj(y) = − 1

bj
[(y + aj)Mj−1(y) + bj−1Mj−2(y)] , j = 2, ...,m,

where aj, bj are the coefficients of the Jacobi three-term recurrence relation

p0(w, x) = 1√
µ0
, p1(w, x) = (x−a1)p0(w,x)

b1
,

bjpj(w, x) = (x− aj)pj−1(w, x)− bj−1pj−2(w, x), j = 2, 3, ...

(2.1.8)

and hence

a1 = β2−α2

(2+α+β)(3+α+β)
, b1 =

√
4(1+α)(1+β)

(2+α+β)2(3+α+β)
,

aj = β2−α2

(2j+α+β)(2j+2+α+β)
, bj =

√
4j(j+α)(j+β)(j+α+β)

(2j+α+β−1)(2j+α+β)2(2j+1+α+β)
, j = 2, 3, ... .
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2.1.2 Computation of the 1D-product rule coefficients
for nearly singular and/or highly oscillating ker-
nels

In this Subsection, we give some details for computing the coefficients in
(2.1.2) when the kernel functions are nearly singular and/or highly oscillating,
i.e. we consider integrals of the type

I(f, ω) =

∫ 1

−1

f(x)kj(x, ω)w(x)dx, y ∈ [−1, 1], j ∈ {2, 3, 4}, (2.1.9)

where the kernel functions are given by

k2(x, ω) =
1

((x− x0)2 + ω−1)λ
, x0 ∈ [−1, 1] fixed, λ ∈ IR+, 0 6= ω ∈ IR,

k3(x, ω) = g(ωx), 0 6= ω ∈ IR, (2.1.10)

g is an oscillatory smooth function with frequency ω,

k4(x, ω) = k2(x, y, ω)k3(x, y, ω).

The numerical evaluation of the integrals in (2.1.9) has interested several
authors and actually it is a special Chapter of the numerical integration.
The interested reader can consult for instance [7, 8, 17, 36, 37, 56, 57, 63, 71]
and the references therein.

We underline that the numerical evaluation of integrals with kernels of
the types in (2.1.10) presents difficulties for “large”ω, since the kernel k2 is
“close”to be singular, k3 highly oscillates and k4 includes both the aforesaid
problematic behaviors. In all the above cases, the modulus of the derivatives
grows as ω grows.

The following example is useful to point out the difficulties that appear in
the computation of (2.1.9) when the kernel function is of the type k3 (similar
conclusions, with respect to the instability, can be deduced when k is of the
types k2 or k4).

Example 2.1.5. Consider the following integral (see [17])

I(G) =

∫ 1

−1

ex sin(5000x)dx, G(x) = ex sin(5000x).

If we apply the Gauss-Legendre quadrature rule, as shown in [17], we get

I(G) =
m∑

k=1

G(ξk)λk +Rm(G) := Φm(G) +Rm(G)
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where {ξk}mk=1, are the zeros of the mth Legendre polynomial and λk, k =
1, ...,m, are the corresponding Christoffel numbers. Since G is differentiable,
we can write the error as in (1.1.20)

Rm(G) =

∥∥G(2m)
∥∥
∞

γ2
m(2m)!

,

where γm is the leading coefficient of the mth orthonormal Legendre polyno-
mial. Therefore, the following estimate holds (see [17])

|Rm(G)| = O
[(

3399

m

)2m
]
.

Hence, to obtain few exact digits, we need a number of knots greater than
3399. But it is not realistic. On the other hand, working in finite arithmetics,
a “small”error in the computation of ξk can produce a “large”error in the
evaluation of G(ξk), with an eventually change of sign. In conclusion, as
shown in [17], Gaussian rules cannot give a reasonable approximation in the
case of oscillating kernels. This fact is confirmed by the numerical test shown
in Table 2.1.

Table 2.1: G(x) = ex sin(5000x)
m Φm(G)
8 0.428672207843679
16 −0.192123222625601
32 0.024304986655065
64 0.042348837355750
128 0.078391819539537
256 0.170674839281539
512 −0.013440192353402

On the other hand such kernels are of interest since they appear in many
contexts. For instance, k2-type kernels appear in one–dimensional nearly
singular BEM integrals. Highly oscillating kernels of the type k3 are useful in
computational methods for oscillatory phenomena in science and engineering
problems. The combination of the two aspects, i.e. integrals with nearly
singular and oscillating kernels appear for instance in the solution of problems
of propagation in uniform waveguides with nonperfect conductors.

The problem to approximate integrals of the type (2.1.9) with kernel
functions of the types in (2.1.10), finds application in the numerical treatment
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of integral equations, for instance, in Fredholm-type integral equations. Since
it is very difficult to compute integral operators of the type (2.1.9) when
k belongs to the type (2.1.10), different numerical approaches have been
investigated by several authors. Many of them (see, for details, [20, 24, 82,
84]) have considered the kernel functions of the type k2 with ω = 1, while only
few authors [59, 72, 75] have also studied the more interesting case |ω| > 1
because of the numerical difficulties that it involves. In fact, in this case the
distance between the complex poles and the real axis becomes too small. In
[72, 75], the authors propose a collocation method with cubic splines. In
[59], the kernel k is transformed so that the poles move away from the real
axis and a Nyström method based on a product-type formula is applied. The
method proposed in [59] is better than those examined in [72, 75]; however,
in the case where the parameter ω is too large, for example ω = 103, the
product-type formula gives poor results (see [59, Table II]).

In particular, integrals of the type (2.1.9) with kernel functions of the
k2-type, appear also in Love’s integral equation. For this type of integral
equation, for instance, in [44] the authors improve the results given in [71]
by using the same transformation as in [43] which takes into account the
behavior of the integrand function. In Chapter 3 we will present alternative
methods for the numerical approximation of the univariate and bivariate
Love’s integral equation.

In the literature, the standard way in order to compute the corresponding
coefficients is to determine the modified moments by means of recurrence
relations, and to examine the stability of these latter (see for instance [26,
41, 53, 73, 81] and the references therein). These approaches, however, does
not appear always feasible for kernels of the type (2.1.10) and, in general, in
the literature different strategies according to the kernels are proposed.

Here we present a unique approach for computing the coefficients of the
quadrature rule introduced in (2.1.1) when k belongs to the types (2.1.10).

In particular, in order to compute the coefficients in (2.1.2), when the
kernel functions are of the type (2.1.10), we propose a common strategy
which includes the dilation quadrature method proposed in [71] for nearly
singular kernels and in [17] for highly oscillatory functions. Indeed both of
them have been considered in the unweighted case. We underline that, in
[17, 71] the authors considered the cases nearly singular and highly oscillating
separately, proposing different strategies according to the kernels.

In this thesis, we work in weighted function spaces and this allows to con-
sider also functions with algebraic singularities at the endpoints of [−1, 1].
Furthermore we propose a unique approach for nearly singular or highly os-
cillating kernels which allows to consider also the new possibility of nearly
singular and highly oscillating kernels. This strategy, has been recently pro-
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posed for the first time in [69] for the bivariate nearly singular and/or highly
oscillating kernel functions and, successively, in [22] for the univariate and bi-
variate Love’s kernel function (we will give all the details in Chapter 3). Such
“dilation”method consists in a preliminary “dilation”of the domain and, by
suitable transformations, on the successive reduction of the initial integral to
the sum of integrals defined again on [−1, 1]. These manipulations “relax”in
some sense the “pathological”behavior of the kernels kj, j ∈ {2, 3, 4}.

The 1D-dilation formula

Below, for the convenience of the reader, we will describe the dilation
method for a general integral of the type

I (F, ω) =

∫ 1

−1

F (x)k(x, ω)w(x)dx, F ∈ Cσ,

where k(x, ω) is one of the kernels in (2.1.10) with the restrictions on ω
given there. Succesively, we will apply this tecnique for the special case
F (x) = `wh (x).

By the changes of variable

x =
η

ω
, η ∈ [−ω, ω],

we get

I (F, ω) =
1

ω

∫ ω

−ω
F
( η
ω

)
k
( η
ω
, ω
)
w
( η
ω

)
dη

and choosing d ∈ IR+ such that S = 2ω
d
∈ IN, we have

I (F, ω) =
1

ω

S∑

i=1

∫ −ω+id

−ω+(i−1)d

F
( η
ω

)
k
( η
ω
, ω
)
w
( η
ω

)
dη. (2.1.11)

Now we want to remap each integral into [−1, 1]. To this end we introduce
the following invertible linear maps

Ψi : [−ω + (i− 1)d,−ω + id]→ [−1, 1]

defined as, for i ∈ NS
1 ,

x = Ψi(η) =
2

d
(η + ω)− (2i− 1)
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and in (2.1.11) we make the change of variable

η = Ψ−1
i (x) =

(
x+ 1

2

)
d− ω + (i− 1)d.

In this way, we get

I (F, ω) =
d

2ω

S∑

i=1

∫ 1

−1

Fi(x)ki(x, ω)wi(x)dx

=
d

2ω

{
τ1

∫ 1

−1

F1(x)k1(x, ω)U1(x)u1(x) dx

+
S−1∑

j=2

∫ 1

−1

Fj(x)kj(x, ω)Uj(x)u2(x)dx

+ τ2

∫ 1

−1

FS(x)kS(x, ω)US(x)u3(x)dx

}

where, for i = 1, ...,S and j = 2, ...,S − 1,

Fi(x) := F

(
Ψ−1
i (x)

ω

)
, ki(x, ω) := k

(
Ψ−1
i (x)

ω
, ω

)
,

wi(x) := w

(
Ψ−1
i (x)

ω

)
,

U1(x) = vα,0
(

Ψ−1
1 (x1)

ω

)
, Uj(x) = vα,β

(
Ψ−1
j (xj)

ω

)
,

US = v0,β

(
Ψ−1
S (xS)

ω

)
and τ1 =

(
d

2ω

)β
, τ2 =

(
d

2ω

)α
,

u1(x) = v0,β(x), u2(x) = v0,0(x), u3(x) = vα,0(x).

Finally, according to the notation in (1.1.18), we approximate each integral
by the proper Gauss-Jacobi rule depending on the weight functions arising
in the integral. To be more precise

I(F, ω) = Σm(F, ω) +RΣ
m(F, ω) (2.1.12)

=:
d

2ω

{
τ1Gu1m (F1k1U1) +

S−1∑

j=2

Gu2m (FjkjUj) + τ2Gu3m (FSkSUS)

}

+RΣ
m(F, ω).

We recall that about the stability and the convergence of the product
rule (2.1.1), Theorems 2.1.4 and 2.1.3 hold true and with respect to the
quadrature formula Σm(F, ω), we get:
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Theorem 2.1.6. Let w be defined in (1.1.1) and let k be defined in (2.1.10)
with g ∈ C∞([−ω, ω]). Then, if there exists a σ as in (1.1.2) such that
F ∈ Cσ and the following assumption is satisfied

0 ≤ γ < min {1, α + 1} , 0 ≤ δ < min {1, β + 1} , (2.1.13)

then
|Σm(F, ω)| ≤ C‖Fσ‖∞, 0 < C 6= C(F,m). (2.1.14)

Moreover, for any F ∈ W r
σ,∞, for S ≥ 2, we get

|RΣ
m(F, ω)| ≤ C

mr

(
d

2

(
1

ω
+ 1

))r
Nr(F, k), (2.1.15)

where

Nr(F, k) = ‖Fσ‖∞ + max
s∈Nr

0

(∥∥k(r−s)(·, ω)
∥∥
∞ ×

∥∥F (s)
∥∥
∞
)

(2.1.16)

and 0 < C 6= C(F,m).

Proof. First we prove (2.1.14). By (2.1.12), we obtain

|Σm(F, ω)| ≤ d

2ω
U max
x∈[−1,1]

|F (x)k(x, ω)σ(x)|
{
τ1

m∑

i=1

λu1i
σ(ξu1i )

+
S−1∑

j=2

m∑

i=1

λu2i
σ(ξu2i )

+ τ2

m∑

i=1

λu3i
σ(ξu3i )

}

where

U = max

(
||U1|| , ||US|| , max

j∈NS−1
2

||Uj||
)

and taking into account the relationship (see [65, p. 673 (14)])

λ
uj
i ∼ uj(ξ

uj
i )∆ξ

uj
i , ∆ξ

uj
i = ξ

uj
i+1 − ξ

uj
i , j ∈ {1, 2, 3} , i = 1, ...,m,

under the assumptions (2.1.13) it follows,

m∑

i=1

λ
uj
i

σ(ξ
uj
i )
≤
∫ 1

−1

uj(x)

σ(x)
dx ≤ C, j ∈ {1, 2, 3}

and we have
|Σm(F, ω)| ≤ C U ||Fk(·, ω)σ||∞ .
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Then, in view of the boundedness of k(·, ω), we can conclude

|Σm(F, ω)| ≤ C‖Fσ‖∞.
Now we prove (2.1.15). By (2.1.12), taking into account the Proposition

1.1.4, under the assumption (2.1.13), we have

|RΣ
m(F, ω)| ≤ C

{
E2m−1(F1k1U1) +

S−1∑

j=2

E2m−1(FjkjUj) + E2m−1 (FSkSUS)

}
.

By inequality (1.1.4) we get

|RΣ
m(F, ω)| ≤

{
Ũ

S∑

j=1

Em−1(Fjkj)σ +
M̃max

r

mr

S∑

j=1

||Fjkjσ||∞

}
(2.1.17)

where

Ũ = max

(
||U1σ|| , ||USσ|| , max

j∈NS−1
2

||Ujσ||
)
≤ C

and

M̃max
r := max

{
max
i=1,S

∥∥∥U (r)
i ϕrσ

∥∥∥
∞
, max

2≤j≤S−1

∥∥∥U (r)
j ϕrσ

∥∥∥
∞

}
≤ C

(
d

2ω

)r
Ũ .

Since for i ∈ NS
1

∣∣∣(Fi(x)ki(x, ω))(r)
∣∣∣ ≤

r∑

s=0

(
r

s

) ∣∣∣F (s)
i (x)

∣∣∣
∣∣∣k(r−s)
i (x, ω)

∣∣∣ ,

we have∣∣∣(Fi(x)ki(x, ω))(r)
∣∣∣ϕ(x)rσ(x)

≤ max
s∈Nr

0

{∥∥F (s)ϕrσ
∥∥
∞
∥∥k(r−s)(·, ω)

∥∥
∞

} r∑

s=0

(
r

s

)(
d

2ω

)s(
d

2

)r−s

= max
s∈Nr

0

{∥∥F (s)ϕrσ
∥∥
∞
∥∥k(r−s)(·, ω)

∥∥
∞

}(d
2

)r (
1

ω
+ 1

)r
,

and therefore, taking into account (1.1.3), by (2.1.17) it follows

|RΣ
m(F, ω)| ≤ C

mr

{
Ũ max
s∈Nr

0

(∥∥F (s)ϕrσ
∥∥
∞ ×

∥∥k(r−s)(·, ω)
∥∥
∞
)

×
(
d

2

)r (
1

ω
+ 1

)r
+ M̃max

r ‖Fkσ‖∞
}

≤ C
mr
Nr(F, k)

(
d

2

)r (
1

ω
+ 1

)r
,

where Nr(F, k) is defined in (2.1.16) and the thesis follows.

41



Since in (2.1.1) we need to evaluate integrals of type (2.1.2), we state
below the convergence theorem for the formula Σm(F, ω) with F = `wh . To
this end, we prove the following:

Theorem 2.1.7. Let k be defined as in (2.1.10). Under the hypotheses of

Theorem 2.1.6, for m > d
2
e

1
ω and for d ≥ 2, ω ≥ 1, the following error

estimate holds

|RΣ
m(`wh , ω)| ≤ C T2m(k) ·





1

mm+1−µ if α, β > −1

2

logm

mm+1
if α, β ≤ −1

2

where
T2m(k) = max

r∈N2m
m+1

∥∥k(r)(·, ω)
∥∥
∞ ,

µ = max{α +
1

2
− 2γ, β +

1

2
− 2δ}, (2.1.18)

and C 6= C(m,ω).

Proof. In order to use Theorem 2.1.6 with r = 2m, we have to estimate
N2m(`wh , k). By iterating the weighted Bernstein inequality (see for instance
[47, p.170])

‖(`wh )(m−1)ϕm−1σ‖∞ ≤ C mm−1‖`whσ‖∞
and taking into account that under the hypotheses (2.1.3) and (2.1.5) [47,
Th.4.3.3, p.274 and p.256]

max
|x|≤1

m∑

k=1

|`wk (x)| σ(x)

σ(ξwk )
≤ C ·




mµ if α, β > −1

2

logm if α, β ≤ −1
2

,

with µ defined in (2.1.18), we can conclude, in the worst case, that

‖(`wh )(m−1)ϕm−1σ‖∞ ≤ C mm−1‖`whσ‖∞ ≤ C mm−1+µ, C 6= C(m).

Hence,
N2m(`wh , k) ≤ C mm−1+µ max

r∈Nm−1
0

∥∥k(2m−r)(·, ω)
∥∥
∞

and by (2.1.15) and using that

(
d

2m

)2m(
1

ω
+ 1

)2m

≤ e
−2m logm

(
1−

log( d2)
logm

− 1
ω1 logm

)

≤ 1

m2m

for m > d
4
e

1
ω , the thesis follows.
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Following the previous work-scheme, the evaluation of the coefficient Ah
requires m2S long operations, with S increasing as ω increases. However,
as the numerical tests will show, the implementation of the product rule
for smooth integrands functions f and independently on the choice of the
parameter ω, will give accurate results for “small”values of m.

Remark 2.1.8. Along the thesis we also consider a special case of Love’s
kernel functions k2 when x0 = 0 and λ = 1, i.e.

k2(x, ω) =
1

x2 + ω−1
.

In this case, and if in the integral (2.1.9) w is a Gegenbauer weight, i.e. α = β
in (1.1.1), we exploit the symmetry of the zeros of pm(w, x) and the coeffi-
cients in (2.1.2) can be computed “exactly”via modified moment (as done in
Subsection 2.1.1, mutatis mutandis) and the computational complexity can
be drastically reduced. In the next Subsection we will show all the details.

2.1.3 Cases of complexity reduction

In some special cases the computational complexity can be drastically
reduced, for instance, in the case of Love’s kernel functions with w(x) =
vα,α(x), i.e. w is a Gegenbauer weight. Slightly changing the notation set in
Section 1.1, let us denote by

{ξwi }Mi=−M , M =
⌊m

2

⌋
, ξw0 = 0, for m odd,

the zeros of pm(w, x). Since w is an even weight function, it is ξwi =
−ξw−i, i = 1, 2, . . . ,M, we have

`wh (x) =





bm2 c∏

i=1

(ξwi )2 − x2

(ξwi )2 , if h = 0, m odd,

(
x

ξwh

) 1−(−1)m

2
bm2 c∏

i=1
i 6=h

x2 − (ξwi )2

(ξwh )2 − (ξwi )2

(
x+ ξwh

2ξwh

)
, 1 ≤ h ≤ m.

To compute the coefficients in (2.1.2) when k ≡ k2 with x0 = 0 and λ = 1,
since Ah(ω) = Am−h+1(ω), the computation is halved and for 1 ≤ h ≤

⌊
m
2

⌋

we have
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Ah(t) =

∫ 1

−1

`wh (x)

x2 + ω−1
w(x) dx =

1

2
1
2

+α

∫ 1

−1

Πh

(
x+1

2

)

x+ t
vα,−

1
2 (x) dx,

where

t = 1 + 2ω−1 and Πh(z) =

bm2 c∏

i=1
i 6=h

z − (ξwi )2

(ξwh )2 − (ξwi )2 .

Assume for simplicity m even. Since Π ∈ Pm
2
−1 we easily deduce

Ah(t) =

∫ 1

−1

Πh

(
x+1

2

)

x+ t
vα,−

1
2 (x)dx

=

m
2
−1∑

j=1

Πh


z

α,− 1
2

j + 1

2


λ

α,− 1
2

j

m
2
−1∑

k=0

pk

(
vα,−

1
2 , z

α,− 1
2

j

)
M

α,− 1
2

k (t),

where {λα,−
1
2

j }
m
2
j=1 are the Christoffel numbers with respect to the Jacobi

weight vα,−
1
2 , {zj}

m
2
j=1 are the zeros of pm

2
(vα,−

1
2 , x) and

M
α,− 1

2
k (t) =

∫ 1

−1

pk

(
vα,−

1
2 , x
)

x+ t
vα,−

1
2 (x)dx

are the modified moments. In this case it is no hard to prove that the sequence

{Mα,− 1
2

k (ω)}∞k=0 satisfy the following recurrence relation

M
α,− 1

2
0 (t) =

1√
µ0

∫ 1

−1

vα,−
1
2 (x)

x+ t
dx, µ0=

∫ 1

−1

vα,−
1
2 (x)dx =

2
√
π Γ(α + 1)

(2α + 1)Γ
(
α + 1

2

) ,

M
α,− 1

2
1 (t) =

1

b1

(
√
µ0 − (t+ a1)M0(t)) ,

M
α,− 1

2
k (t) = − 1

bk

[
(t+ ak)M

α,− 1
2

k−1 (t) + bk−1M
α,− 1

2
k−2 (t)

]
, k = 2, ...,m,

where ak, bk are the coefficients of the three-term recurrence relation in (2.1.8)

with w(x) = vα,−
1
2 (x). In the case m odd the coefficients Ah(t) can be

computed by similar arguments.
More generally, for all the kernel functions kj, j ∈ {2, 3, 4} , defined in

(2.1.10), we have a reduction of the global computational cost (shortly CC)
when w is a Gegenbauer weight. In particular:
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• if kj(x, ω), j ∈ {2, 3, 4} , is symmetric through the axis x = 0, i.e.

kj(−x, ω) = kj(x, ω), j ∈ {2, 3, 4} ,

it is

Ah(ω) = Am−h+1(ω), h ∈ NM
1 ,

and the CC has a reduction of 75%;

• in the case kj(x, ω), j ∈ {2, 3, 4} , is symmetric with respect to the
origin, i.e.

kj(−x, ω) = −kj(x, ω), j ∈ {2, 3, 4} ,
it is

Ah(ω) = −Am−h+1(ω), h ∈ NM
1 ,

and again the CC has a reduction of 75%.

2.2 Product Cubature Rules on the Square

[−1, 1]× [−1, 1]
Consider now the following bivariate integrals

I(f ,y) =

∫

S

f(x)k(x,y)w(x)dx, y = (y1, y2) ∈ S = [−1, 1]2, (2.2.1)

in which we recall that k, function of four variables, can be weakly singular,
nearly singular and/or highly oscillating.

By replacing the function f with the bivariate Lagrange polynomial
Lm,m(f ,w,x) defined in (1.2.14), we obtain the following product cubature
rule

I(f ,y) =
m∑

h=1

m∑

k=1

Ah,k(y)f
(
ξw1,w2

h,k

)
+Rm,m(f ,y) (2.2.2)

=: Im(f ,y) +Rm,m(f ,y)

where

Ah,k(y) =

∫

S

`w1,w2

h,k (x)k(x,y)w(x)dx (2.2.3)

and
Rm,m(f ,y) =: I(f ,y)− Im(f ,y)
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is the remainder term. We recall that the cubature rule is exact for bivariate
algebraic polynomials of degree m− 1 in each variable, i.e.

Rm,m(P ,y) = 0, ∀P ∈ Pm−1,m−1, ∀y ∈ S.

In order to prove the stability and the convergence of the proposed prod-
uct formula, we recall a result needed in the successive proof.

Let Sm be the univariate mth Fourier sum defined in (1.1.8) and let Sm,m
be the bivariate m-th Fourier sum defined in (1.2.9).

For 1 < p < ∞, denoting by Lp(S) the usual Lp space on S, under the
assumptions (see for instance [66, p.2332])

σ√
wϕ1ϕ2

∈ Lp(S),
w

σ
∈ Lq(S),

1

σ

√
w

ϕ1ϕ2

∈ Lq(S), q =
p

p− 1
,

then, for any f ∈ Cσ holds true

‖Sm,m(f ,w)σ‖p ≤ C‖fσ‖∞, C 6= C(m,f). (2.2.4)

Now, we are able to prove the following.

Theorem 2.2.1. Let w(x) = w1(x1)w2(x2) the product of two Jacobi weight.
If there exist a σ defined as in (1.2.2) such that f ∈ Cσ and the following
assumptions are satisfied

k(·,y)
√

w ∈ L2(S), (2.2.5)

w

σ
,

σ√
wϕ1ϕ2

,
1

σ

√
w

ϕ1ϕ2

∈ L2(S), (2.2.6)

then we have
sup
y∈S
|Im(f ,y)| ≤ C‖fσ‖∞, (2.2.7)

where C 6= C(m,f). Moreover, the following error estimate holds true

sup
y∈S
|Rm,m(f ,y)| ≤ CEm−1,m−1(f)σ, (2.2.8)

where C 6= C(m,f).

Remark 2.2.2. Let us remark that if the parameters of the weight w are
such that αi, βi <

1
2
, i ∈ {1, 2}, then the parameters of the weight σ could

also be chosen equal to zero.
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Proof. First we prove

||Lm,m(f ,w)k(·,y)w||1 ≤ C‖fσ‖∞, (2.2.9)

which implies (2.2.7).
For any fixed y ∈ S, let gm = sgn(Lm,m(f ,w)k(x,y)).
Then,

||Lm,m(f ,w)k(·,y)w||1
=

∫

S

Lm,m(f ,w,x)k(x,y)(x) gm(x) w(x) dx

=

∣∣∣∣∣
m∑

i=1

m∑

j=1

λw1
i λ

w2
j f(ξw1,w2

i,j )
m−1∑

k=0

pk(w1, ξ
w1
i )

m−1∑

r=0

pr(w2, ξ
w2
j )

×
∫

S

pk(w1, x1) pr(w2, x2)k(x,y) gm(x) w(x) dx

∣∣∣∣

=

∣∣∣∣∣
m∑

i=1

m∑

j=1

λw1
i λ

w2
j f(ξw1,w2

i,j )Sm,m(k(·,y)gm,w, ξ
w1,w2

i,j )

∣∣∣∣∣ .

