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Introduction

Over the last 60 years multilinear algebra made its way in the applied sciences. As a con-
sequence, tensors acquired an increasingly central role in the applications and the problem
of tensor rank decomposition has started to be studied by several non-mathematical com-
munities. One of the main advantages of working with tensors instead of matrices is that
tensors very often admit a unique rank decomposition. Under this perspective, after
translating applied problems of different fields in the language of tensors, the uniqueness
of the tensor rank decomposition represents a unique way of interpreting the initial datas
of the corresponding application.

In the following we will always work over an algebraically closed field of characteristic
zero. The central problem studied in this thesis is the so-called identifiability problem
for tensors and it amounts to understand whether a tensor admits a unique tensor rank
decomposition. Fix vector spaces V1, . . . , Vk of dimensions n1+1, . . . , nk +1 respectively.
A tensor Q ∈ V1 ⊗ · · · ⊗ Vk is called an elementary tensor if Q = v1 ⊗ · · · ⊗ vk for some
vi ∈ Vi with i = 1, . . . , k. Elementary tensors are the building block of the tensor rank
decomposition and the rank of a tensor Q ∈ V1 ⊗ · · · ⊗ Vk is the minimum integer r such
that we can write Q as a combination of r elementary tensors

Q =
r∑

i=1

v1,i ⊗ · · · ⊗ vk,i, where all vj,i ∈ Vj for j = 1, . . . , k.

A rank-r tensor Q is identifiable if admits a unique rank decomposition up to reordering
the elementary tensors and up to scalar multiplication.

Keeping this parallelism with applied sciences, we want to remark that the word
identifiability find its scientific roots in the field of statistic: indeed, a statistical model
is identifiable if it is possible to understand the values of the underlying parameters of
the model itself. Perhaps it is not a coincidence that the first modern contribution on
identifiability of tensors has been given by J. B. Kruskal [Kru77], a mathematician by
training that worked at the Bell Labs for over 30 years. Kruskal criterion represents a
milestone of the literature related to this problem, it has been reproved different times
(see e.g. [Rho10], [Lan09], [SS07]) and it has been generalized in many ways (cf. [SB00],
[COV17], [Chi19]). The result relies on the so-called Kruskal rank of a set S of vectors,
which is the maximum number k such that any subset of k vectors of S is indeed a subset
of linearly independent vectors. Kruskal theorem involves 3-ways tensors Q of the form

Q =
r∑

i=1

ai ⊗ bi ⊗ ci.

Starting with a decomposition of Q given by r elements as above, if 2(r − 1) is less or
equal than the sum of the Kruskal ranks of {a1, . . . , ar}, {b1, . . . , br}, {c1, . . . , cr}, then
the rank of Q is r and the decomposition of Q we started with is actually unique.
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The standpoint from which we study the identifiability problem for tensors is a ge-
ometrical point of view and we propose to tackle the identifiability problem with tools
coming from classical algebraic geometry, such as Segre varieties and secant varieties of
Segre varieties. Let N =

∏k
i=1(ni + 1)− 1. The map going from a multiprojective space

Yn1,...,nk
:= PV1 × · · · × PVk to P(V1 ⊗ · · · ⊗ Vk) ∼= PN sending classes of vectors into

the class of their tensor product is the Segre embedding. The Segre variety Xn1,...,nk
is

the image of the Segre embedding of Yn1,...,nk
and it is the projective algebraic variety

parametrizing classes of elementary tensors. The variety needed to study higher rank
tensors is the secant variety of the Segre variety. If we fix a positive integer r, the r-th
secant variety σr(Xn1,...,nk

) of a Segre variety Xn1,...,nk
is the Zariski closure of the union

of all possible points spanned by projective (r− 1)-planes given by r independent points
of the Segre variety. Another auxiliary variety needed to study the identifiability problem
is the so-called r-th abstract secant variety of a Segre variety Xn1,...,nk

⊂ PN , namely

AbSecr(Xn1,...,nk
) := {(q, (p1, . . . , pr)) ∈ PN × (Xn1,...,nk

)r | q ∈ ⟨p1, . . . , pr⟩ ∼= Pr−1}.

The first projection Tr of the open part AbSec0r(Xn1,...,nk
) = {(q, (p1, . . . , pr)) ∈ PN ×

(Xn1,...,nk
)r | q ∈ ⟨p1, . . . , pr⟩ ∼= Pr−1} onto the ambient space PN that contains the r-th

secant variety is the Terracini map. Under this perspective it is possible to rephrase the
identifiability problem as follows:

a rank-r tensor q ∈ PN is identifiable if the fiber Tr(q)−1 is a singleton.

Starting from Kruskal result, over the years there have been a lot of contributions on
the identifiability problem coming from the field of pure mathematics as well as applied
sciences. Most of the mathematical literature on the subject is related to the identifiability
problem for generic tensors of fixed rank. Knowing if a generic tensor of a certain rank
is identifiable can be useful in the applications because it gives an indication on the
identifiabilty of specific tensors of the same rank. Indeed, looking at the Terracini map,
we recall that the dimension of the fiber of an element of the r-th secant variety of a Segre
variety is greater or equal than the difference between the dimension of the r-th abstact
secant variety and the dimension of the r-th secant variety itself and equality holds for
the generic element. Therefore, the dimension of the space containing all rank-1 tensors
computing a rank decomposition of a specific tensor is at least the dimension of the space
of rank-1 tensors computing the rank decomposition of a generic element of the same
rank.

A whole line of research on the identifiability of generic tensors begun after the results
of L. Chiantini and C. Ciliberto collected in [CC02], where the authors introduced in a
modern language the concept of weak defectivity. Before stating this concept it is useful
to recall the notion of defectivity. A Segre variety Xn1,...,nk

is r-defective if the dimension
of the r-th secant variety of Xn1,...,nk

is strictly smaller than the minimum between the
dimension of the ambient space in whichXn1,...,nk

lives and the value r(dimXn1,...,nk
+1)−1.

A Segre varietyXn1,...,nk
⊂ PN is r-weakly defective if the general r-tangent hyperplane has

a contact variety of positive dimension, where by general r-tangent hyperplane we mean
the general hyperplane H ⊂ PN containing the span of the r tangent spaces to Xn1,...,nk

at generic r points of Xn1,...,nk
. In a second work [CC06], the authors linked the notion of

weak defectivity with the notion of identifiability. They proved that if the secant variety of
a Segre variety is non defective, the fiber with respect to the corresponding Terracini map
can be positve dimensional only ifXn1,...,nk

is weakly defective. Few years later, the second
author together with G. Ottaviani introduced in [CO12] the notion of r-tangentially weak
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defectiveness, which is a useful concept related to the identifiability of generic tensors. A
Segre variety Xn1,...,nk

is r-tangentially weakly defective if the span of the tangent spaces
at r general points of Xn1,...,nk

is tangent also in some other point. In [CO12], the authors
introduced also an inductive method for the study of the identifiability of generic 3-way
tensors based on the notion of weak defectivity but we refer to Section 2.1 for a more
detailed literature review on the identifiability of generic tensors.

Working in the applied fields, one may also be interested in the identifiability of
specific tensors. Indeed, when translating an applied problem in the language of tensors
one may be forced to deal with a very specific tensor that has a precise structure by
reasons related to the nature of the applied problem itself. In these cases the knowledge
of the identifiability of the generic tensor of the same rank may not be useful because
it may happen that the tensor we are dealing with is not identifiable even if the generic
element of the same rank is identifiable. If we address the identifiability problem to
specific tensors, we can no longer use tools of weak defectivity and of tangential weak
defectivity introduced in the generic context because the existence of a particular r-uple of
points that have the behaviour described by the notion of (tangentially) weak defectivity
does not imply the existence of a whole contact subvariety having the same behaviour.
Hence these concepts cannot be adapted to a non-generic framework.

In this thesis we focus on the identifiability of specific tensors of fixed rank. Working
with specific tensors, the literature review became more scattered and the few results can
be considered extensions and/or generalizations of Kruskal’s result (cf. [DDL14], [SDL15],
[DDL13] and [LP21]). As a consequence, a complete classification on the identifiability
of all tensors of small ranks was still missing.

The first project presented in this thesis is devoted to classify all identifiable tensors
of rank either 2 or 3.

One of the building blocks on which our classification is based on is the classical
concision Lemma (cf. [Lan12, Prop. 3.1.3.1]). The lemma states that for any tensor
Q ∈ V1 ⊗ · · · ⊗ Vk there exists a unique minimal tensor space included in V1 ⊗ · · · ⊗ Vk
that contains both the tensor and all its possible rank decompositions. In the first part
of this thesis, we deal with the identifiability of all tensors of rank r ≤ 3 working with
concision assumptions. In particular, for r = 2 we prove that the only non-identifiable
rank-2 tensors are 2×2 matrices. A more interesting situation occurs with rank-3 tensors.
All possible cases of non-identifiable rank-3 tensors are collected in Theorem 2.6.1, which
is the main theorem of the second chapter. In the theorem we present the following 6
different families of non-identifiable rank-3 tensors.

1) Matrix case

The first trivial example of non-identifiable rank-3 tensors are 3× 3 matrices, which is a
very classical case.

2) Tangential case

The tangential variety of a variety is the tangent developable of the variety itself. A point
q lying on the tangential variety of the Segre image X1,1,1 of three copies of the projective
line is actually a point of the tangent space TpX1,1,1 for some p = u ⊗ v ⊗ w. Therefore
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there exists some a, b, c ∈ C2 such that q can be written as

q = a⊗ v ⊗ w + u⊗ b⊗ w + u⊗ v ⊗ c

and hence q is actually non-identifiable.

3) Defective case

Working with concision assumptions, the only defective case of a third secant variety
of a Segre variety occurs for the third secant variety of the Segre variety X1,1,1,1 of 4
copies of the projective line (cf. [AOP09, Theorem 4.5]). By defectivity, the dimension
of σ3(X1,1,1,1) is strictly smaller than the expected dimension and this proves that the
generic element of σ3(X1,1,1,1) has an infinite number of rank-3 decompositions and there-
fore all the rank-3 tensor of this variety have an infinite number of decompositions.

4)− 5) Conic cases

In this case we consider the Segre variety X2,1,1 given by the image of a projective plane
and two projective lines.

Consider the Segre embedding of the two projective lines in P3 and take a hyperplane
section which intersects the 2-dimensional Segre variety in a conic C. Let LC be the Segre
image of the product given by a projective plane and the conic C, therefore LC ⊂ X2,1,1.
The family of non-identifiable rank-3 tensors are points lying in the span of LC. In this
case, the non-identifiability comes from the fact that the points on ⟨C⟩ are not identifi-
able and the distinction between the two cases reflects the fact that the conic C can be
irreducible or not.

6) General case

The last family of non-identifiable rank-3 tensors relates the Segre variety Xn1,n2,1k−2 that
is the image of the multiprojective space Yn1,n2,1k−2 = Pn1×Pn2×(P1)(k−2), for some k ≥ 3
and n1, n2 ∈ {1, 2}. The non-identifiable rank-3 tensors of this case are as follows. Let
Y ′ := P1 × P1 × {u3} × · · · × {uk} be a proper subset of Yn1,n2,1k−2 , take q′ in the span of
the Segre image of Y ′ with the constrain that q′ is not an elementary tensor. Therefore q′
is a non-identifiable tensor of rank-2 since it can be seen as a 2× 2 matrix of rank-2. Let
p ∈ Xn1,n2,1k−2 be a rank-1 tensor taken outside the Segre image of Y ′. Now any point
q ∈ ⟨{q′, p}⟩ \ {q′, p} is actually by construction a rank-3 tensor and it is not identifiable
since q′ has an infinite number of decompositions and each of these decompositions can
be taken by considering p together with a decomposition of q′.

This is a first step towards a complete classification of the identifiability of all tensors
of small rank. A natural question that arises after the short analysis we just provided, is
to understand what happens in the case of higher rank tensors. In the present thesis we
will not go further in this direction but it is reasonable to think that as the rank grows
it also grows the number of families of non-identifiable tensors.

Changing perspective on this problem, as mentioned above, given the projective class
q ∈ ⟨Xn1,...,nk

⟩ ⊂ PN of a tensor, to prove that q is identifiable we have to look at the
fiber Tr(q)−1 and verify that it is a singleton. To do so, we can start by verifying that the
fiber Tr(q)−1 is 0-dimensional. Indeed, given a non-defective variety X ⊂ PN and taken
points p1, . . . , pr ∈ Xn1,...,nk

, if the pi’s are contained in a family of decompositions of
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positive dimension, then the dimension of the span of the r tangent spaces of the variety
Xn1,...,nk

at points p1, . . . , pr is strictly smaller than the dimension of the r-th secant variety
of Xn1,...,nk

(cf. [COV17, Lemma 37]). Therefore, starting with a rank decomposition,
the first preliminary test to understand if the corresponding tensor is identifiable, is to
compute the dimension of the span of the corresponding tangent spaces.

This idea brings us to the second part of this thesis.
We recall that an extremely powerful tool to compute dimensions of secant varieties

is the Terracini’s Lemma (cf. [Ter11]). This lemma says that for an irreducible non-
degenerate projective variety Xn1,...,nk

⊂ PN , taken a generic point q ∈ σr(Xn1,...,nk
)

such that q ∈ ⟨p1, . . . , pr⟩, for generic p1, . . . , pr ∈ Xn1,...,nk
, then the tangent space of

σr(Xn1,...,nk
) at q is equal to the span of the r tangent spaces ofXn1,...,nk

at points p1, . . . , pr.
Even when Xn1,...,nk

is not r-defective, there may exist special points q1, . . . , qr ∈ Xn1,...,nk

for which

dim⟨Tq1Xn1,...,nk
, . . . , TqrXn1,...,nk

⟩ < min{N, r(dimXn1,...,nk
+ 1)− 1}.

We define the r-th Terracini locus of the Segre variety Xn1,...,nk
as the space containing

all r-uples of points that have this behaviour.
In the third chapter of the present thesis we introduce the notion of r-th Terracini

locus of a Segre variety and we completely characterize it for r = 2, 3 working with
minimality assumptions, i.e. working with the smallest multiprojective space containing
the set of particular points whose differential of the Terrcini map drops rank.

For r = 2 the minimal multiprojective space containing a set of two distinct points
is a multiprojective space given by the product of just projective lines, i.e. Y1k = (P1)×k

for some k ≥ 1. In this case we prove that the Terracini locus is always empty.
Let now k = 3. The minimal multiprojective space is given by products of projective

lines and planes, i.e. Yn1,...,nk
= Pn1 × · · · × Pnk , where all ni ∈ {1, 2}. We prove that the

third Terracini locus is empty if and only if either k = 1, 2 or Y2k = (P2)k, for all k ≥ 3.
Moreover the non-empty sets S of three points lying in a third Terracini locus can only
be as follows:

• For Ym,1k = Pm×(P1)k−1, with k ≥ 4 the points of the corresponding third Terracini
locus are all set S = {a, b, c} of three points such that a and b share all the last
k − 1 components and the projection of a and b in the first factor are linearly
independent. The projection on the last k−1 components of the point c is different
from the values of a and b and if m = 2 then we request the projection of c on the
first factor to be linearly independent with respect to the projections of a and b.

• For Yn1,n2,1k−2 = Pn1 × Pn2 × (P1)k−2, with k ≥ 3 the points of the corresponding
third Terracini locus are given by all sets S = {u, v, o} of three points such that the
projections of u and v coincide on all the last k − 2 factors and they are different
on the first two factors. For the other point o, its projection on each of the last
k − 2 factors differs from the projection of u and if nj = 2 for j = 1, 2 then the
projection of S on the j-th spans a two dimensional projective plane. If k ≥ 4 then
these are the set of three points in the corresponding third Terracini locus. If k = 3
then we will need to add more restrictive conditions to the points to get them in
the corresponding third Terracini locus.

• For Y14 = (P1)4 all set of three points that have Y14 as minimal multiprojective
space lie in the corresponding third Terracini locus.
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Given a multiprojective space Yn1,...,nk
= Pn1 × · · · × Pnk , we look at the problem of

finding all finite sets S ⊂ Y whose differential of the Terracini map drops rank from an
algebraic point of view by means of 0-dimensional scheme of r double fat points. Given
a point p ∈ Yn1,...,nk

, denote by (2p, Yn1,...,nk
) the first infinitesimal neighbourhood of p

in Yn1,...,nk
, which is the closed subscheme of Yn1,...,nk

with (Ip,Yn1,...,nk
)2 as its ideal sheaf.

For any finite set S ⊂ Yn1,...,nk
let (2S, Yn1,...,nk

) := ∪p∈S(2p, Yn1,...,nk
). Consider the exact

sequence of the inclusion of (2S, Yn1,...,nk
) in Yn1,...,nk

with respect the Segre embedding. If
we consider the corresponding cohomology exact sequence and we look at its dimensions
we get

h0(OYn1,...,nk
(1, . . . , 1))− h0(I(2S,Yn1,...,nk

)(1, . . . , 1)) = deg(2S, Yn1,...,nk
)− h1(I(2S,Yn1,...,nk

)(1, . . . , 1)), (*)

where we recall that the codimension of the span of the tangent spaces to Xn1,...,nk

at all points of S is actually the dimension of the global section of the ideal sheaf of
(2S, Yn1,...,nk

) embedded via Segre. Fixing Yn1,...,nk
and r, the only integers that change in

(*), as S varies, are h0(I(2S,Yn1,...,nk
)(1, . . . , 1)) and h1(I(2S,Yn1,...,nk

)(1, . . . , 1)). These values
represent the defect of that particular S. In order to get a proper defect, we require at
the same time that

h0(I(2S,Yn1,...,nk
)(1, . . . , 1)) > 0 and h1(I(2S,Yn1,...,nk

)(1, . . . , 1)) > 0. (⋄)

The r-th Terracini locus is the set containing all r-uples S ⊂ Yn1,...,nk
that show this

behaviour.
Remark that this idea can be developed for any pair (Y,L) given by an irreducible

non-degenerate projective variety Y embedded via a line bundle L for which h1(Y,L) = 0.
Moreover, if we are dealing with a 0-dimensional scheme of generic r double fat points
satisfying conditions (⋄), then the corresponding r-th secant variety is defective and does
not fill the ambient space. There are a lot of results working with generic points because
of its link with defectivity and complete classifications have been made in the following
cases

(Y,L) reference
(Pn,O(d)) [AH95]
((P1)k,O(d1, . . . , dk)) [LP13]
(Pm × Pn,O(d1, d2)) [GO21]

.

As mentioned, these classifications are related to generic 0-dimensional schemes of double
fat points, while, to the best of our knowledge, nobody tackled the same problem when
the 0-dimensional scheme is not necessarily supported on generic points.

Working with non-generic points we lose the equivalence between the codimension of
the secant variety and the dimension of the global sections of the ideal sheaf related to
the scheme of double fat points. Nevertheless, this remains an interesting problem from
the pure mathematical point of view and it has turned out to be an interesting problem
also for the numerical community working on tensor rank decomposition (cf. [BV18],
[BV20], also the introduction of Chapter 2 for a more elaborate discussion).

The thesis is organized as follows.
Chapter 1 contains the basic notions of tensors and secant varieties of Segre varieties

that will be used in the sequel.
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Chapter 2 is devoted to the identifiability problem for any tensor of rank at most 3.
After a literature review on the identifiability of tensors, we worked on the identifiability
of rank-2 tensors. The rest of the chapter is devoted to the study of rank-3 tensors. We
first presented all 6 families of non-identifiable tensors and then we proved that any non-
identifiable rank-3 tensor belongs to one of these 6 families. We concluded the chapter
by presenting an algorithm that is able to recognize if a tensor belongs to one of these
families.

Chapter 3 is devoted to first introduce the notion of r-th Terracini locus of a Segre
variety and then to completely characterize it for r = 2, 3.
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Chapter 1

Preliminary notions

The first part of this chapter is devoted to review basic notions on tensors from a geo-
metrical perspective and to fix the notation used in the sequel. The second part contains
some standard cohomological tools that are used in the second and third chapter of the
present thesis respectively.

Unless specified we always work over C.

1.1 Geometry of tensors
For this part we refer to [Lan12], [Chi04] and [Har95].

Let V1, . . . , Vk be vector spaces of dimensions n1 + 1, . . . , nk + 1 respectively and
consider the tensor space V1 ⊗ · · · ⊗ Vk. Any element Q ∈ V1 ⊗ · · · ⊗ Vk of the form

Q = v1 ⊗ · · · ⊗ vk

where vi ∈ Vi for all i = 1, . . . , k is an elementary tensor (also called simple tensor
or indecomposable tensor). Given a tensor Q ∈ V1 ⊗ · · · ⊗ Vk, one may wonder which
is the minimum number of elementary tensors needed in order to write Q as a linear
combination of these elementary tensors, that is the rank of the tensor.

Definition 1.1.1. The rank of a tensor Q ∈ V1 ⊗ · · · ⊗ Vk is

r(Q) := min{r ∈ N | T =
r∑

i=1

v1,i ⊗ · · · ⊗ vk,i, where all vj,i ∈ Vj}.

Therefore elementary tensors are by definition rank-1 tensors. For all i = 1, . . . , k let
{ei,0, . . . , ei,ni

} be a basis of Vi and denote by (αi,j)j=0,...,ni
= vi the coordinates of the

vector vi ∈ Vi with respect to the above bases. A rank-1 tensor Q = v1 ⊗ · · · ⊗ vk can be
written in coordinates as

Q =
∑

i1,...,ik
ij=0,...,nj ,j=0,...,k

α1,i1 · · ·αk,ik︸ ︷︷ ︸
ti1...ik

e1,i1 ⊗ · · · ⊗ ek,ik = (ti1,...,ik) . (1.1.1)

The coordinate description of Q completely characterizes Q and the scalars ti1...ik can be
stored in a multidimensional array of size (n1 + 1)× · · · × (nk + 1).

Remark 1.1.2. The characterization of rank-1 tensors as multidimensional arrays can
be extended by linearity to any element Q ∈ V1 ⊗ · · · ⊗ Vk.
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Moreover, since the rank of a tensor is invariant under scalar multiplication, it becomes
natural to look at tensors in the projective space.

Multidimensional arrays describing tensors can be parametrized by points of PN where
N =

∏k
i=1(ni + 1)− 1. If we consider the Segre embedding

ν : PV1 × · · · × PVk −→ P(V1 ⊗ · · · ⊗ Vk) = PN

([v1], . . . , [vk]) 7→ [v1 ⊗ · · · ⊗ vk]

it becomes immediately clear that Segre varieties parametrize rank-1 tensors. Note that
if we use the coordinate expression of v1 ⊗ · · · ⊗ vk as in (1.1.1), then [v1 ⊗ · · · ⊗ vk] =
[t0...0 : t0...01 : · · · : ti1...ik : · · · : tn1...nk

].

Example 1.1.3. Fix the tensor space C2 ⊗ C2 ⊗ C2. Let {e1, e2} ⊂ C2 be the canonical
basis of C2 and let Q ∈ C2 ⊗ C2 ⊗ C2 be

Q = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2.

The point p1 = ([e1], [e1], [e1]) is sent to ν(p1) = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] via the Segre
map and similarly p2 = ([e2], [e2], [e2]) is sent to ν(p2) = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1].
Their sum is therefore ν(p1) + ν(p2) = [Q] = [e1 ⊗ e1 ⊗ e1] + [e2 ⊗ e2 ⊗ e2]. Since we
are considering a three factors tensor its representation as multidimensional array can
be seen as a cube in which each direction corresponds to a factor of the tensor space
C2 ⊗C2 ⊗C2. Each vertex of the cube represents a coordinate of Q and we can mark the
coordinates of Q. Therefore a picture of the coordinate description of Q is the following.

(1, 1, 1)

(1, 1, 2)

(1, 2, 1)

(2, 1, 1) (2, 2, 1)

(1, 2, 2)

(2, 1, 2) (2, 2, 2)

1

1

We recall that Segre varieties are irreducible non-degenerate smooth projective vari-
eties (cf. [Har95, Example 2.11]). For the sake of completeness, we recall the action of
the general linear group on tensor spaces.

Remark 1.1.4. For i = 1, . . . , k, let Vi be a vector space of dimension ni+1 and consider
V1 ⊗ · · · ⊗ Vk. The group GL(V1)× · · · ×GL(Vk) acts on V1 ⊗ · · · ⊗ Vk and the action of
g = (g1, . . . , gk) ∈ GL(V1)× · · · ×GL(Vk) on a rank-1 element v1 ⊗ · · · ⊗ vk is defined as

g · v1 ⊗ · · · ⊗ vk = (g1v1)⊗ · · · ⊗ (gkvk).

This action is extended by linearity on any element Q ∈ V1 ⊗ · · · ⊗ Vk and preserves the
rank of Q.

Notation 1.1.5. We will use use lower case letters p, q to denote the projective classes of
tensors, while we will use capital letters T,Q to denote tensors in their natural vectorial
ambient space.

2



1.1.1 Notation and concision of tensors

We will keep the following notation for Segre varieties.

Notation 1.1.6. We denote by Yn1,...,nk
the multiprojective space

Yn1,...,nk
:= Pn1 × · · · × Pnk

and by Xn1,...,nk
the image of Yn1,...,nk

via Segre embedding, i.e. Xn1,...,nk
= ν(Yn1,...,nk

). If
n1 = · · · = nk = n we will simply write Ynk .
We denote the projection on the i-th factor as

πi : Yn1,...,nk
−→ Pni .

The space given by all factors of Yn1,...,nk
but the i-th one is denoted by Yn1,...,n̂i,...,nk;i,

where, as usual, the hat symbol represents eliminating the corresponding element:

Yn1,...,n̂i,...,nk;i := Pn1 × · · · × P̂ni × · · · × Pnk .

Let N ′
i =

∏
j ̸=i(nj + 1)− 1. With νi : Yn1,...,n̂i,...,nk;i −→ PN ′

i we denote the corresponding
Segre embedding, in particular Xi := ν(Yn1,...,n̂i,...,nk;i).
The projection on all the factors of Yn1,...,nk

but the i-th one is denoted with ηi:

ηi : Yn1,...,nk
−→ Yn1,...,n̂i,...,nk;i.

Obviously all fibers of ηi are isomorphic to Pni .

A very basic property of Segre vareities is the following.

Remark 1.1.7. Since the Segre variety Xn1,...,nk
⊂ PN is cut out by quadrics (cf.

[Gro77]), any projective line L ⊂ PN = ⟨Xn1,...,nk
⟩ that intersect the Segre variety Xn1,...,nk

in more than two points is actually all contained in Xn1,...,nk
.

1.1.1.1 Concision Lemma

It is also useful to recall the so-called Concision Lemma (cf. [Lan12, Prop. 3.1.3.1]).

Lemma 1.1.8 (Concision/Autarky). Let Yn1,...,nk
= Pn1 × · · · × Pnk . For any q ∈

⟨ν(Yn1,...,nk
)⟩, there is a unique minimal multiprojective space Y ′ ≃ Pn′

1 × · · · × Pn′
k ⊆

Yn1,...,nk
with n′

i ≤ ni, i = 1, . . . , k such that

{A ⊂ Y ′ |#A = r(q) and q ∈ ⟨ν(A)⟩} = {A ⊂ Yn1,...,nk
|#A = r(q) and q ∈ ⟨ν(A)⟩}.

One may look at a tensor in the smallest tensor space containing all its possible
rank decompositions. Let us review more in details the concision process working in
coordinates.

Concise tensor space of a tensor

Fix a tensor T ∈ Cn1 ⊗ · · · ⊗ Cnk , where k ≥ 2 and n1, . . . , nk ≥ 1.
For all ℓ = 1, . . . , k, denote by Bℓ = {eℓ1, . . . , eℓnℓ

} an ordered basis of Cnℓ and by B∗
ℓ =

{ηℓ1, . . . , ηℓnℓ
} the corresponding dual basis. Let T = (ti1,i2,··· ,ik) be the coordinates of T

with respect to those bases.
A useful operation that allows to store the elements of a tensor as a matrix is the

flattening, also called matrix-unfolding of a tensor in [DLDMV00, Definition 1], which is
the oldest reference we found for a formal definition of this operation.
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Definition 1.1.9. The ℓ-th flattening of a tensor T ∈ Cn1 ⊗ · · · ⊗ Cnk is the linear map

φℓ : (C
n1 ⊗ · · · ⊗ Cnℓ−1 ⊗ Cnℓ+1 ⊗ · · · ⊗ Cnk)∗ → Cnℓ

f 7→
∑

i1,...,ik

ti1...ikf(e
1
i1
⊗ · · · ⊗ eℓ−1

iℓ−1
⊗ eℓ+1

iℓ+1
· · · ⊗ ekik)e

ℓ
iℓ
.

We denote by Aℓ the nℓ × (
∏

i ̸=ℓ ni) associated matrix with respect to bases Bℓ and
{η11 ⊗ · · · ⊗ ηℓ−1

1 ⊗ ηℓ+1
1 ⊗ · · · ⊗ ηk1 , η

1
1 ⊗ · · · ⊗ ηℓ−1

1 ⊗ ηℓ+1
1 ⊗ · · · ⊗ ηk2 , . . . , η

1
n1

⊗ · · · ⊗ ηℓ−1
nℓ−1

⊗
ηℓ+1
nℓ+1

⊗ · · · ⊗ ηknk
}.

Definition 1.1.10 ([Hit28]). Let T ∈ Cn1 ⊗ · · · ⊗ Cnk . For all ℓ = 1, . . . , k let Aℓ be the
ℓ-th flattening of T as in Definition 1.1.9 and denote by rℓ := r(Aℓ). The multilinear rank
of T is the k-uple

mr(T ) := (r1, . . . , rk)

containing all the ranks of the flattenings.

We remark that (cf. [CK11, Theorem 7]) for all ℓ = 1, . . . , k

rℓ ≤ r(T ) ≤
∏

i ̸=ℓ

ri (1.1.2)

and moreover it is classically known that

r(T ) = 1 ⇐⇒ the multilinear rank of T is (1, . . . , 1).

We are ready to describe a procedure that gives the concise tensor space Tn′
1,...,n

′
k′

of a
given tensor T ∈ Cn1 ⊗ · · · ⊗ Cnk (cf. [Lan12, Subsection 3.1.3]).

Let T = (ti1,...,ik) ∈ Cn1 ⊗ · · · ⊗ Cnk , where all ni ≥ 1 and k ≥ 2. For all ℓ = 1, . . . , k
consider the ℓth flattening Aℓ of T as in Definition 1.1.9. For the sake of simplicity take
ℓ = 1. The first column of A1 is

(t1,1,...,1, t2,1,...,1, . . . , tn1,1,...,1)
T =

n1∑

i=1

ti,1,...,1u
1
i =

n1∑

i,j=1

ti,1,...,1α
1
j (u

1
i ),

which is referred to u21 ⊗ · · · ⊗ uk1. The same holds for the other columns of A1. Once we
have computed n′

1 := r(A1) we can extract n′
1 linearly independent columns from A1, say

u11, . . . , u
1
n′
1
. Since Im(φ1) = ⟨u11, . . . , u1n′

1
⟩ ∼= Cn′

1 ⊆ Cn1 , we rewrite the other columns as
a linear combination of the independent ones. The resulting tensor T ′ will therefore live
in a smaller space Cn′

1 ⊗ Cn2 ⊗ · · · ⊗ Cnk . By continuing this process for each flattening
we arrive to a concise tensor space

Tn′
1,...,n

′
k′
= Cn′

1 ⊗ · · · ⊗ Cn′
k′

where we may assume n′
i > 1 for all i = 1, . . . , k′ and k′ ≤ k since Cn′

1 ⊗ · · · ⊗ Cn′
k′ ⊗

{u1} ⊗ · · · ⊗ {uk−k′} ∼= Cn′
1 ⊗ · · · ⊗ Cn′

k′ .
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Minimal multiprojective space containing a set of points

Let us see now how to recognize the minimal multiprojective space containing a set of
points S ⊂ Yn1,...,nk

.

Remark 1.1.11. Let Yn1,...,nk
= Pn1 × · · · × Pnk be a multiprojective space and consider

a set of r distinct points S ⊂ Yn1,...,nk
. For all i = 1, . . . , k we can look at

#(πi(S)).

If #(πi(S)) > 1 then we can actually reduce ourselves to consider on the i-th factor the
projective space ⟨πi(S)⟩ ∼= Pn′

i . If there is a factor j ∈ {1, . . . , k} for which #(πj(S)) = 1
then we can ignore it. Indeed, since Pn × {o} ∼= Pn, if we denote by {o} = πj(S), then
each point p ∈ S is such that πj(p) = o, which means that the contribution of the j-th
factor of Yn1,...,nk

to each point of ν(S) is always the same and therefore it can be ignored.
Therefore, rearranging the factors of Yn1,...,nk

if necessary, we may reduce to work with
the following multiprojective space

Y ′ := Pn′
1 × · · · × Pn′

k′ ⊆ Yn1,...,nk
,

where the integer k′ ≤ k is the maximum integer such that #(πi(S)) > 1 for all i =
1, . . . , k. By construction Y ′ is the minimal multiprojective space containing S.

Notation 1.1.12. If S is a set of multiprojective points, when we write dim⟨S⟩ we will
mean the projective dimesnion of the projective space spanned by the points of S

Dealing with the problem of tensor rank decomposition, it is useful to consider the
object containing all (r − 1)-projective linear spaces spaned by r elementary projective
classes of tensors. This brings us to the notion of secant variety.

1.1.2 Secant varieties

Secant varieties are very classical objects an their interest dates back to the beginning of
the 20th century when the italian school started a systematic study of dimensions of such
varieties with the works of F. Palatini ([Pal06], [Pal09]), G. Scorza ([Sco08],[Sco09]) and
A. Terracini ([Ter11], [Ter21])). The interest on these varieties has then been renewed
due to the work of F. Zak ([Zak93]) and since then they have been continuously studied
(cf. e.g. [AH95], [CC02], [CGG02], [AOP09], [LO13], [BL13]).

To introduce secant varieties we start with the notion of join of two varieties.

Definition 1.1.13. Let X,Z ⊂ PN be two irreducible non-degenerate projective vari-
eties. The join of X and Z is the Zariski closure of the union of all lines in PN spanned
by a point of X and a point of Z, namely

Join(X,Z) := {q ∈ ⟨x, z⟩ | x ∈ X and z ∈ Z, with x ̸= z}

The definition of join of two varieties can be naturally extended to more than two
varieties. Indeed, if we consider r varieties X1, . . . , Xr ⊂ PN we define the join of r
varieties as

Join(X1, . . . , Xr) := {q ∈ ⟨x1, . . . , xr⟩ | xi ∈ Xi and if i ̸= j then xi ̸= xj}.
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Considering the join of a variety X ⊂ PN with itself r times corresponds to the
definition of the r-th secant variety of X.

Definition 1.1.14. Let X ⊂ PN be and irreducible non-degenerate projective variety
and let r be a positive integer. The r-th secant variety of X is

σr(X) :=
⋃

p1,...,pr∈X
⟨p1, . . . , pr⟩,

where the closure is the the Zariski closure. If r = 1 then σ1(X) = X. Moreover, the set
of points of X-rank equal to r is denoted as σ0

r(X).

Secant varieties form a chain of subvarieties in which the previous variety is contained
in the subsequential variety until we reach the ambient space:

X ⊂ σ2(X) ⊂ · · · ⊂ σs−1(X) ⊂ σs(X) = PN ,

where the smallest integer s such that σs(X) = PN is called the generic rank.

Remark 1.1.15. Any of the above inclusions is proper until we reach the ambient space.
Indeed assume by contradiction that σt(X) = σt+1(X) for some positive integer t < s.
Consider a point q ∈ σt+2(X), i.e. q ∈ ⟨p1, . . . , pt+2⟩ where all pj ∈ X. Since by
assumption σt(X) = σt+1(X), then there exist t points q1, . . . , qt ∈ X such that q ∈
⟨q1, . . . , qt, pt+2⟩, therefore q ∈ σt+1(X) = σt(X). We can continue this procedure for all
t until we reach σs(X) = PN but this is in contradiction with the fact that t < s.

A first step to better understand these objects would be computing their projective
dimensions.

Let X ⊂ PN be an irreducible non-degenerate projective variety of dimension n and
let r > 1. Let us count the number of parameters needed to define a point in σr(X).

We recall that, since dimX = n, to define a point of X we need n parameters. To
define a generic point of σr(X) we need r points of X (which require rn parameters) and
then we need to specify a point on the linear space of projective dimension r− 1 spanned
by those r points. Therefore we expect that the r-th secant variety σr(X) has dimension
min{rn+ r − 1, N}.

The integer arising from the parameter count is called the expected dimension of the
r-th secant variety and we talk about an expected dimension because in general

dimσr(X) ≤ min{rn+ r − 1, dim⟨X⟩}

and sometimes the inequality is strict.

Definition 1.1.16. An irreducible non-degenerate variety X ⊂ PN is r-defective if

dimσr(X) < min{rn+ r − 1, N}.

If X is r-defective, the difference δr = min{rn+ r − 1, N} − dimσr(X) is called the r-th
secant defect of X.

In general, studying secant varieties is very challenging and the following lemma is a
powerful tool to compute dimensions of secant varieties.
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Lemma 1.1.17 (Terracini’s Lemma [Ådl87, Corollary 1.11], [Ter11]). Let X ⊂ PN be an
irreducible non-degenerate projective variety. Let q ∈ σr(X) be a generic point such that
q ∈ ⟨p1, . . . , pr⟩, for generic p1, . . . , pr ∈ X. The tangent space of σr(X) at q is

Tqσr(X) = ⟨Tp1X, . . . , TprX⟩.

Example 1.1.18 ([Lan12, Example 5.1.2.2]). Let Xm,n be the Segre variety of Ym,n =
Pm × Pn. The variety Xm,n parametrizes projective classes of rank-1 matrices of size
(m+ 1)× (n+ 1) and the generic element of σ2(Xm,n) parametrizes projective classes of
rank-2 matrices of the same size. Let us bound its dimension with the expected dimension

dimσ2(Xm,n) ≤ min{2(m+ n) + 1, (m+ 1)(n+ 1)− 1}.

It is easy to see that actually dimσ2(Xm,n) = 2(m+1)+2(n−1). Indeed let v, w ∈ Cm+1

with v ̸= αw for all α ∈ C with α ̸= 0 . For i = 1, . . . , n − 1 let α, β ∈ C be non-zero
scalars. A general rank-2 matrix A of size (m+ 1)× (n+ 1) can be written as

A =
[
v w αv + βw α2v + β2w · · · αn−1v + βn−1w

]
.

Therefore it is sufficient to use 2(m+ 1) + 2(n+ 1− 2) parameters to describe a general
rank-2 matrix. Thus Xm,n is 2-defective with 2-nd secant defect δ2 = 1.

From the following more general result we see that the above example is the only case
of a 2-defective Segre variety.

Proposition 1.1.19 ([Lan12, Proposition 5.3.1.6]). Let Yn1,...,nk
= Pn1 × · · · × Pnk be a

multiprojective space of at least 3 factors and let r ≤ min{ni + 1 | i = 1, . . . , k}. Then
σr(Xn1,...,nk

) is of the expected dimension, i.e.

dim(σr(Xn1,...,nk
)) = r(n1 + · · ·+ nk) + r − 1.

The second secant variety of a Segre variety Xn1,...nk
is a well understood object. C.

Raicu proved in [Rai12] that the defining ideal of σ2(Xn1,...,nk
) is generated by the 3× 3

minors of all generalized flattenings (cf. also [LM04]). Moreover, even though a general
tensor of σ2(Xn1,...,nk

) is a rank-2 tensor, in this variety we can find all ranks r ≤ k.
To better explain this behaviour we can to introduce another auxiliary variety that is
contained in the second secant variety of an irreducible non-degenerate projective variety
X ⊂ PN .

Definition 1.1.20. Let X ⊂ PN be an irreducible non-degenerate projective variety.
The tangential variety of X is the tangent developable of X that we denote by τ(X). In
other words τ(X) is defined by the union of all tangent spaces to X.

We recall that the tangent space to a Segre variety Xn1,...,nk
= ν(PV1×· · ·×PVk) ⊂ PN

at a point p = [v1 ⊗ · · · ⊗ vk] ∈ Xn1,...,nk
is defined by its tangent affine cone as

T̂pX = V1 ⊗ v2 ⊗ · · · ⊗ vk + v1 ⊗ V2 ⊗ v3 ⊗ · · · ⊗ vk + · · ·+ v1 ⊗ · · · ⊗ vk−1 ⊗ Vk.

Indeed, taken wi ∈ Vi for i = 1, . . . , k, it is sufficient to compute

lim
t−→0

d
dt
(
(v1 + tw1)⊗ · · · ⊗ (vk + twk)

)
=

w1 ⊗ v2 ⊗ · · · ⊗ vk + v1 ⊗ w2 ⊗ v3 ⊗ · · · ⊗ vk + · · ·+ v1 ⊗ · · · ⊗ vk−1 ⊗ wk.
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Let p ∈ X and consider the tangent space TpX of X at p . Given a point q ∈ TpX, then
there exists a curve C ⊂ X such that q ∈ TpC (cf. [Har95, Example 15.7]). This makes
possible to express τ(X) as the Zariski closure of the collection of all points that lie on all
the tangent lines. Tangential varieties are contained in the closure of the second secant
varieties. Moreover by [Zak93, Theorem 1.4] when σ2(X) is not defective then τ(X) is
always a hypersurface, otherwise τ(X) = σ2(X). In general we have

σ2(X) = σ0
2(X) ∪ (τ(X) \X) ∪X.

Example 1.1.21. If we consider a Segre variety Xm,n of two factors, by Example 1.1.18
we know that Xm,n is always 2-defective. Therefore in this case

τ(Xm,n) = σ2(Xm,n).

Another way to look at this equality is to observe that the limit of a rank-2 matrix cannot
have rank greater than 2.

Set-theoretic defining equations of tangential varieties of Segre varieties have been
found in [Oed] by L. Oeding. Moreover, it was found independently by Ballico-Bernardi
and Buczyński-Landsberg all possible tensor ranks that appear in a tangential variety of
a Segre variety (cf. [BB13b, Theorem 1], [BL14, Proposition 1.1]).

Theorem 1.1.22. Let Xn1,...,nk
be the Segre image of the multiprojective space Yn1,...,nk

=
Pn1 × · · · × Pnk and let τ(Xn1,...,nk

) be its tangential variety. The rank of a point p ∈
τ(Xn1,...,nk

) is such that
1 ≤ r(p) ≤ k

and all such integers appear.

In [BB13b] the authors proved that the concise space of a rank-r tensor T ∈ τ(Xn1,...,nk
)

is actually P((C2)⊗r), which means that the minimal multiprojective space Y ′ such that
T ∈ ⟨ν(Y ′)⟩ is given by Y ′ = (P1)r.

Remark 1.1.23. An element q ∈ τ(Xn1,...,nk
) \Xn1,...,nk

has rank equal to 2 if and only
if the minimal multiprojective space Y ′ such that q ∈ ⟨ν(Y ′)⟩ is Y ′ = P1 × P1.

Before proceeding, it is worthwhile to mention that classifying dimensions of secant
varieties of Segre varieties is still an open problem and we refer to [BCC+18, Sections 3
and 4] where there are collected several results on this problem.

Since it will be useful in the sequel, we recall the classification of any defective third
secant variety of a Segre variety Xn1,...,nk

.

Theorem 1.1.24 ([AOP09, Theorem 4.5]). The third secant variety of a Segre variety
Xn1,...,nk

is never defective unless either X1,1,1,1 = ν(P1 × P1 × P1 × P1) or X1,1,a =
ν(P1 × P1 × Pa), with a ≥ 3.

Another extremely useful object to study secant varieties is the so-called abstract
secant variety of a given X ⊂ PN .

Definition 1.1.25. Let X ⊂ PN be an irreducible non-degenerate projective variety and
denote by Xreg the set of non-singular points of X. The r-th abstract secant variety of
X is

AbSecr(X) := {(q, (p1, . . . , pr)) ∈ PN ×Xr
reg | q ∈ ⟨p1, . . . , pr⟩ ∼= Pr−1} ⊂ PN ×Xr.
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Denote by

AbSec0r(X) = {(q, (p1, . . . , pr)) ∈ PN ×Xr
reg | q ∈ ⟨p1, . . . , pr⟩ ∼= Pr−1}.

Consider the projection Tr of AbSec0r(X) onto PN

Tr : AbSec
0
r(X) −→ σ0

r(X).

The projection Tr is called the rth Terracini map.

Definition 1.1.26. A rank-r point q ∈ PN is identifiable if T−1
r (q) is a singleton.

Identifiable tensors are very important for the applications and we will introduce the
identifiability problem more in detail together with some applications in Section 2.1.
Before going further, let us just recall that matrices are non-identifiable tensors.

