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Abstract
In this thesis we investigate how the nonlocalities affect the study of different

PDEs coming from physics, and we analyze these equations under almost optimal
assumptions of the nonlinearity. In particular, we focus on the fractional Laplacian
operator and on sources involving convolution with the Riesz potential, as well as on
the interaction of the two, and we aim to do it through variational and topological
methods.

We examine both quantitative and qualitative aspects, proving multiplicity of
solutions for nonlocal nonlinear problems with free or prescribed mass, showing
regularity, positivity, symmetry and sharp asymptotic decay of ground states, and
exploring the influence of the topology of a potential well in presence of concentration
phenomena. On the nonlinearities we consider general assumptions which avoid
monotonicity and homogeneity: this generality obstructs the use of classical variational
tools and forces the implementation of new ideas.

Throughout the thesis we develop some new tools: among them, a Lagrangian
formulation modeled on Pohozaev mountains is used for the existence of normalized
solutions, annuli-shaped multidimensional paths are built for genus-based multiplicity
results, a fractional chain rule is proved to treat concave powers, and a fractional
center of mass is defined to detect semiclassical standing waves. We believe that
these tools could be used to face problems in different frameworks as well.



Contents

Introduction ii

1 Some facts about nonlocalities 1
1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Fractional Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Some computations: hypergeometric Gaussian functions . . . . . . . . . . 12
1.2.3 Definitions of solutions: weak, viscosity, strong, classical . . . . . . . . . . 15
1.2.4 A concave Chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.5 Regularity: tail functions and De Giorgi classes . . . . . . . . . . . . . . . 19
1.2.6 Existence theorems and comparison principles . . . . . . . . . . . . . . . . 24

1.3 The Riesz potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 The Riesz potential as the inverse of the fractional Laplacian . . . . . . . 30

1.4 Some manipulations: absolute value and polarization . . . . . . . . . . . . . . . . 33
1.5 Berestycki-Lions type assumptions: some convergences . . . . . . . . . . . . . . . 35

1.5.1 Local nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.2 Nonlocal nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Fractional Schrödinger equations: prescribed and free mass problems 43
2.1 The fractional Schrödinger equation: a long-range interaction . . . . . . . . . . . 43
2.2 The unconstrained problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 Lagrangian formulation and Pohozaev geometry . . . . . . . . . . . . . . . . . . . 50
2.4 Compactness by scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 A limiting Pohozaev identity . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.2 A functional in an augmented space . . . . . . . . . . . . . . . . . . . . . 59

2.5 A deformation flow by projections . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6 Minimax critical points in the product space . . . . . . . . . . . . . . . . . . . . 61
2.7 Multiple normalized solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7.1 Symmetric deformation theorems . . . . . . . . . . . . . . . . . . . . . . . 64
2.7.2 Minimax values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.7.3 Multiplicity theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.8 L2-minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.9 Relation between constrained and unconstrained problems . . . . . . . . . . . . . 78

3 Choquard-Hartree-Pekar equations: multiplicity of solutions 79
3.1 Convolution with Riesz potential: a self-interaction . . . . . . . . . . . . . . . . 79
3.2 Multidimensional annuli-shaped paths: even and odd nonlinearities . . . . . . . . 85
3.3 Asymptotic analysis of mountain pass values . . . . . . . . . . . . . . . . . . . . 95
3.4 The Pohozaev mountain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5 The Palais-Smale-Pohozaev condition . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6 Genus-shaped critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6.1 Augmented functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

i



ii Contents

3.6.2 Deformation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.6.3 Multiple critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 The unconstrained problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Doubly nonlocal equations: qualitative and quantitative results 107
4.1 An example of double nonlocality: collapse of boson stars . . . . . . . . . . . . . 107
4.2 Different approaches for the existence problem . . . . . . . . . . . . . . . . . . . 111

4.2.1 Dealing with the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.2 Existence of L2-ground states . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Preliminary properties of Pohozaev energy levels . . . . . . . . . . . . . . . . . . 119
4.4 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.1 Boundedness by splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.2 Hölder regularity: strong solutions . . . . . . . . . . . . . . . . . . . . . . 130
4.4.3 L1-summability: fixed point maps . . . . . . . . . . . . . . . . . . . . . . 131
4.4.4 Cγ-regularity: classical solutions . . . . . . . . . . . . . . . . . . . . . . . 133
4.4.5 C1 and C2 regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Shape of ground states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.1 Positivity through fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.2 Radial symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 Asymptotic decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.6.1 The (super)linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.6.2 The sublinear case: fractional Laplacian versus Riesz potential . . . . . . 145
4.6.3 Fractional auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.6.4 A preliminary range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.6.5 Estimate from above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.6.6 Estimate from below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.6.7 An s-sublinear threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.7 The Pohozaev identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5 Concentration phenomena: the effect of the fractional operator 168
5.1 From classical to quantum: semiclassical states . . . . . . . . . . . . . . . . . . . 168

5.1.1 A tail-controlling mixed norm . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.2 Limiting equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.2.1 A single equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.2.2 A family of equations: minimal radius map . . . . . . . . . . . . . . . . . 174
5.2.3 Fractional center of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3 Singularly perturbed equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.3.1 A mass-concentrating penalization . . . . . . . . . . . . . . . . . . . . . . 182
5.3.2 Critical points and truncated Palais-Smale condition . . . . . . . . . . . . 184
5.3.3 Deformation lemma on a neighborhood of expected solutions . . . . . . . 194
5.3.4 Maps homotopic to the embedding . . . . . . . . . . . . . . . . . . . . . . 196

5.4 Existence of multiple solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.4.1 Concentration in the potential well . . . . . . . . . . . . . . . . . . . . . . 201

5.5 The critical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.5.1 Uniform L∞-bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.5.2 The truncated problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.5.3 The local case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A Appendix 219
A Some algebraic topology: the relative cup-length . . . . . . . . . . . . . . . . . . 219

A.1 The singular cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.2 Other cohomologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.3 Properties of the cup-length . . . . . . . . . . . . . . . . . . . . . . . . . . 225



Contents iii

A.4 Relation with the Ljusternik-Schnirelmann category . . . . . . . . . . . . 226
A.5 Application to multiplicity of solutions . . . . . . . . . . . . . . . . . . . . 228
A.6 The Krasnoselskii genus: a particular category . . . . . . . . . . . . . . . 230

Bibliography 231



Introduction

Nonlinear phenomena pervade natural and social sciences, and lots of them are modeled by
nonlinear equations: there has been an enormous progress in the study of the structure and in the
qualitative understanding of these equations in recent years, and many astonishing interrelations
have been found. In this thesis we aim to contribute to these studies.

In particular, the goal is to detect local and nonlocal effects in some nonlinear partial
differential equations, having as a common feature a variational structure. Mathematically,
nonlocality is an intrinsic feature of integral operators and of associated energy functionals, which
have the peculiarity – contrary to the classical local ones – of capturing long-range interactions
or self-interactions. In the context of functional variational principles and associated inequalities,
nonlocal energy functionals are currently receiving great attention since they are closely related
to problems in geometry, physics, engineering, biology, finance and many others, manifesting
both in the operator and in the source. In this setting, classical PDE theory fails because of the
presence of the nonlocality.

A first goal of our research is the study of some generalized nonlinear Schrödinger equations
(here the Planck’s constant and the mass are normalized ℏ = m = 1)

i∂tu = P (D)u− h(|u|)u, x ∈ RN , t > 0

where P (D) denotes a pseudo-differential operator with constant coefficients, defined by mul-
tiplication in Fourier spaces as P̂ (D)u(ξ) = p(ξ)û(ξ), and h ∈ C(R+). In particular, we are
interested to the case p(ξ) ≡ |ξ|2s, s ∈ (0, 1), and to the study of standing waves solutions

u(t, x) = eiµtQ(x)

with some nontrivial profile Q, depending on the frequency µ > 0: this leads to investigate the
so called fractional nonlinear Schrödinger equation (fNLS),

(−∆)sQ+ µQ = h(|Q|)Q, x ∈ RN

where P (D) ≡ (−∆)s is known as fractional Laplacian. In 1948 Feynman [182] proposed indeed
a new suggestive description of the evolution of the state of a non-relativistic quantum particle:
according to Feynman, the wave function solution of the Schrödinger equation should be given
by a sum over all possible histories of the system, that is by a heuristic integral over an infinity
of quantum-mechanically possible trajectories. Following this approach, Laskin [249–252] derived
the fractional Schrödinger equation (fNLS): numerous applications of these equations in the
physical sciences could be mentioned, ranging from image reconstruction to water wave dynamics,
passing through jump processes in probability theory with applications to financial mathematics.

In this thesis we are interested in detecting existence of one or more solutions of (fNLS)
equations, or more generally problems related to equations of the type

(−∆)su+ µu = g(u), x ∈ RN , (I.1)

where g ∈ C(R), and in studying their qualitative properties. We aim to do it by looking at
solutions as critical points of suitable real-valued functionals, as well as by exploiting methods

iv
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coming from both algebraic topology and geometry. Here, the influence of an external potential
V = V (x) may be considered as well.

Another target of this thesis is the analysis of the so-called Pekar nonlinear problem, which
describes a polaron – namely a quantum electron in a polar crystal – at rest. This problem was
raised by Pekar [313] in 1954: the atoms of the crystal are displaced due to the electrostatic
force induced by the charge of the electron and the resulting deformation is then felt by the
electron itself. Afterwards, Choquard [106] (see also Lieb [264,265] and Lions [271]) developed
a similar theory to study steady states of the one-component plasma approximation in the
Hartree-Fock theory; the same model was then also derived by Penrose in his discussion about the
self-gravitational collapse of a quantum-mechanical wave function [314–316], coupling together
the Schrödinger equation with the Newton law. Mathematically, these models belong to the class
of equations

−∆u+ µu = (W ∗ F (u))F ′(u), x ∈ RN

where W is a radially symmetric potential, µ > 0 and F ∈ C1(R). In particular, the above-
mentioned physics problems are set in the case N = 3, F power and W (x) ≡ 1

4π|x| Newton
potential.

We address to study existence, multiplicity and qualitative results for these integro-differential
equations, in the wider (model) class of Riesz potentials W (x) ≡ Iα(x) := CN,α

|x|N−α , with α ∈ (0, N)
and CN,α > 0 constant, that is

− ∆u+ µu = (Iα ∗ F (u))F ′(u), x ∈ RN (I.2)

also known as Choquard-Hartree-Pekar equation.
When dealing with the mathematical description of the gravitational collapse of exotic stars,

double nonlocalities arise naturally, both in the operator and in the source: this was observed
already by Chandrasekhar [93] in 1931, and then developed by Lieb, Thirring and Yau [268–
270,360]. Other applications can be found for example in quantum chemistry and in the study
of graphene. This is why part of the thesis will be devoted to the study of equations of the type

(−∆)su+ µu = (Iα ∗ F (u))F ′(u), x ∈ RN , (I.3)

highlighting especially how the two nonlocalities interact.

The approach of this thesis will be mainly of variational type: in the last thirty years, the
study of abstract variational methods and their applications to nonlinear differential equations
have greatly developed. In the past, variational methods have been applied to solve nonlinear
differential equations, both ordinary and partial, taking advantage of a related functional with
some specific features: among them we can find compactness properties (typically the Palais-
Smale condition), natural constraints of Nehari type, use of integral identities (such as the
Pohozaev identity), presence of a local operator, restriction to bounded domains, and others. In
the subsequent years, the study of nonlinear differential equations arising in geometry, physics
and applied mathematics has suggested developments in which at least one of the previous
assumptions is not satisfied.

The substantial progress made in the last years allows now to tackle equations with particular
features, as nonlocal PDEs. The greatly increased interest in nonlocal operators has motivated a
systematic study of the properties of the fractional Laplacian and pseudo-differential operators in
general [84,86–88,158,177,190,201,328,329,346,347]; variational techniques have been employed
also to obtain quantitative and qualitative results for elliptic PDEs with nonlocal nonlinearities
[109,128,205,206,257,279,299,300,332,372,378,384].

A key aspect in the study of partial differential equations consists also on the hypothesis
assumed on the nonlinearity: considering very general ones allows to include different models
coming from different frameworks. In 1983 Berestycki and Lions [50, 51] proposed a set of
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assumptions which relies, essentially, only on the growth of the nonlinearity in zero and at
infinity: these assumptions may be considered, from a variational point of view, almost optimal,
and include for instance the most common power type functions g(t) ∼ tp, but also combined
powers representing cooperation g(t) ∼ tp + tq and competition g(t) ∼ tp − tq, as well as
asymptotically linear saturable sources arising in nonlinear optics g(t) ∼ t3

1+t2 and in the study of
semiconductors g(t) ∼ t− t√

1+t2 , and many others. The generality of these assumptions, which
do not include regularity, homogeneity, Ambrosetti-Rabinowitz-type or monotonicity conditions,
precludes the possibility of using classical tools of the variational analysis, such as minimization
on Nehari manifolds and fibering methods [74, 244, 306, 319, 379], use of Pohozaev identities
[318], as well as boundedness of standard Palais-Smale sequences and classical Mountain Pass
geometries [18].

Goal of this thesis is to investigate the abovementioned PDEs avoiding the use of these
additional assumptions, examining especially how the geometry and the compactness of the
problems can be tackled in this generality. In particular, we solve here also some problems which
were left open in literature, and their resolution requires the implementation of new ideas.

Studying equations (I.1) and (I.2), the research has been pursued essentially in two main
directions: the first is to assign the frequency µ ∈ (0,+∞), and let the mass (given by the
L2-norm of u) to be free. This unconstrained approach has been extensively studied in the
literature [49–51,79,95,229,230,237,290,302,304]. A second approach is to prescribe the mass�
RN u

2 = m > 0 and let instead the frequency to be an unknown [37, 224, 271, 278, 343]: this
constrained approach is also significantly meaningful in physics, for instance in quantum mechanics
due to the normalization of probability.

In this thesis we aim to find existence and multiplicity results for L2-constrained problems,
that is





(−∆)su+ µu = g(u), x ∈ RN ,�
RN

u2 = m,





− ∆u+ µu = (Iα ∗ F (u))F ′(u), x ∈ RN ,�
RN

u2 = m.

When dealing with nonlocalities, the classical minimization approach on the L2-sphere is rather
involved, since the techniques require a delicate control on the tails of the functions; moreover,
this approach is less suitable for the research of multiple solutions. Here we propose instead a
minimax approach, related to a Lagrangian formulation of the problem, and modeled on suitable
mountains on the product space: we believe that this method may be applied to a wider class of
equations. A posteriori, we show also that the found solution with minimal energy is indeed an
L2-minimum. Even though the approach to the two problems is similar, the study of the two
abovementioned equations gives rise to different problems.

A particular feature of the fractional Laplacian, indeed, is the lack of a regularizing effect: this
fact does not allow to prove the well known Pohozaev identity, a quite useful tool in the framework
of PDEs. This lack of regularity is here tackled by implementing a suitable modification of
the Palais-Smale condition, that we call Palais-Smale-Pohozaev condition, and a deformation
argument around the set of critical points satisfying the Pohozaev identity. Here we face for the
first time the problem of the existence of a normalized solution for a fractional framework, where
the Pohozaev identity is no more ensured; moreover, we highlight that the multiplicity result
presented is new even in the power setting g(u) = |u|p−2u. This is done in Chapter 2.

In the case of Choquard nonlinearities, instead, a delicate issue is the research of multiple
solutions: indeed, this is typically based on the construction of suitable multidimensional
Mountain Pass paths. On the other hand, when the nonlinearity is not local, this is not obvious,
and that is why we need to implement a delicate construction based on multidimensional annuli
which takes into account the interaction of far components. In particular, as a peculiar feature
of the nonlocal setting we are allowed to consider odd (and not only even) functions F , which
make the energy functional symmetric as well: this possibility has not been developed in the
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common literature. Nevertheless, the case F odd makes much more involved the control of far
nonlocal contributions; here we include this case in our study. Moreover, as a byproduct of
this construction, we find existence of infinitely many solutions for the unconstrained Choquard
problem (I.3), solving a problem which was left open in the literature [302] and extending to
nonlocal nonlinearities the seminal paper by Berestycki and Lions [51]. We do this in Chapter 3.

When studying fractional Choquard equations [138] of the type (I.3), the combination of the
two nonlocalities and of the nonhomogeneous nonlinearity heavily influences the investigation of
qualitative properties of the solutions. The lack of explicit computations, the absence of a proper
chain rule and the singularities of the Fourier symbol and of the convolution kernel obstruct
classical approaches in the study of boundedness, L1-summability and regularity of solutions,
as well as positivity and asymptotic decay of ground states. Again, also here we consider the
possibility of F to be odd in the study of some symmetry properties: all the abovementioned
difficulties require new ideas and the implementation of more delicate arguments. Some of the
cited results are, in addition, new even for the case s = 1, improving some results in [302].

The nonlocal interaction of the fractional Laplacian and of the Choquard term gives rise
moreover to new phenomena: for instance, when F has a subquadratic growth in the origin,
the asymptotic behaviour at infinity of the solutions seems to be connected to a new growth
threshold, differently from the local case s = 1. All these properties are examined in Chapter 4.

Finally, another problem we aim to investigate is the concentration of solutions in fractional
nonlinear Schrödinger equations. Indeed, given an external potential V = V (x), physicists are
interested in studying the effect of this potential on the solutions of the equation

ℏ2s(−∆)su+ V (x)u = g(u), x ∈ RN

as long as the term ℏ goes to zero, which somehow describes the passage from quantum to
classical mechanics [73, 337]; this is why solutions of this equation for ℏ > 0 small are also
called semiclassical. In particular it has been proved that, if a family of solutions has maxima
which concentrate in a point, then that point is critical for V [174, 370]. This is the reason
why a huge literature is focused on studying concentration on different types of critical points,
both in a local framework [81,119] and nonlocal [10,96, 123,183,338]. Our aim is to investigate
concentration phenomena on local minima of V , in the framework of fractional equations: in this
case, the spreading of the mass carried by the fractional Laplacian strongly opposes the research
of solutions localized in a prescribed domain of RN . Despite this obstruction, we find the existence
of multiple solutions with this behaviour, whose number is related to some algebraic-topological
information on the set of local minima of V .

In order to achieve this, some careful analysis is needed: indeed, the possible degeneracy of
the local minimum of V does not allow to implement finite-dimensional reduction arguments,
while the generality of the function g hinders the possibility of working on natural constraints,
such as Nehari manifolds. In order to study sets of local minima we combine perturbation and
penalization arguments and implement delicate deformation theorems on some set of expected
solutions. In this discussion, we include a posteriori the case of a lost of compactness given by
a Sobolev-critical growth of g, through the use of a truncation argument and suitable a priori
estimates.

As already highlighted, the presence of a nonlocality makes the whole study much more
involved: the lack of a proper Leibniz rule and of the preservation of the supports prevents the
use of classical cut-off functions and standard penalization arguments. Moreover, a strong control
on the tails of the functions is needed, especially when trying to localize their fractional center
of mass, and we do this by means of a suitable mixed fractional seminorm. This study is made
in Chapter 5.

The general spirit of this thesis is thus to investigate how the nonlocalities – both in the
operator and in the source – comes into account in the study of different PDEs, and analyze
these equations under almost optimal assumptions on the nonlinearity.
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The thesis is organized as follows. In Chapter 1 we recall and revisit some known results in
literature, furnishing the proofs whenever it was not possible to find a precise reference, and we
present some new results as well. Chapter 2 is dedicated to the study of autonomous fractional
equations: after having recalled what is known for the unconstrained problem, we focus on the
study of the mass-constrained problem, obtaining both existence and multiplicity of solutions for
general nonlinearities. Then, in Chapter 3 we research for multiple solutions to the Choquard
problem: in this case, one of the main issues is the construction of suitable multidimensional
paths, since the general and nonlocal nonlinearity heavily affects the geometry of the problem. In
Chapter 4 we move to study the case of doubly nonlocal equations, where we mainly focus on the
qualitative properties of the solutions, investigating how the interaction of the two nonlocalities
influences both the techniques and the results. Finally, we face the fractional semiclassical
problem in Chapter 5, by studying how the nonlocality of the fractional operator comes into
play while searching for multiple solutions concentrating to a local minimum of the potential.
Appendix A is dedicated to a little survey on the algebraic and topological tools used throughout
the thesis.

This thesis is mainly based on the papers [111–117,197,198].
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Some facts about nonlocalities

In this Chapter we introduce some preliminary results about the fractional Laplacian (Section 1.2)
and the Riesz potential (Section 1.3), as well as some considerations about nonlinear functionals
(Section 1.5). Here we collect and revisit some known results in literature, furnishing some proofs
whenever it was not possible to find a precise reference.

Moreover, we present here some new results: in particular, in Section 1.2.4 we deal with a
fractional chain rule in presence of concave compositions, by working with a viscosity formulation;
this can be found in paper [198]. In Section 1.2.5 instead, we present an L∞-bound for non-
positive solutions of fractional nonautonomous elliptic – possibly critical – equations, which
adapts also to the Choquard framework; this has been developed in papers [115,197].

1.1 Notations
We start by writing down some notations used throughout the thesis. We write R+ := (0,+∞)
and

Br(x0) := B(x0, r) := {x ∈ RN | |x− x0| < r} for x0 ∈ RN and r > 0,
DN := {ξ ∈ RN | |ξ| ≤ 1} for N ∈ N∗,

A(R, h) :=
{
x ∈ RN | |x| ∈ [R− h,R+ h]

}
, for R > 0, h > 0

for balls, disks, annuli; in particular, Br := Br(0), and χ(R, h; ·) := χA(R,h). In addition,

Aδ := {x ∈ X | d(x,A) ≤ δ}

denotes a neighborhood for any A ⊂ (X, d) metric space. Sometimes we will write

∁(A) := Ac := X \A

for A ⊂ X to avoid cumbersome notation, if the ambient space is clear from the context. The
function Pi will denote, generally, the projection on the i-th component (in some product space).

We write

∥u∥r :=
(�

RN

|u|r dx
)1/r

for r ∈ [1,∞) and u ∈ Lr(RN ),

∥u∥∞ := ess supRN |u| for u ∈ L∞(RN ),

the classical Lp-norm in the entire space, p ∈ [1,+∞]; we will use also the following notation

∥f∥∞,θ := ∥f(·)(1 + | · |θ)∥∞

1



2 1. Some facts about nonlocalities

for any θ > 0. By F(u) or û we will denote, moreover, the Fourier transform of a function u,
and by u± its positive and negative parts, u = u+ − u−.

The function Γ(·) will denote the standard Gamma function, while 2F1(·, ·, · ; ·) will denote
the Gauss hypergeometric function.

We write S for the Schwartz function space. For any k ∈ N and σ ∈ (0, 1), we denote by
C0(RN ) the space of continuous functions decaying to zero at infinity, by Ck

b (RN ) (resp. Ck
c (RN ))

the space of k times differentiable functions with bounded (resp. compactly supported) and
continuous j-derivative, j = 0, . . . , k, by Ck,σ(RN ) the space of k times differentiable functions
with σ-Hölder continuous k-derivatives (on RN ), where

[u]C0,σ(A) := sup
x,y∈A
x ̸=y

|u(x) − u(y)|
|x− y|σ

denotes the usual seminorm in Hölder spaces for σ ∈ (0, 1] and A ⊆ RN . By Ck,σ
loc (RN ) we

consider functions whose k-derivatives are locally σ-Hölder continuous; if σ = 1 we also write
Lip(RN ) := C0,1(RN ) and similarly Liploc(RN ) and Lipc(RN ). More briefly we will sometimes
write

Cβ(RN ) := C [β],β−[β](RN )
for any β > 0, observing that this notation throws out spaces Ck,1(RN ), usually subsituted by
Zygmund spaces (see Remark 1.1.2 below); similarly Cβ

loc(RN ).

Remark 1.1.1. In [164] it is defined, for σ ∈ (0, 1], u ∈ Lip(σ) if there exist C > 0 and δ > 0
such that, for each x, y ∈ RN ,

0 < |x− y| ≤ δ =⇒ |u(x) − u(y)|
|x− y|σ ≤ C.

We notice that
C0,σ(RN ) ⊂ Lip(σ) ⊂ C0,σ

loc (RN )
and moreover

Lip(σ) ∩ L∞(RN ) ⊂ C0,σ(RN );
indeed, for each x, y ∈ RN ,

|x− y| > δ =⇒ |u(x) − u(y)|
|x− y|σ ≤ 2∥u∥∞

δσ
.

Remark 1.1.2. To state some results it is useful to introduce also the Zygmund space Λ1(RN )
[352, Section 6] as the space of the continuous functions u such that

sup
x,h∈RN

|u(x+ h) − 2u(x) + u(x− h)|
|h| < ∞.

We notice that u ∈ C0,σ(RN ) for σ ∈ (0, 1) if equivalently

sup
x,h∈RN

|u(x+ h) − 2u(x) + u(x− h)|
|h|σ < ∞,

but the same does not hold true for σ = 1; indeed

C0,1(RN ) ⊊ Λ1(RN ).

We can further define Λ2(RN ) as the space of functions in C1(RN ) with partial derivatives in
Λ1(RN ); also in this case C1,1(RN ) ⊊ Λ2(RN ). The following relations hold true [351, Propositions
5.5.8, 5.5.9 and 5.5.10]:

Ck,1 ∩ L∞ ⊂ Λk+1 ∩ L∞ ⊂ Ck,σ2 ∩ L∞ ⊂ Ck,σ1 ∩ L∞

for k = 0, 1 and each 0 < σ1 < σ2 < 1.
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Here we write f ∼ g as x → x0 ∈ R if there exist constants C1, C2 > 0 independent of x such
that

C1g(x) ≤ f(x) ≤ C2g(x) for x near x0,

while by f .∼ g as x → x0 we mean that

lim
x→x0

f(x)
g(x) = 1.

Moreover, by ≈ we will mean approximately equal to (in a sense clear from the context) or
isomorphic to. Symbols ≲, ≃ and ≳ will mean less, equal or greater up to (positive) constants.

Finally, for every A ⊂ B ⊂ RN , we will write

A ≺ ϕ ≺ B

to indicate a Urysohn-type regular function ϕ ∈ C∞
c (RN ) such that

ϕ|A = 1 and ϕ|RN \B = 0.

We introduce the following terminology: if G is a group acting on a set X, we say that A ⊂ X
is invariant under G if gA = A for each g ∈ G, while we say that a function f : X → Y (Y
another set) is invariant under G if f(g·) = f for each g ∈ G; finally we say that f : X → X
is equivariant if f(g·) = g · f for each g ∈ G. When G = Z2 ≡ {±1} acting on some vectorial
space X, we have that A ⊂ X invariant means symmetric with respect to the origin (A = −A),
f invariant means even (f(−·) = f), f equivariant means odd (f(−·) = −f).

We highlight that, all throughout the thesis, we will actually assume N ≥ 2 when dealing with
the fractional framework s ∈ (0, 1) (despite the beginning of the preliminaries, where generally
N > 2s), and N ≥ 3 in the local framework s = 1. Moreover the constants C,C ′ appearing in
inequalities may change from a passage to another; to avoid cumbersome notations, we will not
stress the dependence of such constants, which will be based only on the fixed quantities in play.

1.2 The fractional Laplacian
Let s ∈ (0, 1) and N > 2s. For this Section we mainly refer to [153, 201], together with
[6, 79, 177, 346]; other interesting references are [22, 56, 76, 84, 150, 339] (see also [99]). For
motivations and a physical introduction we refer to Sections 2.1 and 4.1.

Let the fractional Laplacian be defined by [153]

(−∆)su(x) := CN,sPV
�
RN

u(x) − u(y)
|x− y|N+2s

dy

where
CN,s :=

4sΓ(N+2s
2 )

πN/2|Γ(−s)| > 0

is a normalization constant with Γ the Gamma function, and the integral is in the Principal
Value sense, that is

(−∆)su(x) = CN,s lim
ε→0+

�
Bc

ε(x)

u(x) − u(y)
|x− y|N+2s

dy;

notice that, when s ∈ (0, 1
2), we actually do not need to employ the Principal Value formulation

(when u belongs, for instance, to C0,σ
loc (RN ) ∩L∞(RN ) for some σ ∈ (2s, 1] [153, Remark 3.1], see

also the proof of Proposition 1.2.2 below).
A sufficient condition in order to have (−∆)su well defined pointwise is given by [346,

Proposition 2.4] (see also [201, Proposition 2.15] and [79, Lemma 2.4]).
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Proposition 1.2.1 (Fractional well posedness). Let x0 ∈ RN . Then, if

• u ∈ Lp(RN ) ∩ Cγ(U) for some p ∈ [1,+∞], γ > 2s and U open neighborhood of x0,

then (−∆)su(x0) is well defined; in this case, actually, (−∆)su ∈ C(U). In particular, (−∆)su
is everywhere well defined pointwise if

• u ∈ Lp(RN ) ∩ Cγ
loc(RN ) for some p ∈ [1,+∞] and γ > 2s,

and we have (−∆)su ∈ C(RN ).

Actually the condition u ∈ Lp(RN ) can be substituted by the more general condition
�
RN

|u(x)|
(1 + |x|)N+2s

< ∞. (1.2.1)

A different pointwise representation is given in the following Proposition [153, Lemma 3.2]
(see also [201, Proposition 2.8]).

Proposition 1.2.2. Assume u ∈ Lp(RN ) ∩ Cγ
loc(RN ) for some p ∈ [1,+∞] and γ > 2s, Then

(−∆)su(x) = CN,s

2

�
RN

2u(x) − u(x+ y) − u(x− y)
|y|N+2s

dy,

and the integral is absolutely convergent.

Proof. We check only the absolute convergence. Indeed, let x ∈ RN and R > 2|x| + 1. Notice
that, for |y| ≥ R, we have, for |y| ≥ R,

|x+ y| ≥ |y| − |x| ≥ R− |x| > |x| + 1

and
|x+ y| − |x| ≥ |x+ y| + 1

|x| + 2
thus �

Bc
R

|2u(x) − u(x+ y) − u(x− y)|
|y|N+2s

dy

≤
�

Bc
R

2|u(x)|
|y|N+2s

dy +
�

Bc
R

|u(x+ y)|
|y|N+2s

dy +
�

Bc
R

|u(x− y)|
|y|N+2s

dy

≤ 2|u(x)|
�

Bc
R

1
|y|N+2s

dy + 2
�

Bc
|x|+1

|u(z)|
(|z| − |x|)N+2s

dz

≤ CR|u(x)| + 2(2 + |x|)N+2s

�
Bc

|x|+1

|u(z)|
(|z| + 1)N+2s

dz < ∞.

Let now s ∈ (0, 1
2). Then, being u ∈ C0,γ

loc (RN ) for some γ > 2s,
�

BR

|2u(x) − u(x+ y) − u(x− y)|
|y|N+2s

dy ≤ 2C
�

BR

1
|y|N+2s−γ

dy < ∞;

notice that a similarly argument shows also that the integral in the definition of the fractional
Laplacian does not need the Principal Value, being absolute convergent.

If instead s ∈ [1
2 , 1), then, being u ∈ C1,γ

loc (RN ) for some γ > 2s− 1, for each x, y ∈ RN there
exists σ = σ(x, y) ∈ (0, 1) such that

�
BR

|2u(x) − u(x+ y) − u(x− y)|
|y|N+2s

dy =
�

BR

|∇u(x+ σy) · y − ∇u(x− σy) · y|
|y|N+2s

dy
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≤
�

BR

2σ
|y|N+2s−γ−1dy < ∞.

Joining the pieces, we have the claim.

It is well known that the fractional Laplacian is a nonlocal operator. This means, for example,
that

supp
(
(−∆)su

) ̸⊂ supp(u);
in particular, if ψ is a cut-off function with support in some A ⊂ RN , we cannot localize
(−∆)s(ψu) inside A as well. Notice that the fact that (−∆)su is expressed through an integral
does not directly implies that the operator is nonlocal (see, for instance, [1, Section 2.1]); anyway
we can see this considering, for example, a nonnegative u ∈ C2

c (RN ) with u ≥ 1 on B1(0), and a
point x ∈ RN far from the support: we thus have

(−∆)su(x) ≤ −
�

B1(0)

u(y)
|x− y|N+2s

dy ≤ −
�

B1(0)

1
(1 + |x|)N+2s

dy

= − C

(1 + |x|)N+2s
< 0.

Moreover, a proper Leibniz rule lacks in this framework, thus in general

(−∆)s/2(ψu) ̸= (−∆)s/2uψ + (−∆)s/2ψu,

formula which instead holds when (−∆)s/2 is substituted with the gradient ∇ in the local
framework s = 1 (see Remark 1.2.11). In the fractional framework a correction term is needed
[54, Proposition 1.5]

(−∆)s/2(ψu) = (−∆)s/2uψ + (−∆)s/2ψu+ CN,s

�
RN

(
u(x) − u(y)

)(
ψ(x) − ψ(y)

)

|x− y|N+s
dy

or different approaches, like error estimates [208] or approximation arguments [336, Lemma 2.6]
must be employed. All these issues create problems, for example, in concentration arguments
(see Chapter 5). A proper chain rule lacks as well, and we will make some comments in Section
1.2.4.

The operator anyway enjoys some trivial but useful scaling properties

(−∆)s(λu) = λ(−∆)su, (−∆)s(u(β·)) = |β|2s((−∆)su
)
(β·).

for any λ, β ∈ R, as well as linearity.
We further have the following relation with the Fourier transform [153, Proposition 3.3] (see

also [201, Proposition 2.8]) whenever u ∈ S
(−∆)su = F−1(|ξ|2sF(u)); (1.2.2)

this relation can be extended to the setting of Proposition 1.2.1, that is for functions u ∈
Cγ

loc(RN ) ∩ Lp(RN ) for γ > 2s, see [346, proof of Proposition 2.4] (see also [79, Lemma 2.4]).
When u is not regular enough, relation (1.2.2) might be taken as a definition, whenever for

example |ξ|2sF(u) ∈ L2(RN ); in this case the fractional Laplacian is defined up to a set of zero
Lebesgue measure. Notice moreover that (1.2.2) could be interpreted more generally also in the
sense of tempered distributions S ′.
Remark 1.2.3. We notice that relation (1.2.2), i.e.

(−∆)su(x) =
�
RN

(|ξ|2)s(u, eiξ·)2 e
iξ·xdξ

for almost every x ∈ RN , can be interpreted in terms of the spectral theorem by considering the
continuum of eigenvalues ξ ∈ RN 7→ λξ := |ξ|2 with eigenfunctions eξ(x) := eiξ·x ∈ L∞(RN ), and
applying the power function h(t) := ts. This is indeed how the spectral fractional Laplacian is
defined on bounded sets (see [6, Section 2.3]).
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Remark 1.2.4. Actually there are several equivalent ways to define the fractional Laplacian
[245]. One of the most used is the Caffarelli-Silvestre s-harmonic extension, where the fractional
Laplacian in RN is seen as the trace of a divergence-form operator (possibly singular) in RN+1

[86]: this formulation is widely used in order to bring the computations from a nonlocal framework
to a local framework. Anyway we stress that we will not make use of the s-harmonic extension in
this thesis, by mean of working directly with integral quantities. This has the further advantage
of possibly extending our results to other nonlocal frameworks where the harmonic extension is
no more available, see e.g. [176].

Relation (1.2.2) shows, informally, that

(−∆)su
s→0+
→ u, (−∆)su

s→1−
→ −∆u

which motivates the symbol with a fractional power of the Laplacian; see [352, Theorems 3 and
4] for a precise statement (see also [153, Proposition 4.4]).

Moreover, (1.2.2) is suitable to extend the notion of fractional Laplacian to every s > 0
[32,98,330,346] (see also [3, Proposition 3.1]); see [1] for an overview on the topic (see in particular
[2–5] and [334, Section 3.1] for a hypersingular integral definition, [89] for a recursive pointwise
definition, [200] for a harmonic-extension definition).

Another feature of the fractional Laplacian is its polynomial decay, that is, whenever u is
good enough (for example, Schwartz), then [201, Proposition 2.9] (see also Remark 5.2.2)

|(−∆)su(x)| ≤ C

1 + |x|N+2s
x ∈ RN ; (1.2.3)

generally, one can not expect a faster decay: this is the case, for example, of u(x) = 1
(1+|x|2)

N−2s
2

(see Section 1.2.2, and also [201, Lemma 8.6] and [346, Proposition 2.12]). Even when u is a
Schwartz function, by (1.2.2) we notice that (−∆)su has generally not a fast decay, since |ξ|2s is
not regular enough near zero when s < 1; thus

(−∆)sS ̸⊂ S for s ∈ (0, 1).

On the other hand, one can show [201, Lemma 8.1] that, for every u ∈ S, one has (−∆)su ∈
C∞(RN ) with

|Dβ((−∆)su
)
(x)| ≤ C

1 + |x|N+2s
x ∈ RN

for each multi-index β. We find the asymptotic decay (1.2.3) also in fundamental solutions of the
operator (−∆)s + id (see Lemma 1.2.29) and actually it will be a key feature of the solutions of
fractional PDEs (see Section 5.2), at least when there is not a too strong nonlocal effect coming
from the nonlinearity (see Section 4.6.2).

1.2.1 Fractional Sobolev spaces

We introduce, for any Ω ⊆ RN and s ∈ (0, 1), the fractional Sobolev space

Hs(Ω) :=
{
u ∈ L2(Ω) | [u]2Hs(Ω) :=

�
Ω

�
Ω

|u(x) − u(y)|2
|x− y|N+2s

dy < +∞
}
,

endowed with
∥u∥2

Hs(Ω) := ∥u∥2
L2(Ω) + [u]2Hs(Ω).

The finite quantity [u]Hs(Ω) is said Gagliardo seminorm. We will denote the dual space by
(Hs(Ω))∗.
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We recall, whenever Ω = RN or Ω has a Lipschitz and bounded boundary, the continuous
embedding [153, Theorem 6.7]

Hs(Ω) ↪→ Lp(Ω) (1.2.4)

for every p ∈ [2, 2∗
s] with

2∗
s = 2N

N − 2s
the fractional Sobolev critical exponent, and, if p ∈ [2, 2∗

s), the compact embedding [153, Corollary
7.2]

Hs(RN ) ↪→↪→ Lp
loc(R

N )

in the sense that for every (un)n bounded in Hs(RN ), and for every A ⊂ RN bounded and regular
enough (e.g. ∂A Lipschitz), we have that (un)n restricted to A admits a convergent subsequence
in Lp(A).

Moreover we set

Hs
loc(RN ) :=

{
u : RN → R | u ∈ Hs(Ω) for each Ω ⊂⊂ RN

}

and, for any Ω ⊂ RN , [363, Section 4.3.2]

Xs
0(Ω) :=

{
w ∈ Hs(RN ) | w = 0 on Ωc

}

=
{
w ∈ Hs(RN ) | supp(w) ⊂ Ω

}
.

Remark 1.2.5. The following density result holds in RN [150, Proposition 4.27] (see also
[150, Proposition 4.11]):

Hs(RN ) = C∞
c (RN )∥·∥

Hs(RN ) .

Assume now Ω, with ∂Ω compact, to be a Lipschitz domain [289, Definition 3.28]. Then
[289, Theorem 3.29]

Xs
0(Ω) = C∞

c (Ω)∥·∥
Hs(RN ) .

If moreover s ̸= 1
2 , then [289, Theorem 3.33]

Xs
0(Ω) = C∞

c (Ω)∥·∥Hs(Ω) .

See also [363, Theorem 1 in Section 4.3.2] for more results on these spaces.

In the case Ω = RN we also have the following relation [153, Proposition 3.4]

[u]2Hs(RN ) = 2
CN,s

∥|ξ|sû∥2
2;

by interpreting the fractional Laplacian through the Fourier transform definition (1.2.2) we may
also write

[u]2Hs(RN ) = 2
CN,s

∥(−∆)s/2u∥2
2. (1.2.5)

Moreover, by polarization
�
RN

(−∆)s/2u(−∆)s/2vdx =
�
RN

|ξ|2sûv̂dξ

= 1
2CN,s

�
RN

�
RN

(
u(x) − u(y)

)(
v(x) − v(u)

)

|x− y|N+2s
dxdy (1.2.6)

for every u, v ∈ Hs(RN ). Relation (1.2.5) leads also to an equivalent definition for the fractional
Sobolev space

Hs(RN ) =
{
u ∈ L2(RN ) | |ξ|sû ∈ L2(RN )

}
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=
{
u ∈ L2(RN ) | (−∆)s/2u ∈ L2(RN )

}

endowed with

∥u∥2
Hs ≡ ∥u∥2

2 + ∥|ξ|sû∥2
2

= ∥u∥2
2 + ∥(−∆)s/2u∥2

2.

Together with Hs(RN ) ↪→ L2(RN ) ∩ L2∗
s (RN ) we have the following embedding of the

homogeneous fractional space Ḣs(RN ) ↪→ L2∗
s (RN ) [153, Theorem 6.5] (see also [98]), where

Ḣs(RN ) :=
{
u measurable | (−∆)s/2u ∈ L2(RN )

}
;

here the fractional Laplacian is intended in the sense of tempered distributions. That is, for
some optimal constant S > 0,

∥u∥2∗
s

≤ S−1/2∥(−∆)s/2u∥2. (1.2.7)

Moreover, we recall the fractional version of the Gagliardo-Nirenberg inequality [312] (see
also [42])

∥u∥r ≤ C∥(−∆)s/2u∥β
2 ∥u∥1−β

2 (1.2.8)

for u ∈ Hs(RN ), r ∈ [2, 2∗
s] and β satisfying

1
r

= β

2∗
s

+ 1 − β

2 .

Extension to p ∈ [1, ∞] and s > 0

Consider now again the relation

Hs(RN ) =
{
u ∈ L2(RN ) | F−1(|ξ|sû) ∈ L2(RN )

}

=
{
u ∈ L2(RN ) | F−1((1 + |ξ|s)û

) ∈ L2(RN )
}
. (1.2.9)

This last expression is suitable for defining the fractional Sobolev space W s,p(RN ) also for s ≥ 1
and p ≥ 1, by [177]

W s,p(RN ) :=
{
u ∈ Lp(RN ) | F−1((1 + |ξ|s)û

) ∈ Lp(RN )
}
. (1.2.10)

It has been proved in [177, Theorem 3.1] that this definition coincide with the following

W
s,p(RN ) :=

{
u ∈ Lp(RN ) | F−1

(
(1 + |ξ|2)s/2û

)
∈ Lp(RN )

}

that is
W s,p(RN ) ≡ W

s,p(RN ).

Remark 1.2.6. We want to highlight that the last equality is actually not trivial a priori. Indeed,
we can rewrite the spaces as

W s,p(RN ) ≡ {
u ∈ Lp(RN ) | u = K2s ∗ g for some g ∈ Lp(RN )

}
,

W
s,p(RN ) ≡ {

u ∈ Lp(RN ) | u = G2s ∗ g for some g ∈ Lp(RN )
}

where
K2s := F−1

( 1
1 + |ξ|2s

)
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is the Bessel kernel, and
G2s := F−1

( 1
(1 + |ξ|2)s

)

is the pseudorelativistic kernel. The two functions are the fundamental solutions, respectively, of

(−∆)sK2s + K2s = δ0, (−∆ + id)sG2s = δ0

in RN , where δ0 is the Dirac delta; the operator (−∆ + id)s is also called pseudorelativistic
operator (see Section 4.1). Even if

ξ 7→ 1
1 + |ξ|2s

and ξ 7→ 1
(1 + |ξ|2)s

have same behaviour in zero and at infinity and same summability, the fact that the two functions
have different regularity (the first is nonregular in the origin, the second is analytic) brings K2s

and G2s to be quite different kernels: for instance, K2s has a polynomial decay at infinity (of
order 1

|x|N+2s , see Lemma 1.2.29), while G2s decays exponentially [9, equation (1.2.15)]. These
properties influence the qualitative behaviours of the solutions of the linear equations

(−∆)su+ u = g, (−∆ + id)su = g

in RN , given by u = K2s ∗ g and u = G2s ∗ g respectively (see e.g. Lemma 1.2.29). Because of
these representation formulas, we also write

K2s∗ ≡ (
(−∆)s + id)−1, G2s∗ ≡ (−∆ + id)−s.

These considerations also show that the pseudorelativistic operator is quite different from the
fractional Laplacian by giving more regularity and decay to solutions, but without enjoying the
same scaling properties; its study is an interesting line of research for the future.

Remark 1.2.7. Notice that in (1.2.9) and (1.2.10) the request u ∈ Lp(RN ) is actually superfluous.
This is the same for W s,p(RN ) as well, since by [9, Theorem 1.2.4] we have (if N > ps)

F−1
(
(1 + |ξ|2)s/2û

)
∈ Lp(RN ) =⇒ u ∈ Lq(RN ) for each q ∈ [p, pN

N−ps ];

this result is in accordance to the continuous embeddings (1.2.4) stated before for p = 2. In
particular the previous embedding is continuous, which means that (for q = p)

∥u∥p ≤ C∥F−1((1 + |ξ|2)s/2û
)∥p;

this relation can be rephrased by saying that

∥(− ∆ + id)−su∥p = ∥G2s ∗ u∥p ≤ C∥u∥p

and this can be obtained directly by Young’s inequality with C = ∥G2s∥1 (indeed G2s ∈ L1(RN ),
see [9, equation (1.2.12)]). A similar argument holds for ((−∆)s + id)−1, since

∥((−∆)s + id)−1u∥p = ∥K2s ∗ u∥p ≤ ∥K2s∥1∥u∥p

being K2s ∈ L1(RN ) (see Lemma 1.2.29), thus
(
(−∆)s + id

)−1 : Lp(RN ) → Lp(RN ) (1.2.11)

is a continuous operator for every p ∈ (1,+∞) and

∥u∥p ≤ ∥K2s∥1∥F−1(1 + |ξ|2s)û∥p. (1.2.12)
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We observe, by (1.2.2), that if u ∈ W 2s,p(RN ) for some p, then (−∆)su is well defined
pointwise up to a set of zero Lebesgue measure.
Moreover, by [177, Theorem 3.2] we obtain the following embedding, for every s ∈ (0, 1),

H2s(RN ) ∩W 2s,∞(RN ) ↪→
{
C0,γ(RN ) for γ ∈ (0, 2s) if 2s ≤ 1,
C1,γ−1(RN ) for γ ∈ (0, 2s) if 2s > 1.

(1.2.13)

Remark 1.2.8. We observe that, if s ≥ s′ and p ∈ (1,∞), then [363, equation (9) in Section
2.3.3]

W s,p(RN ) ↪→ W s′,p(RN );

this is easily seen for p = 2: indeed, by the fact that |ξ|2s′ ≤ 1 + |ξ|2s we have
�
RN

|(1 + |ξ|2s′)û|2 ≤
�
RN

|(2 + |ξ|2s)û|2 ≤ 4
�
RN

|(1 + |ξ|2s)û|2.

In particular,
H2s(RN ) ↪→ H1(RN ) for 2s ≥ 1.