By Hölder inequality

||Lm,m(f ,w)k(·,y)w||1 ≤
m∑

i=1

λw1
i

(
m∑

j=1

λw2
j f

2(ξw1,w2

i,j )

) 1
2

×
(

m∑

j=1

λw2
j S2

m,m

(
k(·,y)gm,w, ξ

w1,w2

i,j

)
) 1

2

≤
(

m∑

i=1

m∑

j=1

λw1
i λ

w2
j f

2(ξw1,w2

i,j )

) 1
2

×
(

m∑

i=1

m∑

j=1

λw1
i λ

w2
j S2

m,m

(
k(·,y)gm,w, ξ

w1,w2

i,j

)
) 1

2

. (2.2.10)

Now, taking into account (2.2.4) and assumptions (2.2.6), we get

(
m∑

i=1

m∑

j=1

λw1
i λ

w2
j S2

m,m(k(·,y)gm,w, ξ
w1,w2

i,j )

) 1
2

=

(∫

S

S2
m,m (k(·,y)gm,w,x) w(x)dx

) 1
2

= ‖Sm,m (k(·,y),w)
√

w‖2 ≤ C‖k(·,y)
√

w‖2. (2.2.11)
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Moreover,

(
m∑

i=1

m∑

j=1

f 2(ξw1,w2

i,j )

) 1
2

≤ ||fσ||∞
(

m∑

i=1

m∑

j=1

λw1
i λ

w2
j

σ(ξw1,w2

i,j )

) 1
2

and taking into account the relationship (see [65, p. 673 (14)])

λ
wj
i ∼ wj(x

wj
i )∆ξ

wj
i , ∆ξ

wj
i = ξ

wj
i+1 − ξ

wj
i , j ∈ {1, 2},

it follows

m∑

i=1

m∑

j=1

λw1
i λ

w2
j

σ(ξw1,w2

i,j )
≤

m∑

i=1

m∑

j=1

∆ξw1
i w1(ξw1

i )

σ1(ξw1
i )

∆ξw2
j w2(ξw2

j )

σ2(ξw2
j )

≤
∫

S

w(x)

σ(x)
dx ≤ C. (2.2.12)

Combining the last inequality and (2.2.11) with (2.2.10), (2.2.9) follows.
In order to prove (2.2.8), start from

∣∣Rm,m(f ,y)
∣∣ ≤

∫

S

∣∣∣[f(x)− P ∗m−1,m−1(x)]k(x,y)
∣∣∣w(x) dx

+

∫

S

∣∣∣Lm,m(f − P ∗m−1,m−1,w,x)k(x,y)
∣∣∣w(x) dx

=: A1(y) + A2(y), (2.2.13)

where P ∗m−1,m−1(x) is the best approximation polynomial of f ∈ Cσ.
By Hölder inequality and taking into account (2.2.5) and (2.2.6) it follows

A1(y) ≤ CEm−1,m−1(f)σ

∫

S

|k(x,y)|w(x)

σ(x)
dx ≤ CEm−1,m−1(f)σ. (2.2.14)

Since by (2.2.9)
A2(y) ≤ CEm−1,m−1(f)σ, (2.2.15)

(2.2.8) follows combining (2.2.14) and (2.2.15) with (2.2.13).

Remark 2.2.3. From (2.2.8) it follows that for m → ∞, the error rate of
decay of the product rule is bounded by that of the error of the best polynomial
approximation of the only function f . This appealing speed of convergence
holds under the “exact”computation of the coefficients in Im(f ,y). Their
(approximate) evaluation is however not a simple task; only for kernels having
special properties it can be performed with a low computational cost. Details
on the computation of the coefficients in (2.2.3) for some kind kernels will be
given in the next Sections.
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Remark 2.2.4. In (2.2.1), we can also consider all the combination of two
one–dimensional kernel functions presented in Subsections 2.1.1 and 2.1.2.
To be more precise, we can also consider bivariate separable kernel functions
of the type

k(x, ω) = ki(x1, ω)kj(x2, ω), i, j = {1, 2, 3, 4}

where ki and kj are given in (2.1.7) and (2.1.10) and the coefficients in (2.2.3)
take the form

Ah,k(ω) = Ah(ω)Ak(ω), (h, k) ∈ Nm
1 ×N1

m,

where

Ah(ω) =

∫ 1

−1

`w1
h (x1)ki(x1, ω)w1(x1)dx1, h ∈ N1

m, i = {1, 2, 3, 4},

Ak(ω) =

∫ 1

−1

`w2
k (x2)kj(x2, ω)w2(x2)dx2, k ∈ N1

m, j = {1, 2, 3, 4}.

In these case, the computation effort is drastically reduced, since the coeffi-
cients above can be approximated by implementing the one–dimensional dila-
tion method or the modified moments (see Subsections 2.1.1 and 2.1.2).

2.2.1 Computation of the 2D-product rule coefficients
for weakly singular kernels

In this Subsection, we give some details for computing the coefficients
in (2.2.3) when the kernel functions is a weakly singular, i.e. we consider
integrals of the type

I(f ,y) =

∫

S

f(x)|x1 − y1|λ1 |x2 − y2|λ2w(x)dx, y = (y1, y2) ∈ Ṡ = (−1, 1)2

where −1 < λ1, λ2 < 0, that means that the kernel function is given by

k1(x,y) = |x1 − y1|λ1|x2 − y2|λ2 . (2.2.16)

In this case, the coefficients in (2.2.3), can be computed “exactly”via modi-
fied moments, as done in Subsection 2.1.1. Infact, the kernel function k1 is
separable, i.e. is a product of two univariate weakly singular kernel fuctions.
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A special case: x2 = x1

In (2.2.16), in the special case x2 = x1, i.e.

k1(x1,y) = |x1 − y1|λ1 |x1 − y2|λ2 , −1 < λ1, λ2 < 0, (2.2.17)

the cubature rule proposed in (2.2.2), it is reduced to

I(f ,y) =
m∑

h=1

m∑

k=1

Ah(y)λw2
k f

(
ξw1,w2

h,k

)
+Rm,m(f ,y, ω)

where

Ah(y) =

∫ 1

−1

`w1
h (x1)|x1 − y1|λ1|x1 − y2|λ2w1(x1)dx1. (2.2.18)

To compute the coefficients Ah(y), we assume, for instance, y1 < y2. The
integral (2.2.18) can be split in the sum of three integrals. To be more precise:

Ah(y) =

∫ y1

−1

`w1
h (x1) (x1 − y1)λ1 (x1 − y2)λ2 w1(x1)dx1

+

∫ y2

y1

`w1
h (x1) (y1 − x1)λ1 (x1 − y2)λ2 w1(x1)dx1

+

∫ 1

y2

`w1
h (x1) (y1 − x1)λ1 (y2 − x1)λ2 w1(x1)dx1

= ν1

∫ 1

−1

`w1
h (Ω1(z, y1)) (1− Ω1(z, y1))α1 (y2 − Ω1(z, y1))λ2 vλ1,β1(z)dz

+ ν2

∫ 1

−1

`w1
h (Ω2(z, y1, y2)) (1− Ω2(z, y1, y2))α1 (1 + Ω2(z, y1, y2))β1

× vλ2,λ1(z)dz

+ ν3

∫ 1

−1

`w1
h (Ω3(z, y2)) (Ω3(z, y2)− y1)λ1 (1 + Ω3(z, y2))β1 vα1,λ2(z)dz,

where

Ω1(z, y1) =
(z + 1) (y1 + 1)

2
− 1, Ω2(z, y1, y2) =

(z + 1) (y2 − y1)

2
+ y1,

Ω3(z, y2) =
(z + 1) (1− y2)

2
+ y2, ν1 =

(
1 + y1

2

)λ1+β1+1

,

ν2 =

(
y2 − y1

2

)λ1+λ2+1

, ν3 =

(
1− y2

2

)λ2+α1+1

.
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At last, we approximate the integrals by using proper Gauss-Jacobi rules
and all the above integrals can be computed with high accuracy with few
Gaussian knots, since the involved integrand functions are very smooth.

Remark 2.2.5. Let us note that, by the linear transformation that maps the
unit square in the unit triangle, we can transform the kernels in (2.2.16) and
(2.2.17) in not-degenerate kernels. To be more precise: let us denote by T
the triangle defined as T = {(u1, u2) : u1 ≥ 0, u2 ≥ 0, u1 + u2 ≤ 1}. For
any x = (x1, x2) ∈ S and u = (u1, u2) ∈ T , we can consider the following
transformations between the square S and the triangle T

x1 = 2(u1 + u2)− 1, x2 =
u1 − u2

u1 + u2

or equivalently

u1 =
1

4
(1 + x1)(1 + x2), u2 =

1

4
(1 + x1)(1− x2).

By these transformations (so called Duffy’s transformation), the edge con-
necting the vertices (−1, 0) and (−1, 1) of the square S, reduced into the
vertex (0, 0) of the triangle T , while the remaining three edges of the square
S, are mapped into an edge of the triangle T . Then, with respect to the kernel
(2.2.16) we obtain integrals of this type

I(f ,v) =

∫

T

f(u) |u1 + u2 − v1 − v2|λ1 |v1u2 − v2u1|λ2 w̃(u) du,

where −1 < λ1, λ2 < 0 and the transformed kernel is given by

k̃1(u,v) = |u1 + u2 − v1 − v2|λ1 |v1u2 − v2u1|λ2 ,
where

u = (u1, u2) ∈ T, v = (v1, v2) ∈ T
and

w̃(u) = (1− u1 − u2)b(u1 + u2)aup−1
1 uq−1

2 ,

with p, q > 0, p+ q + a > 0, b > −1.
With respect to the kernel (2.2.17), we obtain integrals of this type

I(f ,v) =

∫

T

f(u) |u1 + u2 − v1|λ1 |u1 + u2 − v2|λ2 w̃(u)du,

where −1 < λ1, λ2 < 0 and the transformed kernel is given by

k̃1(u,v) = |u1 + u2 − v1|λ1 |u1 + u2 − v2|λ2 ,
where

u = (u1, u2) ∈ T, v = (v1, v2) ∈ T
and w̃(u) is given above.
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2.2.2 Computation of the 2D-product rule coefficients
for nearly and/or highly oscillating kernels

In this Subsection, we give some details for computing the coefficients in
(2.2.3) when the kernel functions are nearly singular and/or highly oscillating,
i.e. we consider, in general, integrals of the type

I(f , ω) =

∫

S

f(x)kj(x, ω)w(x)dx, j ∈ {2, 3, 4}

where the kernel functions can be

k2(x, ω) =
1

(|x− x0|2 + ω−1)λ
, x0 = (s0, t0) ∈ S fixed,

withλ ∈ IR+, 0 6= ω ∈ IR,

k3(x, ω) = g(ωx), 0 6= ω ∈ IR (2.2.19)

g is a bivariate oscillatory “smooth” function

with frequency ω,

k4(x, ω) = k2(x, ω)k3(x, ω).

The graphs in Fig. 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 show the behavior of
some kernels of the types (2.2.19) for some choices of the parameter ω.

Figure 2.1: Kernel k2(x, ω) = (x2
1 + x2

2 + ω−1)−1 with ω = 102.

The numerical evaluation of these integrals, as seen for the univariate
case, presents difficulties for “large”ω, since k2 is “close”to be singular, k3

highly oscillates, while k4 includes both the aforesaid problematic behaviors.
In all the cases, for these kernels the modulus of the derivatives grows as ω
grows.
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Figure 2.2: Section of the Kernel k2(x, ω) = (x2
1 +x2

2 +ω−1)−1 with ω = 102.

Figure 2.3: Kernel k2(x, ω) = (x2
1 + x2

2 + ω−1)−1 with ω = 108.

Figure 2.4: Kernel k3(x, ω) = sin(ωx1x2), with ω = 108.
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Figure 2.5: Kernel k3(x, ω) = cos(ωx1x2), with ω = 108.

Figure 2.6: Kernel k4(x, ω) = sin(ωx1x2)(x2
1 + x2

2 + ω−1)−1 with ω = 104.

Figure 2.7: Section of the Kernel k4(x, ω) = sin(ωx1x2)(x2
1 + x2

2 + ω−1)−1

with ω = 104.

k2-type kernels appear, for instance, in two–dimensional nearly singular
BEM integrals on quadrilateral elements (see, for instance, [31, 62, 76]).
Highly oscillating kernels of the type k3 are useful in computational methods
for oscillatory phenomena in science and engineering problems, including
wave scattering, wave propagation, quantum mechanics, signal processing
and image recognition (see [30] and references therein). The combination of
the two aspects, i.e. integrals with nearly singular and oscillating kernels
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appear for instance in the solution of problems of propagation in uniform
waveguides with nonperfect conductors (see [19] and the references therein).

Here we propose a product cubature formula obtained by replacing the
“regular”function f by a bivariate Lagrange polynomial based on a set of
knots chosen such that the stability and the convergence of the rule are as-
sured. Despite the simplicity of these formulas, the computation of their
coefficients is not yet an easy task. Analogously to the univariate case, in
order to compute the corresponding coefficients one needs to determine mod-
ified moments by means of recurrence relations, and to examine the stability
of these latter (see, for instance, [26, 41, 53, 73, 81]). This approach, however,
does not appear feasible for multivariate not degenerate kernels.

Here we present a unique approach for computing the coefficients of the
aforesaid cubature rule when k belongs to the types (2.2.19). Such method,
that we call 2D-dilation method, is based on a preliminary “dilation”of the
domain and, by suitable transformations, on the successive reduction of the
initial integral to the sum of ones on S again. These manipulations “relax”in
some sense the “too fast”behavior of k as ω grows. For a correct use of
the 2D-dilation method, which could be also applied directly for computing
integrals with kernels of the kind (2.2.19), we determine conditions under
which the rule is stable and convergent.

Both the rules have advantages and drawbacks. The product integration
rule requires a smaller number of evaluations of the integrand function f ,
while the number of samples involved in the 2D-dilation rule increases as
ω increases. On the other hand, the product rule involves the computation
of m2 coefficients, which are integrals, and for this reason, in general its
computational cost can be excessively high. However, as we will show, this
cost can be drastically reduced when the kernels present some symmetries.

We point out that many of the existing methods on the approximation
of multivariate integrals are reliable for very smooth functions (see, for in-
stance, [4, 13, 14, 30, 78, 83] and references therein). Some of them treat
degenerate kernels [77], others require changes of variable generally not right
for weighted integrands [30, 31]. Our procedure allows to compute not de-
generate weighted integrals, with oscillating and/or nearly singular kernels.

To perform the evaluation of integral (2.2.1), the main idea is to dilate
the integration domain S by a change of variables in order to relax in some
sense the “too fast”behavior of k when ω grows. Successively the new domain
Ω is divided into S2 squares {Si,j}(i,j)∈NS

1 ×NS
1

and each integral is reduced

into S one more time. At last, the integrals are approximated by suitable
Gauss-Jacobi rules. For one–dimensional unweighted integrals with a nearly
singular kernel in Love’s equation [71] and for highly oscillating kernels in
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[17], a “dilation”technique has been developed.
Here we describe a dilation method for weighted bivariate integrals having

nearly singular kernels, highly oscillating kernels and also for their composi-
tion.

The 2D-dilation formula

Below, for the convenience of the reader, we will give the details of the
computation of the coefficients Ah.k(y, ω), for a general integral of the type

I(F , ω) =

∫

S

F (x)k(x, ω)w(x)dx, ω ∈ IR, F ∈ Cσ,

where k(x, ω) is one of the kernels in (2.2.19).

In what follows we assume ω > 0. Setting ω1 = ω
1
2 , by the changes of

variables
x1 =

η1

ω1

, x2 =
η2

ω1

,

and assuming that η = (η1, η2) ∈ [−ω1, ω1]2, we get

I (F , ω) =
1

ω2
1

∫

[−ω1,ω1]2
F

(
η

ω1

)
k

(
η

ω1

, ω

)
w

(
η

ω1

)
dη.

and choosing d ∈ IR+ such that S = 2ω1

d
∈ IN, we have

I (F , ω) = τ0

S∑

i=1

S∑

j=1

∫

Si,j

F

(
η

ω1

)
k

(
η

ω1

, ω

)
w

(
η

ω1

)
dη, (2.2.20)

where τ0 = 1
ω2
1

and

Si,j : [−ω1 + (i− 1)d,−ω1 + id]× [−ω1 + (j − 1)d,−ω1 + jd] ,

∀(i, j) ∈ NS
1 ×NS

1 .

Then, by using the following invertible linear maps

Ψij : Si,j → S

defined as

x = Ψij(η) = Ψij(η1, η2)

:= (Ψi(x1),Ψj(x2))

=

(
2

d
(η1 + ω1)− (2i− 1),

2

d
(η2 + ω1)− (2j − 1)

)
,
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we can remap each integral into the unit square S. In fact, by making in
(2.2.20) the following change of variables

η = Ψ−1
ij (x) = Ψ−1

ij (x1, x2)

:=
(
Ψ−1
i (x1),Ψ−1

j (x2)
)

=

((
x1 + 1

2

)
d− ω1 + (i− 1)d,

(
x2 + 1

2

)
d− ω1 + (j − 1)d

)

we have

I(F , ω) =
d2τ0

4

S∑

i=1

S∑

j=1

∫

S

F i,j(x)ki,j(x, ω)wi,j(x)dx

=
d2τ0

4

{
τ1

∫

S

F 1,1(x)k1,1(x, ω)U1(x)u2(x1)u4(x2)dx

+ τ2

∫

S

F 1,S(x)k1,S(x, ω)U2(x)u2(x1)u3(x2)dx

+ τ3

∫

S

F S,1(x)kS,1(x, ω)U3(x)u1(x1)u4(x2)dx

+ τ4

∫

S

F S,S(x)kS,S(x, ω)U4(x)u1(x1)u3(x2)dx

+ τ1

S−1∑

j=2

∫

S

F 1,j(x)k1,j(x, ω)U5,j(x)u2(x1)dx

+ τ2

S−1∑

i=2

∫

S

F i,S(x)ki,S(x, ω)U6,i(x)u3(x2)dx

+ τ1

S−1∑

i=2

∫

S

F i,1(x)ki,1(x, ω)U7,i(x)u4(x2)dx

+ τ3

S−1∑

j=2

∫

S

F S,j(x)kS,j(x, ω)U8,j(x)u1(x1)dx

+ τ1

S−1∑

i=2

S−1∑

j=2

∫

S

F i,j(x)ki,j(x, ω)U9,i,j(x)dx

}
,

where

F i,j(x) := F

(
Ψ−1
ij (x)

ω1

)
, ki,j(x, ω) := k

(
Ψ−1
ij (x)

ω1

, ω

)
,
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wi,j(x) := w

(
Ψ−1
ij (x)

ω1

)
,

U1(x) = vα1,0

(
Ψ−1

1 (x1)

ω1

)
vα2,0

(
Ψ−1

1 (x2)

ω1

)
,

U2(x) = vα1,0

(
Ψ−1

1 (x1)

ω1

)
v0,β2

(
Ψ−1
S (x2)

ω1

)
,

U3(x) = v0,β1

(
Ψ−1
S (x1)

ω1

)
vα2,0

(
Ψ−1

1 (x2)

ω1

)
,

U4(x) = v0,β1

(
Ψ−1
S (x1)

ω1

)
v0,β2

(
Ψ−1
S (x2)

ω1

)
,

U5,j(x) = vα1,0

(
Ψ−1

1 (x1)

ω1

)
w2

(
Ψ−1
j (x2)

ω1

)
,

U6,i(x) = v0,β2

(
Ψ−1
S (x2)

ω1

)
w1

(
Ψ−1
i (x1)

ω1

)
,

U7,i(x) = vα2,0

(
Ψ−1

1 (x2)

ω1

)
w1

(
Ψ−1
i (x1)

ω1

)
,

U8,j(x) = v0,β1

(
Ψ−1
S (x1)

ω1

)
w2

(
Ψ−1
j (x2)

ω1

)
,

U9,i,j(x) = w1

(
Ψ−1
i (x1)

ω1

)
w2

(
Ψ−1
j (x2)

ω1

)
,

and

τ1 =

(
d

2ω1

)β1+β2

, τ2 =

(
d

2ω1

)β1+α2

, τ3 =

(
d

2ω1

)α1+β2

, τ4 =

(
d

2ω1

)α1+α2

,

u0 = v0,0, u1 = vα1,0, u2 = v0,β1 , u3 = vα2,0, u4 = v0,β2 .

Then, approximating each integral by the proper Gauss-Jacobi rule depend-
ing on the couple of weight functions arising in the integral, according to the
notation in (1.2.16), we get

I(F , ω) =
d2τ0

4

{
τ1G(u2,u4)

m,m (F 1,1k1,1U1) + τ2G(u2,u3)
m,m (F 1,Sk1,SU2)

+ τ3G(u1,u4)
m,m (F S,1kS,1U3) + τ4G(u1,u3)

m,m (F S,SkS,SU4)
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+ τ1

S−1∑

j=2

G(u2,u0)
m,m (F 1,jk1,jU5,j) + τ2

S−1∑

i=2

G(u0,u3)
m,m (F i,Ski,SU6,i)

+ τ1

S−1∑

i=2

G(u0,u4)
m,m (F i,1ki,1U7,i) + τ3

S−1∑

j=2

G(u1,u0)
m,m (F S,jkS,jU8,j)

+ τ1

S−1∑

i=2

S−1∑

j=2

G(u0,u0)
m,m (F i,jki,jU9,i,j)

}

=: Σm(F , ω) +RΣ
m(F , ω) (2.2.21)

where the cubature formula Σm(F , ω) has been obtained by applying suitable
Gauss-Jacobi cubature rules in order to evaluate the S2 integrals in (2.2.21)
and

RΣ
m(F , ω) = I(F , ω)−Σm(F , ω)

is the remainder term.

Remark 2.2.6. To compute the coefficients Ah,k(ω), we use suitable Gaus-
sian cubature rules according to the different couples of Jacobi weigths ap-
pearing in the integrals in (2.2.21). All the details are reported in Table 2.2.

Table 2.2: Different couples of weigths appearing in the integrals in (2.2.21).
Squares Couples of weigths
S1,1 (u2(x1), u4(x2)) =

(
v0,β1(x1), v0,β2(x2)

)

S1,S (u2(x1), u3(x2)) =
(
v0,β1(x1), vα2,0(x2)

)

SS,1 (u1(x1), u4(x2)) =
(
vα1,0(x1), v0,β2(x2)

)

SS,S (u1(x1), u3(x2)) = (vα1,0(x1), vα2,0(x2))

{S1,j}S−1
j=2 (u2(x1), u0(x2)) =

(
v0,β1(x1), v0,0(x2)

)

{Si,S}S−1
i=2 (u0(x1), u3(x2)) = (v0,0(x1), vα2,0(x2))

{Si,1}S−1
i=2 (u0(x1), u4(x2)) =

(
v0,0(x1), v0,β2(x2)

)

{SS,j}S−1
j=2 (u1(x1), u0(x2)) = (vα1,0(x1), v0,0(x2))

{Si,j}S−1
i,j=2 (u0(x1), u0(x2)) = (v0,0(x1), v0,0(x2))

We state now a result about the stability and the convergence of the rule
Σm(F , ω) defined in (2.2.21).
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Theorem 2.2.7. Let w be defined in (1.2.1) and let k be defined in (2.2.19)
with g ∈ C∞ (Ω) and Ω ≡ [−ω1, ω1]2.

Then, if there exists a σ as in (1.2.2) such that F ∈ Cσ and the following
assumption is satisfied

0 ≤ γi < min {1, αi + 1} , 0 ≤ δi < min {1, βi + 1} , i ∈ {1, 2} , (2.2.22)

then
|Σm(F , ω)| ≤ C‖Fσ‖∞, 0 < C 6= C(F ,m). (2.2.23)

Moreover, for any F ∈W r
σ,∞, for S ≥ 2, we get

|RΣ
m(F , ω)| ≤ C

(
d

2

(
1

ω
+ 1

))r Nr(F ,k)

mr
(2.2.24)

where

Nr(F ,k) = ‖Fσ‖∞ + max
h∈N2

1

max
s∈Nr

0

(∥∥∥∥
∂r−sk(·, ω)

∂xr−sh

∥∥∥∥
∞
×
∥∥∥∥
∂sF (·, ω)

∂xsh

∥∥∥∥
∞

)

(2.2.25)
and 0 < C 6= C(F ,m).

Proof. First we prove (2.2.23). Starting from expression (2.2.21), we obtain
the following bound:

|Σm(F , ω)| ≤ d2τ0

4
U1 max

x∈S
|F (x)k(x, ω)σ(x)|

{
τ1

m∑

r=1

m∑

s=1

λu2r λ
u4
s

σ(ξu2,u4r,s )

+ τ2

m∑

r=1

m∑

s=1

λu2r λ
u3
s

σ(ξu2,u3r,s )
+ τ3

m∑

r=1

m∑

s=1

λu1r λ
u4
s

σ(ξu1,u4r,s )

+ τ4

m∑

r=1

m∑

s=1

λu1r λ
u3
s

σ(ξu1,u3r,s )
+ τ1

S−1∑

j=2

m∑

r=1

m∑

s=1

λu2r λ
u0
s

σ(ξu2,u0r,s )

+ τ2

S−1∑

i=2

m∑

r=1

m∑

s=1

λu0r λ
u3
s

σ(ξu0,u3r,s )
+ τ1

S−1∑

i=2

m∑

r=1

m∑

s=1

λu0r λ
u4
s

σ(ξu0,u4r,s )

+ τ3

S−1∑

j=2

m∑

r=1

m∑

s=1

λu1r λ
u0
s

σ(ξu1,u0r,s )
+ τ1

S−1∑

i=2

S−1∑

j=2

m∑

r=1

m∑

s=1

λu0r λ
u0
s

σ(ξu0,u0r,s )

}
,

where

U1 = max

(
‖U1‖, ‖U2‖, ‖U3‖, ‖U4‖,max

j∈NS
1

(‖U5,j‖, ‖U6,j‖, ‖U7,j‖, ‖U8,j‖) ,

max
i∈NS

1 ,j∈NS
1

‖U9,i,j‖
)
.
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Using (2.2.12), we have

|Σm(F , ω)| ≤ CU1‖Fk(·, ω)σ‖∞
{ ∑

k=0,1,2

∑

j=0,3,4

∫

S

uk(x1)uj(x2)

σ(x1, x2)
dx1dx2

}

and taking into account the assumption (2.2.22) it follows

|Σm(F , ω)| ≤ C‖Fσ‖∞,
and therefore (2.2.23) follows.

Now we prove (2.2.24). By (2.2.21), taking into account the Proposition
1.2.4, under the assumption (2.2.22), we have

|RΣ
m(F , ω)| ≤ C

{
E2m−1,2m−1(F 1,1k1,1U1)σ + E2m−1,2m−1(F 1,1k1,SU2)σ

+E2m−1,2m−1(F S,1kS,1U3)σ +
S−1∑

j=2

E2m−1,2m−1(F 1,jk1,jU5,j)σ

+
S−1∑

i=2

E2m−1,2m−1(F i,Ski,SU6,i)σ +
S−1∑

i=2

E2m−1,2m−1(F i,1ki,1U7,i)σ

+
S−1∑

j=2

E2m−1,2m−1(F S,jkS,jU8,j)σ +
S−1∑

i=2

S−1∑

j=2

E2m−1,2m−1(F i,jki,jU9,i,j)σ

+E2m−1,2m−1(F S,SkS,SU4)σ

}
.

By inequality (1.2.5) we get

|RΣ
m(F , ω)| ≤ C

{
U

S∑

j=1

S∑

i=1

Em−1,m−1(F i,jki,j)σ

+
M̃max

r

mr

S∑

j=1

S∑

i=1

‖F i,jki,jσ‖∞
}

(2.2.26)

where

U = max

(
‖U1σ‖, ‖U2σ‖, ‖U3σ‖, ‖U4σ‖,

max
j∈Nm

1

(‖U5,jσ‖, ‖U6,jσ‖, ‖U7,jσ‖, ‖U8,jσ‖), max
i∈Nm

1 ,j∈Nm
1

‖U9,i,jσ‖
)
≤ C
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and

M̃max
r := max

{
max
1≤k≤4

Mr(Uk), max
2≤i≤S−1

[
Mr(U5,i),Mr(U6,i),Mr(U7,i),

Mr(U8,i), max
2≤j≤S−1

Mr(U9,i,j)
]}

≤ C
(

d

2ω1

)r
U .