Example 1.1.27. Let A ∈ Cm ⊗ Cn be a rank-r matrix, i.e. there exist column vectors
ui ∈ Cm, vi ∈ Cn such that

A =
r∑

i=1

ui ⊗ vi =
r∑

i=1

uiv
T
i .

Let us denote the matrix whose columns are the vectors ui by U = [u1 · · ·ur] and the
matrix whose columns are the vectors vi by V = [v1 · · · vr] for all i = 1, . . . , r. Then

A =
r∑

i=1

uiv
T
i = UV T = (UX−1)(V XT )T

for any X ∈ GLr(C). If we denote by UX = UX−1 and by VX = V XT , then for any
X ∈ GLr(C) we have a different decomposition of A given by A = UXV

T
X .

1.2 Cohomology for tensors
In this section we introduce all the cohomological tools needed in the sequel. For standard
notion related to this part we refer to [Har77].
Let Yn1,...,nk

= Pn1 × · · · × Pnk . We recall that for all i = 1, . . . , k we denoted by
πi : Yn1,...,nk

→ Pni the projection of Yn1,...,nk
onto the i-th factor (cf. Notation 1.1.6).

The Segre embedding is the map associated to the linear system |OYn1,...,nk
(1, . . . , 1)| =

|π∗
1 (OPn1 (1))⊗ · · · ⊗ π∗

k (OPnk (1)) | and we recall that

h0
(
OYn1,...,nk

(1, . . . , 1)
)
=

k∏

i=1

(ni + 1).

Notation 1.2.1. for 1 ≤ i ≤ k, εi := (0, . . . , 0, 1, 0, . . . , 0), where the only 1 is in the i-th
place and ε̂i which is a k-uple with all one’s but the i-th place, which is filled by 0, i.e.
ε̂i := (1, . . . , 1, 0, 1, . . . , 1). If we denote by εI :=

∑
i∈I εi, where I ⊂ {1, . . . , k}, then ε̂I

is a k-uple with 0’s in position of the indices appearing in εI and 1’s everywhere else.
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We saw that problems related to rank-r tensors can be translated into problems
related to r independent points of a Segre variety. Therefore, working with tensors,
we are implicitly working with 0-dimensional schemes of reduced points, namely simple
points. Simple points are not the only type of 0-dimensional schemes that one can
use when dealing with tensors. Indeed, by means of the Terracini’s Lemma, there is
a very powerful connection between secant varieties and schemes of double fat points.
Before stating this connection, let us introduce the notion of double fat point adapted
for multiprojective spaces.

Definition 1.2.2. . For any p ∈ Yn1,...,nk
, denote by (2p, Yn1,...,nk

) the first infinitesimal
neighbourhood of p in Yn1,...,nk

, i.e. the closed subscheme of Yn1,...,nk
with (Ip,Yn1,...,nk

)2 as
its ideal sheaf. For any finite set S ⊂ Yn1,...,nk

let

(2S, Yn1,...,nk
) :=

⋃

p∈S
(2p, Yn1,...,nk

).

Remark 1.2.3 ([CGG02, Corollary 1.2]). Let p1, . . . , pr ∈ Xn1,...,nk
be generic points and

consider a generic point q ∈ ⟨p1, . . . , pr⟩. By Terracini’s Lemma

dimσr(Xn1,...,nk
) = dim⟨Tp1Xn1,...,nk

, . . . , TprXn1,...,nk
⟩.

The Segre variety Xn1,...,nk
is embedded in PN = PH0

(
OYn1,...,nk

(1, . . . , 1)
)∗ and we

can look at elements of H0
(
OYn1,...,nk

(1, . . . , 1)
)

as hyperplanes in PN . A hyperplane con-
taining TpiXn1,...,nk

corresponds to an element of H0
(
I(2pi,Yn1,...,nk

)(1, . . . , 1)
)
. Therefore,

if we denote by (2S, Yn1,...,nk
) the 0-dimensional scheme of double fat points such that

S = {p1, . . . , pr}, we have that hyperplanes containing ⟨Tp1Xn1,...,nk
, . . . , TprXn1,...,nk

⟩ are
the sections of H0

(
I(2S,Yn1,...,nk

(1, . . . , 1)
)
. Thus

dim(σr(Xn1,...,nk
)) = N − h0

(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
.

Therefore, another way to compute the dimension of the r-th secant variety of a given
projective variety X is to compute the dimension of the global sections of the ideal sheaf
associated to a scheme of r generic double fat points on X. A very useful tool to compute
such dimensions is the so-called Horace method.

1.2.1 Horace method and differential Horace method

The postulation of a 0-dimensional scheme Z ⊂ Pn is the sequence of values

(h0(IZ(d))d≥1.

The Horace method was introduced by A. Hirschowitz in [Hir85] and it was aimed to
compute the postulation of a 0-dimensional scheme Z in a projective space Pn.

Given a 0-dimensional scheme Z ⊂ Pn, in order to prove that

h0 (IZ(d)) = 0

for some d ≥ 0, we can use two other ideals sheaves that are related to IZ(d) through an
exact sequence and we can prove that the dimensions of their global sections are equal
to zero. More precisely, given a hyperplane H ⊂ Pn,

10



• the trace of Z with respect to H is the scheme-theoretic intersection H ∩ Z;

• the residue ResH(Z) of Z with respect to H is the 0-dimensional scheme defined
by the ideal sheaf IZ : IH , which is the ideal sheaf corresponding to the colon ideal
IZ : IH that contains all polynomials p such that pIH ⊆ IZ .

This leads to consider the exact sequence of sheaves

0 → IResH(Z)
(d− 1) → IZ(d) → IH∩Z,H(d) → 0,

from which follows that

h0(IZ(d)) ≤ h0
(
IResH(Z)

(d− 1)
)
+ h0

(
IH∩Z,H(d)

)
.

Remark that on the left hand side of the exact sequence we deal with the ideal sheaf of a
zero-dimensional scheme in degree d−1, while on the right hand side we deal with a zero-
dimensional scheme that belongs to a hyperplane of Pn and therefore we are working in
dimension n− 1. Therefore, proving that both h0

(
IResH(Z)

(d− 1)
)
= h0

(
IH∩Z,H(d)

)
= 0

is easier than proving that h0
(
IResH(Z)

(d− 1)
)
= 0. The idea behind this method is to

kill one member at a time in order to solve our final problem, just like, in the ancient
roman legend, Publius of the Horatius brothers killed one at a time all the three Curiatus
brothers, which is where the name of the method comes from.

The differential Horace method ([AH92, AH00]) is a degeneration of the Horace
method and it has been introduced to overcome situations in which the Horace method
does not succeed. We refer to [BCC+18, Subsections 2.2.1 and 2.2.2] for a more de-
tailed introduction of both methods and we present here a particular application of the
differential horace method that will be used in the following.

Lemma 1.2.4. Let X be an integral projective variety, D an integral effective Cartier
divisor of X and L a line bundle on X such that hi(L) = 0 for all i > 0 and h1(L(−D)) =
0. Let Z ⊂ X be a closed subscheme. Suppose

h1
(
X, IResD(Z) ⊗ L(−D)

)
= 0 and h1

(
D, IZ∩D,D ⊗ L|D

)
= 0.

Fix i ∈ {0, 1}. To prove that a general union A of Z and one double point satisfies
hi (IA ⊗ L) = 0 it is sufficient to prove that

hi
(
IResD(Z)∪(2o,D) ⊗ L(−D)

)
= 0

and
hi
(
D, I(Z∩D)∪{o} ⊗ L|D)

)
= 0,

where o is a general point of D.
Since o is general in D, h1

(
D, I(Z∩D)∪{o} ⊗ L|D)

)
= 0 if and only if

h1
(
D, IZ∩D,D ⊗ L|D

)
= 0 and h0

(
D, IZ∩D,D ⊗ L|D

)
> 0.

Remark 1.2.5. The Horace method together with its differential version was used by
J. Alexander and A. Hirschowitz to completely characterize the postulation of a 0-
dimensional scheme of generic double fat points in the projective space Pn (cf. [AH95]).
Therefore, knowing the postulation of a 0-dimensional scheme of generic double fat points
in the projective space Pn corresponds to find all dimensions of secant varieties of any
Veronese variety. We refer to [BO08] for a modern and simplified proof of the classi-
fication theorem and in particular to [BO08, Section 7] for some interesting historical
remarks on the problem.
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At the end of the section we provide an example of the use of this method.
When dealing with multiprojective spaces Yn1,...,nk

= Pn1 × · · · × Pnk (not necessarily
embedded via OYn1,...,nk

(1, . . . , 1)) one can use another method to compute the dimension
of the global sections of the ideal sheaf of a 0-dimensional scheme.

The Multiprojective-Affine-Projective Method [CGG05]

For i = 1, . . . , k let di ≥ 1 and let Vi be a vector space of dimension dimVi = ni +1. The
Segre-Veronese embedding of Yn1,...,nk

= PV1 × · · · × PVk is

ν(d1,...,dk) : PV1 × · · · × PVk → P(Symd1V1 ⊗ · · · ⊗ SymdkVk)

([v1], . . . , [vk]) 7→ [vd11 ⊗ · · · ⊗ vdkk ].

Segre-Veronese varieties parametrize rank-1 partially symmetric tensors and the Segre-
Veronese embedding corresponds to the linear system

|OYn1,...,nk
(d1, . . . , dk)| = |π∗

1(OPn1 (d1))⊗ · · · ⊗ π∗
k(OYn1,...,nk

(dk))|.

The multiprojective-affine-projective method was introduced by Catalisano-Geramita-
Gimigliano in [CGG05] to compute dimensions of some Segre-Veronese varieties. The
method allows to avoid the multigraded structure of the problem by passing to a standard
projective space. Indeed, given a zero-dimensional scheme Z ⊂ Yn1,...,nk

, the idea is to
construct a schemeW ⊂ Pn1+···+nk such that h0 (IW (d1 + · · ·+ dk)) = h0 (IZ(d1, . . . , dk)).

Let n = n1+· · ·+nk, consider the map g : Yn1,...,nk
→ An and then take the embedding

An → Pn. Composing the two maps one gets f : Yn1,...,nk
→ Pn. Let Z ⊂ Yn1,...,nk

be a
zero-dimensional scheme contained in the affine chart on which g is defined and let

Z ′ = f(Z).

We recall that given an integer k ≥ 0 and a linear space L ⊂ Pn, then kL represents the
scheme given by Ik

L as its ideal sheaf. For i = 1, . . . , k let Λi
∼= Pni−1 ⊂ Pn and set

Wi =

(∑

j ̸=i

nj

)
Λi.

We have now all the necessary tools to state the result.

Theorem 1.2.6 ([CGG05, Theorem 1.1]). Let Z,Z ′,W1, . . . ,Wk be as above and con-
sider W = Z ′ +W1 + · · · +Wk ⊂ Pn, which is the smallest projective space containig
Z ′,W1, . . . ,Wk. Then we have

h0 (IW (d1 + · · ·+ dk)) = h0 (IZ(d1, . . . , dk)) .

We conclude this subsection with the following example in which we compute the
dimension of the global sections of the ideal sheaf of a zero-dimensional scheme with
both methods.

Example 1.2.7. Let Z ⊂ Y1,1,1 = P1 × P1 × P1 be a zero-dimensional scheme given by
the union of 1 double fat point and 4 simple points in general position. We will show
that

h0(IZ(1, 1, 1)) = 0

12



by using both the Horace method in the multiprojective space and the multiprojective-
affine-projective method.

Horace method in the multiprojective space
Let H ∈ |OY1,1,1(0, 1, 1)| containing the double point and one of the generic simple points.
The residual exact sequence of Z with respect to H is

0 → IResH(Z)
(1, 0, 0) → IZ(1, 1, 1) → IH∩Z,H(1, 1, 1) → 0.

In this case ResH(Z) is given by 3 simple points, while H ∩ Z is given by the double
point and the simple point we selected. Now h0(IZ∩H,H(1, 1, 1)) = h0(IP1(1, 1)) and since
there are no hyperplanes of P3 containing both a double point and a generic point then
h0(IP1×P1(1, 1)) = 0. On the other side h0

(
IResH(Z)

(1, 0, 0)
)
= 0 because a hyperplane of

P1 cannot contain 3 simple points. Therefore we conclude that h0(IZ(1, 1, 1)) = 0. Now
let us prove the same result with the other method.

Multiprojective-affine-projective method
Keeping the notation of Theorem 1.2.6, in this case we have n = 3, d1 = d2 = d3 = 1.
Therefore

h0(IZ(1, 1, 1)) = h0(IW (3))

where W is a zero-dimensional scheme given by 4 double fat points and 4 simple points
in Pn.

Let H ⊂ P3 be a plane containing 3 double points of W . We want to specialize
another simple point on H. We can do this specialization since we recall that if there
exists a hypersurface of degree k passing through ℓ generic points then there exists a
hypersurface of the same degree passing through ℓ specific points. In other words, if we
denote by W the specialization of W in which one of the simple points lie on H, then we
have that

h0(IW (k)) ≤ h0(IW (k))

for all k > 0. Therefore, since we want to show that h0(IW (3)) = 0 then it is enough
to show that h0(IW (3)) = 0. Thus let us work with W and consider the following exact
sequence

0 → IResH(W )
(2) → IW (3) → IH∩W,H(3) → 0.

In this case ResH(W ) is the scheme of what is left from W outside the plane, i.e. it is
given by 6 simple points and a double point, while H ∩W is the zero-dimensional scheme
containing 3 double fat points and a simple point.

Let us focus for the moment on IH∩W,H(3). The intersection H ∩W is the scheme
of 3 double fat points and a simple point on a plane. We recall that a zero-dimensional
scheme S has a good postulation if for all k ∈ Z we have either that h0(IS(k)) = 0
or that h1(IS(k)) = 0. If ℓ ̸= 2, 5 then ℓ double fat points on a plane have a good
postulation. Therefore, in this case it is sufficient to make a parameter count to verify
that h0

(
IH∩W,H(3)

)
= 0. Having 6 degrees of freedom, we see that the double point

gives us 3 conditions and we have to add another 3 conditions given by the remaining 3
simple points. Therefore h0

(
IH∩W,H(3)

)
= 0.

To conclude, we have to show that h0
(
IResH(W )

(2)
)
= 0. Let us call T = ResH(W )

and denote by T its specialization obtained by specifying the double fat point on a
hyperplane H ′ ⊂ P3. Therefore H ′ ⊂ P3 contains 3 simple points and a double fat point
of T and we can consider the exact sequence

0 → IResH′ (T )
(1) → IT (2) → IH′∩T ,H′(2) → 0.
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In this case h0
(
IResH′ (T )

(1)
)
= 0 because ResH′(T ) is the union of 4 simple points and

there is no plane of P3 passing through 4 general points. One can easily prove that
also h0

(
IH′∩T ,H′(2)

)
= 0 since one double point has a good postulation in the plane.

Therefore, going back to the beginning, we get that

h0(IT (2)) = h0
(
IResH(W )

(2)
)
= 0.

Thus h0(IW (3)) = 0, from which follows that

h0(IW (3)) = 0.

1.2.2 A very useful lemma for zero-dimensional schemes

An extremely useful tool that will turn out to be crucial in many proofs of Chapter
2 is [BB13a, Lemma 5.1]. We first recall the analogous statement given in [BBCG19,
Lemma 2.4] in the setting of zero-dimensional schemes and then we explain how to use
the forthcoming lemma in our context.

Lemma 1.2.8 (Ballico–Bernardi–Christandl–Gesmundo). Let X ⊆ Pn be an irreducible
variety embedded by the complete linear system associated with L = OX(1). Let p ∈
Pn and let A,B be zero-dimensional schemes in X such that p ∈ ⟨A⟩, p ∈ ⟨B⟩ and
there are no A′ ⊊ A and B′ ⊊ B with p ∈ ⟨A′⟩ or p ∈ ⟨B′⟩. Suppose h1(IB(1)) =
0. Let C ⊆ Pn be an effective Cartier divisor such that ResC(A) ∩ ResC(B) = ∅. If
h1
(
X, IResC(A∪B)(1)(−C)

)
= 0 then A ∪B ⊆ C.

Let us rephrase it in terms of sets of points of multiprojective spaces embedded via
|O(1, . . . , 1)|.
Let k ≥ 2, let Yn1,...,nk

= Pn1×· · ·×Pnk . Let q ∈ PN = ⟨Xn1,...,nk
⟩ be a point of rank r and

let A,B ⊂ Yn1,...,nk
be sets of points evincing the rank of q, i.e. such that #A = #B = r

and q ∈ ⟨ν(A)⟩ ∩ ⟨ν(B)⟩. Write S := A ∪B.
In this setting, the irreducible variety X considered in Lemma 1.2.8 is the Segre

variety Xn1,...,nk
. The residual scheme ResC(S) is therefore S \ (S ∩ C). The assump-

tion h1(IB(1)) = 0 of [BBCG19, Lemma 2.4], in the setting of Segre varieties becomes
h1(IB(1, . . . , 1)) = 0, which means that the points of ν(B) are linearly independent and
this assumption is satisfied since both A and B are sets evincing the rank of q.

With all this said we can state the specific version of [BBCG19, Lemma 2.4] and
[BB13a, Lemma 5.1] which is needed in the following chapter.

Lemma 1.2.9. Let k ≥ 2 and consider Yn1,...,nk
= Pn1 × · · · × Pnk , where all ni ≥ 1.

Let q ∈ PN , A,B ⊂ Yn1,...,nk
be two different subsets evincing the rank of q and write

S = A ∪ B. Let D ∈ |OYn1,...,nk
(ε)| be a divisor such that A ∩ B ⊂ D, where ε =

∑
i∈I εi

for some I ⊂ {1, . . . , k} as introduced in Notation 1.2.1. If

h1
(
IS\S∩D(ε̂)

)
= 0

then S ⊂ D.

The above lemma gives a sufficient condition so that the whole S = A∪B is contained
in a given divisor D of the variety Xn1,...,nk

. As already mentioned, in the next chapter
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we will use Lemma 1.2.9 by taking as D a divisor which is still a multiprojective space,
i.e. we will take D ∈ |OYn1,...,nk

(εi)| for some i, which means that

D ∼= Pn1 × · · · × Pni−1 × Pni−1 × Pni+1 × · · · × Pn.

Working in the Autarky assumption (cf. Lemma 1.1.8), by using this type of divisor in
Lemma 1.2.9 one can easily get a contradiction because in this way we would have that
our two distinct decompositions lie in a smaller multiprojective space.

Remark 1.2.10. If A,B are two disjoint distinct sets evincing the rank of a tensor q
then the assumption A ∩B ⊂ D of Lemma 1.2.9 is always satisfied.

Since in the next chapter we will study the identifiability of rank-3 tensors, we will deal
with sets of three points in some Segre variety. Therefore it is convenient to understand
the structure of the dependent sets of at most 3 points of a Segre variety (i.e. 3 rank-1
tensors).

Lemma 1.2.11. A set of points E ⊂ Yn1,...,nk
= Pn1 × · · · × Pnk of cardinality at most 3

does not impose independent conditions to multilinear forms over Yn1,...,n̂i,...,nk;i := Pn1 ×
· · · × P̂ni × · · · × Pnk for some i = 1, . . . , k, (i.e. h1(IE(ε̂i)) > 0) if and only if one of the
following cases occurs:

1. #(E) = 3 and there is j ∈ {1, . . . , k}\{i} such that #(πh(E)) = 1 for all h /∈ {i, j};

2. there are u, v ∈ E such that u ̸= v and ηi(u) = ηi(v).

Proof. The fact that both items 1. and 2. imply that h1(IE(ε̂i)) > 0 is obvious. Let us
describe the other implication.

By definition H0
(
OYn1,...,nk

(ε̂i)
) ∼= H0

(
OYn1,...,n̂i,...,nk;i

(1, . . . , 1)
)
, and OYn1,...,nk

(ε̂i) is
not a very ample line bundle. So we cannot be sure about the injectivity of the restriction
ηi|E of ηi to the finite set E.
If ηi|E is not injective one immediately gets that h1(IE(ε̂i)) > 0. Moreover if ηi|E is not
injective it means that there are 2 distinct points of E, say u and v which are mapped
by ηi onto the same point, i.e. we are in item 2. of this lemma.

Now assume that ηi|E is injective (i.e. we are not in item 2.). This implies that
#(E) = #(ηi(E)). We have by hypothesis that h1(IE(ε̂i)) > 0. Since by definition
h1(IE(ε̂i)) = h1

(
Yn1,...,n̂i,...,nk;i, Iηi(E)(1, . . . , 1)

)
we have that ηi(E) does not impose inde-

pendent conditions to the multilinear forms over Yn1,...,n̂i,...,nk;i, therefore #(ηi(E)) ≥ 3
which clearly implies that #(ηi(E)) = 3 since by hypothesis the cardinality of E is at most
3. Now ηi(E) is a set of 3 distinct points on Yn1,...,n̂i,...,nk;i which does not impose indepen-
dent conditions to the multilinear forms over Yn1,...,n̂i,...,nk;i, and OYn1,...,n̂i,...,nk;i

(1, . . . , 1) is
very ample, therefore the 3 points of ηi(E) must be mapped to collinear points by the
Segre embedding νi of Yi. Hence, by the structure of the Segre variety νi(Yn1,...,n̂i,...,nk;i),
we get that ⟨νi(ηi(E))⟩ ⊆ νi(Yn1,...,n̂i,...,nk;i) and there is j ∈ {1, . . . , k} \ {i} such that
#(πh(ηi(E))) = 1 for all h /∈ {i, j}. Since h ̸= i, we have πh(ηi(E)) = πh(E).

1.2.3 Tools for a scheme of double fat points

As we said at the beginning of the section, zero-dimensional schemes of double fat
points are strictly connected to secant varieties (cf. Remark 1.2.3). In the following
we prove some useful results on the dimension h1

(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)

for some finite
S ⊂ Yn1,...,nk

.
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Notation 1.2.12. for a zero-dimensional schemeA ⊂ Yn1,...,nk
we denote by δ(A, Yn1,...,nk

) =
h1(IA(1, . . . , 1)). In particular, given a set of points S ⊂ Yn1,...,nk

we will denote the di-
mension of the first cohomology group of the ideal sheaf of (2S, Yn1,...,nk

) embedded via
Segre as

δ(2S, Y ) := h1(I(2S,Yn1,...,nk
)(1, . . . , 1)).

Let us first observe how two zero-dimensional schemes A ⊂ B ⊂ Yn1,...,nk
are related

to each other.

Remark 1.2.13. If A ⊂ B ⊂ Yn1,...,nk
are zero-dimensional schemes, then

δ (A, Yn1,...,nk
) ≤ δ(B, Yn1,...,nk

) ≤ δ(A, Yn1,...,nk
) + deg(B)− deg(A). (1.2.3)

Indeed the first inequality is clear since A ⊂ B. Moreover we remark that if A ⊂ B
then h0(IB(1, . . . , 1)) ≤ h0(IA(1, . . . , 1)). So by the restriction exact sequences of both
A and B with respect to Yn1,...,nk

, we get the second inequality. In particular for all
S ′ ⊂ S ⊂ Yn1,...,nk

we have

δ(2S ′, Yn1,...,nk
) ≤ δ(2S, Yn1,...,nk

) ≤ δ(2S ′, Yn1,...,nk
)+(#S−#S ′)(dimYn1,...,nk

+1). (1.2.4)

The following key lemma proves a sort of concision for the value δ(2S, Yn1,...,nk
) of a

finite set S ⊂ Yn1,...,nk
. By the previous remark, if S ′ ⊂ S is a scheme of r double points,

δ(2S ′, Yn1,...,nk
) is smaller than δ(2S, Yn1,...,nk

).
In the following lemma we fix the finite set S ⊂ W of cardinality r and we compare
the behaviour of the two values δ(2S,W ) and δ(2S, Yn1,...,nk

), where W ⊊ Yn1,...,nk
is

a smaller multiprojective space. Since Yn1,...,nk
is no longer the minimal multiprojective

space containing S ⊂ W ⊊ Yn1,...,nk
, the value δ(2S, Yn1,...,nk

) may be bigger than δ(2S,W ).
In case (a) of Lemma 1.2.14 we give an upper bound for δ(2S, Yn1,...,nk

) via δ(2S,W ). Case
(b) can be considered as a strong version of concision because the achievement of equality
δ(2S,W ) = δ(2S, Yn1,...,nk

) is telling that the defect of 2S is independent from the number
of factors of the multiprojective space where S is embedded.

Lemma 1.2.14. Let W ⊊ Yn1,...,nk
be multiprojective spaces. Let S ⊂ W be a finite set.

Then:

(a) δ(2S,W ) ≤ δ(2S, Yn1,...,nk
) ≤ δ(2S,W ) + (#S − 1)(dimYn1,...,nk

− dimW ).

(b) If W is isomorphic to a factor of Yn1,...,nk
, i.e. Yn1,...,nk

= W × Y ′, with Y ′ a
multiprojective space of positive dimension and ν(S) is linearly independent, then
δ(2S,W ) = δ(2S, Yn1,...,nk

).

Proof. Since the restriction mapH0
(
Yn1,...,nk

,OYn1,...,nk
(1, . . . , 1)

)
−→ H0 (W,OW (1, . . . , 1))

is surjective and (2S,W ) ⊆ (2S, Yn1,...,nk
), the first inequality of part (a) is the first in-

equality of (1.2.3). Therefore, we just need to prove the second inequality of (a) and we
will do it by induction on the integer dimYn1,...,nk

− dimW .
First assume dimYn1,...,nk

= dimW + 1. Thus there is i ∈ {1, . . . , k} such that W ∈
|OYn1,...,nk

(εi)|. Note that W ∩ (2S, Yn1,...,nk
) = (2S,W ) and that ResW (2S, Yn1,...,nk

) = S.
Thus the residual exact sequence of W gives the following exact sequence

0 −→ IS(ε̂i) −→ I(2S,Yn1,...,nk
)(1, . . . , 1) −→ I(2S,W )(1, . . . , 1) −→ 0. (1.2.5)
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Since the restriction map H0
(
Yn1,...,nk

,OYn1,...,nk
(1, . . . , 1)

)
−→ H0 (W,OW (1, . . . , 1)) is

surjective, h1
(
Yn1,...,nk

, I(2S,W )(1, . . . , 1)
)
= h1

(
W, I(2S,W )(1, . . . , 1)

)
. Since S is a finite

set, hi(L) = 0 for all i > 0 and all line bundles L on S. The long cohomology exact
sequence of the exact sequence

0 −→ IS(ε̂i) −→ OYn1,...,nk
(ε̂i) −→ OS(ε̂i) −→ 0

gives h2 (IS(ε̂i)) = h2
(
OYn1,...,nk

(ε̂i)
)
= 0. Since h1

(
OYn1,...,nk

(ε̂i)
)
= 0 and OYn1,...,nk

(ε̂i)
is globally generated, h1 (IS(ε̂i))) ≤ #S − 1. Thus (1.2.5) gives part (a). Note that we
have h1

(
W, I(2S,W )(1, . . . , 1)

)
= h1

(
Yn1,...,nk

, I(2S,Y )(1, . . . , 1)
)

if h1 (IS(ε̂i)) = 0.
Now assume dimYn1,...,nk

≥ dimW + 2. We can always find a multiprojective space
M such that W ⊊ M ⊆ Yn1,...,nk

and in particular we take M ∈ |OYn1,...,nk
(εi)| for some

i. The inductive step follows by applying the codimension one case to the inclusion
M ⊂ Yn1,...,nk

and we conclude by applying the inductive assumption on the inclusion
W ⊂M .

Assume that W is isomorphic to a factor of Yn1,...,nk
, say Yn1,...,nk

∼= W × Y ′. We
will show (b) by induction on the number of factors of Y ′. Assume Yn1,...,nk

= W × Pm

for some m > 0, where W ∼= W ′ × {o} for some o ∈ Pm and some positive dimensional
projective space W ′. We will work by induction on m ≥ 1.
First assume m = 1, so W ∈ |OYn1,...,nk

(ε2)| and in particular W = π−1
2 (o) where o ∈ P1.

We remark that the Segre embedding ν2 of W can be seen as the restriction to W
of the Segre embedding of Yn1,...,nk

. Thus ν(S) is linearly independent if and only if
ν2(S) is linearly independent. Note that the linear independence of ν2(S) is equiva-
lent to h1 (IS(1, 0)) = 0 because π2(S) = {o}. Since we already proved part (a) and
h1 (IS(1, 0)) = 0 we get the result.

Assume now m ≥ 2 and fix H ∈ |OYn1,...,nk
(ε2)| containing W . By induction we get

δ(2S,W ) = δ(2S,H). Since H is a divisor of Yn1,...,nk
and h1(IS(0, 1)) = 0 we get the

result by applying the base case of (a).
Assume now Yn1,...,nk

has k ≥ 3 factors, i.e. Yn1,...,nk
∼= W ×Y ′ where Y ′ is a multipro-

jective space with at least two factors. Let Pnk be the last factor of Yn1,...,nk
, again we will

show the result by induction on nk ≥ 1. If nk = 1, one can always find M ∈ |OYn1,...,nk
(εk)|

containing W and by induction we get δ(2S,W ) = δ(2S,M). We remark as before that
the Segre embedding of ν(S) is linearly independent if and only if νk(S) is linearly inde-
pendent and this is equivalent to say that h1(IS(ε̂k)) = 0. Since M = π−1

k (o), for some
o ∈ P1 we get the result by applying (a).

Assume now nk ≥ 2, and take some M ∈ |OYn1,...,nk
(εk)| containing W . By induction

we get δ(2S,W ) = δ(2S,M), since h1(IS(ε̂k)) = 0 and M is a divisor of Yn1,...,nk
we get

δ(2S,M) = δ(2S, Yn1,...,nk
) by (a).

Let us prove now that, working with two factors, to compute δ(2S, Yn1,n2) for some
particular S ⊂ Yn1,n2 , it is enough to compute the dimension of the first cohomology
group of the ideal sheaf of 2S seen in the smallest multiprojective space containing the
set of points.

Lemma 1.2.15. Let Yn1,n2 = Pn1 × Pn2 and Y ′ ⊆ Yn1,n2 with Y ′ := Pm1 × Pm2 for some
m1,m2 > 0. Let S ⊂ Y ′ be a finite subset such that Y ′ is the minimal multiprojective
space containing S and suppose that both π1|S and π2|S are injective and both π1(S) and
π2(S) are linearly independent. Then

m1 = m2 = #S − 1 and h1
(
Y ′, I(2S,Y ′)(1, 1)

)
= h1

(
Yn1,n2 , I(2S,Yn1,n2

)(1, 1)
)
.
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Proof. Since πi(S) is linearly independent and Y ′ is the minimal multiprojective space
containing S, then m1 = m2 = #S − 1. Moreover since h0 (IS(1, 0)) = h0 (IS(0, 1)) = 0,
then h1 (IS(1, 0)) = h1 (IS(0, 1)) = 0. To conclude it is sufficient to use the proof of part
(a) of Lemma 1.2.14.

Proposition 1.2.16. Write Yn1,...,nk
= Pn1 × Yn2,...,nk;1. Fix o ∈ Pn1 and take a closed

subscheme Z1 ⊂ Yn2,...,nk;1 such that {o} × Z1 ⊂ Yn1,...,nk
. Then

dim⟨ν(Z1)⟩ = (n1 + 1)(dim⟨ν1(Z1)⟩+ 1)− 1.

Proof. By assumption

h0
(
Yn2,...,nk;1, IZ1,Yn2,...,nk;1(1, . . . , 1)

)
= h0

(
OYn2,...,nk;1(1, . . . , 1)

)
− dim⟨ν1(Z1)⟩ − 1.

The Künneth formula gives

h0 (IZ1(1, . . . , 1)) = (n1 + 1)
(
h0(OYn2,...,nk;1(1, . . . , 1))− dim⟨ν1(Z1)⟩ − 1

)
− 1.

Since h0
(
OYn1,...,nk

(1, . . . , 1)
)
= (n1 + 1)h0

(
OYn2,...,nk;1(1, . . . , 1)

)
, we get the lemma.

We conclude the section by proving that if there exists an index i = 1, . . . , k such that
ηi|S is injective for some S ⊂ Yn1,...,nk

then to prove that δ(2S, Yn1,...,nk
) = 0 it is enough

to prove the same result working with 2ηi(S).

Proposition 1.2.17. Fix a finite set S ⊂ Yn1,...,nk
. Assume that there exist and index i ∈

{1, . . . , k} for which the projection ηi|S : S −→ Yn1,...,nk;i is injective. If δ(2ηi(S), Yn1,...,nk;i) =
0, then also δ(2S, Yn1,...,nk

) = 0.

Proof. With no loss of generality we may assume i = 1. Set S ′ := η1(S), s := #S and
m := n2 + · · · + nk = dimYn2,...,nk;1. The submersion η1 : Yn1,...,nk

−→ Yn2,...,nk;1 has the
property that η1(i∗(OYn2,...,nk;1(1, . . . , 1)))

∼= OYn1,...,nk
(ε̂1) and this isomorphism induces

an isomorphism of global section. By assumption 2S ′ imposes s(n − n1 + 1) indepen-
dent conditions to H0

(
Yn2,...,nk;1,OYn2,...,nk;1(1, . . . , 1)

)
. Thus the scheme η−1

1 (2S ′) imposes
s(n−n1+1) independent conditions toH0

(
OYn1,...,nk

(ε̂1)
)
. The scheme η−1

1 (S ′) is the union
of s disjoint varieties isomorphic to Pn1 and embedded by ν as linear spaces and η−1

1 (2S ′)
is the union of the first infinitesimal neighborhoods of Pn1 in Yn1,...,nk

. By Proposition
1.2.16 the scheme (2η−1

1 (S ′), Yn1,...,nk
) imposes s(n1 + 1)(m + 1) independent conditions

to H0
(
OYn1,...,nk

(1, . . . , 1)
)
, i.e. the s connected components of η−1

1 (2S ′) spans linearly in-
dependent linear spaces. For each o ∈ S the scheme η−1

i (2o′) = 2η−1
i (o′), o′ := η1(o), con-

tains the double point (2o, Yn1,...,nk
). In the Segre embedding the scheme ν((2o, Yn1,...,nk

))
gives dimYn1,...,nk

+ 1 independent conditions. Since the s subspaces spanned by the
connected components of ν(η−1

1 (2S ′)) are linearly independent, ν(2S, Yn1,...,nk
) is linearly

independent, i.e. δ(2S, Yn1,...,nk
) = 0.
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Chapter 2

Identifiability of tensors

The present chapter is devoted to the description of the identifiability problem for ten-
sor rank decomposition, namely, understanding if a given tensor admits a unique rank
decomposition. Section 2.1 is an introductory section to the problem and it is structured
as follows. First, we present the concept of identifiability of tensors, which is a very
useful notion in numerous applications, and we provide a classical example to explain
the importance of studying the identifiability problem in applied fields. Then, we make a
brief literature review of the identifiability of both generic tensors and specific tensors, by
recalling interesting and useful results. After that, we start working on the identifiability
of rank-3 tensors, which is the main core of the present chapter.

We provide a complete classification of the identifiability of any tensor up to rank 3.
In particular, in Section 2.2 we recall the notion of concision for a tensor and we prove
the identifiability result in the case of rank-2 tensors. In Section 2.3 we present all the
families of rank-3 tensors that are not identifiable. We prove that these families are the
only non-identifiable ones in both Sections 2.4 and 2.5. Section 2.6 is devoted to actually
present the main theorem of the present chapter, which recollect the results proved in
the previous sections. We conclude the chapter with an algorithm aimed to recognize if
a given tensor is a non-identifiable rank-3 tensor.

2.1 Literature review of the identifiability of tensors
A very interesting question related to tensors is to understand if a given tensor T ∈
Cn1+1 ⊗ · · · ⊗ Cn1+1 can be decomposed in a unique way as a sum of elementary tensors.
Clearly, the uniqueness of decomposition is understood up to both permutation of the
summands and scalar multiplication. Therefore, it is natural to extend the definition of
uniqueness of a decomposition in the projective setting.

Definition 2.1.1 (A). Let T ∈ Cn1+1 ⊗ · · · ⊗ Cnk+1 be a rank r tensor. The tensor T is
identifiable if it can be decomposed in a unique way as

T =
r∑

i=1

v1,i ⊗ · · · ⊗ vk,i,

where all vi,j ∈ Cni+1 for all i = 1, . . . , k.

Another way to look at the identifiability property is by looking a the fiber of the r-th
Terracini map

Tr : Abs
0
r(Xn1,...,nk

) −→ σ0
r(Xn1,...,nk

),
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where we denoted by Xn1,...,nk
= ν(PCn1+1 ⊗ · · · ⊗ PCnk+1) the Segre variety.

Definition 2.1.2 (B). A point q ∈ P(Cn1+1 ⊗ · · · ⊗ Cnk+1) of rank r is identifiable if the
fiber T−1

r (q) is just a singleton.

From a pure mathematical point of view, the identifiability problem is a very interest-
ing problem on its own. Nevertheless, knowing if a tensor admits a unique decomposition
can be meaningful when working with the applications. A straightforward result is that
matrices are highly not identifiable (cf. Example 1.1.27). Contrary to this, a rank decom-
position of a tensor is often unique and therefore, it can be useful to model an applied
problem with tensors instead of matrices. To better explain the importance of the iden-
tifiability problem in the applications, we present the following example (cf. [HLB+18],
[AGH+14]).

Example: identifiability of tensors for topic models

A topic model is a statistical model used to recover abstract topics that occur in a
collection of documents. If we denote by W a finite set of words, then every document Di

can be described by a finite number of elements of W , for i = 1, . . . , N , with N > 0. Any
document Di is described by r distinct topics coming from W and we denote by T ⊂ W
the set of those r elements. We assume that the order of appearance of the topics in
each Di is irrelevant and that the topics in a document are independently and identically
distributed, conditional on the topic. Moreover, the probability of each topic to appear
in a document is conditional to the topic of the document itself. With these assumptions,
we would like to recover the probability distributions pi for each topic ti ∈ T , where the
total probability distribution is

P (W ) =
r∑

i=1

P (T = ti)P (W |T = ti) =
r∑

i=1

αipi,

where all pi are vectors of size N containing the probability distributions of each topic
conditioned to each document. It is clear that one cannot recover the conditional proba-
bilities since there does not exist a unique choice of p1, . . . , pr whose linear combination
gives P (W ).
To overcome this issue, one may think of looking at the total joint probability distribu-
tion, which is

∑r
i=1 αipip

T
i . This is done by counting word pairs and it leads to working

with stochastic matrices. However, also in this case one cannot recover the initial param-
eters since also matrices are not identifiable.
Working with triplets of words we are able to solve the problem. More precisely, we
consider

P (W = wi,W = wj ,W = wk) =

r∑

ℓ=1

αiP (W = wi|T = tℓ)P (W = wj |T = tℓ)P (W = wk|T = tℓ).

We are now working with a (symmetric) tensor and if the above 3-way tensor is iden-
tifiable, then computing its unique rank-r decomposition allows us to recover all the
conditional probability distributions p1, . . . , pr.

The problem of identifiability of tensors has widely been treated from both mathe-
maticians and other areas. From an applied point of view, the problem has been tackled
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in a non generic scenario, i.e. working with specific tensors, while the geometrical per-
spective focused more on the identifiability of generic tensors. We will give an overview of
the state of the art in both cases by recalling interesting and useful results proved either
for generic tensors (of fixed rank) or for specific tensors.

Remark 2.1.3. The literature review that we are going to present focuses on tensors
without any kind of symmetries, therefore we will only report results on identifiability of
tensors lying in the ambient space of some Segre variety.

2.1.1 Identifiability of generic tensors of fixed rank

Working with the applications, knowing if a generic tensor of a certain rank is identifiable
can give an indication regarding the behaviour of specific tensors of the same rank. Recall
the following result.

Proposition 2.1.4 ([Har77, Cap II, Ex 3.22, part (b)]). Let L,M be two irreducible and
reduced projective varieties and let f : L → M be a dominant morphism, i.e. f(L) is
dense in M . For any point v ∈ f(L) every irreducible component of the fiber f−1(v) has
dimension

dim
(
f−1(v)

)
≥ dimL− dimM.

We want to apply the above proposition in the following framework, where we denote
by Yn1,...,nk

= Pn1 × · · · × Pnk a multiprojective space of k ≥ 1 factors and we call
Xn1,...,nk

= ν(Yn1,...,nk
) the corresponding Segre variety. Applying the above result to the

Terracini map, i.e. taking L = Absr(Xn1,...,nk
) and M = σr(Xn1,...,nk

) for some r > 0, it
tells us that the dimension of the space S(Yn1,...,nk

, [T ]) of rank-1 tensors computing the
rank of a specific rank-r tensor [T ] (cf. Definition 2.2.2) can only be bigger or equal than
the dimension of S(Yn1,...,nk

, q), where q is a generic tensor of rank equal to the rank of
[T ]. Therefore the knowledge of the behaviour on the generic element of some fixed rank
can be useful to understand the behaviour of specific tensors of the same rank.

Moreover, if the generic tensor of rank r is identifiable, then there exist a Zariski set
that can be seen as an euclidean set of measure zero in which the elements of σr(Xn1,...,nk

)
outside this set are r-identifiable.

From the pure mathematical point of view, the identifiability problem remains a
very interesting problem related to the behaviour of the fiber of the r-th Terracini map.
Moreover, the knowledge of the generic non-identifiability is a necessary condition for
r-defectivity, a problem which is still far from being completely understood. Indeed if
X is r-defective (cf. Definition 1.1.16) then by Proposition 2.1.4 the fiber of the general
element of the r-th Terracini map is positive dimensional. Therefore the general element
of σr(X) is not identifiable and so any other specific tensor of the same border rank is
not identifiable.

We recall also that when the r-th secant variety σr(X) ⊂ PN fills the ambient space
such that dimσr(X) > N the general fiber of the r-th Terracini map is trivially posi-
tive dimensional. For the purpose of this subsection, it is useful to recall the following
definitions that hold in the more general setting of X ⊂ PN being any irreducible non
degenerate projective variety and that we adapt to the case of X being a Segre variety.

Definition 2.1.5. Let X ⊂ PN be the Segre image of a multiprojective space of k > 0
factors. We say that
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1 X is r-identifiable if the general element of the r-th secant variety σr(X) is identi-
fiable;

2 X is generically identifiable if the general element of PN is identifiable.

There is a vast literature on the identifiability of generic tensors and a lot of results
are scattered through the literature. We recall some of them in the following discussion,
by focusing on identifiability of tensors.

From weak defectivity to identifiability

Numerous contributions on generic identifiability rely on the concept of weak defectivity.
Given an irreducible, non-degenerate projective variety X ⊂ PN , we say that X is r-
weakly defective if the general r-tangent hyperplane has a contact variety of positive
dimension, where by general r-tangent hyperplane we mean the general hyperplane H ⊂
PN containing ⟨Tp1X, . . . , TprX⟩, where p1, . . . , pr are general points of X. The first
time this notion appeared was in the paper [Ter21] of A. Terracini, as stated in [CC02].
The notion of weak defectivity has then been both rediscovered and reformulated in a
modern language by L. Chiantini and C. Ciliberto in [CC02]. This notion is strictly
connected to the notion of r-defectivity. Indeed, by the Terracini’s Lemma if X ⊂ PN

is r-defective, then the general hyperplane H containing Txσr(X) is tangent to X along
a variety Σ(p1, . . . , pr) of positive dimension containing p1, . . . , pr. Clearly, a r-defective
variety is also r-weakly defective, but the viceversa does not hold. In [CC02], the authors
introduced the concept of weak defectivity to better tackle the defectivity problem.

In a second work [CC06], both authors linked the notion of weak defectivity with the
notion of identifiability. They proved that, in a non-defective framework, the fiber of
the general element with respect to the corresponding Terracini map is zero dimensional
unless the variety is weakly defective.

A very useful concept related to the identifiability of generic tensors, is the notion of
r-tangentially weak defectiveness, introduced in [CO12] by L. Chiantini and G. Ottaviani.
More precisely, an irreducible non-degenerate projective variety X ⊂ PN is r-tangentially
weakly defective if the span of the tangent spaces at r general points of X, is tangent
also in some other point. Since we are interested in recalling the consequences of the
introduced tools for the identifiability of generic tensors (of some fixed rank), we will not
go further into details of these notions and we refer to [Chi04] for a clear introduction to
the topics.

In [CO12], the authors introduced also an inductive method for the study of the
identifiability of generic 3-way tensors based on the notion of weak defectivity. The main
result of the method is the following bound on the dimensions of the vector spaces forming
the tensor space.

Theorem 2.1.6 ([CO12, Theorem 1.1]). Let a ≤ b ≤ c be dimensions of C-vector spaces
A,B,C respectively. Let α, β be maximal such that 2α ≤ a and 2β ≤ b. The general
tensor t ∈ A⊗B ⊗ C of rank k has a unique decomposition if k ≤ 2α+β−2.

They also extended the above bound in the case of an arbitrary number of factors in
[CO12, Theorem 6.7].