Moreover, for every s > 0, since H2s(RN ) ↪→ H2[s](RN ) ↪→ H2([s]−s)(RN ), we notice that, for
u ∈ H2s(RN ),

(−∆)su = F−1
(
|ξ|2([s]−s)|ξ|2[s]û

)

= F−1
(
|ξ|2([s]−s)F

(
F−1(|ξ|2[s]û

)))

= (−∆)[s]−s
(
(−∆)[s]u

)

and similarly
(−∆)su = (−∆)[s]

(
(−∆)[s]−su

)
.

See also [32, Proposition 2.1], [3, Remark 3.2], [89] and [2, Theorems 1.2 and 1.8 and Corollary
1].

Remark 1.2.9. By exploiting the Gagliardo seminorm one can define a fractional Sobolev space,
for p ∈ [1,∞) and s ∈ (0, 1), by

W̃ s,p(RN ) :=
{
u ∈ Lp(RN ) |

�
RN

�
RN

|u(x) − u(y)|p
|x− y|N+ps

dy < +∞
}

;

this is a possible good choice [153], but generally it does not coincide with W s,p(RN ) for p ̸= 2
[153, Remark 3.5]. See also [363, Remark 4 in Section 2.3.3] and [333, Remark 6 in Section
2.1.1]. The space W s,p(RN ) is also known as Triebel-Lizorkin space, or Bessel-potential space, o
Liouville space, while W̃ s,p(RN ) is also known as Besov space or Slobodeckĭı space.

Radially symmetric functions

In order to gain some compactness on the entire space, we consider also the subspace of radially
symmetric functions

Hs
r (RN ) =

{
u ∈ Hs(RN ) | ∃ v : R+ → R s.t. u(x) = v(|x|)};

to avoid cumbersom notation, we will alway write u(x) ≡ u(|x|). We notice that the fractional
Laplacian inherits the radial symmetry of the function (this is immediate by use of the Fourier
transform (1.2.2), see also [201, Lemma 2.7]); anyway, it has not an easy representation in radial
coordinates (see [181] and [201, Lemma 7.1]) based on Gaussian hypergeometric functions (see
Section 1.2.2), and this obstructs, for example, ODE’s methods for resolution of PDEs.
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We recall that, whenever N ≥ 2, Lions proved the compact embedding [272] (see also
[91, Proposition 1.7.1] and [167])

Hs
r (RN ) ↪→↪→ Lp(RN ) (1.2.14)

for every p ∈ (2, 2∗
s); however, as shown in [105] for general s ∈ (0, 1

2), a result in the spirit of
Radial Lemma by Strauss [353]

|u(x)|2 ≲ 1
|x|N−2s

∥(−∆)s/2u∥2
2, x ∈ RN \ {0}

is not available in the fractional framework Hs
r (RN ). We highlight that the embedding is not

compact for q = 2∗
s even on bounded subsets of RN . Sometimes we will write ∥ · ∥Hs

r
:= ∥ · ∥Hs .

Remark 1.2.10. We observe that

Hs
r (RN ) = Fix(O(N)) = {u ∈ Hs(RN ) | τ(Q, u) = u for each Q ∈ O(N)},

where O(N) is the orthogonal group of rotation matrices and the isometric action is given by

τ : (Q, u) ∈ O(N) ×Hs(RN ) 7→ u(Q·) ∈ Hs(RN );

working with a variational formulation, we will often work with O(N)-invariant functionals: by
the Principle of Symmetric Criticality of Palais [310] we will obtain that every critical point on
Hs

r (RN ) is actually a critical point on the whole Hs(RN ), which justifies our restriction onto the
radial setting.

Remark 1.2.11. Notice that, when s = 1, we have

∥(−∆)1/2u∥2
2 =

�
RN

∣∣∣F−1(|ξ|û)
∣∣∣
2

=
�
RN

||ξ|û|2 =
∑

i

�
RN

||ξi|û|2

=
∑

i

�
RN

|F(∂iu)|2 =
∑

i

�
RN

|∂iu|2 =
�
RN

|∇u|2

= ∥∇u∥2
2

and this justifies, for example, the use of (−∆)s/2 in the weak formulation of PDEs (see Definition
1.2.16). We highlight, anyway, the nontriviality of the relation, since (−∆)1/2 is a nonlocal
operator, while ∇ is a local operator (see also [201, Section 6]).

When s = 1 thus we will actually consider the classical Sobolev space H1(RN ) endowed with

∥u∥H1 :=
(�

RN

(|∇u|2 + u2) dx
)1/2

for u ∈ H1(RN )

and its subspace
H1

r (RN ) := {u ∈ H1(RN ) | u radially symmetric}.

Tail-controlling mixed norms

In order to handle the long range interaction of the fractional norms, we will make use of the
following mixed Gagliardo seminorm

[u]2A1,A2 :=
�

A1

�
A2

|u(x) − u(y)|2
|x− y|N+2s

dx dy, [u]A := [u]A,A

for any A1, A2, A ⊂ RN and u ∈ Hs(RN ); by using that φu(x, y) := |u(x)−u(y)|
|x−y|N/2+s satisfies φu+v ≤

φu + φv and [u]A1,A2 = ∥φu∥L2(A1×A2), we have that [u]A1,A2 is actually a seminorm. This
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seminorm has been introduced in [111], although after the publication the authors discovered
that similar tools were implemented in different frameworks [130,178,234].

For any u ∈ Hs(RN ) and A ⊂ RN it will be useful to work also with the following norms:

∥u∥2
A := ∥u∥2

L2(A) + [u]2A,RN

and
|||u|||A := ∥u∥Lp+1(A) + ∥u∥A,

for some suitable p ∈ (2, 2∗
s). We highlight that ∥u∥RN = ∥u∥Hs(RN ), but generally ∥u∥A ≥

∥u∥Hs(A) for A ̸= RN . By Hs(A) ↪→ Lp+1(A) the norms ∥ · ∥A and |||·|||A are equivalent: on
the other hand, the constant such that |||u|||A ≤ CA∥u∥A depends on A, thus not useful for
ε-dependent sets A = A(ε) (see Chapter 5). This is why we will make direct use also of |||·|||A.

Regarding ε-dependent norms, we will use also

∥u∥2
Hs

V,ε(RN ) := ∥(−∆)s/2u∥2
2 +

�
RN

V (εx)u2dx

which is an equivalent norm on Hs(RN ) whenever V ∈ L∞(RN ) with V ≥ V0 > 0; the space
Hs

ε (RN ) is defined straightforwardly.

1.2.2 Some computations: hypergeometric Gaussian functions
In order to implement some comparison argument (see Section 4.6.3), we search for a function
which behaves like ∼ 1

|x|β , β > 0, and which lies in Hs(RN ); in order to handle the presence of a
pole in the origin when β ≥ N , we make the following choice, by considering, for any β > 0,

hβ(x) := 1
(1 + |x|2)

β
2

;

notice that, when β = N + 2s, this function is related to the extremals of the fractional Sobolev
inequality [98,265] and to the solutions of the zero mass critical fractional Choquard equation
[253] (see also Proposition 1.3.1 below). Chosen hβ in this way, we have [246, Table 1 page 168]
(see also [181, Sections 4 and 6])

(−∆)shβ(x) = Cβ,N,s 2F1

(
N

2 + s,
β

2 + s,
N

2 ; −|x|2
)

(1.2.15)

where

Cβ,N,s := 22s Γ
(

N
2 + s

)
Γ
(β

2 + s
)

Γ
(

N
2
)
Γ
(β

2
) > 0

and 2F1 denotes the Gauss hypergeometric function (see also [166, Corollary 2], observed that
hβ(x) = 2F1(N

2 ,
β
2 ,

N
2 ,−|x|2)). Notice that we will be interested in

β ∈ (0, N + 2s].

The asymptotic behaviour at infinity of the hypergeometric function appearing in (1.2.15) can
be found in [7, pages 559-560] (see also [23, pages 78-79, 88] and [374, page 161]). Recall that the
Gamma function Γ(z) is well defined whenever z ∈ R \ (−N) and |Γ(z)| → +∞ as z approaches
−N (so that the reciprocal Gamma function is well defined on −N and equals zero). Moreover,
recall the symmetry property 2F1(a, b, c;x) = 2F1(b, a, c;x) and the fact that 2F1(0, b, c;x) = 1
and 2F1(−1, b, c;x) = 1 − b

cz.
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Lemma 1.2.12 ([7]). Consider 2F1(a, b, c; ·). For the sake of simplicity, assume a priori that
a, b, c > 0 and

a− c ∈ R+ \ N,

a− b ∈ Z ⇐⇒ a− b ∈ N,

b− c ∈ N ⇐⇒ b− c ∈ {0, 1};

in particular a− b and b− c do not lie in Z at the same time. We have the following asymptotic
estimates as x → −∞.

• If a− b /∈ Z and b− c /∈ N, then

2F1(a, b, c;x) .∼ Γ(c)Γ(b− a)
Γ(c− a)Γ(b)

1
(−x)a

+ Γ(c)Γ(a− b)
Γ(c− b)Γ(a)

1
(−x)b

;

• If b = c (and a− b /∈ Z), then

2F1(a, b, b;x) = 1
(1 − x)a

;

• If b = c+ 1 (and a− b /∈ Z), then

2F1(a, b, b− 1;x) = −Γ(b− 1)Γ(b− a)
Γ(b− a− 1)Γ(b)

x

(1 − x)a+1 + 1
(1 − x)a+1

.∼ Γ(b− 1)Γ(b− a)
Γ(b− a− 1)Γ(b)

1
(−x)a

;

• If a = b (and b− c /∈ N), then

2F1(a, a, c;x) .∼ Γ(c)
Γ(a)Γ(c− a)

log(−x)
(−x)a

+ C1
(−x)a

.∼ Γ(c)
Γ(a)Γ(c− a)

log(−x)
(−x)a

;

• If a− b ∈ N∗ (and b− c /∈ N), then

2F1(a, b, c;x) .∼ Γ(c)Γ(a− b)
Γ(c− b)Γ(a)

1
(−x)b

+ C2
log(−x)
(−x)a

+ C3
(−x)a

.∼ Γ(c)Γ(a− b)
Γ(c− b)Γ(a)

1
(−x)b

.

Here Ci, i = 1, 2, 3, are some strictly positive constants.

Notice that a = N
2 + s, b = β

2 + s, c = N
2 satisfy the assumptions of the previous Lemma,

whenever s ∈ (0, 1) and β ∈ (0, N + 2s]. Thus, exploiting the representation of (−∆)shβ given
in (1.2.15) and the results on Gauss hypergeometric functions, we come up with the following
lemma.

Lemma 1.2.13. Let β ∈ (0, N+2s]. Then (−∆)shβ(x) is well defined for every x ̸= 0. Moreover,
we have the following asymptotic behaviours:

• if β ∈ (N,N + 2s], then

(−∆)shβ(x) .∼ C ′
β,N,s

1
|x|N+2s

as |x| → +∞

where C ′
β,N,s := 22s Γ

(
N
2 +s

)
Γ
(

β
2 − N

2

)

Γ
(

β
2

)
Γ
(

−s
) < 0. This in particular includes the case β = N − 2s+ 2

(possible if s > 1
2), with C ′

N−2s+2,N,s = −22s+1 s
N−2s < 0. Notice moreover that C ′

N+2s,N,s =
22s Γ(s)

Γ(−s) → 0 as s → 1−.
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• if β = N , then
(−∆)shN (x) .∼ C ′

N,N,s

log(|x|)
|x|N+2s

as |x| → +∞

where C ′
N,N,s := 22s+1 Γ

(
N
2 +s

)

Γ
(

N
2

)
Γ
(

−s
) < 0.

• if β ∈ (N − 2s,N), then

(−∆)shβ(x) .∼ C ′
β,N,s

1
|x|β+2s

as |x| → +∞

where C ′
β,N,s := 22s Γ

(
β
2 +s

)
Γ
(

N
2 − β

2

)

Γ
(

β
2

)
Γ
(

N
2 − β

2 −s
) < 0.

• if β = N − 2s, then

(−∆)shN−2s(x) = C ′
N−2s,N,shN+2s(x) for x ∈ RN \ {0}

.∼ C ′
N−2s,N,s

1
|x|N+2s

as |x| → +∞

where C ′
N−2s,N,s := 22s Γ

(
N
2 +s

)

Γ
(

N
2 −s

) > 0.

• if β ∈ (0, N − 2s), then

(−∆)shβ(x) .∼ C ′
β,N,s

1
|x|β+2s

as |x| → +∞

where C ′
β,N,s := 22s Γ

(
β
2 +s

)
Γ
(

N
2 − β

2

)

Γ
(

β
2

)
Γ
(

N
2 − β

2 −s
) > 0. This in particular includes the case β = N − 2k

with k = 1, . . . , [N
2 ].

Remark 1.2.14. Notice that, for β ∈ {N − 2s} ∪ [N,N + 2s], the asymptotic behaviour of
|(−∆)shβ(x)| does not depend on β; on the other hand, the sign and the precise constant depend
on β.

In the case β ∈ (0, N) \ {N − 2s}, we may use x 7→ 1
|x|β , whose fractional Laplacian has a

close (simple) representation:
(

(−∆)s 1
| · |β

)
(x) = Cβ,N,s

1
|x|β+2s

,

see [246, Table 1 and Theorem 3.1] (see also [173, Lemma 4.1], [366, Appendix 1, page 798] and
[68, Lemma A.2]). In particular

(−∆)shβ(x) .∼
(

(−∆)s 1
| · |β

)
(x) as |x| → +∞.

On the other hand, if β = N − 2s, we obtain, far from the origin, (−∆)s 1
| · |β ≡ 0 (recall that the

Riesz potential 1
|·|N−2s ≡ I2s is a fundamental solution, see Proposition 1.3.4); thus, in particular,

the two functions have different asymptotic behaviours. This is the same reason why, for hβ, we
have a discontinuity on the behaviour at infinity around β = N − 2s.

Finally we highlight that, when β = N + 2s, we may use the function found in Lemma 1.2.30.
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1.2.3 Definitions of solutions: weak, viscosity, strong, classical
In the majority of the thesis we will work with the notion of weak solutions, by exploiting a
variational formulation. Anyway, sometimes we will need to exploit different formulations, in
particular strong, classical and viscosity formulations; that is why we recall them here for the
sake of clarity.

Definition 1.2.15 (Strong and classical solution). Let Ω ⊆ RN and g : Ω → R. We say that u
is a strong solution to

(−∆)su = g(x) in Ω

if u and (−∆)su are almost everywhere defined (e.g. u ∈ H2s(Ω)) and u satisfies the relation for
almost every x ∈ Ω.

We say instead that u is a classical solution if u and (−∆)su are continuous (e.g. u ∈
Lp(RN ) ∩ Cγ

loc(RN ) for some p ∈ [1,+∞] and γ > 2s) and the relation is satisfied pointwise
everywhere on Ω.

Definition 1.2.16 (Weak solution). Let Ω ⊆ RN and g : Ω → R be measurable. We say that
u ∈ Hs(Ω) is a weak subsolution [supersolution] of

(−∆)su = g(x) in Ω

if
�
RN

(−∆)s/2u(−∆)s/2φdx ≤
�
RN

g(x)φdx (1.2.16)
[�

RN

(−∆)s/2u(−∆)s/2φdx ≥
�
RN

g(x)φdx
]

is well defined (finite) and holds for each positive φ ∈ Xs
0(Ω). We say that u is a weak solution

if it is both a subsolution and a supersolution, i.e. if it satisfies the equality in (1.2.16) for every
φ ∈ Xs

0(Ω). Notice that, when Ω = RN , we have Xs
0(RN ) ≡ Hs(RN ).

Remark 1.2.17. By (1.2.6) and (1.2.2) we may interpret the left-hand side of (1.2.16) as
�
RN

(−∆)s/2u(−∆)s/2φdx ≡ 1
2CN,s

�
RN

�
RN

(
u(x) − u(y)

)(
φ(x) − φ(y)

)

|x− y|N+2s
dxdy

≡
�
RN

|ξ|2sûφ̂dξ.

Moreover we see that the definition of weak solution is justified by the following integration by
parts rule

�
RN

(−∆)suv =
�
RN

|ξ|2sûv̂ =
�
RN

|ξ|sû|ξ|sv̂ =
�
RN

(−∆)s/2u(−∆)s/2v

which holds whenever u ∈ H2s(RN ) and v ∈ Hs(RN ). In particular, if both u, v ∈ H2s(RN ) we
have (see also [201, Lemma 5.4])

�
RN

(−∆)suv =
�
RN

u(−∆)sv.

Remark 1.2.18. If φ ∈ C∞
c (RN ) and u ∈ L∞(RN ), we can show the relation

�
RN

u(−∆)sφ = 1
2CN,s

�
RN

�
RN

(
u(x) − u(y)

)(
φ(x) − φ(y)

)

|x− y|N+2s
dxdy
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also by exploiting the pointwise definition of the fractional Laplacian. Indeed (assume for simplicity
s ∈ (0, 1

2) to avoid the technicality of the Principal Value) we have
�
RN

u(x)(−∆)sφ(x)dx = CN,s

�
RN

(�
RN

u(x)
(
φ(x) − φ(y)

)

|x− y|N+2s
dy

)
dx. (1.2.17)

First, we rewrite (1.2.17) by applying Fubini-Tonelli theorem, possible because
�
R2N

∣∣∣∣∣
u(x)

(
φ(x) − φ(y)

)

|x− y|N+2s

∣∣∣∣∣ ≤ ∥u∥∞

�
R2N

|φ(x) − φ(y)|
|x− y|N+2s

< ∞;

notice that we are actually using that φ ∈ W̃ 2s,1(RN ) (see Remark 1.2.9). Thus
�
RN

u(x)(−∆)sφ(x)dx = CN,s

�
RN

(�
RN

u(x)
(
φ(x) − φ(y)

)

|x− y|N+2s
dx

)
dy.

Secondly, we rewrite (1.2.17) by simply renaming the variables, that is
�
RN

u(x)(−∆)sφ(x)dx = CN,s

�
RN

(�
RN

(− u(y)
)(
φ(x) − φ(y)

)

|x− y|N+2s
dx

)
dy.

By summing the two expressions obtained, we get the claim.

For the following definition, see e.g. [339, page 136] or [97, Definition 2.1].

Definition 1.2.19 (Viscosity solution). Let Ω ⊆ RN and g : Ω → R. We say that u ∈ C(RN ) is
a viscosity subsolution [supersolution] of

(−∆)su = g(x) in Ω

if, for any x0 ∈ Ω, every U ⊂ Ω open neighborhood of x0, and every ϕ ∈ C2(U) such that

ϕ(x0) = u(x0), ϕ ≥ u [ϕ ≤ u] in U

set
v := ϕχU + uχUc

we have
(−∆)sv(x0) ≤ g(x0)

[
(−∆)sv(x0) ≥ g(x0)

]
.

We say that u is a viscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

We observe that, generally, the function v appearing in the definition of viscosity solution
might be discontinuous. More generally, this definition involves lower and upper semicontinuity
of u (see for instance [87, Definition 2.2]). Furthermore, one can easily check that every classical
solution is a viscosity solution, that the sum of two viscosity solutions is still a viscosity solution
(with source the sum of the sources), and that the notion of viscosity solution is conserved on
subdomains Ω′ ⊂ Ω.

We refer to [328, Remark 2.11] and [339, Theorem 1] for some discussions on the relation
between classical, weak and viscosity solutions on bounded domains.

When dealing with equations with nonlinearities of the type h = h(x, u), h : Ω × R → R, we
interpret the equation by saying that u is a classic/strong/weak/viscosity solution if u satisfies
the equation with nonlinearity g(x) := h(x, u(x)). The same interpretation will be given in the
case of nonlocal nonlinearities (see Section 1.3).
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Remark 1.2.20. In this preliminary Chapter, we will sometimes mention distributional solutions
of equations of the type (−∆)su = T , with T distribution on some Ω. By this, we mean that
u ∈ L1

loc(RN ) satisfies (1.2.1) and
�

Ω
u(−∆)s/2φ = T (φ)

for every φ ∈ C∞
c (Ω). The extra condition required on u (differently form the usual definition of

distributional solution) is due to the fact that (−∆)s/2φ has generally not compact support; here
we use thus (1.2.3) to well define the integral.

1.2.4 A concave Chain rule
We already pointed out how the fractional Laplacian does not satisfy a proper Lebiniz formula.
The same conclusion is actually true looking at chain rule formulas. A first result is given by the
following lemma.

Lemma 1.2.21. Let Ω ⊆ RN . If u ∈ Hs(Ω) and h : R → R is a Lipschitz function with h(0) = 0,
then h(u) ∈ Hs(Ω).

Proof. The proof is straightforward. Indeed

∥h(u)∥2
L2(Ω) =

�
Ω

|h(u) − h(0)|2 dx ≤
�

Ω
∥h′∥2

∞|u− 0|2 dx = ∥h′∥2
∞∥u∥2

L2(Ω)

and
[h(u)]Hs(Ω) ≤ CN,s

�
Ω

�
Ω

∥h′∥2
∞|u(x) − u(y)|2
|x− y|N+2s

dx dy = ∥h′∥2
∞[u]Hs(Ω).

We look now to proper pointwise chain rules. What one can prove is that, whenever φ is
convex (and Lipschitz), then the following inequality holds (see [88, Theorem 1.1], [201, Theorem
19.1])

(−∆)sφ(u) ≤ φ′(u)(−∆)su

in the weak sense. One may expect the inverse inequality when handling concave functions: and
this is actually what we need in the study of the asymptotic behaviour of ground state in doubly
nonlocal equations (see Section 4.6.6).

On the other hand, since we do not know if uθ /∈ Hs(RN ) when u ∈ Hs(RN ) and θ ∈ (0, 1),
the weak formulation seems not to be the right choise; pointwise formulation seems not good as
well, since (−∆)suθ might be not well defined, even by assuming u regular. The idea is thus to
take advantage of a viscosity formulation.

We prove hence the following inequality in the case of concave (not globally Lipschitz) function,
in the framework of viscosity solutions. Notice that we do not require u to be in L2(RN ).

Lemma 1.2.22 (Córdoba-Córdoba chain rule inequality). Let φ : I → R be a concave function,
I ⊆ R interval, such that φ ∈ C1(I). Let u : RN → I.

• Let Ω ⊂ RN , and assume φ ∈ Lip(u(Ω)). Then

[φ(u)]Hs(Ω) ≤ ∥φ′∥L∞(u(Ω))[u]Hs(Ω).

In particular, if φ ∈ Lip(I) and (−∆)s/2u ∈ L2(RN ), then (−∆)s/2φ(u) ∈ L2(RN ) and

∥(−∆)s/2φ(u)∥2 ≤ ∥φ′∥L∞(I)∥(−∆)s/2u∥2.

• If u is defined pointwise, then

(−∆)s(φ(u))(x) ≥ φ′(u(x))(−∆)su(x)

for every x ∈ RN such that (−∆)s(φ(u))(x) and (−∆)su(x) are well defined.
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• Assume in addition φ invertible, increasing, with φ−1 ∈ C2 increasing. If u is a continuous
viscosity supersolution of

(−∆)su ≥ g in Ω
for some function g and Ω ⊆ RN , then φ(u) is a viscosity supersolution of

(−∆)s(φ(u)) ≥ φ′(u)g in Ω.

Proof. The first claim is a direct consequence of the Lipschitz continuity
�

Ω

�
Ω

|φ(u(x)) − φ(u(y))|2
|x− y|N+2s

dxdy ≤ ∥φ′∥2
L∞(u(Ω))

�
Ω

�
Ω

|u(x) − u(y)|2
|x− y|N+2s

dxdy.

Secondly, by the concavity of φ, for each t, r ∈ I we have

φ(t) − φ(r) ≥ φ′(t)(t− r)

thus

(−∆)s(φ(u))(x) = CN,s

�
RN

φ(u(x)) − φ(u(y))
|x− y|N+2s

dy

≥ CN,s

�
RN

φ′(u(x))
(
u(x) − u(y)

)

|x− y|N+2s
dy = φ′(u(x))(−∆)su(x).

We move to the third part. Let x0 ∈ U ⊂ Ω and ϕ ∈ C2(U) be such that ϕ(x0) = φ(u(x0))
and ϕ ≤ φ(u) in U , and set v := ϕχU + φ(u)χUc . Let now

ψ := φ−1 ◦ ϕ, w := φ−1 ◦ v = ψχU + uχUc .

By the assumptions on φ−1 we have ψ ∈ C2(U), ψ(x0) = u(x0) and ψ ≤ u in U . Thus

(−∆)sw(x0) ≥ g(x0).

On the other hand, w = ψ ∈ C2 on U and φ(w) = ϕ ∈ C2 on U , hence both the functions are
regular enough in a neighborhood of x0 to state that both the fractional Laplacians are well
defined (see Proposition 1.2.1). Thus we may apply the previous point and obtain

(−∆)s(φ(w))(x0) ≥ φ′(w(x0))(−∆)sw(x0).

Since w(x0) = u(x0), φ(w) = v and φ′ is positive, we obtain, by joining the two previous
inequalities

(−∆)sv(x0) ≥ φ′(u(x0))g(x0)
which is the claim. This concludes the proof.

As a corollary, we obtain the following result.

Corollary 1.2.23. Let θ ∈ (0, 1), and let u ∈ C(RN ) be strictly positive. We have the following
results.

• We have
[uθ]Hs(Ω) ≤ θ

minΩ u1−θ
[u]Hs(Ω)

In particular, if u ∈ Hs
loc(RN ), then uθ ∈ Hs

loc(RN ).1 As a consequence, if u ∈ Hs(RN ),
then

[uθ]Hs(Ω) ≤ θ

minΩ u1−θ
∥(−∆)s/2u∥2.

1Indeed, if u ∈ L2
loc(RN ), then uθ ∈ L2

loc(RN ) can be deduced by the inverse Hölder inequality:
�

Ω u2 =�
Ω u2 · 1 ≥

�
Ω u

2
p
�

Ω 1− 1
p−1 =

�
Ω u2θ · m(Ω), if p := 1

θ
> 1 and Ω is bounded (with positive measure).
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• If (−∆)su is well defined pointwise, then

(−∆)suθ(x) ≥ θ

(u(x))1−θ
(−∆)su(x)

for every x ∈ RN such that (−∆)suθ(x) is well defined.

• If u is a viscosity supersolution of

(−∆)su ≥ g in Ω

for some function g and Ω ⊆ RN , then uθ is a viscosity supersolution of

(−∆)suθ ≥ θ

u1−θ
g in Ω.

1.2.5 Regularity: tail functions and De Giorgi classes
We gain now some L∞-bound for sign-changing solutions, in a fractional, possibly critical,
framework. We adapt some arguments from the papers [115, 197]. This result will be then
implemented in the study of sign-changing solutions for doubly nonlocal equations (Theorem
4.4.1), and in the study of uniform bounds for semiclassical critical problems (Proposition 5.5.5).
Notice that we avoid the use of the Caffarelli-Silvestre s-harmonic extension, and this allows to
extend our proof to different frameworks where this tool is not available.

Proposition 1.2.24. Let u ∈ Hs(RN ) be a weak subsolution of

(−∆)su ≤ g(x, u) in RN

with
|g(x, t)| ≤ C

(|t| + |t|2∗
s−1) for all x ∈ RN , t ∈ R

for some uniform C > 0. Then u ∈ L∞(RN ).

Proof. We already know that u ∈ L2(RN ) ∩ L2∗
s (RN ). Let us introduce γ > 1, to be fixed, and

an arbitrary T > 0, and set a γ-linear (positive) truncation at T

h(t) ≡ hT,γ(t) :=





0 if t ≤ 0,
tγ if t ∈ (0, T ],
γT γ−1t− (γ − 1)T γ if t > T .

We have that h ∈ C1(R) ∩W 1,∞(R), it is positive (increasing and convex), zero on the negative
halfline, and by direct computations it satisfies the following properties

0 ≤ h(t) ≤ |t|γ , t ∈ R, (1.2.18)

0 ≤ th′(t) ≤ γh(t), t ∈ R, (1.2.19)

lim
T →+∞

hT,γ(t) = tγ , t ≥ 0. (1.2.20)

The goal is to estimate ∥h(u)∥2∗
s

and give thus a bound of u in L2∗
sγ(RN ), where 2∗

sγ > 2∗
s. In

order to handle the weak formulation of the notion of solution we introduce

h̃(t) :=
� t

0
(h′(r))2 dr, t ∈ R

and observe that h̃ ∈ C1(R) ∩W 1,∞(R) is positive, increasing, convex and zero on the negative
halfline. In particular

h̃′(t) = (h′(t))2, t ∈ R (1.2.21)
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by definition and
h̃(t) − h̃(r) ≤ h̃′(t)(t− r), t, r ∈ R (1.2.22)

by convexity, and we gain also the Lipschitz continuity

|h̃(t) − h̃(r)| ≤ ∥h̃′∥∞|t− r|, t, r ∈ R.

Combining the definition of h̃, (1.2.19) and (1.2.18) we obtain

0 ≤ h̃(t) ≤ ∥h′∥∞|t|γ , t ∈ R. (1.2.23)

Finally, by a direct application of Jensen inequality we gain

|h(t) − h(r)|2 ≤ (
h̃(t) − h̃(r)

)
(t− r), t, r ∈ R. (1.2.24)

We observe that h̃(u) ∈ Hs(RN ) since h̃ is Lipschitz continuous and h̃(0) = 0 (see Lemma 1.2.21);
moreover, since 2∗

s is the best summability exponent, if we assume

1 < γ ≤ 2∗
s

2 (1.2.25)

by (1.2.23) we obtain also
h̃(u) ≤ ∥h′∥∞|u|γ ∈ L2(RN ).

We use now the embedding (1.2.7) and combine (1.2.5), (1.2.24) and (1.2.6) to obtain

∥h(u)∥2
2∗

s
≤ S−1∥(−∆)s/2h(u)∥2

2

= (C ′(N, s))−1S−1
�
R2N

|h(u(x)) − h(u(y))|2
|x− y|N+2s

dx dy

≤ (C ′(N, s))−1S−1
�
R2N

(
h̃(u(x)) − h̃(u(y))

)(
u(x) − u(y)

)

|x− y|N+2s
dx dy

= S−1
�
RN

(−∆)s/2u (−∆)s/2h̃(u) dx.

Since h̃(u) ∈ Hs(RN ) we can choose it as a test function in the equation and gain

∥h(u)∥2
2∗

s
≤ S−1

�
RN

g(x, u)h̃(u) dx.

By the assumptions on g and the positivity of h̃(u) we get

∥h(u)∥2
2∗

s
≤ S−1

�
RN

|g(x, u)|h̃(u) dx ≤ CS−1
�
RN

(|u| + |u|2∗
s−1)h̃(u) dx.

Since h(u) and h̃(u) are zero when u is negative, we obtain

∥h(u+)∥2
2∗

s
≤ CS−1

�
RN

(
u+ + u

2∗
s−1

+
)
h̃(u+) dx.

Now we use (1.2.22) (with r = 0), (1.2.21), and (1.2.19)

∥h(u+)∥2
2∗

s
≤ CS−1

�
RN

(
u+ + u

2∗
s−1

+
)
u+h̃

′(u+) dx

≤ CS−1
�
RN

(
u+ + u

2∗
s−1

+
)
u+(h′(u+))2 dx ≤ γ2CS−1

�
RN

(
1 + u

2∗
s−2

+
)
(h(u+))2 dx

≤ γ2CS−1
�
RN

(h(u+))2 dx+ γ2CS−1
�
RN

u
2∗

s−2
+ (h(u+))2 dx. (1.2.26)
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Let now R > 0 to be fixed; splitting the second piece of the right-hand side of (1.2.26) and by
using the Hölder inequality we gain

�
RN

u
2∗

s−2
+ (h(u+))2 dx =

�
u≤R

u
2∗

s−2
+ (h(u+))2 dx+

�
u>R

u
2∗

s−2
+ (h(u+))2 dx

≤ R2∗
s−2∥h(u+)∥2

2 +
(�

u>R
u2∗

s dx

) 2∗
s−2
2∗

s ∥h(u+)∥2
2∗

s
.

Since u ∈ L2∗
s (RN ), we can find a sufficiently large R = R(γ,m0,S−1) such that

(�
u>R

u2∗
s dx

) 2∗
s−2
2∗

s
<

1
2

1
γ2CS−1 .

Thus, plugging this information into (1.2.26), and absorbing the second piece on the right-hand
side into the left-hand side, we obtain by (1.2.18)

∥h(u+)∥2
2∗

s
≤ 2γ2CS−1(1 +R2∗

s−2)∥h(u+)∥2
2 ≤ 2γ2CS−1(1 +R2∗

s−2)∥u+∥2γ
2γ .

Recalled that h = hT,γ , by (1.2.20) and Fatou’s Lemma we have

∥u+∥2γ
2∗

sγ =
(�

RN

lim inf
T →+∞

h
2∗

s
T,γ(u+) dx

) 2
2∗

s ≤
(

lim inf
T →+∞

�
RN

h
2∗

s
T,γ(u+) dx

) 2
2∗

s

≤ 2γ2CS−1(1 +R2∗
s−2)∥u+∥2γ

2γ .

By our choice (1.2.25) of γ we gain that u+ ∈ L2∗
sγ(RN ), which was the claim. By an iteration

argument, with
γ0 := 1

22∗
s, γi := 1

22∗
sγi−1, γi → +∞,

we obtain u+ ∈ Lr(RN ) for each r ∈ [2,+∞). In order to achieve u+ ∈ L∞(RN ) we need to be
careful on the bound on the Lr-norms.

Knowing that u+ lies in every Lebesgue space for r < ∞ we can implement a more precise
iteration argument, where we drop the dependence of the constant on R. We exploit once more
(1.2.26). Applying again Fatou’s Lemma to (1.2.26) and using (1.2.18) we obtain

∥u+∥2γ
2∗

sγ ≤ γ2CS−1
�
RN

(
u2γ

+ + u
2∗

s−2+2γ
+

)
dx. (1.2.27)

Focusing on the second term on the right-hand side, exploiting first the generalized Hölder
inequality with

1
N/s

+ 1
2 + 1

2∗
s

= 1,

possible since u2∗
s−2

+ ∈ L
N
s (RN ) because (2∗

s − 2)N
s = 4N

N−2s ≥ 2, and the generalized Young’s
inequality then, we get

�
RN

u
2∗

s−2+2γ
+ dx =

�
RN

u
2∗

s−2
+ uγ

+u
γ
+ dx ≤ ∥u2∗

s−2
+ ∥ N

s
∥uγ

+∥2 ∥uγ
+∥2∗

s

≤ ∥u2∗
s−2

+ ∥ N
s

( 1
2ε∥uγ

+∥2
2 + ε

2∥uγ
+∥2

2∗
s

)
= ∥u+∥2∗

s−2
4N

N−2s

( 1
2ε∥u+∥2γ

2γ + ε

2∥u+∥2γ
2∗

sγ

)
.

Plugging this into (1.2.27), set a := ∥u+∥2∗
s−2
4N

N−2s

, choosing ε = 1
aγ2CS−1 and bringing the L2∗

sγ-norm
on the left hand side, we gain

∥u+∥2γ
2∗

sγ ≤ 2γ2CS−1(1 + 1
2a

2γ2CS−1)∥u+∥2γ
2γ ≤ C ′γ4∥u+∥2γ

2γ
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for some γ-independent C ′ > 0. Choosing 2γi := 2∗
sγi−1 we have

∥u+∥2∗
sγi ≤ (

C ′γ4
i

) 1
2γi ∥u+∥2∗

sγi−1

and thus

∥u+∥2∗
sγi ≤

i∏

j=0

(
C ′γ4

j

) 1
2γj ∥u+∥2∗

sγ0 = e

∑i

j=0
log(C′γ4

j )
2γj ∥u+∥2∗

sγ0

= e

∑i

j=0

log
(

C′
(

2∗
s
2

)4j

γ4
0

)

2
(

2∗
s
2

)j

γ0 ∥u+∥2∗
sγ0

and finally, sending i → +∞ (recall that ∥ · ∥p → ∥ · ∥∞ as p → +∞),

∥u+∥∞ ≤ e

∑∞
j=0

log
(

C′
(

2∗
s
2

)4j

γ4
0

)

2
(

2∗
s
2

)j

γ0 ∥u+∥2∗
sγ0

where the constant is finite. Thus u+ ∈ L∞(RN ).
To deal with u− we consider

k(t) ≡ kT,γ(t) := hT,γ(−t), k̃(t) :=
� 0

t
(k′(r))2 dr = h̃(−t)

and choose k̃(u) as test function. With the same passages as before we obtain

∥k(u)∥2
2∗

s
≤ −S−1

�
RN

g(x, u)k̃(u) dx

and thus

∥k(u)∥2
2∗

s
≤ S−1

�
RN

|g(x, u)|k̃(u) dx ≤ CS−1
�
RN

(|u| + |u|2∗
s−1)k̃(u) dx

which implies
∥k(−u−)∥2

2∗
s

≤ CS−1
�
RN

(| − u−| + | − u−|2∗
s−1)k̃(−u−) dx

and hence
∥h(u−)∥2

2∗
s

≤ CS−1
�
RN

(|u−| + |u−|2∗
s−1)h̃(u−) dx;

we then proceed as before to gain u− ∈ L∞(RN ). This concludes the proof.

Once obtained that u ∈ L∞(RN ), we can improve the regularity. The following result can be
found in [352, Theorem 15] (see also [346, Propositions 2.8 and 2.9]); see Remark 1.1.2 for the
definition of Λ1 and Λ2.

Proposition 1.2.25. Let s ∈ (0, 1) and u ∈ L∞(RN ) be a strong solution of

(−∆)su = g in RN .

i) If g ∈ L∞(RN ), then

u ∈





C0,γ(RN ) for γ < 2s if 2s ∈ (0, 1),
Λ1(RN ), thus C0,γ(RN ) for γ < 1 if 2s = 1,
C1,γ−1(RN ) for γ < 2s if 2s ∈ (1, 2).
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ii) If g ∈ C0,σ(RN ) for some σ ∈ (0, 1], then

u ∈





C0,σ+2s(RN ) if σ + 2s ∈ (0, 1),
Λ1, thus C0,γ(RN ) for γ < 1 if σ + 2s = 1,
C1,σ+2s−1(RN ) if σ + 2s ∈ (1, 2),
Λ2, thus C1,γ(RN ) for γ < 1 if σ + 2s = 2,
C2,σ+2s−2(RN ) if σ + 2s ∈ (2, 3);

the previous relations holds also if we substitute global spaces with local spaces.

Notice that the conclusion in i) was partially contained in the embedding (1.2.13).

Remark 1.2.26. We see that regularity theory of Proposition 1.2.25 extends to s ≥ 1. Indeed,
by Remark 1.2.8, if u ∈ H2s(RN ) ∩W 2[s],∞(RN ) then

(−∆)su = g =⇒ (−∆)[s]−s((−∆)[s]u
)

= g

and all the regularity results apply to (−∆)[s]u. At this point it is sufficient to apply regularity
theory for polyharmonic operators [381, Section 3.20]. See also [330, Theorem 1.2] and [5, Theorem
3.7].

We want now to investigate in a more detailed way the regularity of solutions. Set first

Tail(u;x0, R) := (1 − s)R2s

�
RN \BR(x0)

|u(x)|
|x− x0|N+2s

dx (1.2.28)

the tail function of u ∈ Hs(RN ), centered in x0 ∈ RN with radius R > 0, introduced in [151,152].
We recall properties of the fractional De Giorgi class stated in [134], to which we refer for a
complete introduction on the topic; we focus only on the linear case.

By [134, Paragraph 6.1] we have the following definition.

Definition 1.2.27. Let A ⊂ RN be open, ζ ≥ 0, H ≥ 1, k0 ∈ R, µ ∈ (0, 2s/N ], λ ≥ 0 and
R0 ∈ (0,+∞]. We say that u belongs to the fractional De Giorgi class DGs,2

+ (A, ζ,H, k0, µ, λ,R0)
if and only if

[(u− k)+]2Br(x0) +
�

Br(x0)
(u(x) − k)+

(�
B2R0 (x)

(u(y) − k)−
|x− y|N+2s

dy

)
dx

≤ H

1 − s

((
Rλζ2 + |k|2

RNµ

)∣∣ supp((u− k)+) ∩BR(x0)
∣∣1− 2s

N
+µ +

+ R2(1−s)

(R− r)2 ∥(u− k)+∥2
L2(BR(x0)) +

+ RN

(R− r)N+2s
∥(u− k)+∥L1(BR(x0))Tail((u− k)+;x0, r)

)

for any x0 ∈ A, 0 < r < R < min{R0, d(x0, ∂A)} and k ≥ k0.

We see now how this class of functions is related to the PDE setting. By a careful analysis of
the proof of [134, Proposition 8.5] we obtain the following result.

Theorem 1.2.28. Let N ≥ 2 and let u ∈ Hs(RN ) be a weak subsolution of

(−∆)su ≤ g(x, u), x ∈ RN
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where g : RN × R → R satisfies, for a. e. x ∈ RN and every t ∈ R,

|g(x, t)| ≤ d1 + d2|t|q−1

for some q ∈ (2, 2∗
s). Then there exist α = α(N, s, q) > 0, C = C(N, s, q, d2) > 0 and

H = H(N, s, q, d2) ≥ 1 such that, for each x0 ∈ RN and each R0 verifying

0 < R0 ≤ C(N, s, q, d2) min
{

1, ∥u∥−α(N,s,q)
L2∗

s (RN )

}
,

it results that
u ∈ DGs,2

+
(
BR0(x0), d1, H, 0, 1 − q

2∗
s

, 2s,R0
)
.

As shown in [134, Proposition 6.1 and Theorem 8.2], the belonging to a De Giorgi class
implies useful L∞

loc and C0,σ
loc estimates.

For other regularity results we refer to [22,79,84,190,240,328].

1.2.6 Existence theorems and comparison principles
We collect here some results regarding existence and comparison principles.

As a consequence of the Riesz representation theorem, we start by recalling the situation
for linear equations in RN [177, page 1241, Theorem 3.3 and Lemma 4.1] (see also [190, Lemma
C.1]).

Lemma 1.2.29 (Representation in RN ). Consider the equation in the weak sense

(−∆)su+ λu = g in RN

where λ > 0 and g ∈ L2(RN ). Then u is given by

u = K2s,λ ∗ g

where K2s,λ is the Bessel Kernel (see Remark 1.2.6)

K2s,λ := F−1
( 1
λ+ |ξ|2s

)
.

Moreover

• K2s,λ is non-negative, radially symmetric and decreasing,

• C1
|x|N+2s ≤ K2s,λ(x) ≤ C2

|x|N+2s for |x| ≥ 1 and some C1, C2 > 0, while |K(x)| ≤ C3
|x|N−2s for

|x| ≤ 1 and some C3 > 0,

• K2s,λ ∈ Lq(RN ) for every q ∈ [1, 1 + 2s
N−2s),

• K2s,λ solves (−∆)sK2s,λ + λK2s,λ = δ0 (in a distributional sense), where δ0 is the standard
Dirac delta.

We notice that the fundamental solution of (−∆)su = δ0, instead, is given (up to constants)
by I2s := F−1

(
1

|ξ|2s

)
= 1

|x|N−2s , which lies in Lq
loc(RN ) for every q < N

N−2s but in no Lp(RN ).
This Riesz potential will be better studied in Section 1.3.

The Bessel kernel allows also to find suitable comparison function with no restriction on the
boundary; the result can be found in [111, Lemma A.2] (see also [177, Lemmas 4.2 and 4.3]).
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Lemma 1.2.30 (Comparison function). Let b > 0. Then there exists a strictly positive continuous
function Wb ∈ Hs(RN ) such that, for some positive constants C ′

b, C
′′
b , it verifies

(−∆)sWb + b

2Wb = 0, x ∈ RN \Brb

pointwise, with rb :=
(

2
b

)1/2s
, and

C ′
b

|x|N+2s
< Wb(x) < C ′′

b

|x|N+2s
, for |x| > 2rb. (1.2.29)

The constants rb, C
′
b, C

′′
b remain bounded by letting b vary in a compact set far from zero.

Proof. Let B1/2 ≺ φ ≺ B1, and define W̃ := K2s ∗φ, where K2s is the Bessel potential. Arguing
as in [177] (see also [79, Theorem 1.3]) we obtain

(−∆)sW̃ + W̃ = φ, x ∈ RN

and
C ′

|x|N+2s
< W̃ (x) ≤ C ′′

|x|N+2s
for |x| ≥ 2.

By scaling W := W̃ (rb·) we reach the claim.

We give now an existence result (see also [344, Corollary 1.15]).

Lemma 1.2.31 (Existence for weak solutions). Let Ω ⊂ RN be of class C0,1 with bounded
boundary, λ > 0, ψ ∈ Hs(Ωc), and g ∈ Lq(Ω), for some q ∈ [ 2N

N+2s , 2]. Then there exists a
(unique) function v ∈ Hs(RN ) such that

{
(−∆)sv + λv = g in Ω,
v = ψ on Ωc,

in the weak sense, which in particular means v ∈ Xs
0(Ω) + ψ. If moreover g ∈ Lq

loc(RN ) for some
q > N

2s , then v ∈ L∞
loc(RN ). If instead g ∈ C0,σ

loc (RN ) for some σ ∈ (0, 1], then v ∈ C2s+σ
loc (RN ).

Remark 1.2.32. The result is still valid in a whatever Ωc extension domain (see [153]).

Proof. By [153, Theorem 5.4] we know that there exists ψ̃ ∈ Hs(RN ) such that ψ̃|Ωc ≡ ψ. The
problem is thus equivalent to

{
(−∆)sv + λv = g in Ω,
v = ψ̃ on Ωc.

Consider u = v − ψ̃ and rewrite the weak formulation as�
RN

(−∆)s/2u(−∆)s/2φ+ λ

�
RN

uφ =
�
RN

(g − λψ)φ−
�
RN

(−∆)s/2ψ̃(−∆)s/2φ.

It is easy to see that the left-hand side is a bilinear, continuous coercive map on Xs
0(Ω), while

φ ∈ Xs
0(Ω) 7→

�
RN

(g − λψ)φ−
�
RN

(−∆)s/2ψ̃(−∆)s/2φ

belongs to the dual space (Xs
0)∗(Ω). By Lax-Milgram theorem, we obtain a solution u ∈ Xs

0(Ω),
which implies that v := u+ ψ̃ is the desired function.

Finally, the regularity results are a consequence of De Giorgi-Nash-Moser estimates [240,
Proposition 2.6] and Schauder estimates [240, Theorem 2.11].

The following existence result can be found in [97, Lemma 2.2 and Remark 4.1] for bounded
domains, and in [349, Theorem A.1] for the homogeneous case ψ ≡ 0.
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Lemma 1.2.33 (Existence for viscosity solutions). Let Ω ⊂ RN be a C2-domain, λ > 0,
ψ ∈ L∞(Ωc) ∩C(Ωc), and g ∈ L∞(Ω) ∩C(Ω). Then there exists a function v ∈ C(RN ) ∩L∞(RN )
such that {

(−∆)sv + λv = g in Ω,
v = ψ on Ωc,

in the viscosity sense. If g ∈ Cσ
loc(Ω) for some σ ∈ (0, 1), then v ∈ Cγ

loc(Ω), for some γ > 2s is a
pointwise solution. If ψ ≡ 0, we further have v ∈ Cs(RN ) ∩ Cγ

loc(Ω), for some γ > max{1, 2s}
and w

(dist(·,∂Ω))s ∈ C0,θ(Ω) for some θ ∈ (0, 1).