Since for h ∈ {1, 2} and (i, j) ∈ NS
1 ×NS

1

∣∣∣∣
∂r

∂xrh
F i,j(x1, x2)ki,j(x1, x2, ω)

∣∣∣∣ ≤
r∑

s=0

(
r

s

) ∣∣∣∣
∂s

∂xsh
F i,j(x1, x2)

∣∣∣∣
∣∣∣∣
∂r−s

∂xr−sh

ki,j(x1, x2, ω)

∣∣∣∣ ,

we have
∣∣∣∣
∂r

∂xrh
F i,j(x1, x2)ki,j(x1, x2, ω)

∣∣∣∣ϕh(xh)rσ(x1, x2)

≤ max
s∈Nr

0

{∥∥∥∥
∂sF

∂xsh
ϕrhσ

∥∥∥∥
∞

∥∥∥∥
∂r−sk(·, ω)

∂xr−sh

∥∥∥∥
∞

} r∑

s=0

(
r

s

)(
d

2ω1

)s(
d

2

)r−s

= max
s∈Nr

0

{∥∥∥∥
∂sF

∂xsh
ϕrhσ

∥∥∥∥
∞

∥∥∥∥
∂r−sk(·, ω)

∂xr−sh

∥∥∥∥
∞

}(
d

2

)r (
1

ω1

+ 1

)r
,

and therefore, taking into account (1.2.4), by (2.2.26) it follows

|RΣ(F , ω)| ≤ C
mr

{
U max
h∈N2

1

max
s∈Nr

0

(∥∥∥∥
∂sF

∂xsh
ϕrhσ

∥∥∥∥
∞

∥∥∥∥
∂r−sk(·, ω)

∂xr−sh

∥∥∥∥
∞

)

×
(
d

2

)r (
1

ω1

+ 1

)r
+ M̃max

r ‖Fkσ‖∞
}

≤ C
mr
Nr(F ,k)

(
d

2

)r (
1

ω1

+ 1

)r

where Nr(F ,k) is defined in (2.2.25) and the thesis follows.

By using the 2D-dilation formula in (2.2.21) of degree m with F = `w1,w2

h,k

where we remember that `w1,w2

h,k = `w1
h `

w2
k , we have

Ah,k(ω) =

∫

S

`w1,w2

h,k (x)ki,j(x, ω)w(x)dx (2.2.27)

= Σm(`w1,w2

h,k , ω) +RΣ(`w1,w2

h,k , ω).

About the rate of convergence of (2.2.27) we state the following
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Theorem 2.2.8. Under the hypotheses of Theorem 2.2.7, for m > d
2
e

1
ω1 and

for d ≥ 2, ω1 ≥ 1, the following error estimate holds

|RΣ
m,m(`w1,w2

h,k , ω)| ≤ C T2m(k) ·





1

mm+1−µ if αi, βi > −
1

2

logm

mm+1
if αi, βi ≤ −

1

2

where C 6= C(m,ω), i ∈ {1, 2} and

T2m(k) = max
h∈N2

1

max
s∈N2m

m+1

∥∥∥∥
∂sk(·, ω)

∂xsh

∥∥∥∥
∞
,

µ = max{αi +
1

2
− 2γi, βi +

1

2
− 2δi}. (2.2.28)

Proof. In order to use Theorem 2.2.7 with r = 2m, we have to estimate
N2m(`w1,w2

h,k ,k). By iterating the weighted Bernstein inequality (see for in-
stance [47, p.170]) with i ∈ {1, 2}

‖(`wih )(m−1)ϕm−1
i σi‖∞ ≤ C mm−1‖`wih σi‖∞

and taking into account that under the hypotheses (2.2.6) [47, Th.4.3.3, p.274
and p.256]

max
|x|≤1

m∑

s=1

|`wis (x)| σi(x)

σi(ξ
wi
s )

≤ C ·




mµ if αi, βi > −1

2

logm if αi, βi ≤ −1
2

,

with µ defined in (2.2.28), we can conclude, in the worst case, that

‖(`wih )(m−1)ϕm−1
i σi‖∞ ≤ C mm−1‖`wih σi‖∞ ≤ C mm−1+µ, C 6= C(m).

Hence,

N2m(`w1,w2

h,k ,k) ≤ C mm−1+µ max
h∈N2

1

max
s∈Nm−1

0

∥∥∥∥
∂2m−sk(·, ω)

∂x2m−s
h

∥∥∥∥
∞

and by (2.2.24) and using
(
d

2m

)2m(
1

ω1

+ 1

)2m

≤ e
−2m logm

(
1− log(d/2)

logm
− 1
ω1 logm

)
≤ 1

m2m

for m > d
4
e

1
ω1 , the thesis follows.

Following the previous work-scheme, the evaluation of the coefficient Ah,k
requires (m2S)2 long operations, with S increasing as ω increases. However,
as the numerical tests will show, the implementation of the product rule
for smooth integrands functions f and independently on the choice of the
parameter ω, will give accurate results for “small”values of m.
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2.2.3 Cases of complexity reduction

In some cases the computational complexity in computing the product
rule can be drastically reduced. For all the kernel functions kj, j ∈ {2, 3, 4} ,
defined in (2.2.19), when w is a product of two Gegenbauer weights, it is
possible to make the similar complexity reduction as shown in Subsection
2.1.3, mutatis mutandis. In particular:

• if kj(x, ω), j ∈ {2, 3, 4} , is symmetric through the axes x1 = 0 and
x2 = 0, i.e.

kj(−x, ω) = kj(x, ω), j ∈ {2, 3, 4} ,
and w(x) = vα1,α1(x1)vα2,α2(x2), it is

Ah,k(ω) = Ah,m−k+1(ω), h ∈ Nm
1 , k ∈ NM

1 ,

Ah,k(ω) = Am−h+1,k(ω), h ∈ Nm
1 , k ∈ NM

1 ,

and the global computational cost (shortly CC) has a reduction of 75%.
If in addition α1 = α2, i.e. w(x) = vα1,α1(x1)vα1,α1(x2), since it is also

Ah,k(ω) = Ah,k(ω), (h, k) ∈ Nm
1 ×Nm

1 ,

a reduction of 87.5% is achieved;

• in the case kj(x, ω), j ∈ {2, 3, 4} , is odd with respect to both the coor-
dinate axes, i.e.

kj(−x, ω) = −kj(x, ω), j ∈ {2, 3, 4} ,

and w(x) = vα1,α1(x1)vα2,α2(x2), it is

Ah,k(ω) = −Ah,m−k+1(ω), h ∈ Nm
1 , k ∈ NM

1 ,

Ah,k(ω) = −Am−h+1,k(ω), h ∈ Nm
1 , k ∈ NM

1 ,

and the CC has a reduction of 75%. If, in addition, α1 = α2, the
following additional relations hold

Ah,k(ω) = Ah,k(ω), h, k ∈ Nm
1 ,

and the CC has a reduction of 87, 5%.
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2.2.4 The choice of the parameter d

Now we want to discuss briefly how to choose the number S2 of the
domain subdivisions in the 2D-dilation rule, or equivalently how to set the
length d of the squares side, since S = 2ω1

d
. By the error estimate (2.2.24),

assuming negligible the contribute of Nr(F ,k) and fixing the desired com-
putational accuracy toll, m and S are inversely proportional. Therefore,
whenever let be useful to have m as small as possible, we have to take larger
S. We point out that this behavior depends on the slower rate of convergence
of the involved Gauss-Jacobi cubature rules when the “stretching”parameter
S is “too small”or d is too large.

Of course, the previous considerations are not yet conclusive on the choice
of S. However, by numerical evidence, a good “compromise”to reduce m
seems to be S = bω1c and therefore d = 2ω1

S
∼ 2. To show this behavior,

we propose the graphic of the relative errors achieved for some values of d
chosen between 2 and ω1, referred to the first two numerical tests produced
in the Section 2.3 (see Figures 2.8,2.9).

2.2.5 A comparison between product and 2D-dilation
formula

In order to explain the advantage of the product integration rule with
respect to the straightforward approach by 2D-dilation method, consider the
following bivariate Fredholm equation

F (y)− µ
∫

S

F (x)k(x,y, ω)w(x)dx = g(y), µ ∈ IR, y = (y1, y2) ∈ S,
(2.2.29)

where g is a known function, k(x,y, ω) is one of the kernels in (2.2.19) ap-
propriately readjusted, now also dependent on y. If we approximate the
solution F by a Nyström method based on the product cubature rule pro-
posed in (2.2.2), we have to solve an m2-system of linear equation, where m
doesn’t depend on ω. The situation is quite different whenever we follow a
dilation procedure as well as in Subsection 2.2.2. Indeed, by mapping the
integration domain into Ω ≡ [−ω1, ω1]2, by partitioning it into S2 squares
{Si,j}(i,j)∈NS1 ×NS1 and by the successive reduction to square S one more time,
the following system of integral equations is obtained

F h,k(y) − τ

S∑

i=1

S∑

j=1

∫

S

F i,j(x)ki,j,h,k(x,y, ω)wi,j(x)dx = Gh,k(y),

(h, k) ∈ NS
1 ×NS

1 ,
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Figure 2.8: Errors behaviors for different choices of d in Example 2.3.8.

Figure 2.9: Errors behaviors for different choices of d in Example 2.3.9.

where, for (h, k) ∈ NS
1 ×NS

1 and (i, j) ∈ NS
1 ×NS

1 ,

ψ−1
` (·) =

( ·+ 1

2

)
d− ω1 + (`− 1)d, ` = 1, 2, . . . ,S,

F h,k(x) := F

(
ψ−1
h (x1)

ω1

,
ψ−1
k (x2)

ω1

)
, Gh,k(y) := g

(
ψ−1
h (y1)

ω1

,
ψ−1
k (y2)

ω1

)
,

ki,j,h,k(x,y, ω) := k

(
ψ−1
i (x1)

ω1

,
ψ−1
j (x2)

ω1

,
ψ−1
h (y1)

ω1

,
ψ−1
k (y2)

ω1

, ω

)
,

wi,j(x) := w1

(
ψ−1
i (x1)

ω1

)
w2

(
ψ−1
j (x2)

ω1

)
, τ =

d2µ

4ω2
1

.
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The system of S2 integral equations is equivalent to the equation (2.2.29).
Hence, if we use a Nyström method based on 2D-dilation formula, a sys-
tem of linear equation of order (Sm)2 is generated, where S increases with
increasing ω. We point out that it is required the collectively compactness
of the involved sequences of discrete operators to assure the convergence of
both methods.

On the other hand, as we will see in Chapter 3 in a particular case (Love’s
integral equation), applying the product cubature formula proposed in (2.2.2)
and computing the coefficients as done in Subsection 2.2.2, we obtain a clas-
sical Nyström method and solve only one finite dimensional equation instead
of a system of finite dimensional equations (in the one-dimensional case see
[71]).

We conclude by proposing a comparison between the proposed rules with
respect to the time complexity. The following Tables 2.3, 2.4 contain the
computational times (in seconds) obtained by implementing the product rule
Im(f ,y) and the 2D-dilation rule Σm(f ,y, ω) for the integrals given in Ex-
amples 2.3.8 and 2.3.9 of the next Section 2.3. For each of them the times
have been computed for ω = 102, 104, 106, by implementing both the algo-
rithms in Matlab version R2016a, on a PC with a Intel Core i7-2600 CPU
3.40GHz and 8GB of memory. We point out that times related to the product
formula include those spent for computing the coefficients {Ah,k}(h,k)∈Nm

1 ×Nm
1

.

Table 2.3: Times for Im(f ,y) and Σm(f ,y, ω) in Example 2.3.8.
ω = 102 ω = 104 ω = 106

m Im Σm Im Σm Im Σm

4 0.016 0.015 0.85 0.63 76.19 65.44
8 0.023 0.020 1.22 0.81 120.74 89.66
16 0.036 0.029 2.22 1.98 220.61 167.47
32 0.055 0.047 4.49 2.96 451.06 295.76

Table 2.4: Times for Im(f ,y) and Σm(f ,y, ω) in Example 2.3.9.
ω = 102 ω = 104 ω = 106

m Im Σm Im Σm Im Σm

4 0.023 0.018 0.852 0.669 79.33 65.08
8 0.025 0.024 1.208 1.124 123.81 109.97
16 0.036 0.033 2.219 2.155 229.61 217.20
32 0.068 0.072 4.449 4.630 458.91 461.75

As one can see, the timings required by the product rule are a little bit
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longer, but not too much, than those required by the 2D-dilation formula,
till m is small. However, in the Example 2.3.8, with m = 32 and for all the
values of ω, the timings required by the product rule are a little bit smaller
than those required by the 2D-dilation rule . Indeed, 2D-dilation formula
requires (mS)2 samples of the integrand function f , where S increases on ω.
Thus the global time strongly depend on the computing time of the function.

In Example 2.3.9 the time complexity for evaluating f(x) = log
15
2 (x1 + x2 +

4) is longer than the time for computing f(x) = ex1x2 in Example 2.3.8.
This variability cannot happen in the product rule, where the number m of
function samples is independent of ω. In any case, since in the product rule
the main effort is mainly due to the computation of its coefficients, it should
be preferable to use it when the kernels present some symmetry properties,
by virtue of them, the number of the coefficients is drastically reduced (see
Subsection 2.2.3).

2.3 Numerical Tests

Before concluding this Chapter, we present some examples to test the
quadrature and cubature rules proposed in Sections 2.1 and 2.2, for different
choices of kernel functions.

We point out that all the computations were performed in double-machine
precision (eps ≈ 2.22044e − 16) and in the tables the symbol “–”will mean
that machine precision has been achieved.

Univariate case

For the univariate kernel functions presented in (2.1.7) and (2.1.10), we
compare our results with those obtained by other methods. To be more pre-
cise, we approximate each integral by the product quadrature rule Im(f, y)
presented in (2.1.1), for increasing values of m, choosing three different values
of y or ω and computing the coefficients via 1D-dilation rule. In each example
we state also the numerical results obtained by the univariate Gauss-Jacobi
quadrature rule (shortly 1D-GJ-rule). Furthermore, for the kernel functions
presented in (2.1.10), we report also the results achieved by the straightfor-
ward application of the 1D-dilation rule Σm(f, ω) (shortly 1D-d-rule).

Example 2.3.1. Let us consider the integral

I(f, y) =

∫ 1

−1

ex |x− y|− 1
3 v

1
2
,0(x) dx
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where

f(x) = ex, k1(x, y) = |x− y|− 1
3 , λ = −1

3
, w(x) = v

1
2
,0(x).

The integral contains a weakly singular-type kernel and the function f ∈
Wr

σ,∞ for any r ≥ 1, with σ = 1. In Table 2.5, the results obtained by
implementing the product quadrature rule presented in (2.1.1), show that the
machine precision is attained at m = 16 for any choice of y. As we can
expect, by using the 1D-GJ-rule, we have poor results (Table 2.6).

Table 2.5: Example 2.3.1: results by the product rule Im(f, y).
m y = 3

20 y = 17
60 y = 1

10

4 2.808e+ 00 2.828e+ 00 2.7946e+ 00
8 2.80894332e+ 00 2.8282151e+ 00 2.79564352e+ 00
16 2.80894332230038e+ 00 2.828215104216676e+ 00 2.79564352017323e+ 00

Table 2.6: Example 2.3.1: results by 1D-GJ-rule.
m y = 3

20 y = 17
60 y = 1

10

4 2.7e+ 00 3.3e+ 00 2.5e+ 00
8 3.3e+ 00 2.5e+ 00 2.9e+ 00
16 2.6e+ 00 2.8e+ 00 2.7e+ 00
32 2.7e+ 00 2.7e+ 00 2.7e+ 00
64 2.7e+ 00 2.7e+ 00 2.7e+ 00
128 2.7e+ 00 2.7e+ 00 2.7e+ 00
256 2.8e+ 00 2.8e+ 00 2.7e+ 00
512 2.80e+ 00 2.8e+ 00 2.8e+ 00
1024 2.80e+ 00 2.81e+ 00 2.7e+ 00

Example 2.3.2. Let us consider the integral

I(f, ω) =

∫ 1

−1

log(x+ 121)

x2 + ω−1
v

1
4
, 1
4 (x) dx

where

f(x) = log(x+ 121), k2(x, ω) =
1

x2 + ω−1
, λ = 1, w(x) = v

1
4
, 1
4 (x).

The integral contains a nearly singular-type kernel and the function f ∈
Wr

σ,∞ for any r ≥ 1, with σ = 1. In Table 2.7, the results obtained by
implementing the product quadrature rule presented in (2.1.1), show that the
machine precision is attained at m = 16 for any choice of ω. A similar
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Table 2.7: Example 2.3.2: results by the product rule Im(f, y).
m ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 1.49e+ 03 1.506e+ 05 1.506e+ 07
8 1.4941049e+ 03 1.5065162e+ 05 1.5066407e+ 07
16 1.49410501136664e+ 03 1.50651628940186e+ 05 1.50664077712722e+ 07

Table 2.8: Example 2.3.2: results by 1D-d-rule.
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 1.49e+ 03 1.506e+ 05 1.506e+ 07
8 1.49410e+ 03 1.5065162e+ 05 1.5066407e+ 07
16 1.49410501136664e+ 03 1.50651628940186e+ 05 1.50664077712722e+ 07

Table 2.9: Example 2.3.2: results by 1D-GJ-rule.
m ω = 102 ω = 104 ω = 106

4 5.5e+ 01 5.5e+ 01 5.5e+ 01
8 1.1e+ 02 1.1e+ 02 1.1e+ 02
16 2.3e+ 02 2.3e+ 02 2.3e+ 02
32 4.6e+ 02 4.7e+ 02 4.7e+ 02
64 8.4e+ 02 9.5e+ 02 9.5e+ 02
128 1.2e+ 03 1.9e+ 03 1.9e+ 03
256 1.4e+ 03 3.8e+ 03 3.8e+ 03
512 1.4939e+ 03 7.7e+ 03 7.7e+ 03
1024 1.4941050e+ 03 1.5e+ 04 1.5e+ 04

behavior presents the 1D-d-rule presented in (2.1.12), whose results are set in
Table 2.8. Finally, as we can expect, by using the 1D-GJ-rule, as ω increases
a progressive loss of precision is detected, until results become very poor (Table
2.9).

Example 2.3.3. Let us consider the integral

I(f, ω) =

∫ 1

−1

sinh(x) sin(ωx) dx

where
f(x) = sinh(x), k3(x, ω) = sin(ωx), w(x) = v0,0(x).

The integral contains a highly oscillating-type kernel and the function f ∈
Wr

σ,∞ for any r ≥ 1, with σ = 1. In Table 2.10, the results obtained by
implementing the product quadrature rule presented in (2.1.1), show that the
machine precision is attained at m = 16 for any choice of ω. A similar
behavior presents the 1D-d-rule presented in (2.1.12), whose results are set in
Table 2.11. Finally, as we can expect, by using the 1D-GJ-rule, as ω increases
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Table 2.10: Example 2.3.3: results by the product rule Im(f, y).
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 −2.04e− 02 2.23e− 04 −2.19e− 06
8 −2.042219e− 02 2.237853e− 04 −2.201745e− 06
16 −2.04221937438933e− 02 2.23785391071713e− 04 −2.20174551699787e− 06

Table 2.11: Example 2.3.3: results by 1D-d-rule.
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 −2.042219e+ 02 2.237853e+ 04 −2.201745e− 06
8 −2.04221937438933e+ 02 2.237853910717e+ 04 −2.201745516997e− 06
16 −2.04221937438933e+ 02 2.23785391071713e+ 04 −2.20174551699787e− 06

Table 2.12: Example 2.3.3: results by 1D-GJ-rule.
m ω = 102 ω = 104 ω = 106

4 −4.0e− 01 8.5e− 02 1.2e− 02
8 6.10− 02 1.6e− 01 2.0e− 01
16 −1.9e− 01 3.1e− 01 −6.8e− 02
32 −1.0e− 01 2.3e− 02 −2.3e− 01
64 −2.0422e− 02 1.2e− 01 1.3e− 01
128 −2.04221937438e− 02 −2.9e− 02 −3.8e− 02
256 −2.04221937438e− 02 −4.9e− 02 2.1e− 02
512 −2.04221937438e− 02 −4.9e− 02 −6.0e− 03
1024 −2.042219374389e− 02 −3.2e− 02 5.1e− 02

a progressive loss of precision is detected, until results become completely
wrong (Table 2.12).

Example 2.3.4. Let us consider the integral

I(f, ω) =

∫ 1

−1

cosh(x) cos(ωx) dx

where
f(x) = cosh(x), k3(x, ω) = cos(ωx), w(x) = v0,0(x).

Also in this case, the integral contains a highly oscillating-type kernel and
the function f ∈ Wr

σ,∞ for any r ≥ 1, with σ = 1. In Table 2.13, the results
obtained by implementing the product quadrature rule presented in (2.1.1),
show that the machine precision is attained at m = 16 for any choice of ω.
A similar behavior presents the 1D-d-rule presented in (2.1.12), whose results
are set in Table 2.14. Finally, as we can expect, by using the 1D-GJ-rule,
as ω increases a progressive loss of precision is detected, until results become
completely wrong (Table 2.15).
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Table 2.13: Example 2.3.4: results by the product rule Im(f, y).
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 −1.54e− 02 −9.4e− 05 −1.0e− 06
8 −1.542303e− 02 −9.43399e− 05 −1.08013e− 06
16 −1.54230383612065e− 02 −9.43399075819722e− 05 −1.08013418928421e− 06

Table 2.14: Example 2.3.4: results by 1D-d-rule.
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 −1.542303e+ 02 −9.4339e+ 03 −1.0801e− 06
8 −1.54230383612065e+ 02 −9.43399075819e+ 03 −1.08013e− 06
16 −1.54230383612065e+ 02 −9.43399075819722e+ 03 −1.08013418928421e− 06

Table 2.15: Example 2.3.4: results by 1D-GJ-rule.
m ω = 102 ω = 104 ω = 106

4 −1.4e+ 00 1.9e− 01 6.9e− 02
8 −1.4e− 01 4.5e− 01 −3.7e− 01
16 −1.2e− 01 7.5e− 02 −6.4e− 01
32 −4.8e− 01 −7.5e− 02 −1.4e− 02
64 −1.5423e− 02 −1.3e− 01 1.8e− 01
128 −1.5423038361e− 02 −1.4e− 02 −2.7e− 01
256 −1.54230383612e− 02 −1.2e− 01 7.7e− 03
512 −1.54230383612e− 02 4.5e− 02 9.7e− 02
1024 −1.54230383612e− 02 −1.4e− 03 −5.5e− 03

Example 2.3.5. Let us consider the integral

I(f, ω) =

∫ 1

−1

ex
sin(ωx)

x2 + ω−1
dx

where

f(x) = ex, k4(x, ω) = k2(x, ω)k3(x, ω) =
sin(ωx)

x2 + ω−1
, w(x) = v0,0(x).

In this case, the integral contains a mixed-type kernel (i.e. a nearly singular
and highly oscillating) and the function f ∈ Wr

σ,∞ for any r ≥ 1, with σ = 1.
In Table 2.16, the results obtained by implementing the product quadrature
rule presented in (2.1.1), show that the machine precision is attained at m =
16 for any choice of ω. The 1D-d-rule presented in (2.1.12) obtained the
machine precision at m = 32, whose results are set in Table 2.17. Finally,
as we can expect, by using the 1D-GJ-rule, as ω increases a progressive loss
of precision is detected, until results become completely wrong (Table 2.18).
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Table 2.16: Example 2.3.5: results by the product rule Im(f, y).
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 1.135e+ 00 1.15e+ 00 1.155e+ 00
8 1.135527e+ 00 1.1559511e+ 00 1.155725e+ 00
16 1.13552735537749e+ 00 1.15595114761890e+ 00 1.15572510946973e+ 00

Table 2.17: Example 2.3.5: results by 1D-d-rule.
n ω = 102, S = 101 ω = 104, S = 102 ω = 106, S = 103

4 1.13e+ 00 1.15e+ 00 1.15e+ 00
8 1.135527e+ 00 1.155951e+ 00 1.155725e+ 00
16 1.135527355377e+ 00 1.155951147618e+ 00 1.155725109469e+ 00
32 1.13552735537749e+ 00 1.15595114761890e+ 00 1.15572510946973e+ 00

Table 2.18: Example 2.3.5: results by 1D-GJ-rule.
m ω = 102 ω = 104 ω = 106

4 1.1e+ 00 1.9e+ 00 −2.8e+ 00
8 −1.3e+ 00 −7.2e− 01 2.8e− 02
16 −8.3e− 02 5.4e+ 00 −4.8e+ 00
32 −3.1e+ 00 −3.4e+ 00 1.6e+ 00
64 2.7e+ 00 −1.4e+ 00 2.7e+ 00
128 1.6e+ 00 2.8e+ 00 3.7e+ 00
256 1.1e+ 00 −3.1e+ 00 −3.3e+ 00
512 1.135e+ 00 −3.3e+ 00 −3.8e+ 00
1024 1.1355273e+ 00 3.0e+ 00 2.7e+ 00

Bivariate case

For the bivariate kernel functions presented in (2.2.16), (2.2.17) and
(2.2.19), we compare our results with those obtained by other methods.
To be more precise, we approximate each integral by the product cuba-
ture rule Im(f ,y) presented in (2.2.2), for increasing values of m, choosing
three different values of y = (y1, y2) or ω and computing the coefficients
via 2D-dilation rule. In each example we state also the numerical results
obtained by the bivariate Gauss-Jacobi cubature rule (shortly 2D-GJ-rule)
and those achieved by the straightforward application of the 2D-dilation rule
Σm(f , ω) (shortly 2D-d-rule). About the first two tests involving nearly sin-
gular kernels k2(·, ω), we provide also the results obtained by the iterated sinh
transformation proposed by Johnston & Johnston & Elliott in [31] (shortly
JJE-method). The integrals in Examples 2.3.10 and 2.3.11 involve oscilla-
tory kernels of the type k3(·, ω). In Example 2.3.10 our results are compared
with those achieved by the method proposed by Huybrechs & Vandevalle in
[30] (shortly HV-method), since the function f satisfies their assumptions of
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convergence. The last two tests involve a mixed-type kernels and for them
we compare our results with those achieved by the JJE-method related to
the kernel k2(·, ω) with the function f replaced by fk3(·, ω).

Example 2.3.6. Let us consider the integral

I(f ,y) =

∫

S

log(x1x
2
2+121) |x1 − y1|−

1
2 |x2 − y2|

1
5 v

1
3
,− 1

2 (x1) v−
3
4
, 3
10 (x2) dx1 dx2

where

f(x) = log(x1x
2
2 + 121), k1(x,y) = |x1 − y1|−

1
2 |x2 − y2|

1
5 ,

w = w1w2, w1(x1) = v
1
3
,− 1

2 (x1), w2(x2) = v−
3
4
, 3
10 (x2).