Remark 2.1.7. Note that the notions of both weak defectivity and tangetially weak
defectivity cannot be rearranged in a non-generic scenario since these contact varieties
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arise from a behaviour of generic points. Indeed, the existence of such contact varieties
depends intrinsically on the fact that in the notion of (tangentially) weak defectivity we
are considering generic points and the existence of a particular r-uple of points that have
the behaviour described by the notion of (tangentially) weak defectivity does not imply
the existence of a whole contact subvariety.

Identifiability for generic rank-r tensors in ⟨ν((Pn)k)⟩
Let Xnk = ν(Pn × · · · × Pn) be the Segre image of the product of k copies of Pn, with
n ≥ 1. For n = 1 (binary case), the identifiability of the generic element holds. This case
is relevant in different applications such as for example quantum physics (cf. [BFŻ19]).

A qubit is a state of a two dimensional quantum system, i.e. a vector in the Hilbert
space H = C2. In the case of a k-qubit system the corresponding Hilbert space is
H = (C2)⊗k and a state ψ ∈ H is separable if it can be written as ψ = ψ1 ⊗ · · · ⊗ ψk,
otherwise it is entangled. Thus separable states are rank one tensors and entangled state
are tensors of higher rank in (C2)⊗k. The rank of a tensor can be considered as a measure
of the entanglement and this turns out to be extremely useful in quantum physics.

Remark 2.1.8. The identifiability of rank-2 tensors in the case of binary Segre products
is classically known for k = 3, 4 factors. The case k = 4 has been explicitly treated by
C. Segre in [Seg21], where he worked on quadrilinear forms, i.e. elements in ⟨ν(P1 ×
P1 × P1 × P1)⟩. For the case of trilinear forms, i.e. k = 3, one can follow the same
argument produced by Segre. Indeed, working in the affine setting, we can consider the
contraction C2 ⊗ C2 → C2. In this case, the kernel of a general tensor is a line in P3 that
meets the quadric ν(P1 × P1) in two points that correspond to the two summands of the
decomposition. This was a standard argument for Segre and, even though we cannot find
an explicit reference for the 3-factors case, it is reasonable to attribute also this case to
Segre.

Recently, in [BC13] the authors proved that working with k ≥ 6 copies of P1 embedded
via Segre, the general tensor of rank r + 1 is identifiable if r + 1 ≤ 2k−1/k, improving
the first bound given by [AMR09]. In the follow up paper [BCO14], the two authors
jointly with G. Ottaviani improved the bound working with k ≥ 12 factors (cf. [BCO14,
Theorem 4.4]). The bound was then improved by A. Casarotti and M. Mella in [CM22,
Theorem 26] in which they also proved generic identifiability for all sub-generic binary
tensors.
In the same paper [BCO14], the authors also worked on Segre varieties of many copies of
Pn, with n ≥ 2. They implemented an algorithm based on the notion of weak defectivity
that relies on the computation of the Jacobian matrix of the locus C containing points
p ∈ X for which TpX ⊂ ⟨Tp1X, . . . , TprX⟩, where p1, . . . , pr are random chosen points of
a Segre variety X (cf. [BCO14, Section 9]). Their general result on many copies of Pn is
the following theorem.

Theorem 2.1.9 ([BCO14, Theorem 7.1]). Let k ≥ 3 and consider the Segre image of k
copies of Pn. The general rank r tensor is identifiable for

r ≤ (n+ 1)k − (3n+ 1)(n+ 1)k−2

nk + 1
.

The algorithm of [BCO14, Theorem 4.4] was then improved in [COV14, Algorithm
3.1] based on the following sufficient condition for generic identifiability.
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Proposition 2.1.10 ([COV14, Proposition 2.3]). Let X be a non defective Segre variety,
let r be a sub-generic rank and assume that X is not generically r-identifiable. Then,
for r general points p1, . . . , pr ∈ X the r-th tangential contact locus Cr contains a curve
passing through p1, . . . , pr.

The main result they proved on generic identifiability is the following.

Theorem 2.1.11 ([COV14, Theorem 1.1]). A general tensor in ⟨ν(Pn1 × · · · × Pnk)⟩ of
subgeneric rank r is r-identifiable if

∏k
i=1(ni + 1) ≤ 15000 unless we have one of the

following:

(n1, . . . , nk) r Type
(3, 3, 2) 5 defective [AOP09, Proposition 4.10]
(3, 3, 3) 6 sporadic [CO12, Theorem 1.3]
(5, 5, 2) 8 sporadic [CMO14]

(n, n, 1, 1) 2n− 1 defective [AOP09, Proposition 4.7]
(1, 1, 1, 1, 1) 5 sporadic [BC13, Proposition 4.1]

n1 >
∏k

i=2 ni −
∑k

i=2(ni − 1) r ≥∏k
i=2 ni −

∑k
i=2(ni − 1) unbalanced [BCO14]

The above statement is still a conjecture for
∏k

i=1 ni > 15000. We also include the
following defective case since it provides an obvious instance of generic non-identifiability.

• (n1, . . . , nk) = (1, 1, 1, 1), r = 3 (cf. Theorem 1.1.24).

In the same paper the authors gave also a sufficient condition for specific identifiability
but we will be more precise about this on the next Subsection 2.1.2 in which we focus on
the identifiability of specific tensors.

Generic identifiability

Another interesting case that has been analyzed is the so-called perfect case, that oc-
curs when the biggest r-th secant variety fills the ambient space sharply. In [HOOS19],
the authors used homotopy continuation techniques to tackle the problem of classifying
identifiability for the general tensor (see 2 of Definition 2.1.5). The homotopy technique
works as follows. Let T ∈ Cn1 ⊗ · · · ⊗ Cnk be a rank-r tensor. Starting with a rank
decomposition of T , one can consider the equation

T =
r∑

i=1

v1,i ⊗ · · · ⊗ vk,i,

where all vj,i are unknown for j = 1, . . . , k. One can fix a closed path and move T (s)
along the path such that T (0) = T (1) = T , where s ∈ [0, 1], i.e.

T (s) =
r∑

i=1

v1,i(s)⊗ · · · ⊗ vk,i(s).

The key point is that the elements appearing in the decomposition of T may not be the
same for s = 0 and s = 1. This method allows to prove with high probability non-
identifiability if the computations provide different decompositions. Otherwise it is not
possible to claim identifiability.
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Denote by g the generic rank of the corresponding Segre variety. The authors used
the homotopy technique in [HOOS19] working with a rank-g tensor T that is given by the
sum of g random rank-1 tensors. The computations made were useful for two different
reasons. First, with the computations they observed that the cases of (n1, . . . , nk) =
(2, 4, 5), (2, 2, 2, 3) had a different behaviour and indeed in these cases they proved the
uniqueness of decomposition. Second, based on their computational evidence, they for-
mulated the following conjecture.

Conjecture 2.1.12 ([HOOS19]). Let k ≥ 3 and let n1 ≥ · · · ≥ nk ≥ 1. Let X =
ν(Pn1 × · · · × Pnk) be the Segre variety in P(Cn1+1 ⊗ · · · ⊗ Cnk+1) and denote by rX the
generic rank. Then X is not generically rX- identifiable unless it is one of the following
cases:

1. X = ν(P4 × P3 × P2);

2. X = ν(P2 × P1 × P1 × P1);

3. X = ν(Pk × Pk × P1) for some k — matrix pencils.

From an applied point of view, tensors encode very precise models and, in these cases,
knowing the behaviour of the generic tensor of the same fixed rank may not be effective.

2.1.2 Identifiability of specific tensors of fixed rank

In the literature of the applied fields, tensor decomposition is also called canonical
polyadic decomposition (CPD). It was first described by F. Hitchcock in 1927 ([Hit27]),
finding numerous applications in statistics, signal processing, computer vision, computer
graphics, psychometrics, linguistics and chemometrics. That is why it is also called
CANDECOMP, PARAFAC, or CANDECOMP/PARAFAC (CP). While mathematicians
where most interested in the identifiability of generic tensors (of fixed rank), in the applied
fields one may also be interested in the identifiability of specific tensors.

Addressing the identifiability problem to specific tensors is far more complicated. It
is only right to mention one of the firsts contributions that we found on identifiability
of specific tensors, namely the work of R. A. Harshman [Har70], whom turns credit to
R. Jennich for the result. His result is related to the identifiability of 3-way arrays and
gives a sufficient condition for a 3-way tensor to be identifiable. Few years later, the most
celebrated criterion for identifiability has been published in [Kru77]. In order to state
properly the result, we need the notion of the so called Kruskal rank for a set of vectors.

Definition 2.1.13. Let V be a C-vector space of finite dimension. Let S = {v1, . . . , vr} ⊂
V . The Kruskal rank of S is

max{n ∈ N| every S ′ ⊆ S with #S ′ = n is a set of linearly independent vectors}.

Theorem 2.1.14 ([Kru77]). Let T ∈ A⊗B⊗C, where T =
∑r

i=1 ai⊗ bi⊗ ci. Denote by
kA, kB, kC the Kruskal ranks of {a1, . . . , ar}, {b1, . . . , br} and {c1, . . . , cr} respectively. If

r ≤ 1

2
(kA + kB + kC)− 1

then T has rank r and it is identifiable.
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A first generalization of the above theorem for an arbitrary number of factors can
be found in [SB00, Theorem 3]. The result itself has been analyzed and reproved by
different authors coming from the field of pure geometry as well as engineering (see e.g.
[Rho10], [Lan09], [SS07]) and we also refer to [DDL13, Section 1.2] for an interesting
literature review on identifiability results related to Kruskal criterion. H. Derksen proved
in [Der13] that Kruskal’s inequality is sharp by finding examples of non-identifiable tensors
if kA + kB + kC = 2r + 1.

Recently B. Lovitz together with F. Petrov proved a generalization of Kruskal criterion
in which they replaced the assumptions on the Kruskal ranks with the standard notion
of rank (cf. [LP21]). More precisely, they proved the following statement.

Theorem 2.1.15 ([LP21, Theorem 2]). Let r ≥ 2, k ≥ 3. Let

T =
r∑

i=1

xi,1 ⊗ · · · ⊗ xi,k ∈ V1 ⊗ · · · ⊗ Vk,

where V1, . . . , Vk are finite dimensional C-vector spaces. For each subset S ⊂ {1, . . . , r}
and each index j ∈ {1, . . . , k}, let dSj = dim span{xℓ,j : ℓ ∈ S}. If

2(#S) ≤
k∑

i=1

(dSi − 1) + 1 for every subset S ⊂ {1, . . . , r} with 2 ≤ (#S) ≤ r

then the above decomposition of T constitutes a unique tensor rank decomposition.

By using the same examples created by Derksen, they proved that their inequality is
sharp (cf. [LP21, Section 6]) and they also compared in [LP21, Section 10] the produced
criterion with the previous extensions of Domanov, De Lathauwer, and Sørensen (see
[DDL14], [SDL15] and also [DDL13]).

We conclude our literature review with [COV14], in which they adapted their algo-
rithm ([COV14, Algorithm 3.1]) to the case of specific tensors under the assumption that
the fixed tensor is not a singular point of the corresponding secant variety (cf. [COV14,
Remark 4.6]). They showed with some examples that their method can get uniqueness
of decomposition for a specific tensor in cases where neither Kruskal’s nor Domanov–De
Lathauwer’s criterion apply (cf. e.g. [COV14, Table 2])).

However, to the best of our knowledge, nobody tried to give a complete classification
on the identifiability of any tensor of a given fixed rank, due to the difficulty of the problem
itself. In the following, we start working on the identifiability of all tensors of ranks 2
and 3. We give a complete classification of these first cases describing the structures and
the dimensions of all the sets evincing the rank. As already discussed above, in terms of
generic tensors of rank either 2 or 3, everything was already well known but, untill now,
a complete classification for all the tensors of those ranks was still missing.

In Proposition 2.2.7 we show that a rank-2 tensor T is always identifiable except if T
is a 2× 2 matrix.
Our main Theorem 2.6.1 states that a rank-3 tensor T is identifiable except if

1. T is a 3× 3 matrix and dim(S(Y2,2, T )) = 6;

2. there exist v1, v2, v3 ∈ C2 s.t. T ∈ C2 ⊗ v2 ⊗ v3 + v1 ⊗ C2 ⊗ v3 + v1 ⊗ v2 ⊗ C2 and
dim(S(Y1,1,1, T )) ≥ 2;
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3. T ∈ (C2)⊗4 and dim(S(Y1,1,1,1, T )) ≥ 1;

4. T ∈ C3 ⊗ C2 ⊗ C2 and it is as in Example 2.3.7. In this case dim(S(Y2,1,1, T )) = 3;

5. T ∈ C3 ⊗ C2 ⊗ C2 and it is as in Example 2.3.9. In this case S(Y2,1,1, T ) contains
two different 4-dimensional families;

6. T ∈ Cm1 ⊗ Cm2 ⊗ (C2)k−2, where k ≥ 3 and m1,m2 ∈ {2, 3}. In this case
dim(S(Ym1,m2,1k−2 , T )) ≥ 2 and T is as in Proposition 2.3.14. If m1 +m2 + k ≥ 6
then dim(S(Ym1,m2,1k−2 , T )) = 2.

We will proceed as follows. After introducing the main ingredients needed for the set up,
we show the identifiability of rank-2 tensors in Section 2.2. In Section 2.3 we explain in
details the examples where the non-identifiability of a rank-3 tensor arises. In Sections
2.4 and 2.5 we show that the examples of the previous section are the only possible
exceptions to identifiability of a rank-3 tensor. Section 2.6 is devoted to collect all the
information needed (but actually already proved at that stage) to conclude the proof of
our main Theorem 2.6.1. This part has alredy been published in a joint work [BBS20a].

2.2 Concise Segre of a tensor and identifiability of rank-
2 tensors

After defining the notion of concise Segre of a given tensor, in this section we study and
completely determine the identifiability of points on the second secant variety of a Segre
variety.

Definition 2.2.1. (Concise Segre) Given a point q ∈ PN , we will call concise Segre of q
the variety Xq;n1,...,nk

:= ν(Y ′
n′
1,...,n

′
k
) where Y ′

n′
1,...,n

′
k
⊆ Yn1,...,nk

is the minimal multiprojec-
tive space Y ′

n′
1,...,n

′
k
⊆ Yn1...nk

such that q ∈ ⟨ν(Y ′
n′
1,...,n

′
k
)⟩ as in Concision/Autarky Lemma

1.1.8.

For the rest of this chapter, we will work with the concise Segre Xq;n1,...,nk
of a given

tensor q, since its span ⟨Xq;n1,...,nk
⟩ is the projectivization of the smallest tensor space

containing q.

Definition 2.2.2. For any q ∈ PN , define

S(Yn1,...,nk
, q) := {A ⊂ Yn1,...,nk

| #(A) = rXn1,...,nk
(q) and q ∈ ⟨ν(A)⟩}.

If A ∈ S(Yn1,...,nk
, q), we will say either that A evinces the rank of q or that A is a solution

of q.

In the following remark we see how one can build the concise Segre variety of a given
tensor q ∈ PN , starting from one of its decompositions.

Remark 2.2.3. To obtain the minimal Y ′
n′
1,...,n

′
k

defining the concise Segre of a point
q fix any A ∈ S(Yn1,...,nk

, q) and set Ai := πi(A) ⊂ Pni , i = 1, . . . , k, where the πi’s
are the projections on the i-th factor of Notation 1.1.6. Each ⟨Ai⟩ ⊆ Pni is a well-
defined projective subspace of dimension at most min{ni, rX(q)− 1} and we will denote
by n′

i = dim⟨Ai⟩ for all i = 1, . . . , k. By Concision/Autarky we have Y ′
n′
1,...,n

′
k
=
∏k

i=1⟨Ai⟩.
In particular q does not depend on the i-th factor of Yn1,...,nk

if and only if for one
A ∈ S(Yn′

1,...,n
′
k
, q) the set πi(A) is a single point.
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We remark that, given a solution A ∈ S(Yn1,...,nk
, q) of some q ∈ PN , any line L ⊂ X

contained in the corresponding Segre variety, can contain at most one point of ν(A).
More precisely, let us state the following.

Remark 2.2.4. Let q ∈ PN and consider A ∈ S(Yn1,...,nk
, q). We claim that there is no

line L ⊂ Xn1,...,nk
such that #(L∩ ν(A)) ≥ 2. Clearly, if #(L∩ ν(A)) > 2 we would have

at least 3 points that evince the rank of q on a line, which is a contradiction with the
linearly independence property that sets in S(Yn1,...,nk

, q) have.
Assume that there exists a line L ⊂ Xn1,...,nk

such that #(L ∩ ν(A)) = 2 and denote
by u, v ∈ A the preimages of those points, i.e. u ̸= v and ⟨ν(u), ν(v)⟩ = L. Then,
rXn1,...,nk

(q) > 2 because if rXn1,...,nk
(q) = 2 then we would have q ∈ L ⊂ Xn1,...,nk

, so the
rank of q will be 1. Let E = A \ {u, v}, we can look at q as q ∈ ⟨ν(E) ∪ L⟩, so we can
find a point o ∈ L such that q ∈ ⟨ν(E) ∪ {o}⟩, which would imply rXn1,...,nk

(q) < #A.

Now we have all the necessary tools to work on the identifiability of any rank-2 tensor.

2.2.1 Identifiability on the 2-nd secant variety

By Remark 2.2.3, the concise Segre of a border rank-2 tensor q is Xq;1k = ν
(
(P1)

k ).
Indeed fix a solution A ∈ S(Yn1,...,nk

, q) and note that for all i = 1, . . . , k

dim⟨πi(A)⟩ ≤ 1.

Now

if #πi(A) = 1 then clearly ⟨πi(A)⟩ = P0, otherwise ⟨πi(A)⟩ = P1.

Therefore, for the rest of this section we will focus our attention on Segre varieties of
products of P1’s. We start with the two factors case.

Remark 2.2.5. If the concise Segre Xq;1,1 of a tensor q ∈ σ2(Xn1,...,nk
) is ν(P1×P1), then

σ2(Xq;1,1) parameterizes the 2× 2 matrices for which it is trivial to see that they can be
written as sum of two rank-1 matrices in an infinite number of ways.

Recall that, by Remark 1.1.23, a tensor q ∈ τ(X1,1,1) \ X1,1,1 has rank equal to 2 if
and only if the concise Segre of q is a two-factors Segre, moreover it is not identifiable for
any number of factors.

For the rest of this section we will therefore focus on Segre varieties of Y1k = (P1)k

with k ≥ 3.

Remark 2.2.6. If q ∈ X1k is a non-identifiable rank-2 tensor, then all its decompositions
must be disjoint. Indeed let A,B ∈ S(Y1k , q) and assume #(A ∩ B) = 1. This means
that the line spanned by ⟨ν(A)⟩ meets the line spanned by ⟨ν(B)⟩ in two distinct points,
namely q and the image of the intersection point. Therefore ⟨ν(A)⟩ = ⟨ν(B)⟩ = L and L
is actually a trisecant line of X1k , so it is all contained in X1k (cf. Remark 1.1.7), which
is in contradiction with the fact that rX

1k
(q) = 2.

For k = 3, the non-identifiability is classically attributed to Segre (cf. Remark 2.1.8).
The following proposition proves our first result on identifiability of non-generic tensors
and it focuses on identifiability of any rank-2 tensor.
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Proposition 2.2.7. Let q ∈ σ0
2(X1k). Then #S(Y1k , q) > 1 if and only if the concise

Segre of q is Xq;1,1 = ν(P1 × P1).

Proof. We only need to check the case of k ≥ 4 since k = 2, 3 are classically known. The
case of matrices is obviously not identifiable (cf. Remark 2.2.5), while the identifiabily in
the case of k = 3 factors is classically attributed to Segre and we refer to Remark 2.1.8.
We assume therefore that k ≥ 4.

Let A,B ∈ S(Y1k , q). By Remark 2.2.6 A and B are two disjoint sets:

A ={a, a′}, where a = (a1, . . . , ak), a
′ = (a′1, . . . , a

′
k) ∈ Y1k ,

B ={b, b′}, where b = (b1, . . . , bk), b
′ = (b′1, . . . , b

′
k) ∈ Y1k .

Since a ̸= a′, we may assume that at least one of their coordinates is different. Actually we
can assume that all the ai ̸= a′i, otherwise, by the concision property, one could consider
one factor less. The same considerations hold for B.

In order to proceed further we claim that {ai, a′i} = {bi, b′i} for all i =, 1 . . . , k. Indeed,
suppose that there exists an index i ∈ {1, . . . , k} such that {ai, a′i} ≠ {bi, b′i} and let such
an index be i = 1, i.e. {a1, a′1} ≠ {b1, b′1}. We proceed by induction on k ≥ 4. Since
a similar argument stands for both the base case k = 4 and the inductive step, we will
show only the inductive step.
Let ηk, νk, and Xk be as in Notation 1.1.6. Let q̃ = (q1, . . . , qk−1) be the projection
ηk(q), then ηk(A) ̸= ηk(B) and ∅ ≠ ⟨νk(ηk(A))⟩ ∩ ⟨νk(ηk(B))⟩ ⊃ {q̃} because {q} ⊂
⟨ν(A)⟩ ∩ ⟨ν(B)⟩. So rXk

(q̃) = 2 and #S(Y1k−1 , q̃) ≥ 2, which is a contradiction because
Xk is a concise Segre of k − 1 factors (where k ≥ 4) and a point of it cannot have more
than a decomposition. Thus for all i = 1 . . . , k we have that {ai, a′i} = {bi, b′i}.

Without loss of generality assume that a1 = b1 and a′1 = b′1, moreover up to permuta-
tion, there exists an index e ∈ {1, . . . , k − 1} such that

bi =ai and consequently b′i = a′i for 1 ≤ i ≤ e and
bi =a

′
i and consequently b′i = ai for e+ 1 ≤ i ≤ k.

Eventually, by exchanging the role of the first e elements with the others, we have that
k − e ≥ 2 because by assumption k ≥ 4. Let H ∈ |OY (0, . . . , 0, 1)| be the only element
containing a′, i.e. H = P1×· · ·×P1×{a′k} ∼= (P1)k−1. The residue of A∪B with respect
to H is ResH(A ∪ B) = {a, b′} and since k − e ≥ 2 we have that ηk(a) ̸= ηk(b

′), i.e.
h1
(
IResH(A∪B)(1, . . . , 1, 0)

)
= 0. Therefore, by applying Lemma 1.2.9, we get A ∪B ⊂ H

which is in contradiction with the concision property.

The following result is based on the previous Proposition 2.2.7 and explains the ge-
ometry of the space of solutions of a non-identifiable rank-2 tensor.

Corollary 2.2.8. Let q be any rank-2 tensor. If q is not identifiable, then there is a
bijection between S(Y1,1, q) and P2 \L, where L ⊂ P2 is a projective line, q ∈ τ(X1,1) and
L parametrizes the set of all degree 2 connected subschemes V of Y1,1 such that q ∈ ⟨ν(V )⟩.
Proof. It suffices to work with a Segre variety of 2 factors only because by Proposition
2.2.7 it is the unique not-identifiable case in rank-2. Thus X1,1 ⊂ P3 is a quadric surface.
Denote by Hq ⊂ P3 the polar plane of X1,1 with respect to q, i.e. Hq := {p ∈ X1,1 | q ∈
TpX1,1}. Since q /∈ X1,1 we have that q /∈ Hq and the intersection X1,1 ∩Hq is a smooth
conic. Remark also that by definition a point o ∈ X1,1 is such that q ∈ ToX1,1 if and only
if o ∈ X1,1 ∩Hq ⊂ τ(X1,1).
Fix o ∈ Hq, then
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• if o /∈ X1,1, the line given by ⟨o, q⟩ is not tangent to X1,1 and when considering
the intersection ⟨o, q⟩ ∩ X1,1, it is given by two points p1, p2 /∈ {o, q} such that
{p1, p2} ∈ S(Y1,1, q);

• if o ∈ X1,1, i.e. o ∈ X1,1 ∩Hq, then the line ⟨o, q⟩ is tangent to X1,1.

Consider Πq = {lines L ⊂ P3 passing through q} ∼= P2 and consider the following iso-
morphism φ : Hq −→ Πq defined by p 7→ ⟨p, q⟩. Clearly φ(X1,1 ∩Hq) is a smooth conic
C of Πq. Moreover one can notice that Πq \ φ(X1,1 ∩Hq) ∼= P2 \ C are just the points of
the first case.

2.3 Examples of non-identifiable rank-3 tensors
We start now working with rank-3 tensors. The purpose of this section is to explain in
details the phenomena behind the non-identifiable rank-3 tensors. We first recall how
to build the concise Segre of a rank-3 tensor, then we review some well known cases of
non-identifiable rank-3 tensors, namely the matrix case, points on the tangential variety
of ν(Y1,1,1) and points of the defective variety σ3(ν(Y1,1,1,1)). New instances of non-
identifiability are contained both in Subsections 2.3.1, with Examples 2.3.7 and 2.3.9,
and in Subsection 2.3.2, with Proposition 2.3.14. We will show that essentially, this new
cases, together with the well known ones mentioned above, represent the only classes of
non-identifiable rank-3 tensors. More precisely, we will see in Theorem 2.6.1 that they
will turn out to be the unique cases of non-identifiability for a rank-3 tensor.

From now on we always consider q ∈ PN such that rXn1,...,nk
(q) = 3.

Concise Segre of a rank-3 tensor

By Remark 2.2.3, we may assume that q is an order-k tensor with at most 3 entries in
each mode. Indeed, if we fix a solution A ∈ S(Yn1,...,nk

), then for all i = 1, . . . , k we get

dim⟨πi(A)⟩ ≤ 2.

Clearly,

• if #πi(A) = 1 then ⟨πi(A)⟩ = P0 and in this case we can consider the concise Segre
of q without the i-th factor;

• if the three points of πi(A) are linearly dependent in Pni , then ⟨πi(A)⟩ = P1;

• otherwise ⟨πi(A)⟩ = P2.

Therefore, the concise Segre of q isXq;n1,...,nk
= ν(Pn1×· · ·×Pnk), with n1, . . . , nk ∈ {1, 2}.

First of all, let us remark that the matrix case is highly non-identifiable even for the
rank-3 case.

Remark 2.3.1. For the two factors case, i.e. k = 2, a rank-3 tensor q is a 3× 3 matrix
of full rank. The dimension of the concise Segre of q is dim(Xq;2,2) = 4 and

dim(σ3(Xq;2,2)) = min{dim(P8), 3 dim(Xq;2,2) + 2} = min{8, 14} = 8.

Therefore dimS(Y2,2, q) = 14− 8 = 6 for all q ∈ P8 of rank 3.
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Another well known example of non-identifiable rank-3 tensors is given by points on
the tangential variety τ(ν(Y1,1,1)).

Remark 2.3.2. For the three factors case, the concise Segre of a rank-3 tensor q lying
on the tangential variety is Xq;1,1,1 = ν(Y1,1,1) (cf. Remark 1.1.23). Since q ∈ τ(Xq;1,1,1),
there exists some p = [u⊗ v⊗w] ∈ X1,1,1 such that q ∈ TpX1,1,1 = P(V ⊗ v⊗w+u⊗V ⊗
w + u ⊗ v ⊗ V ), where we denoted by V the affine vector space of dimension two such
that PV × PV × PV = Y1,1,1. Therefore there exists some a, b, c ∈ V such that q can be
written as

q = [a⊗ v ⊗ w + u⊗ b⊗ w + u⊗ v ⊗ c].

Now it is straightforward to see that q is actually non-identifiable.

In the following remark we explain the behaviour on σ3((P1)4).

Remark 2.3.3. It has been shown in Theorem 1.1.24 that the third secant variety of
a Segre variety Xn1,...,nk

is never defective unless either X1,1,1,1 = ν(P1 × P1 × P1 × P1)
or X1,1,a = ν(P1 × P1 × Pa), with a ≥ 3. The case in which q is a rank-3 tensor in
⟨ν(P1 × P1 × Pa)⟩ with a ≥ 3 corresponds to a not-concise tensor (cf. Remark 2.2.3)
therefore it won’t play a role in our further discussion.

The case of X1,1,1,1 and q ∈ ⟨X1,1,1,1⟩ can also be easily handled. Indeed the fact
that dim(σ3(X1,1,1,1)) is strictly smaller than the expected dimension proves that the
generic element of σ3(X1,1,1,1) has an infinite number of rank-3 decompositions. By def-
inition of dimension, there is no element of σ3(X1,1,1,1) such that its tangent space has
dimension equal to the expected one: dim(Tq(σ3(X1,1,1,1))) < dimσ3(X1,1,1,1) for all q ∈
σ3(X1,1,1,1). This does not exclude the existence of certain special rank-3 tensors q such
that dim(Tq(σ3(X1,1,1,1))) = dim(Tq′(AbSec3(X1,1,1,1))) < 14 where AbSec3(X1,1,1,1)is the
3-th abstract secant of X1,1,1,1 as in Definition 1.1.25 and q′ is the preimage of q via
the projection on the first factor. The impossibility of the existence of such a point is
guaranteed by Proposition 2.1.4. This proves that all the tensors of σ0

3(X1,1,1,1) have an
infinite number of rank-3 decompositions.

Remarks 2.3.1, 2.3.2 and 2.3.3 correspond respectively to items (a),(b) and (c) of
Theorem 2.6.1 and they are all well known cases of non-identifiable rank-3 tensors.

Before describing new instances of non-identifiability, we point out the behaviour of
the projection πi(A) ⊂ Pni of a solution A ∈ S(Yn1,...,nk

, q) of a rank-3 tensor q when
ni = 2, for some i = 1, . . . , k.

Remark 2.3.4. Let Yn1,...,nk
be a multiprojective space with at least two factors where at

least one of them is of projective dimension 2. By relabeling, if necessary, we can assume
that the first factor is a P2. Let q ∈ σ0

3(ν(Y2,n2,...,nk
)), with ν(Y2,n2,...,nk

) being the concise
Segre of q and let A,B ∈ S(Y2,n2,...,nk

, q) be two disjoint subsets evincing the rank of q.
By Autarky ⟨π1(A)⟩ = ⟨π1(B)⟩ = P2. Moreover when considering the restrictions of the
projections π1|A and π1|B to the subsets A and B respectively, they are both injective and
both π1(A) and π1(B) contain linearly independent points.

2.3.1 Two new examples of non-identifiability

For the first two new examples of non-identifiable tensors, we work on Y2,1,1 = P2×P1×P1.
Before going into details, we need some preliminary results.
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Remark 2.3.5. Let Y2,1,1 = P2 × P1 × P1 and consider an irreducible divisor G ∈
|OY2,1,1(0, 1, 1)|. Then

σ2(ν(G)) ⊊ σ3(ν(G)) = ⟨ν(G)⟩ = P8.

Indeed G is nothing else than the Segre-Veronese variety of P2 × P1 embedded in bi–
degree (1,2), i.e. G ∼= P2 × P1, OY2,1,1(1, 1, 1)|G

∼= OP2×P1(1, 2) and OY2,1,1(1, 0, 0)
∼=

OY2,1,1(1, 1, 1)(−G). When considering the inclusion exact sequence, we get

0 −→ OY2,1,1 (1, 0, 0) −→ OY2,1,1(1, 1, 1) −→ OY2,1,1(1, 1, 1)|G −→ 0.

By direct computation one has that ⟨ν(G)⟩ = P8 and consequentially that σ2(ν(G)) ⊊
⟨ν(G)⟩. The only non trivial fact to be proved is σ3(ν(G)) = ⟨ν(G)⟩ ∼= P8.
Fix three general points p1, p2, p3 ∈ P2 × P1. By Terracini’s Lemma, it is sufficient to
prove that h0

(
P2×P1, I2p1∪2p2∪2p3(1, 2)

)
= 0. This is done with the multiprojective-affine-

projective technique explained at the end of Section 1.2.1 (cf. Theorem 1.2.6). Let Z ⊂ G
be the 0-dimensional scheme union of the three fat points 2p1, 2p2, 2p3 and consider line
W1 ≃ P1 and subscheme W2 ⊂ P1 of the second factor of G defined by W2 = 2p, where
p ∈ P1 is a generic point. Let Z ′ = 2p1 + 2p2 + 2p3 ⊂ P3 be the corresponding zero
dimensional scheme of Z and consider W +Z ′ ⊂ P3 where we denoted by W = W1+W2.
Then we have that dim(I2p1∪2p2∪2p3)(1,2) = dim(IW+Z)3, which is zero.

Proposition 2.3.6. For the Segre embedding of Y2,1,1, fix G1 ∈ |OY2,1,1(0, 1, 0)| and G2 ∈
|OY2,1,1(0, 0, 1)| and define G := G1∪G2 to be their union. We have that for {i, j} = {1, 2},
dim⟨ν(Gi)⟩ = 5, dim⟨ν(G)⟩ = 8, σ2(ν(Gi)) = ⟨ν(Gi)⟩ and ⟨ν(G)⟩ is the join of σ2(ν(Gi))
and ν(Gj).

Proof. First of all remark that, for i = 1, 2, Gi
∼= P2×P1, OY2,1,1(1, 1, 1)|Gi

∼= OP2×P1(1, 1)
and G is a reducible element of |OY2,1,1(0, 1, 1)|. With an analogous computation of
the one in Remark 2.3.5, one sees that dim⟨ν(G)⟩ = 8 and σ2(ν(Gi)) = ⟨ν(Gi)⟩. It
remains to show that ⟨ν(G)⟩ = J , where J denotes the join of σ2(ν(Gi)) and ν(Gj) with
{i, j} = {1, 2} as in Definition 1.1.13. We remark that since σ2(ν(G)) = P5, then J =
Join(P5, ν(Gi)). In order to show that J = P8 it is sufficient to see that dim(σ2(ν(Gi) ∩
ν(Gj))) = 1 and this is a straightforward computation since the elements of ν(G1) are
tensors with a second factor fixed, while the elements of ν(G2) have the third factor
fixed, and in order to have the equality between an element of σ2(ν(G1)) and an element
of ν(G2) it is sufficient to impose two linear independent conditions. Therefore since
dim(ν(G2)) = 3 we have that the intersection has dimension 1.

We are now ready to present the first new example of a non-identifiable rank-3 tensor.

Example 2.3.7. Take Y2,1,1 = P2×P1×P1, consider the Segre embedding on the last two
factors and take a hyperplane section which intersects ν(P1×P1) in a conic C, then take a
point q ∈ ⟨ν(P2×C)⟩. Such a construction is equivalent to consider an irreducible divisor
G ∈ |OY2,1,1(0, 1, 1)|, so G ∼= P2 × P1 embedded via O(1, 2), then dimσ2(ν(G)) = 7, thus
σ2(ν(G)) ⊊ ⟨ν(G)⟩ ∼= P8. As a direct consequence we get that a general point q ∈ ⟨ν(G)⟩
has ν(G)-rank 3 and it is non-identifiable because of the non-identifiability of the points
on ⟨C⟩ and by Proposition 2.1.4. Thus dim(S(G, q)) = 3. See Figure 2.1.

Let us rewrite in coordinates the above example.
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Example 2.3.8 (Coordinate description of Example 2.3.7). Let C be an irreducible conic
arising from the above description. This is equivalent to consider the following framework.
Let L ⊂ ν(P1×P1) be a rational curve. So L ∼= P1 and we consider G ∼= P2×L embedded
via O(1, 2). The rank-3 tensor we are looking for is [T ] ∈ ⟨ν(G)⟩. Therefore, there exist
bases {u1, u2, u3} ⊂ C3, {v1, v2} ⊂ C2 such that

T = u1 ⊗ v21 + u2 ⊗ v22 + u3 ⊗ (αv1 + βv2)
2.

C
H

P2

H ∩ ν(P1 × P1) ⊂ P3

ν(G)

ν

Figure 2.1: Pseudo-picture of Example 2.3.7.

The following example is in the same setting of the previous one, but in this case we
deal with a reducible conic and in such a case we get a 4-dimensional family of solutions.

Example 2.3.9. Fix Y2,1,1 = P2 × P1 × P1. Consider G1 ∈ |OY2,1,1(0, 0, 1)|, G2 ∈
|OY2,1,1(0, 1, 0)| and call G = G1 ∪ G2 which is a reducible element of |OY2,1,1(0, 1, 1)|.
By Proposition 2.3.6, dim⟨ν(G)⟩ = 8 and ⟨ν(Gi)⟩ = σ2(Gi), for i = 1, 2, both having
dimension 5. By Proposition 2.3.6 we also have that

⟨ν(G)⟩ = J1 = J2,

where J1 = Join(σ2(ν(G1)), ν(G2)) and J2 = Join(σ2(ν(G2)), ν(G1)). A general q ∈
⟨ν(G)⟩ has rank 3 and for the subsets evincing its rank we have a 4-dimensional family
of sets A such that

#(A) = 3, #(A ∩G1) = 2, #(A ∩G2) = 1, A ∩G1 ∩G2 = ∅ and q ∈ ⟨ν(A)⟩.

Such a family has dimension 4 since G1 is a non defective threefold in P5, therefore
there exists a 2-dimensional family of sets of cardinality 2 in G1 spanning a general point
of P5; moreover q sits in a 2-dimensional family of lines joining points of G1 and G2.
Analogously, by looking at q as an element of J2, we get the existence of a 4-dimensional
family of sets B such that

#(B) = 3, #(B ∩G2) = 2, #(B ∩G1) = 1, A ∩G1 ∩G2 = ∅ and q ∈ ⟨ν(B)⟩.

So we proved that S(G, q) contains at least two dimensional families of solution. Thus
dim (S(G, q)) ≥ 4.

Let us rewrite in coordinates the above example.
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Example 2.3.10 (Coordinate description of Example 2.3.9). Let C be a reducible conic.
In this case, we take G1 ∈ |OY2,1,1(0, 0, 1)|, G2 ∈ |OY2,1,1(0, 1, 0)| and set G := G1 ∪ G2.
So G1

∼= P2 × P1 × {[p̃]} and G2
∼= P2 × {[q̃]} × P1, for some [p̃], [q̃] ∈ P1. We consider

[T ] ∈ ⟨ν(G)⟩ = Join(σ2(ν(G1)), ν(G2)) = Join(σ2(ν(G2)), ν(G1)).

Since [T ] ∈ ⟨ν(G)⟩ = Join(σ2(ν(G1)), ν(G2)), there exist bases {u1, u2, u3} of C3, {v1, v2}
of the second factor and {p̃, w} of the third factor such that T can be written as

T = u1 ⊗ v1 ⊗ p̃+ u2 ⊗ v2 ⊗ p̃+ u3 ⊗ q̃ ⊗ w.

In Examples 2.3.7 and 2.3.9 we computed the dimension of S(G, q) in the case of G
being either an irreducible or a reducible element of |OY2,1,1(0, 1, 1)|. The only thing left
to do in order to conclude both examples, is to show that the space of solutions of q with
respect to G coincide with the space of solutions of q with respect to Y2,1,1.

Proposition 2.3.11. Let q ∈ σ0
3(ν(P

2 × P1 × P1)) and suppose that there exist A,B ∈
S(Y2,1,1, q) s.t. #(A ∪ B) = 6. Then there exist a unique G ∈ |OY2,1,1(0, 1, 1)| containing
S = A ∪B. For such a G we have that S(Y2,1,1, q) = S(G, q).
Proof. Call S := A ∪ B, by Remark 2.3.4, both π1|A and π1|B are injective and both
π1(A) and π1(B) are sets containing linearly independent points. So h1(IA(1, 0, 0)) =
h1(IB(1, 0, 0)) = 0. Now h0(OY2,1,1(0, 1, 1)) = 4, so there exists G ∈ |OY2,1,1(0, 1, 1)|
containing B. Moreover S \ S ∩ G ⊆ A but since h1(IA(1, 0, 0)) = 0 we have that
S ⊂ G. This holds for any G ∈ |IB(0, 1, 1)|, so ⟨ν1(η1(A))⟩ ⊂ ⟨ν1(η1(B))⟩. The same
holds exchanging the roles of A and B, thus ⟨ν1(η1(A))⟩ = ⟨ν1(η1(B))⟩.

Assume G is irreducible, then B contains three linearly independent points on G, so
the points of B are uniquely determined by G.

Assume G is reducible, i.e. G = G1 ∪ G2, with G1 ∈ |OY2,1,1(0, 1, 0)| and G2 ∈
|OY2,1,1(0, 0, 1)|. Remark that, by Autarky, it does not exist any E ∈ S(Y2,1,1, q) which
is all contained in Gi, for i = 1, 2, because G is a multiprojective subspace of Y2,1,1.
Without loss of generality, we may assume that two points of E lies in G1; then the three
points of E are uniquely determined by a reducible conic, i.e. by the reducible element
G = G1 ∪G2 that contains them.

Corollary 2.3.12. If q ∈ σ0
3(ν(P

2 × P1 × P1)) is such that there exist two disjoint sets
A,B ∈ S(Y2,1,1, q), then q can be either as in Example 2.3.7 and dim(S(Y2,1,1, q)) = 3 or
as in Example 2.3.9 and dim(S(Y2,1,1, q)) = 4.

Proof. This is a direct consequence of the uniqueness of the G ∈ |OY2,1,1(0, 1, 1)| such that
S(Y2,1,1, q) = S(G, q) as shown in Proposition 2.3.11.

2.3.2 A new family of non-identifiable rank-3 tensors

We build now a new family of non-identifiable rank-3 tensors.
Let Y ′ := P1 × P1 × {u3} × · · · × {uk} be a proper subset of Yn1,...,nk

= Pn1 × · · · × Pnk ,
where we assumed k ≥ 2. Take

q′ ∈ ⟨ν(Y ′)⟩ \ ν(Y ′), A ∈ S(Y ′, q′) and p ∈ Yn1,...,nk
\ Y ′.

Assume also that Yn1,...,nk
is the minimal multiprojective space containing A ∪ {p} and

take q ∈ ⟨{q′, ν(p)}⟩ \ {q′, ν(p)} as shown in Figure 2.2.
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ν(p)

Xn1,...,nk

q′

q

Figure 2.2: A new family of non-identifiable rank-3 tensors

Before proving under which conditions this construction leads to a non-identifiable
rank-3 tensor, we remark the following.

Remark 2.3.13. With notation as above, observe that

•
∑k

i=1 ni ≥ 3;

• n1, n2 ≤ 2, n3, . . . , nk ≤ 1;

• if k ≥ 3 then rν(Yn1,...,nk
)(q) > 1.

Indeed rν(Yn1,...,nk
)(q) > 1, otherwise there exists o ∈ Yn1,...,nk

such that q = ν(o). Therefore
one can look at q′ as q′ ∈ ⟨ν({o, p})⟩ and since rν(Yn1,...,nk

)(q
′) = 2, we would have {o, p} ∈

S(Yn1,...,nk
, q′) and by Autarky we would get {o, p} ⊂ Y ′, contradicting the assumption

that p /∈ Y ′.
The fact that n1 + · · ·+ nk ≥ 3 is obvious from the fact that p /∈ Y ′ so Yn1,...,nk

̸= Y ′.
Since q′ is a 2 × 2 matrix of rank 2, we get that dim (S(Y ′, q′)) = 2 and that Y ′ is the
minimal multiprojective subspace of Yn1,...,nk

containing A. The minimal multiprojective
subspace containing Y ′ ∪ {p} is Yn1,...,nk

, so since Pni = ⟨πi(Y ′ ∪ {p})⟩, we get 1 ≤ ni ≤ 2
for i = 1, 2 and ni = 1 for all i > 2.

We are now ready to prove that if k ≥ 3 and
∑

i≤k ni ≥ 4, any tensor q as above is
actually a non-identifiable rank-3 tensor. Moreover we see that all possible decompositions
of q are given by the union of all possible decompositions A ∈ S(Y ′, q′) of q′ and p.

Proposition 2.3.14. Let Y ′ := P1×P1×{u3}×· · ·×{uk} be a proper subset of Yn1,...,nk
=

Pn1 × · · · × Pnk , where k ≥ 3, n1, n2 ≤ 2, all ni = 1 for i = 3, . . . , k and
∑k

i=1 ni ≥ 4.
Take q′ ∈ ⟨ν(Y ′)⟩ \ ν(Y ′), A ∈ S(Y ′, q′) and p ∈ Yn1,...,nk

\Y ′. Assume that Yn1,...,nk
is the

minimal multiprojective space containing A ∪ {p} and take q ∈ ⟨{q′, ν(p)}⟩ \ {q′, ν(p)}.
Then

1. rν(Yn1,...,nk
)(q) = 3 and S(Yn1,...,nk

, q) = {{p} ∪ A}A∈S(Y ′,q′).