Proof. First notice that, by extension, we may assume g ∈ L∞(RN ) ∩ C(RN ). Since Ω is a
C2-domain, g ∈ C(RN ), ψ ∈ C(Ωc) ∩ L∞(Ωc), by [31, Theorem 4] with b ≡ c ≡ 0, we obtain
the existence of a (unique) viscosity solution v ∈ C(RN ), satisfying the boundary condition
pointwise (see also [87, page 615]). Since the cited theorem is a corollary of [31, Theorem 1],
with F (x, u, p,X, l) ≡ F (x, u, l) = l + λu − g(x), l = I[u] ≡ (−∆)su, dµx(z) = dz

|z|N+α , one can
notice, looking carefully at the proof, that the found solution is actually bounded (see also
[339, Corollary 4]). Thus v is a bounded viscosity solution.

By [322, Theorem 2.6], since (−∆)sv = −λv+g ∈ L∞(Ω) with v ∈ C(Ω), we have v ∈ Cγ1
loc(RN )

for some γ1 > 0. Since ψ ∈ L∞(Ωc) and g − λv ∈ C
min{σ,γ1}
loc (Ω), by [322, Theorem 2.5] we have

that v ∈ Cγ
loc(Ω) for some γ > 2s; thus (−∆)sv is pointwise defined (actually Hölder continuous).

As observed in [322, Remark 2.3], we conclude that v is a pointwise solution.

We write down now the following two maximum principles (for unbounded domains). See
[111, Lemma A.1] for the first (see also [339, Lemma 6] and [233]).

Lemma 1.2.34 (Maximum Principle (weak)). Let Ω ⊂ RN , λ > 0, and let u ∈ Hs(RN ) be a
weak subsolution of

(−∆)su+ λu ≤ 0 in Ω.

Assume moreover that
u(x) ≤ 0 for a. e. x ∈ Ωc.

Then
u(x) ≤ 0 for a. e. x ∈ RN . (1.2.30)

Proof. By the assumption we have u+ = 0 on Ωc, thus u+ ∈ Xs
0(Ω) is a suitable test function

(see Lemma 1.4.1) and we obtain, using u = u+ − u− and u+u− ≡ 0,

0 ≥
�
RN

|(−∆)s/2u+|2 dx+ λ

�
RN

|u+|2 dx−
�
RN

(−∆)s/2u−(−∆)s/2u+ dx

= ∥(−∆)s/2u+∥2
2 + λ∥u+∥2

2 + C

�
R2N

u−(x)u+(y) + u−(y)u+(x)
|x− y|N+2s

dx dy

≥ ∥(−∆)s/2u+∥2
2 + λ∥u+∥2

2

which implies u+ = 0 on RN .

Remark 1.2.35. We point out that if u is assumed continuous, then (1.2.30) is actually pointwise.
Moreover, the constant λ > 0 may be substituted by a more general V (x) > 0 which gives sense
to the integrals.

Lemma 1.2.36 (Maximum Principle (viscosity)). Let Ω ⊂ RN be open, λ > 0, and let u be a
viscosity, continuous subsolution of

(−∆)su+ λu ≤ 0 in Ω
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such that
lim

|x|→+∞
u(x) ≤ 0.

Assume moreover that
u(x) ≤ 0 on Ωc.

Then
u(x) ≤ 0 on RN . (1.2.31)

The result applies, in particular, to pointwise solutions.

Proof. We first observe that u ∈ L∞(RN ) and set M := supx∈RN u(x). By contradiction, assume
M > 0. Let (xn)n be a maximizing sequence, i.e. u(xn) → M as n → +∞; we can assume that
xn ∈ Ω. We observe that (xn)n is bounded (up to a subsequence) since, if not, we would have
|xn| → +∞ and thus limn u(xn) ≤ 0, which is an absurd. Thus xn → x0 ∈ Ω, and by continuity
u(x0) = M > 0; since u(x) ≤ 0 on Ωc ⊃ ∂Ω, we have x0 ∈ Ω. In particular, x0 is a point of
maximum for u.

We can thus choose a whatever U ⊂ Ω neighborhood of x0 and set ϕ ≡ u(x0) as contact
function in the definition of viscosity solution: indeed ϕ ∈ C2(U), ϕ(x0) = u(x0) and ϕ ≥ u in U .
Hence, set v := ϕχU + uχUc we have

0 ≥ (−∆)sv(x0) + λv(x0) = CN,s

�
RN

u(x0) − v(y)
|x0 − y|N+2s

dy + λu(x0)

= CN,s

�
Uc

M − u(y)
|x0 − y|N+2s

dy + λM > 0,

which is a contradiction. This concludes the proof.

1.3 The Riesz potential
Let α ∈ (0, N). We recall here some results on the Riesz kernel [304, Appendix]

Iα(x) := CN,α

|x|N−α
(1.3.32)

where
CN,α :=

Γ(N−α
2 )

2απN/2Γ(α
2 )

> 0

is a normalization constant. For motivations and a physical introduction we refer to Sections 3.1
and 4.1.

We are interested in studying the behaviour of the convolution

Iα ∗ g

for some g. We will use the following notation, whenever well defined for some g and h:

Dα(g, h) :=
�
RN

(Iα ∗ g)h =
�
RN

�
RN

g(x)h(y)
|x− y|N−α

dxdy.

We start observing that the operator enjoys a trivial but useful scaling property

Dα
(
g(θ·), h(θ·)) = |θ|−(N+α)Dα(g, h).

for any θ ∈ R.
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Well posedness

The following theorem ensures the well posedness of the Riesz potential: see [266, Theorem 4.3],
[248, pages 61-62] and [297, Section 4.2] for a proof.

Proposition 1.3.1 (Hardy-Littlewood-Sobolev inequality). Let α ∈ (0, N).

• Let g be a measurable function. Then Iα ∗ g is finite almost everywhere if and only if
�
RN

|g(x)|
(1 + |x|)N−α

< ∞. (1.3.33)

In particular, Iα ∗ g is well defined if g ∈ L1
loc(RN ) ∩ Lr(Bc

R) for some R ≥ 0 and some
r ∈ [1, N

α ). Moreover, if (1.3.33) does not hold, then Iα ∗ |g| ≡ ∞.

• Let r ∈ (1, N
α ). Then, for some C = C(N,α, r) > 0 we have

∥Iα ∗ g∥ Nr
N−αr

≤ C∥g∥r

for all g ∈ Lr(RN ), thus the map

g ∈ Lr(RN ) 7→ Iα ∗ g ∈ L
Nr

N−αr (RN )

is continuous. In particular, since the operator is linear,

gn ⇀ g in Lr(RN ) =⇒ Iα ∗ gn ⇀ Iα ∗ g in L
Nr

N−αr (RN ).

• Let r, t ∈ (1,+∞) be such that 1
r + 1

t = N+α
N . Then there exists a constant C =

C(N,α, r, t) > 0 such that
|Dα(g, h)| ≤ C∥g∥r∥h∥t

for all g ∈ Lr(RN ) and h ∈ Lt(RN ). Thus the bilinear map

(g, h) ∈ Lr(RN ) × Lt(RN ) 7→ Dα(g, h) ∈ R

is continuous. If r = t = 2N
N+α , then equality is reached in the previous inequality if and

only if g ≡ h (up to multiplicative constants), and g(x) = (1 + |x|2)− N+α
2 (up to translations

and rescaling).

In the limiting case g ∈ L
N
α (RN ) (i.e. Nr

N−αr → ∞) we have that Iα ∗ g is a BMO function (see
[304, Appendix A.2] and references therein). Anyway we have

• If g ∈ L
N
α

−ε(RN ) ∩ L
N
α

+ε(RN ) for some ε > 0, then Iα ∗ g ∈ C0(RN ) ⊂ L∞(RN ).

Proof. We show only the last claim, i.e. [275, Lemma 4.5(ii)]; we argue as in [115, Proposition
4.5] (see also Proposition 4.4.6 and Remark 1.5.8). Recall theat, by Young’s Theorem, if two
functions belong to two Lebesgue spaces with conjugate (finite) indexes, then their convolution
belong to C0(RN ). We first split

Iα ∗ g = (IαχB1) ∗ g + (IαχBc
1
) ∗ g

where
IαχB1 ∈ Lr1(RN ), for r1 ∈ [1, N

N−α),

IαχBc
1

∈ Lr2(RN ), for r2 ∈ ( N
N−α ,∞].

We need that g ∈ Lq1(RN ) ∩ Lq2(RN ) for some qi satisfying

1
qi

+ 1
ri

= 1, i = 1, 2
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that is
q1

q1 − 1 ∈
[
1, N

N − α

)
,

q2
q2 − 1 ∈

(
N

N − α
,∞
]

or equivalently q2 <
N
α < q1. Thus we have the claim.

We emphasize the similarity of condition (1.3.33) and condition (1.2.1), when formally
α = −2s.

Positivity

We observe the following: if g ∈ S [351, Lemma 5.1.2] or if α ∈ (0, N
2 ) and g ∈ L

2N
N+2α (RN )

[266, Corollary 5.10] then we have

Dα(g, g) =
�
RN

(
Iα ∗ g)gdx =

�
RN

Îα ∗ gĝdξ =
�
RN

Îα|ĝ|2dξ =
�
RN

|ĝ|2
|ξ|αdξ ≥ 0

(see also [275, Lemma 4.5(v)], [75, Lemma 2.7], [248, Section 1.1], [297, Theorem 2.8 in Chapter
2], [334, Sections 2.1.1 and 2.3.3] and [266, Theorem 5.9]). This shows that

g 7→ Dα(g, g)

is a positive functional (i.e. its sign does not depend on the sign of g). A more general result can
be adapted from α = 2 [266, Theorem 9.8] to a generic α ∈ (0, N) as follows.
Proposition 1.3.2 ([266]). Let g : RN → R measurable be such that

Dα(|g|, |g|) < ∞.

Then
Dα(g, g) ≥ 0

and the above quantity is zero if and only if g ≡ 0 almost everywhere. In particular the following
representation holds

Dα(g, g) =
� +∞

0
t2N−α−1

�
RN

|h(t·) ∗ g|2dxdt ≥ 0

for a whatever nonnegative, radially symmetric h ∈ C∞
c (RN ) normalized in such a way that� +∞

0 tN−α−1(h ∗ h)(t)dt = CN,α.

Decay

We investigate now the decay of Iα ∗ g: indeed, if g ∈ L1
loc(RN ), g ≥ 0 and g > 0 on some ball,

then
(Iα ∗ g)(x) ≥ Iα(2x)

�
B2|x|(x)

g ≳ Iα(x) ≃ 1
|x|N−α

for |x| ≫ 0

which shows a polynomial bound from below on the Riesz potential, whatever the decay of g is
(even with compact support). Moreover, if g ≥ 0 has at least a polynomial decay

g(x) ≲ 1
|x|θ as |x| → +∞

with θ > α, then the following estimates from above hold [301, Lemma A.1] (see also [204, Lemma
2.1] and [211, Lemma 4.6])

(Iα ∗ g)(x) ≲





1
|x|θ−α

if θ ∈ (α,N),

log(x)
|x|N−α

if θ = N,

1
|x|N−α

if θ ∈ (N,+∞).

(1.3.34)
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In particular, if θ > N the decay of Iα ∗ g is exactly the same of Iα, as stated in the following
result.

Lemma 1.3.3 ([300]). Let g ∈ L∞(RN ) be continuous and θ > N be such that

sup
x∈RN

|g(x)||x|θ < +∞.

Then there exists C = C(N,α) > 0 such that
∣∣∣∣(Iα ∗ g)(x) − Iα(x)

�
RN

g(y)dy
∣∣∣∣ ≤ C∥g∥∞,θ

|x|N−α

( 1
1 + |x| + 1

1 + |x|θ−N

)

for each x ∈ RN , x ̸= 0, where we recall that ∥g∥∞,θ = ∥g(·)(1 + | · |θ)∥∞.

Proof. See [300, Lemma 6.2]. See also [190, Lemma C.3].

The rigidity of the previous result in particular highlights that it is not possible to implement
a bootstrap-type argument in order to show fine results on the decay of a solutions. See Section
4.6.6.

1.3.1 The Riesz potential as the inverse of the fractional Laplacian
Since roughly

(−∆)α/2Iα = F−1
(
|ξ|αÎα(ξ)

)
= F−1

(
|ξ|α 1

|ξ|N−(N−α)

)
= F−1(1) = δ0

then the Riesz kernel can be seen as the fundamental (distributional) solution for the fractional
Laplacian [4, Theorem 5.10] (see also [201, Theorem 8.4] and [75, Theorem 2.3] for the case
α ∈ (0, 2))

(−∆)α/2Iα = δ0 in RN ; (1.3.35)

thus the Riesz potential generates the solutions of fractional equations in RN , that is

ϕ = Iα ∗ g ⇐⇒ (−∆)α/2ϕ = g in RN .

Therefore we may roughly say that ([351, Section 5.1], [201, equation (2.7)], [346, equation (2.3)]
and [9, equation (1.2.7)])

Iα∗ ≡ (−∆)−α/2.

More precisely

Iα ∗ ((−∆)α/2v) = v = (−∆)α/2(Iα ∗ v) for every v ∈ C∞
c (RN );

indeed, when the fractional Laplacian is defined through hypersingular integrals, the first equality
can be found in [297, proof of Theorem 2.9 in Chapter 2 and Section 4.5] for Schwartz functions,
while the second equality for Lp functions in [334, Theorems 3.22 and 3.24]: anyway the
hypersingular definition coincides with the Fourier transform one at least on C∞

c functions (see
[334, Lemma 3.1] and [2, Theorem 1.8]). See also [248, equation (1.1.12’)]. For the case α ∈ (0, 2)
see also [75, Theorem 2.8 and Corollary 2.9] and [352, Theorem 6], while for α = 2 see also
[275, Lemma 4.5(iii)].

Let us state this relation in a more general framework.

Proposition 1.3.4. Let α ∈ (0, N) (i.e., set s := α
2 , we ask N > 2s).
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i) Assume g ∈ Lp(RN ) for some p ∈ [1, N
α ). Then

(−∆)α/2(Iα ∗ g) = g in RN

in the strong sense; notice, in particular, that the fractional Laplacian of ϕ = Iα ∗ g is well
defined pointwise (i.e., finite) almost everywhere. Moreover, if x is a Lebesgue point for g
(e.g., g is continuous at x), then the previous relation holds at x.

ii) If g ∈ Lp(RN ) ∩X for some p ∈ [1, N
α ) and some function space X, then (−∆)α

(
Iα ∗ g) ∈

Lp(RN ) ∩X; in particular if g ∈ Lp(RN ) ∩ L
N

N−αp (RN ), then

Iα ∗ g ∈ W
α, N

N−αp (RN ).

iii) Let g ∈ Lp(RN ) for some p ∈ [1, N
α ). Then ϕ = Iα ∗ g is the only (distributional) solution

to
(−∆)α/2ϕ = g in RN

belonging to L
Np

N−αp (RN ).

iv) Let ϕ ∈ W
α, N

N−αp (RN ) for some p ∈ [1, N
α ); assume moreover that (−∆)α/2ϕ ∈ Lp(RN ).

Then
Iα ∗ ((−∆)α/2ϕ

)
= ϕ in RN

in the strong sense.

Proof. Point i) is stated in [245, page 22, Definition 2.5 and Proposition 7.1] (see also [4,
Corollary 5.16] for compactly supported g ∈ L1(RN ) and [266, Corollary 5.10] for α ∈ (0, N

2 ) and
g ∈ L

2N
N+2α (RN )); see instead [334, Theorems 3.22 and 3.24], and [297, Theorem 5.1 and Remark

5.1 in Chapter 4] for a hypersingular approach. Point ii) is a direct consequence.
To show iii), by linearity it is sufficient to prove the statement for g = 0; this can be done as

in [100, Theorems 1.3 and Theorem 3.1]. See also [172, Corollary 1.4], [175, Corollary 1.3] and
[159, Theorem 1.5] for α ∈ (0, 2), [4, Theorem 5.17] for α /∈ 2N and [225] for α ∈ 2N.

We give some details only on iv) (see also [98]). Indeed, consider

(−∆)α/2ϕ = 0 in RN ;

by iii) we know that the only solution ϕ ∈ W
α, Np

N−αp (RN ) is the null function. Thus the kernel
of the linear operator

(−∆)α/2 : Wα, Np
N−αp (RN ) → L

Np
N−αp (RN )

is null, and hence the operator injective. In particular, considered the homogeneous space

Ẇα,p(RN ) :=
{
u measurable | (−∆)α/2u ∈ Lp(RN )

}

we have that

(−∆)α/2 : Ẇα,p(RN ) ∩W
α, Np

N−αp (RN ) → Lp(RN ) ∩ L
Np

N−αp (RN )

is injective, and thus admits a left inverse. On the other hand, by ii) we have

Iα∗ : Lp(RN ) ∩ L
Np

N−αp (RN ) → Ẇα,p(RN ) ∩W
α, Np

N−αp (RN )

and moreover, by i), it is a right inverse for (−∆)α/2. Therefore the left and right inverse must
coincide, which means that Iα∗ is a right inverse for (−∆)α/2. This concludes the proof.

Remark 1.3.5. By the previous proof, we see that, if p ∈ [1, N
α ), then

Iα∗ ≡ (−∆)−α/2.

when looked on the spaces Ẇα,p(RN ) ∩W
α, Np

N−αp (RN ) and Lp(RN ) ∩ L
Np

N−αp (RN ).
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Regularity

As already seen by point ii) of Proposition 1.3.4, the Riesz potential has a regularizing effect.
We give more details in the following result.

Proposition 1.3.6. Let α ∈ (0, N) and p ∈ [1, N
α ), and let g ∈ Lp(RN ).

i) Assume g ∈ Lq(RN ) for some q ∈ (N
α ,∞) with α− N

q ∈ (0, 1). Then Iα ∗ g ∈ C
α− N

q (RN ).

ii) Assume α ∈ (0, 2) and g ∈ L∞(RN ), and we assume a priori that Iα ∗ g ∈ L∞(RN ). Then

Iα ∗ g ∈





C0,γ(RN ) for γ < α if α ∈ (0, 1),
Λ1(RN ), thus C0,γ(RN ) for γ < 1 if α = 1,
C1,γ−1(RN ) for γ < α if α ∈ (0, 2).

iii) Assume g ∈ C0,σ(RN ) ∩ L∞(RN ) for some σ ∈ (0, 1], and g ≥ 0. Then Iα ∗ g ∈ C0,γ(RN )
for each γ < (1 − α

N p)σ.2

iv) Assume α ∈ (0, 1) and g ∈ C0,σ(RN ) for some σ ∈ (0, 1) such that σ + α ∈ (0, 1). Then
Iα ∗ g ∈ Lip(σ + α).
In particular, if we assume a priori also Iα ∗ g ∈ L∞(RN ), then Iα ∗ g ∈ Cσ+α(RN ).

v) Assume α ∈ (0, 2) and g ∈ C0,σ(RN ) for some σ ∈ (0, 1], and we assume a priori that
Iα ∗ g ∈ L∞(RN ). Then

Iα ∗ g ∈





C0,σ+α(RN ) if σ + α ∈ (0, 1),
Λ1, thus C0,γ(RN ) for γ < 1 if σ + α = 1,
C1,σ+α−1(RN ) if σ + α ∈ (1, 2),
Λ2, thus C1,γ(RN ) for γ < 1 if σ + α = 2,
C2,σ+α−2(RN ) if σ + α ∈ (2, 3);

the previous relations holds also if we substitute global Hölder spaces with local spaces.

Proof. Point i) can be found in [297, Theorem 2.2 in Section 4.2] (see also [164, Theorem 2] and
[328, Theorem 1.6]); point iv) can be found in [164, Theorem 1] and Remark 1.1.1. Points ii)
and v) are consequences of Proposition 1.2.25 and Proposition 1.3.4.

We are left to prove iii). Indeed, let r := σ
γ >

N
N−αp > 1. We can find thus θ ∈ (1, N

α ) such
that (1 − 1

r )θ ≥ p. We thus have, for x, y, z ∈ RN , exploiting |ar − br| ≲ |a− b||ar−1 − br−1|

|g(x− z) − g(y − z)| ≲ |(g(x− z))
1
r − (g(y − z))

1
r ||(g(x− z))

r−1
r − (g(y − z))

r−1
r |

≲ |g(x− z) − g(y − z)| 1
r |(g(x− z))

r−1
r − (g(y − z))

r−1
r |

≲ |x− y| σ
r |(g(x− z))

r−1
r − (g(y − z))

r−1
r |;

as a consequence

|(Iα ∗ g)(x) − (Iα ∗ g)(y)| ≲ |x− y|γ
�
RN

|(g(x− z)) r−1
r − (g(y − z)) r−1

r |
|y|N−α

dz

≤ |x− y|γ
(�

B1(0)

|g(x− z)| r−1
r + |g(x− z)| r−1

r

|y|N−α
dz+

2Actually, if in addition
�
RN gq < ∞ for some q ∈ (0, 1), then we can take γ < (1 − α

N
q)σ. In particular, if

q = N
N+α

, then γ < N
N+α

σ.
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+
�

Bc
1(0)

|g(x− z)| r−1
r + |g(x− z)| r−1

r

|y|N−α
dz
)

≤ |x− y|γ
(
2∥g∥

r−1
r∞

�
B1(0)

1
|y|N−α

dz + 2∥g∥
r−1

r
r−1

r
θ

�
Bc

1(0)

1
|y|(N−α)θ′ dz

)

which gives the claim, being (N − α)θ′ > N and r−1
r θ ∈ [p,∞).

Limiting cases

We wonder what happens when α → 0 or α → N . In the first case, the Riesz potential collapses
into a local operator (as one may expect from the representation Iα ∗ g ≡ F−1(|ξ|−αĝ)), that is

Iα ∗ g α→0+
→ δ0 ∗ g = g; (1.3.36)

in the second case, as one may imagine looking at the Poisson equation (1.3.35) with α = N (for
example, in the planar case N = 2 with the classical Laplacian), the Riesz kernel converges (up
to constants) to a logarithm kernel

Iα ∗ g α→N−
→ log

( 1
|·|
) ∗ g (1.3.37)

whenever computed on a function with zero mean
�
RN g = 0. See [248, pages 46 and 50] for

precise statements.

Definitions of solutions

The definitions of weak and viscosity solutions apply, mutatis mutandis, to nonlocal equations of
the type

(−∆)su+ µu = (Iα ∗ F (u))f(u) on RN (1.3.38)

where we ask u to satisfy the equation in the classic/strong/weak/viscosity sense with nonlinearity
g(x) := (Iα∗F (u))(x)f(u(x)). When dealing with weak solution, we need the term to be summable
(see Remark 1.5.7); while, when dealing with classical and viscosity solutions, we need Iα ∗ F (u)
to be well defined pointwise (see Remark 1.5.8).

We notice that, under the assumptions of invertibility of the fractional Poisson equation (see
Proposition 1.3.4), equation (1.3.38) can be rewritten as a fractional Schrödinger-Newton system

{
(−∆)su+ µu = ϕf(u) in RN ,

(−∆)α/2ϕ = F (u) in RN .
(1.3.39)

1.4 Some manipulations: absolute value and polarization

If one considers a function u ∈ H1(RN ) and its absolute value, it is easy to see that

|∇|u|| = |∇u|.

Actually, the equality is not the case of the fractional Laplacian, generally. We show thus how
the fractional Laplacian, and the Riesz potential, behave with respect to the absolute value.

Lemma 1.4.1. Let s ∈ (0, 1) and α ∈ (0, N).

• Let u ∈ Hs(RN ). Then |u| ∈ Hs(RN ) and

∥(−∆)s/2|u|∥2 ≤ ∥(−∆)s/2u∥2.

As a consequence, if u = u+ − u−, then u± = |u|±u
2 ∈ Hs(RN ).
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• Let F : R → R continuous and u : RN → R measurable be such that Dα
(
F (|u|), F (|u|)) <

∞.
If F is even, then

Dα
(
F (|u|), F (|u|)) = Dα

(
F (u), F (u)

)
;

if F is odd and has constant sign on (0,+∞), then

Dα
(
F (|u|), F (|u|)) ≥ Dα

(
F (u), F (u)

)
.

Proof. By (1.2.5) we have

∥(−∆)s/2|u|∥2
2 = CN,s

�
R2N

(|u(x)| − |u(y)|)2

|x− y|N+2s
dxdy

= CN,s

�
R2N

|u|2(x) + |u|2(y) − 2|u|(x)|u|(y)
|x− y|N+2s

dxdy

≤ CN,s

�
R2N

u2(x) + u2(y) − 2u(x)u(y)
|x− y|N+2s

dxdy

= CN,s

�
R2N

(
u(x) − u(y)

)2

|x− y|N+2s
dxdy = ∥(−∆)s/2u∥2

2,

thus the first claim. Focus on the second claim: if F is odd and with constant sign on (0,+∞),
then, set for brevity A± := {±u > 0},

Dα
(
F (|u|), F (|u|))

=
�

A+×A+
Iα(x− y)F (u(x))F (u(y)) −

�
A−×A+

Iα(x− y)F (u(x))F (u(y)) −

−
�

A+×A−
Iα(x− y)F (u(x))F (u(y)) +

�
A−×A−

Iα(x− y)F (u(x))F (u(y))

≥
�

A+×A+
Iα(x− y)F (u(x))F (u(y)) +

�
A−×A+

Iα(x− y)F (u(x))F (u(y)) +

+
�

A+×A−
Iα(x− y)F (u(x))F (u(y)) +

�
A−×A−

Iα(x− y)F (u(x))F (u(y))

= Dα
(
F (u), F (u)

)
,

which concludes the proof, observing that equality holds if F is instead even.

Remark 1.4.2. We highlight that, in Sobolev spaces, the absolute value conserves the weak
convergences. Indeed, assume uk ⇀ u in Hs(RN ). Since uk is bounded and ∥|uk|∥Hs(RN ) ≤
∥uk∥Hs(RN ) we have that |uk| is bounded too. Therefore, |uk| ⇀ v in Hs(RN ) up to a subsequence.
As a consequence, up to a subsequence, uk → u and |uk| → v almost everywhere, which means
that |u| = v almost everywhere. This means that |uk| ⇀ |u| in Hs(RN ).

Notice that, in general, for weak convergences in Lp-spaces the implication is not true
[389, Section 5].

We turn now to the study of symmetries. We exploit the tool of the polarization, useful in
the presence of the Riesz potential. Let

H :=
{
H ⊂ RN closed half-space, 0 ∈ H

}
.

For any H ∈ H let σH be the reflection with respect to ∂H. The polarization (or two-points
symmetrization) of a function u : RN → R is defined as

uH(x) :=
{

max{u(x), u(σH(x))
}

if x ∈ H,

min{u(x), u(σH(x))
}

if x /∈ H.
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For example, if u = χΩ, with Ω ⊂ RN crossing ∂H, then

(χΩ)H(x) =
{
χΩ∪σH(Ω)(x) if x ∈ H,

χΩ∩σH(Ω)(x) if x /∈ H,

which roughly means that uH brings mass from Hc to H. One can see [77], [380, Section 8.3]
and [364] and references therein for an introduction on the topic and some relations with the
symmetric decreasing rearrangement.

Clearly we have
uH ≡ u ⇐⇒ u ≥ u ◦ σH on H,

uH ≡ u ◦ σH ⇐⇒ u ≤ u ◦ σH on H

which means, roughly, that there is more mass of u on H than on Hc. We expect that, if u
coincide with uH for all the hyperplanes, then some symmetry must hold. This is actually stated
in the following result [300, Lemma 5.4] (see also [365, Proposition 3.15] and [72, Lemma 6.3]).

Proposition 1.4.3. Let u ∈ Lp(RN ), for some p ∈ [1,+∞), be nonnegative. Then u is radially
symmetric if and only if for every H ∈ H it results that uH = u, while u is radially symmetric
up to a translation if and only if for every H ∈ H it results that uH = u or uH = u ◦ σH .

We state now a proposition which shows both how the Riesz potential behaves with respect
to polarization, and why this tool is particularly effective in this framework [300, Lemma 5.3].

Proposition 1.4.4. Let α ∈ (0, N) and H ∈ H, and let g ∈ L
2N

N+α (RN ) be nonnegative. Then

Dα(gH , gH) ≥ Dα(g, g)

and equality holds if and only if uH ≡ u or uH ≡ u ◦ σH .

We investigate now how the fractional Laplacian behaves with respect to polarization, see
[47, equation (2.14)] and [72, Lemma 5.3] (see also [40, page 4818]).

Proposition 1.4.5. Let s ∈ (0, 1) and H ∈ H, and let u ∈ Hs(RN ). Then uH ∈ Hs(RN ) and

∥(−∆)s/2uH∥2 ≤ ∥(−∆)s/2u∥2.

When s = 1, the equality holds.

Finally, it is easy to verify that [380, Proposition 8.3.7], for every p ∈ [1,+∞),

∥uH∥p = ∥u∥p

and that, if F : R → R is nondecreasing, then

F (uH) = (F (u))H . (1.4.40)

We refer to [259] for other interesting results about manipulations of nonlocal quantities.

1.5 Berestycki-Lions type assumptions: some convergences
The assumptions considered throughout the thesis are in the spirit of the ones proposed by
Berestycki and Lions [50, 51], adapted then to the fractional framework in [79, 95] and to the
Choquard-Hartree-Pekar framework by Moroz and Van Schaftingen [302]. These assumptions
cover different models which arise in applications, see Examples 1.5.1.

In the case of the unconstrained problem (frequency fixed, mass free), as shown in the
abovementioned papers (see also [138,237,300]), these assumptions are somehow almost optimal,
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in the sense that when the nonlinearity collapses to a power, the growth condition are optimal
for the existence of a (sufficiently regular) variational solution. See also [90, 353,392] for the case
of combination of powers and [291] for some further generalizations to the so called infinity-mass
regime.

We highlight that no pointwise condition of Ambrosetti-Rabinowitz type, nor of monotonicity
type, is assumed, and this lack of additional assumptions obstructs some classical arguments
related both to compactness and geometry of the problems.

In the L2-constrained case (frequency free, mass prescribed), different qualitative phenomena
are related to sub and super L2-critical cases: for instance, the sub or super L2-criticality of the
exponent influences the boundedness of the functional on the L2-sphere, as well as the lifespan
and the stability of the solutions in some related equations (see [92]). In this thesis we restrict
our analysis to the L2-subcritical regime: we aim to extend our results to the L2-critical and
supercritical regime in the future.

In this Section, for the sake of clarity, we list all the assumptions on the nonlinearities that
will come into play in the following Chapters, both in the fractional framework and in the
Choquard framework; we let here s ∈ (0, 1] and α ∈ (0, N). In particular, we show the role of
the subcriticality growth in the convergence of nonlinear functionals.

We highlight that the labeling here introduced will be changed throughout different Chapters,
in order to avoid cumbersome notations.

1.5.1 Local nonlinearities

For local nonlinearities of the type g(u), G(t) =
� t

0 g(τ)dτ , we introduce the following notations:

• Lower critical exponent: 2# := 2,

• Upper critical exponent: 2∗
s := 2 + 4s

N−2s = 2N
N−2s ∈ (2,+∞),

• L2-critical exponent: 2m
s := 2 + 4s

N = 2N+4s
N ∈ (2, 2 + 4

N ),

and notice that
2 = 2# < 2m

s < 2∗
s < +∞.

Moreover we introduce the following set of assumptions:

(h0) Continuity: g ∈ C(R),

(h0’) Pohozaev regularity: s ∈ (1
2 , 1) or g ∈ Cσ

loc(R) for some σ > 1 − 2s,

(h1) Nontriviality (frequency free): there exists t0 > 0 such that G(t0) > 0,

(h1’) Nontriviality (frequency µ > 0 fixed): there exists t0 = t0(µ) > 0 such that G(t0) ≥ µ
2 t

2
0,

(h2) Supercriticality in 0: limt→0
g(t)

t = 0,

(h2*) L2-subcriticality in 0: limt→0
G(t)
|t|2m

s
= +∞,

(h3) Subcriticality at ∞: lim|t|→+∞
g(t)

|t|2∗
s−2t

= 0,

(h3’) Subcriticality (strict) at ∞: lim|t|→+∞
g(t)

|t|p−2t
= 0 for some p ∈ (2, 2∗

s),

(h3”) L2-subcriticality at ∞: lim|t|→+∞
g(t)

|t|2m
s −2t

= 0,

(h3*) Criticality at ∞: lim|t|→+∞
g(t)

|t|2∗
s−2t

= a ̸= 0; if a > 0 we also assume g(t) ≥ at2
∗
s−1 + Ctp−1

for some C > 0 and p ∈ (max{2∗
s − 2s, 2}, 2∗

s) and every t > 0,
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(h4) Symmetry: g odd,

(h5) Negative-cut (for positivity): g ≡ 0 on (−∞, 0].

Notice that

(h2*) ∨ (h3*) =⇒ (h1’) =⇒ (h1), (h3”) =⇒ (h3’) =⇒ (h3).

Example 1.5.1. These general assumptions include different models arising in applications. For
examples, they cover pure powers g(t) = |t|q−2t, with q ∈ (2, 2∗

s) (or q ∈ (2, 2m
s )), and combined

powers like g(t) = |t|q−2t+ |t|r−2t (cooperation models) and g(t) = |t|q−2t− |t|r−2t (competion
models). Other physical models can be found for example in asymptotically linear functions

g(t) = t3

1 + t2
, G(t) = 1

2
(
t2 − log(1 + t2)

)
,

which arise in the saturation effect in nonlinear optics for photorefractive media [161,226,281,
327,383], or also

g(t) =
(

1 − 1√
1 + t2

)
t, G(t) = 1

2
(
t2 − 2

√
1 + t2 + 2

)

of square-root type, which describes narrow-gap semiconductors [317,348].

Remark 1.5.2. We trivially observe that assigning a condition on g is generally stronger than
assigning a similar condition on G. Indeed, by De l’Hôpital theorem,

lim
|t|→+∞

g(t)
|t|q−2t

= l ∈ R =⇒ lim
|t|→+∞

G(t)
|t|q = l,

or more generally

lim inf
|t|→+∞

g(t)
|t|q−2t

≤ lim inf
|t|→+∞

G(t)
|t|q ≤ lim sup

|t|→+∞

G(t)
|t|q ≤ lim sup

|t|→+∞

g(t)
|t|q−2t

.

The viceversa is generally not true: consider for example G(t) := tq
(� t

0
sin(τ)

τ − π
2

)
which verifies

lim
t→+∞

G(t)
tq

= 0, lim inf
t→+∞

g(t)
tq−1 = −1, lim sup

t→+∞

g(t)
tq−1 = 1;

notice that the lim sup is finite (consider G(t) = tq− 1
2 cos(t) for an infinite lim sup). On the other

hand, if one assume a priori that lim|t|→+∞
g(t)

|t|q−2t
exists, then the viceversa holds true.

Moreover, if δ ∈ (0, 1), by choosing ε ∈ (0, 1 − δ) and setting G(t) = tq−ε cos(t) we see that

lim
|t|→+∞

G(t)
|t|q = 0 but lim

|t|→+∞
g(t)

|t|q+δ−1 ̸= 0;

in particular, since generally 2∗
s − 2m

s ∈ (0,+∞), we have

lim
|t|→+∞

G(t)
|t|2m

s
= 0 ≠⇒ lim

|t|→+∞
g(t)

|t|2∗
s−1 = 0.

Similar considerations can be done for t → 0 (consider G(t) := tq
(� 1/t

0
sin(τ)

τ − π
2

)
or

G(t) = tq+ε cos
(1

t

)
).

Remark 1.5.3. Generally, when u ∈ Hs(RN ), g(u) will not lie on a precise Lebesgue space, but
on a summation of spaces. To handle these quantities we remark that the following properties
are equivalent [27, Proposition 2.3], for any p, q ∈ (1,+∞):
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• g ∈ Lp(RN ) + Lq(RN ),

• |g| ∈ Lp(RN ) + Lq(RN ),

• |g| ≤ h for some h ∈ Lp(RN ) + Lq(RN ).

Remark 1.5.4. We write here in which spaces lie the considered quantities. Let u ∈ Hs(RN ) ⊂
L2(RN ) ∩ L2∗

s (RN ). By assuming

lim sup
t→0

|g(t)|
|t| < ∞, lim sup

|t|→+∞

|g(t)|
|t|2∗

s
< ∞ (1.5.41)

(for instance given by (h2) and (h3)) we have (see Remark 1.5.3)

g(u) ∈ L2(RN ) ∩ L
2N

N−2s (RN ) + L2 N−2s
N+2s ∩ L

2N
N+2s (RN )

⊂ L2(RN ) + L
2N

N+2s (RN ),

G(u) ∈ L1(RN ) ∩ L
N

N−2s (RN ) + L2 N−2s
N (RN ) ∩ L1(RN )

⊂ L1(RN ).

If φ ∈ Hs(RN ) ⊂ L2(RN ) ∩ L2∗
s (RN ) is a test function, we notice that the found summability is

enough to have
�
RN g(u)φdx well defined.

We state now the convergence properties of the nonlinear functionals, in the case of a
subcritical growth [95] (see also [298, Theorem 2 and Corollary 2]).

Proposition 1.5.5. Assume (h0) and (1.5.41).

• Let un ⇀ u in Hs(RN ). Then for any φ ∈ Hs(RN ) we have
�
RN

g(un)φ →
�
RN

g(u)φ.

• Assume in addition (h2) and (h3). Let un ⇀ u in Hs
r (RN ). Then

�
RN

|G(un) −G(u)| → 0,
�
RN

|g(un)un − g(u)u| → 0

as well as
�
RN |g(un)v − g(u)v| → 0 for each v ∈ Hs(RN ).

• Assume in addition (h2) and (h3). Let un ⇀ u in Hs(Ω) with Ω ⊂ RN bounded. Then
�

Ω
|G(un) −G(u)| → 0,

�
Ω

|g(un)un − g(u)u| → 0

as well as
�
RN |g(un)v − g(u)v| → 0 for each v ∈ Hs(Ω).

Proof. We prove the first claim. Let φ ∈ C∞
c (RN ), and let Ω := supp(φ). Since un → u in

Lr(Ω) for each r ∈ [2, 2∗
s), we have (by the Lr-dominated convergence theorem) g(un) → g(u) in

Lr(Ω) for each r ∈ [1, 2N
N+2s). For a whatever of such r, let q be its conjugate; since φ ∈ Lq(RN )

for such q, we have g(un)φ → g(u)φ in L1(Ω). Thus
�
RN

g(un)φ →
�
RN

g(u)φ ∀φ ∈ C∞
c (RN ).

We want to extend the relation to Hs(RN ). Indeed, observe first that, for φ ∈ Hs(RN ),
∣∣∣∣
�
RN

g(un)φ
∣∣∣∣ ≲

�
RN

(|un| + |un|2∗
s−1) |φ|
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≤ ∥un∥2∥φ∥2 + ∥un∥
N+2s
N−2s

2∗
s

∥φ∥2∗
s

≤ C∥φ∥Hs

uniform in n ∈ N, since un are equibounded in L2(RN ) ∩ L2∗
s (RN ). Let now φε ∈ C∞

c (RN )
approximating a fixed φ in Hs(RN ). Then
�
RN

g(un)φ−
�
RN

g(u)φ =
�
RN

g(un)(φ− φε) +
�
RN

(g(un) − g(u))φε +
�
RN

g(u)(φε − φ);

thus the first and the third quantities are small in ε (uniformly in n), and the second is small for
n = n(ε) ≫ 0. Hence we have the first claim.

The second and the third claims are a consequence of [95, Lemma 2.4]. We exhibit here an
easier proof of the second point, by assuming the stronger condition (h3’).

Recall that Hs
r (RN ) is compactly embedded in Lp(RN ), being p ∈ (2, 2∗

s) introduced in (h3’).
Then by standard argument one has, up to a subsequence, that

• un → u almost everywhere,

• un → u strongly in Lp(RN ), with |un|, |u| ≤ w ∈ Lp(RN ).

By the assumption there exists an M such that

|g(t)t| ≤
{
Cδ|t|2 if |t| ≤ M,

δ|t|p if |t| ≥ M.

Fixed a whatever R > 0, set
Mn := {|un| ≤ M} ∩BR(0),

we have

|g(un)un| = |g(un)un|χMn + |g(un)un|χRN \Mn
≤ Cδ|un|2χMn + δ|un|pχRN \Mn

≤ CδM
2χMn + δ|un|p ≤ CδM

2χBR(0) + δ|w|p ∈ L1(RN )

and similarly for G(un) and |g(un)v|. Moreover, since g is continuous, we have g(un) → g(u)
almost everywhere. By dominated convergence theorem, we obtain the claim.

1.5.2 Nonlocal nonlinearities

For nonlocal nonlinearities of the type
(
Iα ∗ F (u)

)
f(u), F (t) =

� t
0 f(τ)dτ , we introduce the

following notations:

• Lower critical exponent: 2#
α := 1 + α

N = N+α
N ∈ (1, 2),

• Upper critical exponent: 2∗
α,s := 1 + α+2s

N−2s = N+α
N−2s ∈ (1,+∞),

• L2-critical exponent: 2m
α,s := 1 + α+2s

N = N+α+2s
N ∈ (1, 2 + 2

N ),

and notice that
1 < 2#

α < 2m
α,s < 2∗

α,s < +∞;

if s = 1, if there is no ambiguity from the framework, we write 2∗
α ≡ 2∗

α,1 = 1 + α+2s
N−2 = N+α

N−2 and
2m

α ≡ 2m
α,1 = 1 + α+2

N = N+α+2
N .

Remark 1.5.6. We observe that, defining the Riesz potential by x 7→ AN,β

|x|β , as some authors do,
we have that the critical exponents become 2N−β

N < 2N−β+2s
N < 2N−β

N−2s .

We introduce the following set of assumptions:
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(H0) Continuity: f ∈ C(R) (i.e. F ∈ C1(R)),

(H0’) Additional regularity: f ∈ Cσ
loc(R) (i.e. F ∈ C1,σ

loc (R)) for some σ ∈ (0, 1],

(H1) Nontriviality: F ̸≡ 0, i.e. there exists t0 ∈ R∗ such that F (t0) ̸= 0,

(H2) Well posedness: lim supt→0
|f(t)|

|t|2#
α −1

< ∞, lim sup|t|→+∞
|f(t)|

|t|2∗
α,s−1 < ∞, or equivalently

|tf(t)| ≤ C
(|t|2#

α + |t|2∗
α,s
)

for some C < 0,

(H2’) L2-well posedness: lim supt→0
|f(t)|

|t|2#
α −1

< ∞, lim sup|t|→+∞
|f(t)|

|t|2m
α,s−1 < ∞, or equivalently

|tf(t)| ≤ C
(|t|2#

α + |t|2m
s,α
)

for some C < 0,

(H3) Supercriticality in 0: limt→0
F (t)
|t|2#

α
= 0,

(H3’) (Super)linerarity in 0: lim supt→0
|f(t)|

|t| < ∞,

(H3*) L2-subcriticality in 0: limt→0
|F (t)|
|t|2m

α,s
= +∞,

(H3*’) Sublinearity in 0: limt→0
|f(t)|

|t| = +∞,

(H4) Subcriticality at ∞: lim|t|→+∞
F (t)

|t|2∗
α,s

= 0,

(H4’) L2-subcriticality at ∞: lim|t|→+∞
F (t)

|t|2m
α,s

= 0,

(H5) Symmetry: f is odd or even,

(H6) Sign: f has constant sign on (0,+∞).

Notice that

(H0’) =⇒ (H0), (H2’) =⇒ (H2), (H3’) =⇒ (H3), (H2’) =⇒ (H4),

(H3*) ∨ (H3*’) =⇒ (H1), (H3) ∧ (H4) =⇒ (H2),

while generally (H3*) and (H3*’) are not related (since 2 and 2m
α,s are not so).

When searching for multiple normalized solutions in Choquard equations, in addition to
(H3*) and (H5) we will ask the following technical assumption (see also Remark 3.1.3):

(H7) Almost monotonicity: if F is odd, then F has a constant sign in (0, δ0] and

sup
t∈(0,δ0], h∈[0,1]

∣∣∣∣
F (th)
F (t)

∣∣∣∣ < ∞

for some δ0 > 0 (e.g., |F | is non-decreasing in [0, δ0]).

Remark 1.5.7. We write here in which spaces lie the considered quantities. Let u ∈ Hs(RN ) ⊂
L2(RN ) ∩ L2∗

s (RN ). By (H2) we have (see Remark 1.5.3)

f(u) ∈ L
2N
α (RN ) ∩ L

N
α

2N
N−2s (RN ) + L2 N−2s

α+2s ∩ L
2N

α+2s (RN )

⊂ L
2N
α (RN ) + L

2N
α+2s (RN ),

F (u), f(u)u ∈ L
2N

N+α (RN ) ∩ L
N

N+α
2N

N−2s (RN ) + L2 N−2s
N+α (RN ) ∩ L

2N
N+α (RN )

⊂ L
2N

N+α (RN ).
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Thus by the Hardy-Littlewood-Sobolev inequality we obtain

Iα ∗ F (u) ∈ L
2N

N−α (RN ) ∩ L
2N2

N2−(α+2s)N−2sα (RN ) + L
2N(N−2s)

N2−αN+4sα (RN ) ∩ L
2N

N−α (RN )

⊂ L
2N

N−α (RN ).

Finally, by the Hölder inequality, we have

(Iα ∗ F (u))F (u) ∈ L1(RN )

and

(Iα ∗ F (u))f(u) ∈ L2(RN ) ∩ L
2N2

N2−2sα (RN ) + L
2N(N−2s)

N2+2αs (RN ) ∩ L
2N

N+2s (RN )

⊂ L2(RN ) + L
2N

N+2s (RN );

we observe that (Iα ∗ F (u))f(u) does not lie in L2(RN ), generally. On the other hand, if
φ ∈ Hs(RN ) ⊂ L2(RN ) ∩ L2∗

s (RN ) is a test function, we notice that the found summability of
(Iα ∗F (u))f(u) is enough to have

�
RN (Iα ∗F (u))f(u)φdx well defined, since f(u)φ ∈ L

2N
N+α (RN ).

Remark 1.5.8. By Propsition 1.3.1 we see that Iα ∗ F (u) ∈ C0(RN ) (and thus it is well
defined pointwise) if F (u) lies in L

N
α

−ε(RN ) ∩ L
N
α

+ε(RN ) for some ε > 0. In particular, if
u ∈ L1(RN ) ∩ L∞(RN ), it is sufficient to assume that F grows at most polynomially (and at
least superlinearly) in zero and at infinity. Moreover, assuming (H0) and (H2) on f , we need to
assume that u ∈ L

N+α
α

−ε(RN ) ∩ L
N
α

N+α
N−2s

+ε(RN ) for some ε > 0; in particular, the convolution is
pointwise well defined if u ∈ L2(RN ) ∩ L

N
α

2N
N−2s (RN ).

We state now the convergences for the nonlinear Choquard terms in the case of a subcritical
growth (see also [302, pages 6565 and 6577], [37, page 11] and [22, page 353]).
Proposition 1.5.9. Assume (H0) and (H2).