The integral contains a weakly-type kernel and the function f ∈ W r
σ,∞∀r, with

σ = σ1σ2 and σ1 = σ2 = 1. As you can see in Table 2.19 applying the product
cubature rule proposed in (2.2.2), for each choice of parameters y = (y1, y2),
we get the machine precision in double arithmetic for m = 16. As you
can see in table 2.20, the 2D-GJ-rule cannot give a reasonable numerical
approximation. In fact, for each choice of the couple of values y, the 2D-GJ-
rule takes only the first digit. This fact is confirmed by the numerical test in
double arithmetics shown in Table 2.20.

Table 2.19: Example 2.3.6: results by product rule Im(f ,y).
m y = (− 1

2 ,
1
5 ) y = ( 1

10 ,
1
3 ) y = (− 3

10 ,− 1
9 )

4 1.9022744e+ 02 1.7218204e+ 02 1.5148342e+ 02
8 1.902274466223e+ 02 1.721820496209e+ 02 1.5148342305516e+ 02
16 1.902274466223350e+ 02 1.721820496209833e+ 02 1.514834230551673e+ 02

Table 2.20: Example 2.3.6: results by 2D-GJ-rule.
m y = (− 1

2 ,
1
5 ) y = ( 1

10 ,
1
3 ) y = (− 3

10 ,− 1
9 )

32 1.3e+ 02 1.0e+ 02 1.2e+ 02
64 1.6e+ 02 1.0e+ 02 1.3e+ 02
128 1.4e+ 02 1.0e+ 02 1.3e+ 02
256 1.5e+ 02 1.0e+ 02 1.4e+ 02
512 1.4e+ 02 1.1e+ 02 1.5e+ 02
1024 1.5e+ 02 1.0e+ 02 1.3e+ 02

Example 2.3.7. Let us consider the integral

I(f ,y) =

∫

S

ex1x2(x1x
2
2+1) |y1 − x1|−

1
4 |y2 − x1|−

1
2 v

3
2
, 1
2 (x1) v−

1
10
, 4
5 (x2) dx1 dx2
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where

f(x) = ex1x2(x1x
2
2 + 1), k1(x1,y) = |y1 − x1|−

1
4 |y2 − x1|−

1
2 ,

w = w1w2, w1(x1) = v
3
2
, 1
2 (x1), w2(x2) = v−

1
10
, 4
5 (x2).

The integral contains a special weakly-type kernel and the function f ∈
W r
σ,∞∀r, with σ = σ1σ2 and σ1 = σ2 = 1. As you can see in Table 2.21

applying the cubature rule proposed in (2.2.2), for each choice of parameters
y = (y1, y2), we get the machine precision in double arithmetic for m = 16.
As you can see in table 2.22, also for this example, the 2D-GJ-rule cannot
give a reasonable numerical approximation. This fact is confirmed by the
numerical test in double arithmetics shown in Table 2.22.

Table 2.21: Example 2.3.7: results by the product rule Im(f ,y).
m y = ( 1

2 ,
5
6 ) y = (− 1

2 ,
1
5 ) y = (− 1

7 ,
1
3 )

4 5.17429e+ 00 8.28350e+ 00 8.45589e+ 00
8 5.174290263e+ 00 8.28350210e+ 00 8.455891224e+ 00
16 5.174290263908625e+ 00 8.283502100542043e+ 00 8.455891224593199e+ 00

Table 2.22: Example 2.3.7: results by 2D-GJ-rule.
m y = ( 1

2 ,
5
6 ) y = (− 1

2 ,
1
5 ) y = (− 1

7 ,
1
3 )

32 5.0e+ 00 8.3e+ 00 7.7e+ 00
64 5.0e+ 00 8.8e+ 00 8.2e+ 00
128 5.0e+ 00 8.7e+ 00 8.1e+ 00
256 5.1e+ 00 8.0e+ 00 1.0e+ 01
512 5.1e+ 00 8.1e+ 00 8.2e+ 00
1024 5.1e+ 00 8.1e+ 00 8.3e+ 00

Example 2.3.8. Let us consider the integral

I(f , ω) =

∫

S

ex1x2

x2
1 + x2

2 + ω−1
dx1 dx2

where

f(x) = ex1x2 , k2(x, ω) =
1

x2
1 + x2

2 + ω−1
, λ = 1,

w = w1w2, w1(x1) = v0,0(x1), w2(x2) = v0,0(x2).

In this case, the integral contains a nearly-type kernel and the function
f ∈ W r

σ,∞ for any r ≥ 1, with σ = σ1σ2 and σ1 = σ2 = 1. In Table 2.23
the results obtained by implementing the product rule presented in (2.2.2)
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show that the machine precision is attained at m = 16 for any choice of
ω. A similar behavior presents the 2D-d-rule presented in (2.2.21), whose
results are set in Table 2.24. Also the JJE-method (Table 2.25) fastly con-
verges, achieving almost satisfactory results, even if it is required the use of
the Gauss-Laguerre cubature rule of order m = 1024 in order to obtain 13
digits. Finally, as we can expect, by using the 2D-GJ-rule, as ω increases a
progressive loss of precision is detected, until results become completely wrong
(Table 2.26).

Table 2.23: Example 2.3.8: results by the product rule Im(f ,y).
m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.540e+ 01 2.984e+ 01 4.43e+ 01
8 1.54013067e+ 01 2.984630059e+ 01 4.43136435e+ 01
16 1.54013067981755e+ 01 2.98463005967465e+ 01 4.43136435598934e+ 01

Table 2.24: Example 2.3.8: results by 2D-d-rule.
m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.5e+ 1 2.984e+ 1 4.431e+ 1
8 1.54013067e+ 1 2.98463005e+ 1 4.43136435e+ 1
16 1.5401306798175e+ 1 2.9846300596746e+ 1 4.4313643559893e+ 1
32 1.5401306798175e+ 1 2.9846300596746e+ 1 4.43136435598934e+ 1

Table 2.25: Example 2.3.8: results by JJE-method.
m ω = 102 ω = 104 ω = 106

4 1.5e+ 1 3.5e+ 1 6.5e+ 1
8 1.540e+ 1 3.0e+ 1 4.7e+ 1
16 1.540130e+ 1 2.984e+ 1 4.44e+ 1
32 1.540130679817e+ 1 2.9846300e+ 1 4.4313e+ 1
64 1.540130679817e+ 1 2.984630059674e+ 1 4.43136435e+ 1
128 1.540130679817e+ 1 2.984630059674e+ 1 4.431364355989e+ 1
256 1.540130679817e+ 1 2.984630059674e+ 1 4.431364355989e+ 1
512 1.540130679817e+ 1 2.984630059674e+ 1 4.431364355989e+ 1
1024 1.540130679817e+ 1 2.98463005967465e+ 1 4.431364355989e+ 1

Example 2.3.9. Let us consider the integral

I(f , ω) =

∫

S

log
15
2 (x1 + x2 + 4)

x2
1 + x2

2 + ω−1
v

1
2
, 1
2 (x1)v

1
2
, 1
2 (x2) dx1 dx2

where

f(x) = log
15
2 (x1 + x2 + 4), k2(x, ω) =

1

x2
1 + x2

2 + ω−1
, λ = 1,
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Table 2.26: Example 2.3.8: results by 2D-GJ-rule.
m ω = 102 ω = 104 ω = 106

16 1.49e+ 1 1.82e+ 1 1.82e+ 1
32 1.53e+ 1 2.23e+ 1 2.25e+ 1
64 1.5401e+ 1 2.61e+ 1 2.68e+ 1
128 1.54013067981e+ 1 2.88e+ 1 3.11e+ 1
256 1.5401306798175e+ 1 2.97e+ 1 3.53e+ 1
512 1.54013067981755e+ 1 2.98e+ 1 3.94e+ 1

w = w1w2, w1(x1) = v
1
2
, 1
2 (x1), w2(x2) = v

1
2
, 1
2 (x2).

Also in this case the integral contains a nearly-type kernel and the function
f ∈ W r

σ,∞ for any r ≥ 1, with σ = σ1σ2 and σ1 = σ2 = v
1
4
, 1
4 . In Table 2.27

the results obtained by implementing the product rule proposed in (2.2.2)
show that the machine precision is attained for m = 32. In this case the
value of the seminorm growth faster than the previous example. For instance,
M10(f) ∼ 2.5× 104. A similar behavior presents the 2D-d-rule presented in
(2.2.21), whose results are given in Table 2.28. In this case the JJE-method
in Table 2.29 converges lower than the previous example, achieving 8−9 exact
digits. In this case the changes of variables are applied to the whole integrand,
including two Chebyshev weights, and this explains this bad behavior. Similar
to the previous test, by the 2D-GJ-rule a progressive loss of precision occurs
as ω increases, till ω = 106 for which the values are completely wrong (Table
2.30).

Table 2.27: Example 2.3.9: results by the product rule Im(f ,y).
m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.677e+ 2 3.35e+ 2 5.02e+ 2
8 1.6772623e+ 2 3.350653e+ 2 5.026790e+ 2
16 1.67726234163080e+ 2 3.3506538134727e+ 2 5.0267905399542e+ 2
32 − 3.35065381347276e+ 2 5.02679053995422e+ 2

Table 2.28: Example 2.3.9: results by 2D-d-rule.
m ω = 102, S = 10 ω = 104, S = 102 ω = 106, S = 103

4 1.677e+ 2 3.350e+ 2 5.026e+ 2
8 1.6772623e+ 2 3.35065381e+ 2 5.02679053e+ 2
16 1.67726234163080e+ 2 3.3506538134727e+ 2 5.026790539954e+ 2
32 1.67726234163080e+ 2 3.3506538134727e+ 2 5.026790539954e+ 2
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Table 2.29: Example 2.3.9: results by JJE-method.
m ω = 102 ω = 104 ω = 106

16 1.677e+ 2 3.35e+ 2 5.03e+ 2
32 1.677e+ 2 3.350e+ 2 5.02e+ 2
64 1.6772e+ 2 3.3506e+ 2 5.026e+ 2
128 1.67726e+ 2 3.35065e+ 2 5.02679e+ 2
256 1.677262e+ 2 3.35065e+ 2 5.02679e+ 2
512 1.6772623e+ 2 3.3506538e+ 2 5.026790e+ 2
1024 1.67726234e+ 2 3.35065381e+ 2 5.0267905e+ 2

Table 2.30: Example 2.3.9: results by 2D-GJ-rule.
m ω = 102 ω = 104 ω = 106

16 1.62e+ 2 2.02e+ 2 2.03e+ 2
32 1.67e+ 2 2.49e+ 2 2.51e+ 2
64 1.67726e+ 2 2.92e+ 2 3.00e+ 2
128 1.6772623416e+ 2 3.23e+ 2 3.50e+ 2
256 1.677262341630e+ 2 3.34e+ 2 3.99e+ 2
512 1.677262341630e+ 2 3.3506e+ 2 4.45e+ 2
1024 1.677262341630e+ 2 3.35065381e+ 2 4.82e+ 2

Example 2.3.10. Let us consider the integral

I(f , ω) =

∫

S

sinh(x1x2) eiω1(x1+x2) dx1 dx2

where
f(x) = sinh(x1x2), k3(x, ω) = eiω1(x1+x2),

w = w1w2, w1(x) = v0,0(x1), w2(x2) = v0,0(x2).

In this example, the integral contains a highly oscillating-type kernel and
the function f ∈ W r

σ,∞ for any r ≥ 1, with σ = σ1σ2 and σ1 = σ2 = 1.
By Table 2.31, containing the results of the product rule proposed in (2.2.2),
the machine precision is attained with m = 16 for ω1 = 10, 102, while for
greater values of ω1 the convergence is slower. Similar is the behavior of
the 2D-d-rule proposed in (2.2.21) whose results are in Table 2.32, where,
as well as in other examples, 1-2 final digits are lost with respect to the
product rule. HV-method in Table 2.33 gives very good results and this is not
surprising, since, according to the convergence hypotheses of the HV-method,
the oscillator (x1+x2) and the function f are both analytic. Finally, for large
ω1, the 2D-GJ-rule doesn’t give any correct result till m ≤ 512, achieving
acceptable results only for m = 1024 (see Table 2.34).
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Table 2.31: Example 2.3.10: results by the product rule Im(f ,y).
m ω1 = 10, S = 10 ω1 = 102, S = 102 ω1 = 103, S = 103

4 −2.73e− 2 −3.53e− 4 −1.47e− 6
8 −2.73295580e− 2 −3.54895e− 4 −1.480988e− 6
16 −2.73295580076672e− 2 −3.54895314058265e− 4 −1.4809885630938e− 6
32 − − −1.4809885630938e− 6
64 − − −1.48098856309385e− 6

Table 2.32: Example 2.3.10: results by 2D-d-rule.
n ω1 = 10, S = 10 ω1 = 102, S = 102 ω1 = 103, S = 103

4 −2.73295e− 2 −3.54895e− 4 −1.480988e− 6
8 −2.7329558007667e− 2 −3.548953140582e− 4 −1.480988563093e− 6
16 −2.7329558007667e− 2 −3.548953140582e− 4 −1.480988563093e− 6
32 −2.7329558007667e− 2 −3.5489531405826e− 4 −1.480988563093e− 6
64 −2.73295580076672e− 2 −3.54895314058265e− 4 −1.4809885630938e− 6

Table 2.33: Example 2.3.10: results by HV-method.
n ω1 = 10 ω1 = 102 ω1 = 103

4 −2.732955800e− 02 −3.5489531405826e− 04 −1.4809885630938e− 06
8 −2.7329558007667e− 02 −3.5489531405826e− 04 −1.4809885630938e− 06
16 −2.73295580076672e− 02 −3.5489531405826e− 04 −1.4809885630938e− 06
32 −2.73295580076672e− 02 −3.5489531405826e− 04 −1.48098856309385e− 06
64 −3.46e+ 36 −3.54895314058265e− 04 −

Table 2.34: Example 2.3.10: results by 2D-GJ-rule.
n ω1 = 10 ω1 = 102 ω1 = 103

16 −2.73295580076e− 2 −3.2e− 2 −1.91e− 2
32 −2.732955800766e− 2 −8.9e− 3 −4.81e− 2
64 −2.732955800766e− 2 −3.5489e− 4 −4.67e− 2
128 −2.732955800766e− 2 −3.54895314058e− 4 −3.30e− 4
256 −2.732955800766e− 2 −3.54895314058e− 4 −6.33e− 3
512 −2.732955800766e− 2 −3.54895314058e− 4 −2.64e− 7
1024 −2.732955800766e− 2 −3.54895314058e− 4 −1.48098856309e− 6

Example 2.3.11. Let us consider the integral

I(f , ω) =

∫

S

| sinh(x1x2)|11.5 sin(ωx1x2) v−
1
4
, 1
4 (x1) v−

1
4
, 1
4 (x2) dx1 dx2

where
f(x) = | sinh(x1x2)|11.5, k3(x, ω) = sin(ωx1x2),

w = w1w2, w1(x1) = v−
1
4
, 1
4 (x1), w2(x2) = v−

1
4
, 1
4 (x2).

Also in this example the integral contains a highly oscillating-type kernel, but
in thic case the function f ∈ W 11

σ,∞ with σ = σ1σ2 and σ1 = σ2 = 1. By Table

79



2.35 which contains the results of the product rule proposed in (2.2.2), the
machine precision is attained with m = 512 for ω = 102, while for greater
values of ω the convergence is slower, but 14 digits are taken. However,
the results are coherent with the theoretical estimate (2.2.8) combined with
(1.2.4), since the seminorm M11(f) ∼ 1011. Similar is the behavior of the
2D-d-rule presented in (2.2.21) whose results are in Table 2.36, where, as
well as in other examples, 1-2 final digits are lost with respect to the product
rule. Since the assumptions of the HV-method are not satisfied, we didn’t
implement it. Finally, for large ω, the 2D-GJ-rule doesn’t give any correct
result till m ≤ 512, achieving acceptable results for m = 1024 only (see Table
2.37).

Table 2.35: Example 2.3.11: results by the product rule Im(f ,y).
m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

8 −4.478551724e− 3 −2.10e− 4 9.45e− 6
16 −6.436821087e− 3 −2.98e− 4 1.20e− 5
32 −6.439284731e− 3 −2.98928017714e− 4 1.20606902036e− 5
64 −6.4392847317303e− 3 −2.989280177142e− 4 1.2060690203683e− 5
128 −6.4392847317303e− 3 −2.989280177142e− 4 1.2060690203683e− 5
256 −6.4392847317303e− 3 −2.9892801771422e− 4 1.2060690203683e− 5
512 −6.43928473173037e− 3 −2.9892801771422e− 4 1.2060690203683e− 5

Table 2.36: Example 2.3.11: results by 2D-d-rule.
m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 −6.43928473173e− 3 3.47e− 3 8.58e− 4
32 −6.439284731730e− 3 −2.98928017714e− 4 7.78e− 4
64 −6.439284731730e− 3 −2.98928017714e− 4 1.2060e− 5
128 −6.439284731730e− 3 −2.989280177142e− 4 1.2060690203e− 5
256 −6.439284731730e− 3 −2.989280177142e− 4 1.2060690203e− 5

Table 2.37: Example 2.3.11: results by 2D-GJ-rule.
m ω = 102 ω = 103 ω = 104

64 −6.4392847e− 3 −1.34e− 2 −2.78e− 3
128 −6.4392847317e− 3 −2.30e− 3 −5.70e− 5
256 −6.4392847317e− 3 −1.43e− 3 6.82e− 3
512 −6.4392847317e− 3 −4.08e− 4 3.13e− 3
1024 −6.4392847317e− 3 −4.08e− 4 −8.56e− 4

Example 2.3.12. Let us consider the integral

I(f , ω) =

∫

S

(x1 + x2)20 sin(ωx1x2)

x2
1 + x2

2 + ω−1
dx1 dx2
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where

f(x) = (x1 + x2)20, k4(x, ω) =
sin(ωx1x2)

x2
1 + x2

2 + ω−1
, λ = 1,

w = w1w2, w1(x1) = v0,0(x1), w2(x2) = v0,0(x2).

In this case, the integral contains a mixed-type kernel (i.e. a nearly singular
and highly oscillating) and the function f ∈ W r

σ,∞ for any r, with σ = σ1σ2

and σ1 = σ2 = 1. The results of the product rule proposed in (2.2.2) given
in Table 2.38 are coherent with the theoretical estimates, since the values of
the seminorms are too large. For instance for r = 20, it is Mr(f) ∼ 1018.
Comparing our results with those obtained with the 2D-d-rule presented in
(2.2.21) given in Table 2.39, we observe that more or less 2 digits are lost
with respect to the product rule. In absence of other procedures, we have
forced the use of the JJE-method, by which for ω = 102 the results present
12 correct digits, while with larger ω the results are completely wrong (see
Table 2.40). However this bad behavior is to be expected, since the oscillating
factor is not covered within their method. Finally, the results in Table 2.41
evidence that 2D-GJ-rule is unreliable for ω large.

Table 2.38: Example 2.3.12: results by the product rule Im(f ,y).
m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 3.666247e+ 1 −3.0625e− 1 3.22e− 3
32 3.666247509043e+ 1 −3.06250405322e− 1 3.2214048203e− 3
64 3.666247509043e+ 1 −3.06250405322e− 1 3.22140482036e− 3
128 3.666247509043e+ 1 −3.06250405322e− 1 3.22140482036e− 3
256 3.6662475090432e+ 1 −3.06250405322e− 1 3.221404820367e− 3
512 3.66624750904321e+ 1 −3.0625040532207e− 1 3.2214048203672e− 3

Table 2.39: Example 2.3.12: results by 2D-d-rule.
m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 3.6662475090e+ 1 1.29e+ 2 8.98e+ 0
32 3.66624750904e+ 1 −3.062504053e− 01 1.60e+ 1
64 3.66624750904e+ 1 −3.0625040532e− 01 3.2214e− 03
128 3.66624750904e+ 1 −3.0625040532e− 01 3.221404820e− 03

Example 2.3.13. Let us consider the integral

I(f , ω) =

∫

S

|x1 − x2|7.1
sin(ωx1x2)

x2
1 + x2

2 + ω−1
v

1
2
, 1
2 (x1) v−

1
4
,− 1

4 (x2) dx1 dx2
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Table 2.40: Example 2.3.12: results by JJE-method.
m ω = 102 ω = 103 ω = 104

64 3.73e+ 1 2.92e+ 3 1.17e+ 3
128 3.6662475090e+ 01 −2.66e+ 2 −4.38e+ 2
256 3.6662475090e+ 01 1.02e+ 2 −8.48e+ 1
512 3.6662475090e+ 01 7.92e+ 0 −1.68e+ 2
1024 3.66624750904e+ 01 −8.76e− 1 −5.98e+ 1

Table 2.41: Example 2.3.12: results by 2D-GJ-rule.
m ω = 102 ω = 103 ω = 104

64 3.666247e+ 1 3.93e+ 2 −8.40e+ 2
128 3.6662475090e+ 1 4.21e+ 2 4.01e+ 2
256 3.66624750904e+ 1 2.10e+ 0 −3.36e+ 1
512 3.66624750904e+ 1 −8.76e− 01 4.89e+ 1
1024 3.66624750904e+ 1 −8.76e− 01 −3.68e+ 1

f(x) = |x1 − x2|7.1, k4(x, ω) =
sin(ωx1x2)

x2
1 + x2

2 + ω−1
, λ = 1,

w = w1w2, w1(x1) = v
1
2
, 1
2 (x1), w2(x2) = v−

1
4
,− 1

4 (x2).

We conclude with another test on a mixed-type kernel. Here the function
f ∈ W 7

σ,∞ with σ = σ1σ2 and σ1 = v
1
4
, 1
4 , σ2 = 1. Since the seminorm

Mr(f) ∼ 6× 103, according to the theoretical estimate, 15 exact (not always
significant) digits are computed for m = 512 (Table 2.42). The results are
comparable with those achieved by the 2D-d-rule presented in (2.2.21) reported
in Table 2.43, while the 2D-GJ-rule results in Table 2.45, as well as those
achieved by the JJE-method in Table 2.44, give poor approximations.

Table 2.42: Example 2.3.12: results by the product rule Im(f ,y).
m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 −4.23e− 3 −1.83e− 4 −4.42e− 8
32 −4.23634e− 3 −1.8313e− 4 1.29e− 8
64 −4.23634393e− 3 −1.831311e− 4 1.44e− 8
128 −4.2363439329e− 3 −1.8313118e− 4 1.4448e− 8
256 −4.2363439329106e− 3 −1.8313118400e− 4 1.444854e− 8
512 −4.23634393291069e− 3 −1.831311840010e− 4 1.44485497e− 8
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Table 2.43: Example 2.3.13: results by 2D-d-rule.
m ω = 102, S = 10 ω = 103, S = 32 ω = 104, S = 102

16 −4.2363439329e− 3 −9.75e− 3 1.75e− 2
32 −4.23634393291e− 3 −1.8313118400e− 4 −7.41e− 3
64 −4.23634393291e− 3 −1.8313118400e− 4 1.44e− 8
128 −4.23634393291e− 3 −1.8313118400e− 4 1.44485e− 8
256 −4.23634393291e− 3 −1.8313118400e− 4 1.444854e− 8
512 −4.23634393291e− 3 −1.8313118400e− 4 1.4448549e− 8

Table 2.44: Example 2.3.13: results by JJE-method.
m ω = 102 ω = 103 ω = 104

64 −4.53e− 3 −7.21e− 1 −2.71e− 1
128 −4.26e− 3 4.73e− 1 4.18e− 1
256 −4.24e− 3 4.22e− 2 7.40e− 2
512 −4.23e− 3 −2.36e− 2 7.23e− 2
1024 −4.23e− 3 1.72e− 5 1.28e− 2

Table 2.45: Example 2.3.13: results by 2D-GJ-rule.
m ω = 102 ω = 103 ω = 104

64 −4.236e− 3 3.46e− 1 3.83e− 1
128 −4.2363439329e− 3 −1.18e− 1 4.03e− 2
256 −4.2363439329e− 3 −1.96e− 2 −4.86e− 2
512 −4.2363439329e− 3 −1.35e− 4 6.52e− 2
1024 −4.2363439329e− 3 1.74e− 5 3.43e− 3
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Chapter 3

Numerical Treatment of the
Generalized Univariate and
Bivariate Love Integral
Equation

In this Chapter we consider the generalized univariate and bivariate Love’s
integral equations. In both cases, in order to approximate the solution, we
propose a Nyström method based on a mixed quadrature and cubature rule,
respectively. Such rules are a combination of a product and a “dilation”
quadrature/cubature formula presented in Chapter 2 in a revisiting form. We
prove the stability and convergence of the described numerical procedures in
suitable weighted spaces and we show the efficiency of the two methods by
some numerical tests.

In 1949 Love investigated for the first time on a mathematical model de-
scribing the capacity of a circular plane condenser consisting of two identical
coaxial discs placed at a distance q and having a common radius r. In his
paper [45], he proved that the capacity of each disk is given by

C =
r

π

∫ 1

−1

f(x)dx,

where f is the solution of the following integral equation of the second kind

f(y)− 1

π

∫ 1

−1

ω−1

(x− y)2 + ω−2
f(x)dx = 1 (3.0.1)

with ω = q/r a real positive parameter. Then, he proved that equation
(3.0.1) has a unique, continuous, real and even solution which analitically
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has the following form

f(y) = 1−
∞∑

j=1

(−1)j
∫ 1

−1

Kj(x, y) dx,

where the iterated kernels are given by

K1(x, y) =
1

π

ω−1

(x− y)2 + ω−2
,

Kj(x, y) =

∫ 1

−1

Kj−1(x, s)K1(s, y)ds, j = 2, . . . .

From a numerical point of view, the developed methods [44, 43, 59, 71, 75]
for the undisputed most interesting case (i.e. when ω−1 → 0) have followed
the very first methods [20, 24, 72, 82, 84], and the most recent ones [58],
proposed for the case when ω = 1.

If ω−1 → 0 the kernel function is “close” to be singular on the bisector
x = y and as Phillips noted in [72],

1

π

∫ 1

−1

ω−1

(x− y)2 + ω−2
f(x)dx→ f(y) if ω−1 → 0. (3.0.2)

Hence for ω sufficiently large the left hand side of equation (3.0.1) becomes
approximately zero which does not coincide with the right-hand side of
(3.0.1).

In [59] the authors presented a numerical approach based on a suitable
transformation, in order to move away the poles x = y ± ω−1i from the real
axis. The numerical method produced very accurate results in the case when
ω−1 is not so small but they are poor if ω−1 → 0.

Then, in order to get satisfactory errors also in this latter case, in [71] the
author proposed to dilate the integration interval and to decompose it into N
subintervals. Hence, the equation was reduced to an equivalent system of N
integral equations and a Nyström method based on a Gauss-Legendre quadra-
ture formula was proposed for its numerical approximation. The approach
produces satisfactory order of convergence even if ω−1 is small. However,
the dimension of the structured linear system that one needs to solve is very
large as ω−1 decreases.