2. ν(Yn1,...,nk
) is the concise Segre of q.
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Proof. Item 2 will be a consequence of item 1, in fact if the structure of the elements on
S(Yn1,...,nk

, q) is of type A∪{p} with A ∈ S(Y ′, q′), then Autarky and the fact that Yn1,...,nk

is the minimal multiprojective space containing A∪{p} will imply that ν(Yn1,...,nk
) is the

concise Segre of q. So let us prove item 1.
The proof is by induction on the number of factors. Step (A) is the basis of induction

for the case in which Yn1,...,nk
has at least one factor of projective dimension 2 (k = 3),

Step (B) is the basis of induction for the case in which all the factors of Yn1,...,nk
have

projective dimension 1 (k = 4), Steps (C) and (D) are the induction processes of Step
(B) and Step (A) respectively.
Let E ∈ S(Yn1,...,nk

, q), if we will show that E ⊃ {p} and that there exists B ∈ S(Y ′, q′),
such that E = B ∪{p}, we will be done. Assume that there is no B ∈ S(Y ′, q′) such that
E = B ∪ {p}. Fix any A ∈ S(Y ′, q′) and set S := A ∪ {p} ∪ E.

(A) [Case k = 3, n1 = 2, n2 = n3 = 1]
First assume p ∈ E and set E ′ := E \ {p} and F = A ∪ E ′. Since by Remark 2.2.6

⋂

B∈S(Y211,q′)

η3(B) = ∅,

taking another A ∈ S(Y2,1,1, q′) if necessary we may assume η3(A) ∩ η3(E
′) = ∅.

Set {D} := |Ip(0, 0, 1)|, i.e. D ∼= P2 × P1 × {π3(p)}. By Lemma 1.2.9, we have
h1
(
IS\S∩D(1, 1, 0)

)
> 0, where we note that actually S \ S ∩D = F . Therefore by the

inclusion exact sequence, since #F ≤ 4, we get h0
(
IS\S∩D(1, 1, 0)

)
≥ 3. This must be

true for all A ∈ S(Y ′, q′) and hence we have h0
(
Y2,1;3, Iη3(Y ′)∪η3(E′)(1, 1)

)
≥ 3. Since

η3(Y
′) ∈ |OY2,1;3(1, 1)| we have h0

(
Y2,1;3, Iη3(Y ′)(1, 1)

)
= 1, contradicting the previous

inequality.

From now on suppose p /∈ E. As above we may assume η3(A) ∩ η3(E) = ∅.
Fix o ∈ E. Since h0(OY2,1,1(1, 1, 0)) = 6 and #(A ∪ {p} ∪ {o}) = 4 there is G ∈
|OY2,1,1(1, 1, 0)| containing A∪ {p} ∪ {o}. Assume for the moment S ⊈ G, i.e. E ⊈ G.
By Lemma 1.2.9 we have h1

(
IS\S∩G(0, 0, 1)

)
> 0, which means that #E ≥ 3. Since

by construction #E ≤ 3, we get #E = 3 and hence q has rank 3 and ν(Y2,1,1) is the
concise Segre of q. Moreover we get that S \ S ∩G = E \ {o} and #π3(E \ {o}) = 1.
By applying the same argument taking a different element of E we get that actually
#π3(E) = 1, i.e. ν(Y2,1,1) is not the concise Segre of q, a contradiction.

Now assume S ⊂ G. Since this must be true for all G ∈ |IA∪{p,o}(1, 1, 0)|, we get
|IA∪{p,o}(1, 1, 0)| ⊇ |I{p}∪E(1, 1, 0)| ̸= ∅. Note that η3(Y ′) ∈ |OY2,1;3(1, 1)| and hence
h0
(
Y2,1;3, Iη3(Y ′)(1, 1)

)
= 1. Since the first factor of Y2,1,1 has projective dimension 2

and Y2,1,1 is the minimal multiprojective space containing q, we have η3(p) /∈ η3(Y
′).

Thus h0
(
Y2,1;3, Iη3(Y ′)∪{η3(p)}(1, 1)

)
= 0, a contradiction since |IA∪{p,o}(1, 1, 0)| ≠ ∅.

(B) [Case k = 4, n1 = n2 = n3 = n4 = 1]
Fix G ∈ |OY1,1,1,1(0, 0, 1, 1)| containing E. Assume S ⊈ G. Since S \ E = A ∪ {p},
by Lemma 1.2.9, we have h1

(
IA∪{p}(1, 1, 0, 0)

)
> 0. Call p′ the projection of p via

Y1,1,1,1 −→ Y ′. Since OP1×P1(1, 1) is very ample we get that either p′ ∈ A or that
#(πi(A ∪ {p′})) = 1 for some i ∈ {1, 2}. The second possibility is excluded, because
#(π1(A)) = #(π2(A)) = 2 for any A ∈ S(Y ′, q′). The first possibility is excluded
taking instead of A another general A1 ∈ S(Y ′, q′). Now assume S ⊂ G, hence in
particular A ⊂ G. This is ruled out taking another A ∈ S(Y ′, q′) since a general

36



a ∈ Y ′ is contained in some B ∈ S(Y ′, q′). Thus we would have that Y ′ ⊂ G which is
a contradiction.

(C) [Case k ≥ 5, ni = 1 for all i’s]
We exclude this case by induction on k, the base case k = 4 being excluded in (B).
Fix o ∈ P1 \ {pk, uk}, set M := π−1

k (o), i.e. M = (P1)k−1 × {o} and call Λ := ⟨ν(M)⟩.
Note that (Y ′∪{p})∩M = ∅. Denote by r = 2k−1 and define r′ := dimΛ = 2k−1−1.

Consider the following linear projection form Λ:

ℓ : Pr \ Λ −→ Pr′ . (2.3.1)

Note that ν(Y1k) ∩ Λ = ν(Y1k−1;k) × {o} and that ℓ|ν(Y
1k

)\M = νk(ηk(Y1k \M)). We
identify Pr′ with the target projective space of Y1k−1;k. Since (Y ′ ∪ {p}) ∩M = ∅, we
get that ℓ is well-defined on Y ′∪{p} and it acts as the composition of ηk and the Segre
embedding.

By the inductive assumption S(Y1k−1;k, ℓ(q)) = {B ∪ ηk(p)}B∈S(ηk(Y ′),ηk(q′)). Thus for
any E ∈ S(Y1k , q) there is B ∈ S(Y ′, q′) such that ηk(E) = ηk(B ∪ {p}). Since ηk|E
is injective, by Remark 2.2.4 and S(Y1k , q) ⊇ {B ∪ {p}}B∈S(Y ′,q′), we get S(Y1k , q) =
{B ∪ {p}}B∈S(Y ′,q′).

(D) [Case k ≥ 3, n1 = 2, n1 + · · ·+ nk ≥ 5]
If only one of the factors is a P2 we use Step (A) as base of the induction and then we
construct a projection similar to (2.3.1). Indeed Y2,1k−1 = P2 × (P1)k−1, where k ≥ 4.
Fix o ∈ P1 \{pk, uk}, set M := π−1

k (o) and define Λ := ⟨ν(M)⟩. Denote r = 3 ·2k−1−1
and r′ = dimΛ := 3 ·2k−2−1. We consider the linear projection ℓ : Pr \Λ −→ Pr′ which
acts as the composition of ηk and the Segre embedding. By the inductive assumption
S(Y2,1k−2;kℓ(q)) = {B ∪ ηk(p)}B∈S(ηk(Y ′),ηk(q′)). Thus for any E ∈ S(Y2,1k−1 , q) there is
B ∈ S(Y ′, q′) such that ηk(E) = ηk(B ∪ {p}). Since ηk|E is injective by Remark 2.2.4
and S(Y2,1k−1 , q) ⊇ {B ∪ {p}}B∈S(Y ′,q′), we get S(Y2,1k−1 , q) = {B ∪ {p}}B∈S(Y ′,q′).
Now assume also n2 = 2, so that we must have k ≥ 3. Let Y2,2,1k−2 = P2×P2× (P1)k−2

and fix o ∈ P2 \ π2(Y ′). Set M := π−1
2 (o), and Λ := ⟨ν(M)⟩. Then r = 9 · 2k−2 − 1,

dimΛ = 9 · 2k−3 − 1. Let r′ := 9 · 2k−3 − 1 and consider the linear projection ℓ :
Pr \ Λ −→ Pr′ from Λ which acts on ν(Y ) as the composition of the Segre embedding
and the map P2×P2× (P1)k−2 \P2×{o}× (P1)k−2 −→ P2× (P1)k−1, which is the linear
projection P2 \ {o} −→ P1 on the second factor and the identity on any other factor.
Since (Y ′ ∪ {p}) ∩M = ∅, ℓ(q) is well-defined. We conclude since we already proved
the statement in the case where only one of the factors is a P2.

We conclude this part with a coordinate description of the family of non-identifiable
rank-3 tensors presented in the above proposition adapted for the three factors case.

Example 2.3.15 (Coordinate description 3-factors case). Let Y ′ = P1 × P1 × {w} ⊂
Y2,1,1 = P2×P1×P1. Take q′ ∈ ⟨ν(Y ′)⟩\ν(Y2,1,1) and p ∈ Y2,1,1 \Y ′. Then [T ] ∈ ⟨q′, ν(p)⟩
is a rank-3 tensor and it is not identifiable. Therefore there exist bases {u1, u2, u3} ⊂ C3

of the first factor, {v1, v2} ⊂ C2 of the second factor and {w, w̃} ⊂ C2 of the third factor
such that T can be seen as

T =u1 ⊗ v1 ⊗ w + u2 ⊗ v2 ⊗ w + (α1u1 + α2u2 + u3)⊗ (β1v1 + β2v2)⊗ w̃

=(u1 ⊗ v1 + u2 ⊗ v2)⊗ w + (α1u1 + α2u2 + u3)⊗ (β1v1 + β2v2)⊗ w̃.
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⟨ν(A)⟩ = ⟨ν(B)⟩ = P2

⟨ν(E)⟩

q
q
′

ν(u)

ν(v)

Figure 2.3: Two distinct decompositions with 2 common points

2.3.3 Two different decompositions of a non-identifiable rank-3
tensor can share at most one common point

Now we prove that all the previous examples are the only exceptions. More precisely, for
any non-identifiable rank-3 tensor q we either show that q belongs to one of the above
examples, or that the non-identifiability assumption leads to a contradiction.
Before proceeding, we can make some reduction by looking at the geometry of the union
of two distinct solutions of a rank-3 tensor. In particular, the following two lemmas
describe two very basic properties that two different sets A and B evincing the rank of
the same rank-3 point q have to satisfy.

Lemma 2.3.16. Let q be a non-identifiable tensor and let A,B be two distinct sets
evincing the rank of q. Define S := A ∪ B. If #(S) ≥ 5 and dim⟨ν(S)⟩ = 2, then the
rank of q cannot be 3.

Proof. Assume the existence of such a rank-3 tensor q with 2 distinct decompositions A
and B such that #(A ∪ B) ≥ 5. The plane ⟨ν(S)⟩ contains at least five not-collinear
points. Note that ⟨ν(S)⟩ ̸⊆ X, otherwise also q ∈ X which contradicts rX(q) = 3. So
⟨ν(S)⟩ ∩X contains a conic C. Either if it is reduced or not, the two secant variety of C
fills ⟨ν(S)⟩ = P2. So rX(q) ≤ 2 , which is a contradiction.

Lemma 2.3.17. Let q be a not identifiable rank-3 tensor and let A,B ∈ S(Yn1,...,nk
, q) be

distinct. Then #(A ∩B) ≤ 1.

Proof. Suppose by contradiction that A and B have 2 distinct points in common and call
the set of these two points E. Let A = E ∪ {u} and B = E ∪ {v}. Since the rank of q
is 3 we know that q /∈ ⟨ν(E)⟩, but since by definition q ∈ ⟨ν(A)⟩ ∩ ⟨ν(B)⟩ we have that
⟨ν(E)⟩ ⊊ ⟨ν(A)⟩ ∩ ⟨ν(B)⟩. Clearly ⟨ν(E)⟩ is a line, therefore dim⟨ν(A)⟩ ∩ ⟨ν(B)⟩ > 1,
but since ⟨ν(A)⟩ and ⟨ν(B)⟩ are both planes we get that ⟨ν(A)⟩ = ⟨ν(B)⟩. In the plane
⟨ν(A)⟩ we have two different lines: ν(E) and ⟨ν(u), ν(v)⟩, which mutually intersect in
at most a point q′, as shown in Figure 2.3. Remark that q′ /∈ X because otherwise the
line ⟨ν(E)⟩ would have at least 3 points of rank 1 and so we would have ⟨ν(E)⟩ ⊂ X,
contradicting Remark 2.2.4. This means that rX(q′) = 2 and #S(Yn1,...,nk

, q′) ≥ 2,
therefore by Proposition 2.2.5 we get that actually q′ ∈ ⟨ν(Y ′

1,1)⟩, where Y ′
1,1 = P1 × P1.

But also E, {u, v} ⊂ Y ′
1,1, so q ∈ ⟨ν(Y ′

1,1)⟩, which contradicts the fact that q has rank
3.

An immediate corollary of Lemma 2.3.17 is the following.
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Corollary 2.3.18. If q is a rank-3 tensor and A and B are two distinct sets evincing its
rank, then the cardinality of A ∪B can only be either 5 or 6.

This corollary turns out to be extremely useful for the proof of our main result,
Theorem 2.6.1. We will be allowed to focus only on the structure of not-identifiable
points of rank-3 with at least two decompositions A and B as in Corollary 2.3.18. This
is the reason why we will study separately the case #A ∪ B = 5 in Section 2.4 form the
case #A ∪B = 6 in Section 2.5.

2.4 Two different solutions with one common point
We have seen in Corollary 2.3.18 that if a rank-3 tensor q is not identifiable and A, B
are two sets of points on the Segre variety computing its rank, then #A∪B can only be
either 5 or 6. This section is fully devoted to the case in which #A ∪ B = 5, i.e. A and
B share only one point that we denote p:

S := A ∪B, #S = 5, A ∩B = {p} and A′ = A \ {p}, B′ = B \ {p}. (2.4.2)

The matrix case is well known, therefore we will always assume that q is an order-k ≥ 3
tensor, i.e. q ∈ ⟨ν(Yn1,...,nk

)⟩ with Yn1,...,nk
=
∏k

i=1 Pni and k ≥ 3.
We will study separately the cases in which:

• the multiprojective space contains at least one factor of projective dimension 2 and
all the others of dimension either 1 or 2 (Proposition 2.4.1);

• the multiprojective space is a product of P1’s only (Proposition 2.4.2).

More precisely, in the first case we show that a non-identifiable rank-3 tensor with two
distinct solutions sharing a common point is actually as in Proposition 2.3.14. Working
with Y1k = (P1)k, we will prove that two distinct solutions with one common point exist
only if k = 3, 4.

This will completely cover the case of non-identifiable rank-3 tensors satisfying con-
dition (2.4.2) since, by Remark 2.2.3, the concise Segre of a rank-3 point q is Xq,n1,...,nk

=
ν(Pn1 × · · · × Pnk), where n1, . . . , nk ∈ {1, 2}.

Proposition 2.4.1. Let Y2,n1,...,nk
be a multiprojective space with at least 3 factors and

at least one of them of projective dimension 2, i.e. Y2,n2,...,nk
= P2 × Pn2 × · · · × Pnk with

ni ∈ {1, 2} for i = 1, . . . , k and k ≥ 3. Let q ∈ σ0
3(ν(Y2,n1,...,nk

)), with ν(Y2,n2,...,nk
) the

concise Segre of q. If there exist two sets A,B ∈ S(Y2,n1,...,nk
, q) evincing the rank of q

such that #A ∩B = 1 then q is as in Proposition 2.3.14.

Proof. Let M ∈ |OY2,n2,...,nk
(ε1)| be a divisor containing A′ = A \ {p}, therefore M ∼=

P1 × Pn2 × · · · × Pnk . By Concision/Autarky S ̸⊂ M , so, by Lemma 1.2.9, either
h1
(
IS\S∩M(ε̂1)

)
> 0 or p /∈M and A′ ∪B′ ⊂M . We study separately the two cases.

1. First assume h1
(
IS\S∩M(ε̂1)

)
> 0.

The divisor M contains A′ by definition so #(S \ S ∩M) ≤ 3. Moreover, if we define
Y1 := Pn2 × · · ·×Pnk with ni = 1, 2 for i = 2, . . . , k, we have that OY1(1, . . . , 1) is very
ample, therefore we can apply Lemma 1.2.11 and say that one of the following occurs:
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(i) #(S \ S ∩M) = 3 and there exists an index j ∈ {2, . . . , k} such that #(πi(S \
S ∩M)) = 1 for all i ̸= j;

(ii) There exist u, v ∈ (S \ S ∩M) such that u ̸= v and η1(u) = η1(v).

We remark that case (ii) implies that πi(u) = πi(v) for all i > 1, i.e. that u and v are
contained in a line L ⊂ X. Since M contains A′, we have that S \S∩M = {u, v} ⊆ B,
we can exclude case (ii) thanks to Remark 2.2.4.

Therefore only case (i) is possible. Since #(S\S∩M) = 3 we have that S\S∩M = B.
Case (i) implies that for at least k−2 indices the projections of the points of B coincide,
where we assumed k ≥ 3. A direct consequence is that B only depends by 2 factors
of Y2,n2,...,nk

at most, contradicting Autarky.

2. Now assume A′ ∪B′ ⊂M .

Let Y ′′ be the minimal multiprojective space containing A′ ∪ B′ and contained in
M . Since q ∈ ⟨⟨ν(Y ′′)⟩ ∪ {ν(p)}⟩ and p /∈ Y ′′, there is a unique o ∈ ⟨ν(Y ′′)⟩ such
that q ∈ ⟨{ν(p), o}⟩. Since ⟨ν(A)⟩ (resp. ⟨ν(B)⟩) is a plane containing ν(p) and
q, there is a unique o1 ∈ ⟨ν(A′)⟩ (resp. o2 ∈ ⟨ν(B′)⟩) such that q ∈ ⟨{ν(p), o1}⟩
(resp. q ∈ ⟨{ν(p), o2}⟩). The uniqueness of o gives o = o1 = o2. Therefore o is
a rank-2 tensor with A′ and B′ as solutions. By Proposition 2.2.7 this means that
o ∈ ⟨ν(P1 × P1)⟩. Moreover, since p /∈ M ⊃ Y ′′, the minimal multiprojective space
containing q is Yn1,n2,1k−2 = Pn1 ×Pn2 ×P1 × · · · ×P1, where n1, n2 ∈ {1, 2}. Therefore
q is as described in Proposition 2.3.14.

We just treated the case in which the multiprojective space contains at least one factor
of projective dimension 2, so from now on we can work with a multiprojective space made
by P1’s only.

Proposition 2.4.2. Let Y1k = (P1)k with k ≥ 3 and let q ∈ σ0
3(ν(Y1k)) be such that there

exist two different sets A,B ∈ S(Y1k , q) with #(A ∪ B) = 5, where ν(Y1k) is the concise
Segre of q. Then k can only be either 3 or 4. If k = 3 then q belongs to a tangent space
of ν((P1)3) and dim(S(Y1,1,1, q)) ≥ 2. If k = 4 then dim(S(Y1,1,1,1, q)) ≥ 1.

Proof. Cases k = 3, 4 are covered by Remarks 2.3.2 and 2.3.3 respectively.
Assume k > 4 and write Y1k =

∏k
i=1 P1

i . Let S = A∪B be as in (2.4.2), we build now
a recursive set of divisors as follows:

1st divisor: M4 ∈ |OY
1k
(ε4)| containing A ∩B = {p};

2nd divisor: let o3 ∈ P1 be such that π−1
3 (o3) ∩ (S \ (S ∩M4)) ̸= ∅ ad call M3 := π−1

3 (o3);

3rd divisor:





If M3 ∪M4 already covers the whole S (i.e. S ⊂ M3 ∪M4), set M2 to be any
divisor M2 ∈ |OY

1k
(ε2)|.

Otherwise S ̸⊂M3 ∪M4. In this case choose o2 ∈ P1
2 such that π−1

2 (o2) ∩ (S \
S ∩ (M3 ∪M4)) ̸= ∅ and set M2 := π−1

2 (o2).

Now it may happen that either S ⊂ M2 ∪M3 ∪M4 or not. We study those two cases in
(a) and (b) respectively.
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(a) Here we assume that S ⊂M2 ∪M3 ∪M4. Since #(S) = 5 there is at least one of the
Mi’s containing at least two points of S and there are two of the Mi’s whose union
contains at least 4 points of S. More precisely, it is easy to see that #(S∩(Mi∪M4)) ≥ 4
for some i = 2, 3, otherwise we would have #(S ∩ (M2 ∪M3)) = 4 and by Lemma
1.2.9 we would get h1

(
IS\S∩M2∪M3(1, 0, 0, 1, . . . )

)
> 0, which is impossible. Therefore,

by relabeling if necessary, we may assume #(S ∩ (M3 ∪M4)) ≥ 4.

• If #(S ∩ (M3 ∪M4)) = 4, since OY (1, 1, 0, 0, . . . ) is globally generated, we have that
h1
(
IS\S∩(M3∪M4)(1, 1, 0, 0, 1, 1, . . . )

)
= 0, which is in contradiction with Lemma 1.2.9.

• Assume S ⊂M3∪M4. In this case, one of the Mi’s contains at least 3 points of S for
i = 3, 4 and we may assume i = 4. Indeed if #S ∩M3 ≥ 3, by Lemma 1.2.9 we have
h1
(
IS\(S∩M3)(ε̂3)

)
> 0 which is equivalent to say that there exists u ∈ S such that

πi(p) = πi(u) for all i ̸= 3, contradicting Remark 2.2.4. Therefore we may assume
#(M4∩S) ≥ 3. Since S ̸⊂M4, we get h1

(
IS\S∩M4(ε̂4)

)
> 0 (by Lemma 1.2.9), hence

#(S \ S ∩M4) = 2 and

S \ S ∩M4 = {u, v} with πi(u) = πi(v), ∀i ̸= 4. (2.4.3)

Since h1
(
IS\S∩M3(ε̂3)

)
> 0 (again by Lemma 1.2.9), we get that either there are

w, z ∈ S \ S ∩M3 such that w ̸= z, πi(w) = πi(z) for all i ̸= 3 or ν4(η4(S ∩M4))
(remind Notation 1.1.6) is made by 3 collinear points, say with a line corresponding
to the i-th factor. The latter case cannot arise because S does not depend only on
the third, fourth and i-th factor of Y . Thus there exist

w, z ∈ S \ S ∩M3 such that w ̸= z, πi(w) = πi(z) ∀i ̸= 3. (2.4.4)

In (2.4.3) and (2.4.4) we have 4 distinct points u, v, w, z such that #(π5({u, v, w, z})) =
1. Take M5 ∈ |OY (ε5)| containing {u, v, w, z}. Since h1

(
IS\S∩M5(ε̂5)

)
= 0, Autarky

and Lemma 1.2.9 give a contradiction.

(b) Assume S ̸⊂M2 ∪M3 ∪M4. By Lemma 1.2.9 we get

h1
(
IS\S∩(M2∪M3∪M4)(1, 0, 0, 0, 1, 1, . . . )

)
> 0.

Thus #(S\(M2∪M3∪M4)) = 2, say S\(M2∪M3∪M4) = {u, v} and πi(u) = πi(v) for all
i ̸= 2, 3, 4. Let M1 ∈ |OY

1k
(ε1)| contain u, v and note that by definition of the Mi’s each

one of them contains at least one point of S. Therefore #(S ∩ (M1 ∪M3 ∪M4)) ≥ 4.
Since the case S ⊂ M1 ∪ M3 ∪ M4 has already been excluded in step (a), we may
assume #(S ∩ (M1 ∪ M3 ∪ M4)) = 4. But then by Lemma 1.2.9 we would have
h1
(
IS\S∩(M1∪M3∪M4)(0, 1, 0, 0, 1, . . . )

)
> 0 which is a contradiction.

From the above result we deduce that all the solutions of a non-identifiable rank-3
tensor q ∈ ⟨ν(Y1k)⟩ must be disjoint if k > 4. This concludes the case in which two
distinct solutions of a rank-3 tensor share a common point.

2.5 Two disjoint solutions
We have seen in Corollary 2.3.18 that if a rank-3 tensor q is not identifiable and A, B
are two sets of points on the Segre variety computing its rank, then #A∪B can only be
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either 5 or 6. This section is fully devoted to the case in which #A ∪ B = 6, i.e. A and
B are disjoint:

S := A ∪B, #S = 6, A := {a1, a2, a3}, B := {b1, b2, b3} and A ∩B = ∅. (2.5.5)

More precisely, let k ≥ 3 and let Yn1,...,nk
be such that all ni ∈ {1, 2}. Let q ∈ ⟨ν(Yn1,...,nk

)⟩
be a non-identifiable rank-3 tensor such that ν(Yn1,...,nk

) is the concise Segre of q.
In Proposition 2.5.2 we manage the case in which the multiprojective space has at least
two factors of projective dimension 2, proving that two distinct solutions of a non-
identifiable rank-3 tensor cannot be disjoint. Then we focus on the number of factors
k ≥ 3. Since cases Y1,1,1 and Y2,1,1 are treated in Remark 2.3.2 and Corollary 2.3.12
respectively, we can focus on the 4-factors case. The case in which Y1,1,1,1 = (P1)4 is
considered in Remark 2.3.3. Therefore we may focus on Y2,1,1,1 = P2× (P1)3 (Proposition
2.5.3 below), proving that there are no two disjoint solutions in this case. We conclude the
discussion with Proposition 2.5.5 in which we prove that there do not exist two disjoint
solutions if Yn,1k−1 = Pn × (P1)k−1 with n ∈ {1, 2}, k ≥ 5.

Before starting the discussion, let us see how to apply Lemma 1.2.9 in its contrapositive
formulation when dealing with a set of 6 distinct points, 4 of which are contained in a
divisor of the corresponding Segre.

Remark 2.5.1. Let Y2k1 ,1k2 = (P2)k1 × (P1)k2 and S ⊂ Y2k1 ,1k2 a set of 6 distinct points.
Consider I ⊆ {k1 + 1, . . . , k1 + k2} and ε :=

∑
i∈I εi. Suppose there exists a divisor

M ∈ |OY (ε)| intersecting S in 4 points. Call {u, v} := S \ (S ∩M). In this setting one
can apply Lemma 1.2.9 and get that h1

(
I{u,v}(ε̂)

)
> 0 (where ε̂ is a (k1 + k2)-uple with

0’s in position of the indices appearing in ε of I and 1’s everywhere else, as described in
Notation 1.2.1) and πh(u) = πh(v) for any h ∈ {1, . . . , k1 + k2} \ I.

We prove now that if q is a non-identifiable rank-3 tensor whose concise Segre has at
least two factors of projective dimension 2, then two different solutions of q cannot be
disjoint.

Proposition 2.5.2. Let Y2,2,n3,...,nk
be a multiprojective space with at least three factors

and at least two of them of projective dimension 2, i.e. Y2,2,n3,...,nk
= P2×P2×Pn3×· · ·×Pnk

with ni ∈ {1, 2} for i = 1, . . . , k and k ≥ 3. Let q ∈ σ0
3(ν(Y2,2,n3,...,nk

)), with ν(Y2,2,n3,...,nk
)

the concise Segre of q. If A,B ∈ S(Y2,2,n3,...,nk
, q) evince the rank of q, then A and B

cannot be disjoint.

Proof. By contradiction, assume that there exist A,B ∈ S(Y2,2,n3,...,nk
, q) with A∩B = ∅.

By Remark 2.3.4 we have that ⟨πi(A)⟩ = ⟨πi(B)⟩ = P2 for i = 1, 2. Fix W ∈ |IB(ε2+ε3)|,
it exists because h0

(
OY2,2,n3,...,nk

(ε2 + ε3)
)
= h0 (P2 × Pn3 ,OP2×Pn3 (1, 1)) = 3(n3 + 1) > 4.

Since π1|A is injective, h1
(
IA(1, 1, 0, 0, 1 . . . , 1)

)
= 0. Thus S ⊂ W by Lemma 1.2.9. In

this way we have shown that

any divisor D ∈ |OY2,2,n3,...,nk
(ε2 + ε3)| containing B contains also A. (*)

Claim 1. π3(ai) = π3(bi) where ai, bi are as in (2.5.5), for i = 1, 2, 3.

The proof of this claim can be repeated verbatim for all the other projections with only
one caution that we will highlight in the sequel. Therefore, by repeating the argument
for all the projections, we will get that πj(ai) = πj(bi) for i = 1, 2, 3 and for j = 1, . . . , k
which is a contradiction with A and B being distinct. This will conclude the proof.
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Proof of the Claim 1. Take a general hyperplane J3,i ⊂ Pn3 containing π3(bi),
(where the bi’s are as in (2.5.5), i = 1, 2, 3) by genericity we may assume that
if n3 = 2 then J3,i is a line which does not contain any other point of that
projection. Set M3,i := π−1

3 (J3,i). Take a line

L2,j,k ⊂ P2 containing {π2(bj), π2(bk)} with j, k ̸= i (**)
and set M2,j,k := π−1

2 (L2,j,k).

We have B ⊂ M2,j,k ∪ M3,i ∈ |OY (ε2 + ε3)|. Thus from (*) we get that
M2,j,k ∪ M3,i contains also A. Since A ⊈ M2,j,k by Autarky, there is a ∈
A ∩M3,i, i.e. there is a ∈ A such that

π3(a) = π3(bi), (2.5.6)

in fact if n3 = 1 it is trivial, if n3 = 2 then we have already remarked that
π3(bi) is the only point of J3,i belonging to π3(S).
Remark that at most one point of A projects onto π3(bi). Indeed assume by
contradiction that π3(a) = π3(bi) = π3(ã) for some ã, a ∈ A. By Autarky
A ̸⊂M3,i and moreover B∩M3,i = {bi}, hence S \ (S∩M3,i) = {â, bj, bk} with
â ∈ A \ {a, ã}. Therefore, by Lemma 1.2.9, we get h1

(
IS\(S∩M3,i)(ε̂3)

)
> 0,

which is equivalent to say that there exists j ∈ {1, . . . , k} \ {3} such that
#πh({â, bi, bj}) = 1 for all h /∈ {3, h} (cf. Lemma 1.2.11). This leads to a
contradiction since πi|B is injective for i = 1, 2 (cf. Remark 2.3.4). By repeat-
ing all the above argument permuting i with j and then i with k respectively,
we get that the points of A projecting on π3(bℓ) are different for different ℓ′s
except if there are bi ̸= bj such that π3(bi) = π3(bj).
Suppose that this is the case. By Lemma 1.2.11 we get that #(S\S∩M3,i) = 2.
Thus if π3(bi) = π3(bj) for i ̸= j, there are 2 points of A and 2 points of B
in M3,i, i.e. #(S ∩M3,i) = 4. To fix ideas take i = 3 and j = 2, i.e. sup-
pose that S ∩M3,i = {a3, b3, a2, b2}. By Lemma 1.2.9 h1

(
IS\S∩M3(ε̂3)

)
> 0,

i.e. πi(a1) = πi(b1) for all i ̸= 3. This is a contradiction since we already
know that π3(a2) = π3(b2) and we would have a2 = b2, which contradicts the
assumption that A ∩ B = ∅. Again, taking j instead of i (k instead of i) one
can repeat an analogous argument.

Therefore the points a ∈ A of (2.5.6) are all different for different choices of i’s.
So we may assume that π3(ai) = π3(bi) for i = 1, 2, 3 and that π3(bi) ̸= π3(bj)
for i ̸= j.

The argument of the proof of Claim 1 can be repeated verbatim for all the others πℓ’s
with the only caution that when we do the case ℓ = 2 we have to use a line L1,j,k ⊂ P2

containing {π1(bj), π1(bk)} with j, k ̸= i and set M1,j,k := π−1
1 (L1,j,k) instead of M2,j,k and

L2,j,k in (**). Moreover (*) clearly holds if we replace the ε2 with ε1 and ε3 with εj for any
j = 3, . . . , k. As already highlighted this concludes the proves since πj(ai) = πj(bi) for
i = 1, 2, 3 and for j = 1, . . . , k which is a contradiction with A and B being distinct.

This shows that under the assumption (2.5.5), we can exclude the case where the
Segre variety has at least two factors of projective dimension 2.

Let us focus on the 4-factors case.
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Proposition 2.5.3. Let Y2,1,1,1 = P2×P1×P1×P1. Let q ∈ σ0
3(ν(Y2,1,1,1)), with ν(Y2,1,1,1)

the concise Segre of q. There do not exist two disjoint sets A,B ∈ S(Y2,1,1,1, q) evincing
the rank of q.

Proof. Assume by contradiction that there exist two disjoint sets A,B ∈ S(Y2,1,1,1, q)
evincing the rank of q.

We want to fix the maximal number of points of S that share the same component,
i.e. define

α4 := max{#(π−1
i (o) ∩ S)}o∈P1;i=2,...,4. (2.5.7)

By rearranging if necessary, we can assume that the index i = 2, . . . , 4 realizing α4 is
i = 4. Denote by o4 ∈ P1 the point realizing such value and call K4 := π−1

4 (o4). Note
that 1 ≤ α4 ≤ 5, where the first inequality holds by definition and the second one by
Autarky. Moreover, it is easy to see that α4 cannot be 5. In fact if α4 = 5, then
#(S \ S ∩K4) = 1 which implies that h1

(
IS\S∩K4(1, 1, 1, 0)

)
= 0, contradicting Lemma

1.2.9.
Since α4 ≤ 4 we can look for another integer such that the preimages of points o ∈ P1

intersect maximally the points in S \ (S ∩K4). Define

α3 := max{#(π−1
i (o) ∩ (S \ (S ∩K4)))}o∈P1;i=2,3. (2.5.8)

By rearranging if necessary, we can assume that the index i = 2, 3 realizing α3, is i = 3.
Call K3 := π−1

3 (o3), where o3 ∈ P1 is the point for which we reach α3. Therefore we have

1 ≤ α3 ≤ α4 ≤ 4.

In order to show that S ⊂ K3 ∪K4 or equivalently that α3 + α4 = 6, define

α2 := max{#(π−1
2 (o) ∩ (S \ (S ∩K4 ∪K3)))}o∈P1 . (2.5.9)

Therefore, if we denote by oj ∈ P1, j = 2, 3, 4 the points realizing α2, α3, α4 respectively
then we call

Kj := π−1
j (oj) for j = 2, 3, 4. (2.5.10)

Let us prove that acually α2 = 0. Assume by contradiction that α2 ̸= 0. Since 1 ≤ α2 ≤
α3 ≤ α4 ≤ 4, the only possibility is

(α2, α3, α4) ∈ {(1, 1, 4), (1, 1, 3), (1, 1, 2), (1, 1, 1), (1, 2, 3), (1, 2, 2), (2, 2, 2)}.

If (α2, α3, α4) = (1, 1, 4), by Lemma 1.2.9 we get h1
(
IS\(S∩(K4∪K3))(1, 1, 0, 0)

)
> 0 which

is impossible since #(S \ (S ∩ (K4 ∪ K3))) = 1. An analogous argument holds for the
case (α2, α3, α4) = (1, 2, 3). For the same reason (α2, α3, α4) = (1, 2, 2) is also impos-
sible because #(S \ (S ∩ (K4 ∪ K3 ∪ K2))) = 1 and by Lemma 1.2.9 we would have
h1
(
IS\(S∩(K4∪K3∪K2))(1, 0, 0, 0)

)
> 0.

Now assume that (α2, α3) = (1, 1). Then π3|S is injective. The idea is to build a di-
visor F ∈ |OY2,1,1,1(ε)| with ε =

∑
i∈I εi, for some finite I ∈ {1, . . . , k}, such that

#(S \ F ∩ S) = 2 and apply Remark 2.5.1 to F : the existence of such a F will con-
tradict the injectivity of π3|S. Let Hi ∈ |OY (εi)| such that Hi ∩ (S \ S ∩ K4) ̸= ∅ for
i = 2, 3. The divisor F is either F = K4 ∪H3 or K4 ∪H2 ∪H3 if α4 = 3, 2 respectively.
Assume that (α2, α3, α4) = (1, 1, 1). In such a case the divisor K2 ∪K3 ∪K4 ∈ |OY (ε̂1)|
would contain exactly 3 points of S. Therefore, by Lemma 1.2.9, we get that

h1
(
IS\(S∩K2∪K3∪K4)(ε1)

)
> 0,

44



which is equivalent to say that there exists j ∈ {2, 3, 4} such that #πh(S \ (S ∩ (K2 ∪
K3 ∪K4))) = 1 for all h ̸= j (cf. Lemma 1.2.11), contradicting (α3, α4) = (1, 1).
Let α2 = α3 = α4 = 2. By the definition of the Ki’s in (2.5.10) for i = 2, 3, 4, we note
that

S =
∐4

i=2
S ∩Ki

So, since S =
∐4

i=2S ∩Ki and #(S ∩Ki) = 2 for i = 2, 3, 4, we can apply Remark 2.5.1
separately to the divisors Ki ∪ Kj with i ̸= j and get that h1

(
IS∩Ki

(ε1 + εi)
)
> 0 for

i = 2, 3, 4 and so π1(S ∩ Ki) = 1 for i = 2, 3, 4. In order to get a contradiction it is
sufficient to apply again Remark 2.5.1 to π−1

1 (⟨π1(S ∩K3), π1(S ∩K2)⟩). This shows that
#(πi(S∩K4)) = 1 for i = 2, 3, 4. Now since also #(π1(S∩K4)) = 1, then #(S∩K4) = 1,
which is a contradiction with the assumption α3 = 2.

Thus we proved that α2 = 0, i.e. α3 + α4 = 6.

The case (α3, α4) = (2, 4) can be excluded using the same argument of the case (α2, α3, α4) =
(2, 2, 2) above applying Remark 2.5.1 and in this caseK4 plays the role ofM in the remark.

We are therefore left with the unique possibility of (α3, α4) = (3, 3).

Claim 2. #(π2(S ∩K4)) = 1.

Proof of Claim 2: Assume by contradiction that #(π2(S ∩K4)) ̸= 1, since we
are in the hypothesis α4 = 3, the projection of S ∩K4 onto the second factor
is made by either 2 or 3 points.

If #(π2(S ∩ K4)) = 2, there exist at least two points, u, v ∈ S ∩ K4 such
that they share the same image under the projection. Let H ∈ |OY2,1,1,1(ε2)|
contain u, v, then by Lemma 1.2.9 h1

(
IS\(S∩(H∪K3))(1, 0, 0, 1)

)
> 0, but this is

impossible since #(S \ (S ∩ (H ∪K3))) = 1.

If #(π2(S ∩K4)) = 3, fix x ∈ S ∩K4 and take H ∈ |OY2,1,1,1(ε1)| containing
x. By applying Remark 2.5.1 with M = H ∪K3 we would get that #(π2(S ∩
K4 \ {x})) = 1 which is absurd.

Using the third factor instead of the second one, one gets #(π3(K4∩S)) = 1 and since
we assumed that α4 is reached on the fourth factor we also have #(π4(K4∩S)) = 1. The
same argument can be applied to S∩K3 which leads to #(π2(K3∩S)) = #(π4(K3∩S)) =
1. Thus #(πi(K4 ∩S)) = #(πi(K3 ∩S)) = 1 for all i > 1 which contradicts Autarky.

Since the identifiability of rank-3 tensors in ⟨ν((P1)4)⟩ is already fully described by
Remark 2.3.3, we are therefore done with the order-4 tensors and we can focus on tensors
of order bigger or equal than 5. So we will deal with Y = Pn × (P1)k−1, with n = 1, 2
and k ≥ 5.

Lemma 2.5.4. Let q be a rank-3 tensor of order at least 5 and let ν(Yn1,...,nk
) be its

concise Segre where all ni ∈ {1, 2}. If there exist two disjoint sets A,B ∈ S(Yn1,...,nk
, q)

as in (2.5.5), then there exists at least an index i ∈ {1, . . . , k} such that ηi|S and πi|S are
injective.

Proof. [Injectivity of ηi|S.] We remark that
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1. If ηi(u) = ηi(v) for some distinct u, v ∈ S then, by Remark 2.2.4, u and v cannot
be points of the same decomposition, i.e. u ∈ A and v ∈ B (or equivalently u ∈ B
and v ∈ A).

2. For all i = 1, . . . , k if ηi(u) = ηi(v) for some u ∈ A, v ∈ B, then ηj(u) ̸= ηj(v) if
i ̸= j, otherwise we would have u = v, contradicting A ∩B = ∅.

3. Let u ∈ A and v, v′ ∈ B with v ̸= v′. If ηi(u) = ηi(v
′) and ηj(u) = ηj(v

′′) for some
i ̸= j then ηk(u) ̸= ηk(v), where v is the other element of B, i.e B \ {v′, v′′} =
{v}. Otherwise the minimal multiprojective space containing B = {v, v′, v′′} (and
therefore containing q) would have at most 3 factors, but this is in contradiction
with the assumption k ≥ 5.

Before proceeding, we need to prove one last result on the behaviour of the maps ηi|S’s.

Claim 3. Let α, β, γ ∈ {1, . . . , 5} be distinct indices. Take uα, uγ ∈ A and
vα, vβ, vγ ∈ B. If ηα(uα) = ηα(vα) and ηβ(uα) = ηβ(vβ), then we cannot have
neither that ηγ(vα) = ηγ(uγ) nor that ηγ(vβ) = ηγ(uγ).

Proof. Assume by contradiction that ηγ(vα) = ηγ(uγ) and call

S ′ = {uα, uγ, vα, vβ}.

Note that #S ′ ≥ 2 since A∩B = ∅. We want to prove that actually #S ′ = 4.
Indeed if vα = vβ then we would have uα = vα which is again in contradiction
with the fact that A∩B = ∅. Therefore #S ′ ≥ 3. Moreover, by item 2 of the
above remark, we know that uα ̸= uβ. Therefore #S ′ = 4. Thus S ′ is given
by 4 distinct points that share all the same image under the projection onto
two factors, i.e. there exist two indices ρ, ζ ∈ {1, . . . , 5} \ {α, β, γ} such that
#(πρ(S

′)) = #(πζ(S
′)) = 1.

Let H ∈ |OYn1,...,nk
(ερ)| contain S ′ and note that #(S \ (S ′ ∩ H)) ≤ 2. By

Lemma 1.2.9, h1
(
IS\(S′∩H)(ε̂ρ)

)
> 0 and hence #(S \ (S ′ ∩H)) = 2, which is

equivalent to say that

there exist x, y ∈ S \ S ′ such that πi(x) = πi(y) for all i ̸= ρ.

Since also #(πζ(S
′)) = 1 we can take D ∈ |OYn1,...,nk

(εζ)| containing S ′. Now
take M ∈ |OYn1,...,nk

(ερ)| containing x and note that S \ (S ∩ (M ∪D)) = {y}.
By Lemma 1.2.9, we would get h1

(
Iy(ε̂ρ + εζ)

)
> 0, but this is impossible.

With a similar argument one can prove the second statement of the claim, i.e.
that ηγ(vβ) ̸= ηγ(uγ).

Now we are ready to prove that ηi|S is injective for at least one i ∈ {1, . . . , 5}. Assume
by contradiction that none of the ηi|S is injective, therefore

for all i = 1, . . . , 5, there exist ui ∈ A, vi ∈ B such that ηi(ui) = ηi(vi). (2.5.11)

We show that this condition, applied to two disjoint sets of 3 points each, and at least
five ηi’s, imposes a contradiction. Since #(A) = #(B) = 3, at least two of the uj must
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be equal (the same for the vj’s) where j ∈ {1, . . . , 5}. By relabeling if necessary, we may
assume u1 = u2. For i = 1 we have

η1(u1) = η1(v1).

Let now i = 2. Since u1 = u2, we get

η2(u1) = η2(v2).

By item 2 we have v1 ̸= v2. Now let i = 3. By item 3 u1 cannot be used anymore and
moreover, by the above Claim 3, neither v1 nor v2 can be used, therefore we have

η3(u2) = η3(v3),

where v3 /∈ {v1, v2}. Now let i = 4. As a point of B we are forced to consider again v3.
Moreover, items 2 and 3 tells us that we cannot use again neither u2 nor u1. Therefore
we have

η4(u3) = η4(v3),

where u3 /∈ {u1, u2}. Now we finally reached a contradiction since we cannot use anymore
neither points of A nor points of B for the non-injectivity of η5|S.

[Injectivity of πi|S.]
Assume that ηi|S is injective and that πi|S is not injective. If the i-th factor of Yn1,...,nk

is P2 take H ∈ |OYn1,...,nk
(εi)| as the preimage of a general line that contains one point of

S; otherwise take H ∈ |OYn1,...,nk
(εi)| as the preimage of a point of S. We remark that in

both cases we get that #(πi(S ∩H)) = 1. Since by Autarky S ̸⊂ H, by Lemma 1.2.9 we
have that

h1
(
IS\S∩H(ε̂i)

)
> 0. (2.5.12)

Note that #(S \ S ∩H) ≤ 4 otherwise we would have a contradiction with (2.5.12). To
prove the result, we distinguish different cases depending on #(S \ S ∩H).