• Let un ⇀ u in Hs(RN ). Then for any φ ∈ Hs(RN ) we have�
RN

(
Iα ∗ F (un)

)
f(un)φ →

�
RN

(
Iα ∗ F (u)

)
f(u)φ.

• Assume in addition (H3) and (H4). Let un ⇀ u in Hs
r (RN ). Then�

RN

(
Iα ∗ F (un)

)
F (un) →

�
RN

(
Iα ∗ F (u)

)
F (u)

and �
RN

(
Iα ∗ F (un)

)
f(un)un →

�
RN

(
Iα ∗ F (u)

)
f(u)u.

Proof. Let un ⇀ u in Hs(RN ), then un is bounded in L2(RN ) ∩ L2∗
s (RN ). By Remark 1.5.7 we

have F (un) bounded in L
2N

N+α (RN ). Moreover we can assume un → u in Lp
loc(RN ) for p ∈ [1, 2∗

s),
and thus F (un) → F (u) in Lq

loc(RN ) for q ∈ [1, 2N
N+α). This two information on F (un) imply

F (un) ⇀ F (u) in L
2N

N+α (RN )3.4 By some standard topological argument, the convergence holds
3We argue in this way. First, fix Ω ⊂ RN bounded and q ∈ [1, 2N

N+α
), so that L

2N
N+α (Ω) ⊂ Lq(Ω) for

every q ∈ [1, 2N
N+α

). Since F (un) is bounded in L
2N

N+α (RN ) ⊂ L
2N

N+α (Ω) and 2N
N+α

> 1, it converges to some
v ∈ L

2N
N+α (Ω) ⊂ Lq(Ω); on the other hand F (un) ⇀ F (u) ∈ Lq(RN ) ⊂ Lq(Ω), thus by uniqueness v = F (un). Let

now φ be in the dual L
N−α

2N (RN ), and consider φk ∈ C∞
c (RN ) approximating φ. Thus�

RN

(
F (un) − F (u)

)
φ ≤ ∥F (un) − F (u)∥ 2N

N+α
∥φ − φk∥ N−α

2N
+

�
supp(φk)

(
F (un) − F (u)

)
φk;

exploiting that F (un) is bounded, the first piece is small for k large (uniform in n), while the second is small (fixed
this k), for n large, by the previous argument with Ω = supp(φk).

4We can deduce the implication also in this way: since un → u a. e. pointwise and F is continuous, then
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for the whole sequence. Moreover, by Proposition 1.3.1 we gain

Iα ∗ F (un) ⇀ Iα ∗ F (u) in L
2N

N−α (RN ).

Let now φ ∈ C∞
c (RN ), and set Ω := supp(φ). Since un → u in Lp(Ω) for each p ∈ [2, 2∗

s), we
have (by the Lp-dominated convergence theorem) f(un) → f(u) in Lp(Ω) for each p ∈ [1, 2N

α+2s).
Let p ∈ ( 2N

N+α ,
2N

α+2s) be whatever and let q be such that 1
p + 1

q = N+α
2N ; since φ ∈ Lq(RN ) for

such q, we have f(un)φ → f(u)φ in L
2N

N+α (Ω). Thus
�
RN

(
Iα ∗ F (un)

)
f(un)φ →

�
RN

(
Iα ∗ F (u)

)
f(u)φ ∀φ ∈ C∞

c (RN ).

To extend the relation to φ ∈ Hs(RN ) we argue as in Proposition 1.5.5, after having observed
that

∣∣∣∣
�
RN

(
Iα ∗ F (un)

)
f(un)φ

∣∣∣∣ ≲ ∥F (un)∥ 2N
N+α

∥f(un)φ∥ 2N
N+α

≲ ∥|un|2#
α −1φ∥ 2N

N+α
+ ∥|un|2∗

α,s−1φ∥ 2N
N+α

≤ ∥|un| α
N ∥ 2N

α
∥φ∥2 + ∥|un|

α+2s
N−2s ∥ 2N

α+2s
∥φ∥2∗

s

≤ ∥un∥2#
α −1

2 ∥φ∥Hs + ∥un∥2∗
α,s−1

2∗
s

∥φ∥Hs ≲ ∥φ∥Hs .

Assume now (H3) and (H4). Let G(t) := (F (t)) N+α
2N . By the assumptions we have

lim
t→0

G(t)
|t|2 = lim

t→0

(
F (t)
|t|2#

α

)N+α
2N

= 0, lim
t→∞

G(t)
|t|2∗

s
= lim

t→0

(
F (t)
|t|2∗

α,s

)N+α
2N

= 0.

Thus, by Proposition 1.5.5 we gain G(un) → G(u) in L1(RN ), which means F (un) → F (u) in
L

2N
N+α (RN ). In particular, by Proposition 1.3.1 we obtain

Iα ∗ F (un) → Iα ∗ F (u) in L
2N

N−α (RN ).

Thus we get the first claim. Moreover, arguing as before we get f(un)un ⇀ f(u)u in L
2N

N+α (RN ),
and this concludes the proof.

Remark 1.5.10. When α → 0, by (1.3.36), we know that, under suitable assumptions,

(Iα ∗ F (u))f(u) α→0→ F (u)f(u) =: g(u);

notice that (by integration by parts) G(u) = 1
2F

2(u). This relation is coherent with the definitions
of the critical exponents of the local and nonlocal frameworks; indeed:

2#
0 + (2#

0 − 1) = 2# − 1, 2∗
0,s + (2∗

0,s − 1) = 2∗
s − 1, 2m

0,s + (2m
0,s − 1) = 2m

s − 1.

This correspondence lacks when comparing the nontriviality assumptions F (t0) ̸= 0 and G(t0) ≥
µ
2 t

2
0: this is due to the fact that, for any α ≠ 0, the pieces µu and (Iα ∗F (u))f(u) scales differently.

Moreover, we see that while the subcriticality assumptions for the local problem are made for g,
for the nonlocal problem are made for F , since essentially the product Ff automatically becomes
subcritical if F is so.

F (un) → F (u) a. e. pointwise; moreover, being bounded, then F (un) ⇀ v in L
2N

N+α (RN ) for some v, where
2N

N+α
> 1; hence by [298, Lemma 1] we have v = F (u).
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Fractional Schrödinger equations: prescribed and free mass
problems

In this Chapter we study the following fractional Schrödinger equation

(−∆)su+ µu = g(u) in RN ,

where N ≥ 2, s ∈ (0, 1), u ∈ Hs(RN ), µ > 0 is a frequency and g ∈ C(R,R) satisfies Berestycki-
Lions type conditions. First, we recall some known facts about the unconstrained problem, i.e.
when µ is fixed, which has been investigated in [79, 95]. Then we study the constrained problem





(−∆)su+ µu = g(u) in RN ,�
RN

u2dx = m,

where m > 0 is a prescribed mass, u ∈ Hs
r (RN ) and µ is a Lagrange multiplier, part of the

unknowns. Using a Lagrangian formulation, we prove the existence of a weak solution with
prescribed mass when g has an L2-subcritical growth. The approach relies on the construction of
a minimax structure, by means of a Pohozaev mountain in a product space and some deformation
arguments under a weaker version of the Palais-Smale condition. A multiplicity result of infinitely
many normalized solutions is also obtained if g is odd, and this is new even for g power.

The present Chapter is mainly based on the paper [113] (see also [114]).

2.1 The fractional Schrödinger equation: a long-range interac-
tion

In 1948, following a suggestion by Dirac, Feynman [182] proposed a new suggestive description
of the time evolution of the state of a non-relativistic quantum particle. According to Feynman,
the wave function solution of the Schrödinger equation should be given by a heuristic integral
over the space of paths: the classical notion of a single, unique classical trajectory for a system is
replaced by a functional integral over an infinity of quantum-mechanically possible trajectories.
Following Feynman’s path integral approach to quantum mechanics, Laskin [249–252] generalized
the path integral over Brownian motions (random motion seen in swirling gas molecules) to Lévy
flights (a mix of long trajectories and short, random movements found in turbulent fluids) and
derived the fractional nonlinear Schrödinger ((fNLS) for short) equation

iℏ∂tψ = ℏ2s(−∆)sψ + V (x)ψ − g(ψ), (t, x) ∈ (0,+∞) × RN (2.1.1)

43
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where s ∈ (0, 1), N > 2s, the symbol (−∆)s denotes the fractional power of the Laplace operator
(defined via Fourier transform on the spatial variable), ℏ designates the usual Planck constant, V
is a real potential and g is a Gauge invariant nonlinearity, i.e. g(eiθρ) = eiθg(ρ) for any ρ, θ ∈ R.
The complex wave function ψ(x, t) represents the quantum mechanical probability amplitude
for a given unit mass particle to have position x at time t, under the confinement due to the
potential V, and |ψ|2 is the corresponding probability density.

Fractional integrals and derivatives in the calculation methods have been used for the
explanation of physical phenomena which do not comply with the laws of classical statistical
physics, for instance in modeling Bose-Einstein condensates. It is known that Bose-Einstein
condensation, theoretically discovered in 1924 and observed experimentally with alkali metals in
1995, represents a topical subject due to the explanation of quantum effects seen on a macroscopic
scale, transmission of matter and the behaviour of superconductivity and superfluids. In this
respect, not only experimental studies are important but theoretical studies too, which lead to
the analysis of class of (fNLS) equations (also known as fractional Gross-Pitaievskii equations).
Numerical simulations show existence of standing waves solutions, having a soliton behaviour
and bound states [165, 394], including mass conservation, energy conservation and dispersion
relation, in which the fractional order exponent influences the shape of the state.

In 2015 a first optical realization of the fractional Schrödinger equation, based on transverse
light dynamics in aspherical optical cavities, was achieved by Longhi [274]; subsequently, the
propagation dynamics of wave packets were reported in Kerr nonlinearities, with constant or
double-barrier potential. Numerical results showed the existence of solitons for (fNLS) equations
where the Lévy index s and the saturation parameter can significantly affect the stability of these
solitons [243, 262, 383, 387]. Numerous other applications of the (fNLS) equation arise in the
physical sciences, ranging from models of boson stars (see Section 4.1) to geo-hydrology [25], from
charge transport in biopolymers, like DNA [242] to anomalous diffusion phenomena [76,295,367],
from water wave dynamics [232] to jump processes in probability theory with applications to
financial mathematics (see also [153] and the references therein). Applications for wide ranges of
s appears, for example, also in the dynamics of populations [85]: here small values of s ≈ 0 or
large values of s ≈ 1 better model specific behaviours, according to the environments. We refer
also to [29, 30] for some recent applications to the analysis of the amount of bromsulphthalein in
the human liver and to the study of thermostat systems, and others.

From a mathematical view point, when searching for standing waves to (2.1.1), i.e. factorized
solutions

ψ(t, x) = eiµtu(x), µ > 0,
two possible directions can be pursued. A first possibility is to study (2.1.1) with a prescribed
frequency µ and free mass. This approach, which we call the unconstrained problem, has been
deeply developed: the literature concerning the local version of the unconstrained problem starts
from the seminal papers of Berestycki and Lions [50,51] (see also [48,70,237,290]) and it is so
large that we do not even make an attempt to summarize it. Some fundamental contributions
for the fractional case s ∈ (0, 1) instead can be found in [84,86, 190]; in particular, the existence
and qualitative properties of the solutions for more general classes of fractional NLS equations
with local source were studied in [22,79,95,177,229,230].

A second approach is to prescribe the mass of u, thus conserved by ψ in time�
RN

|ψ(x, t)|2 dx = m, ∀ t ∈ (0,+∞)

and let the frequency µ to be free, becoming an unknown. This second approach is of considerable
significance in physics, not only for the quantum probability normalization and the information
on the mass itself, but also because the mass may also have specific meaning, such as the power
supply in nonlinear optics, or the total number of atoms in Bose-Einstein condensation. Moreover,
it can give better insights into the dynamical properties, such as the orbital stability or instability
of solutions of (2.1.1) (see [92]).
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In the local framework (s = 1) the seminal contribution to the study of constrained problems
is due to Stuart [356], Cazenave and Lions [92]; see [35,36,55,58–60,224,235,292,335,343] for
more recent contributions in the local case.

In the fractional case, the existence of a mass-constrained solution was, instead, recently
considered in [156, 179, 385] for pure powers and in [278] for combined powers. It remains an
open problem anyway to derive analytically the existence of infinitely many bound states with
higher energy, including mass conservation.

The present Chapter is dedicated to the study of standing waves solutions of (2.1.1) (when
V = const and we fix ℏ = 1) with prescribed mass, by means of a new variational method.
Namely, we are interested to seek for radially symmetric solutions of the fractional problem





(−∆)su+ µu = g(u) in RN ,�
RN

u2dx = m,
(2.1.2)

where N ≥ 2, s ∈ (0, 1), m > 0 and µ is a Lagrange multiplier. We assume that the function g
satisfies the following Berestycki-Lions type conditions:

(g1) g : R → R continuous and limt→0
g(t)

t = 0,

(g2) lim|t|→∞
g(t)
|t|p = 0 where p = 2m

s = 1 + 4s
N (see also Remark 2.1.4),

(g3) there exists t0 > 0 such that G(t0) > 0,

where G(t) =
� t

0 g(τ)dτ . We recall that (g2) means that g has an L2-subcritical growth.
The solutions to (2.1.2) can be characterized as critical points of the C1-functional L :

Hs
r (RN ) → R

L(u) := 1
2

�
RN

|(−∆)s/2u|2 −
�
RN

G(u)

constrained on the sphere
Sm :=

{
u ∈ Hs

r (RN ) | ∥u∥2
2 = m

}
;

here we consider thus, as in [224], a Lagrangian formulation of the problem (2.1.2). In order to
avoid technical issues with the boundary of R+ (see Section 4.2.2 for a different approach), we
write

µ ≡ eλ

with λ ∈ R and define the C1-functional Im : R ×Hs
r (RN ) → R by setting

Im(λ, u) := 1
2

�
RN

|(−∆)s/2u|2 −
�
RN

G(u) + eλ

2
(∥u∥2

2 −m
)
.

We seek for critical points (λ, u) ∈ R ×Hs
r (RN ) of Im, namely weak solutions of ∂uIm(λ, u) = 0

and ∂λIm(λ, u) = 0 or equivalently




�
RN

(
(−∆)s/2u (−∆)s/2ϕ+ eλuϕ

)
=
�
RN

g(u)ϕ, ∀ϕ ∈ Hs
r (RN ),

�
RN

u2dx = m.

We implement a minimax approach to detect normalized solutions in the nonlocal framework
using a Pohozaev type function. More precisely, inspired by the Pohozaev (or Pohozaev-Derrick)
identity [318]

N − 2s
2

�
RN

|(−∆)s/2u|2 +N

�
RN

(
µ

2u
2 −G(u)

)
= 0, (2.1.3)
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for any s ∈ (0, 1) we introduce the Pohozaev function P : R ×Hs
r (RN ) → R by setting

P(λ, u) := N − 2s
2

�
RN

|(−∆)s/2u|2 +N

�
RN

(
eλ

2 u
2 −G(u)

)

and the Pohozaev set

Ω :=
{
(λ, u) ∈ R ×Hs

r (RN ) | P(λ, u) > 0
} ∪ {(λ, 0) | λ ∈ R

}
.

We note that, for each λ ∈ R, the set {u ∈ Hs
r (RN ) | P(λ, u) > 0} ∪ {0} is a neighborhood of

u = 0, and thus
∂Ω =

{
(λ, u) ∈ R ×Hs

r (RN ) | P(λ, u) = 0, u ̸= 0
}
.

Therefore (λ, u) ∈ ∂Ω if and only if u ̸= 0 and u satisfies the Pohozaev identity. However we
emphasize that under assumptions (g1)–(g3), if u ∈ Hs(RN ) solves ∂uIm(λ, ·) = 0 with λ ∈ R
fixed, then P(λ, u) = 0 when s ∈ (1

2 , 1). A similar result for s ∈ (0, 1
2 ] is not available since the

weak solutions are not proved to be C1, in general (see Section 2.2).
In spite of this lack of regularity, which is a special feature of the nonlocal framework, we

recognize a Mountain Pass structure [18] for the functional Im, where the mountain is given by
the subset ∂Ω. We refer to it as the Pohozaev mountain. This approach can be useful to deal
with different problems in other contexts.

Inspired by [224,231], we need to use a new variant of the Palais-Smale condition which takes
into account the Pohozaev identity, and we establish some deformation theorems which enable
us to perform our minimax arguments in the product space R ×Hs

r (RN ).
As a byproduct, our solutions satisfy the Pohozaev identity, even if we assume that f is only a

continuous function (see Corollary 2.6.3). We also note that solutions with the Pohozaev identity
are essential, in the following sense: our deformation argument shows that only critical points
with the Pohozaev identity contribute to the topology; that is, solutions without the Pohozaev
identity are deformable with a suitable deformation flow and have no topological relevance.

Firstly we prove the following existence results for (2.1.2).

Theorem 2.1.1. Suppose N ≥ 2 and (g1)–(g3). Then there exists m0 ≥ 0 such that for any
m > m0, the problem (2.1.2) has a solution, satisfying the Pohozaev identity (2.1.3).

Theorem 2.1.2. Suppose N ≥ 2, (g1)–(g3) and

(g4) limt→0
G(t)

|t|p+1 = +∞, where p = 2m
s = 1 + 4s

N .

Then for any m > 0, the problem (2.1.2) has a solution, satisfying the Pohozaev identity (2.1.3).

We highlight that the found solution is actually a minimum for L constrained to the sphere
(see Proposition 4.2.9), which furnishes a strong indication to its stability properties. The
techniques employed in [343] for the local case s = 1, to get directly the existence of a minimum
for L, are not easily adaptable to the fractional framework, because of the need of a control on
the tails in the Brezis-Lieb lemma and in the Concentration-Compactness techniques. Anyway,
our method not only gets around these difficulties, but moreover it is also suitable to get multiple
solutions.

Indeed, if we also suppose the oddness of g, namely

(g5) g(−t) = −g(t) for all t ∈ R,

we have Im(λ,−u) = Im(λ, u) for all (λ, u) ∈ R ×Hs
r (RN ) and we can establish the existence of

infinitely many L2-constrained standing waves solutions for the (fNLS) equation.
We prove the following multiplicity result.

Theorem 2.1.3. Suppose N ≥ 2 and (g1)–(g3) and (g5). Then we have:
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(i) For any k ∈ N there exists mk ≥ 0 such that for each m > mk, the problem (2.1.2) has at
least k nontrivial, distinct pairs of solutions, satisfying the Pohozaev identity (2.1.3).

(ii) In addition assume (g4). For any m > 0 the problem (2.1.2) has countably many solutions
(un)n (satisfying the Pohozaev identity (2.1.3)), which verify

L(un) < 0 for all n ∈ N,

L(un) → 0 as n → +∞.

We remark that our subcritical multiplicity result seems new even in the case of the pure
power g(t) = |t|q−2t and in the non-monotone case of competing powers g(t) = |t|q−2t− |t|r−2t,
and it has a physical relevance since it describes the existence of multiple bound states with
arbitrary high energies (see e.g. [165]). We stress that the analytical solutions for fractional
differential equations are still limited, while there is a large amount of numerical methods in
discretizing the fractional differential operators. In Theorem 2.1.3 we furnish an analytical
rigorous approach to detect infinitely many symmetric solitons, which can be applied to the
computation of ground and excited states to (fNLS) equations.

Remark 2.1.4. We highilight that (g2) can be weakened, with no changes in the proofs, by
asking, for some q ∈ (2m

s − 1, 2∗
s − 1)

lim
|t|→+∞

g(t)
|t|q = 0 and lim sup

|t|→+∞

G(t)
|t|2m

s
= lim sup

|t|→+∞

g(t)
|t|2m

s −1 = 0.

See also Remark 5.5.8 for some additional discussions.

Remark 2.1.5. We highlight that we assume a priori the positivity of the Lagrange multiplier µ
in (2.1.2). As a matter of fact, this condition seems to be quite natural: if u is a ground state on
the sphere

�
RN u

2 dx = m and its energy is negative, then a posteriori the corresponding Lagrange
multiplier µ is strictly positive (see Proposition 2.8.1). In addition, from a physical perspective,
in the study of standing waves the multiplier µ describes the frequency of the particle, and thus
it is positive; moreover, this prescribed sign is characteristic also of chemical potentials in the
description of ideal gases, see [267,320].

The Chapter is organized as follows. In Section 2.2, we establish some preliminaries related
to the unconstrained problem. In Section 2.3 we give the Lagrangian formulation of the problem
(2.1.2) and a description of the geometry of a functional in a product space. Section 2.4 concerns
with the Palais-Smale-Pohozaev ((PSP) for short) condition and Section 2.5 is devoted to the
construction of the deformation argument under this (PSP) condition. Section 2.6 deals with
our minimax procedure to detect the normalized solutions by means of the Pohozaev mountain.
Finally in Section 2.7 we derive the multiplicity result of infinitely many normalized solutions
when g is odd.

2.2 The unconstrained problem
In this Section we consider the unconstrained fractional equation

(−∆)su+ µu = g(u) in RN , (2.2.4)

where s ∈ (0, 1), N ≥ 2, u ∈ Hs(RN ), µ > 0 is fixed and g satisfies (g1) together with the
following assumptions

(g2’) lim sup|t|→∞
g(t)
|t|q = 0 where q ∈ (1, 2∗

s − 1), where 2∗
s = 2N

N−2s ;
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(g3’) there exists t0 > 0 such that G(t0) > µ
2 t

2
0, where G(t) =

� t
0 g(τ)dτ .

Under the assumptions (g1)-(g2’), it is standard to show that any weak solution of (2.2.4) is
a critical point of the C1-functional Jµ : Hs(RN ) → R defined by

Jµ(u) := 1
2

�
RN

|(−∆)s/2u|2 dx+ µ

2

�
RN

u2 dx−
�
RN

G(u) dx.

In the celebrated paper [50], for the local case s = 1, Berestycki and Lions proved the existence
of a classical solution to (2.2.4), which is radially symmetric and has an exponentially decay,
under the assumption (g1)-(g2’)-(g3’); these conditions are almost optimal for the existence of
(2.2.4). The found solution is of least energy among all nontrivial solutions, and a Mountain Pass
(MP for short) solution as shown by Jeanjean and Tanaka [237]. Successively Byeon, Jeanjean,
Maris [80] showed that every least energy solution of (2.2.4) has constant sign and is radially
symmetric (and decreasing) up to translations.

For the nonlocal case s ∈ (0, 1), we begin to recall that in the recent paper [79], Byeon, Kwon
and Seok established the following results (see also [95]).

Proposition 2.2.1 (Regularity). Suppose (g1)-(g2’). Let u ∈ Hs(RN ) be a weak solution of the
fractional equation (2.2.4). Then u ∈ C1(RN ) if one of the following assumptions holds:

(i) s ∈ (1/2, 1);

(ii) s ∈ (0, 1/2] and g ∈ C0,σ
loc (R) for some σ ∈ (1 − 2s, 1).

Proposition 2.2.2 (Fractional Pohozaev identity). Suppose (g1)-(g2’) and

(g4’) if s ∈ (0, 1/2], g ∈ C0,σ
loc (R) for some σ ∈ (1 − 2s, 1).

Then every weak solution u ∈ Hs(RN ) of the fractional equation of (2.2.4) satisfies the Pohozaev
identity (2.1.3), which can be rewritten as

1
2∗

s

�
RN

|(−∆)s/2u|2 + µ

2#

�
RN

u2 −
�
RN

G(u) = 0,

where 2∗
s = 2N

N−2s and 2# = 2 are the upper and lower critical exponents.

Roughly, we see that the Pohozaev identity essentially means d
dθ Jµ(u(·/eθ))|θ=0 = 0, thus

it is strictly related to the scaling invariance of the problem (which will be exploited through
an augmented functional, see (2.4.28)). Anyway the fact that u is a critical point for J ′

µ does
not imply directly this relation, since d

dθ Jµ(u(·/eθ))|θ=0 = (J ′
µ(u),∇u · x) = 0 requires some

restriction on Jµ and u.
Indeed, the C1-regularity of the weak solution seems crucial for proving formally a Pohozaev

type identity. Under (g1)-(g2’)-(g3’) we know [79] that each weak solution of (2.2.4) belongs to
Hs(RN ) ∩Cβ(RN ) with β ∈ (0, 2s) and thus it is not known if the Pohozaev identity holds when
s ∈ (0, 1/2], without additional regularity assumptions on the nonlinearity g.

In [79], the authors further investigated the existence of MP weak solutions of (2.2.4). We
recall that a weak solution u is said of MP type if

Jµ(u) = a(µ), (2.2.5)

where
a(µ) := inf

γ∈Γ
max
t∈[0,1]

Jµ(γ(t))

and
Γµ :=

{
γ(t) ∈ C

(
[0, 1], Hs

r (RN )
) | γ(0) = 0, Jµ(γ(1)) < 0

}
. (2.2.6)
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As for s = 1, the functional Jµ does not satisfies the Palais-Smale condition at level a(µ) under
the assumptions (g1)-(g2’)-(g3’), thus one can not directly apply the MP theorem. For the local
case s = 1, any weak solution is C1 and it satisfies the Pohozaev identity, so that one can reduce
the search of MP solutions to that of minimizers on the Pohozaev type constraint. For the
fractional case, this approach seems to work for s ∈ (1/2, 1), while requires additional regularity
on the nonlinearity if s ∈ (0, 1/2].

Conversely, in [79] the authors established that every minimizer of Jµ on the Pohozaev
constraint corresponds to a MP weak solution and derived some radially symmetric properties of
the minimizer using a fractional version of the Polya-Szego inequality. Namely they introduce
the Pohozaev functional P : Hs

r (RN ) → R by setting

Pµ(u) := N − 2s
2

�
RN

|(−∆)s/2u|2 +N

�
RN

(
µ

2u
2 −G(u)

)

and
Pµ :=

{
u ∈ Hs

r (RN ) \ {0} | Pµ(u) = 0
}
,

p(µ) := min
u∈Pµ

Jµ(u).

In [79, Theorem 1.2] they established the following result.

Theorem 2.2.3. Assume (g1)-(g2’)-(g3’). Let s ∈ (0, 1) and µ > 0. Then

(i) there exists a minimizer of Jµ subject to Pµ;

(ii) every minimizer of Jµ subject to Pµ is a MP weak solution of (2.2.4);

From Theorem 2.2.3 it follows that

a(µ) = p(µ).

While the equivalence between Mountain Pass solutions and least energy solutions is shown for
s ∈ (1/2, 1), it is yet an open problem for s ∈ (0, 1/2] under the assumptions (g1)-(g2’)-(g3’).
In [79], this equivalence is established under the same regularity assumption of Proposition
2.1, namely g ∈ C0,σ(RN ) for some σ ∈ (1 − 2s, 1); see Section 4.3 for more comments on this
relation. In the following Sections, in contrast, we will show that, under L2-constraint, least
energy solutions have Mountain Pass characterization. See Proposition 2.8.1.

Remark 2.2.4. We highlight that in [79] they define a(µ) and p(µ) on the whole space Hs(RN ),
by additionally assuming

g(t) ≡ 0 for t ≤ 0;

indeed, thanks to this assumptions, they can pass from a generic minimization sequence to a
positive one, and thus to a radially symmetric one (and exploit then compactness). With this
additional assumption they also show that

(iii) every minimizer of Jµ subject to Pµ is positive and radially symmetric up to a translation.

Without this assumption we notice that their arguments show that every positive minimizer of
Jµ subject to Pµ is radially symmetric up to a translation.

On the other hand, without this additional assumption but by assuming (g4’), one may argue
as follows: by a result similar to Proposition 5.5.3 (see [50, Theorem 3] and [80, Lemma 1]
for details) the ground state problem can be seen as a minimization problem; thus we can apply
[275, Theorem 4.1] to deduce the radial symmetry (up to a translation) of any minimizer. See
also [255].
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Remark 2.2.5. The existence of a Pohozaev minimum (Mountain Pass solution) when

lim sup
|t|→∞

g(t)
|t|2∗

s−1 = 0

substitutes (g2’) can be found in [95], where it is assumed that g ∈ C1(R) (or, more specifically, it
is sufficient that Pohozaev holds for every solution). A result involving this assumption together
with g ∈ C(R) seems to lack in literature, even though the proof by [79] can be easily adapted.
Anyway, we can obtain this result as a byproduct of our argument, similarly to Section 3.7. See
instead [230] for the existence of infinitely many solutions.

Some further properties of this autonomous equation will be invetigated in Section 5.2 and in
Section 5.5.1.

2.3 Lagrangian formulation and Pohozaev geometry
We come back to the constrained case; from now on in this Chapter we briefly denote

p := 2m
s − 1 = 1 + 4s

N
.

We consider the Lagrangian formulation of the problem (2.1.2) in the space of radially symmetric
functions Hs

r (RN ). Namely, we seek for critical points of the functional Im : R ×Hs
r (RN ) → R

Im(λ, u) := 1
2

�
RN

|(−∆)s/2u|2 −
�
RN

G(u) + eλ

2
(∥u∥2

2 −m
)
. (2.3.7)

Under the assumption (g1)–(g3), it is standard to prove that Im is C1 in the product space
R ×Hs

r (RN ). It is immediate to recognize that for any m > 0

Im(λ, u) = J (λ, u) − eλ

2 m

where J : R ×Hs
r (RN ) → R is the C1-functional defined by J (λ, u) := Jeλ(u), i.e.

J (λ, u) := 1
2

�
RN

|(−∆)s/2u|2 −
�
RN

G(u) + eλ

2

�
RN

u2.

For a fixed λ ∈ R, u is critical point of J (λ, ·) means that u ∈ Hs
r (RN ) solves, in the weak sense,

(−∆)su+ eλu = g(u) in RN . (2.3.8)

Inspired by the Pohozaev identity (2.1.3), for any s ∈ (0, 1) we also introduce the Pohozaev
functional P : R ×Hs

r (RN ) → R by setting

P(λ, u) := N − 2s
2

�
RN

|(−∆)s/2u|2 +N

�
RN

(
eλ

2 u
2 −G(u)

)
.

By Proposition 2.2.2, it follows that for any λ ∈ R, if u ∈ Hs
r (RN ) solves (2.3.8), then P(λ, u) = 0

when s ∈ (1
2 , 1). A similar result for s ∈ (0, 1

2 ] is not known under (g1)–(g3).
We introduce now the Pohozaev set

Ω :=
{
(λ, u) ∈ R ×Hs

r (RN ) | P(λ, u) > 0
} ∪ {(λ, 0) | λ ∈ R

}
.

Since
�
RN G(u) = o(∥u∥2

Hs) as u → 0 we have the following.
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Lemma 2.3.1. We have
{(λ, 0) | λ ∈ R} ⊂ int(Ω). (2.3.9)

Proof. For any fixed δ > 0 there exists a suitable Cδ > 0 such that

G(t) ≤ δ|t|2 + Cδ|t|p+1,

where p+ 1 < 2∗
s. Thus

0 = 1
N

P(λ, u) ≥ 1
2∗

s

∥(−∆)s/2u∥2
2 +

(
eλ

2 − δ

)
∥u∥2

2 − Cδ∥u∥p+1
p+1

≳ ∥u∥2
Hs − ∥u∥p+1

Hs > 0

for δ small and ∥u∥Hs small, u ̸= 0.

This last result implies

∂Ω =
{
(λ, u) ∈ R ×Hs

r (RN ) | P(λ, u) = 0, u ̸= 0
}
;

we call this set the Pohozaev mountain. We remark that (λ, u) ∈ ∂Ω if and only if u ̸= 0 and u
satisfies the Pohozaev identity P(λ, u) = 0.

Contrary to assumption (g3’), the arbitrariness of the frequency µ and the corresponding
assumption (g3) lead to different interactions between the pieces µu and g(u), which have to be
taken into account; these interactions are described by the quantity

µ0 := 2 sup
t∈R,t ̸=0

G(t)
t2

; (2.3.10)

we deduce µ0 ∈ (0,+∞] under the assumptions (g1)–(g3). We also denote

λ0 := log(µ0), if µ0 ∈ (0,∞), (2.3.11)

otherwise λ0 := +∞. Analysing the two cases (λ0 ∈ R and λ0 = +∞) will be of key importance
in the study of the geometry of the problem.

Taking into account that 2m
s < 2∗

s, we deduce by (i) Theorem 2.2.3 that for any λ ∈ (−∞, λ0)
the functional

u ∈ Hs
r (RN ) 7→ J (λ, u) ∈ R

has a minimizer uλ subject to

(∂Ω)λ :=
{
u ∈ Hs

r (RN ) \ {0} | P(λ, u) = 0
}
,

namely
J (λ, uλ) = min

u∈(∂Ω)λ

J (λ, u). (2.3.12)

Furthermore by (ii) of Theorem 2.2.3 such uλ is a Mountain Pass critical point of J (λ, ·) at level
a(λ), i.e.

J (λ, uλ) = a(λ)

where
a(λ) := inf

γ∈Γ(λ)
max
t∈[0,1]

J (λ, γ(t)) (2.3.13)

and
Γ(λ) :=

{
γ ∈ C

(
[0, 1], Hs

r (RN )
) | γ(0) = 0, J (λ, γ(1)) < 0

}
. (2.3.14)
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We notice that λ ∈ (−∞, λ0) 7→ a(λ) ∈ R is strictly monotone increasing: this can be shown, for
example, by relying on the fact that a(λ) coincides with the Pohozaev minimum and exploiting
some scaling argument.1

Lemma 2.3.2. Let λ ∈ R. Then the following statements are equivalent:

(a) λ < λ0.

(b) There exists a t0 = t0(λ) > 0 such that

G(t0) > eλ

2 t
2
0.

(c) There exists u ∈ Hs
r (RN ) \ {0} such that P(λ, u) = 0; in particular (∂Ω)λ ̸= ∅.

(d) Γ(λ) ̸= ∅, and thus a(λ) is well defined.

As further consequence, we see that ∂Ω ̸= ∅. Finally, a(λ) > 0.

Proof. (a) ⇐⇒ (b). This is a straightforward consequence of the definition of λ0.
(b) =⇒ (c) Let u ∈ Hs

r (RN ) to be fixed. We have, for t > 0,

P(λ, u(·/t)) = N − 2s
2 tN−2s

�
RN

|(−∆)s/2u|2 −NtN
�
RN

(
G(u) − eλ

2 u
2
)
.

We notice that P(λ, u(·/t)) > 0 for small t > 0. In order to get a t̄ such that P(λ, u(·/t̄)) = 0 we
need the quantity �

RN

(
G(u) − eλ

2 u
2
)

to be positive. For any R > 0 we choose a smooth u = uR ∈ C∞
c such that uR = t0 in BR(0)

and uR = 0 out of BR+ 1
RN

(0), 0 ≤ uR ≤ t0. We set

C := sup
t∈[0,t0]

∣∣∣G(t) − eλ

2 |t|2
∣∣∣ < +∞.

Then
�
RN

(
G(uR) − eλ

2 u
2
R

)
=
�

B
R+ 1

RN
\BR

(
G(uR) − eλ

2 u
2
R

)
+
�

BR

(
G(uR) − eλ

2 u
2
R

)

≥ −C|BR+ 1
RN

\BR| + |BR|
(
G(t0) − eλ

2 |t0|2
)

→ +∞

and in particular it is positive for a sufficiently large R.
1Let λ1, λ2 ∈ R and v be a λ2-Pohozaev minimum (i.e. J (λ2, v) = a(λ2) and P(λ2, v) = 0). Let rescale

v in such a way it belongs to the λ1-Pohozaev set, i.e. u := v(·/θ) with P(λ1, u) = 0, for some explicit

θ =
(

1 + 2∗
s
2 (λ2 − λ1) ∥v∥2

2
∥(−∆)s/2v∥2

2

)− 1
2s . Thus, by the Pohozaev identities,

a(λ1) ≤ J (λ1, u) = s

N
∥(−∆)s/2u∥2

2 = θN−2s s

N
∥(−∆)s/2v∥2

2 = θN−2sJ (λ2, v) = θN−2sa(λ2).

If λ1 < λ2 then θ < 1 and thus the have claim a(λ1) < a(λ2).
As a further result, since θ → 1 as λ1 and λ2 approach, we obtain also a(λ1) ≤ lim infλ2→λ1 a(λ2) and

lim supλ1→λ2 a(λ1) ≤ a(λ2). Swapping the role of λ1 and λ2 actually we obtain the (extra) continuity property:
limλ→λ0 a(λ) = a(λ0).
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(c) =⇒ (d). Let u ∈ Hs
r (RN ), u ̸≡ 0 such that P(λ, u) = 0. We define γ(t) := u(·/t) for

t ̸= 0 and γ(0) = 0, so that γ : [0,∞) → Hs
r (RN ) is continuous. We have

J (λ, γ(t)) = 1
2 t

N−2s

�
RN

|(−∆)s/2u|2 − tN
�
RN

(
G(u) − eλ

2 u
2
)
.

Noting
�
RN

(
G(u) − eλ

2 u
2
)
> 0 by P(λ, u) = 0, we have J (λ, γ(t)) → −∞ as t → ∞ and thus

Γ(λ) ̸= ∅.
(d) =⇒ (b). If γ ∈ Γ(λ), then J (λ, γ(1)) < 0, thus

�
RN

(
G(γ(1)) − eλ

2 γ(1)2
)
> 0,

which implies that there exists an x0 ∈ RN such that

G(γ(1)(x0)) − eλ

2 γ(1)2(x0) > 0.

The claim comes by setting t0 := γ(1)(x0).
Finally, by Theorem 2.2.3, there exists a Pohozaev minimum uλ which is also a Mountain

Pass solution, thus J (λ, uλ) = a(λ), DuJ (λ, uλ) = 0 and P(λ, uλ) = 0, which imply

a(λ) = s

N
∥(−∆)s/2uλ∥2

2 > 0.

Remark 2.3.3. Assume λ0 < +∞. We observe that, in this case, for λ ≥ λ0 we have
P(λ, u) ≥ 0 and J (λ, u) ≥ 0 for each u, both strictly positive for u ̸≡ 0. This means that
[λ0,+∞) ×Hs

r (RN ) ⊂ Ω.

In the next result, we consider the case λ0 ∈ R and we investigate the behaviour of a(λ) as λ
approach λ0.

Proposition 2.3.4. Assume (g1)–(g3) and λ0 ∈ R. We have

(a) if (λ, u) ∈ ∂Ω for some u ∈ Hs
r (RN ), then λ < λ0.

(b) limλ→λ−
0
a(λ) = +∞.

Proof. Let (λ, u) ∈ ∂Ω, namely P(λ, u) = 0 and u ̸= 0. This implies that for some x0 ∈ RN

G(u(x0)) − eλ

2 u(x0)2 > 0

and thus λ < λ0 and (a) holds.
Now we show point (b). Let λ < λ0; by contradiction, since by Lemma 2.3.2 a(λ) is increasing

and strictly positive, we assume that a(λ) → c ∈ (0,+∞) as λ → λ−
0 , from which we deduce that

∥(−∆)s/2uλ∥2 is bounded. Moreover, for any fixed δ > 0 there exists a suitable Cδ > 0 such that

G(t) ≤ δ|t|2 + Cδ|t|p+1,

where we recall that p = 1 + 4s
N .

Thus we have by the fractional Gagliardo-Nirenberg inequality (1.2.8) and the fact that
∥(−∆)s/2uλ∥2 is bounded,

0 = 1
N

P(λ, uλ) ≥ 1
2∗

s

∥(−∆)s/2uλ∥2
2 +

(
eλ

2 − δ

)
∥uλ∥2

2 − Cδ∥uλ∥p+1
p+1
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≥ 1
2∗

s

∥(−∆)s/2uλ∥2
2 +

(
eλ

2 − δ

)
∥uλ∥2

2 − C ′Cδ∥(−∆)s/2uλ∥2
2∥uλ∥p−1

2

≥
(
eλ

2 − δ

)
∥uλ∥2

2 − C ′′Cδ∥uλ∥
4s
N
2

for some C ′, C ′′ > 0. By choosing δ < eλ

2 , since 4s
N < 2, also ∥uλ∥2 must be bounded, which

means that (uλ)λ<λ0 is bounded in Hs
r (RN ). Hence, up to a subsequence, uλ ⇀ u0 in Hs

r (RN ).
By the immersion (1.2.14) and taking into account that ∂uJ (λ, uλ) = 0, we deduce that uλ → u0
strongly in Hs

r (RN ) with J (λ0, u0) = c, ∂uJ (λ0, u0) = 0, P(λ0, u0) = 0. Since c > 0, we have
u0 ̸= 0. By P(λ0, u0) = 0, we conclude

G(u0(x)) − eλ0

2 u0(x)2 > 0

for some x ∈ RN , which contradicts the definition of λ0.

We consider now the case λ0 = +∞ and we investigate the behaviour of a(λ) for λ large.

Proposition 2.3.5. Assume that λ0 = +∞. Then

lim
λ→+∞

a(λ)
eλ

= +∞.

Proof. By (g1)-(g2) we have that for any δ > 0 there exists Cδ > 0 such that for all t ∈ R

G(t) ≤ δ

p+ 1 |t|p+1 + Cδ

2 |t|2. (2.3.15)

We also denote by b(δ) the MP value of Hδ : Hs
r (RN ) → R defined by

Hδ(v) := 1
2∥(−∆)s/2v∥2

2 + 1
2∥v∥2

2 − δ

p+ 1∥v∥p+1
p+1.

It is easy to see that2

b(δ) → +∞ as δ → 0+.

For v ∈ Hs
r (RN ) \ {0}, we set

uθ := θN/2v(θ·),
and for simplicity we write µ ≡ eλ and J (µ, ·) = J (λ, ·). By (2.3.15), we pass to evaluate

J (µ, uθ) ≥ θ2s
(1

2∥(−∆)s/2v∥2
2 + 1

2(µ− Cδ)θ−2s∥v∥2
2 − δ

p+ 1∥v∥p+1
p+1

)
.

Setting θ := (µ− Cδ)1/2s for µ = µδ > Cδ, we have

J (µ, u(µ−Cδ)1/2s) ≥ (µ− Cδ)Hδ(v) (2.3.16)

and hence
J (µ, u(µ−Cδ)1/2s)

µ
≥ µ− Cδ

µ
Hδ(v). (2.3.17)

Thus we have
a(µ)
µ

≥ µ− Cδ

µ
b(δ). (2.3.18)

2Indeed, by scaling, Hδ(δ− 1
p−1 ·) = δ

− 2
p−1 H1, which implies Γδ = δ

− 1
p−1 Γ1; here Γδ is the set of paths related

to Hδ. Using these two relations one obtains b(δ) = δ
− 2

p−1 b(1) → +∞.
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Choosing µ = µδ > 2Cδ we obtain
a(µ)
µ

≥ b(δ)
2 ;

since δ > 0 is arbitrary, we derive

lim
µ→+∞

a(µ)
µ

= +∞.

Finally we investigate the behaviour of a(λ) for λ → −∞, under some more restrictive
assumption in the origin.

Proposition 2.3.6. Assume (g4) in addition to (g1)–(g3). Then

lim
λ→−∞

a(λ)
eλ

= 0. (2.3.19)

Proof. We fix u ∈ Hs
r (RN ) ∩ L∞(RN ) with ∥u∥∞ = 1. Recalled p = 1 + 4s

N , by (g4) there exists
Mr > 0 such that for all r ∈ (0, 1]

G(ru(x)) ≥ Mrr
p+1|u(x)|p+1, ∀x ∈ RN

with
Mr → +∞ as r → 0.

We write again µ ≡ eλ for the sake of simplicity. Therefore for t > 0 we have

J (µ, ru(·/t)) ≤ 1
2r

2tN−2s∥(−∆)s/2u∥2
2 + µ

2 r
2tN ∥u∥2

2 −Mrr
p+1tN ∥u∥p+1

p+1

= r2µ− N−2s
2s

(1
2 t

N−2sµ
N−2s

2s ∥(−∆)s/2u∥2
2 + 1

2µ
N
2s tN ∥u∥2

2 −Mrr
4s
N µ

N−2s
2s tN ∥u∥p+1

p+1

)

= r2µ− N−2s
2s

(1
2τ

N−2s∥(−∆)s/2u∥2
2 + 1

2τ
N ∥u∥2

2 −Mrr
4s
N µ−1τN ∥u∥p+1

p+1

)

after setting τ := µ
1

2s t. Moreover choosing r := µ
N
4s we infer

J
(
µ, µ

N
4su(·/(µ−1/(2s)τ))

)

≤ µ

(1
2τ

N−2s∥(−∆)s/2u∥2
2 + 1

2τ
N ∥u∥2

2 −MµN/(4s)τN ∥u∥p+1
p+1

)
.

For µ ∈ (0, 1), the map

τ ∈ (0,∞) 7→ µ
N
4su(·/µ−1/(2s)τ) ∈ Hs

r (RN )

can be regarded as a path in Γ(µ) after rescaling. Thus

a(µ)
µ

≤ max
τ∈[0,∞)

(1
2∥(−∆)s/2u∥2

2τ
N−2s + 1

2∥u∥2
2τ

N −MµN/(4s)∥u∥p+1
p+1τ

N
)
.

Since MµN/(4s) → ∞ as µ → 0, we derive the conclusion.

Proposition 2.3.7. Assume (g1)–(g3). Then we have

(a) J (λ, u) ≥ 0 for all (λ, u) ∈ Ω;

(b) J (λ, u) ≥ a(λ) > 0 for all (λ, u) ∈ ∂Ω.
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Proof. We notice that for all (λ, u) ∈ Ω

J (λ, u) ≥ J (λ, u) − 1
N

P(λ, u) = s

N
∥(−∆)s/2u∥2

2 ≥ 0

and thus (a) follows.
The proposition (b) follows from the fact that every minimizer of J (λ, ·) subject to (∂Ω)λ is

a mountain pass weak solution of (2.2.4) at level a(λ) (see Theorem 2.2.3).

We are ready to show that for any m > 0 the functional Im is bounded from below on the
Pohozaev set ∂Ω.
Proposition 2.3.8. Assume (g1)–(g3). For any m > 0, we set

Bm := inf
λ<λ0

(
a(λ) − eλ

2 m
)

and
Em := inf

(λ,u)∈∂Ω
Im(λ, u).

Then
Em ≥ Bm > −∞. (2.3.20)

Proof. Let m > 0. If (λ, u) ∈ ∂Ω, by (b) of Proposition 2.3.7 we have

Im(λ, u) = J (λ, u) − eλ

2 m ≥ a(λ) − eλ

2 m;

since, by (a) of Proposition 2.3.4 it results that λ < λ0, we have, passing to the infimum,
Em ≥ Bm.

We distinguish now two cases. Firstly we assume λ0 ∈ R. From (b) of Proposition 2.3.4 we have
a(λ) → +∞ as λ → λ−

0 , and thus we conclude

inf
λ<λ0

(
a(λ) − eλ

2 m
)
> −∞.

Secondly, we suppose that λ0 = +∞. We have

a(λ) − eλ

2 m = eλ
(
a(λ)
eλ

− m

2

)

and thus, by Proposition 2.3.5

inf
λ∈R

(
a(λ) − eλ

2 m
)
> −∞.