In [44] the authors improve the results given in [71] by using the same
transformation as in [43] which takes into account the behavior of the un-
known function showed in (3.0.2). Then they follow the approach given in
[71] i.e. they write the integral as the sum of m new integrals which are ap-
proximated by means of a n-point Gauss-Legendre quadrature rule. In this
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way they get a linear system of size nm that, multipled by suitable diagonal
matrices, is equivalent to a new linear system which is solved by using a
preconditioned conjugate gradient method, being the matrix of coefficients
symmetric, positive definitive and having a Toeplitz block structure.

In this Chapter we consider the more general equation

f(y)− 1

π

∫ 1

−1

ω−1

(x− y)2 + ω−2
f(x)w(x)dx = g(y), |y| < 1, (3.0.3)

where w is a Jacobi weight defined as (1.1.1), f is the unknown function, g
is a known right-hand side, and 0 < ω ∈ IR.

Such equation includes equation (3.0.1) (in the case when g ≡ w ≡ 1)
and, at the same time, the presence of the weight w leads to the case when
the unknown function has algebraic singularities at the endpoints of [−1, 1].

The method we propose is a Nyström method based on a mixed quadra-
ture formula. This is a product rule whose coefficients are computed by using
a revisiting form of the quadrature scheme proposed in Subsection 2.1.2. In
fact, following an idea presented in [17, 71], we approximate such coefficients
by using a “dilation” quadrature formula that we prove to be stable and
convergent. Such idea consists in a preliminary dilation of the domain that
“relax” in some sense the pathological behavior of the kernel of the integral.

The proposed method, for which convergence and stability are proved in
suitable weighted spaces, allow us to get very accurate results with respect to
those in [44, 71] by solving a well-conditioned linear system whose dimension
is greatly reduced with respect to the ones involved in [44, 71].

We also extend the procedure to the case of the bivariate Love equation
for which, according to our knowledge, no numerical methods exist. It takes
the form

f(y)− 1

π2

∫ 1

−1

∫ 1

−1

ω−1

|x− y|2 + ω−2
f(x)w(x)dx = g(y), 0 < ω ∈ IR,

(3.0.4)
where x = (x1, x2) ∈ [−1, 1]2, y = (y1, y2) ∈ [−1, 1]2, w is a product of
two Jacobi weights defined as (1.2.1), f is the unknown function and g is the
known right-hand side. Also in this case we propose a Nyström method which
is based on a cubature mixed formula, namely a combination of a suitable
product cubature formula and a cubature dilation formula. Specifically we
use the product cubature formula proposed in Section 2.2 and we generalize
the “dilation”cubature rule given in Subsection 2.2.2.

The outline of this Chapter is as follows. Section 3.1 is completely devoted
to the one-dimensional Love equation. At first we study a “dilation” quadra-
ture formula in a revisiting form (Subsection 3.1.1) and we propose a new
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mixed quadrature scheme (Subsection 3.1.2) which is used in the Nyström
method (Subsection 3.1.3). Section 3.2 is dedicated to the two-dimensional
Love equation: once introduced a “dilation” cubature formula in a revis-
iting form (Subsections 3.2.1), we propose a new mixed cubature formula
(Subsection 3.2.2) and we describe the related Nyström method (Subsection
3.2.3). Section 4.4 shows the efficiency of the proposed procedures by means
of several numerical tests, both, in 1D and 2D.

3.1 One–dimensional Love’s Integral Equation

In this Section we present a numerical method for approximating the
solution of Love’s univariate equation (3.0.3) defined on [−1, 1].

3.1.1 The 1D-dilation formula: a revisiting

We present a quadrature formula in order to approximate the integrals of
the type

I(F, y, ω) =

∫ 1

−1

k(x, y, ω)F (x)w(x)dx, (3.1.1)

where F is a given function, w is as in (1.1.1) and k(x, y, ω) is a known
kernel which is close to be singular if ω−1 → 0. This is the case of the kernel
function appearing in the Love equation (3.0.3).

In Subsection 2.1.2 we proposed a “dilation”quadrature rule for approxi-
mating integrals of the type

I(F, ω) =

∫ 1

−1

k(x, ω)F (x)w(x)dx,

namely, to integrals in which the kernel function is not a function of two
variables. Our idea is to “generalize”in some sense the approach proposed in
Subsection 2.1.2 and provide new error estimates.

In order to construct such kind of formula, we follow the approach pro-
posed in [17, 71] for the unweighted case.

First, in order to “relax” the “too fast” behaviour of the kernel function
when ω grows, we introduce in (3.1.1) the change of variables

x =
η

ω
, y =

θ

ω

with η, θ ∈ [−ω, ω].
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In this way (3.1.1) is equivalent to the following integral having a dilated
domain of integration [−ω, ω]

I(F, y, ω) =
1

ω

∫ ω

−ω
k

(
η

ω
,
θ

ω
, ω

)
F
( η
ω

)
w
( η
ω

)
dη

=:
1

ω

∫ ω

−ω
κ (η, θ, ω) F

( η
ω

)
w
( η
ω

)
dη

=
1

ω

∫ ω

−ω
κ (η, ωy, ω) F

( η
ω

)
w
( η
ω

)
dη.

Then, we split the new integration interval [−ω, ω] into S subintervals of
size 2 ≤ d ∈ R such that S = 2ω

d
∈ N, namely

[−ω, ω] =
S⋃

i=1

[−ω + (i− 1)d, −ω + id],

getting

I (F, y, ω) =
1

ω

S∑

i=1

∫ −ω+id

−ω+(i−1)d

κ (η, ωy, ω) F
( η
ω

)
w
( η
ω

)
dη. (3.1.2)

Now, we want to remap each integral into [−1, 1]. To this end we introduce
the invertible linear maps

Ψi : [−ω + (i− 1)d,−ω + id]→ [−1, 1]

defined as

x = Ψi(η) =
2

d
(η + ω)− (2i− 1)

and in (3.1.2) we make the change of variable

η = Ψ−1
i (x) =

(
x+ 1

2

)
d− ω + (i− 1)d. (3.1.3)

In this way we get

I (F, y, ω) =
d

2ω

S∑

i=1

∫ 1

−1

ki(x, ωy, ω)Fi (x) ui(x)dx, (3.1.4)

88



where Fi(x) := F

(
Ψ−1
i (x)

ω

)
, ui are the new weight functions

ui(x) :=





v0,β(x), i = 1

v0,0(x), 2 ≤ i ≤ S − 1,

vα,0(x), i = S

(3.1.5)

and ki are the new kernel functions

ki(x, ωy, ω) :=





(
d

2ω

)β
κ
(
Ψ−1
i (x), ωy, ω

)
vα,0

(
Ψ−1
i (x)

ω

)
, i = 1

κ
(
Ψ−1
i (x), ωy, ω

)
vα,β

(
Ψ−1
i (x)

ω

)
, 2 ≤ i ≤ S − 1,

(
d

2ω

)α
κ
(
Ψ−1
i (x), ωy, ω

)
v0,β

(
Ψ−1
i (x)

ω

)
, i = S

or, equivalently, in terms of the original kernel k,

ki(x, ωy, ω) :=





(
d

2ω

)β
k

(
Ψ−1
i (x)

ω
, y, ω

)
vα,0

(
Ψ−1
i (x)

ω

)
, i = 1

k

(
Ψ−1
i (x)

ω
, y, ω

)
vα,β

(
Ψ−1
i (x)

ω

)
, 2 ≤ i ≤ S − 1

(
d

2ω

)α
k

(
Ψ−1
i (x)

ω
, y, ω

)
v0,β

(
Ψ−1
i (x)

ω

)
, i = S

.

(3.1.6)

By approximating each integral appearing in (3.1.4) by means of the
Gauss-Jacobi quadrature rule (1.1.18) with ui in place of w and kiFi instead
of f , we have the following “dilation” quadrature formula

I(F, y, ω) =
d

2ω

S∑

i=1

n∑

j=1

λuij ki(ξ
ui
j , ωy, ω)Fi(ξ

ui
j ) + Λn(F, ωy, ω),

where Λn is the remainder term.
Next results state the stability of the previous formula and give an error

estimate for Λn in the case when F ∈ Wr
σ,∞ or F ∈ C2n([−1, 1]).

Theorem 3.1.1. Let F ∈ Cσ be with σ as in (1.1.2) and let w be as in
(1.1.1). If

0 ≤ γ < min{1, α + 1}, 0 ≤ δ < min{1, β + 1}
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and k is such that
max
|y|≤1
‖k(·, ωy, ω)‖∞ <∞

then

sup
|y|≤1

d

2ω

∣∣∣∣∣
S∑

i=1

n∑

j=1

λuij ki(ξ
ui
j , ωy, ω)Fi(ξ

ui
j )

∣∣∣∣∣ ≤ C‖Fσ‖∞, C 6= C(F, n).

(3.1.7)
Moreover, for any F ∈ Wr

σ,∞, if

max
|y|≤1

max
|x|≤1

∣∣∣∣
∂rk(x, y, ω)

∂xr
ϕr(x)

∣∣∣∣ <∞ (3.1.8)

we have

sup
|y|≤1

|Λn(F, ωy, ω)| ≤ C
nr

(
d

ω

)r
‖F‖Wr

σ,∞ , C 6= C(F, n). (3.1.9)

Proof. First, let us prove the stability of the formula, i.e estimate (3.1.7).
We can write

d

2ω

∣∣∣∣∣
S∑

i=1

n∑

j=1

λuij
σ(ξuij )

(Fiσ)(ξuij )ki(ξ
ui
j , ωy, ω)

∣∣∣∣∣

≤ d

2ω
‖Fσ‖∞

S∑

i=1

‖ki(·, ωy, ω)‖∞
n∑

j=1

λuij
σ(ξuij )

.

Then (3.1.7) follows taking into account the definition of ki given in (3.1.6),
the first assumption on the kernel, and by considering that in virtue on the
assumptions on the parameters of the weights we have

n∑

j=1

λuij
σ(ξuij )

≤
∫ 1

−1

ui(x)

σ(x)
dx ≤ C. (3.1.10)

In order to prove (3.1.9), we can note that by (1.2.17), we have

|Λn(F, ωy, ω)| ≤
S∑

i=1

|Rn(Fi ki, ωy, ω)| ≤ C
S∑

i=1

E2n−1(Fi ki)σ,

so that by using the well-known estimate [47]

E2n−1(h1 h2)σ ≤ ‖h1σ‖∞E[ 2n−1
2

](h2) + 2‖h2‖∞E[ 2n−1
2

](h1)σ,
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we can write

|Λn(F, ωy, ω)| ≤ C
S∑

i=1

(
‖Fiσ‖∞E[ 2n−1

2
](ki) + ‖ki(·, ωy, ω)‖∞ E[ 2n−1

2
](Fi)σ

)
.

Then, taking into account that by the assumptions ‖ki(·, ωy, ω)‖∞ < C and
by applying the Favard inequality [47]

En(h)v ≤
C
nr
∥∥h(r)ϕrv

∥∥
∞ , C 6= C(n, h), ∀h ∈ Wr

v,∞, (3.1.11)

once with the Jacobi weight v = 1, and then with v = σ, we deduce

|Λn(F, ωy, ω)| ≤ C
nr

S∑

i=1

(
‖Fiσ‖∞ sup

|x|≤1

∣∣∣∣
∂r

∂xr
ki(x, ωy, ω)ϕr(x)

∣∣∣∣+ ‖F (r)
i ϕrσ‖∞

)
.

Now, let us note that the functions ki defined in (3.1.6) can be rewritten as

ki(x, ωy, ω) = k

(
Ψ−1
i (x)

ω
, y, ω

)
Ui(x, ω, d)

where the functions Ui, defined as

Ui(x, ω, d) :=





(
d

2ω

)β
vα,0

(
Ψ−1
i (x)

ω

)
, i = 1

vα,β
(

Ψ−1
i (x)

ω

)
, 2 ≤ i ≤ S − 1,

(
d

2ω

)α
v0,β

(
Ψ−1
i (x)

ω

)
, i = S

(3.1.12)

are bounded functions such that

sup
|x|≤1

|U (r)
i (x, ω, d)ϕr(x)| ≤ C

(
d

2ω

)r
, ∀i = 1, ...S.

Hence, being for each i = 1, . . . , S

∣∣∣∣
∂rki(x, ωy, ω)

∂xr
ϕr(x)

∣∣∣∣

=

∣∣∣∣∣
r∑

j=0

(
r

j

)
∂j

∂xj
k

(
Ψ−1
i (x)

ω
, y, ω

)
ϕj(x)U

(r−j)
i (x, ω, d)ϕr−j(x)

∣∣∣∣∣ ,
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by using (3.1.8) we get

sup
|y|≤1

sup
|x|≤1

∣∣∣∣
∂rki(x, ωy, ω)

∂xr
ϕr(x)

∣∣∣∣ ≤ C
r∑

j=0

(
r

j

)(
d

2ω

)r−j (
d

2ω

)j
= C

(
d

ω

)r

and therefore

sup
|y|≤1

|Λn(F, ωy, ω)| ≤ C
nr

(
d

ω

)r
‖F‖Wr

σ,∞ .

Corollary 3.1.2. Let F, k ∈ C2n([−1, 1]) with respect to the variable x.
Then

sup
|y|≤1

|Λn(F, ωy, ω)| ≤ C
n2n+ 1

2

(
d

ω

)2n

e
48n2+1

24n 2n−1
[
‖F‖∞ + ‖F (2n)‖∞

]

(3.1.13)
with C 6= C(n, ω, d).

Remark 3.1.3. We outline that the quantity
d

ω
appearing in both the esti-

mates (3.1.9) and (3.1.13) is a quantity � 1, since we are considering the
case ω large.

Proof. Taking into account the errore estimate (1.1.20), we have

|Λn(F, ωy, ω)| ≤
S∑

i=1

|Rn(Fi ki, ωy, ω)|

≤ 1

(2n)! γn(w)

S∑

i=1

sup
|x|≤1

∣∣∣∣
∂2n

∂x2n
[Fi(x)ki(x, ωy, ω)]

∣∣∣∣ .

Then by applying the Leibnitz rule we get

∣∣∣∣
∂2n

∂x2n
[Fi(x)ki(x, ωy, ω)]

∣∣∣∣

≤
2n∑

j=0

(
2n

j

) ∣∣∣∣∣

[
F

(
Ψ−1
i (x)

ω

)](2n−j)∣∣∣∣∣

∣∣∣∣
∂j

∂xj
ki (x, ωy, ω)

∣∣∣∣

≤
2n∑

j=0

(
2n

j

)(
d

2ω

)2n−j
‖F (2n−j)‖∞ sup

|x|≤1

∣∣∣∣
∂j

∂xj
ki (x, ωy, ω)

∣∣∣∣ ,
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from which being [18] ‖F (2n−j)‖∞ ≤ C
[
‖F‖∞
22n−j + 2j‖F (2n)‖∞

]
we get

∣∣∣∣
∂2n

∂x2n
[Fi(x)ki(x, ωy, ω)]

∣∣∣∣ ≤ ‖F‖∞
2n∑

j=0

(
2n

j

)(
d

4ω

)2n−j ∣∣∣∣
∂j

∂xj
ki (x, ωy, ω)

∣∣∣∣

+ ‖F (2n)‖∞
2n∑

j=0

(
2n

j

)(
d

2ω

)2n−j
2j
∣∣∣∣
∂j

∂xj
ki (x, ωy, ω)

∣∣∣∣ .

(3.1.14)

By the definitions (3.1.6) of the kernels ki and taking into account the form
of the functions Ui given in (3.1.12), we can write

∣∣∣∣
∂j

∂xj
ki (x, ωy, ω)

∣∣∣∣ ≤
j∑

`=0

(
j

`

) ∣∣∣∣
∂j−`

∂xj−`

[
k

(
Ψ−1
i (x)

ω
, y, ω

)]∣∣∣∣
∣∣[Ui(x, ω, d)](`)

∣∣

≤ C
j∑

`=0

(
j

`

)(
d

2ω

)j−`(
d

2ω

)`
sup
|x|≤1

∣∣∣∣
∂j−`

∂xj−`
k

(
Ψ−1
i (x)

ω
, y, ω

)∣∣∣∣

and being [18]

sup
|x|≤1

∣∣∣∣
∂j−`

∂xj−`
k

(
Ψ−1
i (x)

ω
, y, ω

)∣∣∣∣ ≤ C
[(

1

2

)j−`
sup
|x|≤1

∣∣∣∣k
(

Ψ−1
i (x)

ω
, y, ω

)∣∣∣∣

+22n−j+` sup
|x|≤1

∣∣∣∣
∂2n

∂x2n
k

(
Ψ−1
i (x)

ω
, y, ω

)∣∣∣∣

]
,

in virtue of the assumptions on the kernel k, we have
∣∣∣∣
∂j

∂xj
ki (x, ωy, ω)

∣∣∣∣ ≤ C 22n

(
3d

4ω

)j
.

Thus by replacing the above estimate in (3.1.14) we have
∣∣∣∣
∂2n

∂x2n
[Fi(x)ki(x, ωy, ω)]

∣∣∣∣ ≤ C
(

2d

ω

)2n [
‖F‖∞ + ‖F (2n)‖∞

]
,

from which we deduce

|Λn(F, ωy, ω)| ≤ 1

(2n)! γn(w)

(
2d

ω

)2n [
‖F‖∞ + ‖F (2n)‖∞

]
.

Therefore, by using the well-known Stirling formula
(n
e

)n√
2πn e−

1
12n ≤ n! ≤

(n
e

)n√
2πn e−

1
12n+1 ,

and, taking into account that [47] γn(w) ∼ 2n, we get the thesis.
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3.1.2 A new mixed quadrature formula

In this Subsection we want to propose a mixed quadrature rule which will
be essential for our method. It consists in applying an m-point product rule
(2.1.1) in order to approximate the integral

∫ 1

−1

k(x, y, ω)f(x)w(x)dx

and hence in computing the coefficients Aj of such a product rule (defined as
in (2.1.2) with k(x, y) = k(x, y, ω)) by means of the n-point dilation quadra-
ture formula (2.1.12).

Then, the mixed quadrature formula is the following

∫ 1

−1

k(x, y, ω)f(x)w(x)dx =
m∑

j=1

Anj (y, ω)f
(
ξwj
)

+ Enm(f, y, ω)

=: Kn
m(f, y, ω) + Enm(f, y, ω) (3.1.15)

where Enm is the remainder term and

Anj (y, ω) =
d

2ω

S∑

i=1

n∑

ν=1

λuiν ki(ξ
ui
ν , ωy, ω) `wj,i(ξ

ui
ν ),

with ki and ui as in (3.1.6) and (3.1.5), respectively, and

`wj,i (ξ
ui
ν ) := `wj

(
Ψ−1
i

(
ξuiν
ω

))
being `wj and Ψ−1

i defined as in (1.1.13) and

(3.1.3), respectively.
Next theorem gives an error estimate for Enm in the case when n = m.

Theorem 3.1.4. Let w and σ be defined in (1.1.1) and (1.1.2), respectively
with

max

{
0,
α

2
+

1

4

}
< γ < min

{
1, α + 1,

α

2
+

5

4

}
, (3.1.16)

max

{
0,
β

2
+

1

4

}
< δ < min

{
1, β + 1,

β

2
+

5

4

}
. (3.1.17)

If f ∈ Cσ and the kernel function k satisfies the conditions (2.1.3), (2.1.5)
and the assumptions given in Theorem 3.1.1, the following error estimate
holds true

|Emm (f, ω)| ≤ C
[
Em(f)σ +

(
d

ω

)m−1

logm‖fσ‖∞
]
, C 6= C(m,ω).
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Remark 3.1.5. Let us remark that if α, β < −1
2
, then the parameters of the

weight σ could also be chosen equal to zero. Moreover, in Theorem 3.1.4, for
the sake of simplicity, we considered the case m = n. Nevertheless in practice
in the numerical test we can use n fixed. Indeed according with (3.1.13)
the error decreases exponentially and, for instance, for n = 20, d = 2 and
ω = 102, the quantity before the square brackets is of the order 10−98. Hence,
the error of the mixed quadrature formula is, in practice, of the same order
of the error of best approximation of f .

Proof. By (3.1.15) we can write

|Emm (f, y, ω)| ≤
∣∣∣∣∣

∫ 1

−1

k(x, y, ω)(fw)(x)dx−
m∑

j=1

Aj(y)f(ξwj )

∣∣∣∣∣

+

∣∣∣∣∣
m∑

j=1

(
(Aj − Amj )(y)

)
f(ξwj )

∣∣∣∣∣

≤ |Em(f, y, ω)|+ ‖fσ‖∞
m∑

j=1

|Λm(`wj , ωy, ω)|
σ(ξwj )

.

The first term can be estimated by using (2.1.6) since (3.1.16) and (3.1.17)
include (2.1.5). Let us now estimate the last one. By using (3.1.9) with
r = m− 1 we can have

|Λm(`wj , ωy, ω)| ≤ C
mm−1

(
d

ω

)m−1

‖`wj ‖Wr
σ,∞

and thus, by applying the weighted Bernstein inequality (see, for instance
[47, p. 170]) which leads to state that ‖`wj ‖Wr

σ,∞ ≤ Cmm−1‖`wj σ‖∞, we get

|Λm(`wj , ωy, ω)| ≤ C
(
d

ω

)m−1

‖`wj σ‖∞.

Therefore
m∑

j=1

|Λm(`wj , ωy, ω)|
σ(ξwj )

≤
(
d

ω

)m−1 m∑

j=1

‖`wj σ‖∞
σ(ξwj )

≤ C
(
d

ω

)m−1

logm

being [47], in virtue of (2.1.5)

max
|x|≤1

m∑

j=1

|`wj (x)|
σ(ξwj )

σ(x) ' logm, (3.1.18)

and the proof is completed.
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3.1.3 The numerical method

In this Subsection we propose a numerical method for the univariate Love
integral equation (3.0.3) which can be rewritten in operatorial form as

(I −K) f = g, (3.1.19)

where I is the identity operator and

(Kf)(y, ω) =
1

π

∫ 1

−1

k(x, y, ω) f(x)w(x)dx (3.1.20)

with

k(x, y, ω) =
ω−1

(x− y)2 + ω−2
. (3.1.21)

The next proposition shows the mapping properties of the operator K.

Proposition 3.1.6. Let σ and w be defined in (1.1.2) and (1.1.1), respec-
tively such that the parameters γ, δ, α and β satisfy

0 ≤ γ < 1 + α, 0 ≤ δ < 1 + β.

Then
K : Cσ → Cσ

is continuous, bounded and compact. Moreover,

∀f ∈ Cσ, Kf ∈ Wr
σ,∞, ∀r ∈ IN.

Remark 3.1.7. We remark that according to Proposition 3.1.6 and in virtue
of the Fredholm Alternative Theorem, under the assumption Ker{I +K} =
{0}, equation (3.1.19) has a unique solution f ∈ Cσ.

Proof. First, let us note that the kernel k given in (3.1.21), satisfies the
following conditions

max
|x|≤1
‖k(x, ·, ω)σ‖∞ <∞, max

|x|≤1

∥∥∥∥
∂r

∂yr
k(x, ·, ω)ϕrσ

∥∥∥∥
∞
<∞, r ≥ 1.

(3.1.22)
By the definition (3.1.20), and taking into account the conditions on the
parameters of the weights, we have

|(Kf)(y)σ(y)| ≤ ‖fσ‖∞
∫ 1

−1

|k(x, y, ω)σ(y)| w(x)

σ(x)
dx

≤ C ‖fσ‖∞max
|x|≤1
‖k(x, ·, ω)σ‖∞
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from which, by using (3.1.22), we can deduce that the operator K is contin-
uous and bounded. In order to prove its compactness, we remind that [79] if
K satisfies the following condition

lim
m→∞

sup
‖fσ‖∞=1

Em(Kf)σ = 0 (3.1.23)

then K is compact. We note that

∣∣(Kf)(r)(y)(ϕrσ)(y)
∣∣ ≤

∫ 1

−1

|f(x)σ(x)|
∣∣∣∣
∂r

∂yr
k(x, y, ω)ϕr(y)σ(y)

∣∣∣∣
w(x)

σ(x)
dx

≤ ‖fσ‖∞max
|x|≤1

∥∥∥∥
∂r

∂yr
k(x, ·, ω)ϕrσ

∥∥∥∥
∞

∫ 1

−1

w(x)

σ(x)
dx.

Hence, Kf ∈ Wr
σ,∞ for each f ∈ Cσ, and by using the Favard inequality

(3.1.11) with m instead of n, Kf in place of H and σ in place of v, we
deduce (3.1.23).

The proposed numerical strategy is a Nyström method based on the mixed
quadrature formula Kn

mf introduced in (3.1.15). Then, we consider the func-
tional equation

(I −Kn
m) fnm = g, (3.1.24)

where fnm is unknown and we included the constant 1
π

in the definition of Kn
m.

We multiply both sides of (3.1.24) by the weight function σ and we collocate
each equation at the points {ξwi }mi=1. In this way we have that the quantities
ai = (fnmσ)(ξwi ) are the unknowns of the following m×m linear system

m∑

j=1

[
δij −

1

π
σ(ξwi )

Anj (ξwi , ω)

σ(ξwj )

]
aj = (gσ)(ξwi ), i = 1, ...,m, (3.1.25)

where δij is the Kronecker symbol. In terms of matrices the system is

[I− Am]a = b,

where I is the identity matrix of order m and

[Am]mi,j=1 = − 1

π

σ(ξwi )

σ(ξwj )
Anj (ξwi , ω), [b]ni=1 = (gσ)(ξwi ), [a]mi=1 = ai.

Once solved, its solution [a∗]mi=1 = a∗i allows us to construct the following
weighted Nyström interpolant

(fnmσ)(y) = (gσ)(y) +
1

π
σ(y)

m∑

j=1

Anj (y, ω)

σ(ξwj )
a∗j , (3.1.26)
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which will approximate the unknown solution f ∈ Cσ.
Next theorem states that the above described Nyström method is stable

and convergent, as well as, that the condition number in infinity norm of the
matrix Am i.e. cond(Am) = ‖Am‖∞‖A−1

m ‖∞ is bounded by a constant which
does not depend on m.

Theorem 3.1.8. Let w and σ be defined in (1.1.1) and (1.1.2), respec-
tively with parameters satisfying (3.1.16) and (3.1.17), and let us assume
that Ker{I −K} = {0} in Cσ.

Then, if g ∈ Wr
σ,∞, r > 1, for m sufficiently large, the operators (I −Km

m)−1

exist and are uniformly bounded. Moreover, system (3.1.25) is well condi-
tioned, since cond(Am) ≤ C with C 6= C(m) and the following estimate holds
true

‖[f − fmm ]σ‖∞ ≤ C
[

1

mr
+

(
d

ω

)m−1

logm

]
‖f‖Wr

σ,∞ , C 6= C(m, f).