1. Assume #(S \ S ∩ H) = 4 and call S ′ := ηi(S \ S ∩ H); let A′ ⊂ S ′ be such
that #A′ = 2 and call B′ := S ′ \ A′, so #B′ = 2. Since ηi|S is injective and
h1
(
Yn1,...,ni−1,ni+1,...,nk;i, IS′(ε̂i)

)
= h1

(
IS\S∩H(ε̂i)

)
> 0, then ⟨νi(A′)⟩ ∩ ⟨νi(B′)⟩ ≠ ∅,

which means that we have at least a point q′ ∈ ⟨νi(Yn1,...,ni−1,ni+1,...,nk;i)⟩ of rank 2
for which A′ and B′ are different subsets evincing its rank. Thus by Proposition
2.2.7, since #S(Yi, q′) > 1, the points in A′ and B′ only depend on two factors, i.e.
#(πj(S

′)) = 1 for at least two indices j ∈ {1, . . . , k}. Without loss of generality as-
sume it happens for j = 1, 2. If the first factor of Y is P2, letM1 ∈ |Iπ1(S′)(ε1)| be the
preimage of a general line containing π1(S ′) and let {M2} := |Iπ2(S′)(ε2)|. Otherwise
let {Mj} := |Iπj(S′)(εj)|, for j = 1, 2; in both cases then h1

(
IS\S∩Mj

(ε̂j)
)
> 0. So

S\S∩Mj = S∩H and #(ηj(S∩H)) = 1, for j = 1, 2. If we call S∩H = {u, v}, it fol-
lows that η1(u) = η1(v) and η2(u) = η2(v), so in particular we get that πj(u) = πj(v)
for any j, which is a contradiction.

2. Assume #(S \ S ∩ H) = 3. By Proposition 1.2.11 there exists j ̸= i such that
#(πh(S \ S ∩ H)) = 1 for all h ̸= i, j. For all h ̸= i, j, if nh = 2 take Mh ∈
|IS\S∩H(εh)| as the preimage of a general line. Otherwise, since h0

(
OYn1,...,nk

(εh)
)
=

2 we have h0
(
IS\S∩H(εh)

)
= 1 and we set {Mh} := |IS\S∩H(εh)|. Since we took
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H such that #(πi(S ∩ H)) = 1, there exists at least an index t ̸= i such that
#πt(S ∩ H) ≥ 2. Thus we can find D ∈ |OY (εt)| containing exactly one point of
S ∩H.
For all s ̸= t setWs :=Ms∪D, so #(S\S∩Ws) = 2; we remark thatWj∩S = Ws∩S
for any j, s thus we may call E := S \ S ∩Ws.
By Lemma 1.2.9 we have that h1

(
IE(ε̂s + εt)

)
> 0, so #(πj(E)) = 1 for all j ̸= s, t.

Since E ⊂ H we have that πi(E) = 1, moreover taking s = 1, 2, 3, if t ̸= j, we get
that #E = 1, thus a contradiction. It remains to study what happens when t = j,
i.e. if #(πj(S∩H)) ≥ 2. In such a case, when we let s vary in {1, . . . , k}\{i, j}, we
get #(πs(S ∩H)) = 1. Thus ηj(S ∩H) = 1, i.e. the three points of S ∩H actually
lies on a line, which is a contradiction with Remark 2.2.4, because two of them are
points of A or B.

3. Assume #(S \S ∩H) ≤ 2. Since h1
(
IS\S∩H(ε̂i)

)
> 0, we get that #(S \S ∩H) = 2

and that #ηi(S \ S ∩H) = 1, which is a contradiction.

With the above lemma we can conclude the case of two disjoint setsA,B ∈ S(Yn1,...,nk
, q)

with q of rank-3.

Proposition 2.5.5. Let q ∈ σ0
3(ν(Yn,1k−1)) be a tensor of order k ≥ 5 and let ν(Yn,1k−1)

be its concise Segre, where n ∈ {1, 2}. Then S(Yn,1k−1 , q) does not contain two disjoint
sets.

Proof. By Lemma 2.5.4 there exists at least an index i ∈ {1, . . . , k} such that ηi|S is
injective, from which follows that the corresponding πi|S is also injective. Now if ηj|S is
not injective for some j ̸= i then πi|S is not injective, which is a contradiction with the
assumption that ηi|S is injective. Therefore thus ηj|S and πj|S have to be injective for all
j = 1, . . . , k.

Write A := {a1, a2, a3} and B := {a4, a5, a6}. If the first factor is a P2 take L1 ∈ P2

as a general line containing π1(a1) and define H1 ∈ |Ia1(ε1)| as H1 := π−1
1 (L1). For

i = 2, . . . , 4 take {Hi} := |Iai(εi)| (this is possible since by hypothesis k ≥ 5). Otherwise
for all i = 1, . . . , 4 take {Hi} := |Iai(εi)|. In both cases, since every πi|S is injective we
get that H1 ∪ · · · ∪ H4 contains exactly 4 points of S. Thus from Lemma 1.2.9 we get
that h1

(
IS\(S∩H1∪···∪H4)(0, 0, 0, 0, 1, . . . , 1)

)
> 0 which is a contradiction since all πi|S are

injective (cf. Remark 2.5.1).

2.6 Identifiability of rank-3 tensors
We are now ready to state and prove the main result of the present chapter that completely
characterizes the identifiability of any rank-3 tensor. Indeed the following theorem collects
all the results proved in the previous sections by stating a comprehensive list of non-
identifiable families of rank 3 tensors.

Theorem 2.6.1. Let Yn1,...,nk
= Pn1 ×· · ·×Pnk be the multiprojective space of the concise

Segre of the projective class q = [T ] of a rank-3 tensor T . Denote with S (Yn1,...,nk
, q) the

set of all subsets of Y computing the rank of q. The rank-3 tensor T is identifiable except
in the following cases:

(a) T is a 3× 3 matrix and in this case dim (S (Y2,2, q)) = 6;
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(b) there exist v1, v2, v3 ∈ C2 such that T ∈ C2 ⊗ v2 ⊗ v3 + v1 ⊗ C2 ⊗ v3 + v1 ⊗ v2 ⊗ C2,
in this case dim (S (Y1,1,1, q)) ≥ 2;

(c) T ∈ (C2)⊗4, in this case dim (S (Y1,1,1,1, q)) ≥ 1;

(d) T ∈ C3⊗C2⊗C2 and there exists a basis {u1, u2, u3} ⊂ C3 and a basis {v1, v2} ⊂ C2

such that T can be written as

T = u1 ⊗ v21 + u2 ⊗ v22 + u3 ⊗ (αv1 + βv2)
2,

for some α, β ̸= 0 (cf. Example 2.3.7). In this case dim (S (Y2,1,1, q)) = 3;

(e) T ∈ C3⊗C2⊗C2 and there exists a basis {u1, u2, u3} ⊂ C3 and a basis {v1, v2} ⊂ C2

such that T can be written as

T = u1 ⊗ v1 ⊗ p̃+ u2 ⊗ v2 ⊗ p̃+ u3 ⊗ q̃ ⊗ w,

for some q̃ ∈ ⟨v1, v2⟩, where p̃, w ∈ C2 must be linearly independent (cf. Example
2.3.9). In this case S (Y2,1,1, q) contains two different 4-dimensional families;

(f) T ∈ Cm1⊗Cm2⊗(C2)k−2, where k ≥ 3, m1,m2 ∈ {2, 3} such that m1+m2+(k−2) ≥
4. Moreover there exist distinct a1, a2 ∈ Cm1, distinct b1, b2 ∈ Cm2 and for all i ≥ 3
there exists a basis {ui, ũi} of the i-th factor such that T can be written as

T =(a1 ⊗ b1 + a2 ⊗ b2)⊗ u3 ⊗ · · · ⊗ uk + a3 ⊗ b3 ⊗ ũ3 ⊗ · · · ⊗ ũk,

where if m1 = 2 then a3 ∈ ⟨a1, a2⟩ otherwise a1, a2, a3 are linearly independent.
Similarly, if m2 = 2 then b3 ∈ ⟨b1, b2⟩, otherwise b1, b2, b3 form a basis of the second
factor. In this case dim

(
S
(
Ym1−1,m2−1,1k−2 , q

))
≥ 2 and if m1 + m2 + k − 2 ≥ 6

then dim
(
S
(
Ym1−1,m2−1,2k−2 , q

))
= 2.

Proof. In Case (a) the point q is a rank-3 matrix therefore it is highly not identifiable.
See Remark 2.3.1 for the computation of the dimension of S(Y2,2, q).

Case (b) is also well known: see Remark 2.3.2.
Case (c) corresponds to the defective 3-rd secant variety of the Segre embedding of

Y1,1,1,1 = (P1)4 and it is treated in Remark 2.3.3.
Cases (d), (e) and (f) are treated in Examples 2.3.7 and 2.3.9 and in Proposition

2.3.14 respectively.
All the above considerations prove that the list of cases enumerated in the statement

corresponds to non-indentifiable rank-3 tensors. We need to show that such a list is
exhaustive. Since the matrix case is already fully covered by case (a), we only need to
care about tensors of order at least 3.

First of all recall that by Remark 2.2.3, the concise Segre of a rank-3 tensor q is
ν(Pn1 × · · · × Pnk), with n1, . . . , nk ∈ {1, 2}. Then consider two distinct sets A,B ∈
S(Yn1,...,nk

, q). By Corollary 2.3.18 it can only happen that #(A ∪B) = 5, 6.
If #(A∪B) = 5, the fact that our list of non-identifiable rank-3 tensors is exhaustive

is proved in Propositions 2.4.1 and 2.4.2.
If #(A ∪ B) = 6 we can firstly use Proposition 2.5.2 to exclude the all the cases in

which Yn1,...,nk
has at least two factors of dimension 2. Then we start arguing by the

number of factors of Yn1,...,nk
.

If Y1,1,1 has 3 factors and it is the product of P1’s only, then the unique tensors of rank-3
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are those of the tangential variety to the Segre variety and this is case (b) of our theorem.
The case of Y2,1,1 = P2 × P1 × P1 is completely covered by Proposition 2.3.11 together
with Examples 2.3.7 and 2.3.9 (cf. Corollary 2.3.12).
If Y2,1,1,1 has 4 factors and one of them is a P2, there is Proposition 2.5.3 assuring that
S(Y2,1,1,1, q) does not contain two disjoint sets. If Y1,1,1,1 is a product of four P1’s we are
in case (c). of our theorem.
To conclude, we proved in Proposition 2.5.5 that if Yn1,...,nk

has at least 5 factors then
S(Yn1,...,nk

, q) does not contain two disjoint sets.

2.7 An algorithm for non-identifiable rank-3 tensors
In this section we present an algorithm aimed to recognize if a tensor T ∈ Cn1 ⊗· · ·⊗Cnk

is a non-identifiable rank-3 tensor. In the first part of the section we recall some basic
facts on matrix pencils that are used for the algorithm, while Subsection 2.7.2 is devoted
to present the algorithm.

2.7.1 Matrix pencils

Let us review some basic facts on matrix pencils. In particular, we describe how to
achieve the Kronecker normal form of any matrix pencil and we refer to [Gan59, Vol. 1,
Ch. XII] for a detailed exposition. For the rest of this subsection, unless specified, we
will work over an arbitrary field K of characteristic 0.

Fix integers m,n > 0. A polynomial matrix A(λ) is a matrix whose entries are polyno-
mials in λ, namely

A(λ) = (ai,j(λ))i=1,...,m,j=1,...,n, where ai,j(λ) := a
(0)
i,j + a

(1)
i,j λ+ · · ·+ a

(l)
i,jλ

l,

for some l > 0. If we set Ak := (a
(k)
i,j ), then we can write A(λ) as

A(λ) = A0 + λA1 + · · ·+ λlAl.

The rank r(A(λ)) of A(λ) is the positive integer r such that all r+ 1 minors of A(λ) are
identically zero as polynomials in λ and there exists at least one minor of size r which is
not identically zero.

Definition 2.7.1. A matrix pencil is a polynomial matrix of type A(λ) = A0 + λA1.

Given two matrix pencils A(λ) = A0 + λA1 and B(λ) = B0 + λB1, we say that A(λ)
and B(λ) are strictly equivalent if there exist two invertible matrices P,Q such that

P (A0 + λA1)Q = B0 + λB1.

We shall see that the Kronecker normal form of a matrix pencil is determined by a
complete system of invariants with respect to the strict equivalence relation defined above.

Any matrix pencil A+ λB of size m× n can be either regular or singular:

Definition 2.7.2. Let A,B ∈Mm,n(K). A pencil of matrices A+ λB is called regular if

1. both A and B are square matrices of the same order m;
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2. the determinant det(A+ λB) does not vanish identically in λ.

Otherwise the matrix pencil is called singular.

Now we describe how to find the normal form of a pencil A+λB depending on whether
it is regular or not.

2.7.1.1 Normal form of regular pencils

In the case of regular pencils, normal forms can be found by looking at the elementary
divisors of a given matrix pencil. In order to introduce them, it is convenient to consider
the pencil A+ λB with homogeneous parameters λ, µ, i.e. µA+ λB.

Let µA+ λB be the rank r homogeneous matrix pencil associated to A+ λB. For all
j = 1, . . . , r, denote by D(λ, µ)j the greatest common divisor of all the minors of order j
in µA+ λB and set D0(λ, µ) = 1. Define the following polynomials

ij(λ, µ) :=
Dr−j+1(λ, µ)

Dr−j(λ, µ)
, for all j = 1, . . . , r.

Note that all ij(λ, µ) ∈ K[λ, µ] can be splitted into products of powers of irreducible
homogeneous polynomials that we call elementary divisors. Elementary divisors of the
form µq for some q > 0 are called infinite elementary divisors.

Example 2.7.3. Consider the following pencil

A+ λB =



λ 0 0
0 λ 0
0 0 1


 .

By looking at the corresponding homogeneous pencil µA + λB we can compute ij(λ, µ)
for all j = 1, 2, 3, namely

i3(λ, µ) =
D3(λ, µ)

D2(λ, µ)
=
λ2µ

λ
= λµ,

i2(λ, µ) =
D2(λ, µ)

D1(λ, µ)
= λ,

i1(λ, µ) =
D1(λ, µ)

D0(λ, µ)
= 1.

Therefore the elementary divisors of A+λB are {λ, µ}, where µ is an infinite elementary
divisor.

Theorem 2.7.4 ([Gan59, Vol. 2, Ch. XII, Theorem 2]). Two regular pencils A + λB
and A1+λB1 are strictly equivalent if and only if they have the same elementary divisors
and infinite elementary divisors.

Remark 2.7.5. From the above theorem we deduce that elementary divisors and infinite
elementary divisors are invariant with respect to the strict equivalence relation. Moreover
they form a complete system of invariants for the strict equivalence relation since they are
irreducible elements with respect the fixed field K. This is the reason why the polynomials
ij(λ, µ) defined above are actually called invariant polynomials for all j = 1, . . . , r.
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Example 2.7.6. Let A+ λB be the pencil of the above Example 2.7.3 and let

A1 + λB1 =



−4λ 7

3
λ −17

9

3x −2x 5
3

−x x −5
6
y


 .

It is easy to see that A + λB and A1 + λB1 have the same elementary divisors {λ, µ}.
Therefore they are strictly equivalent, indeed one can easily see that A + λB = P (A1 +
λB1)Q, where

P =



−4 7/3 −17/9
3 −2 5/3
−1 1 −5/6


 , Q = I3.

Before going further, we recall how to find the Frobenius normal form of a square
matrix, which is a generalization of the Jordan form of a matrix that does not require
the ground field to contain all eigenvalues of the considered matrix.

Frobenius normal form of a square matrix

We briefly describe a procedure to find the Frobenius normal form of a square matrix,
also called rational normal form. Let A ∈ Mm(K), one can consider λI − A and look for
its elementary divisors. This allows us to talk about elementary divisors of a matrix.

Theorem 2.7.7 ([Gan59, Vol. 1, Ch. VI, Theorem 7]). Two matrices A,B ∈ Mm(K)
are similar if and only if they have the same elementary divisors, i.e. the pencils λI −A
and λI −B have the same elementary divisors.

Example 2.7.8. Consider the following two matrices

A =



0 0 1
0 1 0
0 0 1


 , B =



1 0 0
0 −1 0
0 1 1


 .

To compute the elementary divisors of A we have to look at invariant polynomials of
λI − µA, namely

i3(λ, µ) =
(x− y)2(x+ y)

x− y
= (x− y)(x+ y),

i2(λ, µ) =
x− y

1
= x− y,

i1(λ, µ) = 1.

It is easy to see that they are exactly the invariant polynomials of λI − µB. Therefore
the elementary divisors of A and B coincide. Moreover note that A and B are similar,
since A =M−1BM , where

M =



0 1 1
1 0 0
0 0 1


 .
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The knowledge of invariant polynomials and elementary divisors of A enables us to
investigate better its structure. Indeed one can compute the Frobenius normal form of
A, also called the rational canonical form of A.

We recall that, given a polynomial g(λ) = a0+a1λ+· · ·+an−1x
n−1+xn, the companion

matrix of g(λ) is

L =




0 1 0 . . . 0
... . . . . . . . . . ...
0 . . . 0 1 0
0 . . . . . . 0 1

−a0 −a1 . . . . . . −an−1



.

By computing det(Iλ − L), one can easily see that actually g(λ) is the characteristic
polynomial of L and that g(λ) is the only invariant polynomial of L different from 1.

Fix A ∈Mm(K) with elementary divisors e1(λ), . . . , eu(λ) and denote by L(1), . . . , L(u)

the corresponding companion matrices. The elementary divisors of the block diagonal
matrix

Lf =



L(1)

. . .
L(u)


 ,

coincide with the elementary divisors of A, therefore, by Theorem 2.7.7, we get that A
and Lf are similar. Lf is called the Frobenius normal form of A.

Remark 2.7.9. Assume that A has an elementary divisor of the form (λ− λ̃)p, for some
λ̃ ∈ K, and let J̃ ∈Mp(K) be

J̃ =




λ̃ 1
. . . . . .

. . . 1

λ̃



.

One can easily see that the only elementary divisor of J̃ is (λ− λ̃)p and hence by Theorem
2.7.7, J̃ is similar to the companion matrix associated to the block of (λ− λ̃)p. Therefore,
if the base field K contains all the roots of the characteristic polynomial associated to
A, the elementary divisors of A are (λ − λ1)

p1 , . . . , (λ − λu)
pu , with p1 + · · · + pu = m.

Moreover in this case the Frobenius normal form of A actually coincides with the Jordan
form of A.

Computing the normal form of regular pencils

We have now all the necessary tools to completely determine the normal form of a regular
pencil with the following theorem. We also provide an idea of a constructive proof since
it involves all the tools defined above.

Theorem 2.7.10 ([Gan59, Vol. 2, Ch. XII, Theorem 3]). Every regular pencil A + λB
can be reduced to a (strictly equivalent) canonical form of the following type

[N (u1); . . . ;N (us); Jv1 ; . . . ; Jvt ;Lw1 ; . . . ;Lwp ],

where
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• The first s diagonal blocks are related to infinite elementary divisors µu1 , . . . , µus of
the pencil A+ λB and for all i = 1, . . . , s

N (ui) =




1 λ
. . . . . .

1 λ
1


 ∈Mui

(C).

• The blocks Jvi are the Jordan blocks related to elementary divisors of type (λ−λi)vi.

• The last p diagonal blocks Lw1 , . . . , Lwp are the companion matrices associated to
the remaining elementary divisors of A+ λB.

Idea of the proof. Let A+ λB be a regular pencil of size m. Since A+ λB is regular, by
definition there exists c ∈ K such that det(A+ cB) ̸= 0. Rewrite the pencil as

A+ λB = A1 + (λ− c)B, where A1 = A+ cB.

Multiplying on the left by A−1
1 we get

A−1
1 (A1 + (λ− c)B) = I + (λ− c)A−1

1 B.

Consider the following block diagonal matrix J = [J0; J1] obtained from A−1
1 B by simi-

larity, where J0 is the maximal order nilpotent block of the form

J0 =




0 1
. . . . . .

0 1
0




and J1 is a non singular block. One can look at the pencil as

I + (λ− c)J =

[
I + (λ− c)J0

I + (λ− c)J1

]
= [I + (λ− c)J0; I + (λ− c)J1].

By looking at the form of J0 we note that I − cJ0 is invertible. Multiplying on the right
by the block diagonal matrix [(I − cJ0)

−1; I] we get [I + λ(I − cJ0)
−1J0; I + (λ − c)J1].

Since also (I − cJ0)
−1J0 is nilpotent, we can consider its Jordan form Ĵ , hence we get

[
I + λĴ

I + (λ− c)J1

]
=




N (u1)

. . .
N (us)

I + (λ− c)J1


 ,

where for all i = 1, . . . , s

N (ui) =




1 λ
. . . . . .

1 λ
1


 ∈Mui

(C).
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Multiplying on the right by [I; J−1
1 ] and setting Ĵ1 the Frobenius normal form of J−1

1 − cI
we get 



N (u1)

. . .
N (us)

λI + Ĵ1


 .

We conclude the subsection with an example that illustrates how to build the Kro-
necker normal form of a regular pencil.

Example 2.7.11. Consider the pencil

A+ λB =




λ+ 3 0 λ+ 2 1 1
0 λ 1 0 0

λ+ 3 λ 2λ 1 2
λ+ 3 0 1 λ+ 4 0
0 0 λ λ+ 3 1



.

The determinant det(µA + λB) = −7(µ2)(λ + 3)2λ and this is the only invariant poly-
nomial of A+ λB different from one. Therefore the elementary divisors of the pencil are
{µ2, (λ+ 3)2, λ} and the Kronecker normal form of A+ λB is




1 λ
1

λ+ 3 1
λ+ 3

λ



.

2.7.1.2 Normal form of singular pencils

In the previous case, a complete system of invariants was made by both elementary
divisors and infinite ones (cf. Remark 2.7.5). We shall see that, in case of singular
pencils, this is not sufficient to determine a complete system of invariants with respect to
the strict equivalence relation. Fix m ≤ n and let A+ λB be a singular pencil of rank r,
where A,B ∈ Mm,n(K). Since the pencil is singular, the columns of A + λB are linearly
dependent, therefore the system

(A+ λB)x = 0 (2.7.13)

has a non-zero solution with respect to x. Note that any solution x̃ of the above system
is a vector whose entries are polynomials in λ, i.e. x̃ = x̃(λ).

Theorem 2.7.12 ([Gan59, Vol. 2, Ch. XII, Theorem 4]). If equation (2.7.13) has a
solution of minimal degree ε ̸= 0 with respect to λ, the singular pencil A+ λB is strictly
equivalent to

[
Lε

Â+ λB̂

]
,
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where

Lε =



λ 1

. . . . . .
λ 1


 ∈Mε,ε+1(K),

and Â + λB̂ is a pencil of matrices for which the equation analogous to (2.7.13) has no
solution of degree less than ε.

By applying the previous theorem iteratively, a singular pencil A + λB is strictly
equivalent to [Lε1 ; . . . ;Lεp ;Ap + λBp], where 0 ̸= ε1 ≤ · · · ≤ εp and the last block is
such that (Ap + λBp)x = 0 has no non zero solution, i.e. the columns of Ap + λBp are
linearly independent. The same idea can be applied to the rows of Ap + λBp if they
are linearly dependent, by considering the associated system of the transposed pencil.
Therefore A+ λB is strictly equivalent to




Lε1
. . .

Lεp

LT
η1

. . .
LT
ηq

A0 + λB0




,

were 0 ̸= ε1 ≤ · · · ≤ εp, 0 ̸= η1 ≤ · · · ≤ ηq and both the columns and rows of A0 + λB0

are linearly independent, i.e. A0 + λB0 is a regular pencil.
Now let us treat the case in which there are some relations of degree zero (with respect

to λ) between the rows and the columns of the given pencil A+ λB. Denote by g and h
the maximal number of independent constant solutions of equations

(A+ λB)x = 0 and (AT + λBT )x = 0 respectively.

Let e1, . . . , eg ∈ Kn be linearly independent solutions of the system (A + λB)x = 0,
completing them to a basis of Kn and rewriting the pencil with respect to this basis, we
get Ã+λB̃ =

[
0m×g Ã1 + λB̃1

]
. One can do the same by taking h linearly independent

vectors that are solutions of the transpose pencil and hence the first h rows of Ã1 + λB̃1

are zero with respect this new basis. Thus we obtain
[
0h×g

A0 + λB0

]
,

where A0+λB0 does not have any degree zero relation, and hence either A0+λB0 satisfies
the assumptions of Theorem 2.7.12 or it is a regular pencil. There is a quicker way, due
to Kronecker, to determine the canonical form of a given pencil, avoiding the iterative
reduction just explained. It involves the notion of minimal indices. These last, together
with elementary divisors (possibly infinite) will form a complete system of invariants for
non singular pencils.

Let A + λB be a non singular pencil and let x1(λ) be a non zero solution of least
degree ε1 for (A+λB)x = 0. Take x2(λ) as a solution of least degree ε2 such that x2(λ) is
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linearly independent from x1(λ). Continuing this process, we get a so called fundamental
series of solutions of the system

x1(λ), . . . , xp(λ), of degrees ε1 ≤ · · · ≤ εp, for some p ≤ n.

We remark that a fundamental series of solution is not uniquely determined, but one can
show that the degrees ε1, . . . , εp are the same for any fundamental series associated to a
given system (A + λB)x = 0. The minimal indices for the columns of A + λB are the
integers ε1, . . . , εp. Similarly, the minimal indices for the rows are the degrees η1, . . . , ηq
of a fundamental series of solutions of (AT + λBT )x = 0.

Proposition 2.7.13 ([Gan59, Vol. 2, Ch. XII, Sec. 5, Par. 2]). Strictly equivalent
pencils have the same minimal indices.

Now let A+ λB be a singular pencil and consider its normal form



0h×g

Lεg+1

. . .
Lεp

LT
ηh+1

. . .
LT
ηq

A0 + λB0




. (2.7.14)

Remark 2.7.14. The system of indices for the columns (rows) of the above block diagonal
matrix is obtained by taking the union of the corresponding system of minimal indices of
the individual blocks.

We want to determine minimal indices for the above normal form (2.7.14). By the
previous remark, it is sufficient to determine the minimal indices for each block. Clearly
the regular block A0 + λB0 has no minimal indices, the zero block 0h×g has g minimal
indices for columns and h minimal indices for rows all equal to zero respectively, namely
ε1 = · · · = εg = η1 = · · · = ηh = 0. The block Lεi ∈ Mεi,εi+1(K) has linearly independent
rows, therefore it has just one minimal index for column εi for all i = 1, . . . , p. Similarly,
for all j = 1, . . . , q the block Lηj has just one minimal index for rows ηj.

We conclude that the canonical form (2.7.14) is completely determined by both the
minimal indices ε1, . . . , εp, η1, . . . , ηq and the elementary divisors.

Theorem 2.7.15 (Kronecker). Two arbitrary pencils A+λB and A1+λB1 of rectangular
matrices are strictly equivalent if and only if they have the same minimal indices and the
same elementary divisors (possibly infinite).

Example 2.7.16. Consider the pencil

A+ λB =




1 0 λ 3λ+ 1 1 2
2λ λ λ 3 λ 0
0 0 0 1 1 1

2λ+ 1 λ 2λ+ 1 3λ+ 4 λ+ 1 2


 .
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The kernel of the system (A+ λB)x = 0 is generated by

Ker(A+ λB) = ⟨




1
1
−3
1
0
−1



,




1
−3
0
0
1
−1



,




−λ2
2λ2 − λ− 1

λ
0
0
0



⟩.

Since the minimum integer of the non constant solution is ε = 2, we know that the normal
form of the pencil contains the following block

L2 =

[
λ 1 0
0 λ 1

]
.

Moreover, we see that there are g = 2 linearly independent constant solutions. Consid-
ering the transpose pencil, then

Ker((A+ λB)T ) = ⟨




−1
−1
0
1


⟩,

so there is just one constant solution. Therefore, keeping the above notation, η = 0 and
h = 1. Moreover the invariant polynomials of the pencil are i4(λ, µ) = 0, i3(λ, µ) = µ
and all the others are equal to 1. Therefore the Kronecker normal form of A+ λB is




0 0
λ 1 0
0 λ 1

1


 .

2.7.1.3 3-factors tensor spaces and matrix pencils

From now on we work over C. Any tensor T ∈ C2 ⊗ Cm ⊗ Cn can be seen as a matrix
pencil via the isomorphism

C2 ⊗ (Cm)∗ ⊗ (Cn)∗
∼−→ {Cm × Cn Φ−→ C2}.

We can easily pass from a tensor T ∈ C2 ⊗ Cm ⊗ Cn to its associated matrix pencil
(and viceversa) by fixing a basis on each factor and looking at T in its coordinates with
respect to the fixed bases. For example, let us fix the canonical basis on each factor and
let T = (tijk) ∈ C2 ⊗ Cm ⊗ Cn. We can associate to T the map

ΦT : Cm × Cn −→ C2

(v, w) 7→ (vTAw, vTBw)

where
A = (t1ij)i=1,...,m,j=1,...,n and B = (t2ij)i=1,...,m,j=1,...,n.
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Example 2.7.17. To the tensor

T = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 + (e1 + e2)⊗ e1 ⊗ e2 ∈ C2 ⊗ C2 ⊗ C2

we can associate the following matrix pencil
[
1 1
0 0

]
+ λ

[
0 1
0 1

]
.

Fixing the integer m equal to either 2 or 3 in C2 ⊗ Cm ⊗ Cn leads us to consider very
special tensor formats, i.e. C2⊗C2⊗Cn and C2⊗C3⊗Cn, because in these cases there is
a finite number of orbits with respect to the action of products of general linear groups.

Theorem 2.7.18 ([Kac80]). The only spaces of tensors with a finite number of GLn1+1×
· · · ×GLnk+1-orbits are

1. Cn ⊗ Cm,

2. C2 ⊗ C2 ⊗ Cn,

3. C2 ⊗ C3 ⊗ Cn.

The last two items of the above theorem have been widely studied. In [Par01], P.
Parfenov gave a complete orbit classification working in the affine setting. Moreover, for
any tensor belonging to any of these tensor spaces, one can consider the associated matrix
pencil and, by computing its Kronecker normal form, it is possible to understand its
rank. This last result comes from the following more general statement that is historically
attributed to Grigoriev, JáJá and Teichert. We refer to [BL13, Remark 5.4] for a historical
note on the theorem.

Theorem 2.7.19 ([Gri78], [JáJ79], [Tei86]). Let T ∈ C2 ⊗ Cm ⊗ Cn and let A be the
corresponding pencil with minimal indices ε1, . . . , εp, η1, . . . , ηq and regular part C = A0+
λB0 of size N . Let δ(C) be the number of non-squarefree invariant polynomials of C.
Then T is a tensor of rank

p∑

i=1

(εi + 1) +

q∑

i=1

(ηj + 1) +N + δ(C). (2.7.15)

In [BL13], J. Buczyński and J. M. Landsberg reviewed the orbits classification made
in [Par01] for the last two items of Theorem 2.7.18 and gave a geometric interpretation
of the projectivization of all the orbits closures appearing in both cases.

Since it will be useful in the sequel, we report here two tables taken from [BL13].
Table 2.1 represents the orbit classification of C2 ⊗ C2 ⊗ Cn, while Table 2.3 contains all
orbits in C2 ⊗ C3 ⊗ C3. In each table, we presented the projective closure of any orbits,
a tensor representative together with its rank and border rank. In both cases we will use
the following notation.

Notation 2.7.20. Let A,B,C be C-vector spaces of dimensions 2,m and n respectively
and let X1,m−1,n−1 = ν(PA×PB×PC) be the corresponding Segre variety. Let Subijk ⊂
P(A ⊗ B ⊗ C) be the space of tensors q = [T ] ∈ P(A ⊗ B ⊗ C) such that there exist
linear subspaces A′ ⊂ A, B′ ⊂ B, C ′ ⊂ C of dimension i, j, k respectively such that
T ∈ A′ ⊗ B′ ⊗ C ′, i.e. A′ ⊗ B′ ⊗ C ′ is the concise tensor space of T . Denote by
X1,m−1,n−1∗ ⊂ P(A∗ ⊗ B∗ ⊗ C∗) the Segre variety in the dual projective space and by
X∨

1,m−1,n−1∗ ⊂ P(A⊗B ⊗ C) its dual variety.
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Orbits in C2 ⊗ C2 ⊗ Cn

Orbit closure Kroneker normal form brank rank
1 X a1 ⊗ b1 ⊗ c1 1 1
2 Sub221 a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c1 2 2
3 Sub122 a1 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c2 2 2
4 Sub212 a1 ⊗ b1 ⊗ c1 + a2 ⊗ b1 ⊗ c2 2 2
5 τ(X1,1,1) a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ b1 ⊗ c2 2 3
6 σ2(X1,1,1) = Sub222 a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 2 2
7 X∨

1,1,2∗ a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c3) + a2 ⊗ b1 ⊗ c2 3 3
8 σ3(X1,1,2) = Sub223 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ (b1 ⊗ c2 + b2 ⊗ c3) 3 3
9 P(C2 ⊗ C2 ⊗ C4) a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c3) + a2 ⊗ (b1 ⊗ c2 + b2 ⊗ c4) 4 4

Table 2.1: Normal forms of tensors in C2 ⊗ C2 ⊗ C3 (cf. [BL13, Table 1])

We remark that in Table 2.1 all ai ∈ C2, bj ∈ C2 and ck ∈ Cn are considered as linearly
independent vectors of the corresponding spaces.

In terms of matrix pencils and taking λ, µ as parameters of the first factor, each orbit
representative can be seen as follows.

1 2 3 4 5 6 7 8 9

[
λ
] [

λ µ
] [

λ
λ

] [
λ
µ

] [
λ µ

λ

] [
λ

µ

] [
λ µ

λ

] [
λ µ

λ µ

] [
λ µ

λ µ

]

Table 2.2: Matrix pencils associated to Kronecker normal forms of table 2.1

Orbits in C2 ⊗ C3 ⊗ C3

We present in the following table all orbits of C2 ⊗ C3 ⊗ C3 that are not contained in
Sub223 ⊂ C2⊗C3⊗C3. The unnamed orbits 13−16 are components of the singular locus
of X∨

1,2,2∗ ⊂ Sub233.

Orbit closure Kroneker normal form brank rank
10 Sub133 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2 + b3 ⊗ c3) 3 3
11 X∨

1,2,1∗ ⊂ Sub232 a1 ⊗ (b1 ⊗ c1 + b3 ⊗ c2) + a2 ⊗ b2 ⊗ c1 3 3
12 Sub232 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ (b2 ⊗ c1 + b3 ⊗ c2) 3 3
13 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c3) + a2 ⊗ (b1 ⊗ c2 + b3 ⊗ c3) 3 4
14 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ b3 ⊗ c3 3 3
15 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2 + b3 ⊗ c3)a2 ⊗ b1 ⊗ c2 3 4
16 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2 + b3 ⊗ c3) + a2(⊗b1 ⊗ c2 + b2 ⊗ c3) 3 4
17 X∨

1,2,2∗ ⊂ S233 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ (b1 ⊗ c2 + b3 ⊗ c3) 3 4
18 Sub233 a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c2) + a2 ⊗ (b2 ⊗ c2 + b3 ⊗ c3) 3 3

Table 2.3: Normal forms of tensors in C2 ⊗ C3 ⊗ C3 (cf. [BL13, Table 3])

In terms of matrix pencils, taking λ, µ as parameters of the first factor, each orbit
representative can be seen as follows.
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λ

λ
λ






λ
µ

λ






λ
µ λ

µ






λ µ

λ
µ






λ

λ
µ






λ µ

λ
λ






λ µ

λ µ
µ






λ µ

λ
µ






λ

λ+ µ
µ




Table 2.4: Matrix pencils associated to Kronecker normal forms of Table 2.3

For an analogous table representation of both orbits and tensors in C2 ⊗ C3 ⊗ Cn for
all n ≥ 4 we refer to [BL13, Tables 4,5].

2.7.2 The algorithm

All possible cases of non-identifiabile rank-3 tensors are collected in Theorem 2.6.1.
The input of the algorithm we propose is a tensor T = (ti1,i2,··· ,ik) ∈ Cn1 ⊗ · · · ⊗ Cnk ,

where k ≥ 3, all nℓ ≥ 1 and all ij = 1, . . . , nj. The output of the algorithm is a statement
telling if the given tensor is a rank-3 tensor that falls into one of the cases mentioned
above or not.

The first step of the algorithm is to compute the concise tensor space Tn′
1,...,n

′
k′
= Cn′

1⊗
· · ·⊗Cn′

k′ of T , that is the smallest tensor space containing the cone of the concise Segre
of T (cf. Definition 2.2.1). We refer to Subsubsection 1.1.1.1 for a detailed description of
the concision process in coordiantes. Based on the resulting concise tensor space Tn′

1,...,n
′
k′
,

we split the algorithm into 2 different parts depending on whether Tn′
1,...,n

′
k′

is made by
three factors or not. Subsubsection 2.7.2.1 is devoted to the 3-factors case while we refer
to Subsubsection 2.7.2.2 for the other case.

Remark 2.7.21. Fix a tensor T ∈ Cn1 ⊗ · · · ⊗ Cnk and compute the multilinear rank of
T . By using the left inequality in (1.1.2) on each flattening φℓ, we are able to exclude
some of the cases in which r(T ) is higher than 3. In those cases the algorithm stops since
we are interested in rank-3 tensors. Moreover, if the multilinear rank of T contains more
than k − 3 positions equal to 1 then T is either a rank-1 tensor or a matrix and we can
also exclude these cases. Lastly, we remark that since the concise Segre of a rank-3 tensor
is ν(Pm1 × · · · × Pmk) where all mi ∈ {1, 2} for all i = 1, . . . , k, if one of the values in
mr(T ) = (dim(Cmi+1))i=1,...,k is different from either 2 or 3 then we can immediately stop
the algorithm. Therefore, at the end of the concision process, we deal with a

T ′ ∈ Cn′
1

1 ⊗ · · · ⊗ C
n′
k′

k′

such that

• r(T ′) ≥ 2,

• 3 ≤ k′ ≤ k

• all n′
i ∈ {2, 3}.

Now, depending on whether k′ = 3 or k′ ≥ 4, we split the algorithm into 2 different
parts. In Section 2.7.2.1 we treat the 3 factors case and Section 2.7.2.2 contains the
remaining cases.
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2.7.2.1 Three factors case

This subsubsection is devoted to treat the case in which the concise tensor space of
the tensor T given in input has three factors. By Remark 2.7.21, the concise space
Tn1,...,nk

= Cn1 ⊗ · · · ⊗ Cnk of a tensor T is such that all ni ∈ {2, 3}. Moreover, if k = 3
the only possibilities for Tn1,n2,n3 up to a reordering of the factors are

1. T2,2,2 = C2 ⊗ C2 ⊗ C2;

2. T3,2,2 = C3 ⊗ C2 ⊗ C2;

3. T3,3,2 = C3 ⊗ C3 ⊗ C2;

4. T3,3,3 = C3 ⊗ C3 ⊗ C3.

Remark 2.7.22. The presence of a C2 in T2,2,2, T3,2,2, T3,3,2 allows to see all their elements
as a matrix pencil (cf. Section 2.7.1.3), in these cases we are also able to compute the rank
of one of those tensors by classifying their at its associated matrix pencils (cf. Theorem
2.7.19).

All the considerations made in the following will be summed up in Algorithm 1 at the
end of the subsubsection.

T2,2,2 = C2 ⊗ C2 ⊗ C2

The second secant variety of X1,1,1 = ν(P1 × P1 × P1) ⊂ P7 fills the ambient space, i.e.
dimσ2(X1,1,1) = 7. Consequently, any tensor [T ] ∈ P7 \X1,1,1 is either an element of the
open part σ0

2(X1,1,1) or an element of the tangential variety τ(X1,1,1) of X1,1,1. Therefore
if the concise tensor space of T is T2,2,2 = C2⊗C2⊗C2 rank-1 is excluded and T has rank
either 2 or 3. We detect the rank of T with the Cayley’s hyperdeterminant which is the
defining equation of τ(X1,1,1) (cf. [GKZ08]).

Definition 2.7.23 ([GKZ08]). Let A = (aijk)i,j,k=0,1 ∈ C2 ⊗ C2 ⊗ C2. The Cayley’s
hyperdeterminant Hdet(A) of A is

Hdet(A) :=
(∣∣∣∣
a000 a001
a100 a111

∣∣∣∣+
∣∣∣∣
a010 a001
a110 a101

∣∣∣∣
)2

− 4

∣∣∣∣
a000 a001
a100 a101

∣∣∣∣ ·
∣∣∣∣
a010 a011
a110 a111

∣∣∣∣ .

Therefore if T is a concise tensor in T2,2,2 and Hdet(T ) = 0 then T has rank 3 and it
is not identifiable, otherwise it has rank 2.

T3,2,2 = C3 ⊗ C2 ⊗ C2

The non-identifiable rank-3 tensors of T3,2,2 = C3 ⊗C2 ⊗C2 come from cases (d), (e) and
(f) of Theorem 2.6.1.

If T3,2,2 is the concise tensor space of T , then obviously r(T ) ≥ 3. One can show that
actually r(T ) = 3 by using the following result.

Theorem 2.7.24 ([Lan12, Theorem 3.1.1.1]). Let T ∈ Cm1 ⊗ Cm2 ⊗ Cm3. Then r(T )
equals the number of rank one matrices needed to span (a space containing) T ((Cm1)∗) ⊂
Cm2 ⊗ Cm3 (and similarly for the permuted statements).
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Therefore every concise T ∈ T3,2,2 is a rank-3 tensor. Moreover, since the dimension
of the third secant variety of X2,1,1 = ν(P2 × P1 × P1) ⊂ P11 is min{14, 11}, the generic
fiber of the projection from the abstract secant variety to the secant variety has projective
dimension 2, so the generic element of σ3(X2,1,1) has an infinite number of decompositions.
Therefore, by Proposition 2.1.4, any rank-3 tensor in σ3(X2,1,1) is not identifiable, from
which follows that any tensor whose concise tensor space is T3,2,2 = C3 ⊗ C2 ⊗ C2 is a
non-identifiable rank-3 tensor.

Remark 2.7.25. Note that rank-3 tensors can also live in σ2(X2,1,1) but a concise rank-3
tensor T ∈ T3,2,2 lies only on the third secant variety of X2,1,1.

The distinction between cases (d), (e) and (f) of Theorem 2.6.1 arises by looking at the
space of solutions of the given tensor in C3 ⊗C2 ⊗C2 (cf. Definition 2.2.2). All the three
examples can be treated by looking at the matrix pencil associated to the corresponding
tensor. We refer to Subsection 2.7.1 for a brief review of matrix pencils and in particular
to Subsubsection 2.7.1.3 for the connection with 3-way tensors.

Remark 2.7.26. In order to be consistent with the matrix pencil notation used in Sub-
section 2.7.1 in which the first factor is used as a parameter space for the pencil, we swap
the first and third factor of T3,2,2, working now on T2,2,3 = C2 ⊗ C2 ⊗ C3.

Table 2.1 offers a complete description of all orbits in C2 ⊗ C2 ⊗ C3, providing also
the orbit closure in each case together with the Kronecker normal form of each orbit
representative and its rank. Since we are working with concise rank-3 tensors of T2,2,3,
we are interested in cases 7 and 8 of Table 2.1, i.e.

•
[
λ µ 0
0 0 λ

]
∼ a1 ⊗ (b1 ⊗ c1 + b2 ⊗ c3) + a2 ⊗ b1 ⊗ c2,

•
[
λ µ 0
0 λ µ

]
∼ a1 ⊗ b1 ⊗ c1 + a2 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c2 + a2 ⊗ b2 ⊗ c3,

where all ai, bj, ck are linearly independent elements of the corresponding factors.

Let us see which is the relation between the above Kronecker normal forms and our
examples of non-identifiable rank-3 tensors in T2,2,3.

Lemma 2.7.27. The matrix pencil associated to any tensor T ∈ C2 ⊗ C2 ⊗ C3 belonging
either to Example 2.3.10 or to Example 2.3.15 is of the following form:

[
λ µ 0
0 0 λ

]
∼
[
λ µ 0
0 0 µ

]
.

Proof. Let T ∈ C2 ⊗ C2 ⊗ C3 be as in Example 2.3.10, so

T = p̃⊗ v1 ⊗ u1 + p̃⊗ v2 ⊗ u2 + w ⊗ (αv1 + βv2)⊗ u3.

The matrix pencil associated to T with homogeneous parameters λ, µ referred to the basis
{p̃, w} ⊂ C2 is

A =

[
λ 0 αµ
0 λ βµ

]
.
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Since A is a singular pencil (cf. Definition 2.7.2), in order to achieve the normal form of
A, we have to look at the minimum degree ε of the elements in

Ker(A) = ⟨



−αµ
−βµ
λ


⟩

with respect to λ, µ (cf. Section 2.7.1.2). Since ε = 1, by Theorem 2.7.12, the normal
form of A should contain a block of size ε× (ε+ 1) of this type



λ µ

. . . . . .
λ µ


 .