2.4 Compactness by scaling
Firstly we introduce the notations:

Kb :=
{
(λ, u) ∈ R ×Hs

r (RN ) | Im(λ, u) = b, ∂λIm(λ, u) = 0, ∂uIm(λ, u) = 0
}
,

KP SP
b :=

{
(λ, u) ∈ Kb | P(λ, u) = 0

}
.

Clearly, we have KP SP
b ⊂ Kb. We note that for the definition of KP SP

b we do not need additional
regularity about g.

Under the assumptions (g1)–(g3), it seems difficult to verify the standard Palais-Smale
condition for the functional Im. Therefore we cannot recognize that the set Kb is compact.

Inspired [224,231], we introduce the Palais-Smale-Pohozaev (shortly (PSP)) condition, which
is a weaker compactness condition than the standard Palais-Smale one. Such (PSP) condition
takes into account the scaling properties of Im through the Pohozaev functional P. Using this
new condition we will show that KP SP

b is compact when b < 0.
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2.4.1 A limiting Pohozaev identity
We give the definition of (PSP) condition in the radial setting.

Definition 2.4.1. For b ∈ R, we say that Im satisfies the Palais-Smale-Pohozaev condition at
level b (shortly the (PSP )b condition), if for any sequence (λn, un)n ⊂ R ×Hs

r (RN ) such that

Im(λn, un) → b, (2.4.21)

∂λIm(λn, un) → 0, (2.4.22)

∥∂uIm(λn, un)∥(Hs
r (RN ))∗ → 0, (2.4.23)

P(λn, un) → 0, (2.4.24)

it happens that (λn, un)n has a strongly convergent subsequence in R ×Hs
r (RN ).

We will show the following result.

Proposition 2.4.2. Assume (g1)–(g3). Let b < 0. Then Im satisfies the (PSP )b condition on
R ×Hs

r (RN ).

Proof. Let b < 0 and suppose that (λn, un) ⊂ R ×Hs
r (RN ) satisfies (2.4.21)–(2.4.24). We will

show that (λn, un) has a strongly convergent subsequence in several steps.
Step 1: λn is bounded from below.
Indeed

m

2 e
λn = 1

N
P(λn, un) − Im(λn, un) + s

N
∥(−∆)s/2un∥2

2

≥ 1
N

P(λn, un) − Im(λn, un)

hence
m

2 lim inf
n

eλn ≥ 0 − b > 0,

which implies (since m > 0) that λn is bounded from below.
Step 2: ∥un∥2

2 → m.
Indeed, we have

∂λIm(λn, un) = eλn

2
(
∥un∥2

2 −m
)

→ 0,

which implies the claim by Step 1.
Step 3: ∥(−∆)s/2un∥2

2 and λn are bounded (from above) as n → +∞.
Indeed, by (g1)-(g2) we have that for any δ > 0 there exists Cδ > 0 such that for all t ∈ R

g(t) ≤ δ|t|p + Cδ|t|. (2.4.25)

By (2.4.25) and the fractional Gagliardo-Nirenberg inequality (1.2.8) we have

∂uIm(λn, un)un = ∥(−∆)s/2un∥2
2 + eλn∥un∥2

2 −
�
RN

g(un)un

≥ ∥(−∆)s/2un∥2
2 +

(
eλn − Cδ

)
∥un∥2

2 − δ∥un∥p+1
p+1

≥ ∥(−∆)s/2un∥2
2 +

(
eλn − Cδ

)
∥un∥2

2 − δC∥(−∆)s/2un∥2
2∥un∥p−1

2 ;

moreover

|∂uIm(λn, un)un| ≤ ∥∂uIm(λn, un)∥(Hs
r (RN ))∗∥un∥Hs

r (RN )

= ∥∂uIm(λn, un)∥(Hs
r (RN ))∗

√
∥(−∆)s/2un∥2

2 + ∥un∥2
2.
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Set εn := ∥∂uIm(λn, un)∥(Hs
r (RN ))∗ and (by Step 2) ∥un∥2

2 = m+ o(1), we finally have, joining
the previous two inequalities, that

∥(−∆)s/2un∥2
2
(
1 − δC(m+ o(1))

p−1
2
)

+
(
eλn − Cδ

)
(m+ o(1))

≤ εn

√
∥(−∆)s/2un∥2

2 +m+ o(1).

Choosing δ > 0 small so that δCm
p−1

2 < 1, we obtain the claim.
Step 4: Conclusion.
By Steps 1-3, we have that (λn, un) is bounded in R × Hs

r (RN ). Hence, up to a subsequence,
λn → λ and un ⇀ u in Hs

r (RN ). Therefore, we obtain (see Proposition 1.5.5)
�
RN

g(un)un →
�
RN

g(u)u and
�
RN

g(un)u →
�
RN

g(u)u.

Again by the assumption ∂uIm(λn, un) → 0 we get

0 = lim
n
∂uIm(λn, un)u

= lim
n

(�
RN

(−∆)s/2un(−∆)s/2u+ eλn

�
RN

unu−
�
RN

g(un)u
)

= ∥(−∆)s/2u∥2
2 + eλ∥u∥2

2 −
�
RN

g(u)u. (2.4.26)

Since ∂uIm(λn, un) → 0 and un ⇀ u, we have ∂uIm(λn, un)un → 0; thus

0 = lim
n
∂uIm(λn, un)un

= lim
n

(
∥(−∆)s/2un∥2

2 + eλn∥un∥2
2 −

�
RN

g(un)un

)

= lim
n

(
∥(−∆)s/2un∥2

2 + eλn∥un∥2
2
)

−
�
RN

g(u)u (2.4.27)

and hence, joining (2.4.26) and (2.4.27),

∥(−∆)s/2un∥2
2 + eλn∥un∥2

2 → ∥(−∆)s/2u∥2
2 + eλ∥u∥2

2,

which easily implies (since eλn → eλ and ∥un∥2
2 is bounded)

∥un∥2
λ → ∥u∥2

λ,

where ∥ · ∥2
λ := ∥(−∆)s/2 · ∥2 + eλ∥ · ∥2

2 is an equivalent norm on Hs
r (RN ). This, together with

un ⇀ u in Hs
r (RN ) gives un → u strongly in Hs

r (RN ).

Corollary 2.4.3. Assume (g1)–(g3). Let b ∈ R, b < 0. Then KP SP
b ∩ (R × {0}) = ∅ and KP SP

b

is compact.

Proof. Since ∂λIm(λ, 0) = − eλ

2m ̸= 0, we have KP SP
b ∩ (R × {0}) = ∅. Proposition 2.4.2 implies

that KP SP
b is compact.

Remark 2.4.4. We emphasize that the (PSP )b condition does not hold at level b = 0. Indeed
we can consider the unbounded sequence (λj , 0) with λj → −∞ such that

Im(λj , 0) = ∂λIm(λj , 0) = −eλj

2 m → 0

and
∂uIm(λj , 0) = 0, P(λj , 0) = 0.
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2.4.2 A functional in an augmented space

Following [223,224,235] we introduce the augmented functional Hm : R × R ×Hs
r (RN ) → R

Hm(θ, λ, u) := Im(λ, u(e−θ·)) (2.4.28)

for (θ, λ, u) ∈ R × R ×Hs
r (RN ). By the scaling properties of Im we can recognize that

Hm(θ, λ, u) = e(N−2s)θ

2

�
RN

|(−∆)s/2u|2 − eNθ

�
RN

G(u) + eλ

2
(
eNθ∥u∥2

2 −m
)

(2.4.29)

for all (θ, λ, u) ∈ R × R ×Hs
r (RN ).

Moreover, by standard calculations we have the following proposition.

Proposition 2.4.5. For all (θ, λ, u) ∈ R × R ×Hs
r (RN ), h ∈ Hs

r (RN ), β ∈ R, we have

(i) ∂θHm(θ, λ, u) = P(λ, u(·/eθ)),

(ii) ∂λHm(θ, λ, u) = ∂λIm(λ, u(·/eθ)),

(iii) ∂uHm(θ, λ, u)h = ∂uIm(λ, u(·/eθ))h(·/eθ),

(iv) Hm(θ + β, λ, u(eβ·)) = Hm(θ, λ, u).

Now we define a metric on the Hilbert manifold

M := R × R ×Hs
r (RN )

by setting

∥(α, ν, h)∥2
(θ,λ,u) :=

∣∣∣
(
α, ν, ∥h(e−θ·)∥Hs

r (RN )
)∣∣∣

2

=α2 + ν2 + eNθ∥h∥2
2 + e(N−2s)θ∥(−∆)s/2h∥2

2

for any (α, ν, h) ∈ T(θ,λ,u)M ≡ R × R × Hs
r (RN ). We also denote the dual norm on T ∗

(θ,λ,u)M

by ∥ · ∥(θ,λ,u),∗. We notice that ∥(·, ·, ·)∥2
(θ,λ,u) depends only on θ and we can write ∥(·, ·, ·)∥2

(θ,·,·).
Moreover for any (α, ν, h) ∈ T(θ,λ,u)M and β ∈ R we have

∥(α, ν, h(eβx))∥2
(θ+β,·,·) = ∥(α, ν, h)∥2

(θ,·,·). (2.4.30)

Furthermore we define the standard distance between two points as the infimum of length of
curves connecting the two points, namely

distM

(
(θ0, λ0, h0), (θ1, λ1, h1)

)
:= inf

γ∈G

� 1

0
∥γ̇(t)∥γ(t)dt

where
G :=

{
γ ∈ C1([0, 1],M)

∣∣∣ γ(0) = (θ0, λ0, h0), γ(1) = (θ1, λ1, h1)
}
.

Observe that, if σ is a path connecting (α0, ν0, h0) and (α1, ν1, h1), then by (2.4.30) σ̃(t) :=
(σ1(t) + β, σ2(t), (σ3(t))(eβ·)) is a path connecting (α0 + β, ν0, h0(eβ·)) and (α1 + β, ν1, h1(eβ·))
with same length, and hence

distM

(
(α0, ν0, h0), (α1, ν1, h1)

)
= distM

(
(α0 + β, ν0, h0(eβ·)), (α1 + β, ν1, h1(eβ·))). (2.4.31)

Denote now for simplicity D := (∂θ, ∂λ, ∂u) the gradient with respect to all the variables; a
direct computation shows that

DHm(θ, λ, u)(α, ν, h) = P(λ, u(e−θ·))α+ ∂λIm(λ, u(e−θ·))ν + ∂uIm(λ, u(e−θ·))h(e−θ·)
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and thus we obtain

∥DHm(θ, λ, u)∥2
(θ,λ,u),∗

=
∣∣∣
(
P(λ, u(e−θ·)), ∂λIm(λ, u(e−θ·)), ∥∂uIm(λ, u(e−θ·))∥(Hs

r (RN ))∗
)∣∣∣

2

= |P(λ, u(e−θ·))|2 + |∂λIm(λ, u(e−θ·))|2 + ∥∂uIm(λ, u(e−θ·))∥2
(Hs

r (RN ))∗ .

Now defined
K̃b :=

{
(θ, λ, u) ∈ M | Hm(θ, λ, u) = b, DHm(θ, λ, u) = 0

}

the set of critical points at level b of Hm, we deduce

K̃b =
{
(θ, λ, u(eθ·)) | (λ, u) ∈ KP SP

b , θ ∈ R
}
. (2.4.32)

Proposition 2.4.6. Assume (g1)–(g3). Let b ∈ R, b < 0. Then the functional Hm satisfies the
following Palais-Smale type condition (P̃SP )b: for each sequence (θn, λn, un)n such that

Hm(θn, λn, un) → b,

∥DHm(θn, λn, un)∥(θn,λn,un),∗ → 0,

we have, up to a subsequence,

distM ((θn, λn, un), K̃b) → 0.

We note that (P̃SP )b condition is different from the standard Palais-Smale condition and it
ensures the compactness of the sequence (θn, λn, un)n after a suitable scaling. By (2.4.32) we
also highlight that, if K̃b ̸= ∅, then K̃b is not compact.

Proof. Let (θn, λn, un)n be as in (P̃SP )b. Then set ũn := un(e−θn ·) we have

P(λn, ũn) → 0,

∂λIm(λn, ũn) → 0,

∥∂uIm(λn, ũn)∥(Hs
r (RN ))∗ → 0,

and thus by Proposition 2.4.2 the sequence (λn, ũn) is convergent (up to subsequences) to a
(λ, ũ) ∈ KP SP

b . Observe that, for each n, set vn := ũ(eθn ·), we have (θn, λ, vn) ∈ K̃b. Therefore
by (2.4.31)

distM ((θn, λn, un), K̃b) ≤ distM ((θn, λn, un), (θn, λ, vn))
= distM ((0, λn, ũn), (0, λ, ũ))

≤
√

|λn − λ|2 + ∥ũn − ũ∥2
Hs

r (RN ) → 0,

which reaches the claim.

Notation. We use the following notation: for Ã ⊂ M and ρ > 0 we set

Ñρ(Ã) := {(θ, λ, u) ∈ M | distM ((θ, λ, u), Ã) < ρ},

while for A ⊂ R ×Hs
r (RN ) and R > 0 we set

NR(A) := {(λ, u) ∈ R ×Hs
r (RN ) | d((λ, u), A) < R},

where
d
(
(λ, u), (λ′, u′)

)
:= (|λ− λ′|2 + ∥u− u′∥2

Hs
r
)1/2.
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We also write for a < b

[Im ≤ b] := {(λ, u) ∈ R ×Hs
r (RN ) | I(λ, u) ≤ b},

[a ≤ Im ≤ b] := {(λ, u) ∈ R ×Hs
r (RN ) | a ≤ I(λ, u) ≤ b},

[Hm ≤ b]M := {(θ, λ, u) ∈ M | H(θ, λ, u) ≤ b},
[a ≤ Hm ≤ b]M := {(θ, λ, u) ∈ M | a ≤ H(θ, λ, u) ≤ b}.

Using these notations, as a corollary to Proposition 2.4.6, we have

Corollary 2.4.7. For any ρ > 0 there exists a δρ > 0 such that

∀ (θ, λ, u) ∈ [b− δρ ≤ Hm ≤ b+ δρ]M \ Ñρ(K̃b) : ∥DH(θ, λ, u)∥(θ,λ,u),∗ > δρ. (2.4.33)

Here, if K̃b = ∅, we regard Ñρ(K̃b) = ∅.

2.5 A deformation flow by projections
Exploiting an idea in [224] (see also [231]), we aim to prove the following Deformation Theorem
in the fractional framework.

Theorem 2.5.1. Let b < 0, and assume KP SP
b = ∅. Let ε̄ > 0, then there exist ε ∈ (0, ε̄) and

η : [0, 1] × (R ×Hs
r (RN )) → R ×Hs

r (RN ) continuous such that

1. η(0, ·, ·) = idR×Hs
r (RN );

2. η fixes [Im ≤ b− ε̄], that is, η(t, ·, ·) = id[Im≤b−ε̄] for all t ∈ [0, 1];

3. Im is non-increasing along η, and in particular Im(η(t, ·, ·)) ≤ Im(·, ·) for all t ∈ [0, 1];

4. η(1, [Im ≤ b+ ε]) ⊆ [Im ≤ b− ε].

We omit the proof of the Theorem since it will be very similar to the one made in the case of
multiplicity (see Theorem 2.7.1). We remark that this deformation flow is not C1 and it does
not satisfy the two properties of the standard deformation flows, in general [224, Remark 3.2]:

(1) η(s+ t, λ, u) = η(t, η(s, λ, u)) with s+ t ∈ [0, 1], (λ, u) ∈ R ×Hs
r (RN );

(2) for t ∈ [0, 1], the map (λ, u) 7→ η(t, λ, u) is a homeomorphism.

This is due to the fact that this deformation will be built through a projection of another
deformation, built for the augmented functional Hm.

We also stress that the deformation argument in Theorem 2.5.1 works for KP SP
b but not for

Kb and thus, if KP SP
b = ∅, then we have the statement (4) in Theorem 2.5.1 even if Kb ≠ ∅. By

classical arguments, we derive the following existence theorem (see also the proof of Corollary
2.6.3).

Corollary 2.5.2 (Existence). Let b̄ < 0 be a MP minimax value for Im. Then KP SP
b̄

̸= ∅, that
is, Im has a critical point (λ̄, ū) satisfying the Pohozaev identity, namely P(λ̄, ū) = 0.

2.6 Minimax critical points in the product space
For any m > 0, let Bm and Em be the constants defined in Proposition 2.3.8, namely

Bm = inf
λ<λ0

(
a(λ) − eλ

2 m
)
, Em = inf

(λ,u)∈∂Ω
Im(λ, u).
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As a minimax class for Im, we define the paths going from Ω to Ωc, such that the energy of the
ending points is below the minimal energy on the mountain ∂Ω:

Γm :=
{
ξ ∈ C

(
[0, 1],R ×Hs

r (RN )
) | ξ(0) ∈ R × {0}, Im(ξ(0)) ≤ Bm − 1,

ξ(1) ̸∈ Ω, Im(ξ(1)) ≤ Bm − 1
}
.

We have the following result.

Proposition 2.6.1. Assume (g1)–(g3).

(i) For any m > 0, we have Γm ̸= ∅.

(ii) For sufficiently large m > 0 there exists ξ ∈ Γm such that

max
t∈[0,1]

Im(ξ(t)) < 0. (2.6.34)

(iii) Assume (g4). Then for any m > 0 there exists ξ ∈ Γm with the property (2.6.34).

Proof. Let λ0 ∈ (−∞,∞] be defined in (2.3.11). For any λ < λ0 we show there exists a path
ψλ ∈ Γm such that

max
t∈[0,1]

Im(ψλ(t)) ≤ a(λ) − eλ

2 m. (2.6.35)

Let uλ be a MP solution of ∂uJ (λ, u) = 0 (by Theorem 2.2.3). Set ζλ(t) := uλ(·/t) for t > 0 and
ζλ(0) := 0 and note that, since uλ satisfies the Pohozaev identity, we have Im(λ, ζλ(t)) → −∞
and P(λ, ζλ(t)) → −∞ as t → +∞. We can find γλ := ζλ(L·) for L ≫ 1 satisfying

a(λ) = max
t∈[0,1]

J (λ, γλ(t)),

Im(λ, γλ(1)) ≤ Bm − 1, (λ, γλ(1)) /∈ Ω.

We also note that t 7→ Im(t, 0) = − et

2 m is decreasing and tending to −∞ as t → +∞. Thus,
joining γλ and t 7→ (λ+ Lt, 0); [0, 1] → R ×Hs

r (RN ) for L ≫ 1, we find a path ψλ ∈ Γm, defined
as

ψλ(t) :=
{

(λ+ L(1 − 2t), 0) if t ∈ [0, 1/2],
(λ, γλ(2t− 1)) if t ∈ (1/2, 1]

with (2.6.35). Thus in particular we have (i).
Next we deal with (ii) and (iii). By (2.6.35), we have that (ii) follows easily; (iii) also follows

from Proposition 2.3.6.

We notice that each path in Γm passes through ∂Ω, thus the minimax value

bm := inf
ξ∈Γm

max
t∈[0,1]

Im(ξ(t)) (2.6.36)

verifies bm ≥ Em and hence by Proposition 2.3.8 it is well defined and finite. Since the Palais-
Smale-Pohozaev condition holds on (−∞, 0), it is important to estimate bm. We have the
following result.

Proposition 2.6.2. Assume (g1)–(g3). We have

bm ≤ a(λ) − eλ

2 m for all λ < λ0. (2.6.37)

Moreover
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(i) Setting
m0 := 2 inf

λ<λ0

a(λ)
eλ

≥ 0,

we have
bm < 0 for m > m0.

(ii) Assume (g4) in addition, then m0 = 0, that is,

bm < 0 for all m > 0.

(iii) We have bm = Em = Bm.

(iv) lim supm→+∞
bm
m ≤ − eλ0

2 . If λ0 = +∞, then limm→+∞ bm
m = −∞ (see [114]).

Proof. By (2.6.35) we have (2.6.37), and thus

bm ≤ eλ
(
a(λ)
eλ

− m

2

)
for all λ < λ0.

By definition of m0, we have bm < 0 for m > m0. Thus we have (i). By Proposition 2.3.6, we
have m0 = 0 under the assumption (g4) and thus we have (ii).

Furthermore, from (2.6.37) it follows bm ≤ Bm. As already observed bm ≥ Em ≥ Bm, from
which we deduce (iii).

Finally for any λ ∈ R we have, again by (2.6.35),

lim sup
m→+∞

bm

m
≤ lim

m→+∞

(
a(λ)
m

− eλ

2

)
= −eλ

2 .

Since λ is arbitrary, we get (iv).

By Proposition 2.6.2 and Corollary 2.5.2 we conclude that the level bm, defined in (2.6.36), is
a critical value of Im in the product space R ×Hs

r (RN ) and thus Theorem 2.1.1 and Theorem
2.1.2 hold.
Corollary 2.6.3. Let m > m0. Then there exists a solution of problem (2.1.2) which satisfies
the Pohozaev identity (2.1.3). If moreover (g4) holds, then there exists a solution of (2.1.2) for
each m > 0.
Proof. Let ε̄ ∈ (0, 1). By Theorem 2.5.1, in correspondence to bm < 0, there exists ε ∈ (0, ε̄)
and η satisfying 1) − 4). By definition of inf, there exists γ ∈ Γm such that

max
t∈[0,1]

Im(γ(t)) < bm + ε,

that is
γ([0, 1]) ⊆ [Im ≤ bm + ε]. (2.6.38)

Set
γ̃(t) := η(1, γ(t)),

we show that γ̃ ∈ Γm. Indeed for i ∈ {0, 1}, since Im(γ(i)) ≤ Bm − 1 ≤ bm − ε̄, Theorem
2.5.1 implies that γ̃(i) = η(1, γ(i)) = γ(i) ∈ [Im ≤ bm + ε̄], and thus γ̃(0) = γ(0) ∈ R × {0},
γ̃(1) = γ(1) ̸∈ Ω. Therefore

bm ≤ max
t∈[0,1]

Im(γ̃(t)). (2.6.39)

By contradiction, assume KP SP
bm

= ∅. By the properties of η and (2.6.38) we obtain that
γ̃([0, 1]) = η(1, γ([0, 1])) ⊆ [Im ≤ bm − ε], that is

max
t∈[0,1]

Im(η(1, γ(t))) ≤ bm − ε.

This is in contradiction with (2.6.39), and we conclude the proof.
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Remark 2.6.4. We observe that, by Proposition 2.6.2 (iii), the found Mountain Pass solution
(µ, u) at level bm is a Pohozaev minimum on the product space R ×Hs

r (RN ). This additionally
implies that the found solution is a Pohozaev minimum for the unconstrained case, once fixed µ;
see also Remark 4.5.9.

2.7 Multiple normalized solutions
We focus now on the existence of multiple solutions. In the whole Section we assume, in addition,
(g5).

2.7.1 Symmetric deformation theorems
In what follows we will use the following terminology. Consider the action σ of G := Z2 on the
last components of R ×Hs

r (RN ) and M = R × R ×Hs
r (RN ), that is

σ : (±1, λ, u) ∈ G × (R ×Hs
r (RN )) 7→ (λ,±u) ∈ R ×Hs

r (RN ),

σ : (±1, θ, λ, u) ∈ G ×M 7→ (θ, λ,±u) ∈ M.

We notice that Im and Hm are invariant under this action (i.e. they are even in u), as
well as the set Ω (i.e. it is symmetric with respect the axis R). In particular this means
that, if u is a solution, then −u is a solution as well. We highlight instead that the function
η = (η1, η2) : R ×Hs

r (RN ) → R ×Hs
r (RN ) (resp. η̃ = (η̃0, η̃1, η̃2) : M → M) is equivariant if η1

is even in u and η2 is odd in u (resp. η̃0 and η̃1 are even and η̃2 is odd).

Theorem 2.7.1. Let b < 0, and let O be a neighborhood of KP SP
b . Then for each ε̄ > 0 there

exist ε ∈ (0, ε̄) and η : [0, 1] × (R ×Hs
r (RN )) → (R ×Hs

r (RN )) continuous such that

1. η(0, ·, ·) = idR×Hs
r (RN );

2. η fixes [Im ≤ b− ε̄], that is, η(t, ·, ·) = id[Im≤b−ε̄] for all t ∈ [0, 1];

3. Im is non-increasing along η, and in particular Im(η(t, ·, ·)) ≤ Im(·, ·) for all t ∈ [0, 1];

4. if KP SP
b = ∅, then η(1, [Im ≤ b+ ε]) ⊆ [Im ≤ b− ε];

5. if KP SP
b ̸= ∅, then

η(1, [Im ≤ b+ ε] \ O) ⊆ [Im ≤ b− ε]

and
η(1, [Im ≤ b+ ε]) ⊆ [Im ≤ b− ε] ∪ O;

6. η(t, ·, ·) is G-equivariant, in the sense mentioned before.

To prove this, we work first on the functional Hm, for which we obtained the (P̃SP ) condition.

Theorem 2.7.2. Let b < 0, ρ > 0 and write Õ := Ñρ(K̃b). Then for each ε̄ > 0 there exist
ε ∈ (0, ε̄) and η̃ : [0, 1] ×M → M continuous such that

1. η̃(0, ·, ·) = idM ;

2. η̃ fixes [Hm ≤ b− ε̄]M , that is η̃(t, ·, ·) = id[Hm≤b−ε̄]M for all t ∈ [0, 1];

3. Hm is non-increasing along η̃, and in particular Hm(η̃(t, ·, ·, ·)) ≤ Hm(·, ·, ·) for all t ∈ [0, 1];

4. if K̃b = ∅, then η̃(1, [Hm ≤ b+ ε]M ) ⊆ [Hm ≤ b− ε]M ;
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5. if K̃b ̸= ∅, then
η̃(1, [Hm ≤ b+ ε]M \ Õ) ⊆ [Hm ≤ b− ε]M

and
η̃(1,Hb+ε) ⊆ Hb−ε ∪ Õ;

6. η̃(t, ·, ·) is G-equivariant, in the sense mentioned before.

We postpone the proof of Theorem 2.7.2 for Hm and see now how to use it to deduce the one
for Im. Introduce first the following notation:

π : M → R ×Hs
r (RN ), π(θ, λ, u) := (λ, u(e−θ·)),

ι : R ×Hs
r (RN ) → M, ι(λ, u) := (0, λ, u),

which are a kind of rescaling projection and immersion. Observe that

π ◦ ι = idR×Hs
r (RN ), (while ι ◦ π ̸= idM ),

Hm ◦ ι = Im, Im ◦ π = Hm,

π(K̃b) = KP SP
b .

For η̃ obtained in Theorem 2.7.2, define "η = π ◦ η̃ ◦ ι" up to the time; more precisely

η(t, λ, u) := π(η̃(t, ι(λ, u))). (2.7.40)

It is now a straightforward computation showing that η satisfies the requests of Theorem 2.7.1.
A delicate issue, anyway, is to show the intuitive fact that neighborhoods of K̃b are brought to
neighborhoods of KP SP

b . More precisely we have the following result.

Lemma 2.7.3. Assume that KP SP
b is compact (for instance, b < 0). Let ρ > 0, then there exists

R(ρ) > 0 such that, set Õ := Ñρ(K̃b) and O := NR(ρ)(KP SP
b ), we have

π(Õ) ⊂ O,

i.e.
distM ((θ, λ, u), K̃b) ≤ ρ =⇒ d((λ, u(e−θ·)),KP SP

b ) ≤ R(ρ).

In particular, for θ = 0 we have

distM ((0, λ, u), K̃b) ≤ ρ =⇒ d((λ, u),KP SP
b ) ≤ R(ρ), (2.7.41)

that is
ι
(
∁O) ⊆ ∁Õ

where ∁ denotes the complement of the set. Moreover

lim
ρ→0

R(ρ) = 0.

Proof. We observe that is sufficient to prove (2.7.41) since by (2.4.31)

distM ((θ, λ, u), K̃b) = distM ((0, λ, u(e−θ·)), K̃b).

Let ε > 0. By definition of distM ((0, λ, u), K̃b) there exists a σ = σ(t), σ = (θ, λ, u), such that
σ(0) = (0, λ, u), σ(1) ∈ K̃b and � 1

0
∥σ̇(t)∥σ(t)dt ≤ ρ+ ε. (2.7.42)
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By (2.4.32) we have (λ(1), u(1)(e−θ(1)·)) ∈ KP SP
b and thus

dist((λ, u),KP SP
b )

≤ ∥(λ, u) − (λ(1), u(1)(e−θ(1)·))∥R×Hs
r (RN )

≤ ∥(λ, u) − (λ(1), u(1))∥R×Hs
r (RN ) + ∥(λ(1), u(1)) − (λ(1), u(1)(e−θ(1)·))∥R×Hs

r (RN )

= ∥(λ(0), u(0)) − (λ(1), u(1))∥R×Hs
r (RN ) + ∥u(1) − u(1)(e−θ(1)·)∥Hs

r (RN )
= I + II.

Focus on I. We have, by the fundamental theorem of calculus and Hölder inequality,

I = ∥(λ(0), u(0)) − (λ(1), u(1))∥R×Hs
r (RN ) ≤

� 1

0

(
|λ̇(t)|2 + ∥u̇(t)∥2

Hs
r (RN )

)1/2
dt

=
� 1

0

(
|λ̇(t)|2 + ∥u̇(t)∥2

2 + ∥(−∆)s/2u̇(t)∥2
2
)1/2

dt.

In order to use (2.7.42) it must appear the norm associated to M , which we recall is

∥σ̇(t)∥2
σ(t) = θ̇(t)2 + λ̇(t)2 + eNθ(t)∥u̇(t)∥2

2 + e(N−2s)θ(t)∥(−∆)s/2u̇(t)∥2
2.

Since we do not know the sign of Nθ(t), we need an estimate on θ(t) and a corrective factor.
Indeed, recalled that θ(0) = 0, we have

|θ(t)| = |θ(t) − θ(0)| ≤
� 1

0
|θ̇(t)|dt ≤

� 1

0
∥σ̇(t)∥σ(t)dt ≤ ρ+ ε.

Thus θ(t) ≥ −(ρ+ ε) ≥ − N
N−2s(ρ+ ε) which imply

eN(ρ+ε) ≥ 1, eN(ρ+ε)eNθ(t) ≥ 1, eN(ρ+ε)e(N−2s)θ(t) ≥ 1

and hence we obtain

I ≤ e
N(ρ+ε)

2

� 1

0

(
|λ̇(t)|2 + eNθ(t)∥u̇(t)∥2

2 + e(N−2s)θ(t)∥(−∆)s/2u̇(t)∥2
2
)1/2

dt

≤ e
N(ρ+ε)

2

� 1

0

(
|θ̇(t)2| + |λ̇(t)|2 + eNθ(t)∥u̇(t)∥2

2 + e(N−2s)θ(t)∥(−∆)s/2u̇(t)∥2
2
)1/2

dt

= e
N(ρ+ε)

2

� 1

0
∥σ̇(t)∥σ(t)dt ≤ e

N(ρ+ε)
2 (ρ+ ε) ε→0→ e

Nρ
2 ρ.

Focus now on II. Set ω̄ := u(1)(e−θ(1)·) we have ω̄ ∈ P2(KP SP
b ) (where P2 is the projection on

the second component) with |θ(1)| ≤ ρ+ ε, and thus

II = ∥u(1) − u(1)(e−θ(1)·)∥Hs
r (RN ) = ∥ω̄(eθ(1)·) − ω̄∥Hs

r (RN )

≤ sup
{

∥ω(eα·) − ω∥Hs
r (RN ) | |α| ≤ ρ+ ε, ω ∈ P2(KP SP

b )
}
.

Since P2(KP SP
b ) is compact, it is simple to show that, as ε → 0,

II ≤ sup
{

∥ω(eα·) − ω∥Hs
r (RN ) | |α| ≤ ρ, ω ∈ P2(KP SP

b )
}
.

Summing up, we have

dist((λ, u),KP SP
b ) ≤ e

Nρ
2 ρ+ sup

{
∥ω(eα·) − ω∥Hs

r (RN ) | |α| ≤ ρ, ω ∈ P2(KP SP
b )

}

=: R(ρ) < ∞.
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Here we have
lim
ρ→0

R(ρ) = 0,

which concludes the proof.

We are now ready to show that η satisfies the desired properties.
Proof of Theorem 2.7.1. Let O be a neighborhood of KP SP

b , and choose R such that
NR(KP SP

b ) ⊂ O. By Lemma 2.7.3 choose ρ ≪ 1 satisfying R(ρ) < R and thus NR(ρ)(KP SP
b ) ⊂ O.

Consequently, by Theorem 2.7.2, there exists a deformation η̃ corresponding to the neighborhood
Õ := Ñρ(K̃b). We thus define η by (2.7.40) and prove the properties. Start observing that

(λ, u) ∈ [Im ≤ b± δ] =⇒ b± δ > Im(λ, u) = Hm(ι(λ, u))
=⇒ ι(λ, u) ∈ [Hm ≤ b± δ]M ,

i.e. ι([Im ≤ b± δ]) ⊂ [Hm ≤ b± δ]M ; similarly, π([Hm ≤ b± δ]M ) ⊂ [Im ≤ b± δ].

1. η(0, λ, u) = π(η̃(0, ι(λ, u))) = π(ι(λ, u)) = (λ, u).

2. If (λ, u) ∈ [Im ≤ b− ε̄], then ι(λ, u) ∈ [Hm ≤ b− ε̄]M . Thus η(t, λ, u) = π(η̃(t, ι(λ, u))) =
π(ι(λ, u)) = (λ, u).

3. Im(η(t, λ, u)) = Im(π(η̃(t, ι(λ, u)))) = Hm(η̃(t, ι(λ, u))) ≤ Hm(ι(λ, u)) = Im(λ, u).

4. If KP SP
b = ∅, then K̃b = ∅. Thus for (λ, u) ∈ [Im ≤ b + ε], we have Im(η(1, λ, u)) =

Im(π(η̃(1, ι(λ, u)))) = Hm(η̃(1, ι(λ, u))) ≤ b− ε.

5. We have, by previous arguments and Lemma 2.7.3, that ι([Im ≤ b + ε] \ O) = ι([Im ≤
b+ ε] ∩ ∁O) ⊆ ι([Im ≤ b+ ε]) ∩ ι(∁O) ⊆ [Hm ≤ b+ ε]M ∩ (∁Õ) = [Hm ≤ b+ ε]M \ Õ and
thus

η(1, [Im ≤ b+ ε] \ O)
= π(η̃(1, ι([Im ≤ b+ ε] \ O))) ⊂ π(η̃(1, [Hm ≤ b+ ε]M \ Õ))
⊂ π([Hm ≤ b− ε]M ) ⊂ [Im ≤ b− ε].

The other inclusion is similar and easier.

6. We write η̃(t, θ, λ, u) =
(
η̃0(t, θ, λ, u), η̃1(t, θ, λ, u), η̃2(t, θ, λ, u)

)
. Then by definition

(
η1(t, λ, u), η2(t, λ, u)

)
=
(
η̃1(t, 0, λ, u), η̃2

(
t, 0, λ, u(e−η̃0(t,0,λ,u)·))

)

thus by the property 6 of Theorem 2.7.2,
(
η1(t, λ,−u), η2(t, λ,−u)

)
=
(
η̃1(t, 0, λ,−u), η̃2

(
t, 0, λ,−u(e−η̃0(t,0,λ,−u)·))

)

=
(
η̃1(t, 0, λ, u),−η̃2

(
t, 0, λ, u(e−η̃0(t,0,λ,u)·))

)

=
(
η1(t, λ, u),−η2(t, λ, u)

)
.

The theorem is hence proved.

Now we are ready to prove the main theorem for Hm.
Proof of Theorem 2.7.2. To avoid cumbersome notation, we write ξ = (θ, λ, u) ∈ M . Set

M ′ := {DHm(ξ) ̸= 0}.

It is known [14] that there exists a pseudo-gradient on the Hilbert manifold M associated to Hm,
namely a locally Lipschitz vector field V : M ′ → TM such that
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(a) ∥V(ξ)∥ξ ≤ 2∥DHm(ξ)∥ξ,∗,

(b) DHm(ξ) · V(ξ) ≥ ∥DHm(ξ)∥2
ξ,∗;

in particular,
1
2∥V(ξ)∥ξ ≤ ∥DHm(ξ)∥ξ,∗ ≤ ∥V(ξ)∥ξ. (2.7.43)

Moreover, we can ask, in the construction of the pseudo-gradient, that V is G-equivariant, since
Hm is G-invariant. Namely, set V = (V0,V1,V2), then V0 and V1 are even in u, while V2 is odd
in u.

By Corollary 2.4.7, there exists δ = δ ρ
3
> 0 such that

∀ ξ ∈ [b− δ ≤ Hm ≤ b+ δ]M s.t. distM (ξ, K̃b) >
ρ

3 : ∥DHm(ξ)∥ξ,∗ > δ. (2.7.44)

We assume
ε < min

{1
2 ε̄,

1
4δ,

1
6ρδ

}
. (2.7.45)

Set the following

A := [b− ε ≤ Hm ≤ b+ ε]M , B := [b− 2ε ≤ Hm ≤ b+ 2ε]M

and choose a locally Lipschitz function g ∈ C(M, [0, 1]) such that

g = 1 on A, g = 0 on ∁B,

for instance g(ξ) := d(ξ,∁B)
d(ξ,∁B)+d(ξ,A) .

When K̃b ̸= ∅, we choose a locally Lipschitz function g̃ ∈ C(M, [0, 1]) satisfying

g̃ = 0 on Ñ ρ
3
(K̃b), g̃ = 1 on ∁Ñ 2

3 ρ(K̃b).

When K̃b = ∅, we set g̃ ≡ 1. Moreover we introduce, for any r ≥ 0,

b(r) :=





1
r

if r ≥ 1

1 if 0 ≤ r < 1.

Finally define, for ξ ∈ M ,
W (ξ) := −g(ξ)g̃(ξ)b (∥V(ξ)∥ξ) V(ξ)

and, fixed ξ ∈ M , consider the Cauchy problem
{
η̃′ = W (η̃),
η̃(0) = ξ.

We have that W is well defined on M and

∥W (ξ)∥ξ ≤ ∥V(ξ)∥ξ b (∥V(ξ)∥ξ) ≤ 1,

where we have used that |g|, |g̃| ≤ 1. Therefore we have the global existence of a flow η̃ = η̃(t, ξ);
we are interested in η̃ restricted to [0, 1]. We now verify the desired properties.

1) η̃(0, ξ) = ξ by construction of the flow.

2) If ξ ∈ [Hm ≤ b− ε̄]M , then g(ξ) = 0, and thus W (ξ) = 0. This means that η̃(t, ξ) ≡ ξ is
an equilibrium solution. Since W ∈ Liploc(M) we have uniqueness of the solution, hence
actually η̃(t, ξ) ≡ ξ.
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3) We have

d

dt
Hm(η̃(t, ξ)) = DHm(η̃(t, ξ))η̃′(t, ξ)

= −DHm(η̃(t, ξ))V(η̃(t, ξ))g(η̃(t, ξ))g̃(η̃(t, ξ))b
(
∥V(η̃(t, ξ))∥η̃(t,ξ)

)

≤ −∥DHm(η̃(t, ξ))∥2
η̃(t,ξ),∗g(η̃(t, ξ))g̃(η̃(t, ξ))b

(
∥V(η̃(t, ξ))∥η̃(t,ξ)

)

≤ 0

that is the claim; we have used that g, g̃, b are positive and the property (b).

4) We assume here K̃b = ∅. By using the fundamental theorem of calculus and previous
arguments, we obtain

Hm(η̃(1, ξ)) − Hm(η̃(0, ξ)) =
� 1

0

d

ds
Hm(η̃(s, ξ))ds

= −
� 1

0
DHm(η̃(s, ξ))V(η̃(s, ξ))g(η̃(s, ξ))b

(
∥V(η̃(s, ξ))∥η̃(s,ξ)

)
ds

≤ −
� 1

0
∥DHm(η̃(s, ξ))∥2

η̃(s,ξ),∗g(η̃(s, ξ))b
(
∥V(η̃(s, ξ))∥η̃(s,ξ)

)
ds.

Let now ξ ∈ [Hm ≤ b+ ε]M . This means, by point 3), that for s ∈ [0, 1]

Hm(η̃(s, ξ)) ≤ Hm(η̃(0, ξ)) = Hm(ξ) ≤ b+ ε,

thus η̃(s, ξ) ∈ [Hm ≤ b+ ε]M and

Hm(η̃(1, ξ)) ≤ b+ ε−
� 1

0
∥DHm(η̃(s, ξ))∥2

η̃(s,ξ),∗g(η̃(s, ξ))b
(
∥V(η̃(s, ξ))∥η̃(s,ξ)

)
ds.

Assume now by contradiction that Hm(η̃(1, ξ)) > b− ε, which implies (again by point 3))
Hm(η̃(s, ξ)) > b− ε, for all s ∈ [0, 1]. Thus for all s ∈ [0, 1] we have η̃(s, ξ) ∈ [b− ε ≤ Hm ≤
b+ ε]M and in particular, since ε < 1

2 ε̄, that g(η̃(s, ξ)) = 1; hence

Hm(η̃(1, ξ)) ≤ b+ ε−
� 1

0
∥DHm(η̃(s, ξ))∥2

η̃(s,ξ),∗b
(
∥V(η̃(s, ξ))∥η̃(s,ξ)

)
ds.

By (2.7.43), by the fact that η̃(s, ξ) ∈ [b− ε ≤ Hm ≤ b+ ε]M ⊂ [b− δ ≤ Hm ≤ b+ δ]M and
by (2.4.33), we have

∥V(η̃(s, ξ))∥η̃(s,ξ) ≥ ∥DHm(η̃(s, ξ))∥η̃(s,ξ),∗ ≥ δ ≥ 4ε; (2.7.46)

in particular,
b
(
∥V(η̃(s, ξ))∥η̃(s,ξ)

)
= 1

∥V(η̃(s, ξ))∥η̃(s,ξ)
.

Thus, exploiting again (2.7.43) and (2.7.46) we obtain

Hm(η̃(1, ξ)) ≤ b+ ε− 1
2

� 1

0
∥DHm(η̃(s, ξ))∥η̃(s,ξ),∗ds

≤ b+ ε− 2
� 1

0
εds = b− ε,

which is an absurd.
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5) We assume now K̃b ≠ ∅. Let now ξ ∈ [Hm ≤ b+ ε]M \ Õ. Assume again by contradiction
that Hm(η̃(1, ξ)) > b − ε, which implies again η̃(s, ξ) ∈ [b − ε ≤ Hm ≤ b + ε]M . We
distinguish two cases.
Case 1: η̃(t, ξ) /∈ Ñ 2

3 ρ(K̃b) for all t ∈ [0, 1]. In this case we proceed as in the proof of 4).
Indeed since ε < δ ρ

3
, we are in the assumptions of (2.4.33) and thus

∥DHm(η̃(s, ξ))∥η̃(s,ξ),∗ > δ > 4ε.

We argue as before and conclude.
Case 2: η̃(t∗, ξ) ∈ Ñ 2

3 ρ(K̃b) for some t∗ ∈ [0, 1]. In this case ε has to be better specified.
We make a finer argument by choosing suitable [α, β] ⊂ [0, 1] and observing that

Hm(η̃(1, ξ)) ≤ Hm(η̃(β, ξ)) = Hm(η̃(α, ξ)) +
� β

α

d

ds
Hm(η̃(s, ξ))ds

≤ Hm(η̃(0, ξ)) +
� β

α

d

ds
Hm(η̃(s, ξ))ds

≤ b+ ε+
� β

α

d

ds
Hm(η̃(s, ξ))ds.

Noting that η̃(0, ξ) = ξ /∈ Õ = Ñρ(K̃b) and η̃(t∗, ξ) ∈ Ñ 2
3 ρ(K̃b), we can find α and β such

that
η̃(α) ∈ ∂Ñρ(K̃b), η̃(β) ∈ ∂Ñ 2

3 ρ(K̃b),

and
η̃(s) ∈ Ñρ(K̃b) \ Ñ 2

3 ρ(K̃b) ∀ s ∈ (α, β).

Hence we obtain by (2.7.44)

Hm(η̃(1, ξ)) ≤ b+ ε− δ(β − α).

We need an estimate from below of β − α, which is obtained by observing that η̃(·, ξ) is a
path connecting η̃(α, ξ) and η̃(β, ξ), thus (recall that 1 ≥ ∥W (ξ)∥ξ)

β − α =
� β

α
dt ≥

� β

α
∥W (η̃(t, ξ))∥η̃(t,ξ)dt

=
� β

α
∥η̃′(t, ξ)∥η̃(t,ξ)dt ≥ distM (η̃(α, ξ), η̃(β, ξ))

≥ distM

(
Ñρ(K̃b), Ñ 2

3 ρ(K̃b)
)

≥ 1
3ρ.

Finally
Hm(η̃(1, ξ)) ≤ b+ ε− 1

3ρδ ≤ b− ε

by our choice (2.7.45) of ε.
As regards the second inclusion, we argue in a similar way. Let ξ ∈ [Hm ≤ b+ ε]M . Case 1
can be done verbatim. In Case 2, if η̃(1, ξ) ∈ Õ we are done; if not, then we repeat the
argument but with the path built thanks to η̃(1, ξ) /∈ Ñρ(K̃b) and η̃(t∗, ξ) ∈ Ñ 2

3 ρ(K̃b).

6) Notice that, written W = (W0,W1,W2), we have that W0 and W1 are even in u while W2
is odd in u, since V is so and g, b(∥DHm(·)∥·,∗) are even in u. Thus, by uniqueness of the
solution, we have that η̃ satisfies the required symmetry properties.

The proof is thus concluded.
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2.7.2 Minimax values

Minimax values aj(λ)

We write for j ∈ N, Dj := {ξ ∈ Rj | |ξ| ≤ 1} and we introduce the set of paths

Γj(λ) :=
{
γ ∈ C(Dj , H

s
r (RN )) | γ odd, J (λ, γ(ξ)) < 0 ∀ξ ∈ ∂Dj

}

and
aj(λ) := inf

γ∈Γj(λ)
sup
ξ∈Dj

J (λ, γ(ξ)).

By an odd extension from [0, 1] to [−1, 1] = D1, we may regard Γ1(λ) ≡ Γ(λ) and a1(λ) ≡ a(λ).
Thus these quantities can be seen as generalizations. As for j = 1, we prove the following
properties.

Proposition 2.7.4. Let λ0 ∈ R ∪ {+∞} be given in (2.3.11), λ < λ0 and j ∈ N.

1. Γj(λ) ̸= ∅, thus aj(λ) is well defined. Moreover, it is increasing with respect to λ;

2. aj(λ) ≤ aj+1(λ);

3. aj(λ) > 0;

4. limλ→λ−
0

aj(λ)
eλ = +∞;

5. if (g4) holds, then limλ→−∞
aj(λ)

eλ = 0.

Proof. The proofs are quite the same of Propositions 2.3.2–2.3.6. We point out just some slight
differences.

1. For λ < λ0, there exists t0 > 0 such that

G(t0) − eλ

2 t
2
0 > 0.

As in [51], we find that there exists a continuous odd map γ̃ : ∂Dj → H1
r (RN ) ↪→ Hs

r (RN )
with J (λ, γ̃(ξ)) < 0. Extending γ̃ onto Dj we find Γj(λ) ̸= ∅.