(3.1.27)

Proof. The goal of the proof is to prove that

1. ‖(K −Km
m)fσ‖ tends to zero for any f ∈ Cσ

2. The set of the operators {Km}m is collectively compact.

In fact, by condition 1., in virtue of the principle of uniform boundedness,
we can deduce that sup

m
‖Km

m‖ < ∞ and, by condition 2. we can deduct

that ‖(K − Km
m)Km

m‖ tends to zero [2, Lemma 4.1.2]. Consequently, under
all these conditions, we can claim that for m sufficiently large, the operator
(I −Km

m)−1 exists and it is uniformly bounded since

‖(I −Km
m)−1‖ ≤ 1 + ‖(I −K)−1‖‖Km

m‖
1− ‖(I −K)−1‖‖(K −Km

m)Km
m‖

,

i.e. the method is stable.
Condition 1. follows by Theorem 3.1.4. Condition 2. can be deducted by
[35, Theorem 12.8] for the case γ = δ = 0. Concerning the general case it is
sufficient to prove that [79]

lim
m→∞

sup
‖fσ‖∞=1

Em(Km
mf)σ = 0. (3.1.28)

To this end let us introduce S polynomials qm,i(x, y) with i = 1, ...,S of
degree m in each variable, and for any f ∈ Cσ, let us define the univariate
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polynomial

(Qmf)(y, ω) =
d

2ω

m∑

j=1

S∑

i=1

m∑

ν=1

λuiν `
w
j,i (ξ

ui
ν ) qm,i(ξ

ui
ν , y)f(ξwj ),

where we recall that `wj,i (ξ
ui
ν ) := `wj

(
Ψ−1
i

(
ξ
ui
ν

ω

))
.

Then, in virtue of the definition (3.1.15), by applying (3.1.10), (3.1.18)
and taking into account the assumptions on the parameters of the weights,
we can write

|[(Km
mf −Qmf)(y, ω)]σ(y)|

≤ d

2ω

m∑

j=1

∣∣∣∣∣f(ξwj )σ(ξwj )
S∑

i=1

m∑

ν=1

λuiν
`wj,i(ξ

ui
ν )

σ(ξwj )
(ki (ξ

ui
ν , ωy, ω)− qm,i (ξuiν , y))σ(y)

∣∣∣∣∣

≤ d

2ω
‖fσ‖∞

m∑

j=1

S∑

i=1

m∑

ν=1

λuiν

∣∣∣∣
`wj,i(ξ

ui
ν )

σ(ξwj )
(ki (ξ

ui
ν , ωy, ω)− qm,i (ξuiν , y))σ(y)

∣∣∣∣

=
d

2ω
‖fσ‖∞

m∑

j=1

S∑

i=1

m∑

ν=1

λuiν
σ (ξuiν )

∣∣∣∣
`wj,i(ξ

ui
ν )

σ(ξwj )
σ (ξuiν )(ki (ξ

ui
ν , ωy, ω)− qm,i (ξuiν , y))σ(y)

∣∣∣∣

≤ d

2ω
‖fσ‖∞

m∑

j=1

max
|x|≤1

∣∣∣∣
`wj (x)

σ(ξwj )

∣∣∣∣σ(x)
S∑

i=1

max
|x|≤1
|(ki (x, ωy, ω)− qm,i (x, y))σ(y)|

×
m∑

ν=1

λuiν
σ (ξuiν )

=
d

2ω
‖fσ‖∞

m∑

j=1

max
|x|≤1

∣∣∣∣
`wj (x)

σ(ξwj )

∣∣∣∣σ(x)
S∑

i=1

max
|x|≤1

Em (ki(x, ·, ω))σ

m∑

ν=1

λuiν
σ (ξuiν )

≤ C d
2ω

logm ‖fσ‖∞
S∑

i=1

max
|x|≤1

Em (ki(x, ·, ω))σ

The only point remaining is to estimate the quantity Em (ki(x, ·, ω))σ. To
this end, taking into account the definition of ki given in (3.1.6) and (3.1.22),
by using the Favard inequality (3.1.11), we get

Em (ki(x, ·, ω))σ ≤
C
mr

(
d

ω

)r
,

i.e. (3.1.28). About the well-conditioning of the matrix Am, it is sufficient
to prove that

cond(Am) ≤ cond(I −Km
m) = ‖I −Km

m‖ ‖(I −Km
m)−1‖.
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To this end we can use the same arguments in [2, p.113] only by replacing the
usual infinity norm with the weighted uniform norm of Cσ. Finally, estimate
(3.1.27) follows taking into account that

‖(f − fmm )σ‖∞ ≤ ‖(I +Km
m)−1‖ ‖(K −Km

m)f‖∞

and by applying Theorem 3.1.4 to the last term.

3.2 Two–dimensional Love’s Integral Equa-

tion

In this Section we present a numerical method for approximating the so-
lution of Love’s bivariate equation (3.0.4) defined on the square S := [−1, 1]2.

3.2.1 The 2D-dilation formula: a revisiting

We focus our attention to the approximation of the integrals of the form

I(F ,y, ω) =

∫

S

k(x,y, ω)F (x)w(x)dx, (3.2.1)

where F is a given function, w is as in (1.2.1) and k(x,y, ω) is a known
kernel which is close to be singular if ω−1 → 0. This is the case of the kernel
function appearing in the bivariate Love equation (3.0.4).

In Subsection 2.2.2 has been presented a “dilation” cubature formula for
approximating integrals of the type

I(F , ω) =

∫

S

k(x, ω)F (x)w(x)dx,

namely, to integrals in which the kernel function k is not a function of four
variables. Our idea is to “generalize” in some sense the approach proposed
in Subsection 2.2.2 and provide new error estimates. Then, firstly we restate
what it is given in Subsection 2.2.2, in order to have a dilation cubature
formula for the case when the kernel is a function of four variables as (3.2.1).

Similarly to the one-dimensional case, we aim to dilate the domain of
integration from the square S = [−1, 1] × [−1, 1] into the dilated square
Sω = [−ω, ω] × [−ω, ω]. Thus, in (3.2.1) we make the following change of
variables

x =
η

ω
, y =

θ

ω
,

with η = (η1, η2) and θ = (θ1, θ2) in Sω.
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Then, by partitioning the new domain Sω into S2 squares of area d2 with
d such that S = 2ω

d
∈ N, i.e.

Sω =
S⋃

i=1

Si ×
S⋃

j=1

Sj with S` = [−ω + (`− 1)d, −ω + `d], ` ∈ {i, j},

we get

I(F ,y, ω) =
1

ω2

∫

Sω

k

(
η

ω
,
θ

ω
, ω

)
(Fw)

(η
ω

)
dη

=:
1

ω2

∫

Sω

κ (η,θ, ω) (Fw)
(η
ω

)
dη

=
1

ω2

S∑

i=1

S∑

j=1

∫

Si×Sj
κ (η, ωy, ω) (Fw)

(η
ω

)
dη. (3.2.2)

Then, by using the invertible linear maps

Ψij : Si × Sj → [−1, 1]× [−1, 1]

defined as
x = Ψij(η) = (Ψi(η1),Ψj(η2)),

where Ψ` with ` ∈ {i, j}, is the map introduced in the previous Section (or,
equivalently, in Subsections 2.1.2 and 2.2.2), we can remap each integral into
the unit square S. In fact, by making in (3.2.2) the change of variables

η = Ψ−1
ij (x) =

(
Ψ−1
i (x1),Ψ−1

j (x2)
)

we have

I(F ,y, ω) =
d2

4ω2

S∑

i=1

S∑

j=1

∫

S

kij(x, ωy, ω)F ij(x)uij(x)dx (3.2.3)

where F ij(x) :=

(
Ψ−1
ij (x)

ω

)
, uij(x) := u1,i(x1)u2,j(x2) with

u1,i(x1):=





v0,β1(x1), i = 1

v0,0(x1), 2 ≤ i ≤ S − 1,

vα1,0(x1), i = S

u2,j(x2):=





v0,β2(x2), j = 1

v0,0(x2), 2 ≤ j ≤ S − 1,

vα2,0(x2), j = S

(3.2.4)
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and kij the new kernel functions defined as

kij(x, ωy, ω) := k

(
Ψ−1
ij (x)

ω
,y, ω

)
U1,i (x1, ω, d)U2,j (x2, ω, d) (3.2.5)

with

Up,`(x1, ω, d) :=





(
d

2ω

)βp
vαp,0

(
Ψ−1
` (xp)

ω

)
, ` = 1

vαp,βp
(

Ψ−1
` (xp)

ω

)
, 2 ≤ ` ≤ S − 1,

(
d

2ω

)αp
v0,βp

(
Ψ−1
` (xp)

ω

)
, ` = S

` ∈ {i, j},

being p = 1 if ` = i and p = 2 if ` = j. By approximating each integral
appearing in (3.2.3) by means of the Gauss-Jacobi cubature rule (1.2.16) with
uij in place of w and kijF ij instead of f , we have the following “dilation”
cubature formula

I(F ,y, ω) =
d2

4ω2

S∑

i=1

S∑

j=1

n∑

h=1

n∑

ν=1

λ
u1,i
h λu2,jν kij(ξ

u1,i,u2,j
h,ν , ωy, ω)F ij(ξ

u1,i,u2,j
h,ν )

+ Λn,n(F , ωy, ω),

where Λn,n denotes the remainder term.
The given rule is stable and convergent as the following theorem shows.

Theorem 3.2.1. Let F ∈ Cσ with σ as in (1.2.2) such that

0 ≤ γi < min{1, 1 + αi}, 0 ≤ δi < min{1, 1 + βi}, i ∈ {1, 2}

and let us assume that the kernel function k is such that

max
x,y∈S

|k(x,y, ω)| <∞.

Then the above formula is stable and for any F ∈ W r
σ,∞, if

sup
y∈S

max

{
max

x1∈[−1,1]

∣∣∣∣
∂rk(x,y, ω)

∂xr1
ϕr1(x1)

∣∣∣∣ , max
x2∈[−1,1]

∣∣∣∣
∂rk(x,y, ω)

∂xr2
ϕr2(x2)

∣∣∣∣
}
<∞

(3.2.6)
we get

sup
y∈S
|Λn,n(F , ωy, ω)| ≤ C

nr

(
d

ω

)r
‖F ‖W r

σ,∞ , C 6= C(n). (3.2.7)
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Proof. First, we prove the stability of the formula. By definition

|Σn,n(F , ωy, ω)|= d2

4ω2

∣∣∣∣∣
S∑

i=1

S∑

j=1

n∑

h=1

n∑

ν=1

λ
u1,i
h λu2,jν kij(ξ

u1,i,u2,j
h,ν , ωy, ω)F ij(ξ

u1,i,u2,j
h,ν )

∣∣∣∣∣

≤ d2

4ω2
‖Fσ‖∞

S∑

i=1

S∑

j=1

sup
ξ
u1,i,u2,j
h,ν ∈S

|kij(ξu1,i,u2,jh,ν , ωy, ω)|
n∑

h=1

λ
u1,i
h

σ(ξ
u1,i
h )

n∑

ν=1

λ
u2,j
ν

σ(ξ
u2,j
ν )

from which taking into account the assumption on the kernel and on the
weights and by applying (3.1.10) we can deduce the stability of the formula.

In order to prove (3.2.7), we proceede as done for the proof of (3.1.9).
Taking into account (1.2.17) we can write with N = [2n−1

2
]

|Λn,n(F , ωy, ω)| ≤ C
S∑

i=1

S∑

j=1

(
‖F ijσ‖∞EN,N(kij)

+ sup
x∈S
|kij(x, ωy, ω)|EN,N(F ij)σ

)
.

Then, by applying the Favard inequality according to which for any bivariate
function h ∈ W r

σ,∞ we have Em,m(h)σ ≤ CMr(h,σ)
mr

with Mr(h,σ) as in
(1.2.8), we get

|Λn,n(F , ωy, ω)| ≤ C
nr

S∑

i=1

S∑

j=1

(
‖F ijσ‖∞Nr(kij,y)

+ sup
x∈S
|kij(x, ωy, ω)| Mr(F ij,σ)

)

with

Nr(kij,y) := max

{
max
x∈S

∣∣∣∣
∂rkij(x, ωy)

∂xr1
ϕr1(x1)

∣∣∣∣ ,max
x∈S

∣∣∣∣
∂rkij(x, ωy)

∂xr2
ϕr2(x2)

∣∣∣∣
}
.

By definition (3.2.5), being
∣∣∣∣
∂rU 1,i(x1, x2, ω, d)

∂xr1
ϕr1(x1)

∣∣∣∣ ≤ C
(
d

2ω

)r
,

and by using (3.2.6), we have

∣∣∣∣
∂rkij(x1, x2,y, ω)

∂xr1
ϕr1(x1)

∣∣∣∣ ≤ C
r∑

k=0

(
r

k

)(
d

2ω

)r−k (
d

2ω

)k
= C

(
d

ω

)r
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and therefore

sup
y∈D
|Λn,n(F , ωy, ω)| ≤ C

nr

(
d

ω

)r
‖F ‖W r

σ,∞ .

Corollary 3.2.2. Let F (x1, x2) and k(x1, x2, y1, y2, ω) be two continuous
functions having 2m continuous partial derivatives with respect to the variable
x1 and x2. Then

sup
y∈S
|Λn,n(F , ωy, ω)| ≤ C

n2n+ 1
2

(
d

ω

)2n

e
48n2+1

24n 22n−1 [‖F ‖∞ + Γ(F )]

with C 6= C(n, ω, d) and Γ(F ) = max
{∥∥∥∂2mF∂x2m1

∥∥∥
∞
,
∥∥∥∂2mF∂x2m2

∥∥∥
∞

}
.

Proof. The thesis can be proved by proceeding mutandis mutandis as in
Corollary 3.1.2 taking into account Proposition 1.2.5.

3.2.2 A new mixed cubature formula

The aim of this Subsection is to propose a cubature formula that we
will use in the next Section in order to approximate the solution of the Love
bivariate integral equation (3.0.4). To this end, let us approximate the generic
integral ∫

S

k(x,y, ω)f(x)w(x)dx

by using the product rule (2.2.2) that is

∫

S

k(x,y, ω)f(x)w(x)dx =
m∑

h=1

m∑

ν=1

Ah,ν(y, ω)f
(
ξw1,w2

h,ν

)
+ Em,m(f ,y, ω)

and by approximating the coefficientsAh,ν (defined as in (2.2.3) with k(x,y) =
k(x,y, ω))

Ah,ν(y, ω) =

∫

S

k(x,y, ω)`w1,w2

h,ν (x)w(x)dx

by using the “dilation” cubature formula (2.2.21).
In this way we get the following mixed cubature rule

∫

S

k(x,y, ω)f(x)w(x)dx =
m∑

h=1

m∑

ν=1

An,nh,ν (y, ω)f
(
ξw1,w2

h,ν

)
+ En,nm,m(f ,y, ω)

=: Kn,n
m,m(f ,y, ω) + En,nm,m(f ,y, ω) (3.2.8)
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where ξw1,w2

h,ν := (ξw1
h , ξw2

ν ) with {ξw1
h }mh=1 and {ξw2

ν }mν=1 the zeros of pm(w1, x1)
and pm(w2, x2), respectively, En,nm,m the remainder term and

An,nh,ν (y, ω)

=
d2

4ω2

S∑

i=1

S∑

j=1

n∑

p=1

n∑

q=1

λu1,ip λu2,jq `w1,w2

h,ν

(
Ψ−1
ij

(
ξ
u1,i,u2,j
p,q

ω

))
kij(ξ

u1,i,u2,j
p,q , ωy, ω)

with `w1,w2

h,ν

(
Ψ−1
ij

(
ξ
u1,i,u2,j
p,q

ω

))
= `w1

h

(
Ψ−1
i

(
ξ
u1,i
p

ω

))
`w2
ν

(
Ψ−1
j

(
ξ
u2,j
q

ω

))
, {λu1,ip }np=1

and {λu2,iq }nq=1 the Christoffel numbers with respect to the weights u1,i and
u2,i given in (3.2.4) and kij defined as in (3.2.5).

Next theorem gives the conditions on the kernel k and on the weights
which ensure the convergence of the above formula by providing an error
estimate in the case when n ≡ m.

Theorem 3.2.3. Let f ∈ Cσ. Then if conditions (2.2.5) and (2.2.6) are
satisfied and the assumptions stated in Theorem 3.2.1 are verified, then the
following error estimate holds true

|Em,mm,m (f , ω)| ≤ C
[
Em,m(f)σ +

(
d

ω

)m−1

m2µ‖fσ‖∞
]
,

where C 6= C(m,ω) and µ = max{αi + 1
2
− 2γi, βi + 1

2
− 2δi}, i ∈ {1, 2}.

Remark 3.2.4. Let us remark that the previous theorem gives the error es-
timate for n = m. In practice we can apply our method with n fixed since
in virtue of Corollary 3.2.2 the coefficients of the mixed formula are approx-
imated with an error which decreases exponentially.

Proof. By (3.2.8) we can write

|Em,mm,m (f ,y, ω)| ≤
∣∣∣∣∣

∫

S

k(x,y, ω)f(x)w(x)dx−
m∑

h=1

m∑

ν=1

Ah,ν(y)f(ξw1,w2

h,ν )

∣∣∣∣∣

+

∣∣∣∣∣
m∑

h=1

m∑

ν=1

(
Ah,ν(y)− Am,mh,ν (y)

)
f(ξw1,w2

h,ν )

∣∣∣∣∣

≤ |Em,m(f ,y, ω)|+ ‖fσ‖∞
m∑

h=1

m∑

ν=1

|Λm,m(`w1,w2

h,ν , ωy, ω)|
σ(ξw1,w2

h,ν )
.

By (3.2.7) with r = m− 1 we can write

|Λm,m(`w1,w2

h,ν , ωy, ω)| ≤ C
mm−1

(
d

ω

)m−1

‖`w1,w2

h,ν ‖W r
σ,∞
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and then, by using the weighted Bernstein inequality (see, for instance [47,
p. 170]), we get

|Λm,m(`w1,w2

h,ν , ωy, ω)| ≤ C
(
d

ω

)m−1

‖`w1,w2

h,ν σ‖∞,

from which [47, Th.4.3.3, p.274 and p.256] we deduce

|Em,mm,m (f ,y, ω)| ≤ |Em,m(f ,y, ω)|+ C
(
d

ω

)m−1

m2µ ‖fσ‖∞,

and consequently the thesis taking into account (2.2.8).

3.2.3 The numerical method

The goal of this Subsection is to propose a Nyström method for the
bivariate Love integral equation (3.0.4) rewritten as

(I −K)f = g, (3.2.9)

where I is the identity bivariate operator and

(Kf)(y, ω) =
1

π2

∫

S

k(x,y, ω)f(x) w(x)dx

with

k(x,y, ω) =
ω−1

|x− y|2 + ω−2
. (3.2.10)

Before describing such a method, let us investigate on the mapping prop-
erties of the operator K.

Proposition 3.2.5. Let σ and w be as in (1.2.2) and (1.2.1), respectively
such that

0 ≤ γi < 1 + αi, 0 ≤ δi < 1 + βi, i ∈ {1, 2}.
Then

K : Cσ → Cσ

is continuous, bounded and compact. Moreover,

∀f ∈ Cσ, Kf ∈ W r
σ,∞, ∀r ∈ IN.

Remark 3.2.6. We remark that according to Proposition 3.2.5 and in virtue
of the Fredholm Alternative Theorem, under the assumption Ker{I +K} =
{0}, equation (3.2.9) has a unique solution f ∈ Cσ.
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Proof. The thesis can be proved by proceeding as done in the proof of Propo-
sition 3.1.6 mutandis mutandis, by noting that the kernel k given in (3.2.10),
satisfies the following conditions

max
x∈S
‖k(x, ·, ω)σ‖∞ < +∞,

max
x∈S

{∥∥∥∥
∂rk(x, ·, ω)

∂yr1
ϕr1σ

∥∥∥∥ ,
∥∥∥∥
∂rk(x, ·, ω)

∂yr2
ϕr2σ

∥∥∥∥
}

∞
< +∞, r ≥ 1.

In order to approximate the solution of (3.2.9) let us consider the func-
tional equation (

I −Kn,n
m,m

)
fn,nm,m = g, (3.2.11)

where fn,nm,m is unknown andKn,n
m,m is the mixed cubature operator introduced

in (3.2.8), and in the definition of which we included the constant
1

π2
.

Then, we multiply both sides of equation (3.2.11) by the weight function
σ and we collocate it on the pairs ξw1,w2

i,j :=
(
ξw1
i , ξw2

j

)
, i, j = 1, ...,m. In this

way we have, for i, j = 1, ...,m, the following m2 ×m2 linear system

aij −
1

π2
σ(ξw1,w2

i,j )
m∑

h=1

m∑

ν=1

An,nh,ν (ξw1,w2

i,j , ω)

σ(ξw1,w2

h,ν )
ahν = (gσ)(ξw1,w2

i,j ), (3.2.12)

where the unknowns aij = (fn,nm,mσ)(ξw1,w2

i,j ), i, j = 1, ...,m allow us to con-
struct the weighted bivariate Nyström interpolant

(fn,nm,mσ)(y) =
1

π2
σ(y)

m∑

h=1

m∑

ν=1

An,nh,ν (y, ω)

σ(ξw1,w2

h,ν )
a∗hν + (gσ)(y). (3.2.13)

Next theorem states that the above described Nyström method is stable,
convergent and the condition number of the system we solve does not depend
on m.

Theorem 3.2.7. Let w and σ be defined in (1.2.1) and (1.2.2), respectively
with parameters satisfying (2.2.6), and let us assume that Ker{I−K} = {0}
in Cσ.

Then if g ∈ W r
σ,∞, r > 2, for m sufficiently large, the operators

(
I −Km,m

m,m

)−1

exist and are uniformly bounded. Moreover, system (3.2.12) is well condi-
tioned, and the following estimate holds true

‖[f − fm,mm,m]σ‖∞ ≤ C
[

1

mr
+

(
d

ω

)m−1

m2µ

]
‖f‖W r

σ
, (3.2.14)

with C 6= C(m,f) and µ = max{αi + 1
2
− 2γi, βi + 1

2
− 2δi}, i ∈ {1, 2}.

Proof. The proof follows in the same line as that of Theorem 3.1.8.
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3.3 Numerical Tests

In this Section we show by some numerical tests the performace of the
methods described in the previous Sections. Specifically, for the univari-
ate case, we first test the proposed approach on the classical Love integral
equations (Example 3.3.1) and then we show its effectiveness on other two
generalized Love’s equation (Examples 3.3.2 and 3.3.3). Similarly, for the
bivariate case, we apply the method described in Section 3.2 to the classical
Love bivariate equation (Example 3.3.4) and finally we test the described
method to a specific generalized Love equation defined on the square (Ex-
ample 3.3.5).

In all the numerical tests the solution f (respectively f) is very smooth
and we expect a fast convergence according to estimate (3.1.27) (respectively
(3.2.14)).

Example 3.3.1. Let us consider the classical Love integral equation (3.0.3)
in the space Cσ with σ ≡ 1. We approximate its solution by means of the
Nyström interpolant (3.1.26) and we compute the absolute errors

errnM,m(x) = |(fnM(x)− fnm(x))σ(x)|, (3.3.1)

in different points x ∈ [−1, 1]. In (3.3.1) fnM is the solution assumed to be
exact which is obtained with a fixed value m = M . In Table 3.1 we report
the results we get for different choises of ω. By comparing them with those
presented in [44, Table 1, Table 3 and Table 5], we can see that, in the case
when ω = 102 by solving a square system of m = 256 equations we get an
error of the order 10−16, instead of 10−5 as shown in [44, Table 1]. If ω = 103,
by solving a system of order 700 we get the machine precision, accuracy that
in [44, Table 3] is reached with a system of 16384 equations. Similarly, the
method gives accurate results also in the case when ω = 104.

Example 3.3.2. Let us test our method on the equation

f(y)− 1

π

∫ 1

−1

10−2

(x− y)2 + 10−4
f(x) v

1
2
, 1
2 (x) dx = ey,

namely, a generalized Love integral equation with ω = 102. Table 3.2 shows
the errors (3.3.1) that we get with σ(x) = v

1
2
, 1
2 (x), n = 20 and M = 350

for increasing value of m. As we can see by solving a linear system of order
m = 256 we get the machine precision.

Example 3.3.3. Let us consider the following generalized Love’s integral
equation with ω = 103

f(y)− 1

π

∫ 1

−1

10−3

(x− y)2 + 10−6
f(x) v−

1
2
,− 1

2 (x) dx =
1 + y3

y2 + 9
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Table 3.1: Example 3.3.1: results by 1D-Nyström method.

ω n M m errnM,m(0) errnM,m(0.5) errnM,m(0.9) errnM,m(1)

102 20 350 16 2.884e− 04 2.881e− 04 1.807e− 03 9.363e− 03
32 4.723e− 05 1.590e− 05 7.419e− 05 1.983e− 04
64 6.739e− 07 6.199e− 07 2.088e− 06 3.670e− 07
128 2.190e− 10 6.364e− 11 2.478e− 10 9.129e− 13
256 3.330e− 16 0 1.110e− 16 0

103 20 750 16 3.215e− 05 3.249e− 05 2.390e− 04 3.783e− 02
32 2.422e− 05 8.784e− 06 5.220e− 05 2.554e− 02
64 1.375e− 05 1.382e− 05 1.011e− 04 3.233e− 03
128 4.872e− 07 1.758e− 07 2.617e− 06 1.785e− 05
256 6.148e− 09 5.999e− 09 8.002e− 09 1.633e− 08
512 5.880e− 13 2.007e− 13 1.246e− 12 8.881e− 16
700 2.886e− 16 1.110e− 16 2.220e− 15 2.220e− 16

104 20 750 16 3.136e− 06 3.186e− 06 2.341e− 05 4.236e− 02
32 2.259e− 06 8.284e− 07 4.873e− 06 4.085e− 02
64 1.669e− 06 1.690e− 06 1.317e− 05 3.532e− 02
128 1.254e− 06 4.631e− 07 8.017e− 06 1.827e− 02
256 4.966e− 07 5.014e− 07 8.856e− 07 1.050e− 04
512 1.475e− 08 5.302e− 09 5.738e− 08 6.362e− 06
700 8.386e− 10 7.958e− 10 3.767e− 09 5.386e− 08

Table 3.2: Example 3.3.2: results by 1D-Nyström method.

m err20350,m(0) err20350,m(0.1) err20350,m(0.3) err20350,m(0.7)

16 1.099e− 04 1.617e− 05 6.341e− 05 1.650e− 04
32 7.196e− 07 7.714e− 07 7.547e− 07 1.405e− 06
64 2.792e− 09 2.966e− 09 2.094e− 09 6.056e− 09
128 5.410e− 13 5.526e− 13 3.153e− 14 8.726e− 13
256 8.881e− 16 0 0 3.330e− 16

in the space Cσ with σ(x) = v
1
4
, 1
4 (x). Table 3.3 shows the accurate results we

get also in this case.