Therefore we can conclude that

A =

[
λ µ 0
0 0 λ

]
.

If T ∈ C2 ⊗ C2 ⊗ C3 is as in Example 2.3.15, then

T = w ⊗ (v1 ⊗ u1 + v2 ⊗ u2) + w̃ ⊗ (β1v1 + β2v2)⊗ (α1u1 + α2u2 + u3).

The matrix pencil associated to T with homogeneous parameters λ, µ referred to the basis
{w, w̃} ⊂ C2 is

A =

[
λ+ α1β1µ α2β1µ β1µ
α1β2µ λ+ α2β2µ β2µ

]
.

The kernel of A is

Ker(A) = ⟨




−β1µ
−β2µ

λ+ (α1β1 + α2β2)µ


⟩.

As before, by Theorem 2.7.12, we know that T must contain a block of size 1× 2 of the
form

[
λ µ

]
. Therefore

T ∼
[
λ µ 0
0 0 λ

]
.

Corollary 2.7.28. Let T ∈ C2 ⊗ C2 ⊗ C3. The tensor T is a non-identifiable rank 3
tensor coming from either case (e) or case (f) of Theorem 2.6.1 if and only if the pencil
associated to T is of the form [

λ µ 0
0 0 λ

]
.

Proof. By Lemma 2.7.27, the matrix pencil associated to any tensor that belongs to either
Example 2.3.10 or Example 2.3.15 is

[
λ µ 0
0 0 λ

]
.

The viceversa also holds since actually the above pencil corresponds to the tensor

a1 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c3 + a2 ⊗ b1 ⊗ c2

which is as in Example 2.3.10.
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Lemma 2.7.29. The matrix pencil associated to a tensor T ∈ C2 ⊗C2 ⊗C3 that is as in
Example 2.3.8 is [

λ µ 0
0 λ µ

]
.

Proof. Let T ∈ C2 ⊗ C2 ⊗ C3 be as in Example 2.3.8, i.e. there is a basis {ui}i≤3 ⊂ C3

and a basis {v1, v2} ⊂ C2 such that

T = v1 ⊗ v1 ⊗ u1 + v2 ⊗ v2 ⊗ u2 + (αv1 + βv2)⊗ (αv1 + βv2)⊗ u3,

for some (α, β) ∈ C2 \ {(0, 0)}. The matrix pencil associated to T with homogeneous
parameters λ, µ referred to the basis {v1, v2} ⊂ C2 is

A =

[
λ 0 α2λ+ αβµ
0 µ αβλ+ β2µ

]
.

The kernel of A is

Ker(A) = ⟨



α2λµ+ αβµ2

αβλ2 + β2λµ
−λµ


⟩,

so the minimum degree ε of the elements in Ker(A) with respect to λ, µ is 2. Therefore,
by Theorem 2.7.12, the normal form of A is

[
λ µ 0
0 λ µ

]
.

Corollary 2.7.30. Let T ∈ C2 ⊗ C2 ⊗ C3. The tensor T is a non-identifiable rank-3
tensor coming from case (d) of Theorem 2.6.1 if and only if the pencil associated to T is
of the form [

λ µ 0
0 λ µ

]
.

Proof. By Lemma 2.7.29, the matrix pencil associated to any tensor that belongs to
Example 2.3.8 is [

λ µ 0
0 λ µ

]
.

The viceversa also holds since actually the above pencil corresponds to the tensor

e1 ⊗ e1 ⊗ e1 + (e1 ⊗ e2 + e2 ⊗ e1)⊗ e2 + e2 ⊗ e2 ⊗ e3

which is as in Example 2.3.8.

T3,3,2 = C3 ⊗ C3 ⊗ C2

Let T3,3,2 be the concise tensor space of the tensor T we have in input. We recall that
the only non-identifiable rank-3 tensors in this case are the ones of Proposition 2.3.14, i.e.
case (f) of Theorem 2.6.1. More precisely, let Y ′ = P1×P1×{w} ⊂ Y2,2,1 = P2×P2×P1.
Take q′ ∈ ⟨ν(Y ′)⟩\ν(Y2,2,1) and p ∈ Y2,2,1\Y ′. Then [T ] ∈ ⟨q′, ν(p)⟩ is a rank-3 tensor and
it is not identifiable. If we take {ui}i≤3 ⊂ C3 as a basis of the first factor, {vi}i≤3 ⊂ C3
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as a basis of the second factor and {w, w̃} ⊂ C2 as a basis of the third factor, then T is
of the form

T =u1 ⊗ v1 ⊗ w + u2 ⊗ v2 ⊗ w + u3 ⊗ v3 ⊗ w̃. (2.7.16)

Again we can look at this case by considering the associated matrix pencil of T . As
before (cf. Remark 2.7.26), to be consistent with the matrix pencil notation we already
introduced, we swap the first and third factor of T3,3,2, working now on T2,3,3 = C2⊗C3⊗C3.

Table 2.3 collects all Kronecker normal forms contained in T2,3,3. Since we are inter-
ested in rank-3 tensors having T2,3,3 as concise tensor space, the only possibilities in terms
of matrix pencils are



λ 0 0
0 λ 0
0 0 µ


 and



λ 0 0
0 λ+ µ 0
0 0 µ


 . (2.7.17)

Remark 2.7.31. The matrix pencil associated to (2.7.16) is the first one in (2.7.17) and
it is easy to check that the tensor corresponding to the first matrix pencil in (2.7.17) is
actually T .

Therefore, if the concise tensor space of T is T2,3,3,, it is sufficient to consider the
normal form of the concise tensor T ′ related to T and check if it corresponds to



λ 0 0
0 λ 0
0 0 µ


 .

Moreover, as in the previous case, we are able to detect the rank of any tensor having
T2,3,3 as a concise tensor space (cf. Remark 2.7.22).

T3,3,3 = C3 ⊗ C3 ⊗ C3

By Theorem 2.6.1, all rank-3 tensors whose concise tensor space is T3,3,3 are identifi-
able. Therefore if the concise tensor space of T is as in 4 we can immediately say that T
does not belong to one of the 6 families of non-identifiable rank-3 tensors.

We collect all the considerations made in this subsubsection in the following algorithm.

Algorithm 1 (Three factors case)
Input: Concise tensor T = (ti1,i2,i3) ∈ Cn1 ⊗ Cn2 ⊗ Cn3 , with ni = 2, 3 for all i = 1, 2, 3.
Output: A statement on whether T belongs to one of the six cases of non-identifiable
rank-3 tensors or not.

0. Permute the three factors in a reverse lexicographic order.
1. Case (n1, n2, n3) = (2, 2, 2).

If T satisfies Cayley’s hyperdeterminant equation

Hdet(T ) :=
(∣∣∣∣
t0,0,0 t0,0,1
t1,0,0 t1,1,1

∣∣∣∣+
∣∣∣∣
t0,1,0 t0,0,1
t1,1,0 t1,0,1

∣∣∣∣
)2

− 4

∣∣∣∣
t0,0,0 t0,0,1
t1,0,0 t1,0,1

∣∣∣∣ ·
∣∣∣∣
t0,1,0 t0,1,1
t1,1,0 t1,1,1

∣∣∣∣

the output is T belongs to case (b) of Theorem 2.6.1 therefore it is not identifiable.
Otherwise the output is T is an identifiable rank-2 tensor.

66



2. Case (n1, n2, n3) = (2, 2, 3) (Remark that we already know that T is not identifiable,
so we only need to classify it).
Compute the Kronecker normal form of T .

• If the Kronecker normal form of T is
[
λ µ 0
0 0 µ

]

then T is either as in Example 2.3.10 or as in Example 2.3.15 and the output
is T belongs to either case (e) or (f) of Theorem 2.6.1, therefore it is not
identifiable.

• Else, T is as in Example 2.3.8 and the output is T belongs to case (d) of
Theorem 2.6.1 and it is not identifiable.

3. Case (n1, n2, n3) = (2, 3, 3).
Compute the normal form of T .

• If the Kronecker normal form of T is


λ 0 0
0 λ 0
0 0 µ




then the output is T belongs to case (f) of Theorem 2.6.1, therefore it is not
identifiable.

• Else the output will be the rank of T computed via (2.7.15) of Theorem 2.7.19
and T is not on the list of non-identifiable rank-3 tensors.

4. Otherwise (n1, n2, n3) = (3, 3, 3) and the output is T is not on the list of non-
identifiable rank-3 tensors.

2.7.2.2 More than three factors

Before proceeding, we need to recall some results on secant varieties of Segre varieties
that will be useful in the sequel.

Given a tensor T ∈ Tn1,...,nk
, the j-th flattening of T is a linear map φj : (Cnj)∗ →

Cn1 ⊗· · ·⊗Cnj−1⊗Cnj+1⊗· · ·⊗Cnk (cf. Definition 1.1.9). Note that the j-th flattening is
referred to the partition {1, . . . , k} = {j}∪ {1, . . . , j− 1, j+1, . . . , k}. We can generalize
this notion as follows.

Definition 2.7.32. Let T ∈ Cn1 ⊗ · · · ⊗ Cnk and let I, J ⊂ {1, . . . , k} be set of indices
partitioning {1, . . . , k}. Fix a partition I ∪ J = {1, . . . , k}, the generalized flattening of
T is the linear map

φI,J :
⊗

i∈I
(Cni)∗ →

⊗

j∈J
Cnj .

Minors of generalized flattening are useful to compute equations of some secant vari-
eties.

Remark 2.7.33. The equations of σ2(Xn1,...,nk
) for some Segre variety Xn1,...,nk

are given
by the 3× 3 minors of all generalized flattenings (cf. [LM04]).
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Let us focus on the third secant variety of a given projective variety. In order to recall
set theoretic defining equations of this variety, we need to recall the Strassen’s equations.

Let A,B,C be C-vector spaces of finite dimensions and let T ∈ A ⊗ B ⊗ C, i.e.
T : B∗ → A⊗ C. Consider the linear map

IdA ⊗ T : A⊗ C → A⊗ A⊗ C

and the projection

π : A⊗ A→
2∧
A.

By composing the two maps we get

T∧
BA : A⊗B∗ →

2∧
A⊗ C.

Strassen’s equations are given by minors of the map T∧
BA.

Theorem 2.7.34 ([Qi13, Theorem 1.4]). 1 The third secant variety of the Segre product
of k projective spaces σ3(Xn1,...,nk

) is set theoretically defined by Strassen’s equations for
all partitions I ∪J ∪K = {1, . . . , k} and all 4×4 minors of generalized flattenings. More
precisely, when ni ≤ 2 for each i, σ3(Xn1,...,nk

) is set theoretically defined by Strassen’s
equations of degree 4 for the partitions {i} ∪ {j} ∪ {1, . . . , î, . . . , ĵ, . . . , k} and all 4 × 4
minors of generalized flattenings.

Moreover we recall the following result on the stratification by rank of the third secant
variety of a Segre variety.

Theorem 2.7.35 ([BB19, Theorem 1.8]). Let Xn1,...,nk
be a Segre variety with k ≥ 3

factors. Denote by α the cardinality of {i ∈ {1, . . . , k} | ni ≥ 2}. Then for any x ∈
{3, . . . , α + k − 1} there is an element p ∈ σ3(Xn1,...,nk

) \ σ2(Xn1,...,nk
) with r(p) = x.

For completeness, since it will be mentioned in the sequel we also recall how to find
equations for the tangential variety of a Segre variety. Given a tensor space V1⊗· · ·⊗Vk,
these equations arise by looking at the decomposition of Symn(V1⊗· · ·⊗Vk) in irreducibles
(GL(V1)× · · · ×GL(Vk))-modules. Given a partition λ = (λ1, . . . , λp) of an integer n and
given a vector space V , we denote by SλV the Schur module associated to λ. We refer
to [Lan12, Ch. 6] for a detailed exposition of these notions.

Theorem 2.7.36 ([Oed, Theorem 1.3]). The tangential variety τ(ν(PV ∗
1 ×· · ·×PV ∗

k )) is
cut out set-theoretically by the cubics in Sym3(V1 ⊗ · · · ⊗ Vk) with four S(2,1) factors and
all other factors S(3,0), and the quartics in Sym4(V1 ⊗ · · · ⊗ Vk) with three S(2,2)’s and all
other factors S(4,0).

We are now ready to develop the case in which a concise tensor space of a tensor has
more than 3 factors, i.e.

Tn1,...,nk
= Cn1 ⊗ · · · ⊗ Cnk

where k > 3 and all ni ∈ {2, 3}. We will first treat the case in which k = 4 and
n1 = n2 = n3 = n4 = 2 and then we will treat all together the remaining cases.
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Non-identifiable tensors with at least 4 factors

Consider for the moment the 4-factors case, i.e.

Tn1,n2,n3,n4 = Cn1 ⊗ Cn2 ⊗ Cn3 ⊗ Cn4 ,

where all ni ∈ {2, 3}. Following our classification theorem (cf. Theorem 2.6.1), working
with 4 factors there are only two families of non-identifiable tensors, namely items (c) and
(f) of Theorem 2.6.1. Case (f) is referred to non-identifiable rank-3 tensors of Proposition
2.3.14 adapted to the 4-factors case, while case (c) contains any rank-3 tensor in C2 ⊗
C2 ⊗ C2 ⊗ C2. Let us first treat the case of T24 = C2 ⊗ C2 ⊗ C2 ⊗ C2.

T24 = C2 ⊗ C2 ⊗ C2 ⊗ C2

We recall that the third secant variety of the Segre variety X14 is defective (cf. Remark
2.3.3). Moreover, by Theorem 2.7.35, any element of σ3(X14)\σ2(X14) is a rank-3 tensor.
Therefore any tensor in σ3(X14) \ σ2(X14) is a non-identifiable rank-3 tensor.

Thus, working over T2,2,2,2, to detect whether a given tensor T ∈ T2,2,2,2 is a non-
identifiable rank-3 tensor it is sufficient to verify if [T ] ∈ σ3(X14) \ σ2(X14), i.e. if T
satisfies the equations of σ3(X14) given in Theorem 2.7.34 and T does not satisfies the
equations of σ2(X14) given in Remark 2.7.33.

Tn1,...,nk
̸= C2 ⊗ C2 ⊗ C2 ⊗ C2 , with k ≥ 4, ni = 2, 3 for all i = 1, . . . , k

Let now k ≥ 4 with Tn1,...,nk
̸= C2⊗C2⊗C2⊗C2. In this case, any non-identifiable rank-3

tensor comes from case (f) of Theorem 2.6.1. More precisely, let

Y ′ := P1 × P1 × {u3} × · · · × {uk} ⊂ Ym1,m2,1k−2 = Pm1 × Pm2 × P1 × · · · × P1,

with m1,m2 ∈ {1, 2}. Let q′ ∈ ⟨ν(Y ′)⟩ \ ν(Ym1,m2,1k−2) and p ∈ Ym1,m2,1k−2 \ Y ′. We saw
that any [T ] ∈ ⟨q′, ν(p)⟩ is a non-identifiable rank-3 tensor. Let {ui, ũi} be a basis of the
Cni arising from the i-th factor of Ym1,m2,1k−2 for all i ≥ 3. Take distinct a1, a2 ∈ Cm1+1

and distinct b1, b2 ∈ Cm2+1 and if m1 = 1 then let a3 ∈ ⟨a1, a2⟩ otherwise we let a1, a2, a3
form a basis of the first factor. Let b3 ∈ ⟨b1, b2⟩ if m2 = 1, otherwise b1, b2, b3 form a basis
of the second factor. With respect to these bases T can be written as

T =(a1 ⊗ b1 + a2 ⊗ b2)⊗ u3 ⊗ · · · ⊗ uk + a3 ⊗ b3 ⊗ ũ3 ⊗ · · · ⊗ ũk. (2.7.18)

Since the only type of tensors that we have to detect correspond to (2.7.18), we may
restrict ourselves to consider the following tensor spaces:

• T3,2k−1 = C3 ⊗ C2 ⊗ C2 ⊗ · · · ⊗ C2;

• T3,3,2k−2 = C3 ⊗ C3 ⊗ C2 ⊗ · · · ⊗ C2;

• T2k = C2 ⊗ C2 ⊗ C2 ⊗ · · · ⊗ C2 (with k ≥ 5).

Definition 2.7.37. Let Tn1,...,nk
= Cn1 ⊗ · · · ⊗ Cnk , fix integer k′ ≤ k and let I = ∪k′

i=1Ii
be a partition of {1, . . . , k}. A reshape of T of type I1, . . . , Ik′ is a bijection

ϑI1,...,Ik′ : Tn1,...,nk
−→ CN1 ⊗ · · · ⊗ CNk′ ,

where CNi =
⊗

j∈Ii Cnj for all i = 1, . . . , k′, i.e. Ni =
∏

j∈Ii ni and CNi is the vectorization
of
⊗

j∈Ii Cnj .
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In other words a reshape of a tensor space Tn1,...,nk
is a different way of grouping

together some of the factors of Tn1,...,nk
(eventually it is also necessary to reorder the

factors of Tn1,...,nk
).

In the following we will be interested in the reshape grouping together two factors
of a tensor space Tn1,...,nk

and we will denote by ϑi,j the corresponding map for some
i, j = 1, . . . , k, i.e.

ϑi,j : Cn1 ⊗ · · · ⊗ Cnk
∼−→ (Cni ⊗ Cnj)⊗ Cn1 ⊗ · · · ⊗ Ĉni ⊗ · · · ⊗ Ĉnj ⊗ · · · ⊗ Cnk .

Example 2.7.38. Let Tn1,...,nk
= Cn1 ⊗· · ·⊗Cnk and denote by ϑ1,2 the reshape grouping

together the first two factors of Tn1,...,nk

ϑ1,2 : Tn1,...,nk
−→ (Cn1 ⊗ Cn2)⊗ Cn3 ⊗ · · · ⊗ Cnk

T =
∑

i1,...,ik
ij=1,...,nj ,j=1,...,k

ti1,...,ikei1 ⊗ · · · ⊗ eik 7→
∑

i1,...,ik
ij=1,...,nj ,j=1,...,k

ti1,...,il(ei1 ⊗ ei2)⊗ ei3 ⊗ · · · ⊗ eik .

Since Cn1 ⊗Cn2 ∼= Cn1n2 , by sending the basis {ei1 ⊗ ei2}i1=1,...,n1,i2=1,...,n2 of Cn1 ⊗Cn2

to the basis {e1, . . . , en1n2} of Cn1n2 , then we write

ϑ1,2(T ) =
∑

j1,i3,...,ik
j1=1,...,n1n2, iℓ=1,...,nℓ,ℓ=3,...,k

tj1,i3,...,ikej1 ⊗ ei3 ⊗ · · · ⊗ eik ∈ Cn1n2 ⊗ Cn3 ⊗ · · · ⊗ Cnk .

The following lemma tells us how to completely characterize non-identifiable rank-3
tensors lying on either T3,2k−1 or T3,3,2k−2 or T2k .

Lemma 2.7.39. Let T ∈ Tn1,n2,2k−2 = Cn1 ⊗ Cn2 ⊗ C2 ⊗ · · · ⊗ C2 be a concise tensor in
Tn1,n2,2k−2, where n1, n2 ∈ {2, 3}, k ≥ 4 and Tn1,n2,2k−2 ̸= T24. Then T is as in case (f) of
Theorem 2.6.1 if and only if the following conditions hold:

1. the reshaped tensor ϑ1,2(T ) ∈ Cn1n2⊗(C2)⊗(k−2) is an identifiable rank-2 tensor with
respect to Cn1n2 ⊗ (C2)⊗(k−2)

ϑ1,2(T ) = T1 + T2 = x⊗ u3 ⊗ · · · ⊗ uk + y ⊗ v3 ⊗ · · · ⊗ vk ∈ Cn1n2 ⊗ (C2)⊗(k−2)

for some independent x, y ∈ Cn1n2 and some ui, vi ∈ C2 with ui, vi linearly indepen-
dent for all i = 3, . . . , k;

2. looking at x, y ∈ Cn1n2 as elements of Cn1 ⊗ Cn2 then {r(x), r(y)} = {1, 2}.

Proof. Let T ∈ Tn1,n2,2k−2 be as in case (f) of Theorem 2.6.1, so T can be written as

T = a1 ⊗ b1 ⊗ u3 ⊗ · · · ⊗ uk + a2 ⊗ b2 ⊗ u3 ⊗ · · · ⊗ uk + a3 ⊗ b3 ⊗ v3 ⊗ · · · ⊗ vk,

where ui ̸= vi for all i = 3, . . . , k, a1, a2, a3 are linearly independent if n1 = 3 and b1, b2, b3
are linearly independent if n2 = 3. Let ϑ1,2 be the reshape grouping together the first
two factors of Tn1,...,nk

. Let x := a1 ⊗ b1, y := a2 ⊗ b2 and z := a3 ⊗ b3 and remark that
r(x+ y) = 2 and r(z) = 1. Therefore

ϑ1,2(T ) =x⊗ u3 ⊗ · · · ⊗ uk + y ⊗ u3 ⊗ · · · ⊗ uk + z ⊗ v3 ⊗ · · · ⊗ vk

=(x+ y)⊗ u3 ⊗ · · · ⊗ uk + z ⊗ v3 ⊗ · · · ⊗ vk

=T1 + T2 ∈ Cn1n2 ⊗ C2 ⊗ · · · ⊗ C2.
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Note that the rank of (T1 + T2) ∈ Tn1n2,2k−2 is at most 2 and in fact r(T1 + T2) = 2
since ui, vi are linearly independent for all i = 3, . . . , k. Moreover, we recall that the only
non-identifiable rank-2 tensors are matrices (cf. Proposition 2.2.7). Therefore, since the
concise tensor space of T1+T2 is made by at least 3 factors, then T1+T2 is an identifiable
rank-2 tensor.

Viceversa let T ∈ Tn1,n2,2k−2 such that ϑ1,2(T ) ∈ Cn1n2 ⊗ (C2)k−2 is an identifiable
rank-2 tensor

ϑ1,2(T ) = T1 + T2 = a⊗ u3 ⊗ · · · ⊗ uk + b⊗ v3 ⊗ · · · ⊗ vk,

for some unique a, b ∈ Cn1n2 with ⟨a, b⟩ ∼= C2 and unique ui, vi ∈ C2 with ⟨ui, vi⟩ ∼= C2 for
all i = 3, . . . , k. By assumption a, b ∈ Cn1 ⊗ Cn2 are such that {r(a), r(b)} = {1, 2} and
by relabeling if necessary we may assume r(a) = 2 and r(b) = 1.

Let us see ϑ1,2(T ) as an element of Tn1,n2,2k−2 = Cn1 ⊗ Cn2 ⊗ C2 ⊗ · · · ⊗ C2. Since T2
is a rank-1 tensor, there exist v1 ∈ Cn1 , v2 ∈ Cn2 such that b = v1 ⊗ v2, i.e.

T2 = v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vk.

Moreover, since r(a) = 2 then there exist independent a1, a2 ∈ Cn1 and independent
b1, b2 ∈ Cn2 such that a = a1 ⊗ b1 + a2 ⊗ b2, i.e.

T1 = a1 ⊗ b1 ⊗ u3 ⊗ · · · ⊗ uk + a2 ⊗ b2 ⊗ u3 ⊗ · · · ⊗ uk.

We remark that the concise space of T is Tn1,n2,2k−2 , therefore if n1 = 3 (or n2 = 3) then
a1, a2, v1 are linearly independent (b1, b2, v2 are linearly independent). Thus T is as in
case (f).

Remark 2.7.40. In Lemma 2.7.39 we assumed that dealing with a tensor as in (2.7.18)
the non-identifiable part of the tensor was in the first two factors because it is always
possible to permute the factors of the tensor space in this way. This assumption cannot
be made in the algorithm and we have to be careful if either (n1, n2) = (3, 2) or (n1, n2) =
(2, 2). More precisely, for all i, j = 1, . . . , k denote by

ϑi,j : Cn1 ⊗ · · · ⊗ Cnk
∼−→ (Cni ⊗ Cnj)⊗ Cn1 ⊗ · · · ⊗ Ĉni ⊗ · · · ⊗ Ĉnj ⊗ · · · ⊗ Cnk

the reshape grouping together the i-th and j-th factor of Tn1,...,nk
.

Dealing with (n1, n2) = (3, 2), we have to check if there exists i = 2, . . . , k such that
ϑ1,i(T ) satisfies the conditions of Lemma 2.7.39.
Similarly, for the case of (n1, n2) = (2, 2) we have to check all reshaping of T if necessary,
i.e. we have to check if there exist i, j ∈ {1, . . . , k} with i ̸= j such that ϑi,j(T ) satisfies
the conditions of Lemma 2.7.39.

Recall that a concise tensor T ∈ Cn1n2⊗(C2)⊗(k−2) is an element of σ2(X(n1n2−1),1k−2)\
τ(X(n2n2−1),1k−2) if and only if there is a specific change of basis on each factors g̃ =
(g, g3, . . . , gk) ∈ GLn1n2 ×GL2 × · · · ×GL2 such that

g̃T = x⊗ u3 ⊗ · · ·uk + y ⊗ v3 ⊗ · · · ⊗ vk. (2.7.19)

By Lemma 2.7.39, given an identifiable rank-2 tensor T ∈ Tn1n2,2k−2 , in order to verify if
T is as in case (f), we do not need to find an explicit decomposition of T as in (2.7.19)
but it is enough made the following steps:

• distinguish x, y ∈ Cn1n2 and look at them as elements of Cn1 ⊗ Cn2 ;

• prove that either r(x) = 2 and r(y) = 1 or that r(x) = 1 and r(y) = 2.

Let us explain in detail how to do so.
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Reshape procedure for an identifiable rank-2 tensor of Tn1n2,2k−2

(how to find x, y ∈ Cn1 ⊗ Cn2)

Let T be an identifiable rank-2 tensor in Tn1n2,2k−2 = Cn1n2 ⊗ (C2)⊗(k−2). Remark
that the first factor of Tn1n2,2k−2 is not concise. Indeed the rank of the first flatten-
ing φ1 : (C2)⊗(k−2) → (Cn1n2)∗ of T is r(φ1) = 2 and to complete the concision process,
we can take as basis of the first new factor two independent elements x̂, ŷ of Im(φ1).
Therefore T can be written as

T = x̂⊗ u3 ⊗ · · · ⊗ uk + ŷ ⊗ v3 ⊗ · · · ⊗ vk ∈ C2 ⊗ (C2)⊗k.

If we reshape our tensor space by grouping together all factors from the 4-th one onwards,
then we look at T as

x̂⊗ u3 ⊗
û︷ ︸︸ ︷

(u4 ⊗ · · · ⊗ uk)+ŷ ⊗ v3 ⊗
v̂︷ ︸︸ ︷

(v4 ⊗ · · · ⊗ vk) =

x̂⊗ u3 ⊗ û+ ŷ ⊗ v3 ⊗ v̂ ∈ C2 ⊗ C2 ⊗ ((C2)⊗(k−3))

We want to look at this three factors tensor as a pencil of matrices with respect to
the second factor of C2⊗C2⊗ (C2)⊗(k−3). Let u3 = (u3,1, u3,2), v3 = (v3,1, v3,2) and denote
by

C1 :=

[
u3,1x̂⊗ û
v3,1ŷ ⊗ v̂

]
, C2 :=

[
u3,2x̂⊗ û
v3,2ŷ ⊗ v̂

]
∈ C2 ⊗ (C2)⊗(k−3).

We can write T as
C1λ+ C2µ.

Call X3 the matrix whose columns are given by x̂ and ŷ and denote by X4 the matrix
whose rows are given by û and v̂. Therefore

C1 =
[
x̂ ŷ

] [u3,1 0
0 v3,1

] [
û
v̂

]
= X3

[
u3,1 0
0 v3,1

]
X4,

C2 =
[
x̂ ŷ

] [u3,2 0
0 v3,2

] [
û
v̂

]
= X3

[
u3,2 0
0 v3,2

]
X4.

Remark that C2 is right invertible and denote by C−1
2 its right inverse. Moreover r(X3) =

r(X4) = 2, therefore X3 is invertible and there exists a right inverse of X4 that we denote
by X−1

4 . Thus

C1C
−1
2 =

(
X3

[
u3,1 0
0 v3,1

]
X4

)(
X3

[
u3,2 0
0 v3,2

]
X4

)−1

= X3

[
u3,1

u3,2
0

0 v3,1
v3,2

]
X−1

3 .

We have now an eigenvalue problem that we can easily solve to find x̂, ŷ ∈ C2.

Remark 2.7.41. When computing the concision process of T with respect to the first
factor of Tn1n2,2k−2 , we concretely find a basis of Imφ1. Therefore, after we found x̂, ŷ ∈ C2

with the above procedure, we can easily get back to x, y ∈ Cn1n2 ∼= Cn1⊗Cn2 and compute
the rank of both x, y seen as elements of Cn1 ⊗ Cn2 .

Let us sum up how to find a non-identifiable rank-3 tensor of at least 4 factors in the
following algorithm.
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Algorithm 2 (Non-identifiability with at least 4 factors)
Input: Concise tensor T = (ti1,...,ik) ∈ Tn1,n2,2k−2 , for some k > 3, 2 ≤ n1, n2 ≤ 3.
Output: A statement on whether T belongs to one of the six cases of non-identifiable
rank-3 tensors or not.

0. For all i, j = 1, . . . , k with i ̸= j denote by ϑi,j the reshape grouping the i-th and
j-th factor of Tn1,...,nk

.

1. Case (n1, n2) = (2, 2).

• Case k = 4. Test if T ∈ σ3(X14) \ σ2(X14), i.e. if T satisfies the equa-
tions of σ3(X14) given in Theorem 2.7.34 and T does not satisfy the equa-
tions of σ2(X14) given in Remark 2.7.33. In this case the output is T is a
non-identifiable rank-3 tensor, otherwise the output is T is not on the list of
non-identifiable rank-3 tensors.

• Case k ≥ 5. For all i = 1, . . . , k − 1 and for all j = i + 1 . . . , k follow this
procedure.

• Test if ϑi,j(T ) satisfies the equations of σ2(X3,1k−2) and does not satisfy
the equations of τ(X3,k−2) (cf. Remark 2.7.33 and Theorem 2.7.36). If
ϑi,j(T ) ∈ σ2(X3,1k−2) \ τ(X3,1k−2) then ϑi,j(T ) is an identifiable rank-2
tensor. Make the concision process on the first factor of T3,1k−2 and call T ′

the resulting tensor. Consider T ′ as a matrix pencil of C2⊗C2⊗((C2)⊗(k−2))
with respect to the second factor

T ′ = λC1 + µC2.

Find the eigenvectors x, y ∈ C2 of C1C
−1
2 and then rewrite x, y as elements

of C4 ∼= C2 ⊗ C2. If {r(x), r(y)} = {1, 2} then the output is T is a non-
identifiable rank-3 tensor.

• Else, if one of the previous conditions is not satisfied, then stop and restart
with another j (and another i when necessary).

If the algorithm stops at some point when i = k − 1, j = k then stop and the
output is T is not on the list of non-identifiable rank-3 tensors.

2. Case (n1, n2) = (3, 2).
For all i = 2, . . . , k − 1 follow this procedure:

• Test if ϑ1,i(T ) satisfies the equations of σ2(X5,1k−2) and does not satisfy the
equations of τ(X5,k−2) (cf. Remark 2.7.33 and Theorem 2.7.36). If ϑ1,i(T ) ∈
σ2(X5,1k−2) \ τ(X5,1k−2) then ϑ1,i(T ) is an identifiable rank-2 tensor. Reduce
the first factor of T6,2k−2 via concision, working now on T2k−1 with T ′. Consider
T ′ as a matrix pencil with respect to the second factor of C2⊗C2⊗ (C2)⊗(k−3),
i.e.

T ′ = λC1 + µC2.

Find the eigenvectors x, y of C1C
−1
2 and then rewrite x, y as elements of C6 =

C3 ⊗ C2. If {r(x), r(y)} = {2, 1} the output is T is a non-identifiable rank-3
tensor.

• Else, if one of the previous conditions is not satisfied then stop and restart
with another i.
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If the algorithm stops at some point when i = k then stop and the output is T is
not on the list of non-identifiable rank-3 tensors.

3. Case (n1, n2) = (3, 3).

• Test if ϑ1,2(T ) satisfies the equations of σ2(X8,1k−2) and does not satisfy the
equations of τ(X8,k−2) (cf. Remark 2.7.33 and Theorem 2.7.36). If ϑ1,2(T ) ∈
σ2(X8,1k−2) \ τ(X8,1k−2) then ϑ1,2(T ) is an identifiable rank-2 tensor. Reduce
the first factor of T9,2k−2 via the concision process, working now with T ′ on
(C2)⊗(k−1). Consider T ′ as a matrix pencil with respect to the second factor of
C2 ⊗ C2 ⊗ (C2)⊗(k−3), i.e.

T ′ = λC1 + µC2.

Find the eigenvectors x, y of C1C
−1
2 and then rewrite x, y as elements of C9 ∼=

C3 ⊗ C3. If {r(x), r(y)} = {1, 2} the output is T is a non-idenfitiable rank-3
tensor as in case (f).

• If one of these conditions is not satisfied then stop and the output is T is not
on the list of non-identifiable rank-3 tensors.

Example 2.7.42. Let T3,2,2,2 = C3 ⊗ C2 ⊗ C2 ⊗ C2 and for all j, k, ℓ = 1, 2 and for all
i = 1, 2, 3 denote by ei,j,k,ℓ = ei ⊗ ej ⊗ ek ⊗ eℓ. Similarly, we set ei,j = ei ⊗ ej. Consider
the tensor

T =12e1,1,1,1 + 8e1,1,1,2 + 6e1,1,2,1 + 4e1,1,2,2 + 30e1,2,1,1 + 20e1,2,1,2 + 15e1,2,2,1+

10e1,2,2,2 + 8e2,1,1,1 + 8e2,1,1,2 + 5e2,1,2,1 + 6e2,1,2,2 + 35e2,2,1,138e2,2,1,2+

23e2,2,2,1 + 30e2,2,2,2 + 16e3,1,1,1 + 16e3,1,1,2 + 10e3,1,2,1 + 12e3,1,2,2+

52e3,2,1,1 + 64e3,2,1,2 + 37e3,2,2,1 + 54e3,2,2,2.

Let ϑ1,2 : T3,2,2,2 → C6 ⊗C2 ⊗C2 be the reshape grouping together the first two factors of
T3,2,2,2. Let

f1 = e1,1, f2 = e1,2, f3 = e2,1, f4 = e2,2, f5 = e3,1, f6 = e3,2

be a basis of C6 such that ϑ1,2(T ) can be written as

ϑ1,2(T ) =12f1 ⊗ e1,1 + 8f1 ⊗ e1,2 + 6f1 ⊗ e2,1 + 4f1 ⊗ e2,2 + 30f2 ⊗ e1,1 + 20f2 ⊗ e1,2+

15f2 ⊗ e2,1 + 10f2 ⊗ e2,2 + 8f3 ⊗ e1,1 + 8f3 ⊗ e1,2 + 5f3 ⊗ e2,1 + 6f3 ⊗ e2,2+

35f4 ⊗ e1,1 + 38f4 ⊗ e1,2 + 23f4 ⊗ e2,1 + 30f4 ⊗ e2,2 + 16f5 ⊗ e1,1 + 16f5 ⊗ e1,2+

10f5 ⊗ e2,1 + 12f5 ⊗ e2,2 + 52f6 ⊗ e1,1 + 64f6 ⊗ e1,2 + 37f6 ⊗ e2,1 + 54f6 ⊗ e2,2.

One can verify that ϑ1,2(T ) ∈ σ2(X5,13)\τ(X5,13), therefore we can continue our procedure
by considering the matrix associated to the first flattening φ1 : (C2 ⊗ C2)∗ → C6 of T :

A =




12 8 6 4
30 20 15 10
8 8 5 6
35 38 23 30
16 16 10 12
52 64 37 54



.
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The rank of A is 2 and we take the first two columns x̂, ŷ of A as linearly independent
vectors of Im(φ1) and rewrite all the others as a linear combinations of x̂, ŷ. Denote by
T ′ the resulting tensor

T ′ = x̂⊗ e1,1 + ŷ ⊗ e1,2 +

(
1

4
x̂+

3

8
ŷ

)
⊗ e2,1 +

(
−1

2
x̂+

5

4
ŷ

)
⊗ e2,2.

Let us consider now T ′ ∈ C2 ⊗ C2 ⊗ C2 as a matrix pencil with respect to the second
factor

T ′ = λ

[
1 0
0 1

]
+ µ

[
1/4 −1/2
3/8 5/4

]
= λC1 + µC2.

It is easy to see that the eigenvectors of

C1C
−1
2 =

[
10/4 1
−3/4 1/2

]

are x = (−2, 1) and y = (−2/3, 1), i.e.

x =− 2x̂+ ŷ = −16f1 − 40f2 − 8f3 − 32f4 − 16f5 − 40f6 =

−(16e1,1 + 40e1,2 + 8e2,1 + 32e2,2 + 16e3,1 + 40e3,2) = −



16 40
8 32
16 40




and

y =− 2/3x̂+ ŷ = 8/3f3 + 44/3f4 + 16/3f5 + 88/3f6 =

8/3e2,1 + 44/3e2,2 + 16/3e3,1 + 88/3e3,2 =




0 0
8/3 44/3
16/3 88/3


 .

It is easy to see that r(x) = 2 and r(y) = 1, therefore T is a non-identifiable rank-3 tensor
as in case (f). Indeed by multiplying T with

g =






1/2 −1 1/2
0 2 −1

−1/2 0 1/2


 ,
[

1 0
−1/3 1/3

]
,

[
1 −1
−1 2

]
,

[
1/2 −1/4
−1/2 3/4

]


we get

T = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 ⊗ e1 + e3 ⊗ (2e1 + 3e2)⊗ e2 ⊗ e2.

Remark 2.7.43. Since we already considered all concise spaces of tensors related to all
non-identifiable rank-3 tensors of Theorem 2.6.1, any other concise tensor space will not
be considered. Therefore, for any other concise space, the output of the algorithm will
be T is not on the list of non-identifiable rank-3 tensors.

To conclude, it is sufficient to collect all together the steps made until now.
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Algorithm (Non-identifiable rank-3 tensors)
Input: Tensor T = (ti1,...,ik) ∈ Cn1 ⊗ · · · ⊗ Cnk , for some k ≥ 3.
Output: A statement on whether T belongs to one of the six cases of non-identifiable
rank-3 tensors or not.

1. Compute the concise tensor space Tn′
1,...,n

′
k′

of T .

2.





If k′ = 3 run Algorithm 1.

Else if Tn′
1,...,n

′
k′
∈ {T3,2k′−1 , T3,3,2k′−2 , T2k′}, where k′ ≥ 4, run Algorithm 2.

Else the output will be T is not on the list of Theorem 2.6.1.
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Chapter 3

Terracini Locus

The celebrated Terracini’s Lemma is a well known and extremely powerful result in
Algebraic Geometry that allows to compute the dimensions of r-th secant varieties of a
given variety X in terms of the dimensions of the sum of tangent spaces at r generic
points of X. If X is the embedding of a variety Y into a projective space via a complete
linear system L, then the codimension of the r-th secant variety of X is equal to the
value h0(Y, IZ ⊗ L) where Z is a 0-dimensional scheme of r double generic fat points
(cf. Remark 1.2.3). A first complete classification of dimensions of all secant varieties
has been made for the case of Veronese varieties. The well-known Alexander-Hirschowitz
Theorem treats the case in which Y = Pn is embedded via O(d) (cf. [AH95]). Another
complete classification is for secant varieties of Segre-Veronese embedding of products of
Y = (P1)’s via O(d1, . . . , dk) due to Laface-Postinghel (cf. [LP13]). Recently Galuppi-
Oneto determined dimensions of secant varieties in the case of Segre-Veronese embedding
of Y = Pm × Pn in bidegree (d1, d2) for all d1, d2 ≥ 3 (cf. [GO21]).
All these classifications relates the study of generic 0-dimensional schemes of double fat
points, but almost nothing has been said for the case in which the 0-dimensional scheme
of double fat points is not necessarily supported on generic points. Clearly if the points
are not generic, the equivalence between h0(Y, IZ ⊗L) and the codimension of the secant
variety of X is not valid anymore. Indeed the Terracini’s Lemma states that the tangent
space of an r-th secant variety of a variety X at a generic point q ∈ ⟨p1, . . . , pr⟩, with
pi ∈ X generic and hence pi ∈ Xreg, is equal to the span of the tangent spaces of X at
pi’s, but if the pi’s are not generic one can only say that ⟨Tp1X, . . . , TprX⟩ ⊆ Tq(σr(X))
where Tq(σr(X)) is the tangent space at q ∈ ⟨p1, . . . , pr⟩ of the r-th secant variety of
X. This phenomenon is related to the fact that codim⟨Tp1X, . . . , TprX⟩ = h0(Y, IZ ⊗ L)
which may be higher than the one for generic points. Consider the exact sequence

0 −→ IZ −→ OY −→ OZ −→ 0

and tensorize it by L:
0 −→ IZ ⊗ L −→ L −→ LZ −→ 0.

If h1(Y,L) = 0, then we get the exact sequence

0 −→ H0(Y, IZ ⊗ L) −→ H0(Y,L) −→ H0(Z,L|Z) −→ H1(Y, IZ ⊗ L) −→ 0.

We will always take (Y,L) such that h1(Y,L) = 0. Therefore, one gets

h0(Y,L)− h0(Y, IZ ⊗ L) = h0(Z,L|Z)− h1(Y, IZ ⊗ L)
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that is to say that the dimension of the span of embedding of Z via L can be computed
as

h0(Z,L|Z)− h1(IZ ⊗ L)− 1.

From this one easily sees the role played by the h1(IZ ⊗L) in controlling the value of
h0(Y, IZ ⊗ L).

In this chapter we fix our attention to the case of Segre varieties, i.e. the embedding
of Yn1,...,nk

= Pn1 × · · · × Pnk via O(1, . . . , 1) and Z a scheme of either 2 or 3 double fat
points. The key object of the discussion is the r-th Terracini locus that will essentially
contain all the sets of r points, seen in the smallest multiprojective space possible that
contains them, for which

h0(IZ(1, . . . , 1))h
1(IZ(1, . . . , 1)) > 0.

We like to point out the geometric importance of the r-th Terracini locus. Let
(Xn1,...,nk

)rreg contain all the r-uple of non-singular points of X. Consider the open part
of the r-th abstract secant variety AbSecr(Xn1,...,nk

) of a Segre variety Xn1,...,nk
⊂ PN ,

namely

AbSec0r(Xn1,...,nk
) := {(q, (p1, . . . , pr)) ∈ PN × (Xn1,...,nk

)rreg | q ∈ ⟨p1, . . . , pr⟩ ∼= Pr−1}.

Remark that in the definition of AbSec0r(Xn1,...,nk
) we only take p1, . . . , pr linearly inde-

pendent. Consider the projection Tr of AbSec0r(Xn1,...,nk
) onto PN , namely

Tr : AbSec
0
r(Xn1,...,nk

) −→ σ0
r(Xn1,...,nk

),

where we recall that

σ0
r(Xn1,...,nk

) := {q ∈ PN | q ∈ ⟨p1, . . . , pr⟩ ∼= Pr−1, where all pi ∈ Xn1,...,nk
}.

The projection Tr is the r-th Terracini map. The differential of the r-th Terracini map
is defined on each point of AbSec0r(Xn1,...,nk

) and the r-th Terracini locus is nothing else
than a measure of the degeneracy of such a linear map. Remark that any point of
AbSec0r(Xn1,...,nk

) is smooth since Xn1,...,nk
is smooth.

A numerical point of view on the Terracini locus

Working with tensors coming from applied problems measurement errors may occur.
Moreover, working with a machine, one is forced to use non-exact arithmetic and, even
if we start with an exact tensor, round-off errors may occur due to the possibly inexact
representation of the given tensor into the machine.

Therefore, when running algorithms that involve tensors, our actual input is a per-
turbed tensor and the error representation we are starting with may be amplified when
performing algorithms.

The condition number of a function measures the rate of error that happens to the
output element conditioned to a small change on the element in the domain. Moreover,
a problem is said to be well conditioned if it has a small condition number and it is
ill-conditioned when the condition number is very high. In this case we say that the
problem is sensitive to small perturbations.

Terracini loci are involved when measuring the sensitivity of a tensor rank decompo-
sition, also called CPD canonical polyadic decomposition (cf. [Hit27], [DDL14]).
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Denote by T−1
r,(p1,...,pr)

the local inverse of Tr at (p1, . . . , pr) ∈ (Xn1,...,nk
)r. If the differen-

tial d(p1,...,pr)Tr of Tr at (p1, . . . , pr) is invertible, then a local inverse exists at (p1, . . . , pr).
Moreover, we recall that (d(p1,...,pr)Tr)

−1 = dqT
−1
r,(p1,...,pr)

. To define the condition number
of a r-uple (p1, . . . , pr) ∈ (Xn1,...,nk

)r, we follow the spectral characterization of [BV18,
Theorem 1.1].