2. Since Dj ⊂ Dj+1, we observe γ|Dj
∈ Γj(λ) for γ ∈ Γj+1(λ). Thus we regard Γj+1(λ) ⊂ Γj(λ)

and obtain 2).

3. Clear by a1(λ) = a(λ) > 0 and point 2).

4. Again by limλ→λ−
0

a(λ)
eλ = +∞ and point 2).

5. We consider the path γ̃ : ∂Dj → Hs
r (RN ) obtained in 1) and introduce a path

ξ ∈ Dj 7→ µN/4γ̃

(
ξ

|ξ|

) ( · /µ− 1
2s |ξ|) ∈ Hs

r (RN ).

Arguing as in Proposition 2.3.6, we have 5).
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Minimax values bm
j

We set

Γm
j := {Θ ∈ C(Dj ,R ×Hs

r (RN )) | Θ is G-equivariant;
Im(Θ(0)) ≤ Bm − 1;
Θ(ξ) /∈ Ω, Im(Θ(ξ)) ≤ Bm − 1 for all ξ ∈ ∂Dj}

and
bm

j := inf
Θ∈Γm

j

sup
ξ∈Dj

Im(Θ(ξ)).

We notice that for j = 1 we obtain Γm
1 ≡ Γm (up to an even/odd extension from [0, 1] to

[−1, 1] = D1) and bm
1 ≡ bm. So Γm

j is a natural extension to build multiple solutions.
As in the case of Γm and bm, we want to prove that Γm

j ≠ ∅ and that, for a fixed k ∈ N, there
exists an mk ≫ 0 (possibly equal to 0) such that, if m > mk, then bm

j < 0 for j = 1 . . . k.

Proposition 2.7.5.

(i) For any λ < λ0, m > 0, j ∈ N, we have Γm
j ̸= ∅ and bm

j ≤ aj(λ) − eλ m
2 .

(ii) For any k ∈ N, set
mk := 2 inf

λ<λ0

ak(λ)
eλ

≥ 0 (2.7.47)

we have, for any m > mk

bm
j < 0 for j = 1, 2, . . . , k.

(iii) mk = 0 for all k ∈ N if (g4) holds. That is,

bm
j < 0 for all j ∈ N.

Proof. For (i), the proof is similar to Proposition 2.6.1. We just need to set, for ζλ ∈ Γj(λ),

ψλ(ξ) :=





(λ+ L(1 − 2|ξ|), 0) if |ξ| ∈ [0, 1/2],
(
λ, ζλ

(
ξ

|ξ|(2|ξ| − 1)
))

if |ξ| ∈ (1/2, 1]

and we come up again to the same proof.
For (ii), (iii), we come up with a proof similar to Proposition 2.6.2, observing in addition

that mk ≤ mk+1 since ak(λ) are increasing in k.

By Proposition 2.4.2 and Theorem 2.5.1 Im satisfies the (PSP )b condition for b < 0 and the
deformation lemma holds. Let mk ≥ 0 be a number given in Proposition 2.7.5. For m > mk we
can see that bm

j < 0 for j = 1, 2, . . . , k are critical values of Im. If bm
j are different, we directly

have multiplicity of solutions. To deal with the case bm
j = bm

j′ for some j ̸= j′, we need another
family of minimax methods, which exploits the topological information hidden in this equality.

Minimax values cm
j

Let us define minimax families Λm
j which allow to find multiple solutions. We use an idea from

[325]. In what follows, we denote by genus(A) the genus of closed symmetric sets A with 0 ̸∈ A
(see Appendix A.6).

Define, for each j ∈ N,

Λm
j := {A = Θ(Dj+l \ Y ) | l ≥ 0, Θ ∈ Γm

j+l,

Y ⊆ Dj+l \ {0} is closed, symmetric in 0,
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and genus(Y ) ≤ l}

and
cm

j := inf
A∈Λm

j

sup
A

Im.

In the following lemma, we observe that Λm
j includes, in some way, Γm

j and that it inherits
the property that the paths intersect ∂Ω.

Lemma 2.7.6.

(i) Λm
j ̸= ∅;

(ii) cm
j ≤ bm

j ;

(iii) for any A ∈ Λm
j , we have A ∩ ∂Ω ̸= ∅. As a consequence, we obtain

bm = Bm = Em ≤ cm
j .

Proof. Indeed, we see that, by choosing l = 0 and Y = ∅ we have

{A = Θ(Dj) | Θ ∈ Γm
j } ⊂ Λm

j

from which come the first two claims.
Focus on the third claim. Let A = Θ(Dj+l \ Y ) and set U := Θ−1(Ω). By the symmetry in

(λ, u) of Θ and the symmetry in u of Ω we have that U is symmetric. Moreover, since Θ(0) ∈ Ω,
we have that U ⊂ Dj+l ⊂ Rj+l is a symmetric neighborhood of the origin. By Proposition A.14
we have

genus(∂U) = j + l. (2.7.48)

Observe in addition the following chain of inclusions

∂U \ Y = (∂U ∩Dj+l) \ Y = (Dj+l \ Y ) ∩ ∂U ⊆ Dj+l \ Y ∩ ∂U = Dj+l \ Y ∩ ∂U

thus
Θ
(
∂U \ Y

)
⊆ Θ

(
Dj+l \ Y ∩ ∂U

)
⊆ Θ

(
Dj+l \ Y

)
∩ Θ (∂U) = A ∩ Θ (∂U) .

Assume for the moment that it holds

Θ(∂U) ⊂ ∂Ω. (2.7.49)

Then by the previous computation we have

Θ
(
∂U \ Y

)
⊆ A ∩ ∂Ω.

Thus, to reach the claim, we need to show that ∂U \ Y ̸= ∅. But is an immediate consequence of
(2.7.48) and Proposition A.14 that

genus(∂U \ Y ) ≥ genus(∂U) − genus(Y ) ≥ (j + l) − l = j ≥ 1

which directly excludes the possibility that ∂U \ Y is empty.
Focus now on (2.7.49); we first observe that, by continuity, we have

∂Dj+l
U = ∂Dj+l

(
Θ−1(Ω)

) ⊂ Θ−1(∂Ω),

where ∂Dj+l
is the boundary with respect to the topology restricted to Dj+l, but this is not

enough, since ∂Dj+l
U is generally smaller than ∂U (the boundary made with respect to the

whole space Rj+l), which is the one appearing in (2.7.48). Let thus ξ ∈ ∂U ; we need to show
that Θ(ξ) ∈ ∂Ω. By definition of U , we have Θ(ξ) ∈ Θ(Θ−1(Ω)) ⊂ Ω; assume by contradiction
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Θ(ξ) ∈ Ω. We first observe that ξ /∈ ∂Dj+l, by definition of Θ ∈ Γm
j+l, thus ξ is in the interior

of Dj+l. We then can find a neighborhood N1 of ξ (with respect to Rj+l) contained in Dj+l,
and a neighborhood M2 of Θ(ξ) contained in Ω; set N := N1 ∩ Θ−1(M2), we have that N is a
neighborhood of ξ (with respect to Rj+l) contained in U , which implies that ξ is in the interior
of U , absurd. This concludes the proof of the first part.

We prove now the consequence. Indeed, for each A ∈ Λm
j we have

Em = inf
∂Ω

Im ≤ inf
∂Ω∩A

Im ≤ sup
∂Ω∩A

Im ≤ sup
A

Im

and thus the claim passing to the infimum over Λm
j .

Let us now show the main properties of Λm
j and cm

j , which will actually be the only ones
used in the multiplicity result.

Proposition 2.7.7. Let j ∈ N.

1. Λm
j ̸= ∅;

2. Λm
j+1 ⊆ Λm

j , and thus cm
j ≤ cm

j+1;

3. let A ∈ Λm
j and Z ⊂ R × Hs

r (RN ) be G-invariant, closed, and such that 0 /∈ P2(Z) and
genus(P2(Z)) ≤ i. Then A \ Z ∈ Λm

j−i.

Fix now k ∈ N, and let m > mk, where mk has been introduced in (2.7.47). Then

4. cm
j < 0 and Im satisfies (PSP )cm

j
;

5. if A ∈ Λm
j and η is a deformation as in Theorem 2.7.1 for b = cm

j , then η(1, A) ∈ Λm
j .

Proof. Properties 1) and 4) have already been shown in the Lemma 2.7.6, while property 2) is a
consequence of the definition. Let us see properties 3) and 5).

3) Let A = Θ(Dj+l \ Y ) ∈ Λm
j and let Z be G-invariant, closed and such that 0 /∈ P2(Z) and

genus(P2(Z)) ≤ i. Assume it holds

A \ Z = Θ((Dj+l \ Y ) \ Θ−1(Z)) (2.7.50)
= Θ(D(j−i)+(l+i) \ (Y ∪ Θ−1(Z)));

if genus(Y ∪ Θ−1(Z)) ≤ l + i we have the claim. But this is a direct consequence of the
assumptions and Proposition A.14, since

genus(Y ∪ Θ−1(Z)) ≤ genus(Y ) + genus(Θ−1(Z))
≤ l + genus(h(Θ−1(Z)))
= l + genus(P2(Z)) ≤ l + i

where we have set h := P2 ◦ Θ, which is an odd map and thus admissible for the genus.
Turn now to (2.7.50). Set B := Dj+l \ Y and W := Θ−1(Z) we have to prove

Θ(B) \ Θ(W ) = Θ(B \W ).

We have
Θ(B) \ Θ(W ) ⊆ Θ(B \W )

(i)
⊆ Θ(B \W ) (ii)= Θ(B \W )

and
Θ(B \W )

(iii)
⊆ Θ(B \W ) (iv)= Θ(B) \ Θ(W ) ⊆ Θ(B) \ Θ(W )

where
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(i) is due to the fact that W is closed;
(ii) B \W ⊆ Dj+l is compact, thus Θ(B \W ) is closed;
(iii) derives from the continuity of Θ;
(iv) is due to the fact that W is a preimage.

5) Consider 0 < ε̄ < 1, b = cm
j ≥ Bm and η as in the deformation lemma, and fix A =

Θ(Dj+l \ Y ) ∈ Λm
j with Θ ∈ Γm

j+l. To show that η(1, A) ∈ Λm
j and conclude the proof, it is

sufficient to show that Θ̃ := η(1,Θ) ∈ Γm
j+l as well.

• Θ̃(−ξ) = η(1,Θ(−ξ)) = η(1,Θ1(−ξ),Θ2(−ξ)) = η(1,Θ1(ξ),−Θ2(ξ)) and thus
(
Θ̃1(−ξ), Θ̃2(−ξ)) =

(
η1
(
1,Θ1(ξ),−Θ2(ξ)

)
, η2
(
1,Θ1(ξ),−Θ2(ξ)

))

=
(
η1
(
1,Θ1(ξ),Θ2(ξ)

)
,−η2

(
1,Θ1(ξ),Θ2(ξ)

))
=
(
Θ̃1(ξ),−Θ̃2(ξ)

)

which shows that Θ̃1 is even and Θ̃2 is odd.
• By Lemma 2.7.6, for ξ = 0 and ξ ∈ ∂Dj+l we have Im(Θ(ξ)) ≤ Bm − 1 = Em − 1 ≤
cm

j − ε̄, thus Θ(ξ) ∈ [Im ≤ cm
j − ε̄]. Therefore Θ̃(ξ) = η(1,Θ(ξ)) = Θ(ξ) for ξ = 0 and

ξ ∈ ∂Dj+l, and the same properties are satisfied.

2.7.3 Multiplicity theorem
Fix k ∈ N∗, and let Λm

j and cm
j be given in the previous Section for j = 1 . . . k. Exploiting the

properties given in Proposition 2.7.7, we can find multiple solutions.

Theorem 2.7.8. Fix k ∈ N∗, and assume m > mk. We have that

cm
1 ≤ cm

2 ≤ · · · ≤ cm
k < 0

are critical values of Im. Moreover

(i) if, for some q ≥ 1,
cm

j < cm
j+1 < · · · < cm

j+q

then we have q + 1 different nonzero critical values, and thus q + 1 different (pairs of)
nontrivial solutions of (2.1.2);

(ii) if instead, for some q ≥ 1,
cm

j = cm
j+1 = · · · = cm

j+q ≡ b (2.7.51)

then
genus(P2(KP SP

b )) ≥ q + 1 (2.7.52)

and thus (by Proposition A.14) #P2(KP SP
b ) = +∞, which means that we have infinite

different solutions of (2.1.2).

Summing up, we have at least k different (pairs of) solutions of (2.1.2) which satisfy the Pohozaev
identity (2.1.3).

Proof. It is sufficient to show only the property (2.7.52) on the genus: indeed by choosing q = 0
we have that, for each j, #(KP SP

cm
j

) ≥ 1 and thus cm
j is a nontrivial critical value.

By the (PSP )b we have that KP SP
b is compact, thus P2(KP SP

b ) is compact; moreover it is
symmetric with respect to 0 and does not contain 0 (see Corollary 2.4.3).

By Proposition A.14 we can find a (closed, symmetric with respect to origin, not containing the
zero) neighborhood N of P2(KP SP

b ) which preserves the genus, i.e. genus(N) = genus(P2(KP SP
b )).
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We can easily think N as a projection of a neighborhood Z of KP SP
b (i.e. N = P2(Z)) satisfying

the properties of Proposition 2.7.7.
By Theorem 2.7.1, there exist a sufficiently small ε and an η such that η([Im ≤ b+ ε] \ Z) ⊆

[Im ≤ b − ε]. Corresponding to ε, by definition of cm
j , there exists an A ∈ Λm

j+q such that
supA Im < b+ ε, that is A ⊆ [Im ≤ b+ ε]. Thus, being η(1, ·) continuous

η(1, A \ Z) ⊆ η(1, [Im ≤ b+ ε] \ Z) ⊆ η(1, [Im ≤ b+ ε] \ Z)
⊆ [Im ≤ b− ε] = [Im ≤ b− ε],

and hence
sup

η(1,A\Z)
Im ≤ b− ε. (2.7.53)

On the other hand, assume by contradiction that genus(P2(KP SP
b )) ≤ q, i.e. genus(P2(Z)) ≤ q.

We use now the properties on cm
j and Λm

j .
Replacing j with j + q and i with q and applying Proposition 2.7.7, we have A \ Z ∈ Λm

j ; by
property 5) of Proposition 2.7.7 we obtain η(1, A \ Z) ∈ Λm

j , which implies (by definition of cm
j )

sup
η(1,A\Z)

Im ≥ cm
j = b.

This is a contradiction with (2.7.53), and thus concludes the proof.

Proof of Theorem 2.1.3. As consequence of Theorem 2.7.8, we derive (i). We pass to prove
(ii). Under condition (g4), we have mk = 0 for all k ∈ N. Thus for any j ∈ N, cm

j is a critical
value of Im and cm

j ≤ bm
j < 0. Since cm

j is an increasing sequence, we have cm
j → c̄ ≤ 0 as j → ∞.

We need to show that c̄ = 0.
By contradiction we assume c̄ < 0. Then KP SP

c̄ is compact and KP SP
c̄ ∩ (R × {0}) = ∅. It

follows that q = genus(P2(KP SP
c̄ )) < ∞. Arguing as in the proof of Theorem 2.7.8, let δ > 0 be

such that q = genus(P2(Nδ(KP SP
c̄ ))) < ∞. By Theorem 2.7.1, there exist ε ∈ (0, 1) small and

η : [0, 1] × R ×Hs
r (RN ) → R ×Hs

r (RN ) satisfying

η(1, [Im ≤ c̄+ ε] \Nδ(KP SP
c̄ )) ⊆ [Im ≤ c̄− ε] (2.7.54)

and
η(t, λ, u) = (λ, u) if Im(λ, u) ≤ Bm − 1. (2.7.55)

We can choose j ∈ N sufficiently large such that cm
j > c̄ − ε and take B ∈ Λm

j+q such that
B ⊂ [Im ≤ c̄+ ε]. Then we have

B \Nδ(KP SP
c̄ ) ∈ Λm

j .

From equations (2.7.54), (2.7.55) we derive cm
j ≤ c̄− ε, which gives a contradiction.

Remark 2.7.9. We observe that, even if the problem is invariant under translations, the found
solutions are not translations of a same solution since they all are radially symmetric. Moreover,
assuming (g4), since 0 > cm

j → 0 we easily find a sequence of solutions with distinct energy levels.

2.8 L2-minimum
In Theorems 2.1.1 and 2.1.2 we find a solution via mountain pass minimax methods. We remark
that this solution is characterized as minimizer of the functional L on Sm, where L : Hs

r (RN ) → R
is defined by

L(u) := 1
2∥(−∆)s/2u∥2

2 −
�
RN

G(u)



2.8. L2-minimum 77

and Sm is the L2-sphere in HS
r (RN ), i.e.

Sm := {u ∈ Hs
r (RN ) | ∥u∥2

2 = m}.

Set
κm := inf

u∈Sm

L(u).

Proposition 2.8.1. Assume (g1)–(g3), and let m ≥ m0, where m0 is introduced in Proposition
2.6.2. We have that the following statements hold.

(i) The Mountain Pass level and the ground state level coincide, i.e.

κm = bm. (2.8.56)

In particular, thanks to Corollary 2.6.3, there exists a ground state of L|Sm
.

(ii) Every ground state of L|Sm
satisfies the Pohozaev identity (2.1.3) with µ the associated

Lagrange multiplier. Thanks to (2.8.56), the same conclusion holds for every Mountain
Pass solution at level bm.

(iii) Every ground state of L|Sm
has a positive associated Lagrange multiplier. This means that

every ground state of L|Sm
is a solution of problem (2.1.2).

Moreover, if (g4) holds, then m0 = 0.

Proof. (i) Let u∗ be the Mountain Pass solution obtained in Corollary 2.6.3, which verifies
∥u∗∥2

2 = m. Thus,
κm ≤ L(u∗) = bm < 0. (2.8.57)

In particular, by (2.8.57) we can find a minimizing sequence (un)n ⊂ Sm for κm satisfying
L(un) < 0, and thus we can set

eλn := 2
Nm

(
s∥(−∆)s/2un∥2

2 −NL(un)
)
> 0

so that P(λn, un) = 0, i.e., (λn, un) ∈ ∂Ω. At this point Proposition 2.6.2 implies

κm + o(1) = L(un) = Im(λn, un) ≥ Em = bm.

Passing to the limit, together with (2.8.57), we have (2.8.56).
(ii) Let u0 be a minimizer of L on Sm. Corresponding to u0, there exists a Lagrange multiplier

µ0 ∈ R such that
(−∆)s/2u0 + µ0u0 = g(u0),

and thus, in particular,

∥(−∆)s/2u0∥2
2 + µ0∥u0∥2

2 −
�
RN

g(u0)u0 dx = 0. (2.8.58)

We show first that u0 satisfies the Pohozaev identity. In fact, we consider the R-action Φ :
R × Sm → Sm defined by

(Φθv)(x) := e
N
2 θv(eθx), (2.8.59)

since ∥Φθv∥2
2 = ∥v∥2

2. Then we have

L(Φθu0) = 1
2e

2sθ∥(−∆)s/2u0∥2
2 − e−Nθ

�
RN

G
(
e

N
2 θu0

)
.
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Since u0 is a minimizer, we have d
dθ

∣∣
θ=0L(Φθu0) = 0, that is,

s∥(−∆)s/2u0∥2
2 +N

�
RN

G(u0) − N

2

�
RN

g(u0)u0 dx = 0. (2.8.60)

From (2.8.58) and (2.8.60), the Pohozaev identity follows

N − 2s
2 ∥(−∆)s/2u0∥2

2 + N

2 µ0∥u0∥2
2 −N

�
RN

G(u0) = 0. (2.8.61)

(iii) Finally, from (2.8.57) we have L(u0) = κm < 0, that is

1
2∥(−∆)s/2u0∥2

2 −
�
RN

G(u0) = κm < 0, (2.8.62)

which joined to (2.8.61) gives µ0 > 0. This concludes the proof.

Remark 2.8.2. By [275, Theorem 4.1], we have that actually every L2-minimum is radially
symmetric (up to a translation). Thus κm coincide with the infimum made on the L2-ball of the
whole space Hs(RN ).

2.9 Relation between constrained and unconstrained problems
Let 0 < µ < µ0 and m > 0. By joining the results of Proposition 2.6.2 and Proposition 4.2.9, we
proved the following relation.

κ(m) = inf
µ∈(0,µ0)

(
p(µ) − µm

)
(2.9.63)

where we slightly changed the definition of L2-minimum

κ(m) := inf
u∈Hs

r (RN )
1
2 ∥u∥2

2=m

(1
2∥(−∆)s/2u∥2

2 −
�
RN

G(u)
)

and of Pohozaev minimum

p(µ) := inf
u∈Hs

r (RN )\{0}
∥(−∆)s/2u∥2

2+2∗
s( µ

2 ∥u∥2
2−

�
RN G(u))=0

(1
2∥(−∆)s/2u∥2

2 −
�
RN

G(u) + µ

2 ∥u∥2
2

)
;

we recall that, when s ∈ (1
2 , 1) or g ∈ Cσ

loc(R) for some σ > 1 − 2s, p(µ) is actually a ground
state level.

The relation between the unconstrained and the constrained problem is an old-fashioned
problem, which has been deeply investigated in a recent paper by Jeanjean and Lu [236] in the
case s = 1. We see that equation (2.9.63) gives an interesting relation between the two energy
levels: this relation may be also reformulated by saying that

κ(m) = −p∗(m) (2.9.64)

where p∗ is the Legendre transform of a. A relation of this type, but in a different framework,
has been also obtained by Dovetta, Serra and Tilli in a very recent paper [162]. Here, relying on
the convexity of the energy functions (due to the polynomial shape of g), they exploit (2.9.64) in
order to achieve interesting results.

We believe thus that (2.9.64) could give more insights in the study of the relation between
these two problems.



3

C
h

a
p

t
e

r

Choquard-Hartree-Pekar equations: multiplicity of solu-
tions

In this Chapter we study the following nonlinear Choquard-Hartree-Pekar equation

−∆u+ µu = (Iα ∗ F (u))F ′(u) in RN ,

where N ≥ 3, α ∈ (0, N), Iα is the Riesz potential, and F is an almost optimal subcritical
nonlinearity. The goal is to prove existence of infinitely many solutions u ∈ H1

r (RN ), by assuming
F odd or even.

We analyze the two cases: µ is a fixed positive constant or µ is unknown and the L2-norm of
the solution is prescribed, i.e.

�
RN u

2 = m > 0. Since the presence of the nonlocality prevents
to apply the classical approach introduced by Berestycki and Lions in [51], we implement a
new construction of multidimensional odd paths, and we find a nonlocal counterpart of their
multiplicity result. In particular we extend the existence result in [302], due to Moroz and Van
Schaftingen.

This Chapter is mainly based on the paper [116].

3.1 Convolution with Riesz potential: a self-interaction

Given a nonlinearity F ∈ C1(R,R) and set f := F ′, we are interested to seek for multiple
solutions u ∈ H1

r (RN ) of the nonlocal equation

− ∆u+ µu = (Iα ∗ F (u))f(u) in RN , (3.1.1)

where N ≥ 3 and α ∈ (0, N). In literature the semilinear equation (3.1.1) with nonlocal source
has several physical motivations and it is usually called nonlinear Choquard (or Hartree, or Pekar)
equation.

In 1954 the equation (3.1.1) with N = 3, α = 2 and F (s) = 1
2 |s|2, that is

− ∆u+ µu =
( 1

4π|x| ∗ |u|2
)
u in R3, (3.1.2)

was elaborated by Pekar in [313] (see also [260]) to describe the quantum theory of a polaron
at rest, through the use of the Newton potential 1

4π|x| . The idea of the convolution as a feature
of interaction of a body with itself was exploited also by other authors: in 1976 it was arisen
in the work [264] suggested by Choquard [106] on the modeling of an electron trapped in its

79
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own hole, in a certain approximation to Hartree-Fock theory of one-component plasma (see
also [194, 196, 355]). In 1996 the same equation was derived by Penrose in his discussion on
the self-gravitational collapse of a quantum mechanical wave-function [299,314–316] (see also
[196, 361, 362]) and in that context it is referred as Schrödinger-Newton system (see (1.3.39)).
See also Section 3.1 for a derivation concerning exotic stars.

If u is a solution of (3.1.2), then we notice that the wave function

ψ(x, t) = eiµtu(x), (x, t) ∈ R3 × [0,+∞)

is a solitary wave of the time-dependent Hartree equation [216]

iψt = −∆ψ −
( 1

4π|x| ∗ |ψ|2
)
ψ in R3 × (0,+∞); (3.1.3)

thus (3.1.2) represents the stationary nonlinear Hartree equation.
As already pointed out in Chapter 2, the study of standing waves of (3.1.3) has been pursed

in two main directions, which opened two different challenging research fields.
A first topic regards the search for solutions of (3.1.2) with a prescribed frequency µ and

free mass, the so-called unconstrained problem. The second line of investigation of the problem
(3.1.3) consists of prescribing the mass m > 0 of u, thus conserved by ψ in time

�
R3

|ψ(x, t)|2 dx = m ∀ t ∈ [0,+∞),

and letting the frequency µ to be free. Such problem is usually said constrained.
For the unconstrained problem, the first investigations for existence and symmetry of the

solutions to (3.1.2) go back to the works of Lieb [265] and Menzala [293], and also to [108,299,355]
by means of ordinary differential equations techniques. We mention also the recent papers by
Lenzmann [257] and by Winter and Wei [375] about the nondegeneracy of the unique radial
solution of (3.1.2).

Variational methods were also employed to derive existence and qualitative results of standing
wave solutions for more generic values of α ∈ (0, N) and of power type nonlinearities F (t) = 1

p |t|p:
in particular Moroz and Van Schaftingen [300] (see also [304]) considered the special model

− ∆u+ µu = (Iα ∗ |u|p)|u|p−2u in RN , (3.1.4)

and they proved that (3.1.4) has solutions if

2#
α = N + α

N
< p <

N + α

N − 2 = 2∗
α. (3.1.5)

When dealing with variational (and regular) solutions, they proved that range (3.1.5) is optimal.
Moreover in [300] they showed that all positive ground states of (3.1.4) are radially symmetric
and monotone decreasing about some point and derived the decay asymptotics at infinity of
such ground states (see [109] for p ≥ 2, and also [279]). Furthermore, in [205, 206, 332] the
authors study, for some values of p and α, least energy nodal solutions, odd with respect to a
hyperplane; see also [109, 128, 372, 378, 384] for other results on sign-changing solutions with
various symmetries and saddle type solutions.

Recently in [302] Moroz and Van Schaftingen considered the problem (3.1.1) when F is a
Berestycki-Lions type function under the following general assumptions:

(F1) F ∈ C1(R,R);

(F2) there exists C > 0 such that, for every s ∈ R,

|sf(s)| ≤ C
(|s|2#

α + |s|2∗
α
)
;
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(F3)
lim
s→0

F (s)
|s|2#

α

= 0, lim
s→+∞

F (s)
|s|2∗

α
= 0;

(F4) F (s) ̸≡ 0, that is, there exists s0 ∈ R, s0 ̸= 0 such that F (s0) ̸= 0.

In particular they prove the following theorem (see [302, Theorems 1 and 4]).

Theorem 3.1.1 ([302]). We have the following results.

• Assume (F1)–(F4). Then there exists a ground state solution u ∈ H1(RN ). Moreover
u ∈ W 2,q

loc (RN ) for each q ≥ 1 (in particular, u is Hölder continuous);

• Assume (F1)-(F2), f odd and with constant sign on (0,+∞). Then every ground state has
strict constant sign (strictly positive or negative) and it is radially symmetric with respect
to some point in RN .

The qualitative result contained in Theorem 3.1.1 will be extended in this thesis to the case
f even, see Theorem 4.5.3. The existence of an infinite number of standing wave solutions to
(3.1.2) was instead faced by Lions in [271] (see also [128]); here the homogeneity of the source
plays a crucial role in order to work on finite dimensional subspaces. Similar ideas have been
applied in [8, 323] in presence of more general sources satisfying Ambrosetti-Rabinowitz type
conditions. We remark that all these multiplicity results deal with odd power nonlinearities f .

To our knowledge it is still an open problem the existence of infinitely many radially symmetric
solutions for the nonlinear Choquard equation (3.1.1) under the optimal assumptions (F1)–(F4)
and symmetric conditions on the nonlocal source term (Iα ∗ F (u))f(u), and this is the aim of
this Chapter. We note that this nonlinear term is odd both if f is even or odd.

Existence of a solution for the nonlinear Choquard equation (3.1.4) under mass constraint
has been obtained by Ye [388]; see also [261] for odd powers-sum type functions. More recently,
Cingolani and Tanaka in [124] obtained existence of a solution u ∈ H1

r (RN ) to




−∆u+ µu = (Iα ∗ F (u))f(u) in RN ,�
RN

u2dx = m,
(3.1.6)

assuming that F satisfies (F1), (F4) and it is L2-subcritical, namely

(CF2) there exists C > 0 such that, set 2m
α = N+α+2

N , for every s ∈ R,

|sf(s)| ≤ C
(|s|2#

α + |s|2m
α
)
;

(CF3)
lim
s→0

F (s)
|s|2#

α

= 0, lim
s→+∞

F (s)
|s|2m

α
= 0.

The existence result in [124] relies on a Lagrangian formulation of the problem, in the spirit of
Chapter 2.

Multiplicity of radial standing wave solutions to (3.1.3) with prescribed L2-norm has been
instead faced again by Lions in [271] (see also [118] for the planar logarithmic Choquard equation);
as regards instead the case of general nonlinearities f , recently Bartsch et al. [37] obtained the
existence of infinitely many solutions of (3.1.6) by assuming that f is an odd function which
satisfies monotonicity and Ambrosetti-Rabinowitz conditions. We highlight that the restriction
on odd functions is not just a matter of symmetry of the functional, but it is related also
to some sign restriction on the function f . The authors in [37] rely on mountain pass and
Concentration-Compactness arguments, together with the use of a stretched functional, i.e. a
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functional in an augmented space which takes into consideration scaling properties and the
Pohozaev identity.

It remains open the challenging problem of the existence of infinitely many solutions for the
constrained nonlinear Choquard equation (3.1.6) under optimal assumptions on the nonlinearity
f , when monotonicity and Ambrosetti-Rabinowitz type conditions do not hold or f is not odd.

In the present Chapter we will give an affirmative answer to both the unconstrained and
constrained problems when F satisfies the general Berestycki-Lions type assumptions (F1)–(F4)
and (F1)-(CF2)-(CF3)-(F4) respectively, together with the symmetric condition

(F5) F is odd or even.

We begin to notice that despite [124], where existence is investigated, to gain multiplicity
the symmetry of the function F plays a crucial role. In particular, we assume F to be odd or
even, which guarantees the evenness of the energy functional associated to (3.1.1). We emphasize
that the possibility to assume both the symmetries on F is a particular feature of the nonlocal
source: indeed, in the source-local case [51,224] (see also Chapter 2), the nonlinear term is usually
assumed odd in order to get the symmetry of the functional. We mention the recent paper [137]
where the existence of a single nonradial solution to (3.1.1) is obtained under the condition (F5).

We start to analyze the constrained case, which appears, as usual, more delicate. By virtue
of [310], radially symmetric solutions to (3.1.6) can be characterized as critical points of the
C1-functional L : H1

r (RN ) → R

L(u) := 1
2

�
RN

|∇u|2 dx− 1
2

�
RN

(Iα ∗ F (u))F (u) dx,

constrained on the sphere

Sm :=
{
u ∈ H1

r (RN ) |
�
RN

u2 dx = m

}
.

A possible approach to problem (3.1.6) is to minimize L on the sphere Sm, whenever the functional
is here bounded. Nevertheless, in the spirit of Chapter 2, for the general class of nonlinearities
related to [50, 302], considered in this thesis, we introduce a Lagrangian formulation of the
nonlocal problem (3.1.6), extending a new approach introduced by Hirata and Tanaka [224] for
the local case. We highlight again the advantage of this method, that can be suitably adapted to
derive multiplicity results of normalized solutions in several different frameworks.

We recall here briefly the ideas of Chapter 2. Writing R+ := (0,+∞), a solution (µ, u) ∈
R+ ×H1

r (RN ) of (3.1.6) corresponds to a critical point of the functional Im : R+ ×H1
r (RN ) → R

defined by

Im(µ, u) := 1
2

�
RN

|∇u|2 dx− 1
2

�
RN

(Iα ∗ F (u))F (u) dx+ µ

2

(�
RN

u2 dx−m

)
.

We seek for critical points (µ, u) ∈ R+ ×H1
r (RN ) of Im, namely weak solutions of ∂uIm(µ, u) = 0

and ∂µIm(µ, u) = 0.
Inspired by the Pohozaev identity, we introduce the Pohozaev functional P : R+ ×H1

r (RN ) →
R by setting

P(µ, u) := N − 2
2

�
RN

|∇u|2 dx+N
µ

2

�
RN

u2 dx− N + α

2

�
RN

(Iα ∗ F (u))F (u) dx

and the Pohozaev set

Ω :=
{
(µ, u) ∈ R+ ×H1

r (RN ) | P(µ, u) > 0
} ∪ {(µ, 0) | µ ∈ R+

}
.
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We note that {(µ, 0) | µ ∈ R+} ⊂ int(Ω) and thus

∂Ω =
{
(µ, u) ∈ R+ ×H1

r (RN ) | P(µ, u) = 0, u ̸≡ 0
}
,

where the interior and the boundary are taken with respect to the topology of R+ ×H1
r (RN ).

Therefore (µ, u) ∈ ∂Ω if and only if u ̸≡ 0 satisfies the Pohozaev identity P(µ, u) = 0. We
recognize a Mountain Pass structure for the functional Im in R+ ×H1

r (RN ), where the mountain
is given by ∂Ω. We call ∂Ω a Pohozaev mountain for Im. We emphasize that under assumptions
(F1)-(F2), if u ∈ H1

r (RN ) solves ∂uIm(µ, u) = 0 with µ ∈ R+ fixed, then P(µ, u) = 0.
Using a variant of the Palais-Smale condition [224,231], which takes into account the Pohozaev

identity, we will prove a deformation theorem which enables us to apply minimax arguments in
the product space R+ ×H1

r (RN ). We will prove the existence of multiple L2-normalized solutions
detecting minimax structures in such product space.

We state our main results.

Theorem 3.1.2. Suppose N ≥ 3, α ∈ (0, N) and (F1)-(CF2)-(CF3)-(F4)-(F5).

(i) For any k ∈ N there exists mk ≥ 0 such that for every m > mk, the problem (3.1.6) has at
least k pairs of nontrivial, distinct, radially symmetric solutions.

(ii) Assume in addition an L2-subcritical growth also at zero, i.e.

(CF4)
lim
s→0

|F (s)|
|s|2m

α
= +∞;

additionally, if F is odd, assume that there exists δ0 > 0 such that F has a constant
sign in (0, δ0] and

sup
s∈(0,δ0], h∈[0,1]

F (sh)
F (s) < +∞; (3.1.7)

for example, this is satisfied if |F (s)| is assumed non-decreasing in [0, δ0].

Then mk = 0 for each k ∈ N, that is for any m > 0 the problem (3.1.6) has countably many
pairs of solutions (µn, un)n satisfying L(un) < 0, n ∈ N. Moreover we have

L(un) → 0 as n → +∞.

Remark 3.1.3. We comment condition (3.1.7). Set

M := sup
s∈(0,δ0], h∈[0,1]

F (sh)
F (s) < +∞

we have, when |F (s)| is non-decreasing, M = 1. As a nontrivial example one can consider
β ∈ (2#

α , 2m
α ) and F oscillating near zero between |s|β and 2|s|β, so that M ≤ 2; for instance the

odd extension of
F (s) := sβ(2 + sin(1

s )
)

as s → 0+.

If instead F oscillates (not strictly) between |s|β1 and |s|β2, with 2#
α < β1 < β2 < 2m

α , then
M = +∞; thus for instance the odd extension of

F (s) := sβ1
(
1 + sin(1

s )
)

+ sβ2
(
1 − sin(1

s )
)

as s → 0+

is not covered by (3.1.7).
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Remark 3.1.4. We observe that, by substituting F with −F , there is no loss of generality in
assuming

F (s0) > 0 for some s0 ̸= 0

in (F4) (s0 can be chosen positive if, for example, (F5) holds) and

lim
s→0+

F (s)
|s|2m

α
= +∞

in (CF4). Thus, for the remaining part of the Chapter, we assume this positivity on the right-hand
side of zero.

A key point of the argument is the construction of multidimensional odd paths. When f
satisfies some Ambrosetti-Rabinowitz condition (i.e., F can be estimated from below by an
homogeneous function |t|p), the construction of such a path classically relies on the equivalence of
the H1-norm and the Lp-norm on finite dimensional subspaces of H1(RN ). When such condition
is no longer available, a finer construction is needed: in the celebrated paper [51] Berestycki and
Lions build this path for a local problem by exploiting an inductive process based on piecewise
affine functions.

In our nonlocal case, in order to prove the existence of multiple solutions for m ≫ 0 (point
(i) of Theorem 3.1.2), unlike the elaborated approach of [51] we can obtain the existence of
a multidimensional odd path by exploiting the positivity of the Riesz potential functional. A
similar approach can be implemented to gain existence of infinitely many solutions for any m > 0
when F is even (first part of point (ii) of Theorem 3.1.2), since in this case F can be assumed
positive in a neighborhood of the origin. See anyway Remark 3.1.6 below.

A quite delicate issue, instead, comes up when F is odd. Differently from [224] and Chapter
2, the classical argument given by [51] cannot be applied directly in the context of nonlinear
Choquard equations because of the presence of a nonlocal source, and we need to implement a
new approach to gain the existence of an admissible odd path.

To this aim we proceed by finding suitable annuli: using characteristic functions corresponding
to the annuli, we construct our multidimensional odd paths. Here interactions between these
characteristic functions produced by the Riesz potential play a crucial role, in particular the
index α is related to the strength of interaction and the case α ∈ (0, 1] reveals to be more delicate.
To this aim we use sharp estimates for the Riesz potential obtained by Thim [359].

As a further byproduct of the previous approach we gain the existence of infinitely many solu-
tions for the unconstrained problem. More precisely, defined the C1-functional Jµ : H1

r (RN ) → R
by setting

Jµ(u) := 1
2

�
RN

|∇u|2 dx+ µ

2

�
RN

u2 dx− 1
2

�
RN

(Iα ∗ F (u))F (u) dx,

we establish the following result.

Theorem 3.1.5. Suppose N ≥ 3, α ∈ (0, N) and µ > 0 fixed. Assume that (F1)–(F5) hold.
Then there exist countably many radial solutions (un)n of the nonlinear Choquard equation (3.1.1).
Moreover we have

Jµ(un) → +∞ as n → +∞.

Our multiplicity result is the counterpart of what done in [51] for the local case with odd
nonlinearities and extend the existence result in [302] due to Moroz and Van Schaftingen.

Remark 3.1.6. We highlight that the easier approach for building a multidimensional path, based
on the positivity of the Riesz kernel (Proposition 1.3.2), cannot generally be applied to more
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generally frameworks (also if F is even); for examples, when dealing with kernels K = K(x, y)
which do not makes the functional

g 7→
�
RN

�
RN

K(x, y)g(x)g(y)

positive (for example, K(x, y) sign-changing). In this case, the approach here developed, based on
suitable annuli, might instead be adapted. This is an interesting line of research for the future.

The Chapter is organized as follows. In Section 3.2 we focus on the construction of multi-
dimensional paths, by dealing first with an easier version based on the positivity of the Riesz
potential, and then a refined version based on some suitable annuli and essential interaction
estimates for non-local terms. Section 3.3 is then dedicated to the study of the asymptotic
behaviour of the mountain pass values, according to variable values of µ. Afterwards, in Section
3.4, we detect a mountain pass structure, built on the Pohozaev mountain, for the constrained
case, and in Section 3.5 we derive a Palais-Smale-Pohozaev condition. In Section 3.6 we introduce
an augmented functional which will be used to gain a deformation lemma, and we further study
suitable minimax values defined through the tool of the genus which allows to prove the main
Theorem 3.1.2. Finally in Section 3.7 we deal with the unconstrained case by proving Theorem
3.1.5.

3.2 Multidimensional annuli-shaped paths: even and odd non-
linearities

In this Chapter we briefly denote by q the lower-critical exponent 2#
α and by p the L2-critical

exponent 2m
α , i.e.

q := 2#
α = N + α

N
, p := 2m

α = N + α+ 2
N

.

Again, to avoid problems with the boundary of R+, we write from now on (see Section 4.2.2
for a different approach)

µ ≡ eλ ∈ (0,+∞), λ ∈ R.

We also set
D(u) := Dα(F (u), F (u)) =

�
RN

(Iα ∗ F (u))F (u) dx.

Using Proposition 1.3.1 and (F1)-(F2), we notice that D is continuous on L2(RN ) ∩ L2∗(RN ),
where 2∗ = 2N

N−2 is the Sobolev critical exponent, and thus continuous on H1
r (RN ); notice that if

we assume (CF2), then D is continuous also on L2(RN ) ∩ L2+ 4
N+α (RN ).

To deal with the unconstrained problem, we further define the C1-functional J : R ×
H1

r (RN ) → R by setting

J (λ, u) := 1
2∥∇u∥2

2 − 1
2D(u) + eλ

2 ∥u∥2
2, (λ, u) ∈ R ×H1

r (RN ). (3.2.8)

For a fixed λ ∈ R, u ∈ H1
r (RN ) is critical point of J (λ, ·) if and only if u solves (weakly)

− ∆u+ eλu = (Iα ∗ F (u))f(u) in RN . (3.2.9)

In this Section we study the geometry of

u ∈ H1
r (RN ) 7→ J (λ, u) ∈ R,

for a fixed λ ∈ R. We introduce a sequence of minimax values an(λ), n ∈ N∗: these values play
important roles to find multiple solutions for the constrained problem (Theorem 3.1.2) as well as
for the unconstrained problem (Theorem 3.1.5).
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For n ∈ N∗ and λ ∈ R we introduce the set of paths

Γn(λ) :=
{
γ ∈ C(Dn, H

1
r (RN )) | γ odd, J (λ, γ|∂Dn

) < 0
}

and the minimax values
an(λ) := inf

γ∈Γn(λ)
sup

ξ∈Dn

J (λ, γ(ξ)).

For n ≥ 2 the nonemptiness of Γn(λ) has to be checked; for n = 1 we refer to [302, claim 1 of
Proposition 2.1]. Classically, in the local framework this fact was proved in [51] by constructing
inductively piecewise affine paths. This construction does not fit the nonlocality interaction given
by the Choquard term, thus we need another approach.

Proposition 3.2.1. Assume (F1)–(F4) and F (±s0) ̸= 0. Let n ∈ N∗ and λ ∈ R. Then
Γn(λ) ̸= ∅, thus an(λ) is well defined. Moreover, an(λ) > 0 and it is increasing with respect to λ
and n.

Proof. Start observing that the polyhedron

Σ :=
{
t = (t1, . . . , tn) | max

i=1,...,n
|ti| = 1

}

is homeomorphic to ∂Dn (we passed from the L2 to the L∞ norm). Let us fix e1, . . . , en ∈ C∞
c (RN ),

each of them between 0 and 1, radially symmetric, equal to one in some annulus Ai, and such
that their supports are mutually disjoint. Then set γ : Σ → H1

r (RN ) by

γ(t)(x) := s0

n∑

i=1
tiei(x) (3.2.10)

for every t = (t1, . . . , tn) ∈ Σ and x ∈ RN . The map γ is clearly odd and continuous. Moreover
every t ∈ Σ has at least a nontrivial component |ti| = 1, thus we have F (γ(t)(x)) = F (s0tiei(x)) =
F (±s0) ̸= 0 on Ai, hence F (γ(t)) ̸≡ 0. By Proposition 1.3.2 we have

D(γ(t)) > 0 for each t ∈ Σ.

Since
D ◦ γ : Σ → R

is continuous, and Σ is compact, we obtain

min
t∈Σ

D(γ(t)) =: C > 0,

i.e.
D(γ(t)) ≥ C > 0 for each t ∈ Σ.

Set moreover M := maxΣ ∥γ∥2
H1 ∈ R. By scaling, we obtain

Jλ(γ(t)(·/θ)) = θN−2

2 ∥∇γ(t)∥2
2 + θNeλ

2 ∥γ(t)∥2
2 − θN+α

2 D(γ(t))

≤ θN−2

2 M + θNeλ

2 M − θN+α

2 C < 0

for some θ = θ∗ ≫ 0. Thus we consider γ̃ := γ(·)(·/θ∗) : ∂Dn → H1
r (RN ). Finally we extend γ̃

to Dn by
γ̃(ξ) := |ξ|γ

(
ξ

|ξ|

)

for every ξ ∈ Dn \ {0}, and γ̃(0) := 0. Therefore γ̃ ∈ Γn(λ) ̸= ∅.
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What remains to prove is the monotonicity and positivity of an(λ). Since Dn ⊂ Dn+1, we
may regard for γ ∈ Γn+1(λ),

γ|Dn
∈ Γn(λ).

Thus we have an(λ) ≤ an+1(λ). Since J (λ, u) is monotone in λ, we also have the monotonicity
with respect to λ.

The positivity of a1(λ) is essentially obtained in [302] (see also [124]). Thus

an(λ) ≥ a1(λ) > 0.

In the proof of Proposition 3.2.1 we hardly relied on the positivity of the Riesz potential
functional given in Proposition 1.3.2, to obtain the existence of path γ : Dn → H1

r (RN ) and a
C > 0 such that

D(γ(ξ)) ≥ C > 0 for each ξ ∈ ∂Dn. (3.2.11)

Notice moreover that this γ satisfies γ(θξ) = θγ(ξ) for any ξ ∈ Dn and θ ∈ R. Anyway, no good
information on the constant C appearing in (3.2.11) are given by this result.

A useful estimate in order to get infinitely many solutions for any m > 0, when (CF4) holds,
is the one which relates D(θγ) to F (θs0) (see Lemma 3.2.8 and Section 3.3), that is

D(θγ(ξ)) ≥ C(F (±θs0))2 for each ξ ∈ ∂Dn and θ ∈ [0, 1] (3.2.12)

for some uniform C > 0. When F is positive in a neighborhood of the origin (which is the case
of F even and (CF4)), then one can build a suitable γ which satisfies (3.2.12).

Proposition 3.2.2. Assume (F1)–(F4). Assume moreover that F is positive in some [−s0, s0],
F (±s0) ̸= 0. Let n ∈ N∗ and λ ∈ R. Then the path γ ∈ Γn(λ) defined in (3.2.10) satisfies
(3.2.12).

Proof. Assume the notation of the proof of Proposition 3.2.1. For each t ∈ Σ, there exists
|tk| = 1, thus, by exploiting that θs0tiei ∈ [−s0, s0] we obtain

D(θγ(t)) =
�
RN

�
RN

Iα(x− y)F
(
θs0

n∑

i=1
tiei(x)

)
F


θs0

n∑

j=1
tjej(x)




=
n∑

i=1

n∑

j=1

�
RN

�
RN

Iα(x− y)F
(
θs0tiei(x)

)
F
(
θs0tjej(x)

)

≥
�
RN

�
RN

Iα(x− y)F
(
θs0tkek(x)

)
F
(
θs0tkek(y)

)

≥ (
F (±θs0)

)2
�

Ak

�
Ak

Iα(x− y)

which is the claim.