Example 3.3.4. Let us consider the classical bivariate integral equation
(3.0.4) in the space Cσ with σ ≡ 1. Table 3.4 shows the values that the
weigthed Nyström interpolant (3.2.13) (n = 20) has in different points of the
square for increasing values of m. Specifically, we test our method for two
different values of ω. As we can see, by solving a system of order m2 with
m = 64 we get, 16 correct decimal digits if ω = 10 and about 10 correct
decimal digits if ω = 102.

Example 3.3.5. Let us consider the generalized Love bivariate integral equa-
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Table 3.3: Example 3.3.3: results by 1D-Nyström method.

m err20750,m(−0.5) err20750,m(0) err20750,m(0.5) err20750,m(0.9)

16 1.914e− 05 5.700e− 05 6.142e− 05 4.520e− 04
32 2.288e− 06 6.526e− 06 7.033e− 06 2.685e− 05
64 2.639e− 07 7.536e− 07 7.980e− 07 9.026e− 06
128 6.095e− 07 1.749e− 06 1.845e− 06 8.765e− 06
256 2.383e− 08 6.975e− 08 7.242e− 08 5.407e− 07
512 2.914e− 12 8.866e− 12 8.802e− 12 8.087e− 13
700 5.627e− 16 1.613e− 15 1.666e− 15 9.159e− 16

Table 3.4: Example 3.3.4: results by 2D-Nyström method.

ω m f20,20
m,m (0.5, 0.5) f20,20

m,m (0.3, 0.99) f20,20
m,m (0, 0)

10 8 1.16085e+ 00 1.0988e+ 00 1.1796e+ 00
16 1.160854e+ 00 1.0988559e+ 00 1.179642e+ 00
32 1.16085413981e+ 00 1.09885600758e+ 00 1.17964277689e+ 00
64 1.160854139816865e+ 00 1.098856007581168e+ 00 1.179642776903225e+ 00
128 1.160854139816865e+ 00 1.098856007581168e+ 00 1.179642776903225e+ 00

ω m f20,20
m,m (0.9, 0.7) f20,20

m,m (0.1, 0.6) f20,20
m,m (0.5, 0.2)

102 8 1.02453e+ 00 1.02961e+ 00 1.030007e+ 00
16 1.024539e+ 00 1.029616e+ 00 1.030007e+ 00
32 1.02453917e+ 00 1.02961640e+ 00 1.03000799e+ 00
64 1.0245391724e+ 00 1.029616409104e+ 00 1.03000799184e+ 00
128 1.024539172475126e+ 00 1.029616409104135e+ 00 1.030007991847319e+ 00

tion.

f(y)− 1

π2

∫ 1

−1

∫ 1

−1

ω−1

|x− y|2 + ω−2
f(x)w(x)dx = log(10− y1 − y2),

with w(x) = v
1
2
, 1
2 (x1)v

1
2
, 1
2 (x2). Table 3.5 shows the weighted Nyström inter-

polant with σ(x) = v
1
4
, 1
4 (x1)v

1
4
, 1
4 (x2) for two different values of ω in three

different points of the square. Once again, we get very accurate results.
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Table 3.5: Example 3.3.5: results by 2D-Nyström method.

ω m (f20,20
m,m σ)(−0.5,−0.2) (f20,20

m,m σ)(0, 0) (f20,20
m,m σ)(0.9,−0.9)

10 8 2.449868e+ 00 2.64698e+ 00 1.038961e+ 00
16 2.449868e+ 00 2.6469851e+ 00 1.038961260e+ 00
32 2.4498685945e+ 00 2.6469851445e+ 00 1.0389612603577e+ 00
64 2.449868594590459e+ 00 2.646985144594663e+ 00 1.038961260357739e+ 00
128 2.449868594590459e+ 00 2.646985144594663e+ 00 1.038961260357739e+ 00

ω m (f20,20
m,m σ)(−0.9,−0.3) (f20,20

m,m σ)(0.1, 0) (f20,20
m,m σ)(0.9, 0.9)

102 8 1.57643e+ 00 2.35163e+ 00 9.22751e− 01
16 1.5764310e+ 00 2.351633e+ 00 9.2275158e− 01
32 1.576431062e+ 00 2.35163329669e+ 00 9.22751584e− 01
64 1.576431062245e+ 00 2.351633296691e+ 00 9.227515843740e− 01
128 1.576431062245818e+ 00 2.351633296691469e+ 00 9.227515843740188e− 01
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Chapter 4

Numerical Methods for Cauchy
Bisingular Integral Equations
of the First Kind on the Square

In this Chapter we investigate the numerical solution of Cauchy bisingular
integral equations of the first kind on the square.

Singular integral equations with Cauchy kernels arise in the mathematical
modelling of several problems of the Applied Sciences like aerodynamics,
elasticity, fluid flow problems and crack theory [1, 27, 70].

For the univariate case, a general theory on such type of equations is well
developed and described in the monographs [25, 55, 64, 74] and several nu-
merical methods have been extensively investigated [3, 12, 16, 28, 32, 33, 38,
39, 40, 49] in terms of stability, convergence, well-conditioning and accuracy
of the results.

Concerning the multivariate case, the theoretical analysis of these equa-
tions is well studied in the books [42, 54] and several authors focus their
research on bisingular integral equations arising from the 3D Helmholtz equa-
tions. An example is the following bivariate singular integral equation of the
first kind which is strictly related to the stationary problem of a flow past a
rectangular airfoil of large span [21]

1

π2

∮ 1

−1

∮ 1

−1

F (x, y)

(x− t)(y − s) dx dy = g(t, s),

where here and in the sequel the symbol
∮

means that the integral has to be
interpreted in the Cauchy Principal Value sense, i.e.

∮ 1

−1

∮ 1

−1

F (x, y)

(x− t)(y − s) dx dy := lim
ε1,ε2→0+

∫

|x−t|≥ε1

∫

|y−s|≥ε2

F (x, y)

(x− t)(y − s) dx dy,
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(t, s) ∈ Ṡ, ε1, ε2 > 0.
However, even if these equations are of applicative nature, according to

our knowledge, very few numerical methods are disposable in the literature
[29, 34].

In this Chapter, we propose two different methods based on a global
polynomial approximation of the unknown solution.

We underline that, all the results in this Chapter, are new and have
recently been presented in [23] and can also be used elsewhere.

The principal aim of this Chapter is to investigate on the numerical treat-
ment of the more general bisingular integral equation of the first kind defined
on the square S = [−1, 1]× [−1, 1]

1

π2

∮

S

F (x, y)

(x− t)(y − s) dx dy +

∫

S

k(x, y, t, s)F (x, y) dx dy = g(t, s), (4.0.1)

where F is the bivariate unknown function and k and g are given functions
defined on S2 and S, respectively.

According to [21, 28], the solution of the above equation can be singular
along two o more edges of the square S and the behavior of the singularities
is known.

In this thesis we consider the case when the solution turns to be un-
bounded at x = y = −1 and thus [21, 28] it can be expressed as

F (x, y) = f(x, y)

√
1− x
1 + x

√
1− y
1 + y

,

where f has to be determined. In a nutshell, the function F has a behaviour
similar to that of the solution of the airfoil equation in the univariate case
[74]. We remark that the other cases (i.e. unboundedness at x = 1, y = 1, or
at x = 1, y = −1, or at x = −1, y = 1) can be treated similarly.

Hence, equation (4.0.1) can be rewritten as

(D +K)f = g, (4.0.2)

where D is the dominant operator

Df(t, s) =
1

π2

∮

S

f(x, y)

(x− t)(y − s)

√
1− x
1 + x

√
1− y
1 + y

dx dy (4.0.3)

and K is the perturbation operator

Kf(t, s) =

∫

S

k(x, y, t, s)f(x, y)

√
1− x
1 + x

√
1− y
1 + y

dx dy. (4.0.4)
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In this thesis, for the numerical treatment of (4.0.2), we propose two
different approaches, both based on a global polynomial approximation of
the unknown bivariate function f . The first one is a direct method since we
act directly on the equation, while the second one is an indirect procedure,
since we go to solve an equivalent regularized Fredholm equation.

In both cases, by using a suitable Lagrange interpolating operator, we
project the considered equation into the subspace of polynomials and we
discretize the integrals by using a suitable Gaussian cubature formula and
by applying the fundamental invariance property of D on the orthogonal
polynomials. Then, by collocation on suitable nodes, we end up with a linear
system whose unknowns are the coefficients of the polynomial approximating
the exact solution.

For both methods, we give a complete analysis in suitable weighted L2

spaces. In details, we examine the stability, show the related convergence
results and error estimates, and discuss the condition numbers of the systems
we get.

Comparing the presented two procedures, they are equivalent in terms
of convergence order and computational costs, at least when in the indirect
approach we can compute exactly the involved integrals. Otherwise the in-
direct procedure is more expensive. Nevertheless the strategy of using the
Fredholm equation equivalent to the Cauchy singular one, can be much easier
extended to other functional spaces.

We underline that in order to achieve such theoretical analysis, we needed
to prove some auxiliary results concerning the mapping properties of the in-
volved integral operators and the bivariate Lagrange and Fourier operators.
Also these auxiliary results are new and can also be used elsewhere. With
respect to the preliminary results about bivariate Lagrange and Fourier op-
erators, these have been already reported in Subsection 1.2.2.

This Chapter is structured into four Sections. In Section 4.1 we state the
mapping properties of the integral operators D and K. Sections 4.2 and 4.3
are devoted to the two different methods we propose and whose numerical
tests are showed in Section 4.4.

4.1 Mapping properties of the dominant and

perturbation operators

In this Section we investigate on the mapping properties of the dominant
operator D and the perturbation operator K, involved in equation (4.0.2). To
this end, let v be the product of two fourth kind Chebyshev weight functions,
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i.e.

v(x, y) = u(x)u(y), with u(z) =

√
1− z
1 + z

. (4.1.1)

According to the above notation, we rewrite the dominant operator D intro-
duced in (4.0.3) as

Df(t, s) =
1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y)dx dy. (4.1.2)

By using standard arguments, it is not hard to prove that the adjoint
operator of D has the following form

D̂f(t, s) =
1

π2

∮

S

f(x, y)

(x− t)(y − s)v
−1(x, y) dx dy. (4.1.3)

Now we recall the explicit expression for pm(u, z) and pm(u−1, z) (the
fourth and third kind Chebyshev orthonormal polynomials with respect to
the weights u and u−1, respectively), namely [26, 46]

pm(u, z) =
sin
((
m+ 1

2

)
θ
)

sin
(

1
2
θ
) , z = cos θ, 0 ≤ θ ≤ π, (4.1.4)

and

pm(u−1, z) =
cos
((
m+ 1

2

)
θ
)

cos
(

1
2
θ
) , z = cos θ, 0 ≤ θ ≤ π. (4.1.5)

Next results state useful properties of the operators D, D̂ and K which
are basic for our methods.

Lemma 4.1.1. Let u be defined in (4.1.1), qm(t, s) = pm(u, t)pm(u, s) and
rm(t, s) = pm(u−1, t)pm(u−1, s). Then,

Dqm(t, s) = rm(t, s) (4.1.6)

and
D̂rm(t, s) = qm(t, s). (4.1.7)

Proof. Taking into account the definition of the dominant operator D, we
write

Dqm(t, s) =
1

π2

∮

S

qm(x, y)

(x− t)(y − s) u(x)u(y) dx dy

=

[
1

π

∮ 1

−1

pm(u, x)

(x− t) u(x) dx

] [
1

π

∮ 1

−1

pm(u, y)

(y − s) u(y) dy

]

= pm(u−1, t) pm(u−1, s)

= rm(t, s)
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being [55, 74]
1

π

∮ 1

−1

pm(u, z)

(z − η)
u(z) dz = pm(u−1, η).

Analogously,

D̂rm(t, s) =
1

π2

∮

S

rm(x, y)

(x− t)(y − s) u
−1(x)u−1(y) dx dy

=

[
− 1

π

∮ 1

−1

pm(u−1, x)

(x− t) u−1(x) dx

] [
− 1

π

∮ 1

−1

pm(u−1, y)

(y − s) u−1(y) dy

]

= pm(u, t) pm(u, s)

= qm(t, s)

since [55, 74]

− 1

π

∮ 1

−1

pm(u−1, z)

(z − η)
u−1(z) dz = pm(u, η).

For brevity, from now on we set W r
v := W r

v,2, where W r
v,2 is defined in

(1.2.7) with σ = v.

Proposition 4.1.2. Let D and D̂ be the operators defined in (4.1.2) and
(4.1.3), respectively. Then

D : W r
v → W r

v−1 (4.1.8)

is continuous and invertible and its two-sided inverse is the continuous op-
erator

D̂ : W r
v−1 → W r

v . (4.1.9)

In order to prove Proposition 4.1.2, let us note that the dominant operator
D can be rewritten in terms of the Hilbert transform of a univariate function
h

H(h, t) =
1

π

∮ 1

−1

h(x)

(x− t) u(x) dx

as follows

Df(t, s) =
1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y) dx dy =
1

π

∮ 1

−1

H(fx, s)

(x− t) u(x) dx

=
1

π

∮ 1

−1

H(fy, t)

(y − s) u(y) dy = H (H(f)) (t, s)
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where fx and fy denote the function f as a univariate function of the variable
y and x, respectively. Let us also remind that for a univariate function h the
following estimates hold true [50, 55]

‖(Hh)(r)ϕr‖L2
u−1
≤ ‖h‖Wr

u
, and ‖Hh‖L2

u−1
≤ ‖h‖L2

u
. (4.1.10)

Proof. At first we note that, by definition, the operator D is a linear operator.
Moreover, by (1.2.12) we have

‖Df‖2
L2
v−1

=
∞∑

i=0

∞∑

j=0

c2
ij(Df ,v

−1) =
∞∑

i=0

∞∑

j=0

c2
ij(f ,v) = ‖f‖2

L2
v
<∞

being, in virtue of (4.1.7)

c2
ij(Df ,v

−1) =

(∫

S

Df(x, y) pi(u
−1, x) pj(u

−1, y)v−1(x, y) dx dy

)2

=

(∫

S

1

π2

∮

S

[
f(η, ξ)

(η − x)(ξ − y)
v(η, ξ)dη dξ

]
pi(u

−1, x)pj(u
−1, y)v−1(x, y) dx dy

)2

=

(∫

S

f(η, ξ)

[
1

π2

∮

S

pi(u
−1, x) pj(u

−1, y)

(x− η)(y − ξ) v−1(x, y) dx dy

]
v(η, ξ) dη dξ

)2

=

(∫

S

f(η, ξ) pi(u, η) pj(u, ξ)v(η, ξ) dη dξ

)2

= c2
ij(f ,v).

Moreover, by applying (4.1.10) and taking into account that

(a+ b)2 ≤ 2(a2 + b2), ∀a, b ∈ IR

and √
a+ b ≤ √a+

√
b, ∀a, b ∈ IR+,

we have
(∫ 1

−1

∫ 1

−1

∣∣∣∣
∂r

∂tr
Df(t, s)ϕr(t)

∣∣∣∣
2

v−1(t, s) dt ds

) 1
2

=

(∫ 1

−1

∫ 1

−1

∣∣∣∣H
(
∂r

∂tr
H(f)

)
(t, s)ϕr(t)

∣∣∣∣
2

u−1(t)u−1(s) dt ds

) 1
2

≤ C
(∫ 1

−1

u(s)

∫ 1

−1

∣∣∣∣
∂r

∂tr
H(f)(t, s)ϕr(t)

∣∣∣∣
2

u−1(t) dt ds

) 1
2

≤ C



∫ 1

−1

u(s)

[∫ 1

−1

∣∣∣∣
∂r

∂tr
f(t, s)ϕr(t)

∣∣∣∣
2

u(t) dt+

∫ 1

−1

|f(t, s)|2 u(t) dt

]2

ds




1
2
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≤ C







∫ 1

−1

u(s)

(∫ 1

−1

∣∣∣∣
∂r

∂tr
f(t, s)ϕr(t)

∣∣∣∣
2

u(t) dt

)2

ds




1
2

+

[∫ 1

−1

u(s)

(∫ 1

−1

|f(t, s)|2 u(t) dt

)2

ds

] 1
2



 <∞

which prove the boundedness of D : W r
v → W r

v−1 and consequently its con-
tinuity.
Now we show that D̂(Df) = f and D(D̂f) = f . Let f ∈ L2

v(S). Taking

into account the linearity of the operators D and D̂, and applying firstly
(4.1.6) and then the fact that cij (Df, v−1) ≡ cij (f, v), we have

D̂ (Df) = D̂

( ∞∑

i=0

∞∑

j=0

cij(Df, v
−1)pi(u

−1)pj(u
−1)

)

=
∞∑

i=0

∞∑

j=0

cij(f, v)pi(u)pj(u) = f.

Proceeding in the same way, we can show also that D(D̂f) = f and hence

D̂ ≡ D−1. As regards to the mapping property (4.1.9) of D̂, this can be
proved as done for the property (4.1.8).

From now on we denote by k(x,y) and k(t,s) the kernel function k(x, y, t, s)
in (4.0.4) as a function of the only variables (t, s) and (x, y), respectively.

Proposition 4.1.3. Let K be defined in (4.0.4) and let us assume that the
kernel function k satisfies the following conditions

sup
(t,s)∈S

‖k(t,s)‖W r
v
<∞, sup

(x,y)∈S
‖k(x,y)‖W r1

v−1
<∞, (4.1.11)

for some positive integers numbers r and r1. Then the perturbation operator

K : L2
v(S)→ W r1

v−1

is linear and bounded if r1 ≤ r. Moreover, K is a compact operator for all
r1 < r.

Proof. The linearity of the operator K is a trivial consequence of its definition
(4.0.4) while the boundedness follows by

‖Kf‖W r1
v−1

= ‖Kf‖L2
v−1

+Mr1(Kf ,v
−1) ≤ C ‖f‖L2

v
. (4.1.12)
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In fact, by applying Schwarz’s inequality and taking into account the first
hypotheses on the kernel function k, we have

‖Kf‖2
L2
v−1

=

∫

S

|Kf(t, s)|2v−1(t, s) dt ds

=

∫

S

∣∣∣∣
∫

S

k(x, y, t, s)f(x, y)v(x, y)dx dy

∣∣∣∣
2

v−1(t, s) dt ds

≤ ‖f‖2
L2
v

sup
(t,s)∈S

‖k(t,s)‖2
W r
v

∫

S

v−1(t, s) dt ds

≤ C‖f‖2
L2
v
.

Moreover, by using again the Schwarz inequality we can write

∣∣∣∣
∂r1(Kf)(t, s)

∂tr1

∣∣∣∣
2

=

∣∣∣∣
∂r1

∂tr1

∫

S

k(x, y, t, s)f(x, y)v(x, y) dx dy

∣∣∣∣
2

= ‖f‖L2
v

(∫

S

∣∣∣∣
∂r1k(x, y, t, s)

∂tr1

∣∣∣∣
2

v(x, y) dx dy

)

from which we can deduce
∫

S

∣∣∣∣
∂r1(Kf)(t, s)

∂tr1
ϕr1(t)

∣∣∣∣
2

v−1(t, s) dt ds

≤ ‖f‖L2
v

∫

S

(∫

S

∣∣∣∣
∂r1k(x, y, t, s)

∂tr1

∣∣∣∣
2

v(x, y)dxdy

)
ϕ2r1(t)v−1(t, s) dt ds

= ‖f‖L2
v

∫

S

(∫

S

∣∣∣∣
∂r1k(x, y, t, s)

∂tr1
ϕr1(t)

∣∣∣∣
2

v−1(t, s)dtds

)
v(x, y) dx dy

≤ C‖f‖L2
v

sup
(x,y)∈S

‖k(x,y)‖W r1
v−1

.

Analogously

∫

S

∣∣∣∣
∂r1(Kf)(t, s)

∂sr1
ϕr1(s)

∣∣∣∣
2

v−1(t, s) dt ds ≤ C‖f‖L2
v

sup
(x,y)∈S

‖k(x,y)‖W r1
v−1

.

The only point remaining concerns the compactness. To this end let us note
that we have

Em,m(Kf)W r1
v−1
≤ ‖Kf − Sm,m(Kf ,v)‖W r1

v−1
≤ C
mr−r1‖Kf‖W r1

v−1

≤ C
mr−r1‖f‖L2

v
.
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Therefore, setting T = {f ∈ L2
v : ‖f√v‖2 ≤ 1}, we have

lim
m

sup
f∈T

Em,m(f)v = 0

from which we deduce [79] that K : L2
v → W r1

v−1 is a compact operator for
all r1 < r.

Let us remark that, in virtue of Proposition 4.1.2 and 4.1.3, we can claim
that under the assumptions (4.1.11) and if the null space Ker{D + K} is
trivial in L2

v(S), then the operator

D +K : W r1
v → W r1

v−1

is an invertible linear bounded operator for all 0 ≤ r1 < r. Hence, equation
(4.0.2) has a unique solution f ∈ W r1

v , for each given right-hand side g ∈
W r1
v−1 .

4.2 A direct numerical method

In this Section we present a direct numerical approach for the solution of
equation (4.0.2). Inspired by the discrete collocation method proposed for
the univariate case [39, 49], we first approximate operator K by means of

Kmf(t, s) =

∫

S

Lm,m
(
k(t,s),v, x, y

)
f(x, y)v(x, y) dx dy. (4.2.1)

Hence we project equation (4.0.2) with Km instead of K by means of the
interpolating operator Lm,m(v−1) and we search for a polynomial solution
fm ∈ Pm−1,m−1, i.e. we solve the finite dimensional equation

Lm,m
(
(D +Km)fm,v

−1, t, s
)

= Lm,m(g,v−1, t, s),

namely

Lm,m
(
(D +Km)fm − g,v−1, t, s

)
= 0. (4.2.2)

Equation (4.2.2) is equivalent in the weighted space L2
v−1 to

‖Lm,m
(
(D +Km)fm − g,v−1

)
‖L2

v−1
= 0

that is
∫

S

∣∣Lm,m
(
(D +Km)fm − g,v−1, t, s

)∣∣2 v−1(t, s) dt ds = 0.

120



Thus, by approximating the integral by means of the Gaussian cubature
rule (1.2.16) with wi = u−1, i ∈ {1, 2}, that in this case turns out to be exact,
we have

m∑

i=1

m∑

j=1

λi(u
−1)λj(u

−1)
∣∣Lm,m

(
(D +Km)fm − g,v−1, ti, tj

)∣∣2 = 0 (4.2.3)

where [26, 46]

ti = cos

((
m− i+ 1

2

)
π

m+ 1
2

)
, i = 1, . . . , m

are the nodes of the mth third kind Chebyshev polynomial pm(u−1) defined
in (4.1.5) and

λi(u
−1) =

π

m+ 1
2

(1 + ti), i = 1, . . . , m

are the corresponding Christoffel numbers.
From (4.2.3) we deduce

√
λi(u−1)λj(u−1) [Dfm(ti, tj) + Kmfm(ti, tj)] (4.2.4)

=
√
λi(u−1)λj(u−1)g(ti, tj), i, j = 1, . . . ,m.

Now we develop the terms Dfm(ti, tj) and Kmfm(ti, tj) involved in the
previous equations, in order to construct the approximated polynomial solu-
tion fm in the form

fm(t, s) = Lm,m(fm,v, t, s). (4.2.5)

About the second term Kmfm(ti, tj), by using again the cubature formula
(1.2.16) now with wi = u, i ∈ {1, 2}, which is once again exact, we have

Kmfm(ti, tj) =
m∑

h=1

m∑

k=1

λh(u)λk(u)k(xh, xk, ti, tj)fm(xh, xk), i, j = 1, . . . ,m,

(4.2.6)

where [26, 46]

xh = cos

(
(m− h+ 1)π

m+ 1
2

)
, h = 1, . . . , m (4.2.7)

121



are the nodes of the mth fourth kind Chebyshev polynomial pm(u) defined
in (4.1.4) and

λh(u) =
π

m+ 1
2

(1− xh), h = 1, . . . , m (4.2.8)

are the corresponding Christoffel numbers.
Concerning to the first term Dfm(ti, tj), we have the following proposi-

tion.

Proposition 4.2.1. Let fm be the polynomial defined in (4.2.5) and let
{ti}mi=1 and {xh}mh=1 be the zeros of pm(u−1) and pm(u), respectively. Then,

Dfm(ti, tj) =
1

π2

m∑

h=1

m∑

k=1

λh(u)λk(u)
fm (xh, xk)

(xh − ti)(xk − tj)
(4.2.9)

for i, j = 1, ...,m.

Proof. By the definitions of the operator D and the function fm, we get

Dfm(ti, sj) =
1

π2

∮

S

fm (x, y)

(x− ti)(y − sj)
v(x, y) dx dy

=
1

π2

m∑

h=1

m∑

k=1

fm (xh, yk)

∮

S

`h(u, x)`k(u, y)

(x− ti)(y − sj)
u(x)u(y) dx dy.

Moreover, by (1.1.13) we have

`h(u, x)

(x− ti)
u(x) =

pm(u, x)u(x)

p′m(u, xh)(x− xh)(x− ti)

=
pm(u, x)u(x)

p′m(u, xh)(xh − ti)

[
1

x− xh
− 1

x− ti

]
,

and similarly

`k(u, y)

(y − sj)
u(y) =

pm(u, y)u(y)

p′m(u, yk)(y − yk)(y − sj)

=
pm(u, y)u(y)

p′m(u, yk)(yk − sj)

[
1

y − yk
− 1

y − sj

]
.

Then, setting qm(t, s) = pm(u, t)pm(u, s), rm(t, s) = pm(u−1, t)pm(u−1, s) and
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taking into account Lemma 4.1.1, we can write

Dfm(ti, sj)

=
m∑

h=1

m∑

k=1

[
fm (xh, yk) {Dqm(xh, yk)−Dqm(xh, sj)−Dqm(ti, yk)}

q′m(xh, yk)(xh − ti)(yk − sj)

+
fm (xh, yk)Dqm(ti, sj)

q′m(xh, yk)(xh − ti)(yk − sj)

]

=
m∑

h=1

m∑

k=1

fm (xh, yk) {rm(xh, yk)− rm(xh, sj)− rm(ti, yk) + rm(ti, sj)}
q′m(xh, yk)(xh − ti)(yk − sj)

and consequently,

Dfm(ti, sj) =
m∑

h=1

m∑

k=1

fm (xh, yk) rm(xh, yk)

q′m(xh, yk)(xh − ti)(yk − sj)
.

Thus, the thesis can be deduced by observing that by using property (4.1.6),
we have

rm(xh, yk) = Dqm(xh, yk)

=
1

π2
q′m(xh, yk)

∮ 1

−1

`h(u, x)u(x)dx

∮ 1

−1

`k(u, y)u(y)dy

=
1

π2
q′m(xh, yk)λh(u)λk(u)

where λh(u) denotes the h-th Christoffel number with respect to the weight
u.

Hence, by replacing (4.2.9) and (4.2.6) in (4.2.4), we get

√
λi(u−1)λj(u−1)

m∑

h=1

m∑

k=1

√
λh(u)λk(u)

[
π−2

(xh − ti)(xk − tj)
+ k(xh, xk, ti, tj)

]
ahk

=
√
λi(u−1)λj(u−1)g(ti, tj), i, j = 1, . . . ,m, (4.2.10)

where we set ahk =
√
λh(u)λk(u)fm(xh, xk).