Denote by Ui an orthonormal basis of the affine tangent space TpiXn1,...,nk
for all

i = 1, . . . , r and let U = [U1 · · ·Ur]. We recall that the spectral norm ∥U∥2 of U is the
largest singular value ζ(U) of U , i.e. ζ(U) is the square root of the biggest eigenvalue of
UU∗.
If Tr is locally invertible at (p1, . . . , pr) then

∥(d(p1,...,pr)Tr)
−1∥2 = ∥U−1∥2 = ζ(U−1) =

1

min{λ | λ is a singular value of U} .

In this case they define the condition number of (p1, . . . , pr) as

κ(p1, . . . , pr) := ∥(d(p1,...,pr)Tr)
−1∥2.

Otherwise, if dTr is not invertible at (p1 . . . , pr), then U has an eigenvalue equal to 0,
which is also the smallest singular value of U , and in this case we set κ(p1, . . . , pr) = ∞.
Therefore, the condition number of the r-uple (p1, . . . , pr) is

κ(p1, . . . , pr) :=

{
∥(d(p1,...,pr)Tr)

−1∥2 if dTr is invertible at (p1, . . . , pr),

∞ otherwise.

The condition number of a tensor rank decomposition is therefore a measure of the
sensitivity of the decomposition itself under errors perturbations. One would like to
avoid points of (Xn1,...,nk

)r whose condition number is infinite since in these cases to a
unique element q ∈ PN correspond different r-uples in (Xn1,...,nk

)r and this behaviour
generates ambiguity in the interpretations of the results when performing algorithms of
tensor rank decomposition.

In [BV18], the authors defined the ill-posed set of a decomposition (p1, . . . , pr) as

ΣP = {(p1, . . . , pr) ∈ (Xn1,...,nk
)r : κ(p1, . . . , pr) = ∞}.

This locus contains precisely all r-uples (p1, . . . , pr) ∈ (Xn1,...,nk
)r for which the differential

of the map Tr has not maximal rank. Therefore, the distinction between the r-th Terracini
locus of a multiprojective space and the ill-posed locus ΣP relies on

• considering the r rank-1 tensors as a set of points instead of a tuple;

• working with the minimal multiprojective space containing the r points.

Remark 3.0.1. Even though we will work under minimality assumption for the mul-
tiprojective space containing a set of points, the result we will achieve in this chapter
are interesting from a numerical point of view since in [DBV21] they proved that the
condition number of a CPD does not change under Tucker compression of the CPD itself,
which is the analogous of considering the minimal multiprojective space containing both
the tensor and all its possible rank decompositions.
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In this chapter we will work on both the second and third Terracini locus. We will
prove that the second Terracini locus is always empty for any multiprojective space, while
for r = 3 we will completely determine all cases for which the third Terracini locus is not
empty in Theorem 3.3.14. More precisely, the chapter is organized as follows.
In the first section we introduce the notation and we show that the second Terracini locus
is empty. Section 3.2 is a crucial section where we show all the examples that will turn
out to be the only non trivial cases in which the 3-rd Terracini locus will be non-empty.
Section 3.3 is devoted to the proof of the main theorem (Theorem 3.3.14) that essentially
will be a discussion on why the already highlighted examples in Subsections 3.2.1 and
3.2.3 are the only non-trivial elements in the 3-rd Terracini locus. In the last section we
prove that for any multiprojective space Yn1,...,nk

of dimension n ≥ 3, one can always find
r ≥ 3 points S ⊂ Yn1,...,nk

belonging to the corresponding r-th Terracini locus. Moreover,
we compute the maximal value maxn>0,r≥2{h1 (IZ(1, . . . , 1)) > 0}, where we denoted by
Z ⊂ Yn1,...,nk

a zero-dimensional scheme of r double fat points. We will show that

h1 (IZ(1, . . . , 1)) ≤ (r − 1)(n+ 1)

and that equality holds if and only if Yn = Pn. Since if Yn = Pn then h0 (Pn, IPn(1)) = 0,
we compute the maximal value of such dimension providing that also h0 (IZ(1, . . . , 1)) >
0. A preprint [BBS20b] has already been extracted from this work.

3.1 Introduction to the problem and 2-nd Terracini lo-
cus

In this section we set up the framework of the present chapter. First, we introduce a useful
notation for the integer h1(IZ(1, . . . , 1)), where Z ⊂ Yn1,...,nk

is a zero-dimensional scheme
of some multiprojective space Yn1,...,nk

. Then, we define the minimal multiprojective space
containing a given set of points and lastly, we define the r-th Terracini locus of a given
multiprojective space and we describe it in the case r = 2.

Notation 3.1.1. Let Yn1,...,nk
= Pn1 × · · · × Pnk , for some k ≥ 1 and all ni > 0. For any

zero-dimensional scheme Z ⊂ Yn1,...,nk
set

δ(Z, Yn1,...,nk
) := h1(IZ(1, . . . , 1)).

Let W ⊆ Yn1,...,nk
be a multiprojective subspace, i.e. W = Pm1 × · · · × Pmk , where

0 ≤ mi ≤ ni for all i = 1, . . . , k. If Z ⊂ W , set δ(Z,W ) := h1(W, IZ,W (1, . . . , 1)). We
remark that δ(Z,W ) = δ(Z, Yn1,...,nk

) since hi(IW (1, . . . , 1)) = 0 for i = 1, 2.
For the specific case of double fat points, δ(2S, Yn1,...,nk

) will be called the Terracini
defect of S in Yn1,...,nk

(see Definition 3.1.2 below).
We have now introduced all the necessary tools to define the r-th Terracini locus

that will be the main actor of the present chapter.

Definition 3.1.2. For all positive integers r and for any multiprojective space Yn1,...,nk
,

define

T1(Yn1,...,nk
, r) :=

{
S ⊂ Yn1,...,nk

| #(S) = r, h0
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
> 0 and δ(2S, Yn1,...,nk

) > 0
}
.

We will call the r-th Terracini locus T(Yn1,...,nk
, r) of all r-uple of points of Yn1,...,nk

the
set
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T(Yn1,...,nk
, r) :=

{
S ∈ T1(Yn1,...,nk

, r)

∣∣∣∣
Yn1,...,nk

is the minimal multiprojective
space containing S

}
.

If Y ′ ⊆ Yn1,...,nk
is the minimal multiprojective space containing a finite set S, the

integer
δ(2S, Y ′) := h1

(
Y ′, I(2S,Y ′)(1, . . . , 1)

)

is called the r-th Terracini defect of S.

3.1.1 The 2-nd Terracini locus is empty

In this subsection we prove that no sets of two distinct points S ⊂ Yn1,...,nk
such that

Yn1,...,nk
is the minimal multiprojective space containing S, is contained in the 2-nd Ter-

racini locus T(Yn1,...,nk
, 2).

Proposition 3.1.3. The 2-nd Terracini locus T(Yn1,...,nk
, 2) is empty for any multipro-

jective space Yn1,...,nk
.

Proof. Let S ⊂ Yn1,...,nk
be a set of two distinct points such that Yn1,...,nk

is the minimal
multiprojective space containing S. Therefore #(πi(S)) = 2 for all i = 1, . . . , k and
hence all ni = 1, i.e. we are working with Y1k ∼= (P1)k, for some k ≥ 1. By definition
of the second Terracini locus, we need to prove that either h0

(
I(2S,Y

1k
)(1, . . . , 1)

)
= 0 or

h1
(
I(2S,Y

1k
)(1, . . . , 1)

)
= 0. Clearly, if k = 1 then h0

(
I(2S,P1)(1)

)
= 0.

If k = 2, then h0
(
I(2S,Y1,1)(1, 1)

)
= 0 since S can be seen as a general subset of 2 distinct

points by the action of (Aut(P1))
2 and a general 2× 2 matrix has rank 2.

Let k ≥ 3 and define

E := {A ⊂ Y | #A = #(πi(A)) = 2 for all i = 1, . . . , k}.

The group (Aut(P1))
k acts transitively on E. Thus S may be considered as a general

subset of Y1k with cardinality 2. By Proposition 1.1.19 we know that dimσ2 (X1k) = 2k+1
for all k ≥ 3, hence by Terracini’s Lemma we conclude that h1

(
I(2S,Y

1k
)(1, . . . , 1)

)
= 0.

We remark that, since we are dealing with finite subsets S of two distinct points,
the minimal multiprojective space containing S is Y1k = (P1)k for some k ≥ 1, which is
equivalent to say that #(πi(S)) = 2 for all i = 1, . . . , k. Thus we may look at S := {p1, p2}
as a general set of two distinct points using the action of (Aut(P1))

k.
The emptiness of the 2-nd Terracini locus T(Y1k , 2) means that the differential of the map
T2 : Abs02(X1k) −→ σ0

2(X1k) has full rank for any X1k = ν((P1)k), with arbitrary k ≥ 2.
Since in this case we can consider S as a general set of two distinct points, the condition

h0
(
I(2S,Y

1k
)(1, . . . , 1)

)
> 0

corresponds to prescribe that the 2-nd secant variety σ2(X1k) does not fill the ambient
space. This condition together with

h1
(
I(2S,Y

1k
)(1, . . . , 1)

)
> 0

are equivalent to say that the dimension of the tangent space Tqσ2(X1k) at a general
q ∈ P2k−1 such that q ∈ ⟨ν(p1), ν(p2)⟩, is strictly less than 2(k + 1)− 1.
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3.2 Two families of points in the third Terracini locus
We start now working with three points. The aim of this section is to present two
different families of sets S ⊂ Yn1,...,nk

, with #(S) = 3 for which Yn1,...,nk
is the minimal

multiprojective space containing S, such that

h0
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
h1
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
> 0.

These two different families of points will turn out to be the only non-trivial examples of
points in the 3-rd Terracini locus. Therefore, they will be crucial for the main theorem
of the present chapter.
We point out that, by dimensional reasons, if we focus on Y14 then all S ⊂ Y14 of cardi-
nality three that have Y14 as minimal multiprojective space in which they are contained
belong to T(Y14 , 3). We will always refer to this case as a trivial example of points lying
in the third Terracini locus. Anyhow, we will discuss more accurately this case in Remark
3.3.4.

3.2.1 Example: Products of P1’s with at most one P2

In the first example we work over Ym,1k−1 = Pm × (P1)k−1, where m ∈ {1, 2} and k ≥ 3.
We consider a set of three distinct points S ⊂ Ym,1k−1 with S := {a, b, c} such that
a and b share all the last k − 1 coordinates and we request that Ym,1k−1 is the minimal
multiprojective space containing S. In the following proposition we prove that a necessary
and sufficient condition for S to lie in the third Terracini locus T(Ym,1k−1 , 3) is that k ≥ 4.

Example 3.2.1. Let Ym,1k−1 = Pm × (P1)k−1 for some k ≥ 3, with m ∈ {1, 2}. Define
S := {a, b, c} ⊂ Ym,1k−1 be such that

a := (a1, u2, . . . , uk), b := (b1, u2, . . . , uk), c := (c1, . . . , ck), with
a1, b1, c1 ∈ Pm such that a1 ̸= b1 and ui ̸= ci for all i > 1.

Moreover if m = 2 assume also dim⟨π1(S)⟩ = 2.

Proposition 3.2.2. Let Ym,1k−1 = Pm × (P1)k−1 for some k ≥ 3, where m ∈ {1, 2}. Let
S ⊂ Ym,1k−1 be as in Example 3.2.1. Therefore

S ∈ T(Ym,1k , 3) if and only if k ≥ 4.
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Figure 3.1: Picture of Example 3.2.1 with m = 1.

Figure 3.2: Pseudo-picture of Example 3.2.1 with m = 2 (the red axis is a P2)

Proof. We remark that since #(πi(S)) ≥ 2 for all i = 1, . . . , k and #(π1(S)) = 3 if m = 2,
then Ym,1k−1 is the minimal multiprojective space containing S. If we consider the subset

S ′ := {a, b}

83



of S we may apply Remark 1.2.13 and have that δ(2S, Ym,1k−1) ≥ δ(2S ′, Ym,1k−1). Since
S ′ ⊂ Pm × {u2} × · · · × {uk} ⊂ Ym,1k−1 , one can use case (b) of Lemma 1.2.14, with
W := Pm, to get

δ(2S ′, Ym,1k−1) = m+ 1.

Thus in order to see if S ∈ T(Ym,1k−1 , 3), it suffices to understand whether

h0
(
I(2S,Y

m,1k−1 )(1, . . . , 1)
)
> 0.

• If k ≥ 4 then h0
(
OY

m,1k−1
(1, . . . , 1)

)
= (m+1)2k−1 > 3(m+k+1) = deg(2S, Ym,1k−1) >

0. Therefore, if k ≥ 4 then S ∈ T(Ym,1k−1 , 3).

• Let now k = 3. If we show that in this case none of the sets S ⊂ Ym,1,1 as above
belongs to T(Ym,1,1, 3) we will be done.

Remark that by assumption ui ̸= ci for i = 2, 3. To determine whether

h0
(
I(2S,Ym,1,1)(1, 1, 1)

)
> 0

or not, we distinguish two cases depending on m being equal to either 1 or 2.

(a) Assume m = 2, i.e. Y2,1,1 = P2 × P1 × P1.
Since h0(OY2,1,1(ε1)) = 3, there exists H ∈ |I{a,c}(ε1)| and remark that

H ∼= P1 × P1 × P1.

Since ⟨π1(S)⟩ = P2, then H ∩ S = {a, c}. Consider the residual exact sequence of
S with respect to H:

0 −→ IResH(2S,Y2,1,1)(0, 1, 1) −→ I(2S,Y2,1,1)(1, 1, 1) −→ IH∩(2S,Y2,1,1)(1, 1, 1) −→ 0.

Since H is smooth then H ∩ (2S, Y2,1,1) = (2(S ∩ H), H) = (2{a, c}, H) and the
residue of (2S, Y2,1,1) with respect to H is

ResH(2S, Y2,1,1) = {a, c} ∪ (2b, Y2,1,1).

Remark that h0
(
IResH(2S,Y2,1,1)(0, 1, 1)

)
= h0

(
Y1,1;1, Iη1(ResH(2S,Y2,1,1))(1, 1)

)
(cf. No-

tation 1.1.6).
Since πi(a) = πi(b) ̸= πi(c) for i = 2, 3, then η1(ResH(2S, Y2,1,1)) = η1({a, c} ∪
(2b, Y2,1,1)) = η1(c) ∪ (2η1(b), Y1,1;1).
In order to compute h0

(
Y1,1;1, Iη1(c)∪(2η1(b),Y1,1,;1)(1, 1)

)
, we have to look at the hyper-

planes of P3 containing both ν1(η1(c)) and Tν1(η1(b))ν1(Y1,1;1). Note that the tangent
space Tν1(b)ν1(Y1,1;1) is the union of two lines through ν1(b), i.e. the image by ν1
of the set of all x ∈ Y1 with π2(x) = π2(v) and the set of all y ∈ Y1,1;1 with
π3(y) = π3(v). Thus, since ui ̸= ci for i = 2, 3, there are no such hyperplanes, hence

h0
(
Y1,1;1, Iη1(ResH(2S,Y2,1,1)(1, 1)

)
= 0.

So by the residual sequence of S with respect to H recalled above, it is sufficient to
prove that h0

(
H, I(2{a,c},H)(1, 1, 1)

)
= 0.

Since ⟨π1(S)⟩ = P2 then πi(a) ̸= πi(c) for i = 1, 2, 3. Since H ∼= P1 × P1 × P1 thus
{a, c} is in the open orbit of ν(P1 × P1 × P1) for the action of (Aut(P1))3 on H.
Since σ2(ν(P1 × P1 × P1)) = P7, then

h0
(
H, I(2{a,c},H)(1, 1, 1)

)
= 0.

84



(b) Assume m = 1, i.e. Y1,1,1 = (P1)3.
Fix H ∈ |Ia(ε3)|. Since ui ̸= ci for i = 2, 3 and H is smooth we have that
H ∩ S = {a, b} and ResH(2S,H) = {a, b} ∪ (2c, Y1,1,1). As in the last part of
step (a), we remark that h0

(
IResH(2S,Y1,1,1)(1, 1, 0)

)
= h0

(
Y1,1;3, Iη3({a,b}∪(2c,Y1,1))

)
and

in order to compute it we have to look at the hyperplanes of P3 containing both
Tν3(η3(c))ν3(Y1,1;3) and ν3(η3({a, b})).
So h0

(
IResH(2S,Y1,1,1)(1, 1, 0)

)
= 0. Moreover, identifying ν(H) with a smooth quadric

surface, by looking at case k = 2 of the proof of Proposition 3.1.3 we get

h0
(
H, I(2S,Y1,1,1)(1, 1, 1)

)
= 0.

Thus any set of points S ⊂ Y constructed as above is in the 3-rd Terracini locus
T(Ym,1k−1 , 3) if and only if k ≥ 4.

3.2.2 Example: Products of P1’s with at most two P2’s

In this second example, we work over Yn1,n2,1k−2 = Pn1 × Pn2 × (P1)k−2, where n1, n2 ∈
{1, 2}. We consider S ⊂ Yn1,n2,1k−2 , with S := {u, v, o} such that u and v share just the
last k−2 components and we request that Yn1,n2,1k−2 is the minimal multiprojective space
containing S.

Example 3.2.3. Let Yn1,n2,1k−2 := Pn1 × Pn2 × (P1)k−2, where n1, n2 ∈ {1, 2} and k ≥ 3.
Let S := {o, u, v} where

u = (u1, u2, u3 . . . , un), v = (v1, v2, u3, . . . , un), o = (o1, . . . , on) with
⟨ui, vi⟩ := Li

∼= P1 for i = 1, 2 and oj ̸= uj for all j = 3, . . . , k.

Moreover if ni = 2 assume also that oi /∈ Li for i = 1, 2.

Remark 3.2.4. Example 3.2.1 is not a particular case of Example 3.2.3. To fix the ideas
let Y2,1,1 = P2×P1×P1 and take S, S ′ ⊂ Y2,1,1 as in Examples 3.2.1 and 3.2.3 respectively.
Then S = {a, b, c} with

a = (a1, a2, a3), b = (b1, a2, a3), c = (c1, c2, c3) such that
ai ̸= ci for all i = 2, 3 and ⟨a1, b1, c1⟩ ∼= P2,

while S ′ = {o, u, v} with

u = (u1, u2, u3), v = (v1, v2, u3), o = (o1, o2, o3) such that
u3 ̸= o3 and ⟨u1, v1, o1⟩ ∼= P2.

Notice that S ′ cannot be as in Example 3.2.1 even if o2 ∈ {u2, v2}.

Taking S ⊂ Yn1,n2,1k−2 as in Example 3.2.3, we will prove that

• If k ≥ 4 then S ∈ T(Yn1,n2,1k−2 , 3).

• If k = 3 and n1 = n2 = 2 then S ∈ T(Y2,2,1, 3).

• If k = 3 and either {n1, n2} = {1, 2} or n1 = n2 = 1 then we need to add more
restrictive conditions to the points of S in order to get S ∈ T(Yn1,n2,1, 3).
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More precisely, we state and prove the following result.

Proposition 3.2.5. Let Yn1,n2,1k−2 := Pn1 × Pn2 × (P1)k−2, where n1, n2 ∈ {1, 2} and
k ≥ 3. Let S = {u, v, o} ⊂ Yn1,n2,1k−2 be as in Example 3.2.3. Set

Y ′ := L1 × L2 × {π3(u)} × · · · × {πk(u)} ⊂ Yn1,n2,1k−2 .

Therefore

(i) If k ≥ 4 then δ(2S, Yn1,n2,1k−2) = 2.

(ii) If k = 3 and n1 = n2 = 2 then δ(2S, Y2,2,1) = 2 .

(iii) If k = 3 and n1 = n2 = 1 then 4 ≤ δ(2S, Y1,1,1) ≤ 5 and h0(I(2S,Y1,1,1)(1, 1, 1)) > 0 if
and only if πi(u) = πi(o) and πh(v) = πh(o) for some i, h ∈ {1, 2}.

(iv) If k = 3 and {n1, n2} = {1, 2} then δ(2S, Y2,1,1) ≥ 3 and h0(I(2S,Y2,1,1)(1, 1, 1)) > 0
if and only if π2(o) ∈ π2(S

′).

Figure 3.3: Picture of Proposition 3.2.3.

Proof. Remark that S ′ := {u, v} ⊂ Y ′, and Y ′ is actually the minimal multiprojective
space containing S ′ while Yn1,n2,1k−2 is the minimal multiprojective space containing S.
Part (b) of Lemma 1.2.14 gives

h1
(
Yn1,n2,1k−2 , I(2S′,Y

n1,n2,1
k−2 )(1, . . . , 1)

)
= h1

(
Y ′, I(2S′,Y ′)(1, 1)

)

and hence
h1
(
I(2S′,Y

n1,n2,1
k−2 )(1, . . . , 1)

)
= h1

(
I(2S′,Y ′)(1, 1, 0, . . . , 0)

)
. (3.2.1)

Proposition 3.1.3 (or rather its proof for k = 2) and Lemma 1.2.15 give

h1
(
Y ′, I(2S′,Y ′)(1, 1)

)
= 2.
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(i) Assume k ≥ 4. Take M ∈ |OY
n1,n2,1

k−2
(εk)| containing o. By looking at the residual

exact sequence of M , we remark that ResM(2S, Yn1,n2,1k−2) = {o} ∪ (2S ′, Yn1,n2,1k−2)
and M ∩ (2S, Yn1,n2,1k−2) = (2o,M). Since h1

(
I(2o,M)(1, . . . , 1)

)
= 0, by (3.2.1) we get

h1
(
Yn1,n2,1k−2 , I(2S′,Y

n1,n2,1
k−2 )∪{o}(ε̂k)

)
= h1

(
Yn1,n2,1k−2 , I(2S′,Y ′)(ε̂k)

)

and we conclude the proof of part (i).

(ii) Assume k = 3 and n1 = n2 = 2.

Consider the subgroup G of Aut(P2) × Aut(P2) × Aut(P1) fixing pointwise Y ′. The
action of G on Y2,2,1 has an open orbit U and o ∈ U . Since h1(IS′(1, 1, 0)) = 0, case (a)
of Lemma 1.2.14 gives h1

(
Y2,2,1, I(2S′,Y2,2,1)(1, 1, 1)

)
= h1

(
Y ′, I(2S′,Y ′)(1, 1)

)
. Obviously

h1
(
Y ′, I(2S′,Y ′)(1, 1)

)
= h1

(
Y2,2,1, I(2S′,Y ′)(ε̂3)

)
. Since h0

(
Y2,2,1, I(2S′,Y ′)(ε̂3)

)
> 0 and o

is in the open orbit U , we have h0
(
Y2,2,1, I(2S′,Y ′)∪{o}(ε̂3)

)
= h0

(
Y2,2,1, I(2S′,Y ′)(ε̂3)

)
− 1.

Therefore
h1
(
Y2,2,1, I(2S′,Y ′)∪{o}(ε̂3)

)
= h1

(
Y2,2,1, I(2S′,Y ′)(ε̂3)

)
.

Thus to prove that h1
(
I(2S′,Y2,2,1)∪{o}(ε̂3)

)
= 2 and hence to prove part (ii), it is

sufficient to observe that h0
(
W, I(2A,W )(1, 1)

)
> 0, because not all 3× 3 matrices have

rank at most 2, where we took W = P2 × P2 and A ⊂ W as a general subset of two
distinct points.

(iii) Assume k = 3 and n1 = n2 = 1.

Since h0
(
OY1,1,1(1, 1, 1)

)
= 8 and deg(2S, Y1,1,1) = 12, we have h1

(
I(2S,Y1,1,1)(1, 1, 1)

)
=

4 + h0
(
I(2S,Y1,1,1)(1, 1, 1)

)
, so h1

(
I(2S,Y1,1,1)(1, 1, 1)

)
≥ 4. To conclude this case it is

sufficient to show the following claim.

Claim 4. With the notation as above h0
(
I(2S,Y1,1,1)(1, 1, 1)

)
> 0 if and only

if πi(u) = πi(o) for some i ∈ {1, 2} and πj(v) = πj(o) for some j ∈ {1, 2}.
In this case h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 1 and h1

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 5.

Proof. Take H ∈ |I{u}(ε3)|. Since π3(u) = π3(v), then H ∩ S = S ′. Since H
is smooth, (2S, Y1,1,1) ∩H = (2S ′, H) and ResH(2S, Y1,1,1) = S ′ ∪ {2o}. We
identify ν(H) with a smooth quadric surface Q ⊂ P3. Since a tangent plane
to a smooth quadric surface Q is tangent to Q at a unique point, then we
have the vanishing of h0

(
H, I(2S,Y1,1,1)∩H,H(1, 1, 1)

)
.

Consider the residual exact sequence of S with respect to H:

0 −→ IS′∪{2o}(1, 1, 0) −→ I(2S,Y1,1,1)(1, 1, 1) −→ I(2S,Y1,1,1)∩H,H(1, 1, 1) −→ 0.

Since h0
(
H, I(2S,Y1,1,1)∩H,H(1, 1, 1)

)
= 0, then

h0
(
I(2S,Y1,1,1)(1, 1, 1)

)
= h0

(
IS′∪{2o}(1, 1, 0)

)
.

Moreover h0
(
IS′∪{2o}(1, 1, 0)

)
= h0

(
Y1,1;3, Iη3(S′)∪(2η3(o),Y1,1;3)(1, 1)

)
and we

can think of ν3(Y1,1;3) as a smooth quadric surface. Since Tν3(o)ν3(Y1,1;3) is a
plane h0

(
Y1,1;3, Iη3(S′)∪(2η3(o),Y1,1;3)(1, 1)

)
≤ 1.

Now h0
(
Y1,1;3, Iη3(S′)∪(2η3(o),Y1,1;3)(1, 1)

)
= 1 if and only if both ν3(η3(u)) and
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ν3(η3(u)) are contained in ν3(Y1,1;3) ∩ Tν3(η3(o))(ν3(Y1,1;3)). We remark that
Tν3(η3(o))(ν3(Y1,1;3)) is the union of two lines through ν3(η3(o)), i.e. the image
by ν3 of the set of all x ∈ Y1,1;3 with π1(x) = π1(o) and the set of all
y ∈ Y1,1;3 with π2(y) = π2(o). Hence Claim 4 is just a translation of this
observation.

(iv) Assume {n1, n2} = {2, 1} and k = 3.
With no loss of generality we may assume n1 = 2 and n2 = 1. Since h0

(
OY2,1,1(1, 1, 1)

)
=

12 and deg(2S, Y2,1,1) = 15, we have h1
(
I(2S,Y2,1,1)(1, 1, 1)

)
= 3+h0

(
I(2S,Y2,1,1)(1, 1, 1)

)
.

Hence δ(2S, Y2,1,1) ≥ 3.
We remark that by assumption π1(o) /∈ ⟨π1(u), π1(v)⟩, π2(u) ̸= π2(v) and π3(o) ̸=
π3(u) = π3(v).
To conclude this case we have to show that h0

(
I(2S,Y2,1,1)(1, 1, 1)

)
> 0 if and only if

π2(o) ∈ π2(S
′).

• Assume π2(o) ∈ π2(S
′). Without loss of generality we may assume that π2(u) =

π2(o). Since h0
(
OY2,1,1(ε2)

)
= 2 then |Io(ε2)| is a singleton. Set {H} := |Io(ε2)|.

Since H ∼= P2 × P1 it is smooth, hence (2S, Y2,1,1) ∩ H = (2{o, u}, H) scheme-
theoretically and ResH(2S, Y2,1,1) = (2v, Y2,1,1) ∪ {o, u}. Remark that

h0
(
I(2v,Y2,1,1)∪{o,u}(1, 0, 1)

)
= h0

(
Y2,1;2, I(2η2(v),Y2,1;2)∪{η2(o),η2(u)}(1, 1)

)
.

Moreover, Y2,1;2 ∼= P2 × P1 and

h0
(
OY2,1;2(1, 1)

)
= 6 = deg((2η2(v), Y2,1;2) ∪ {η2(o), η2(u)}).

This last equality implies that

h0
(
Y2,1;2, I(2η2(v),Y2,1;2)∪{η2(o),η2(u)}(1, 1)

)
= h1

(
Y2,1;2, I(2η2(v),Y2,1;2)∪{η2(o),η2(u)}(1, 1)

)
.

To show that h0
(
Y2,1;2, I(2η2(v),Y2,1;2)∪{η2(o),η2(u)}(1, 1)

)
> 0, we have to look at the

hyperplanes of P5 ⊃ ν2(Y2,1;2) that contain both the tangent space Tν2(η2(v))ν2(Y2,1;2)
and the points ν2(η2({o, u})). Remark that Tν2(η2(v))ν2(Y2,1;2)∩ν2(Y2,1;2) is the union
of 2 linear spaces containing ν2(η2(v)), one of dimension 2 and one of dimension 1,
spanning the 3-dimensional projective space Tν2(η2(v))ν2(Y2,1;2). Since π3(u) = π3(v),
then ν2(η2(u)) is a point of the 2-dimensional irreducible component of the tangent
space Tν2(η2(v))ν2(Y2,1;2) ∩ ν2(Y2,1;2).
Thus h0

(
IResH(2S,Y2,1,1)(1, 0, 1)

)
> 0. Hence, by the long cohomology exact se-

quence induced by the exact sequence of the residue of S with respect to H, we get
h0
(
I(2S,Y2,1,1)(1, 1, 1)

)
> 0.

• Assume π2(o) /∈ π2(S
′). Since h0

(
OY2,1,1(ε3)

)
= 2 then |Iu(ε3)| is a singleton. Set

{M} := |Iu(ε3)|. Since M is smooth and M ∩ S = S ′, then (2S, Y2,1,1) ∩ M =
(2S ′,M) scheme-theoretically and ResM(2S, Y2,1,1) = S ′ ∪ (2o, Y2,1,1). We have
h0
(
IS′∪(2o,Y2,1,1)(1, 1, 0)

)
= h0

(
Y2,1;3, Iη3(S′)∪(2η3(o),Y2,1;3)(1, 1)

)
. Obviously

h0
(
Y2,1;3, I(2η3(o),Y2,1;3)(1, 1)

)
= 2.

Since η3(S) is in the open orbit of S(Y2,1;3, 3) for the action of Aut(P2)× Aut(P1),
h0
(
Y2,1;3, Iη3(S′)∪(2η3(o),Y2,1;3)(1, 1)

)
= 0. The set S ′ is in the open orbit of Aut(M)

for its action in SM(3) (cf. Definition 3.4.1). Since any 3 × 2 matrix has rank at
most 2, we know that σ2(ν(M)) = P5. Thus h0

(
H, I(2S,Y2,1,1)∩H,H(1, 1, 1)

)
= 0. The

residual exact sequence of S with respect to M gives h0
(
I(2S,Y2,1,1)(1, 1, 1)

)
= 0.
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In summary if k = 3 and {n1, n2} = {1, 2}, then S ∈ T(Y2,1,1, 3) if and only if π2(o) ∈
π2(S

′).

3.3 Characterization of the third Terracini locus
In this section we prove the main theorem of the present chapter, i.e. we prove that the
previous examples are the only non-trivial sets of points lying in the third Terracini locus.
Let Yn1,...,nk

= Pn1×· · ·×Pnk and take S ⊂ Yn1,...,nk
with #(S) = 3. Note that in this case,

the minimal multiprojective space Y ′ ⊂ Yn1,...,nk
containing S is Y ′ := Pn′

1 × · · · × Pn′
k′ ,

where n′
i ∈ {1, 2} for all i = 1, . . . , k′. We will treat all the possible cases for Y ′. In

particular, we will consider the case in which

• the multiprojective space is a product of P1’s only in Lemma 3.3.2, Remark 3.3.4
and Lemma 3.3.7 respectively.

Then we start arguing by number of factors, more precisely:

• the 3-factors case is treated in Lemmas 3.3.8,3.3.9 and 3.3.10 respectively;

• for k = 4 we refer to Lemma 3.3.12;

• case k ≥ 5 is done in Lemma 3.3.11.

In all these cases, if Yn1,...,nk
is not equivalent neither to Y14 nor to Y2k we will prove that

any S ∈ T(Yn1,...,nk
, 3) is either as in Example 3.2.3 or as in Example 3.2.1. If Y ∼= Y14 then

we will see in Remark 3.3.4 that any set S of three points such that Y14 is the minimal
multiprojective space containing S lies in T(Y14 , 3). While for the case of multiprojective
spaces given by products of P2’s only, we will prove that T(Y2k , 3) = ∅.

Therefore from now on we will work with multiprojective spaces Yn1,...,nk
= Pn1 ×· · ·×

Pnk such that ni ∈ {1, 2} for all i = 1, . . . , k.
Let us begin our discussion with the case of products of P1’s and by recalling that the

action of the group (Aut(P1))k on sets of points S having all πi|S injective is transitive.

Remark 3.3.1. Let Y1k = (P1)k, for some k ≥ 2. Given any two subset S, S ′ ⊂ Y1k of
three distinct points such that #(πi(S)) = #(πi(S

′)) = 3 for all i = 1, . . . , k, one can
always find f ∈ (Aut(P1))k such that S = f(S ′). Since Y1k is the minimal multiprojective
space containing both S and S ′, then S ∈ T(Y1k , 3) if and only if S ′ ∈ T(Y1k , 3).

Lemma 3.3.2. Let Y1,1,1 = P1 × P1 × P1 and let S := {u, v, o} ⊂ Y1,1,1, with #S = 3, be
such that Y1,1,1 is the minimal multiprojective space containing S. Then S ∈ T(Y1,1,1, 3)
if and only if there exist h ∈ {1, 2, 3} and i, j ∈ {1, 2, 3} \ {h}, with i < j such that

πh(u) = πh(v) ̸=πh(o), πi(o) = πi(u) and πj(o) = πj(v),

where both πi(u) ̸= πi(v) and πj(u) ̸= πj(v).

Proof. Up to a permutation of the index h ∈ {1, 2, 3} we may assume h = 3.
Take S ⊂ Y1,1,1 with #S = 3 and let X1,1,1 := ν(Y1,1,1). Since dimσ3(X1,1,1) = 7 (cf.
Theorem 1.1.24), if #(πi(S)) = 3 for all i = 1, 2, 3, by Remark 3.3.1 we have that

h0
(
I(2S,Y1,1,1)(1, 1, 1)

)
= 0.
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Hence S /∈ T(Y1,1,1, 3).
Now assume #(πi(S)) ≤ 2 for some i. Remark that since Y1,1,1 is the minimal multipro-
jective space containing S then #(πi(S)) = 2. We distinguish different cases depending
on the number of indices i ∈ {1, 2, 3} for which #(πi(S)) = 2.

• If there exists only an index i such that #(πi(S)) = 2 then S is as in Example 3.2.3
and by case (iii) of Proposition 3.2.5 we know that h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 0.

• If #(πi(S)) = 2 for two indices, then S is as in Example 3.2.3 or as in Example 3.2.1.
For both cases we have h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 0.

• Finally, if #(πi(S)) = 2 for all i ∈ {1, 2, 3}, then S is as in Example 3.2.3 and by case
(iii) of Proposition 3.2.5 we get that h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 1.

Remark 3.3.3. Let Y1,1,1 = P1 × P1 × P1 and let S ∈ S(Y1,1,1, 3) such that Y1,1,1 is
the minimal multiprojective space containing S. We remark that the characterization
of the elements T(Y1,1,1, 3) presented in Lemma 3.3.2 is the well known description of
the general element of the tangential variety τ(X1,1,1), which is also called W-state in
quantum information literature (cf. [Cab02]). Indeed let S = {u, v, o} ∈ T(Y1,1,1, 3) and
without loss of generality take {i, j, h} = {1, 2, 3}. Then

u = (α, b, γ), v = (a, β, γ), o = (α, β, c),

for some distinct α, β, γ, a, b, c ∈ P1. Now it is straightforward to see that the general
q ∈ ⟨ν(S)⟩ is actually an element of Tν(p)X1,1,1 where p = (α, β, γ).

Remark 3.3.4. Fix Y14 = (P1)4 and let A ⊂ Y14 be a general subset of three distinct
points. Since the 3-rd secant variety of X14 := ν(Y14) ⊂ P15 is defective with defect 1 (cf.
Theorem 1.1.24), then dim(σ3(X14)) = 13 and h0

(
I(2A,Y14 )

(1, 1, 1, 1)
)
= 2, so by looking

at the restriction exact sequence we get h1
(
I(2A,Y14 )

(1, 1, 1, 1)
)
= 1. By the semiconti-

nuity theorem for cohomology (cf. [Har77, Ch. III §12]) h1
(
I(2S,Y14 )

(1, 1, 1, 1)
)
≥ 1 and

h0
(
I(2S,Y14 )

(1, 1, 1, 1)
)
≥ 2 for all S ⊂ Y14 with #(S) = 3. Moreover we remark that Y14

is the minimal multiprojective space containing a set S of three distinct points if and
only if #(πi(S)) ≥ 2 for all i = 1, 2, 3, 4.
Thus for all S ⊂ Y14 such that #(S) = 3 we have that

δ(2S, Y14)h
0
(
I(2S,Y14 )

(1, 1, 1, 1)
)
> 0

and the 3-rd Terracini locus T(Y14 , 3) contains all subsets S of Y14 of cardinality three
such that #(πi(S)) ≥ 2 for all i = 1, 2, 3, 4.

Remark 3.3.5. Let Y1k = (P1)k with k ≥ 5. By Theorem 1.1.24 we know that
dim(σ3(X1k)) = 3k + 2. Take a general S of cardinality 3, by looking at the restric-
tion exact sequence of 2S with respect to Y1k , we get that h1

(
I(2S,Y

1k
)(1, . . . , 1)

)
= 0. So

a general S ⊂ Y1k with #(S) = 3 is not in the 3-rd Terracini locus T(Y1k , 3). Thus by
Remark 3.3.1, for all S ⊂ Y1k with #(S) = 3 such that #(πi(S)) = 3 for all i = 1, . . . , k,
then S /∈ T(Y1k , 3).

Lemma 3.3.6. Let Y1k = (P1)k with k ≥ 5. Fix S := {a, b, c} ⊂ Y1k such that Y1k is the
minimal multiprojective space containing S. Assume that there are at least k − 2 indices
i’s for which πi(a) = πi(b). Then S is either as in Example 3.2.3 or as in Example 3.2.1.
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Proof. Define E := {i ∈ {1, . . . , k} | πi(a) = πi(b)}, by assumption #(E) ≥ k − 2 and
since a ̸= b then #(E) ≤ k − 1. By permuting the factors of Y1k if necessary, one can
always assume that E contains the last k − 2 indices and that the index 1 /∈ E. If 2 /∈ E
then S is constructed as in Example 3.2.3 with n1 = n2 = 1, else S is as in Example 3.2.1
where we took m = 1.

Lemma 3.3.7. Let Y1k = (P1)k with k ≥ 5. Fix S ⊂ Y1k with #(S) = 3 such that Y1k
is the minimal multiprojective subspace containing S. If S ∈ T(Y1k , 3) then S is either as
in Example 3.2.3 or as in Example 3.2.1.

Proof. Write S := {u, v, z}. Since S ∈ T(Y1k , 3), by Remark 3.3.5 we may assume that
πi(u) = πi(v) for at least one i ∈ {1, . . . , k}. With no loss of generality we may assume
i = 1. Since h0

(
OY

1k
(εi)
)
= 2 for i = 1, 2, both |Iu(ε1)| and |Iz(ε2)| are singletons. Set

{H} := |Iu(ε1)| and {M} := |Iz(ε2)|. Since v ∈ H, then S ⊂ H ∪M . Moreover, since
Y1k is the minimal multiprojective space containing S, then z /∈ H and #(S ∩M) ≤ 2.

Claim 5. h1 (IS(0, 0, 1, . . . , 1)) = 0 unless S is either as in Example 3.2.3 or
as in Example 3.2.1.

Proof. Call η : Y1k −→ (P1)k−2 the projection onto the last k − 2 factor of Y1k
and set Y ′ := (P1)k−2.
Assume h1 (IS(0, 0, 1, . . . , 1)) > 0. Therefore either η|S is not injective or
#(η(S)) = 3 and h1

(
Y ′, Iη(S)(1, . . . , 1)

)
> 0, which means that the points

of η(S) are collinear. In the first case S is either as in Example 3.2.3 or
as in Example 3.2.1 by Lemma 3.3.6. In the second case we would have an
i ∈ {3, . . . , k} such that #(πh(S)) = 1 for all h ∈ {3, . . . , k}\{i}, contradicting
the minimality of Y ′ for η(S), which is a consequence of the minimality of Y1k
for S.

Assume by contradiction that S is neither as in Example 3.2.3 nor as in Example
3.2.1.

(a) Assume #(S ∩ M) = 1, i.e. S ∩ (H ∩ M) = ∅. So S is contained in the smooth
part of H ∪M and ResH∪M(2S) = S. Since S is not as in one of the examples, by
Claim 5 we get h1

(
IResH∪M (2S,Y )(0, 0, 1, . . . , 1)

)
= h1 (IS(0, 0, 1, . . . , 1)) = 0. More-

over, by the restriction exact sequence of S, we get h0 (IS(0, 0, 1, . . . , 1)) = 2k−2 − 3.
Since by assumption S ∈ T(Y1k , 3), then h0

(
I(2S,Y

1k
)(1, . . . , 1)

)
> 0 and more precisely

h0
(
I(2S,Y

1k
)(1, . . . , 1)

)
≥ 2k − 3(k + 1), where k ≥ 5. Thus the residual exact se-

quence of H ∪M gives h1
(
H ∪M, I(2S,H∪M),H∪M(1, . . . , 1)

)
> 0. Since by assumption

S ∩ (H ∩M) = ∅, (2S,H ∪M) is equal to (2u,H) ∪ (2v,H) ∪ (2z,M).

Denote by G the set of all g ∈ (Aut(P1))k acting as the identity on the last k − 1
factors of Y1k ; we remark that the elements of G are 3-transitive on the first fac-
tor. Let Gu be the subgroup of G fixing also the first component π1(u) of u ∈ S.
Hence, since we assumed π1(u) = π1(v), any g ∈ Gu fixes both u and v. Obviously
h1
(
H ∪M, I(2u,H)∪(2v,H)∪(2z,M),H∪M (1, . . . , 1)

)
= h1

(
H ∪M, I(2u,H)∪(2v,H)∪(2g(z),M),H∪M (1, . . . , 1)

)

for all g ∈ Gu. Thus it is sufficient to find a contradiction for a single z′ ∈ M \H ∩M
with πi(z′) = πi(z) for i > 1.
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We may specialize z by considering a general o ∈ H ∩M . So it is sufficient to work
on H rather than H ∪M . Denote by Z := (2u,H) ∪ (2v,H) and call A the union of
Z and the double point (2o,H ∩M). We want to use the Differential Horace Lemma
with H ∩M as a divisor of H (cf. Lemma 1.2.4). We remark that Z ⊂ H satisfies the
assumptions of the Differential Horace Lemma, i.e. both

h1
(
H, IRes(H∩M)(Z) ⊗ L(−H ∩M)

)
= 0

and h1
(
H ∩M, IZ∩(H∩M),H∩M ⊗ L|H∩M

)
= 0,

where L = O(1, . . . , 1). Indeed the latter is trivially zero since by assumption #(S ∩
M) = 1. The former is zero since H is the minimal multiprojective space contain-
ing Z and by Proposition 3.1.3 we know that T(H, 2) = ∅ and in particular that
δ(2{u, v}, H) = 0. Thus by Lemma 1.2.4, in order to show that h1 (H, IA(1, . . . , 1)) =
0, it suffices to show that both

h1
(
H ∩M, I(Z∩(H∩M))∪{o}(1, . . . , 1)

)
= 0

and h1
(
H, IResH∩M (A)(1, 0, 1, . . . , 1)

)
= 0.

Clearly since (Z ∩ (H ∩M)) ∪ {o} = {o} then h1
(
H ∩M, I(Z∩(H∩M))∪{o}(1, . . . , 1)

)

is trivially zero. The second equality follows from (1.2.3) of Remark 1.2.13 since we
already pointed out that δ(2{u, v}, H) = 0.