When F is odd (and thus it cannot be positive around the origin) it seems not an easy task
to build a γ ∈ Γn(λ) satisfying (3.2.12); indeed some estimate from below on

�
RN

�
RN

Iα(x− y)
F
(
θγ(ξ)(x)

)
F
(
θγ(ξ)(y)

)
(
F (θs0)

)2

uniform for θ → 0 seems required; this is related to quotients of the type F (sh)
F (s) with s ∈ (0, s0]

and h ∈ [0, 1]. This is essentially the meaning of condition (3.1.7).

To deal with this case we need a deep understanding of the Riesz potential on radial functions.
We thus give now a different construction for a γ ∈ Γn(λ): this procedure might be investigated



88 3. Choquard-Hartree-Pekar equations: multiplicity of solutions

also for more general Choquard-type equations, where different kernels (possibly sign-changing)
appear.

We start by recalling a result contained in [359, Theorem 1] (see also [294, Lemma 6.3] and
references therein).

Theorem 3.2.3 ([359]). Let α ∈ (0, N) and u ∈ L1(RN ) ∩ L∞(RN ) be radial. Then Iα ∗ u is
radial and

(Iα ∗ u)(r) = rα

� ∞

0
Fα

(
r

ρ

)(
ρ

r

)α

u(ρ) dρ
ρ
, (3.2.13)

where Fα is positive and it satisfies, for some constants CN,0, CN,∞, CN,α > 0,

Fα(s) → CN,0 as s → 0, Fα(s)
sα−N

→ CN,∞ as s → +∞

and
Fα(s)
Gα(s) → 1 as s → 1, (3.2.14)

with

Gα(s) :=





CN,α if α ∈ (1, N),
CN,α| log |s− 1|| if α = 1,
CN,α|s− 1|α−1 if α ∈ (0, 1).

(3.2.15)

For a proof of Proposition 3.2.1, we prepare some notation and some estimates. We introduce
the annuli

A(R, h) :=
{
x ∈ RN | |x| ∈ [R− h,R+ h]

}
, χ(R, h; ·) := χA(R,h)

for any R ≫ h > 0. We have the following key estimates.

Lemma 3.2.4. It results as h → 0

�
RN ×RN

Iα(x− y)χ(1, h;x)χ(1, h; y) dxdy ∼





h2 if α ∈ (1, N),
h2| log h| if α = 1,
h1+α if α ∈ (0, 1).

Proof. We apply Theorem 3.2.3 to u(|x|) = χ(1, h; |x|). In particular, by (3.2.13) we have

Sh :=
�

RN ×RN

Iα(x− y)u(x)u(y) dxdy = C

� ∞

0
(Iα ∗ u)(r)u(r)rN−1 dr

= C

� ∞

0

� ∞

0
Fα

(
r

ρ

)
ρα−1rN−1u(ρ)u(r) dρdr = C

�
[1−h,1+h]2

Fα

(
r

ρ

)
ρα−1rN−1.

First we note that
sup

ρ,r∈[1−h,1+h]

∣∣∣∣
r

ρ
− 1

∣∣∣∣ → 0 as h → 0.

We consider the following three cases separately:

(i) α ∈ (1, N), (ii) α = 1, (iii) α ∈ (0, 1).

(i) When α ∈ (1, N) we may assume F ( r
ρ) ∼ CN,α > 0. Thus

Sh ∼
�

[1−h,1+h]2
ρα−1rN−1 dρdr ∼ h2.

(ii) When α = 1

Fα

(
r

ρ

)
∼ G1

(
r

ρ

)
= CN,1

∣∣∣ log
∣∣∣r
ρ

− 1
∣∣∣
∣∣∣
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∼
∣∣ log |r − ρ| − log ρ

∣∣ = − log |r − ρ| + log ρ.

Thus
Sh ∼

�
[1−h,1+h]2

(− log |r − ρ| + log ρ)rN−1 dρdr.

Set

Ah :=
{
(ρ, r)| |ρ− r| ≤ 1

2h, |r − 1| ≤ 1
2h
}
,

Bh :=
{
(ρ, r)| |ρ− r| ≤ 2h, |r − 1| ≤ h

}
,

we have
Ah ⊂ [1 − h, 1 + h]2 ⊂ Bh.

Hence for some C, C ′ > 0

C

�
Ah

(− log |r − ρ| + log ρ)rN−1 dρdr ≤ Sh ≤ C ′
�

Bh

(− log |r − ρ| + log ρ)rN−1 dρdr. (3.2.16)

We compute
�

Bh

(− log |r − ρ| + log ρ)rN−1 dρdr

≤
�

Bh

(− log |r − ρ| + log(1 + h))(1 + h)N−1 dρdr

=
�

[−2h,2h]×[1−h,1+h]
(− log |τ | + log(1 + h))(1 + h)N−1 dτdr

= 4h(1 + h)N−1
� 2h

0
(− log τ) dτ + 8h2(1 + h)N−1 log(1 + h)

= 4h(1 + h)N−1(− 2h log(2h) + 2h
)

+ 8h2(1 + h)N−1 log(1 + h)
≤ C ′′h2| log h| as h → 0.

Similarly we have
�

Ah

(− log |r − ρ| + log ρ)rN−1 dρdr ≥ C ′′′h2| log h|,

from which we obtain
Sh ∼ h2| log h| as h → 0.

(iii) When α ∈ (0, 1)

Fα

(
r

ρ

)
∼ Gα

(
r

ρ

)
= CN,α

∣∣∣∣
r

ρ
− 1

∣∣∣∣
α−1

.

Thus

Sh ∼
�

[1−h,1+h]2

∣∣∣∣
r

ρ
− 1

∣∣∣∣
α−1

ρα−1rN−1 dρdr =
�

[1−h,1+h]2
|r − ρ|α−1 rN−1 dρdr.

Since

C

�
Ah

|r − ρ|α−1(1 − h)N−1 dρdr ≤ Sh ≤ C ′
�

Bh

|r − ρ|α−1(1 + h)N−1 dρdr,

we have as in (3.2.16)
Sh ∼ h1+α as h → 0.

This completes the proof.
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We show how to use it to build a continuous odd map in L2(RN )∩L2∗(RN ). By a regularization
argument, we will obtain a map in Γn(λ).

By scaling, we have
�

RN ×RN

Iα(x− y)χ(R, h;x)χ(R, h; y) dxdy

= RN+α

�
RN ×RN

Iα(x− y)χ
(
1, h
R

;x
)
χ
(
1, h
R

; y
)
dxdy

∼





RN+α( h
R)2 if α ∈ (1, N),

RN+1( h
R)2| log h

R | if α = 1,
RN+α( h

R)1+α if α ∈ (0, 1).

For R ≥ 2, we set the thickness of the annuli as

hR :=





R− N−2+α
2 if α ∈ (1, N),

R− N−1
2 (logR)−1/2 if α = 1,

R− N−1
1+α if α ∈ (0, 1),

so that a uniform bound is gained.

Corollary 3.2.5. We have
�

RN ×RN

Iα(x− y)χ(R, hR;x)χ(R, hR; y) dxdy ∈ [C01, C02] for R ≥ 2, (3.2.17)

where C01, C02 > 0 are independent of R ≥ 2.

Proof. We check (3.2.17) only for α = 1. We have
�

RN ×RN

Iα(x− y)χ
(
1, hR

R
;x
)
χ
(
1, hR

R
; y
)
dxdy

∼ RN+1
(hR

R

)2∣∣∣ log
(hR

R

)∣∣∣

= RN+1
(
R− N−1

2 | logR|−1/2

R

)2 ∣∣∣∣∣log
(
R− N−1

2 | logR|−1/2

R

)∣∣∣∣∣

= (logR)−1
∣∣∣log

(
R− N+1

2 (logR)−1/2
)∣∣∣

= (logR)−1
(
N + 1

2 logR+ 1
2 log(logR)

)

→ N + 1
2 as R → ∞.

whic shows the claim.

Next we compute the interaction effect between χ(Ri, hRi ; ·) and χ(Rj , hRj ; ·) with i, j ∈ N,
i ̸= j and R ≫ 1.

Lemma 3.2.6. For i < j we have
�

RN ×RN

Iα(x− y)χ(Ri, hRi ;x)χ(Rj , hRj ; y) dxdy → 0 as R → ∞.

Proof. Since suppχ(R, hR; ·) = A(R, hR) we get

dist
(

suppχ(Ri, hRi ; ·), suppχ(Rj , hRj ; ·)) = (Rj − hRj ) − (Ri + hRi)
= Rj −O(Ri).
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Thus

IR :=
�

RN ×RN

Iα(x− y)χ(Ri, hRi ;x)χ(Rj , hRj ; y) dxdy

≤ C(Rj +O(Ri))−(N−α)∥χ(Ri, hRi ; ·)∥1∥χ(Rj , hRj ; ·)∥1.

Here
∥χ(R, hR; ·)∥1 = meas(A(R, hR)) ∼ CRN−1hR

hence

IR ≤ qC(Rj −O(Ri))−(N−α)R(N−1)ihRiR(N−1)jhRj

≤ C ′R(α−1)j+(N−1)ihRihRj .

When α ∈ (1, N), we have by the definition of hR

IR ≤ CR(α−1)j+(N−1)iR− 1
2 (N−2+α)(i+j)

= C ′R− 1
2 (N−α)(j−i) → 0 as R → ∞;

when α = 1, we obtain

IR ≤ C ′R(N−1)iR− 1
2 (N−1)(i+j)(logRi)− 1

2 (logRj)− 1
2

= C ′R− 1
2 (N−1)(j−i)(ij)− 1

2 (logR)−1 → 0 as R → ∞;

when α ∈ (0, 1),

IR ≤ C ′R(α−1)j+(N−1)iR− N−1
1+α

(i+j)

= C ′R− 1
1+α

((N−α2)j−α(N−1)i) → 0 as R → ∞.

This concludes the proof.

We have now the tools to build a refined path γ ∈ Γn(λ).
Proof of Proposition 3.2.1 (refined). We construct now a path γ ∈ Γn(λ); this path will
moreover satisfy

max
ξ∈Dn, x∈RN

|γ(ξ)(x)| ≤ s0.

Step 1: Construction of an odd path in Lr.
For n ≥ 2 we consider again the polyhedron

Σ =
{
t = (t1, . . . , tn) | max

i=1,...,n
|ti| = 1

}
.

For a large R ≫ 1, which we will choose later, we define

γR(t)(x) :=
n∑

i=1
sgn(ti)χ

(
Ri, |ti|hRi ;x

)
: Σ → Lr(RN )

where r ∈ [1,+∞]. Here we regard χ(Ri, 0;x) ≡ 0, and we notice that γR(t) is radial for each
t ∈ Σ. Considered s0, we have

D(s0γR(t)) =
∑

i,j

F (sgn(ti)s0)F (sgn(tj)s0)·

·
�

RN ×RN

Iα(x− y)χ(Ri, |ti|hRi ;x)χ(Ri, |tj |hRi ; y) dxdy.

We note that
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(i) For any t = (t1, . . . , tn) ∈ Σ, there exists at least one tk such that |tk| = 1.

(ii) By Lemma 3.2.4,

(F (±s0))2
�

RN ×RN

Iα(x− y)χ(Rk, hRk ;x)χ(Rk, hRk ; y) dxdy ≥ C0.

(iii) By (i) and (ii),
n∑

i=1
(F (±s0))2

�
RN ×RN

Iα(x− y)χ(Ri, hRi ;x)χ(Ri, hRi ; y) dxdy ≥ C0.

(iv) If i ̸= j, by Lemma 3.2.6,
�

RN ×RN

Iα(x− y)χ(Ri, hRi ;x)χ(Rj , hRj ;x) dxdy → 0 as R → ∞.

By (i)–(iv), we have for sufficiently large R ≫ 1,

D(s0γR(t)) ≥ C > 0 for all t ∈ Σ. (3.2.18)

In what follows we fix R ≫ 1 so that (3.2.18) holds.
Step 2: Construction of an odd path in H1

r .
For 0 ≤ h ≪ R and ε > 0, we set

χε(R, h;x) :=





1 if x ∈ A(R, h),
1 − 1

ε dist(x,A(R, h)), if dist(x,A(R, h)) ∈ (0, ε),
0 otherwise.

Here we regard A(R, 0) = {x ∈ RN | |x| = R}. We note that

χε(R, h; ·) ∈ H1
r (RN ) for ε > 0,

χε(R, h; ·) → χ(R, h; ·) in Lr(RN ) as ε → 0 for all r ∈ [1,∞),
suppχε(Ri, hRi ; ·) ∩ suppχε(Rj , hRj ; ·) = ∅ for i ̸= j for ε small.

We set
γε,R(t) :=

n∑

i=1
sgn(ti)χε(Ri, |ti|hRi ; ·), t ∈ Σ, (3.2.19)

γε,R : Σ → H1
r (RN ), continuous. By (3.2.18) and the continuity of D on L2(RN ) ∩ L2∗(RN ), we

have for ε > 0 small
D(s0γε,R(t)) ≥ C > 0 for all t ∈ Σ.

Since
J (λ, u(·/θ)) = 1

2θ
N−2∥∇u∥2

2 + eλ

2 θ
N ∥u∥2

2 − 1
2θ

N+αD(u),

we have for large θ ≫ 1

J (λ, s0γε,R(t)(·/θ)) < 0 for all t ∈ Σ ≈ ∂Dn.

Considering Dn = {st | s ∈ [0, 1], t ∈ Σ} and extending s0γε,R(t)(·/θ) to Dn by

γ̃(st) := ss0γε,R(t)(·/θ),

finally we obtain a path γ̃ ∈ Γn(λ).
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Remark 3.2.7. Even without assuming the positivity of F (see Proposition 3.2.2), we notice
that the construction of an odd map in Lr gets easier when F is an even function. Indeed there
is no negative contribution given by the mixed interactions. We give only an outline of the proof,
highlighting that in this case we do not need to use the fine Theorem 3.2.3 given by [359].

Define for every i = 1, . . . n and s ∈ [−1, 1] the annuli

Ai(s) :=
{
x ∈ RN | |x| ∈ [2ni− |s|, 2ni+ |s|]}.

For every t = (t1, . . . , tn) ∈ Σ we have that A1(t1), . . . , An(tn) are disjoint. Moreover, if ti = 0,
then meas(Ai(ti)) = 0. Thus we define a continuous, odd map by

γ(t)(x) :=
n∑

i=1
sgn(ti)χAi(ti)(x) : Σ → L2(RN ) ∩ L2∗(RN ).

Since F is even, we obtain

D(s0γ(t))

=
∑

i,j

�
Ai(ti)×Aj(tj)

Iα(x− y)F (s0sgn(ti)χAi(ti)(x))F (s0sgn(tj)χAj(tj)(y)) dxdy

=
(
F (s0)

)2∑

i,j

�
Ai(ti)×Aj(tj)

Iα(x− y) dxdy
(
F (s0)

)2 ≥ C > 0,

where C does not depend on the specific t. The regularization to a H1
r -path can be done as in the

general case (or by mollification), as well as the extension to Dn.
We highlight that this construction can be adapted also to the local case, and thus it gives a

simplified construction of a multidimensional path in the setting of Berestycki and Lions [51].

We are ready now to show that γR,ε : Σ → H1
r (RN ), defined in (3.2.19), has the desired

property (3.2.12).

Lemma 3.2.8. Assume (F1)–(F5), and F > 0 in some (0, δ0]. If F is odd, additionally assume
(3.1.7). Then there exists a constant A > 0 independent of s ∈ (0, δ0] and t ∈ Σ such that

D(sγR,ε(t)) ≥ 1
2
(
F (s)

)2(A+ oε(1)) as ε → 0;

here oε(1) is a quantity which goes to 0 as ε → 0 uniformly in t ∈ Σ and s ∈ (0, δ0].

Proof. We prove Lemma 3.2.8 in two steps.
Step 1: For t ∈ Σ, set

aij(t) :=
�

RN ×RN

Iα(x− y)χ(Ri, |ti|hRi ;x)χ(Rj , |tj |hRj ; y) dxdy.

Then for sufficiently large R > 0, we have

A := inf
t∈Σ




n∑

i=1
aii(t) −

n∑

i ̸=j

aij(t)


 > 0. (3.2.20)

This fact follows from (3.2.17) and Lemma 3.2.6. We fix R ≫ 1 so that (3.2.20) holds.
Step 2: D(sγR,ε(t)) ≥ 1

2F (s)2A as ε → 0.
We note that for ε > 0 small

suppχε(Ri, |ti|hRi ; ·) ∩ suppχε(Rj , |tj |hRj ; ·) = ∅ for i ̸= j.
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Thus we have

D(sγR,ε(t))

=
∑

i,j

�
RN ×RN

Iα(x− y)F (s sgn(ti)χε(Ri, |ti|hRi ;x))F (s sgn(tj)χε(Rj , |tj |hRj ; y)) (3.2.21)

=:
∑

i,j

Bij(s, t). (3.2.22)

We consider cases i = j and i ̸= j separately.
First we focus on the case i = j. For both even and odd F we have

Bii(s, t)

=
�

RN ×RN

Iα(x− y)F (s sgn(ti)χε(Ri, |ti|hRi ;x))F (s sgn(ti)χε(Rj , |ti|hRi ; y))

=
�

RN ×RN

Iα(x− y)F (sχε(Ri, |ti|hRi ;x))F (sχε(Rj , |ti|hRi ; y))

≥
�

RN ×RN

Iα(x− y)F (sχ(Ri, |ti|hRi ;x))F (sχ(Rj , |ti|hRi ; y))

= (F (s))2aii(t), (3.2.23)

where we used the positivity of F and the monotonicity of the integral. Next we consider the
case i ̸= j for even F . Since F (s) ≥ 0 for s ∈ [−δ0, δ0] we obtain

Bij(s, t) ≥ 0 for all t ∈ Σ. (3.2.24)

Finally we consider the case i ̸= j for odd F . Since |F (s)| = F (|s|) for s ∈ [−δ0, δ0]

Bij(s, t)

=
�

RN ×RN

Iα(x− y)F (s sgn(ti)χε(Ri, |ti|hRi ;x))F (s sgn(tj)χε(Rj , |tj |hRj ; y)) (3.2.25)

≥ −
�

RN ×RN

Iα(x− y)F (sχε(Ri, |ti|hRi ;x))F (sχε(Rj , |tj |hRj ; y)). (3.2.26)

Setting
Ci(t, ε) :=

{
x | dist(x,A(Ri, |ti|hRi)) ∈ (0, ε)

}

we have

χε(Ri, |ti|hRi ;x) ∈ (0, 1) for x ∈ Ci(ti, ε),
χε(Ri, |ti|hRi ;x) = χ(Ri, |ti|hRi ;x) for x ̸∈ Ci(ti, ε),
meas(Ci(ti, ε)) → 0 as ε → 0, uniformly in t ∈ Σ.

Thus for r ∈ [1,∞) and s ∈ (0, δ]
∥∥∥∥

1
F (s)F (sχε(Ri, |ti|hRi ; ·)) − χ(Ri, |ti|hRi ; ·)

∥∥∥∥
r

r

≤
�

Ci(ti,ε)

∣∣∣∣
1

F (s)F (sχε(Ri, |ti|hRi ;x))
∣∣∣∣
r

dx

=
(

max
h∈[0,1]

|F (hs)|
|F (s)|

)r

meas(Ci(ti, ε))

→ 0 as ε → 0 uniformly in t ∈ Σ.
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Here we use the fact that maxh∈[0,1]
F (sh)
F (s) ≤ C, which follows from the local almost-monotonicity

assumption in (CF4). We note that (3.2.27) implies, exploiting again (CF4)
∣∣∣∣∣

1
(F (s))2

�
RN ×RN

Iα(x− y)F (sχε(Ri, |ti|hRi ;x))F (sχε(Rj , |tj |hRj ; y)) − aij(t)
∣∣∣∣∣

→ 0 as ε → 0. (3.2.27)

By (3.2.26) and (3.2.27),

Bij(s, t) ≥ −(F (s))2(aij(t) + o(1)) as ε → 0. (3.2.28)

Thus, it follows from (3.2.22)–(3.2.24) and (3.2.28) that

D(sγR,ε(t)) ≥ (F (s))2




n∑

i=1
aii(t) −

∑

i ̸=j

aij + o(1)




≥ 1
2(F (s))2(A+ o(1))

This concludes the proof.

3.3 Asymptotic analysis of mountain pass values
We end this Section with some key estimates on the asymptotic behaviour of an(λ) as λ → ±∞.

Proposition 3.3.1. Assume (F1)–(F4) and let n ∈ N∗.

(i) If (CF3) holds, then limλ→+∞
an(λ)

eλ = +∞.

(ii) If (CF4) holds, then limλ→−∞
an(λ)

eλ = 0.

Proof of (i) of Proposition 3.3.1. Recall q = N+α
N , p = N+α+2

N , and write µ = eλ (and
consequently adapt the notations) for the sake of simplicity.

Since an(µ) ≥ a1(µ) for each n ∈ N∗, it is sufficient to show the claim for n = 1. By (CF3),
for any δ > 0 there exists Cδ > 0 such that

|F (s)| ≤ δ|s|p + Cδ|s|q for all s ∈ R.

For v ∈ H1
r (RN ), setting us := sN/2v(s·), we have

D(us) = s−N−αD(sN/2v)

≤ s−N−α

�
RN

(
Iα ∗ (δs

N
2 p|v|p + Cδs

N
2 q|v|q)

)
(δs

N
2 p|v|p + Cδs

N
2 q|v|q) dx

= s2
�
RN

(
Iα ∗ (δ|v|p + Cδs

−1|v|q)
)
(δ|v|p + Cδs

−1|v|q) dx

=: s2Dδ,Cδs−1(v), (3.3.29)

where we write for δ > 0 and A ≥ 0,

Dδ,A(v) :=
�
RN

(
Iα ∗ (δ|v|p +A|v|q)

)
(δ|v|p +A|v|q) dx,

Jδ,A(v) := 1
2∥∇v∥2

2 + 1
2∥v∥2

2 − 1
2Dδ,A(v).
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We also denote by b(δ, A) the MP value of Jδ,A. Taking into account the continuity and
monotonicity property of b(δ, A) with respect of each variable δ and A and observing that Jδ,A

satisfies the (PS) condition, we have

b(δ, A) → b(δ, 0) as A → 0+,

b(δ, 0) → +∞ as δ → 0+.

Thus, from (3.3.29) we have that

J (µ, us) ≥ s2
(1

2∥∇v∥2
2 + 1

2µs
−2∥v∥2

2 − 1
2Dδ,Cδs−1(v)

)
.

Setting s := √
µ, we obtain

J (µ, u√
µ) ≥ µJδ,Cδµ−1/2(v)

and thus a1(µ)
µ ≥ b(δ, Cδµ

−1/2), which implies

lim inf
µ→∞

a1(µ)
µ

≥ lim
A→0

b(δ, A) = b(δ, 0).

Since δ > 0 is arbitrary, we gain
lim

µ→+∞
a1(µ)
µ

= +∞.

We deal now with the proof of (ii) of Proposition 3.3.1. We highlight that, when F is even, the
proof can be simplified (see [124], Proposition 2.3.6, and Proposition 3.2.2).

The proof will be based on the key Lemma 3.2.8. We start noticing that, by (CF4) and
Remark 3.1.4, for some δ0 > 0

F (s) > 0 for s ∈ (0, δ0],

which implies

(i) when F is even, F (s) > 0 for all s ∈ [−δ0, δ0] \ {0};

(ii) when F is odd, F (s) < 0 for all s ∈ [−δ0, 0).

By (CF4), we also note that there exists Ls > 0 with Ls → +∞ as s → 0+ such that

F (σ) ≥ Lsσ
p for all σ ∈ [0, s]. (3.3.30)

Proof of (ii) of Proposition 3.3.1. Let γR,ε defined in (3.2.19). For s0 ∈ (0, δ0] and µ > 0,
we consider the map

st ∈ Dn 7→ ss0γR,ε(t)(·/µ− 1
2 ) ∈ H1

r (RN ).

We have by Lemma 3.2.8 (since ε > 0 is here fixed small, we write A instead of A+ oε(1))

µ−1J (µ, ss0γR,ε(t)(·/µ− 1
2 ))

= 1
2µ

− N
2 (ss0)2∥∇γR,ε(t)∥2

2 + 1
2µ

− N
2 (ss0)2∥γR,ε(t)∥2

2 − 1
2µ

− N
2 pD(ss0γR,ε(t))

≤ 1
2µ

− N
2 (ss0)2∥γR,ε(t)∥2

H1 − 1
4µ

− N
2 p(F (ss0))2A.

Thus for µ small
J (µ, s0γR,ε(t)(·/µ− 1

2 )) < 0 for t ∈ Σ,

which implies that st 7→ s0γR,ε(t)(·/µ− 1
2 ) is a path belonging to Γn(µ). Moreover by (3.3.30)

µ−1an(µ) ≤ max
s∈[0,1], t∈Σ

µ−1J (µ, ss0γR,ε(t)(·/µ− 1
2 ))
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≤ max
s∈[0,1], t∈Σ

1
2µ

− N
2 (ss0)2∥γR,ε(t)∥2

H1 − 1
4µ

− N
2 p(F (ss0))2A

≤ max
s∈[0,1], t∈Σ

1
2µ

− N
2 (ss0)2∥γR,ε(t)∥2

H1 − 1
4Ls0(µ− N

2 (ss0)2)pA

≤ Cs0 ,

where
Cs0 := sup

τ≥0, t∈Σ

(1
2τ∥γR,ε(t)∥2

H1 − 1
4Ls0Aτ

p
)

∈ R.

Thus we have
lim sup

µ→0+
µ−1an(µ) ≤ Cs0 .

Since Cs0 → 0 as s0 → 0, we have (ii) of Proposition 3.3.1.

3.4 The Pohozaev mountain
In this Section we start studying the Lagrangian formulation, applying the previous asymptotic
estimates to a Pohozaev geometry. We consider the functional Im : R×H1

r (RN ) → R defined by

Im(λ, u) := 1
2∥∇u∥2

2 − 1
2D(u) + eλ

2
(∥u∥2

2 −m
)
, (λ, u) ∈ R ×H1

r (RN ). (3.4.31)

It is immediate that, for any (λ, u) ∈ R ×H1
r (RN ),

Im(λ, u) = J (λ, u) − eλ

2 m.

If (F1)-(F2) hold, by [302, Theorems 2 and 3] we have that each solution u of (3.2.9) belongs to
W 2,2

loc (RN ) and it satisfies the Pohozaev identity

N − 2
2 ∥∇u∥2

2 + N

2 e
λ∥u∥2

2 − N + α

2 D(u) = 0 (3.4.32)

or equivalently
1
2∗

α

∥∇u∥2
2 + eλ

2#
α

∥u∥2
2 − D(u) = 0

where 2∗
α = N+α

N−2 and 2#
α = N+α

N are the upper and the lower critical exponents; again we see
that essentially the identity means d

dθ J (λ, u(·/eθ))|θ=0 = 0. Inspired by this relation, we also
introduce the Pohozaev functional P : R ×H1

r (RN ) → R by setting

P(λ, u) := N − 2
2 ∥∇u∥2

2 − N + α

2 D(u) + N

2 e
λ∥u∥2

2, (λ, u) ∈ R ×H1
r (RN ). (3.4.33)

We consider the action of G := Z2 on Rn, n ∈ N∗, and on R ×H1
r (RN ), given by

(±1, ξ) ∈ G × Rn 7→ ±ξ ∈ Rn,

(±1, λ, u) ∈ G × (
R ×H1

r (RN )
) 7→ (λ,±u) ∈ R ×H1

r (RN ).
We notice that, under the assumption (F5), Im, J and P are invariant under this action, i.e.
they are even in u:

Im(λ,−u) = Im(λ, u), J (λ,−u) = J (λ, u), P(λ,−u) = P(λ, u).

In addition, we observe by the Principle of Symmetric Criticality of Palais [310] that every critical
point of Im restricted to R×H1

r (RN ) is actually a critical point of Im on the whole R×H1(RN ).
Finally, we denote by P2 : R ×H1

r (RN ) → H1
r (RN ) the projection on the second component.
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Moreover we consider the Pohozaev set

Ω :=
{
(λ, u) ∈ R ×H1

r (RN ) | P(λ, u) > 0
} ∪ {(λ, 0) | λ ∈ R

}
;

under the assumption (F5), Ω is symmetric with respect to the axis {(λ, 0) | λ ∈ R}, that is,

(λ, u) ∈ Ω =⇒ (λ,−u) ∈ Ω.

We start showing the following property, due to the fact that D(u) = o(∥u∥2
H1) as u → 0.

Lemma 3.4.1. We have
{(λ, 0) | λ ∈ R} ⊂ int(Ω). (3.4.34)

Proof. By
|F (s)| ≲ |s|q + |s|p

where q = N+α
N and p = N+α+2

N < 2∗. Thus

∥F (u)∥ 2N
N+α

≲ ∥|u|q∥ 2N
N+α

+ ∥|u|p∥ 2N
N+α

= ∥u∥q
2 + ∥u∥p

2Np
N+α

.

Therefore by Proposition 1.3.1 and Young’s inequality we have
�
RN

(Iα ∗ |F (u)|)|F (u)| dx ≲ ∥F (u)∥2
2N

N+α

≲
(

∥u∥q
2 + ∥u∥p

2Np
N+α

)2

≲ ∥u∥2q
2 + ∥u∥2p

2Np
N+α

≤ ∥u∥2q
H1 + ∥u∥2p

H1

thus
P(λ, u) ≲ ∥u∥2

H1 − ∥u∥2q
H1 − ∥u∥2p

H1 > 0
for ∥u∥H1 small, u ̸= 0.

By (3.4.34) we detect the Pohozaev mountain

∂Ω =
{
(λ, u) ∈ R ×H1

r (RN ) | P(λ, u) = 0, u ̸≡ 0
}
.

We observe that ∂Ω ̸= ∅, for instance by [302, Theorems 1 and 3].

Proposition 3.4.2. Assume (F1)–(F4) and (F5). We have the following properties.

(i) J (λ, u) ≥ 0 for all (λ, u) ∈ Ω.

(ii) J (λ, u) ≥ a1(λ) > 0 for all (λ, u) ∈ ∂Ω.

(iii) Assume (CF3). For any m > 0, we set

Em := inf
(λ,u)∈∂Ω

Im(λ, u), and Bm := inf
λ∈R

(
a1(λ) − eλ

2 m
)
.

Then Em ≥ Bm > −∞. In particular Bm ∈ R and

Im(λ, u) ≥ Bm for every (λ, u) ∈ ∂Ω.

Proof. We notice that for all (λ, u) ∈ Ω

J (λ, u) ≥ J (λ, u) − P(λ, u)
N + α

= α+ 2
2(N + α)∥∇u∥2

2 + α

2(N + α)e
λ∥u∥2

2 ≥ 0

and thus (i) follows. Point (ii) follows from the fact that for each λ the mountain pass level
a1(λ) coincides with the ground state energy level (see [301, Section 4.2] and Section 4.3 for
details); see also Remark 3.4.3. Focus on (iii): the fact that Em ≥ Bm is a direct consequence of
(ii), while the fact that Bm > −∞ comes from Proposition 3.3.1 (i).
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Remark 3.4.3. In order to show that a1(λ) > 0, without exploiting the existence result for
the unconstrained problem, we argue as follows (see also [114]). Let γ ∈ Γ1(λ); by definition
of Γ1(λ) and by Proposition 3.4.2 (i) there exists t∗ such that γ(t∗) ∈ ∂Ω and γ(t∗) ̸= 0, thus
P(λ, γ(t∗)) = 0. This means that

J (λ, γ(t∗)) = α+ 2
2(N + α)∥∇γ(t∗)∥2

2 + αµ

2(N + α)∥γ(t∗)∥2
2 ≃ ∥γ(t∗)∥2

H1

thus
a(λ) ≳ inf

u∈(∂Ω)λ

∥u∥2
H1 .

Since, by (3.4.34), (∂Ω)λ is far from the line (λ, 0), we obtain that the right-hand side is strictly
positive, which is the claim.

From now on we assume (CF3) to give sense to the quantity Bm. In view of Proposition
3.4.2 (iii), we set for m > 0 and n ∈ N∗

Γm
n :=

{
Θ ∈ C(Dn,R ×H1

r (RN )) | Θ is G-equivariant, Im(Θ(0)) ≤ Bm − 1,
Θ|∂Dn /∈ Ω, Im(Θ|∂Dn) ≤ Bm − 1

}

and
bm

n := inf
Θ∈Γm

n

sup
ξ∈Dn

I(Θ(ξ));

we point out that asking Θ = (Θ1,Θ2) ∈ Γm
n to be G-equivariant means that Θ1 is even and Θ2

is odd, and in particular Θ2(0) = 0 which implies Θ(0) ∈ Ω.

Proposition 3.4.4. Assume (F1)-(F2)-(CF3)-(F4)-(F5). We have the following properties.

(i) For any m > 0 and n ∈ N∗, we have Γm
n ̸= ∅ and

bm
n ≤ an(λ) − eλm

2 , (3.4.35)

for each λ ∈ R. Moreover, bm
n increases with respect to n.

(ii) For any k ∈ N∗ there exists mk ≥ 0, namely given by

mk := 2 inf
λ∈R

ak(λ)
eλ

, (3.4.36)

such that for m > mk

bm
n < 0 for n = 1, 2, . . . , k.

Moreover, mk is increasing with respect to k.

(iii) If (CF4) holds, then mk = 0 for each k ∈ N∗. That is, for each m > 0 we have

bm
n < 0 for all n ∈ N∗.

Proof. For given λ ∈ R and ζ ∈ Γn(λ), we will find a ψ ∈ Γm
n such that

max
ξ∈Dn

J (ψ(ξ)) ≤ max
ξ∈Dn

J (λ, ζ(ξ)), (3.4.37)

so that we have
bm

n ≤ max
ξ∈Dn

Im(ψ(ξ)) ≤ max
ξ∈Dn

J (λ, ζ(ξ)) − eλ

2 m

and, passing to the infimum over Γn(λ), we gain (3.4.35).
To find ψ ∈ Γm

n with (3.4.37), observe that, by definition of Γn(λ) and compactness of ζ(∂Dn),
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there exists C > 0 such that D(ζ(ξ)) ≥ C > 0 for ξ ∈ ∂Dn. Thus, we have Im(λ, ζ(ξ)(·/L)) →
−∞ and P(λ, ζ(ξ)(·/L)) → −∞ as L → +∞, uniformly for ξ ∈ ∂Dn. Thus, for L ≫ 1 we obtain,
for every ξ ∈ ∂Dn,

Im(λ, ζ(ξ)(·/L)) ≤ Bm − 1 and P(λ, ζ(ξ)(·/L)) < 0. (3.4.38)

We also note that Im(λ+ L, 0) = − eλ+L

2 m → −∞ as L → +∞. Thus, for L ≫ 1, we find that
the path ψ : Dn → R ×H1

r (RN )

ψ(ξ) :=





(λ+ L(1 − 2|ξ|), 0) if |ξ| ∈ [0, 1/2],
(
λ, ζ

(
ξ

|ξ|(2|ξ| − 1)
)

(·/L)
)

if |ξ| ∈ (1/2, 1]

satisfies ψ(0) = (λ+ L, 0) ∈ R × {0}, Im(ψ(0)) ≤ Bm − 1 and Im(ψ(ξ)) ≤ Bm − 1 for ξ ∈ ∂Dn.
Thus, by (3.4.38), we obtain ψ ∈ Γm

n and (3.4.37) holds.
The monotonicity of bm

n with respect to n is a consequence of the definition. Point (ii) follows
from (3.4.35) and (iii) follows from Proposition 3.3.1 (ii).

As a corollary to Proposition 3.4.4, we have the following result.

Corollary 3.4.5. For any m > 0, we have

Bm = Em = bm
1 ,

i.e. the first minimax value bm
1 equals the Pohozaev minimum Em on the product space.

Proof. Since any path in Γm
n passes through ∂Ω, we have bm

n ≥ Em ≥ Bm for each n. On the
other hand, passing to the infimum (3.4.35) we obtain bm

1 ≤ Bm and thus the claim.

3.5 The Palais-Smale-Pohozaev condition
For every b ∈ R we set

Km
b :=

{
(λ, u) ∈ R ×H1

r (RN ) | Im(λ, u) = b, ∂λIm(λ, u) = 0, ∂uIm(λ, u) = 0
}
.

As already observed, under (F1)-(F2) we have that P(λ, u) = 0 for each (λ, u) ∈ Km
b . We notice

also that, assuming (F5), Km
b is invariant under the G-action, that is

(λ, u) ∈ Km
b =⇒ (λ,−u) ∈ Km

b .

Under our assumptions on F , it seems difficult to verify the standard Palais-Smale condition
for the functional Im. Therefore we cannot recognize that Km

b is compact.
Inspired by [125, 224, 231], we introduce the Palais-Smale-Pohozaev condition, a weaker

compactness condition that takes into account the scaling properties of Im through the Pohozaev
functional P. Through this tool we will show that Km

b is compact when b < 0.

Definition 3.5.1. For b ∈ R, we say that (λn, un)n ⊂ R ×H1
r (RN ) is a Palais-Smale-Pohozaev

sequence for Im at level b (shortly a (PSP )b sequence) if

Im(λn, un) → b, (3.5.39)

∂λIm(λn, un) → 0, (3.5.40)
∥∂uIm(λn, un)∥(H1

r (RN ))∗ → 0, (3.5.41)
P(λn, un) → 0. (3.5.42)

We say that Im satisfies the Palais-Smale-Pohozaev condition at level b (shortly the (PSP )b

condition) if every (PSP )b sequence has a strongly convergent subsequence in R ×H1
r (RN ).
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We show now the following result.

Proposition 3.5.2. Assume (F1)-(CF2)-(CF3) and let b < 0. Then Im satisfies the (PSP )b

condition.

Proof. Let b < 0 and let (λn, un) ⊂ R × H1
r (RN ) be a (PSP )b sequence, i.e. satisfying

(3.5.39)–(3.5.42). First we note that by (3.5.40) we obtain

eλn
(∥un∥2

2 −m
) → 0. (3.5.43)

Step 1: λn is bounded from below and ∥un∥2
2 → m as n → +∞.

We have by (3.5.42), (3.5.39) and (3.5.43)

o(1) = P(λn, un)

= −α+ 2
2 ∥∇un∥2

2 + (N + α)
(
Im(λn, un) − eλn

2
(∥un∥2

2 −m
))

+ N

2 e
λn∥un∥2

2

= −α+ 2
2 ∥∇un∥2

2 + (N + α)(b+ o(1)) + N

2 e
λnm+ o(1).

Here we used (3.5.43). From the above identity, we derive boundedness of λn from below, since
b < 0. This result joined to (3.5.43) finally gives ∥un∥2

2 → m.
Step 2: λn and ∥∇un∥2

2 are bounded.
Since, by (3.5.41), εn := ∥∂uIm(λn, un)∥(H1

r (RN ))∗ → 0, we have

∥∇un∥2
2 −

�
RN

(Iα ∗ F (un))f(un)undx+ eλn∥un∥2
2 ≤ εn∥un∥H1 . (3.5.44)

We observe that by (CF3) for δ > 0 fixed, there exists Cδ > 0 such that

|F (s)| ≤ δ|s|p + Cδ|s|q

where we recall p = N+α+2
N and q = N+α

N . Thus

∥F (un)∥ 2N
N+α

≤ δ∥|un|p∥ 2N
N+α

+ Cδ∥|un|q∥ 2N
N+α

= δ∥un∥p
2Np
N+α

+ Cδ∥un∥q
2.

Therefore by (CF2), Proposition 1.3.1 and Young’s inequality we have
�
RN

(
Iα ∗ |F (un)|)|f(un)un| dx

≤ C∥F (un)∥ 2N
N+α

∥f(un)un∥ 2N
N+α

≤ C

(
δ∥un∥p

2Np
N+α

+ Cδ∥un∥q
2

)
· C ′

(
∥un∥p

2Np
N+α

+ ∥un∥q
2

)

≤ CC ′δ∥un∥2p
2Np
N+α

+ CC ′(δ + Cδ)
(
δ

2∥un∥2p
2Np
N+α

+ 1
2δ∥un∥2q

2

)
+ CC ′Cδ∥un∥2q

2

≤ C ′′δ∥un∥2p
2Np
N+α

+ C ′′
δ ∥un∥2q

2

and thus, by the Gagliardo-Nirenberg inequality and (3.5.44),

∥∇un∥2
2 + eλn∥un∥2

2 ≤
�
RN

(Iα ∗ |F (un)|)|f(un)un|dx+ εn∥un∥H1

≤ C ′′′δ∥∇un∥2
2∥un∥2(p−1)

2 + C ′′
δ ∥un∥

2(N+α)
N

2 + εn∥un∥H1 .

Since by Step 1 ∥un∥2
2 = m+ o(1), we obtain

(1 − C ′′′δ(m+ o(1))p−1)∥∇un∥2
2 + eλn(m+ o(1))
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≤ C ′′
δ (m+ o(1))

N+α
N + εn(∥∇un∥2

2 +m+ o(1))1/2.

For δ small enough, we have the boundedness of eλn and ∥∇un∥2. Hence λn can not go to +∞
and thus by Step 1 we infer that λn is bounded.
Step 3: λn and un strongly converge.
By Steps 1-2, the sequence (λn, un)n is bounded in R × H1

r (RN ) and thus after extracting a
subsequence, denoted in the same way, we may assume that λn → λ0 and un ⇀ u0 weakly in
H1

r (RN ) for some (λ0, u0) ∈ R ×H1
r (RN ). Taking into account the assumptions (F1)–(F3) and

the compact embedding of H1
r (RN ) in Lr(RN ) for r ∈ (2, 2∗), we have by Proposition 1.5.9

�
RN

(Iα ∗ F (un))f(un)u0 dx →
�
RN

(Iα ∗ F (u0))f(u0)u0 dx

and �
RN

(Iα ∗ F (un))f(un)un dx →
�
RN

(Iα ∗ F (u0))f(u0)u0 dx.

By (3.5.41) we derive that ⟨∂uIm(λn, un), un⟩ → 0 and ⟨∂uIm(λn, un), u0⟩ → 0, and hence
(∇un,∇(un − u0))2 + (un, e

λnun − eλ0u0)2 → 0. Combining this with un ⇀ u0 and λn → λ0 we
get

∥∇un∥2
2 + eλn∥un∥2

2 → ∥∇u0∥2
2 + eλ0∥u0∥2

2

which implies un → u0 strongly in H1
r (RN ).

As a straightforward consequence we obtain the following result.

Corollary 3.5.3. Assume (F1)-(CF2)-(CF3) and let b < 0. Then Km
b ∩ (R × {0}) = ∅ and Km

b

is compact.

Remark 3.5.4. We emphasize that the (PSP )b condition does not hold at level b = 0. Indeed
we can consider a (PSP )0 unbounded sequence (λn, 0) with λn → −∞.

3.6 Genus-shaped critical points
In this Section we essentially follow the lines of Sections 2.4.2–2.7. We give just an outline,
avoiding details and proofs.

3.6.1 Augmented functional
We start by achieving a deformation lemma. In order to do this we define

M := R × R ×H1
r (RN )

and introduce the augmented functional Hm : M → R

Hm(θ, λ, u) := Im(λ, u(e−θ·)) (3.6.45)

= e(N−2)θ

2 ∥∇u∥2
2 − e(N+α)θ

2 D(u) + eλ

2
(
eNθ∥u∥2

2 −m
)

for all (θ, λ, u) ∈ M , and thus ∂θHm(θ, λ, u) = P(λ, u(·/eθ)). We point out that, considered the
action of G on M

G ×M → M ; (±1, θ, λ, u) 7→ (θ, λ,±u)

and assumed (F5), it results that Hm is G-invariant. Introducing a metric on M by

∥(α, ν, h)∥2
(θ,λ,u) :=

∣∣∣
(
α, ν, ∥h(e−θ·)∥H1

)∣∣∣
2
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for any (α, ν, h) ∈ T(θ,λ,u)M ≡ R × R ×H1
r (RN ), we regard M as a Hilbert manifold. We also

denote the dual norm on T ∗
(θ,λ,u)M by ∥ ·∥(θ,λ,u),∗, and observe that both ∥ ·∥(θ,λ,u) and ∥ ·∥(θ,λ,u),∗

actually depend only on θ.
Denote now D := (∂θ, ∂λ, ∂u) the gradient with respect to all the variables; a direct computa-

tion shows that for any (θ, λ, u) ∈ M

∥DHm(θ, λ, u)∥2
(θ,λ,u),∗

= |P(λ, u(e−θ·))|2 + |∂λIm(λ, u(e−θ·))|2 + ∥∂uIm(λ, u(e−θ·))∥2
(H1

r (RN ))∗ .

We furthermore define the set of critical points of Hm at level b by

K̃m
b :=

{
(θ, λ, u) ∈ M | Hm(θ, λ, u) = b, DHm(θ, λ, u) = 0

}

=
{
(θ, λ, u(eθ·)) | (λ, u) ∈ Km

b , θ ∈ R
}
.

Finally we introduce the distance between two points as

distM

(
(θ0, λ0, h0), (θ1, λ1, h1)

)
:=

inf
{� 1

0
∥γ̇(t)∥γ(t) dt | γ ∈ C1([0, 1],M), γ(0) = (θ0, λ0, h0), γ(1) = (θ1, λ1, h1)

}
.

As a consequence of Proposition 3.5.2 we obtain the following.

Proposition 3.6.1. Assume (F1)-(CF2)-(CF3) and let b < 0. Then Hm satisfies the following
Palais-Smale-type condition (P̃SP )b: for each sequence (θn, λn, un)n ⊂ M such that

Hm(θn, λn, un) → b,

∥DHm(θn, λn, un)∥(θn,λn,un),∗ → 0
as n → +∞, we have, up to a subsequence,

distM ((θn, λn, un), K̃m
b ) → 0.

3.6.2 Deformation theory
We write, for b ∈ R

[Im ≤ b] :=
{
(λ, u) ∈ R ×H1

r (RN ) | Im(λ, u) ≤ b
}
,

[Hm ≤ b]M :=
{
(θ, λ, u) ∈ M | Hm(θ, λ, u) ≤ b

}
.

We state the following result.

Proposition 3.6.2. Assume (F1)-(CF2)-(CF3). Let b < 0, and let O be a neighborhood of Km
b

with respect to the standard distance of R ×H1
r (RN ). Let ε̄ > 0, then there exist ε ∈ (0, ε̄) and

η : [0, 1] × (R ×H1
r (RN )) → R ×H1

r (RN ) continuous such that

1. η(0, ·, ·) = idR×H1
r (RN );

2. η fixes [Im ≤ b− ε̄], that is, η(t, ·, ·) = id[Im≤b−ε̄] for all t ∈ [0, 1];

3. Im is non-increasing along η, and in particular Im(η(t, ·, ·)) ≤ Im(·, ·) for all t ∈ [0, 1];

4. if Km
b = ∅, then η(1, [Im ≤ b+ ε]) ⊆ [Im ≤ b− ε];

5. if Km
b ̸= ∅, then

η(1, [Im ≤ b+ ε] \ O) ⊆ [Im ≤ b− ε]
and

η(1, [Im ≤ b+ ε]) ⊆ [Im ≤ b− ε] ∪ O;
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6. if (F5) holds, then η(t, ·, ·) is G-equivariant, i.e. for η = (η1, η2) we have η1 even and η2
odd in u.