This is a linear system of m2 equations in the m2 unknown ahk that, once
solved, allow us to approximate the solution we are looking for

fm(t, s) =
m∑

h=1

m∑

k=1

`h(u, t)√
λh(u)

`k(u, s)√
λk(u)

ahk. (4.2.11)
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Let us remark that system (4.2.10) is well-defined, since min |xh − ti| =
O(1/m), h, i = 1, . . . , m, [49] , and that it can be rewritten in a matrix form
as

Pm (Dm + Km) Pma = Pm (g̃Pm)T . (4.2.12)

Here Pm is a m-blocks matrix in which each block is given by

P = diag
(√

λ1(u−1), · · · ,
√
λm(u−1)

)
,

the matrices Dm and Km are the m-blocks matrix defined as

Dm =




D(1,1) D(1,2) . . . D(1,m)

D(2,1) D(2,2) . . . D(2,m)

. . . . . . . . .
D(m,1) D(m,2) . . . D(m,m)


 ,

Km =




K(1,1) K(1,2) . . . K(1,m)

K(2,1) K(2,2) . . . K(2,m)

. . . . . . . . .
K(m,1) K(m,2) . . . K(m,m)




with

D(h,k) =
[
D(h,k)

]m
i,j=1

=
√
λh(u)λk(u)

π−2

(xh − ti)(xk − tj)
,

K(h,k) =
[
K(h,k)

]m
i,j=1

=
√
λh(u)λk(u)k(xh, xk, ti, tj),

and a ∈ Rm2
and g̃ ∈ Rm2

are the arrays of the unknown function and the
right-hand side which have been obtained by reordering column by column
the matrices G and A, respectively defined as

G =
[
gij
]m
i,j=1

= g(ti, tj) ∈ Rm×m, A = [ahk]
m
h,k=1 = fm(xh, xk) ∈ Rm×m

namely,
g̃(j−1)m+i = gij, a(k−1)m+h = ahk.

Next proposition, concerning with the operator introduced in (4.2.1), is
essential for the analysis of the method.

Proposition 4.2.2. Under the assumptions (4.1.11), the estimate

‖Kf − Lm,m(Kmf ,v
−1)‖L2

v−1
≤ C
mr1
‖f‖L2

v

holds true with C 6= C(m,f).
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Proof. We start by writing

‖Kf − Lm,m(Kmf ,v
−1)‖L2

v−1
≤
∥∥Kf − Lm,m(Kf ,v−1)

∥∥
L2
v−1

+
∥∥Lm,m((K −Km)f ,v−1)

∥∥
L2
v−1

:= A+B.

By using Proposition 1.2.3 and (4.1.12) we can deduce that

A ≤ C
mr1
‖Kf‖W r1

v−1
≤ C
mr1
‖f‖L2

v
.

Moreover, by using the Gaussian cubature rule (1.2.16) with wi = u, i ∈
{1, 2}, we have

B =

(∫

S

∣∣Lm,m
(
(K −Km)f ,v−1, t, s

)∣∣2 v−1(t, s) dt ds

) 1
2

=

(
m∑

i=1

m∑

j=1

λi(u
−1)λj(u

−1) |(K −Km)f(ti, tj)|2
) 1

2

.

Since one has

|(K −Km)f(t, s)|2≤ ‖f‖2
L2
v

∫

S

∣∣k(x, y, t, s)− Lm,m
(
k(t,s),v, x, y

)∣∣2 v(x, y) dx dy

= ‖f‖2
L2
v

∥∥k(t,s) − Lm,m
(
k(t,s)

)∥∥2

L2
v

≤ C
m2r
‖f‖2

L2
v

∥∥k(t,s)

∥∥2

W r
v
,

from the first assumption in (4.1.11), it follows

B ≤ C
mr
‖f‖L2

v

(
m∑

i=1

m∑

j=1

λi(u
−1)λj(u

−1)
∥∥k(ti,tj)

∥∥2

W r
v

) 1
2

≤ C
mr
‖f‖L2

v
sup

(ti,tj)∈S

∥∥k(ti,tj)

∥∥2

W r
v

(
m∑

i=1

m∑

j=1

λi(u
−1)λj(u

−1)

) 1
2

≤ C
mr
‖f‖L2

v

(∫

S

v−1(x, y) dx dy

) 1
2

≤ C
mr
‖f‖L2

v
.
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Next theorem assures that the proposed discrete collocation method is
stable and convergent. It also states that, in the case when the right-hand
side g belongs to a certain class of functions, namely the Sobolev-type space
W r1
v−1 , then the solution f of (4.0.2) belongs to W r1

v . Moreover the theorem
gives an estimate of the error of the approximate solution. Finally it shows
that the condition number in the spectral norm of system (4.2.12)

cond(Pm(Dm + Km)Pm) = ‖Pm(Dm + Km)Pm‖ ‖(Pm(Dm + Km)Pm)−1‖

is independent of the dimension of the matrix and uniformly bounded by the
condition number of the operator D +K.

Theorem 4.2.3. Assume that equation (4.0.2) has a unique solution f ∈ L2
v

and the kernel function k satisfies (4.1.11).
Then, for sufficiently large m, say m ≥ m0, the system of equations

(4.2.12) has a unique solution fm. Moreover if the right-hand side g ∈ W r1
v−1

then the solution f ∈ W r1
v and the following estimate holds true

‖f − fm‖L2
v
≤ C
mr1
‖f‖W r1

v
(4.2.13)

with C 6= C(m,f , g). Furthermore,

lim sup
m

cond(Pm(Dm + Km)Pm) ≤ C cond(D +K), (4.2.14)

where here C 6= C(m).

Proof. Taking into account Proposition 4.2.2, by standard arguments (see,
for instance, Theorem 3.3.1 in [2]), it follows that for sufficiently large m, say
m ≥ m0, the operators D + Lm,mKm : L2

v → L2
v−1 exist and are uniformly

bounded being

‖(D + Lm,mKm)−1‖ ≤ ‖(D +K)−1‖
1− ‖(D +K)−1‖ sup

m≥m0

‖K − Lm,mKm‖
<∞

(where the notation ‖ · ‖ denotes the norm of the operators), i.e. the method
is stable. In order to prove the convergence estimate (4.2.13), we note that

f−fm = (D+Lm,mKm)−1
[(
g − Lm,m

(
g,v−1

))
−
(
Kf − Lm,m

(
Kmf ,v

−1
))]

from which we deduce

‖f − fm‖L2
v
≤ C ‖g − Lm,m

(
g,v−1

)
‖L2

v−1
+ ‖Kf − Lm,m

(
Kmf ,v

−1
)
‖L2

v−1
.
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Then, by applying Proposition 1.2.3 to the first term and Proposition 4.2.2
to the second one we get (4.2.13). Let us now prove (4.2.14). To this end
let us introduce an arbitrary array c = [c11, . . . , c1m, . . . , cm1, . . . cmm]T of

length m2, and let us denote by ‖c‖2 =

(
m∑

i=1

m∑

j=1

c2
ij

)1/2

its Euclidean norm.

Then, the vector b = [b11, . . . , b1m, . . . , bm1, . . . bmm]T satisfies the system
Pm(Dm + Km)Pmc = b if and only if (D + Lm,mKm)fm = gm where fm
and gm are the bivariate polynomials defined as

fm(t, s) =
m∑

i=1

m∑

j=1

`i(u, t)√
λj(u)

`j(u, s)√
λj(u)

cij

and

gm(t, s) =
m∑

i=1

m∑

j=1

`i(u
−1, t)√

λi(u−1)

`j(u
−1, s)√

λj(u−1)
bij.

Being

‖gm‖2
L2
v−1

=

∫

S

|gm(t, s)|2v−1(t, s) dt ds =
m∑

i=1

m∑

j=1

λi(u
−1)λj(u

−1)|gm(ti, tj)|2

=
m∑

i=1

m∑

j=1

b2
ij = ‖b‖2

and analogously ‖fm‖L2
v

= ‖c‖2, we have

‖Pm(Dm + Km)Pm‖ = sup
c∈Rm2

c 6=0

‖Pm(Dm + Km)Pmc‖2

‖c‖2

= sup
fm∈Pm−1,m−1

fm 6=0

‖(D + Lm,mKm)fm‖L2
v−1

‖fm‖L2
v

= ‖D + Lm,mKm‖L2
v→L2

v−1
.

Then, in virtue of Proposition 4.2.2, for m sufficiently large,

‖Pm(Dm + Km)Pm‖ ≤ C ‖D +K‖L2
v→L2

v−1
. (4.2.15)

In the same way we can prove that

‖(Pm(Dm + Km)Pm)−1‖ = ‖(D + Lm,mKm)−1‖L2
v−1→L2

v
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from which, by applying again Proposition 4.2.2, we deduce that, for m
sufficiently large,

‖(Pm(Dm + Km)Pm)−1‖ ≤ C ‖(D +K)−1‖L2
v−1→L2

v
. (4.2.16)

Hence, the thesis (4.2.14) follows from (4.2.15) and (4.2.16).

4.3 An indirect numerical method

In this Section we propose an alternative numerical method still based on
a polynomial approximation of the unknown solution written in the form

fm(t, s) = Lm,m(fm,v, t, s), fm ∈ Pm−1,m−1.

The method takes advantages of the smoothness properties of the oper-
ators D and K stated in Section 4.1. In fact, thanks to the compactness of
K and the invertibility of D, following [16], we can move from the equation
(4.0.2) into the equivalent regularized Fredholm equation

(I + D̂K)f = D̂g, (4.3.1)

where I is the identity operator in L2
v.

Then, if we assume that the null space Ker{I+D̂K} is trivial, by applying
the Fredholm Alternative Theorem, equation (4.3.1) has a unique solution

for each given right hand side D̂g ∈ L2
v.

For our convenience, let us rewrite (4.3.1) as

(I +K)f = G, (4.3.2)

where G = D̂g and K = D̂K i.e.

Kf(t, s) =

∫

S

φ(ξ, η, t, s)f(ξ, η)v(ξ, η) dξ dη,

with
φ(ξ, η, t, s) = D̂k(ξ,η)(t, s). (4.3.3)

In order to approximate the solution of (4.3.2), let us project the equa-
tion on the finite dimensional space Pm−1,m−1 by means of the interpolating
operator Lm,m(v) and then let us consider the following finite dimensional
equation

Lm,m ((I +Km)fm,v, t, s) = Lm,m (G,v, t, s) , (4.3.4)

128



where

Kmf(t, s) =

∫

S

Lm,m (φ(t, s),v, ξ, η)f(ξ, η)v(ξ, η) dξ dη.

Equation (4.3.4), considered in L2
v, means that

∫

S

|Lm,m ((I +Km)fm − G,v, t, s)|2 v(t, s) dt ds = 0

that is, for i, j = 1, . . . ,m,

√
λi(u)λj(u) [fm(xi, xj) +Kmfm(xi, xj)] =

√
λi(u)λj(u)G(xi, xj),

where xi and λi(u) were introduced in (4.2.7) and (4.2.8), respectively. Hence
by approximating the operator Km by means of the Gaussian cubature rule
(1.2.16) we get the following linear system

√
λi(u)λj(u)

m∑

h=1

m∑

k=1

[
δijhk +

√
λh(u)λk(u)φ(xh, xk, xi, xj)

]
ahk (4.3.5)

=
√
λi(u)λj(u)G(xi, xj), i, j = 1, . . . ,m,

where ahk =
√
λh(u)λk(u)fm(xh, xk) and δijhk =

{
1, i = h and j = k

0, otherwise
.

Once solved (4.3.5), the solution allows us to compute the approximate
solution

fm(t, s) =
m∑

h=1

m∑

k=1

`h(u, t)√
λh(u)

`k(u, s)√
λk(u)

ahk. (4.3.6)

Note that the polynomial solution fm just defined has the same expression
of the solution fm given in (4.2.11), obtained applying the method described
in Section 4.2.

Let us also remark that in order to implement system (4.3.5) we need to
evaluate the integrals

φ(ξ, η, t, s) =
1

π2

∮

S

k(x, y, ξ, η)

(x− t)(y − s)v
−1(x, y) dx dy

G(t, s) =
1

π2

∮

S

g(x, y)

(x− t)(y − s)v
−1(x, y) dx dy
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whose analytical expressions are not always known. Then, in the case when
we do not have such expressions, we propose to approximate the known
involved functions k and g with

k(x, y, ξ, η) ' Lm,m
(
k(ξ,η),v, x, y

)
, g(x, y) ' Lm,m (g,v, x, y)

and then by proceeding as in the proof of Proposition 4.2.1, in virtue of
Lemma 4.1.1, we end up to approximate φ(ξ, η, t, s) and G(t, s) with

φm(xh, xk, xi, xj) =
1

π2

m∑

ι=1

m∑

ζ=1

λι(u
−1)λζ(u

−1)
k(tι, tζ , xh, xk)

(tι − xi)(tζ − xj)
,

and

Gm(xi, xj) =
1

π2

m∑

ι=1

m∑

ζ=1

λι(u
−1)λζ(u

−1)
g(tι, tζ)

(tι − xi)(tζ − xj)
.

Let us now rewrite (4.3.5) in a matrix form as

Pm (Im + Km)Pma = Pm (gPm)T , (4.3.7)

where Pm is a m-blocks matrix in which each block is given by

P = diag
(√

λ1(u), · · · ,
√
λm(u)

)
,

the matrices Im and Km are the m-blocks matrix defined as

Im =




I 0 . . . 0
0 I . . . 0
. . . . . . . . .
0 0 . . . I


 ,

Km =




K(1,1) K(1,2) . . .K(1,m)

K(2,1) K(2,2) . . .K(2,m)

. . . . . . . . .

K(m,1) K(m,2) . . .K(m,m)


 ,

where I denotes the identity matrix of order m,

K(h,k) =
[
K(h,k)

]m
i,j=1

=
√
λh(u)λk(u)φ(xh, xk, xi, xj)

and a ∈ Rm2
and g ∈ Rm2

are the arrays of the unknown function and the
right-hand side which have been obtained by reordering column by column
the matrices G and A, respectively

G = [Gij]mi,j=1 = G(xi, xj) ∈ Rm×m, A = [ahk]
m
h,k=1 = fm(xh, xk)Rm×m
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namely,
g(j−1)m+i = Gij, a(k−1)m+h = ahk.

Next proposition is essential for the stability and the convergence of the
described method stated in Theorem 4.3.2.

Proposition 4.3.1. Assume that kernel k satisfies the conditions (4.1.11).
Then

‖Kf − Lm,m(Kmf ,v)‖L2
v
≤ C
mr
‖f‖L2

v

where C 6= C(m).

Proof. We can proceed analogously to the proof of Proposition 4.2.2. There-
fore we only give the main sketch. We have

‖Kf − Lm,m (Kmf ,v) ‖L2
v
≤ ‖Kf − Lm,m (Kf ,v)‖L2

v

+ ‖Lm,m ((K −Km)f ,v)‖L2
v
.

By noting that in virtue of Proposition 4.1.2 one has Kf = (D̂K)(f) ∈ W r1
v

and taking into account (1.2.15) and (4.1.11), we get

‖Kf − Lm,m (Kf ,v)‖L2
v
≤ C
mr1
‖Kf‖W r1

v−1
≤ C
mr1
‖f‖L2

v
.

Moreover,

|(K −Km)f(t, s)|2 ≤ C
m2r
‖f‖2

L2
v

∥∥φ(t,s)

∥∥2

W r
v
,

and by (4.3.3) and Proposition 4.1.2, we can write

∥∥φ(t,s)

∥∥2

W r
v

=
∥∥∥D̂k(ξ,η)

∥∥∥
2

W r
v

≤ ‖k(ξ,η)‖2
W r
v−1

.

Consequently, from the assumption (4.1.11), we can deduce

‖Lm,m ((K −Km)f ,v)‖L2
v
≤ C
mr
‖f‖L2

v

(
m∑

i=1

m∑

j=1

λi(u)λj(u)
∥∥k(xi,xj)

∥∥2

W r
v−1

) 1
2

≤ C
mr
‖f‖L2

v

from which the thesis follows.
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Theorem 4.3.2. Assume that Ker{I + D̂K} = {0}, the assumptions of
Proposition 4.3.1 are satisfied and the function g belongs to W r1

v−1.
Then, for sufficiently large m, say m ≥ m0, system (4.3.7) has a unique

solution fm and the following estimate holds true

‖f − fm‖L2
v
≤ C
mr1
‖f‖W r1

v
(4.3.8)

with C 6= C(m,f , g). Moreover

lim sup
m

cond(Pm(Im + Km)Pm) ≤ C cond(I +K),

where C 6= C(m).

Proof. In order to prove this theorem it is sufficient to proceed as in the proof
of Theorem 4.2.3 with I, K, G in place of D, K and g, respectively. Moreover
the thesis on the condition number can be proved as done for (4.2.14).

4.4 Numerical Tests

In this Section, by means of some numerical tests, we show the perfor-
mance of the methods described in the previous Sections. In each example,
for the direct method, we solve system (4.2.10) and compute the approximate
solution fm given in (4.2.11). For the indirect method through the unique
solution of system (4.3.5) we compute fm defined in (4.3.6).

Since the exact solutions of the equations we will consider are unknown,
we assume as exact those obtained for a fixed value of m = M that we will
specify in each test and we compute the relative errors

εM,m(t, s) =
|fM(t, s)− fm(t, s)|

|fM(t, s)|
in different points (t, s) ∈ S.

Example 4.4.1. Let us consider the equation

1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y)dxdy +

∫

S

log (4 + sx+ ty)f(x, y)v(x, y)dxdy = ets.

In Tables 4.1 and 4.2 we report, for increasing value of m, the relative
errors we get in three different points of the square and the condition number
in the spectral norm of the systems we solve. As we can see the convergence
is very fast in virtue of the smoothness properties of the kernel and right-
hand side. Moreover, the sequence {cond(Pm(Dm + Km)Pm)}m as well as
{cond(Pm(Im + Km)Pm)}m is convergent as m goes to infinity.
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Table 4.1: Example 4.4.1: results by the direct method.

m ε64,m(0.5, 0.8) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Dm + Km)Pm)

4 2.89e-03 1.27e-03 6.73e-03 1.3931498886229416e+01
8 1.19e-08 1.24e-07 2.53e-08 1.3931550518318879e+01
16 6.24e-15 4.88e-15 4.08e-15 1.3931550518335689e+01
32 8.73e-16 5.75e-15 4.80e-16 1.3931550518335690e+01

Table 4.2: Example 4.4.1: results by the indirect method.

m ε64,m(0.5, 0.8) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Im + Km)Pm)

4 2.89e-03 1.27e-03 6.73e-03 1.3931498886229420e+01
8 1.19e-08 1.24e-07 2.53e-08 1.3931550518318886e+01
16 1.25e-16 3.50e-15 3.12e-15 1.3931550518335696e+01
32 2.87e-15 2.38e-15 3.72e-15 1.3931550518335680e+01

Example 4.4.2. Let us apply our methods to the following equation

1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y)dx dy

+

∫

S

xt

5 + y2 + s2
f(x, y)v(x, y)dxdy = log(10− s− t).

Table 4.3 and 4.4 show the numerical results we get. As in the previous
example, in virtue of the presence of a kernel and a right-hand side very
smooth, by solving a system with m = 32, we get very accurate results.

Table 4.3: Example 4.4.2: results by the direct method.

m ε64,m(0.7, 0.2) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Dm + Km)Pm)

4 2.14e-04 1.63e-06 4.76e-04 2.2455715459596859e+00
8 2.57e-06 1.62e-06 9.27e-07 2.2455977174082378e+00
16 6.13e-12 4.14e-16 3.58e-12 2.2455977175654063e+00
32 3.45e-16 0.00e+00 3.20e-16 2.2455977175654054e+00

Example 4.4.3. Let us consider again an equation which present a kernel
and a right-hand side very smooth

1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y)dx dy +

∫

S

etsxyf(x, y)v(x, y)dxdy = sin(3 + st).

In Tables 4.5 and 4.6 we give the relative errors and the condition number
in the spectral norm. Once again, we get very accurate results.
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Table 4.4: Example 4.4.2: results by the indirect method.

m ε64,m(0.7, 0.2) ε64,m(0.1,−0.5) ε64,m(−0.6, 0.7) cond(Pm(Im + Km)Pm)

4 2.14e-04 1.63e-06 4.76e-04 2.2455715459596877e+00
8 2.57e-06 1.62e-06 9.27e-07 2.2455977174082391e+00
16 6.13e-12 3.73e-15 3.58e-12 2.2455977175654072e+00
32 5.17e-15 1.24e-15 7.99e-16 2.2455977175654058e+00

Table 4.5: Example 4.4.3: results by the direct method.

m ε64,m(0.1,−0.4) ε64,m(0.3,−0.6) ε64,m(−0.1, 0.5) cond(Pm(Dm + Km)Pm)

4 5.71e-04 1.33e-03 2.96e-04 9.4647134096191934e+01
8 1.02e-08 1.38e-08 1.25e-08 9.4646712492247204e+01
16 3.24e-15 3.21e-15 3.76e-16 9.4646712492247048e+01
32 1.80e-16 5.13e-16 1.25e-16 9.4646712492247090e+01

Table 4.6: Example 4.4.3: results by the indirect method.

m ε64,m(0.1,−0.4) ε64,m(0.3,−0.6) ε64,m(−0.1, 0.5) cond(Pm(Im + Km)Pm)

4 3.95e-04 2.62e-04 1.55e-03 9.4647134096192175e+01
8 6.74e-09 1.23e-08 5.76e-09 9.4646712492247545e+01
16 3.77e-15 3.58e-15 7.43e-16 9.4646712492246621e+01
32 2.32e-15 1.73e-15 8.91e-16 9.4646712492247204e+01

Example 4.4.4. Let us test the performance of our methods to the equation
which present a convolution kernel

1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y)dx dy

+

∫

S

|x− t|3 |y − s|4f(x, y)v(x, y)dxdy =

√
ets

9 + ts
.

As we can see through Tables 4.7 and 4.8, the numerical results confirm
the theoretical estimates given in (4.2.13) and (4.3.8).

Example 4.4.5. Let us test the performance of our method to the following
equation in which the kernel k(x, y, t, s) = | sin(xs)| 112 + yt belongs to the
Sobolev-type space of index r = 5,
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Table 4.7: Example 4.4.4: results by the direct method.

m ε175,m(0.4,−0.4) ε175,m(0.2,−0.6) ε175,m(−0.1, 0.8) cond(Pm(Dm + Km)Pm)

4 2.84e-01 7.73e-02 3.49e-01 5.8341767720850817e+02
8 4.36e-04 1.75e-04 8.60e-04 5.4307032442099785e+02
16 1.77e-05 9.38e-06 1.89e-05 5.4309967621958026e+02
32 1.05e-06 6.28e-07 8.45e-07 5.4310149342166687e+02
64 6.44e-08 3.99e-08 4.73e-08 5.4310161017935911e+02
128 2.95e-09 1.84e-09 2.11e-09 5.4310161764433553e+02

Table 4.8: Example 4.4.4: results by the indirect method.

m ε175,m(0.4,−0.4) ε175,m(0.2,−0.6) ε175,m(−0.1, 0.8) cond(Pm(Im + Km)Pm)

4 2.85e-01 7.76e-02 3.50e-01 5.8341767720850714e+02
8 4.37e-04 1.75e-04 8.62e-04 5.4307032442101217e+02
16 1.78e-05 9.38e-06 1.90e-05 5.4309967621958094e+02
32 1.05e-06 6.28e-07 8.51e-07 5.4310149342166756e+02
64 6.46e-08 3.98e-08 4.77e-08 5.4310161017936002e+02
128 2.96e-09 1.84e-09 2.13e-09 5.4310161764433508e+02

1

π2

∮

S

f(x, y)

(x− t)(y − s) v(x, y)dx dy

+

∫

S

(
| sin(xs)| 112 + yt

)
f(x, y)v(x, y)dxdy = cos(ts).

As shown in Tables 4.9 and 4.10, the two methods are equivalent in terms
of order of convergence and the numerical evidence confirms our theoretical
estimates.

Table 4.9: Example 4.4.5: results by the direct method.

m ε175,m(0.5,−0.7) ε175,m(0.3, 0.6) ε175,m(0, 0) cond(Pm(Dm + Km)Pm)

4 1.33e-02 3.74e-03 2.06e-02 1.3576451986839258e+01
8 2.31e-04 6.08e-04 8.62e-04 1.3584012702947833e+01
16 5.45e-07 1.21e-06 4.92e-06 1.3584041062960397e+01
32 5.93e-09 1.46e-09 8.09e-08 1.3584041246139085e+01
64 2.18e-10 2.17e-12 1.69e-09 1.3584041247052387e+01
128 2.74e-12 8.31e-13 4.15e-11 1.3584041247056279e+01
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Table 4.10: Example 4.4.5: results by the indirect method.

m ε175,m(0.5,−0.7) ε175,m(0.3, 0.6) ε175,m(0, 0) cond(Pm(Im + Km)Pm)

4 1.33e-02 3.74e-03 2.06e-02 1.3576451986839267e+01
8 2.31e-04 6.08e-04 8.62e-04 1.3584012702947835e+01
16 5.45e-07 1.21e-06 4.92e-06 1.3584041062960395e+01
32 5.93e-09 1.46e-09 8.09e-08 1.3584041246139078e+01
64 2.18e-10 3.11e-12 1.69e-09 1.3584041247052406e+01
128 2.13e-12 4.18e-12 4.23e-11 1.3584041247056248e+01
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Future Works

• In the future, we will consider Fredholm integral equations of the second
kind with kernel functions of the type presented in Chapter 2, both,
in univariate and bivariate case. In particular, we will consider the
possibility to solve Fredholm integral equations, as done in Chapter
3, but with weakly singular, highly oscillating and nearly singular and
highly oscillating kernel functions. The idea is to adopt the quadrature
and cubature formulas introduced in Chapter 2 in order to approximate
the involved integral operators.

• Another possible future development, concerns Chapter 4. In particu-
lar, we will try to obtain a generalization of Cauchy bisingular integral
equations of the second kind, considering, in the dominant operator and
in the perturbation operator, the product of two general Jacobi weights
of the type

vα,β(x) = (1− x)α(1 + x)β with α, β : α + β ∈ {−1, 0, 1}.

In [F1] it was considered just the case

α + β = 0 with α =
1

2
, β = −1

2
.

Furthermore, we will consider the possibility to study the Cauchy bisin-
gular integral equation in spaces of weighted continuous functions.
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Basel, 2005.

[53] N. Mastronardi and D. Occorsio. Product integration rules on the semi-
axis. In Proceedings of the Third International Conference on Functional
Analysis and Approximation Theory, Vol. II (Acquafredda di Maratea,
1996), number 52, Vol. II, pages 605–618, 1998.

143



[54] S. G. Mikhlin. Multidimentional singular integrals and integral equa-
tions. Translated from the Russian by W. J. A. Whyte. Translation
edited by I. N. Sneddon. Pergamon Press, Oxford-New York-Paris, 1965.
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