(b) Assume #(S ∩M) = 2. Taking {Mi} = |Iz(εi)| for i = 3, . . . , k and applying step (a)
to H ∪Mi, we see that it is sufficient to handle the case with #(πi(S)) = 2 for all i.
Write S = {a, b, c}. Since Aut(P1) is 2-transitive, by composing with an element of
(Aut(P1))k, we may assume πi(S) = {α, β} for all i.
Without loss of generality we may also assume πi(a) = α for all i. Thus β ∈
{πi(b), πi(c)} for all i. Moreover, since S is neither as in Example 3.2.3 nor as in
Example 3.2.1, for all A ⊂ S with #(A) = 2 then #(πi(A)) = 2 for at least 3 indices
i’s. We define the maximum number of common components that any two points of
S can have as

t := max{#(I) | I ⊂ {1, . . . , k} and ∃A ⊂ S with #(A) = 2 such that ∀i ∈ I πi(A) = 1}.

By relabeling if necessary, we may assume that {a, b} is one of the subsets of S
reaching such t. By assumption t ≤ k − 3.
We distinguish different cases depending on the integer k ≥ 5. In particular, for
k = 5, 6, we will get to a contradiction with the assumption δ(2S, Y1k) > 0 by direct
computation with Macaulay2 (cf. [GS02]).

(i) Assume k = 5. So t ≤ 2 and since #(πi(S)) = 2 for all i and k > 3 then t = 2.
Permuting the factors of Y we may assume πi(b) = α for i = 1, 2 and πi(b) = β
for i = 3, 4, 5. Since #(πi(S)) = 2 for all i, then π1(c) = π2(c) = β. Since a and
c have at most 2 common projections, then we may assume πi(c) = α for i = 3, 4
and π5(c) = β. Thus S = {a, b, c} is such that

a = (α, α, α, α, α), b = (α, α, β, β, β), c = (β, β, α, α, β)

and up to a permutation of the elements of S and of the factors of Y15 , there is a
unique such S.
By direct computation one can see that h0

(
I(2S,Y15 )

(1, 1, 1, 1, 1)
)
= 14 and conse-

quentially h1
(
I(2S,Y15 )

(1, 1, 1, 1, 1)
)
= 0 contradicting the assumption.
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(ii) Assume k = 6. We have t ≤ 3. Moreover, since #(πi(S)) = 2 for all i, then t ≥ 2.
We distinguish two different cases in dependence on the value t ∈ {2, 3}.
Assume t = 3. Permuting if necessary the factors of Y16 , we may assume π1(b) =
π2(b) = π3(b) = α and π4(b) = π5(b) = π6(b) = β. Thus since #(πi(S)) = 2 for all
i’s, then π1(c) = π2(c) = π3(c) = β. Moreover c and a can have 2 or 3 common
components. In the first case S = {a, b, c} is such that

a = (α, α, α, α, α, α), b = (α, α, α, β, β, β), c = (β, β, β, β, α, α).

In the second case S = {a, b, c} is such that

a = (α, α, α, α, α, α), b = (α, α, α, β, β, β), c = (β, β, β, α, α, α).

We remark that up to permuting the factors of Y16 and relabeling the elements of
S, these are the only cases for t = 3. As before, by direct computation, one gets for
both cases δ(2S, Y16) = 0 contradicting the assumption.

Assume t = 2. Permuting the factors of Y we may assume π1(b) = π2(b) = α
(and hence π1(c) = π2(c) = β) and π3(b) = π4(b) = π5(b) = π6(b) = β. Since
#{πi(a), πi(c)} = #{πi(b), πi(c)} = 1 for at most 2 indices, among the set {3, 4, 5, 6}
exactly 2 i’s have πi(c) = β, while the other ones have πi(c) = α. Thus S = {a, b, c}
is such that

a = (α, α, α, α, α, α), b = (α, α, β, β, β, β), c = (β, β, β, β, α, α).

Up to relabeling the points of S and a permutation of the factors of Y16 , there is a
unique such S. By direct computation one gets h0

(
I(2S,Y16 )

(1, 1, 1, 1, 1, 1)
)
= 20, so

δ(2S, Y16) = 0 contradicting the assumption.

(iii) Now assume k ≥ 7. Exchanging if necessary the names of the points of S we may
assume π1(a) = π1(b) = α and hence π1(c) ̸= α. For any t ∈ P1 set St := {a, b, ct},
where π1(ct) := t and πi(ct) := πi(c) for all i > 1. Since any two of points of S differ
in at least 3 coordinates, #(St) = 3 for all t. Since Aut(P1) is 3-transitive, for each
t ∈ P1 \ {π1(a)} there is

gt ∈ ((Aut(P1))k) ⊂ Aut(Y )

such that gt(St) = S. Thus δ(2S) = δ(2St) for all t ∈ P1 \ {π1(a)}. Denote by
a1 := π1(a), by the semicontinuity theorem for cohomology it is sufficient to prove
δ(2Sa1 , Y1k) = 0.
To show that δ(2Sa1 , Y1k) = 0, we proceed by induction on the integer n := k − 7.
Assume n = 0, i.e. k = 7. Since h0(OY

1k
(ε1)) = 2, |Ia(ε1)| is a singleton. Set

{H} := |Ia(ε1)|, so H ⊃ Sa1 by definition. Since any two points of S differs in at
least 3 coordinates, by Lemma 1.2.11 we know that h1

(
H, ISa1

(ε̂1)
)
= 0. By case

(b) of Lemma 1.2.14 we know that δ(2Sa1 , Y1k) = δ(2Sa1 , H). In item (ii) we proved
that for any subset S ⊂ (P1)6 of three points such that any two of them have at
least 3 distinct components, then δ(2S, (P1)6) = 0. Thus δ(2Sa1 , H) = 0, and hence
δ(2Sa1 , Y1k) = 0.
Assume now n > 0, i.e. k > 7. As before, we set {H} := |Ia(ε1)|, so H ⊃ Sa1 by
definition. By the same argument we get δ(2Sa1 , Y1k) = δ(2Sa1 , H). If ca1 differs
from a and from b in at least 3 coordinates, then the inductive assumption gives
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δ(2Sa1 , H) = 0 and hence δ(2S, Y1k) = 0. We conclude since k > 7 and #(πi(S)) = 2
for all i, so not all pairs of points of S may differ in only 3 coordinates.
Thus we proved that for all k ≥ 7, then δ(2Sa1 , Y1k) = 0, so by the semicontinuity
theorem for cohomology, for all k ≥ 7 we get δ(2S, Y1k) = 0 contradicting the
assumption.

This concludes the case of Y1k = (P1)k for all k ≥ 3. Therefore let Yn1,...,nk
≇ Y1k and

let us distinguish different cases based on the number of factors of Yn1,...,nk
. The following

three lemmas treat the 3-factors case depending on whether the integer n1 + n2 + n3 is
equal to 4, 5 or 6 respectively.

Lemma 3.3.8. Let Y2,1,1 = P2×P1×P1. If S ∈ T(Y2,1,1, 3) then S is either as in Example
3.2.1 or as in Example 3.2.3.

Proof. Let S ⊂ Y2,1,1, with #(S) = 3, be such that Y2,1,1 is the minimal multiprojective
space containing S, i.e. π1|S is injective, dim⟨π1(S)⟩ = P2 and #(πi(S)) ≥ 2 for all
i ∈ {2, 3}. We remark that S is as in Example 3.2.3 or as in Example 3.2.1 if and only if
there exists an index i ∈ {2, 3} such that #(πi(S)) = 2.

Assume by contradiction that S is neither as in Example 3.2.3 nor Example 3.2.1, i.e.
assume that #(πi(S)) = 3 for i = 2, 3. Since Aut(P2) is transitive on the set of triples
of linearly independent points of P2 and Aut(P1) is 3-transitive, S is in the open orbit
for the action of Aut(P2)×Aut(P1)×Aut(P1) on the set of three points of Y2,1,1. So we
can deal with a general set S ⊂ Y2,1,1 of cardinality three. By Theorem 1.1.24 we know
that σ3(X2,1,1) is not defective, so σ3(X2,1,1) = P11 and hence h0

(
I(2S,Y2,1,1)(1, 1, 1)

)
= 0,

contradicting the assumption.

Lemma 3.3.9. Let Y = P2 × P2 × P1. Then each S ∈ T(Y2,2,1, 3) is as in Example 3.2.3
for k = 3 and n1 = n2 = 2.

Proof. Set

U := {S ⊂ Y2,2,1 |#(S) = 3 and Y2,2,1 is the minimal multiprojective space containing S}.

So any S ∈ U is such that #(π3(S)) ≥ 2, π1|S and π2|S are injective and dim⟨π1(S)⟩ =
dim⟨π2(S)⟩ = 2. The group Aut(P2)×Aut(P2)×Aut(P1) acts on U with exactly 2 orbits:

1. #(π3(S)) = 3;

2. #(π3(S)) = 2.

Call O1 the first orbit and O2 the second one. Obviously for all S, S̃ in the same orbit
we have h1(I(2S,Y2,2,1)(1, 1, 1)) = h1(I(2S̃,Y2,2,1)

(1, 1, 1)). Among the elements of O1 there
is the general subset of Y2,2,1 with cardinality 3. Since σ3(ν(Y2,2,1)) = P17 (cf. Theorem
1.1.24) h1

(
I(2S,Y2,2,1)(1, 1, 1)

)
= 0 for all S ∈ O1. We conclude since the elements of O2

are exactly the sets S described in Example 3.2.3 for n1 = n2 = 2 and k = 3.

Lemma 3.3.10. Let Y2,2,2 = P2×P2×P2. The 3-rd Terracini locus T(Y2,2,2, 3) is empty.

Proof. Let S ⊂ Y2,2,2, with #(S) = 3, be such that Y2,2,2 is the minimal multiprojec-
tive space that contains S, i.e. πi|S is injective and dim⟨πi(S)⟩ = 2 for all i = 1, 2, 3.
By the action of (Aut(P2))3, we can reduce to work with a general set S ⊂ Y2,2,2 of
cardinality three. Since σ3(X2,2,2) is not defective (cf. Theorem 1.1.24) we know that
dim(σ3(X2,2,2)) = 20, so h0(I(2S,Y2,2,2)(1, 1, 1)) = 6. Hence, by the restriction exact se-
quence, δ(2S, Y2,2,2) = 0.
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With the previous proposition we are done with multiprojective spaces of k = 3
factors. Let us focus for the moment on the integer k ≥ 5. In this case we deal with
Yn1,...,nk

= Pn1 ×· · ·×Pnk where all ni ∈ {1, 2}. We will prove by induction on the integer
t := dimYn1,...,nk

− k that any S ⊂ Yn1,...,nk
, with #(S) = 3, that belongs to T(Yn1,...,nk

, 3)
is either as in Example 3.2.1 or as in Example 3.2.3, by using Lemma 3.3.7 as a base case
t = 0.

Lemma 3.3.11. Let Yn1,...,nk
:= Pn1 × · · · × Pnk , where k ≥ 5 and ni ∈ {1, 2} for all

i’s. If S ∈ T(Yn1,...,nk
, 3) then S is either as in Example 3.2.1 or as in Example 3.2.3. In

particular T(Yn1,...,nk
, 3) = ∅, unless ni = 1 for at least k − 2 indices i.

Proof. We proceed by induction on the integer t := dimYn1,...,nk
− k.

The base case t = 0 corresponds to Lemma 3.3.7. Assume t > 0 and that the lemma is
true for any multiprojective space Yn1,...,nk

of dimension at most k + t − 1. Since t > 0,
there exists at least an index i such that ni = 2, without loss of generality we may assume
i = 1. Fix S ∈ T(Y2,n2,...,nk

, 3). So we know that δ(2S, Y2,n2,...,nk
) > 0 and Y2,n2,...,nk

is the
minimal multiprojective space containing S. Thus π1|S is injective and ⟨π1(S)⟩ = P2. Fix
o ∈ P2 \ π1(S). Choose a system of homogeneous coordinates {x0, x1, x2} of P2 such that
o = [1 : 0 : 0], the line L := {x0 = 0} contains no point of π1(S) and o is not contained
in one of the 3 lines spanned by 2 of the points of π1(S). Let ℓo : P2 \ {o} −→ L denote
the linear projection from o, i.e. the rational map defined by [a0 : a1 : a2] 7→ [0 : a1 : a2].

Write Y2,n2,...,nk
= P2 × Y ′ with Y ′ =

∏
i>1 Pni and set H := L× Y ′ ∈ |OY2,n2,...,nk

(ε1)|.
The morphism ℓo extends to a morphism

fo :
(
P2 \ {o}

)
× Y ′ −→ H

(a, b) 7→ (ℓo(a), b),

We remark that #(fo(S)) = 3 and that H is the minimal multiprojective subspace of
Y2,n2,...,nk

containing fo(S).
For each λ ∈ K \ {0} let uλ : P2 −→ P2 denote the automorphism of P2 defined by the
formula [a0 : a1 : a2] 7→ [λa0 : a1 : a2]. Let K′ ⊆ K \ {0} be the set of all λ ∈ K \ {0} such
that no line spanned by 2 of the points of uλ(π1(S)) contains o. For each λ ∈ K′ we have
#(uλ(π1(S))) = 3 and uλ(π1(S)) spans P2.
For each λ ∈ K′ define

gλ : Y2,n2,...,nk
−→ Y2,n2,...,nk

(a, b) 7→ (uλ(a), b).

Composing fo with the inclusion j : H ⊂ Y2,n2,...,nk
we see that the rational map j ◦ fo

is a limit for λ going to 0 of the family {gλ}λ∈K′ of automorphisms of Y2,n2,...,nk
. By the

semicontinuity theorem for cohomology δ(2(j ◦ fo(S)), Y2,n2,...,nk
) ≥ δ(2S, Y2,n2,...,nk

) > 0.

Claim 6. δ(2g0(S), H) = δ(2(j ◦ fo(S)), Y2,n2,...,nk
).

Proof. Since dimY2,n2,...,nk
= dimH + 1, part (a) of Lemma 1.2.14 gives

δ(2g0(S), H) ≤ δ(2(j ◦ fo(S)), Y2,n2,...,nk
) ≤ δ(2g0(S), H) + h1 (IS(ε̂1)) .
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To conclude the proof of Claim 6 it is sufficient to prove that h1 (IS(ε̂1)) = 0.
Assume h1 (IS(ε̂1)) > 0. By Lemma 1.2.11 either there are u, v ∈ S such that
u ̸= v and η1(u) = η1(v) or there is i ∈ {2, . . . , k} such that #(πh(S)) = 1 for
all h ∈ {2, . . . , k} \ {i}. In the former case, i.e. if πi(u) = πi(v) for all i > 1,
S is as in Example 3.2.1. In the second case we are either in Example 3.2.3
or in Example 3.2.1 and for both cases we have h1(IS(ε̂1)) = 0.

By Claim 6 and the inequality h0 (OH(1, . . . , 1)) > 3 dimH (true because k ≥ 5) fo(S) ∈
T(H, 3). By the inductive assumption fo(S) is as in one of the Examples 3.2.3 or 3.2.1 and
in particular nh = 1 for at least k− 2 of the last (k− 1) indices h, say for h ∈ {3, . . . , k}.
Moreover there is A ⊂ fo(S) such that #(A) = 2 and #(πh(A)) = 1 for all h > 2. Since
fo act as the identity on the last (k−1) components of any p ∈ Y2,n2,...,nk

\H, we get that
S is described by the same Example which describes fo(S).

The only case left in the discussion is the 4-factors case, where we work with mulit-
projective spaces Yn1,...,n4 ≇ Y14 .

Lemma 3.3.12. Take Yn1,...,n4 = Pn1 × Pn2 × Pn3 × Pn4 with ni ∈ {1, 2} for all i and
n1 + n2 + n3 + n4 ≥ 5. If S ∈ T(Yn1,...,nk

, 3), then S is either as in Example 3.2.3 or as
in Example 3.2.1.

Proof. We will show the result by induction on the integer t = n1 + · · · + n4 − 5 ≥ 0.
First assume t = 0, i.e. n1 + n2 + n3 + n4 = 5. With no loss of generality we may
assume Y2,1,1,1 = P2 × P1 × P1 × P1. Since Y2,1,1,1 is the minimal multiprojective space
containing S and n1 = 2, then π1|S is injective. Assume for the moment πi|S injective
for i = 2, 3, 4. Since Aut(P1) is 3-transitive, S is in the same orbit for the action of
Aut(P2)× (Aut(P1))3 of 3 general points of Y2,1,1,1. We know that dimσ3(ν(Y2,1,1,1)) = 17
(cf. Theorem 1.1.24), so δ(2S, Y2,1,1,1) = 0 contradicting the assumption. Thus we may
assume #(πi(S)) = 2 for some i ∈ {2, 3, 4}. With no loss of generality we may assume
that at least #(π3(S)) = 2. Since π1|S is injective, η4|S is injective. The set η4(S) is as
in case (iv) of Proposition 3.2.5. Using η2 and η3 instead of η4 we see the existence of
at least two indices h ∈ {2, 3, 4} such that #(πh(S)) = 2. With no loss of generality
we may assume #(π3(S)) = #(π4(S)) = 2, i.e. neither π3|S nor π4|S are injective. If
there is S ′ ⊂ S such that #(S ′) = 2 and #(π3(S

′)) = #(π4(S
′)) = 1, then we are in

Example 3.2.3 or Example 3.2.1. The non-existence of such S ′ shows that we may name
S = {a, b, c} so that π4(a) = π4(b), π3(a) = π3(c). We distinguish two cases:

(i) #(π2(S)) = 2;

(ii) #(π2(S)) = 3.

Write a = [a1, a2, a3, a4], b = [b1, b2, b3, b4] and c = [c1, c2, c3, c4]. Since Aut(P2) is transi-
tive on the set of all triples of linearly independent points, we may assume a1 = [1 : 0 : 0],
b1 = [0 : 1 : 0] and c1 = [0 : 0 : 1]. Since Aut(P1) is 3-transitive we may assume
a2 = a3 = a4 = α, b3 = β, b4 = α, c3 = α and c4 = β, for some α ̸= β ∈ P1. Moreover,
in case (i) we may assume b2 = c2 = β, while in case (ii) we may assume b2 = β and
c2 = γ, for some γ ∈ P1 with γ ̸= α, β. For both cases, by direct computation one gets
h0
(
I(2S,Y2,1,1,1)(1, 1, 1, 1)

)
= 17, so δ(2S, Y2,1,1,1) = 0 contradicting the assumption.

Now assume t > 0, i.e. n1 + n2 + n3 + n4 ≥ 6. As in the proof of Lemma 3.3.11, we
will use a linear projection from a general point of a 2-dimensional factor of Yn1,...,n4 to
conclude by induction on the integer n1 + n2 + n3 + n4.
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The previous proposition concludes the analysis on the study of the third Terracini
locus of any multiprojective space. Now we collect all together the above results in the
upcoming theorem. Before proceeding, note that the case of Y2k = (P2)k with k ≥ 4 is
already contained in both Lemma 3.3.12 and Lemma 3.3.11 but it can be easily treated
as follows.

Remark 3.3.13. Let S ⊂ Y2k , with #(S) = 3, be such that Y2k is the minimal multi-
projective space containing S, i.e. πi|S is injective for all i ≤ k. We can look at S as
a general set of three distinct points by the action of (Aut(P2))k. By Theorem 1.1.24
σ3(X2k) is never defective, therefore h1(I(2S,Y

2k
)(1, . . . , 1)) = 0 and hence T(Y2k , 3) = ∅.

We are ready to state the main theorem of the present chapter that completely de-
scribes the third Terracini locus of any set of three points.

Theorem 3.3.14. Let Yn1,...,nk
be the minimal multiprojective space of k ≥ 1 factors

containing a set S of 3 points, where all ni ∈ {1, 2}. Then the following characterization
of the 3-rd Terracini locus holds.

T(Yn1,...,nk
, 3) is empty if and only if either k = 1, 2 or Y2k = (P2)k, for all k ≥ 3.

Moreover the non-empty S ∈ T(Yn1,...,nk
, 3) can only be either as in Example 3.2.1 or as

in Example 3.2.3 or Y14 = (P1)4, in this last case all S ⊂ Y14 with #(S) = 3 that have
Y1k as minimal multiprojective space lie in T(Y14 , 3).

Proof. Let S ∈ T(Yn1,...,nk
, 3) be such that Yn1,...,nk

is the minimal multiprojective space
containing S, so Yn1,...,nk

= Pn1 × · · · × Pnk is such that ni ∈ {1, 2} for all i = 1, . . . , k.
If k = 1 we always have h0(I2S(1)) = 0, thus the case of either Y2 = P2 or Y1 = P1 is
clear.
Assume k = 2. In this case Yn1,n2 = Pn1 × Pn2 with 1 ≤ n1 ≤ 2 and 1 ≤ n1 ≤ 2. If
n1 = n2 = 1, then obviously h0(I2S(1, 1)) = 0. If ni = 2, then πi|S is injective and
πi(S) is linearly independent. Thus if n1 = n2 = 2, then S is in open orbit for the
action of Aut(P2) × Aut(P2) on the set of three points of Y2,2. Since a general 3 × 3
matrix has rank 3 we get σ3(ν(Y2,2)) = P8. Hence h0(I(2S,Y2,2)(1, 1)) = 0, contradicting
the assumption S ∈ T(Y2,2, 3). Now assume ni = 1 for exactly one i, say for i = 1.
Since Y1,2 is the minimal multiprojective space containing containing S, #(π1(S)) ≥ 2
and #(π2(S)) = 3. Thus there is S ′ ⊂ S such that #(S ′) = #(π1(S

′)) = 2. S ′ is in the
open orbit for the action of Aut(P1)× Aut(P2) on SY1,2(2). Since a general 2× 3 matrix
has rank 2, σ2(ν(Y1,2)) = P5. Thus h0(I(2S′,Y1,2)(1, 1)) = 0. Hence h0(I(2S,Y1,2)(1, 1)) = 0,
contradicting the assumption S ∈ T(Y1,2, 3). This concludes the case of two factors.
The case of k = 3 is completely covered by Lemmas 3.3.2, 3.3.10, 3.3.8 and 3.3.9.
In the case of k = 4 there is the defective 3-rd secant variety of the Segre embedding of
Y14 = (P1)4 (cf. Remark 3.3.4).
For any other couple (S, Yn1,...,n4) where Yn1,...,nk

≇ (P1)4, Lemma 3.3.12 shows that S
must be either as in Example 3.2.1 or as in Example 3.2.3.
If k ≥ 5 it is sufficient to use Lemma 3.3.11.
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3.4 Computing the maximal Terracini defect
An interesting question related to the discussion we faced, is to determine the maximal
value of defect δ(2S, Yn1,...,nk

) that a set of points S ⊂ Yn1,...,nk
could have and, as a

consequence, to also understand for which multiprojective space it happens. The present
section is dedicated to compute the maximal defect δ(2S, Yn1,...,nk

), for all S ⊂ Yn1,...,nk

and all Yn1,...,nk
. More precisely, note that, if we fix any multiprojective space Yn1,...,nk

of dimension n > 0, then for any p ∈ Yn1,...,nk
the very ampleness of OYn1,...,nk

(1, . . . , 1)

implies h1
(
I(2p,Yn1,...,nk

)(1, . . . , 1)
)
= 0. For any integer r ≥ 2 there are many S ⊂ Yn1,...,nk

with #S = r that have δ(2S, Yn1,...,nk
) > 0. In the following we compute the maximal

value of all δ(2S, Yn1,...,nk
) for some multiprojective space Yn1,...,nk

of dimension n. This
maximal value is obtained when n1 = n and all n2 = · · · = nk = 0 i.e. for Yn = Pn

(cf. Proposition 3.4.4). But of course in this case h0
(
Pn, I(2S,Pn)(1)

)
= 0 for any finite

set S ⊂ Pn with S ̸= ∅. Therefore we will compute the maximal value of δ(2S, Yn1,...,nk
)

requesting that also h0
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
> 0.

Before proceeding, we need to introduce the following objects that will be used only in
the present section. They encode coulpes (Yn1,...,nk

, S) of multiprojective spaces Yn1,...,nk

and set of points S such that S ⊂ Yn1,...,nk
once fixed the integers n :=

∑
i≤k ni and

r := #(S).

Notation 3.4.1. Let Yn1,...,nk
be any multiprojective space of k factors. For all positive

integers r define
SYn1,...,nk

(r) := {S ⊂ Yn1,...,nk
| #S = r}.

Definition 3.4.2. For any integer n > 0, denote by U(n) the set of all isomorphism
classes of multiprojective spaces Yn1,...,nk

such that dimYn1,...,nk
= n.

For any integer r ≥ 2, n ≥ 2 define

E(n, r) :={(Yn1,...,nk
, S) ∈ U(n)× SYn1,...,nk

(r) | δ(2S, Yn1,...,nk
)h0
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
> 0},

E(n, r) :={(Yn1,...,nk
, S) ∈ U(n)× SYn1,...,nk

(r) | S ∈ T(Yn1,...,nk
, r)}.

We remark that in the definition of E(n, r) we do not require the points of S to lie in
the minimal multiprojective space containing them.

The set of all (n, r) such that E(n, r) ̸= ∅ will be easily computed in Lemma 3.4.7
and we will show that E(n, r) ̸= ∅ if and only if n ≥ 3 and r ≥ 2. We introduce now a
notation for the maximal value of δ(2S, Yn1,...,nk

) once fixed integers n, r.

Notation 3.4.3. Fix integers n, r > 0. Denote by

δ1(n, r) := max{δ(2S, Yn1,...,nk
) | (Yn1,...,nk

, S) ∈ E(n, r)}.

If we prescribe that (Yn1,...,nk
, S) ∈ E(n, x), i.e. if we assume that Yn1,...,nk

is the minimal
multiprojective space containing S, then we get the definition of the integer δ(n, x).

In Proposition 3.4.8 we will show that

δ1(n, r) = (r − 1)(n+ 1)− 1.

In order to do so, let us start by finding an upper bound of δ(2S, Yn1,...,nk
), for any

couple (Yn1,...,nk
, S) such that S ⊂ Yn1,...,nk

.
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Proposition 3.4.4. Fix integers n > 0 and r ≥ 2. Fix Yn1,...,nk
∈ U(n) and S ∈

SYn1,...,nk
(r). Then

h1
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
≤ (r − 1)(n+ 1)

and equality holds if and only if the multiprojective space is Yn = Pn.

Proof. Fix Yn1,...,nk
∈ U(n), with ni > 0 for all i’s and n1+ · · ·+nk = n and assume k ≥ 2,

i.e. assume Yn1,...,nk
≇ Pn. Fix S ∈ SYn1,...,nk

(r) and take o ∈ S. Since OYn1,...,nk
(1, . . . , 1)

is very ample, we have h1
(
I(2o,Yn1,...,nk

)(1, . . . , 1)
)
= 0. Therefore we can easily bound

δ(2S, Yn1,...,nk
) as follows

h1
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
≤ deg (2(S \ {o}), Yn1,...,nk

) = (r − 1)(n+ 1)

(cf. (1.2.4) of Remark 1.2.13). This concludes the proof of the inequality.
The “ if ” part of the equality is clear, so we just need to prove the “ only if ” part. We

will use induction on the integer n starting with the case n = 2.
Let n = 2 and assume by contradiction that Yn1,...,nk

≇ P2, so we are working with
Y1,1 = P1 × P1. Thus h0

(
OY1,1(1, 1)

)
= 4. Since each tangent plane to ν(P1 × P1)

is tangent at a unique point of the smooth quadric ν(P1 × P1) and r ≥ 2, we have
h0
(
I(2S,Y1,1)(1, 1)

)
= 0 and hence h1

(
I(2S,Y1,1)(1, 1)

)
= 3(r − 1) − 1 ̸= 3(r − 1). Now

assume n > 2. We distinguish two different cases depending on whether r = 2 or not.

(a) Assume r = 2 and write S = {u, v}. Assume by contradiction that Yn1,...,nk
≇ Pn.

We remark that by assumption h1
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
= n + 1. This implies that

the Zariski tangent spaces Tν(u)ν(Yn1,...,nk
) and Tν(v)(Yn1,...,nk

) of ν(Yn1,...,nk
) at ν(u)

and ν(v) are the same. Since ν(v) ∈ Tν(u)ν(Yn1,...,nk
), the line L := ⟨{ν(v), ν(u)}⟩

contains two points of Tν(u)ν(Yn1,...,nk
) and hence it is contained in Tν(u)ν(Yn1,...,nk

).
Since ν(u) ∈ L, L is tangent to ν(Yn1,...,nk

) at ν(u). Hence L ∩ ν(Yn1,...,nk
) contains a

zero-dimensional scheme of degree strictly greater than 2. Since ν(Yn1,...,nk
) is scheme-

theoretically cut out by quadrics, we get L ⊂ ν(Yn1,...,nk
), i.e. there is D ⊂ Yn1,...,nk

,
such that ν(D) = L, D ∼= P1 and #(πi(D)) = 1 for k − 1 indices i. Let i ∈ {1, . . . , k}
be the index such that #(πi(S)) ̸= 1. Since #(πj(S)) = 1 for all j ̸= i and S ⊂ D,
by case (b) of Lemma 1.2.14, we know that δ(2S, Yn1,...,nk

) = δ(2S,Pni), where ni < n.
By the inductive assumption we get δ(2S,Pni) = ni + 1 < n+ 1 which is absurd since
by assumption δ(2S, Yn1,...,nk

) = n+ 1.

(b) Assume r > 2. Write S = A ∪ B with #(A) = 2 and #(B) = r − 2. By part
(a) we have h1

(
I(2A,Yn1,...,nk

)(1, . . . , 1)
)
≤ n. Thus by 1.2.4 of Remark 1.2.13 we get

h1
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
≤ h1

(
I(2A,Yn1,...,nk

)(1, . . . , 1)
)
+ deg(2B, Yn1,...,nk

) ≤ n + (r − 2)(n + 1),
which is absurd since by assumption h1

(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
= (r − 1)(n+ 1).

Remark 3.4.5. Let n > 0 and r ≥ 2. By Proposition 3.4.4, for all Yn1,...,nk
∈ U(n)

and S ∈ SYn1,...,nk
(r) the maximum value of h1

(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)

is achieved when
the multiprojective space is Pn. Clearly, in this case, h0

(
I(2S,Yn)(1, . . . , 1)

)
= 0. Thus

the couple (Yn1,...,nk
, S) ∈ U(n) × SYn1,...,nk

(r) evincing δ1(n, r) is such that Yn1,...,nk
is a

multiprojective space with k ≥ 2 factors.

The following example shows that for a precise family of couples (Yn1,...,nk
, S), where we

take Yn1,...,nk
as a multiprojective space with at least two factors, the value (r−1)(n+1)−µ

is attained for δ(2S, Yn1,...,nk
) for any positive integer µ ≤ n − 1. Moreover we will show

in Theorem 3.4.8 below that this example is the only one with maximal δ1(n, r).
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Example 3.4.6. Let n ≥ 3, fix an integer 1 ≤ µ ≤ n−1 and let r ≥ µ+1. Let L ⊂ Pn−1

be a µ-dimensional linear subspace and let Yn−1,1 := Pn−1 × P1. Fix o ∈ P1 and a finite
set S ⊂ L× {o} with #S = r and such that ⟨π1(S)⟩ = L. The aim of this example is to
show that

δ(2S, Yn−1,1) = (r − 1)(n+ 1)− µ.

Take H := π−1
2 (o) ∈ |OYn−1,1(ε2)|. Note that S ⊂ H. Thus the residual exact sequence

of (2S, Yn−1,1) with respect to H is

0 −→ IS(1, 0) −→ I(2S,Yn−1,1)(1, 1) −→ I(2S,H),H(1, 1) −→ 0. (3.4.2)

We remark that S ̸= ∅ and in particular #(S) ≥ 2. Moreover, sinceH ∼= Pn−1 we get
h0
(
H, I(2S,H)(1, 1)

)
= 0. Since by assumption ⟨π1(S)⟩ = L, where dimL = µ, we get

h0 (IS(1, 0)) = n− 1− µ. So by (3.4.2) we get h0
(
I(2S,Yn−1,1)(1, 1)

)
= n− 1− µ. Thus

δ(2S, Y ) = r(n+ 1)− 2n+ n− µ− 1 = (r − 1)(n+ 1)− µ.

In particular for µ = 1, i.e. if L is a line, we obtain δ(2S, Yn−1,1) = (r − 1)(n + 1) −
1. Since h0(OYn−1,1(1, 1)) = 2n and deg(2S, Yn−1,1) = r(n + 1), when µ = 1 we get
h0(I(2S,Yn−1,1)(1, 1)) = 2n− r(n+ 1) + (r − 1)(n+ 1)− 1 = n− 2 > 0.
Thus if µ = 1 then δ(2S, Yn−1,1)h

0(I(2S,Yn−1,1)(1, 1)) > 0 and in particular δ1(S, Yn−1,1) =
(r − 1)(n+ 1)− 1.
Obviously also P1 × Pn−1 gives an example, taking an L in the second factor of Y1,n−1.

In Remark 3.4.5 we noted that we should work with a multiprojective space Yn1,...,nk
of

at least k ≥ 2 factors in order to have both h0(I(2S,Yn1,...,nk
)(1, . . . , 1)) and δ(2S, Yn1,...,nk

)
non-zero. In addition to this, we have to consider multiprojective spaces of dimension
n ≥ 3.

Lemma 3.4.7. Fix integers n ≥ 2 and r ≥ 2. E(n, r) ̸= ∅ if and only if n ≥ 3.

Proof. For n = 2 we remark that U(2) = {[P2], [P1 × P1]}. For both cases we get
h0
(
I(2S,P2)(1)

)
= h0(I(2S,P1×P1)(1, 1)) = 0 (cf. e.g. proof of Proposition 3.4.4). Viceversa,

if n ≥ 3 we may take Yn−1,1 = Pn−1 × P1 and S as in Example 3.4.6.

Let us finally prove what is the maximum value that δ(2S, Yn1,...,nk
) can achieve,

providing that also h0(I(2S,Yn1,...,nk
)(1, . . . , 1)) > 0.

Theorem 3.4.8. Fix integers n ≥ 3 and r ≥ 2. Then δ1(n, r) = (r − 1)(n + 1)− 1 and
any (Yn1,...,nk

, S) evincing δ1(n, r) is as in Example 3.4.6 with µ = 1.

Proof. By Remark 3.4.5 we may work with multiprojective spaces Yn1,...,nk
’s of k ≥ 2

factors. So, by Proposition 3.4.4, for all (Yn1,...,nk
, S)

δ(2S, Yn1,...,nk
) ≤ (r − 1)(n+ 1)− 1.

The case µ = 1 of Example 3.4.6 gives the inequality δ1(n, r) ≥ (r− 1)(n+ 1)− 1. Thus
it remains to prove that this is the only case.

Fix (Yn1,...,nk
, S) evincing δ1(n, r). Thus Yn1,...,nk

= Pn1 × · · · × Pnk where all ni > 0
and are such that n1 + · · · + nk = n. The finite set S ∈ SYn1,...,nk

(r), is such that
h0
(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
> 0 and h1

(
I(2S,Yn1,...,nk

)(1, . . . , 1)
)
≥ (r − 1)(n+ 1)− 1.

We will show the result by induction on n ≥ 3.
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If n = 3 then U(3) = {[P3], [P2 × P1], [(P1)3]}. Clearly the case Y3 = P3 is excluded by
Remark 3.4.5. If Y2,1 = P2 × P1, it suffices to show that for any other r-uple of points
Ŝ ∈ S(Y2,1, r) that is not as in Example 3.4.6, we get δ(2Ŝ, Y2,1) < 4(r − 1)− 1. If r = 2
this is true since δ(2S, Y2,1) = 2 unless S ∈ SY2.1(2) is as in Example 3.4.6. If r ≥ 3 then
h0
(
I(2S,Y2,1)(1, 1)

)
= 0 for all S ∈ SY2,1(r).

Let Y1,1,1 = (P1)3. By Proposition 3.1.3 we exclude the case r = 2 since either δ(2S, Y1,1,1)
or h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
is zero. If r = 3, Lemma 3.3.2 gives the only cases for which

S ∈ T(Y1,1,1, 3) and for such cases we already proved that δ(2S, Y1,1,1) = 5 < δ1(3, 3)
and h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 1. Thus for r ≥ 4 we get h0

(
I(2S,Y1,1,1)(1, 1, 1)

)
= 0 for all

S ∈ SY1,1,1(r) that are not as in Example 3.4.6.
Assume that the proposition is true for all n′ < n. We will prove the inductive step by
induction on r ≥ 2. Case (a) will be the base case and in case (b) we will show the
inductive step.

(a) Assume r = 2 and let L := ⟨ν(S)⟩.
First assume that we are dealing with a multiprojective space of k = 2 factors, i.e.
Yn1,n2 = Pn1 × Pn2 . With no loss of generality we may assume n1 ≥ n2. To conclude
this case it is sufficient to prove that n2 = 1 and #(π2(S)) = 1 and we will do it by
contradiction.

First assume n2 ≥ 2. Since h0
(
OYn1,n2

(0, 1)
)
= n2 + 1 > 2, there is M ∈ |IS(0, 1)|.

Thus S ⊂M . If (S,M) is as in Example 3.4.6 there is nothing to prove, otherwise by
the inductive step we get h1

(
M, I(2S,M)(1, 1)

)
≤ n− 2. Since dimYn1,n2 = dimM + 1,

part (a) of Lemma 1.2.14 gives h1
(
I(2S,Yn1,n2 )

(1, 1)
)
≤ n − 2 + 1 < n which is absurd

since we took (Yn1,n2 , S) evincing δ1(2, n) = n.

Assume now that #(π2(S)) = 2. Again if #(π1(S)) = 1 then S is as in Example
3.4.6, so assume also #(π1(S)) = 2. Thus the minimal multiprojective space contain-
ing S is Y1,1 = P1 × P1. So S is in the open orbit for the action of (Aut(P1))2 on
S(Y1,1, 3). Hence h0

(
I(2S,Y1,1)(1, 1)

)
= 0 and consequently, since deg(2S, Y1,1) = 15

and h0
(
OY1,1(1, 1)

)
= 9, we get δ(2S, Y1,1) = 6 < δ1(4, 3).

Assume now that we are dealing with a multiprojective space Yn1,...,nk
of k > 2 factors.

By Lemma 1.2.14 and the equality δ1(n
′, 2) = (r − 1)(n′ + 1) − 1 for all n′ < n, we

know that Yn1,...,nk
is the minimal multiprojective space containing S. Thus we are

working with Y1k = (P1)k. Fix H ∈ |OY
1k
(εk)| containing at least on point of S. Since

S ⊈ H, #(S ∩ H) = #(S \ S ∩ H) = 1. Denote by S := {a, b} and by relabeling if
necessary, assume S ∩H = {a} and S \ S ∩H = {b}.
Consider the residual exact sequence of H:

0 −→ I(2b,Y
1k

)∪(a,Y
1k

)(ε̂k) −→ I(2S,Y
1k

)(1, . . . , 1) −→ I(2a,H),H(1, . . . , 1) −→ 0. (3.4.3)

Since #(S ∩ H) = 1 and OH(1, . . . , 1) is very ample, δ(2a,H) = 0. Since #(S \
S ∩ H) = 1, OY

1k−1;k
(1, . . . , 1) is very ample and dimY1k − dimY1k−1;k = 1, we have

h1
(
I(2b,Y

1k
)(ε̂k)

)
= 0. Since #(S ∩H) = 1, h1

(
H, I(2b,Y

1k
)∪(a,Y

1k
)(ε̂k)

)
≤ 1. Thus (3.4.3)

gives h1
(
I(2S,Y

1k
)(1, . . . , 1)

)
≤ 1 < n, a contradiction.

(b) Assume now r ≥ 3. Fix any A ⊂ S such that #(A) = r − 1. Since δ(2S, Y ) ≤
δ(2A, Y ) + n+ 1 (cf. Remark 1.2.13), the inductive assumption tells us that the pair
(Yn1,...,nk

, A) is as in Example 3.4.6. Thus either Yn1,...,nk
∼= Pn−1 × P1 or Yn1,...,nk

∼=
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P1 × Pn−1. With no loss of generality we may assume Pn−1 × P1. The inductive
assumption gives the existence of a line LA ⊂ Pn−1 and a point oA ∈ P1 such that
A ⊂ L×{oA}. Since r ≥ 3 there is B ⊂ S with #(B) = r− 1, B ∩A ̸= ∅ and B ̸= A.
We get {oA} = π2(A) = π2(B) = {oB}. Thus #(π2(S)) = 1.

To conclude the proof it is sufficient to show that π1(S) spans a line and we will do
it by induction on r ≥ 3. Take for the moment r = 3, assume that ⟨π1(S)⟩ is a
plane and set M := ⟨π1(S)⟩ × P1. By part (a) of Lemma 1.2.14 and the assumption
δ(2S, Yn−1,1) = 2(dimYn−1,1+1)− 1, we have δ(2S,M) ≥ 2(dimM +1)− 1. Moreover
δ(2S,M) = 2(dimM + 1)− 1 = 7, because M is not a projective space. However, by
direct computation, one gets δ(2S,M) = 3(dimM + 1)− 6 = 6.

Let r ≥ 4. Take any 2 distinct subsets A, B of r with #(A) = #(B) = r − 1. Since
#(A ∩ B) = r − 2 ≥ 2, the lines LA and LB have at least 2 common points. Thus
LA = LB. Hence π1(S) spans a line.

Example 3.4.6 gives the following result, the last equality being true by Theorem
3.4.8.

Theorem 3.4.9. Fix integers n > µ ≥ 2 and r ≥ µ + 1. Then there is (Yn1,...,nk
, S) ∈

E(n, r) such that δ(2S, Yn1,...,nk
) = (r − 1)(n+ 1)− µ = δ1(n, r)− µ+ 1.

Untill now we worked without minimality assumption on the multiprojective space we
were considering. We recall that if S ∈ SYn1,...,nk

(2) is such that Yn1,...,nk
is the minimal

multiprojective space containing S, then Yn1,...,nk
∼= (P1)k, for some k ≥ 1. In this case,

Proposition 3.1.3 gives E(n, 2) = ∅. If we set r = 3, Theorem 3.3.14 gives that E(n, 3) is
the set of all Pn1 × Pn2 × (P1)n−n1−n2 with 1 ≤ n2 ≤ n1 ≤ 2 and n > n1 + n2. Therefore,
we wonder if it always exists a couple (S, Yn,...,nk

) with S ⊂ Yn1,...,nk
such that Yn1,...,nk

is the minimal multiprojective space containing S, that have both δ(2S, Yn1,...,nk
) and

h0
(
I(2S,Yn1,...,nk

)

)
non-zero. In other words, we ask whether E(n, r) is not empty for r ≥ 3,

n ≥ 3.
In this example we present a family of sets S ⊂ Yn1,...,nk

such that Yn1,...,nk
is the

minimal multiprojective space containing S, that always belong to the r-th Terracini
locus of Yn1,...,nk

, for some r, n ≥ 3.

Example 3.4.10. Let r, n ≥ 3 and let Y1n := (P1)n. Take A ⊂ P1 such that #(A) = r−1
and define S := {p1, . . . , pr} ⊂ Y1n where

pi = (ai, u2, . . . , un) for i = 1, . . . , r − 1 with all ai ∈ A and all uj ∈ P1

pr = (o1, . . . , or), with o1 ∈ P1 \ A, ok ∈ P1 : ok ̸= uk for all k = 2, . . . , n

Set S ′ = S \ {pr} and let Y ′ := P1 × {u2} × · · · × {un}. Note that Y ′ ∼= P1 is the
minimal multiprojective subspace containing S ′ and that Y1n is the minimal multiprojec-
tive subspace containing S. From (1.2.4) of Remark 1.2.13 we know that δ(2S, Y1n) ≥
δ(2S ′, Y1n) ≥ δ(2S ′, Y ′) = δ(2A,P1) = 2(r − 2) > 0. Take H := π−1

n (un) ∈ |OY1n
(εn)|.

Since S ′ ⊂ H, the residual exact sequence of 2S ′ with respect to H gives

0 −→ IS′(1, . . . , 1, 0) −→ I(2S′,Y1n )(1, . . . , 1) −→ I(2S′,H),H(1, . . . , 1) −→ 0 (3.4.4)

Thus (3.4.4) gives h0
(
I(2S′,Y1n )(1, . . . , 1)

)
≥ h0 (IS′(1, . . . , 1)). Since ν(S ′) spans a

line, h0 (IS′(1, . . . , 1)) = 2n − 2. Since n ≥ 3, h0
(
I(2S′,Y1n )(1, . . . , 1)

)
≥ n + 2. Thus

δ(2S, Y1n) > 0 and h0
(
I(2S,Y1n )(1, . . . , 1)

)
> 0.
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We conclude the chapter by proving that if n, r ≥ 3 then E(n, r) ̸= ∅. This conclusion
might open to further investigation of the introduced locus.

Proposition 3.4.11. E(n, r) ̸= ∅ if and only if n ≥ 3 and r ≥ 3.

Proof. If n ≥ 3 and r ≥ 3, Example 3.4.10 shows that E(n, r) ̸= ∅. The other implication
follows from Lemma 3.4.7 since E(n, r) ⊆ E(n, r) and T(Yn1,...,nk

, 2) = ∅ (cf. Proposition
3.1.3).
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