To prove this, we work first on the functional H, for which we obtained a (P̃SP ) condition,
which implies that for any b < 0 there exists ε, δ, ν > 0 such that

∥DHm(θ, λ, u)∥(θ,λ,u),∗ ≥ ν

for (θ, λ, u) ∈ M satisfying Hm(θ, λ, u) ∈ [b− ε, b+ ε] and distM ((θ, λ, u), K̃m
b ) ≥ δ.

Proposition 3.6.3. Assume (F1)-(CF2)-(CF3). Let b < 0, and let Õ be a neighborhood of K̃m
b

with respect to distM . Let ε̄ > 0, then there exist ε ∈ (0, ε̄) and η̃ : [0, 1] ×M → M continuous
such that

1. η̃(0, ·, ·, ·) = idM ;

2. η̃ fixes [Hm ≤ b− ε̄]M , that is η̃(t, ·, ·, ·) = id[Hm≤b−ε̄]M for all t ∈ [0, 1];

3. Hm is non-increasing along η̃, and in particular Hm(η̃(t, ·, ·, ·)) ≤ Hm(·, ·, ·) for all t ∈ [0, 1];

4. if K̃m
b = ∅, then η̃(1, [Hm ≤ b+ ε]M ) ⊆ [Hm ≤ b− ε]M ;

5. if K̃m
b ̸= ∅, then

η̃(1, [Hm ≤ b+ ε]M \ Õ) ⊆ [Hm ≤ b− ε]M
and

η̃(1, [Hm ≤ b+ ε]M ) ⊆ [Hm ≤ b− ε]M ∪ Õ;

6. if (F5) holds, then η̃(t, ·, ·) is G-equivariant, i.e. for η̃ = (η̃0, η̃1, η̃2) we have η̃0, η̃1 even
and η̃2 odd in u.

To get Proposition 3.6.2 from Proposition 3.6.3 we introduce

π : (θ, λ, u) ∈ M 7→ (λ, u(e−θ·)) ∈ R ×H1
r (RN ),

ι : (λ, u) ∈ R ×H1
r (RN ) 7→ (0, λ, u) ∈ M,

which are a kind of rescaling projection and immersion satisfying

π ◦ ι = idR×H1
r (RN ), π(K̃m

b ) = Km
b ,

Hm ◦ ι = Im, Im ◦ π = Hm.

For a deformation η̃ obtained in Proposition 3.6.3 we thus define

η(t, λ, u) := π(η̃(t, ι(λ, u))), (t, λ, u) ∈ [0, 1] × (R ×H1
r (RN )). (3.6.46)

3.6.3 Multiple critical points
For each n ∈ N∗, define

Λm
n := {A = Θ(Dn+l \ Y ) | l ∈ N, Θ ∈ Γm

n+l,

Y ⊆ Dn+l \ {0} is closed, symmetric in 0
and genus(Y ) ≤ l}

and
cm

n := inf
A∈Λm

n

sup
A

Im.

We notice that {Θ(Dn)}Θ∈Γm
n

⊂ Λm
n . In the following lemma, we observe that Λm

n and cm
n

inherit the properties of Γm
n and bm

n , also given by

A ∩ ∂Ω ̸= ∅ for all A ∈ Λm
1 ,

together with the extra property (v).
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Proposition 3.6.4. Assume (F1)-(F2)-(CF3)-(F4). Let n ∈ N∗ and m > 0. Then

(i) Λm
n ̸= ∅.

(ii) Λm
n+1 ⊆ Λm

n , and thus cm
n ≤ cm

n+1.

(iii) cm
n ≤ bm

n .

(iv) Bm = Em ≤ cm
1 .

(v) Let A ∈ Λm
n and Z ⊂ R × H1

r (RN ) be G-invariant, closed, and such that 0 /∈ P2(Z) and
genus(P2(Z)) ≤ i < n. Then A \ Z ∈ Λm

n−i.

Fix n ∈ N∗ and let Λm
n and cm

n satisfying the properties of Proposition 3.6.4. We build now
multiple solutions.

Proposition 3.6.5. Assume (F1)-(CF2)-(CF3)-(F4)-(F5). Fix k ∈ N∗ and assume m > mk

(see (3.4.36)). Then
cm

1 ≤ cm
2 ≤ · · · ≤ cm

k < 0
are critical values of Im. Moreover

(i) if, for some q ∈ N∗,
cm

n < cm
n+1 < · · · < cm

n+q < 0
then we have q + 1 different nonzero critical values, and thus q + 1 different pairs of
nontrivial solutions of (3.1.6);

(ii) if instead, for some q ∈ N∗,

cm
n = cm

n+1 = · · · = cm
n+q =: b < 0 (3.6.47)

then
genus(P2(Km

b )) ≥ q + 1 (3.6.48)
and thus #P2(Km

b ) = +∞, which means that we have infinite different solutions of (3.1.6).

Summing up, we have at least k different pairs of nontrivial solutions of (3.1.6).

3.7 The unconstrained problem
In this Section we show how to exploit some of the developed tools also to obtain infinitely
many radial solutions for the unconstrained problem (3.1.1), and give a sketch of the proof of
Theorem 3.1.5. Here we assume (F1)–(F5). We fix λ ∈ R and write µ = eλ; omitting λ, we
denote J (·) := J (λ, ·) : H1

r (RN ) → R, i.e.

J (u) := 1
2∥∇u∥2

2 − 1
2D(u) + µ

2 ∥u∥2
2, u ∈ H1

r (RN ). (3.7.49)

Similarly we write P(·) := P(λ, ·). For every b ∈ R we set

Kb := {u ∈ H1
r (RN ) | J (u) = b, J ′(u) = 0}.

We have the following result.

Proposition 3.7.1. Assume (F1)–(F3) and let b ∈ R. Then J satisfies the Palais-Smale-
Pohozaev condition at level b (shortly (PSP )b), that is every sequence (un)n ⊂ H1

r (RN ) satisfying

J (un) → b, (3.7.50)

∥J ′(un)∥(H1
r (RN ))∗ → 0, (3.7.51)

P(un) → 0, (3.7.52)
admits a strongly convergent subsequence in H1

r (RN ). In particular, Kb is compact in H1
r (RN ).
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Proof. First observe that, by (3.7.50) and (3.7.52) we obtain
α+ 2

2 ∥∇un∥2
2 + α

2 µ∥un∥2
2 = (N + α)b+ o(1). (3.7.53)

We observe that b ≥ 0 and the boundedness of un in H1
r (RN ). Thus by (F2)-(F3), D′(un) has a

strongly convergent subsequence in (H1
r (RN ))∗ and by (3.7.51), un has a strongly convergent

subsequence in H1
r (RN ). Here we make use of Proposition 1.5.9.

Set [J ≤ b] := {u ∈ H1
r (RN ) | Jλ(u) ≤ b}. Following the arguments of Section 3.6 and 3.6.2,

we prove the following deformation result by means of an augmented functional.
Proposition 3.7.2. Assume (F1)–(F3). Let b ∈ R and let O be a neighborhood of Kb(λ). Let
ε̄ > 0, then there exist ε ∈ (0, ε̄) and η : [0, 1] ×H1

r (RN ) → H1
r (RN ) continuous such that

1. η(0, ·) = idH1
r (RN );

2. η fixes [J ≤ b− ε̄], that is, η(t, u) = u for all t ∈ [0, 1] and J (u) ≤ b− ε̄;

3. J is non-increasing along η, and in particular J (η(t, ·)) ≤ J (·) for all t ∈ [0, 1];

4. if Kb = ∅, then η(1, [J ≤ b+ ε]) ⊆ [J ≤ b− ε];

5. if Kb ̸= ∅, then
η(1, [J ≤ b+ ε] \ O) ⊆ [J ≤ b− ε]

and
η(1, [J ≤ b+ ε]) ⊆ [J ≤ b− ε] ∪ O;

6. if (F5) holds, then η(t, ·) is G-equivariant, i.e. it is odd.
As in Section 3.2, for any n ∈ N∗ we define Γn := Γn(λ). We note that Γn ̸= ∅ is shown in

Proposition 3.2.1. Now our Theorem 3.1.5 can be obtained through the arguments given in [325].
Here we just give the definition of another minimax classes Λm

n , which ensures the multiplicity of
solutions. We set for n ∈ N∗

Λn := {A = Θ(Dn+l \ Y ) | l ∈ N∗, Θ ∈ Γn+l,

Y ⊆ Dn+l \ {0} is closed, symmetric in 0
and genus(Y ) ≤ l}

and
cn := inf

A∈Λn

sup
A

J .

Then we have {γ(Dn)| γ ∈ Γn} ⊂ Λn and we can also see that
0 < c1 ≤ c2 ≤ · · · ≤ cn ≤ · · · .

Thus we have the following result.
Proposition 3.7.3. Assume (F1)–(F5). Let n ∈ N∗ and m > 0. Then

(i) Λn ̸= ∅ and cn ≤ cn+1.

(ii) Let A ∈ Λn and Z ⊂ H1
r (RN ) be G-invariant, closed, and such that 0 /∈ Z and genus(Z) ≤

i < n. Then A \ Z ∈ Λn−i.

(iii) cn is a critical value of J . Moreover
cn → +∞ as n → +∞.

In particular, J has an unbounded sequence of critical values.
Proof. Using Proposition 3.7.2, the proof can be given along the lines in [325]. See also
[125].

Proof of Theorem 3.1.5. Theorem 3.1.5 follows from Proposition 3.7.3.
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Doubly nonlocal equations: qualitative and quantitative
results

This Chapter is dedicated to the study of the following fractional Choquard equation

(−∆)su+ µu =
(
Iα ∗ F (u)

)
F ′(u) in RN

where N ≥ 2, s ∈ (0, 1), α ∈ (0, N), µ > 0 and F ∈ C1(R) is a general nonlinearity, in the
spirit of Berestycki and Lions assumptions. After having achieved existence of positive solutions
and ground states, we will focus on the study of some qualitative properties of these solutions:
boundedness, regularity, L1-summability, positivity, radial symmetry and asymptotic decay. We
will stress how the interplay between a fractional framework and a nonlocal nonlinearity, generally
nonhomogeneous, obstructs the application of classical techniques. Some results generalize the
ones presented in [138] and extend [79,302]; in particular, some new results are stated also for
the limiting case s = 1. In addition, we will see that the interaction of the two nonlocalities
arises a new critical threshold.

This Chapter is mainly based on the papers: [114] (see also [113]) for Section 4.2, [115]
for Sections 4.2, 4.3, 4.4.1–4.4.3, 4.6.1, [112] for Sections 4.3, 4.4.4-4.4.5, 4.5, [197] for Sections
4.6.2–4.6.7, and [117] for Section 4.7.

4.1 An example of double nonlocality: collapse of boson stars
In Sections 2.1 and 3.1 we highlighted the importance in physics of the fractional Laplacian and
of the Hartree-type terms. Combinations of the two arise as well in different frameworks: for
example equations of the type

(−∆)su+ µu =
(
Iα ∗ F (u)

)
f(u) in RN (4.1.1)

where N ≥ 2, s ∈ (0, 1), α ∈ (0, N), µ > 0 and f = F ′ ∈ C(R), can be found in quantum
chemistry [24,142,215] (see also [103] for some orbital stability results): here (4.1.1) appears in the
study of the mean field limit of weakly interacting molecules and in the physics of multi-particle
systems. In particular the equation applies to the study of graphene [276], where the nonlocal
nonlinearity describes the short time interactions between particles. Doubly nonlocal equations
appear also in the dynamics of populations [85], where small or large values of s better model
specific environments.

One of the main applications anyway arises in the study of exotic stars: minimization
properties related to (4.1.1) play indeed a fundamental role in the mathematical description

107
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of the dynamics of pseudorelativistic boson stars and their gravitational collapse [169, 192–
195, 222, 256–258, 269], as well as the evolution of attractive fermionic systems, such as white
dwarf stars [214]. In fact, the study of the ground states to (4.1.1) gives information on the size
of the critical initial conditions for the solutions of the corresponding pseudorelativistic equation
[256], where a critical value is given by the Chandrasekhar limiting mass. In particular, when
s = 1

2 , N = 3, α = 2 and f(u) = u, we obtain

√
−∆u+ µu =

( 1
4π|x| ∗ u2

)
u in R3 (4.1.2)

related to the so called massless boson stars equation [189, 222, 258], where the pseudorelativistic
operator

√
−∆ +m collapses to the square root of the Laplacian. Here f(t) = |t|r−2t with r = 2

is L2-critical: in this Chapter, when dealing with the mass-constrained problem, we essentially
address the subcritical case r ∈ (5

3 , 2), but we believe that this result, together with the developed
minimax tools, can be a first step towards the study of the L2-mass critical (and supercritical)
case, since for these problems the minimization approach is generally not well posed. Moreover,
the high generality assumed on the function f could be useful in the study of different physical
problems.

Mathematically, concerning the fractional Schrödinger equation with Hartree nonlinearity,
we mention the papers [138, 139] where D’Avenia, Siciliano and Squassina considered the case of
pure power nonlinearities and obtained existence and qualitative properties of the solutions. We
mention also [103,202] for some orbital stability results, [104] for a Strichartz estimates approach,
and [129] for the unidimensional case. Other results can be found in [41,277,342] for superlinear
nonlinearities, in [219] for some local perturbation, in [218,305] for critical equations and in [386]
for concentration phenomena with strictly noncritical and monotone sources.

The existence of L2-normalized solutions was investigated when F (t) = |t|p in [382] (see
also [203, 212] for L2-supercritical Cauchy problems by scattering), while in [102] it has been
addressed the non-autonomous unconstrained case. In [141], symmetry and monotonicity of
positive solutions are shown for the fractional Hartree equation for µ = 0 and a critical power
nonlinearity, by means of the direct method of moving planes. Regularity results for a class of
doubly nonlocal equations on bounded domains are obtained in [207].

Some theoretical aspects related to the study of doubly nonlocal equations, both in the
operator and in the source, remain open for general nonlinearities F , in particular when F is not
a power function or F is odd.

In the present Chapter we are interested to derive some qualitative properties of the solutions
to (4.1.1), also in these special cases. In particular, after having stated existence of free
and normalized solutions, we will focus our attention on the study of regularity of solutions
(boundedness, L1-summability, Hölder continuity, differentiability), moving then to positivity
and symmetry of ground states, to tackle at the end the asymptotic behaviour at infinity. The
precise statements will be presented throughout the Chapter: these results generalize some of
the ones in [138] from the case of power functions to general nonlinearities of Berestycki-Lions
type; moreover, we extend some results of [302] to the fractional framework, and some results of
[79] to the Choquard framework.

The achieving of these results requires some technical effort in order to deal with the two
nonlocalities and their interaction, as well as the nonhomogeneity and the nonregularity of the
function f . In particular, we highlight some of the difficulties that arise in this general framework.

In the proof of the positivity, for instance (as well as in the proof of the existence), the
presence of the fractional power of the Laplacian does not allow to use the fact that every solution
satisfies the Pohozaev identity to conclude that, if |u| is a solution, then it satisfies the Pohozaev
identity; moreover, the conservation of the norm of the gradient does not hold anymore, i.e.
∥∇|u|∥2 = ∥∇u∥2 is not generally true in the fractional framework, and an inequality is needed.
In addition, when dealing with f even other information about u are lost through inequalities;



4.1. An example of double nonlocality: collapse of boson stars 109

this is not the case when dealing with f odd [302]. Furthermore, the presence of the Choquard
term, which scales differently from the L2-norm term, does not allow to implement the classical
minimization argument of [50, 131] (see (5.5.78)), which is useful to deal with the absolute value
of u. Similarly, the nonhomogeneity of the nonlinearity f obstructs the minimization approach
of [138, 300]. Thus, a new approach is needed, and it relies on a fiber map which sends solutions
to the Pohozaev set (see Proposition 4.5.5). When dealing with f even, this technique allows to
treat also the case s = 1, generalizing [302].

Regarding the L1-summability, the possibility of including a critical behaviour in zero (that is,
F (t) ∼ t2

#
α ) is not relevant when dealing with pure power functions [138,300], since no solution

exists in this case: this growth is instead relevant for general f (for example, suitable sum of
powers). Contrary to the case of noncritical nonlinearities, when f is critical it is not possible to
implement a simple bootstrap argument to achieve that every solution is in L1: a new method is
thus needed, and it is based on a suitable combination of bootstrap argument and fixed point
theorems (see Proposition 4.4.10). The study of this case is new even for s = 1, improving
[300,302].

When studying the asymptotic behaviour of solutions, especially when f has a sublinear
growth, the interaction of the two nonlocalities is quite strong, and new phenomena arise: indeed,
contrary to the local case s = 1 [300], here the effect of the fractional Laplacian and of the
Choquard term give rise to a new threshold depicting the qualitative profile of ground states at
infinity (see Theorem 4.6.11). From a technical point of view, new difficulties arise related to
the explicit computation of the fractional Laplacian, and to the computation of concave powers,
requiring a more delicate analysis and the implementation of new inequalities (see Sections 1.2.2
and 1.2.4). This result is new even for power functions, improving [138].

We refer to the following Sections for the detailed statements of the results.

The Chapter is organized as follows. In the remaining part of the Section we will briefly
give a physical interpretation of equation (4.1.1) in the framework of gravitational collapses.
In Section 4.2 we will deal with existence of solutions, both for the unconstrained problem
and the constrained one, by highlighting some approach different from the ones developed in
Chapters 2 and 3; some properties related to the energy minimum levels and existence of positive
solutions will be then investigated in Section 4.3. Section 4.4 will be devoted to the study of
regularity of positive solutions, including boundedness and Hölder regularity; moreover we will
gain L1-summability of solutions through a combination of bootstrap and fixed point maps
arguments. Then in Section 4.5 we will exploit these results in order to gain positivity and
radial symmetry of Pohozaev minima, by the implementation of maximum principles on some
fiber maps. Afterwards, we will investigate in Section 4.6 the asymptotic decay of ground states,
focusing especially on the case of f sublinear, which raises some new phenomenon. Finally in
Section 4.7 we furnish a proof of the Pohozaev identity in the doubly nonlocal framework, by
assuming the solutions merely C1.

Physical derivation

Here we want to show how equation (4.1.1), in the particular case N = 3, s = 1
2 , α = 2 and

F (u) = 1
2u

2, can be derived from a significant physical framework regarding boson stars. Aim of
this Section is just to give an idea of the process, without any aim of accuracy or rigors. We refer
to [93,169,192,196,213,257,258,268,269,296,307] (see also [189,270,308,360] and [193,214,256])
for complete expositions on the topic.

The goal is to show how the equation (4.1.2) is strictly connected with the self-gravitational
collapse of boson stars. Actually a similar derivation holds also for neutron stars and white
dwarfs, with some little complications.

Let us consider thus a group of n bosons (i.e. particles with entire spin, described by symmetric
functions, and which do not respond to the Pauli exclusion principle). We assume these bosons
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to form a boson star, i.e. n ≫ 0 and we assume most of them (i.e. up to o(N) particles) to be
close one to each other and moving at a fast speed: these particles are at a same coherent state
ψ (and for this reason called condensate) and create a trap for the remaining particles.

Due to the high speed of the particles, we cannot ignore the special relativistic effect; on the
other hand, since the masses are not too big, we can ignore the effect of general relativity (this is
not the case, instead, of neutron stars). Thus we consider the total relativistic energy

E2 = (pc)2 + (mc2)2

summation of the kinetic energy and the energy at rest; here p is the momentum, m the mass of
the boson particle at rest, c the speed of light. Thus we obtain, in momentum representation,

E =
√

|ξ|2c2 +m2c4;

passing through a quantization p 7→ −iℏ∇ to the coordinate representation (and setting ℏ := 1)
we obtain the pseudorelativistic operator

E =
√

−c2∆ +m2c4.

We observe that, letting c → +∞ (that is, the velocities are far from the one of the light) we
obtain the operator − 1

2m∆, that is the nonrelativistic operator (i.e. the classical Laplacian). We
set instead, from now on, c := 1 for the sake of simplicity. Thus

E =
√

−∆ +m2

which is formally defined through the Fourier symbol F−1((|ξ|2 + m2)1/2û
)

(see also Remark
1.2.6).

We consider now the interaction between the particles: this interaction can be treated
classically as a Newton two-bodies interaction, and thus given by the quantity

−k 1
|xi − xj |

where k is a coupling constant (proportional to G, the gravitational constant).
Thus we come up with the Hamiltonian of the system

Hn :=
n∑

i=1

√
−∆i +m2 − k

2

n∑

i ̸=j

1
|xi − xj | .

When dealing with dwarf stars, additional pieces given by the interaction (due to the Pauli
exclusion principle) appear; anyway, for n ≫ 0, one can ignore these pieces: this is called the
Hartree approximation of Hartree-Fock theory.

Now we are interested in what happens when n ≫ 0, that is, when the particles act like a
single body, in what is called the mean field limit:

n → +∞, k → 0, nk = const;

formally this is given by assuming that the state of motion ψn(t) can be factorized at each t –
fact that is not generally true, even if one starts from a factorized state at t = 0. We highlight
that the powers appearing in the relation nk = const are typical of the boson star framework,
and are indeed different in other frameworks (for instance, in the case of white dwarfs, we have
n3/2k = const).

By letting n → +∞ one can formally prove that, in some precise sense, the motion of the
(single body) boson star converges to the motion of the following (time-dependent) PDE

iut =
√

−∆ +m2u−
(�

R3

u2(y)
|x− y|dy

)
u in (0,+∞) × R3 (4.1.3)
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that is (up to constant)

iut =
√

−∆ +m2u− (I2 ∗ u2)u in (0,+∞) × R3.

We focus now on this equation, and on the corresponding energy functional

E(u) := 1
2

�
R3

|(−∆ +m)1/4u|2 − 1
2

�
R3

(
I2 ∗ u2)u2.

By exploiting the Hardy-Littlewood-Sobolev and the fractional Gagliardo-Nirenberg inequalities
we obtain �

R3

(
I2 ∗ u2)u2 ≤ C∥(−∆)1/4u∥2

2∥u∥2
2, (4.1.4)

which combined with the trivial inequality |ξ|2 +m2 ≥ |ξ|2 gives

E(u) ≥ 1
2∥(−∆)1/4u∥2

2
(
1 − C∥u∥2

2
)

for some C > 0. Set �
R3
u2 =: M

the total mass of the boson star (interpreting u2(x) as the density in x ∈ R3) we obtain

E(u) ≥ 1
2∥(−∆)1/4u∥2

2
(
1 − CM

)
;

from this we see that E(u) could be or be not bounded from below on the sphere {u ∈ H1/2(R3) |
∥u∥2

2 = M} depending on the size of M : this is actually a phenomenon related to the L2-critical
growth 2 = 3+2+2 1

2
3 = 2m

2, 1
2

in N = 3. More precisely, one can prove that there exists a constant
M∗, related to the best constant of the inequality (4.1.4), such that

inf
∥u∥2

2=M
E(u)

{
≥ 0 if M < M∗,

= −∞ if M > M∗.

As a further consequence, one might study the dynamical properties of u(x, t) = eitu(x), solution
of (4.1.3), showing that

u = u(x, t)
{

exists for each t > 0 if M < M∗,

explodes in finite time if M > M∗.

This is why M∗, called Chandrasekhar mass, is related to the self-gravitational collapse of boson
stars (i.e., the collapse due to their own gravity). One could show that M∗ is related to a number
of particles of the size of ∼ 1038, that is, the number of particles that can be approximately
found in a mountain.

As already highlighted, M∗ is related to the best constant of the inequality (4.1.4). And one
can show that the optimizers Q of this inequality satisfy the following equation

√
−∆Q+ µQ =

(
I2 ∗Q2)Q in R3

for some µ > 0 (actually M∗ equals the L2 norm squared of Q). And this is the equation we
study.
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4.2 Different approaches for the existence problem
In this Section we briefly sketch how to get existence of free and constrained solutions. The
techniques are based on the ideas of Chapters 2 and 3. Anyway we present here a different
approach to handle the boundary of R+, instead of considering the change of variable µ = eλ.
With this aim, we will give a proof of some details, referring to Chapters 2-3 for all the other
proofs.

This first Section is based on the paper [114] and [115] (see also [113]). For multiplicity
results we refer to [117].

The first goal we address is to study the unconstrained problem of (4.1.1) when f satisfies
the following set of assumptions of Berestycki-Lions type [50]:

(F1) f ∈ C(R,R);

(F2) we have
i) lim sup

t→0

|tf(t)|
|t|2#

α

< +∞, ii) lim sup
|t|→+∞

|tf(t)|
|t|2∗

α,s
< +∞;

(F3) F (t) =
� t

0 f(τ)dτ satisfies

i) lim
t→0

F (t)
|t|2#

α

= 0, ii) lim
|t|→+∞

F (t)
|t|2∗

α,s
= 0;

(F4) there exists t0 ∈ R, t0 ̸= 0 such that F (t0) ̸= 0.

We observe again that (F3) implies that we are in a noncritical setting: indeed the exponents
2#

α = N+α
N and 2∗

α,s = N+α
N−2s have been addressed in [300] as critical for Choquard-type equations

when s = 1, and then generalized to s ∈ (0, 1) in [138]; we will assume the noncriticality in order
to obtain the existence of a solution, while all the qualitative results in the following Sections
will be given in a possibly critical setting.

This unconstrained case was studied by [138] for a power nonlinearity and by [53] in the case
of combined local and nonlocal power-type nonlinearities; see also [199,277,342].

We obtain the following result.

Theorem 4.2.1. Assume (F1)–(F4). Then there exists a radially symmetric weak solution u of
(4.1.1), which satisfies the Pohozaev identity:

N − 2s
2

�
RN

|(−∆)s/2u|2 + N

2 µ
�
RN

u2 − N + α

2

�
RN

(Iα ∗ F (u))F (u) = 0 (4.2.5)

or equivalently

1
2∗

α,s

�
RN

|(−∆)s/2u|2 + µ

2#
α

�
RN

u2 −
�
RN

(Iα ∗ F (u))F (u) = 0.

This solution is of Mountain Pass type.

We point out some difficulties which arise in this framework. Indeed, the presence of the
fractional Laplacian does not allow to use the fact that every solution satisfies the Pohozaev
identity to conclude that a Mountain Pass solution is actually a (Pohozaev) ground state, as in [237]
(see Remark 4.3.3). On the other hand, the presence of the Choquard term, which scales differently
from the L2-norm term, does not allow to implement the classical minimization argument by
[50,131]. Finally, the nonhomogeneity of the nonlinearity f obstructs the minimization approach
of [138,302]. Thus, we need a new approach to get existence of solutions, and this can be done
in the spirit of Chapters 2-3. We omit the details, refering to [115].
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The next goal is to study the constrained problem, i.e. we study the existence of solutions
(µ, u) ∈ (0,+∞) ×Hs

r (RN ) to the nonlocal problem




(−∆)su+ µu = (Iα ∗ F (u))f(u) in RN ,�
RN

u2 dx = m,
(4.2.6)

where µ > 0 is a Lagrange multiplier, part of the unknowns.
In particular we assume (F1), (F4) together with the stronger assumptions

(CF2)
i) lim sup

t→0

|tf(t)|
|t|2#

α

< +∞, ii) lim sup
|t|→+∞

|tf(t)|
|t|2m

α,s
< +∞;

(CF3)
i) lim

t→0

F (t)
|t|2#

α

= 0, ii) lim
|t|→+∞

F (t)
|t|2m

α,s
= 0;

we remark that the exponent 2m
α,s = N+α+2s

N appears as an L2-critical exponent for the fractional
Choquard equations and the conditions (F1)-(CF2)-(CF3)-(F4) correspond to L2-subcritical
growth.

For this general class of nonlinearities of the Berestycki–Lions type [50, 302] we introduce
a Lagrangian formulation: namely, set R+ = (0,+∞), a radially symmetric solution (µ, u) ∈
R+ ×Hs

r (RN ) of (4.2.6) corresponds to a critical point of the functional Im : R+ ×Hs
r (RN ) → R

defined by

Im(µ, u) := 1
2

�
RN

|(−∆)s/2u|2 dx− 1
2

�
RN

(Iα ∗ F (u))F (u) dx+ µ

2
(∥u∥2

2 −m
)
.

Using a variant of the Palais–Smale condition [224,231], which takes into account the Pohozaev
identity, we will prove a deformation theorem which enables us to detect minimax structures in
the product space R+ ×Hs

r (RN ) by means of a Pohozaev mountain. Our deformation arguments
show that solutions without Pohozaev identity are suitably deformable, and thus they do not
influence the topology of the sublevels of the functional. This information could be relevant in a
fractional framework since it is not known if the Pohozaev identity holds for general continuous
f and general values of s ∈ (0, 1).

We state our main results.

Theorem 4.2.2. Assume (F1)-(CF2)-(CF3)-(F4). Then there exists m0 ≥ 0 such that, for any
m > m0, the problem (4.2.6) has a radially symmetric solution, which satisfies the Pohozaev
identity (4.2.5).

Theorem 4.2.3. Assume (F1)-(CF2)-(CF3), together with an L2-subcritical growth at zero, i.e.,

(CF4’) limt→0
F (t)

|t|2m
α,s

= +∞.

Then, for any m > 0, the problem (4.2.6) has a radially symmetric solution, which satisfies
the Pohozaev identity (4.2.5).

We naively notice that (CF4’) automatically implies (F4). We remark that, as in the local
unconstrained case [237], the Mountain Pass solutions obtained in the above theorems are ground
state solutions, that is, they have the least energy among all solutions; see Section 4.2.2 for details.
This fact gives a strong indication on the stability properties of the found solution [103,180].

Here we find solutions satisfying automatically the Pohozaev identity: in Section 4.7 we will
prove that a general C1 solution actually satisfies such relation.
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4.2.1 Dealing with the boundary
In what follows, we will often denote

q = 2#
α = N + α

N
, p = 2m

α,s = N + α+ 2s
N

.

Consider the functional

Jµ(u) := 1
2

�
RN

|(−∆)s/2u|2 dx− 1
2D(u) + µ

2 ∥u∥2
2

with D(u) =
�
RN (Iα ∗ F (u))F (u). We notice that, by the Principle of Symmetric Criticality of

Palais, the critical points of Jµ are weak solutions of (4.1.1). Moreover, inspired by the Pohozaev
identity (4.2.5), we define also the Pohozaev functional Pµ : Hs

r (RN ) → R by

Pµ(u) := N − 2s
2 ∥(−∆)s/2u∥2

2 − N + α

2 D(u) + N

2 µ∥u∥2
2.

Here we highlight how to deal with the boundary of R+ without implementing the change of
variable µ = eλ. More details can be found in [114].

As a matter of fact, we notice that R+ × Hs
r (RN ) with the standard metric induced by

R × Hs
r (RN ) is not complete, and thus it is not suitable for a deformation argument. Since

(R+,
1

x2dx
2) is instead complete, it is natural to introduce a related metric on R+ × Hs

r (RN ).
That is, we regard

R := R+ ×Hs
r (RN )

as a Riemannian manifold with the metric
(
(ν1, w1), (ν2, w2)

)
T(µ,u)R

:= 1
µ2 ν1ν2 + (w1, w2)Hs

r

for (ν1, w1), (ν2, w2) ∈ T(µ,u)R, (µ, u) ∈ R; it is standard to see that (R, (·, ·)T R) is a complete
Riemannian manifold. We regard thus Im as a functional defined on R, and obtain

∥(∂µIm(µ, u), ∂uIm(µ, u)
)∥2

(T(µ,u)R)∗ = µ2|∂µIm(µ, u)|2 + ∥∂uIm(µ, u)∥2
(Hs

r )∗ .

Definition 4.2.4. For b ∈ R, we say that (µj , uj)j ⊂ R = R+ × Hs
r (RN ) is a Palais-Smale-

Pohozaev sequence at level b (in short, the (PSP )b sequence) if, as j → +∞,

Im(µj , uj) → b,

∥(∂µIm(µ, u), ∂uIm(µ, u)
)∥(T(µ,u)M)∗ → 0,

P(µj , uj) → 0,

or equivalently

Im(µj , uj) → b, (4.2.7)
µj · ∂µIm(µj , uj) → 0, (4.2.8)
∂uIm(µj , uj) → 0 strongly in (Hs

r (RN ))∗, (4.2.9)
P(µj , uj) → 0. (4.2.10)

We say that Im satisfies the (PSP )b condition if, for any (PSP )b sequence (µj , uj)j ⊂ R+ ×
Hs

r (RN ), it happens that (µj , uj)j has a strongly convergent subsequence in R+ ×Hs
r (RN ).

Remark 4.2.5. Clearly, setting

Ĩm(λ, u) := Im(eλ, u), Ĩ : R ×Hs
r (RN ) → R,

we can observe that Ĩm satisfies the (PSP )b in the sense of Definitions 2.4.1 and 3.5.1 if and
only if Im satisfies the (PSP )b condition in the sense of Definition 4.2.4 with µj := eλj .
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For the sake of completeness, we give here some details on the proof of the (PSP )b condition
at strictly negative levels. We emphasize again indeed that the (PSP )b condition does not hold
at level b = 0: it is sufficient to consider an infinitesimal sequence (µj , 0) with µj → 0.

Theorem 4.2.6. Assume (F1)-(CF2)-(CF3). Let b < 0. Then Im satisfies the (PSP )b condition
on R+ ×Hs

r (RN ).

Proof. Let b < 0 and (µj , uj)j ⊂ R ×Hs
r (RN ) be a sequence satisfying (4.2.7)–(4.2.10). First

we note that, by (4.2.8), we have
µj
(∥uj∥2

2 −m
) → 0. (4.2.11)

Step 1: lim infj→∞ µj > 0 and ∥uj∥2
2 → m.

By (4.2.10) and (4.2.7), we have

o(1) = P(µj , uj) = N − 2s
2 ∥(−∆)s/2uj∥2

2+

+ (N + α)
(
Im(µj , uj) − 1

2∥(−∆)s/2uj∥2
2 − µj

2
(∥uj∥2

2 −m
))

+ N

2 µj∥uj∥2
2

= −α+ 2s
2 ∥(−∆)s/2uj∥2

2 + (N + α)(b+ o(1)) + N

2 µjm+ o(1);

here we have used (4.2.11). Since b < 0, we have lim infj→∞ µj > 0. Thus (4.2.11) implies
∥uj∥2

2 → m.
Step 2: ∥(−∆)s/2uj∥2

2 and µj are bounded.
Since εj ≡ ∥∂uIm(µj , uj)∥(Hs

r (RN ))∗ → 0, we have

∥(−∆)s/2uj∥2
2 −

�
RN

(Iα ∗ F (uj))f(uj)uj dx+ µj∥uj∥2
2 ≤ εj∥uj∥Hs

r
. (4.2.12)

Note that 2Np
N+α ∈ (2, 2∗

s). Moreover, we observe that, by (CF3), for δ > 0 fixed, there exists
Cδ > 0 such that

|F (t)| ≤ δ|t|p + Cδ|t| N+α
N , t ∈ R,

where p = N+α+2s
N , and thus

∥F (uj)∥ 2N
N+α

≤ δ∥|uj |p∥ 2N
N+α

+ Cδ∥|uj | N+α
N ∥ 2N

N+α
= δ∥uj∥p

2Np
N+α

+ Cδ∥uj∥
N+α

N
2 .

Therefore, by (CF2) we have
�
RN

(Iα ∗ |F (uj)|)|f(uj)uj | dx

≤ C∥F (uj)∥ 2N
N+α

∥f(uj)uj∥ 2N
N+α

≤ C ′
(
δ∥uj∥p

2Np
N+α

+ Cδ∥uj∥
N+α

N
2

)
·
(

∥uj∥p
2Np
N+α

+ ∥uj∥
N+α

N
2

)

= C ′δ∥uj∥2p
2Np
N+α

+ C ′(δ + Cδ)∥uj∥p
2Np
N+α

∥uj∥
N+α

N
2 + C ′Cδ∥uj∥

2(N+α)
N

2

= C ′δ∥uj∥2p
2Np
N+α

+ C ′(δ + Cδ)
(
δ

2∥uj∥2p
2Np
N+α

+ 1
2δ∥uj∥

2(N+α)
N

2

)
+ C ′Cδ∥uj∥

2(N+α)
N

2

≤ C ′′δ∥uj∥2p
2Np
N+α

+ C ′′
δ ∥uj∥

2(N+α)
N

2

and thus, by the fractional Gagliardo–Nirenberg inequality (1.2.8), with r = 2Np
N+α and β = 1

p , we
derive

∥(−∆)s/2uj∥2
2 + µj∥uj∥2

2 ≤
�
RN

(Iα ∗ |F (uj)|)|f(uj)uj | dx+ εj∥uj∥Hs
r
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≤ C ′′δ∥(−∆)s/2uj∥2
2∥uj∥2(p−1)

2 + C ′′
δ ∥uj∥

2(N+α)
N

2 + εj∥uj∥Hs
r
.

Since ∥uj∥2
2 = m+ o(1), we get

(
1 − C ′′δ(c+ o(1))p−1)∥(−∆)s/2uj∥2

2 + µj
(
m+ o(1)

)

≤ C ′′
δ

(
m+ o(1)

)N+α
N + εj

(∥(−∆)s/2uj∥2
2 +m+ o(1)

)1/2
.

For a small enough δ, we have the boundedness of ∥(−∆)s/2uj∥2 and µj .
Step 3: Convergence in R+ ×Hs

r (RN ).
By Steps 1-2, the sequence (µj , uj)j is bounded in R+ ×Hs

r (RN ) and thus, after extracting a
subsequence denoted in the same way, we may assume that µj → µ0 > 0 and uj ⇀ u0 weakly in
Hs

r (RN ) for some (µ0, u0) ∈ R+ ×Hs
r (RN ).

Step 4: Conclusion.
Taking into account the assumptions (F1)–(F4), we obtain by Proposition 1.5.9

�
RN

(Iα ∗ F (uj))f(uj)u0 dx →
�
RN

(Iα ∗ F (u0))f(u0)u0 dx

and �
RN

(Iα ∗ F (uj))f(uj)uj dx →
�
RN

(Iα ∗ F (u0))f(u0)u0 dx.

Thus, we derive that ⟨∂uIm(µj , uj), uj⟩ → 0 and ⟨∂uIm(µj , uj), u0⟩ → 0, and hence

∥(−∆)s/2uj∥2
2 + µ0∥uj∥2

2 → ∥(−∆)s/2u0∥2
2 + µ0∥u0∥2

2

which implies uj → u0 strongly in Hs
r (RN ).

Now we define a metric on the Hilbert manifold

M := R ×R = R × R+ ×Hs
r (RN )

by setting
∥(α, ν, h)∥2

(θ,µ,u) := α2 + 1
µ2 ν

2 + eNθ∥h∥2
2 + e(N−2s)θ∥(−∆)s/2h∥2

2

for any (α, ν, h) ∈ T(θ,µ,u)M ≡ R×R+ ×Hs
r (RN ). We also denote the dual norm on T ∗

(θ,µ,u)M by
∥ · ∥(θ,µ,u),∗. We notice that ∥(·, ·, ·)∥2

(θ,µ,u) depends both on θ and µ (but not on u). Furthermore
we define the standard distance between two points distM as the infimum of length of curves
connecting the two points.

On M we consider the augmented functional

Hm(θ, µ, u) := Im(µ, u(e−θ·));

denoted D := (∂θ, ∂µ, ∂u), we obtain

∥DHm(θ, µ, u)∥2
(θ,µ,u),∗

= |P(µ, u(e−θ·))|2 + µ2|∂µIm(µ, u(e−θ·))|2 + ∥∂uIm(µ, u(e−θ·))∥2
(Hs

r )∗ .

Finally, defined

K̃b :=
{
(θ, λ, u) ∈ M | Hm(θ, λ, u) = b, DHm(θ, λ, u) = 0

}

the set of critical points at level b of Hm, we deduce the following.
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Proposition 4.2.7. Let b ∈ R, b < 0. Then the functional Hm satisfies the following Palais-
Smale type condition (P̃SP )b. That is, for each sequence (θj , µj , uj)j such that

Hm(θj , µj , uj) → b,

∥DHm(θj , µj , uj)∥(θj ,µj ,uj),∗ → 0,

we have, up to a subsequence,

distM ((θj , µj , uj), K̃b) → 0.

Through the use of the augmented functional we can obtain again a deformation result. We
write here the statement for the unconstrained case (similarly to Proposition 3.7.2), since it will
be used afterwards. Set

KP SP
b :=

{
u ∈ Hs

r (RN ) | Jµ(u) = 0, J ′
µ(u) = 0, Pµ(u) = 0

}
.

Lemma 4.2.8. For any b ∈ R, ε̄ > 0 and any U open neighborhood of KP SP
b , there exist an

ε ∈ (0, ε̄) and a continuous map η : [0, 1] ×Hs
r (RN ) → Hs

r (RN ) such that

(1o) η(0, u) = u ∀u ∈ Hs
r (RN );

(2o) η(t, u) = u ∀(t, u) ∈ [0, 1] × [Jµ ≤ b− ε̄];

(3o) Jµ(η(t, u)) ≤ Jµ(u) ∀(t, u) ∈ [0, 1] ×Hs
r (RN );

(4o) η(1, [Jµ ≤ b+ ε] \ U) ⊂ [Jµ ≤ b− ε];

(5o) η(1, [Jµ ≤ b+ ε]) ⊂ [Jµ ≤ b− ε] ∪ U ;

(6o) if KP SP
b = ∅, then η(1, [Jµ ≤ b+ ε]) ⊂ [Jµ ≤ b− ε].

The remaining part of the proof follows the lines of the previous Chapters, so that we obtain
the existence of a (normalized) Mountain Pass solution: this proves Theorems 4.2.2 and 4.2.3.

4.2.2 Existence of L2-ground states
In this Section we show (with an approach different from Section 2.8) how to obtain the existence
of an L2 ground state, by assuming that this energy level is negative and by exploiting Ekeland
variational principle together with our Palais-Smale-Pohozaev condition; then we relate this
solution to our Mountain Pass solution of Theorem 4.2.2.

More precisely, for any m > 0, we introduce the functional L : Sm → R defined by

L(u) := 1
2

�
RN

|(−∆)s/2u|2 dx− 1
2D(u) (4.2.13)

on the sphere
Sm :=

{
u ∈ Hs

r (RN ) | ∥u∥2
2 = m

}

and we consider the L2 ground state level

κm := inf
u∈Sm

L(u).

We have the following result.

Proposition 4.2.9. Under the assumption of Theorem 4.2.2, we have, for any m > m0,

(i) −∞ < κm < 0 and κm is attained;

(ii) κm = bm, where bm is defined in (2.6.36).
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Moreover, in the assumptions of Theorem 4.2.3, m0 = 0.

Proof. We split in some steps.
Step 1: κm > −∞.
By arguing as in Step 2 of Theorem 2.4.2 we obtain

L(u) ≥
(1

2 − δCm2(p−1)
)

∥(−∆)s/2u∥2
2 − Cδm

2 N+α
N .

Choosing δ > 0 small so that 1
2 − δCm2(p−1) > 0, we have κm ≥ −Cδm

2 N+α
N > −∞.

Step 2: For m > m0, κm < 0.
Since the solution u∗ ∈ Sm obtained in Theorem 4.2.2 satisfies, for m > m0,

0 > bm = L(u∗) ≥ κm,

we have the claim.
Step 3: For m > m0, κm is attained.
To show the existence of a minimizer of L on Sm, we use a linear action Φ : R → L(Hs

r (RN ))
defined by

Φθv := e
N
2 θv(eθ·).

We note that Sm is invariant under Φθ, that is, Φθ(Sm) = Sm. Let

N := R × Sm

and on the tangent bundle TN = R × TSm = ∐
(θ,u)∈N (R × TuSm) we introduce a C2-metric

∥(κ, v)∥(θ,u) :=
(
κ2 + ∥Φθv∥2

Hs(RN )

)1/2

for all (θ, u) ∈ N and (κ, v) ∈ TN . We also introduce L̃ : N → R by

L̃(θ, u) := L(Φθu)

= 1
2e

2sθ∥(−∆)s/2u∥2
2 − 1

2e
−(N+α)θD(eN

2 θu0
)
.

We note that
inf

(θ,u)∈N
L̃(θ, u) = κm.

Since κm ∈ R by Step 1, applying Ekeland’s principle, there exists a sequence (θj , uj)∞
j=1 ⊂ N

such that

L̃(θj , uj) → κm,

∥DL̃(θj , uj)∥T ∗
(θj ,uj )N → 0.

That is, noticing that TuSm ≡ {
v ∈ Hs

r (RN ) |
�
RN uv = 0

}
, we have

∂θL̃(θj , uj) → 0,

∥∂uL̃(θj , uj)∥T ∗
uj

Sm = sup
v∈Tuj Sm

∥Φθj
v∥

Hs(RN )≤1

|∂uL̃(θj , uj)v| → 0.

Setting ũj := Φθj
uj , we thus have

∥ũj∥2
2 = m, (4.2.14)

L(ũj) = 1
2∥(−∆)s/2ũj∥2

2 − 1
2D(ũj) → κm, (4.2.15)
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s∥(−∆)s/2ũj∥2
2 + N+α

2 D(ũj) − N
2
�
RN (Iα ∗ F (ũj))f(ũj)ũj → 0 (4.2.16)

and for a suitable µj ∈ R

L′(ũj)ṽ + µj

�
RN

ũj ṽ = o(1)∥ṽ∥Hs(RN ) for all ṽ ∈ Hs
r (RN ). (4.2.17)

By using (4.2.15) and arguing as in Step 1 we see that ũj is bounded in Hs
r (RN ). Thus, choosing

ṽ = ũj in (4.2.17), we have

∥(−∆)s/2ũj∥2
2 −

�
RN

(Iα ∗ F (ũj))f(ũj)ũj + µjm = o(1),

which, joined to (4.2.16), gives a Pohozaev identity in the limit

N − 2s
2 ∥(−∆)s/2ũj∥2

2 − N + α

2 D(ũj) + N

2 µjm = o(1). (4.2.18)

From this relation and (4.2.15) we have

µj = 2
Nm

(
α+ 2s

2 ∥(−∆)s/2ũj∥2
2 − (N + α)κm

)
+ o(1)

which implies, by Step 1, that µj > 0 for j large.
Relations (4.2.14), (4.2.15), (4.2.17) and (4.2.18) imply that (µ̃j , ũj) is a (PSP )κm sequence.

Thanks to the Palais-Smale-Pohozaev condition given in Proposition 4.2.6, (µ̃j , ũj) has a strongly
convergent subsequence to some (µ̃∗, ũ∗) ∈ N , which shows the existence of a minimizer ũ∗. Thus
(i) is proved.
Step 4: For m > m0, κm = bm.
In Step 2 we showed bm ≥ κm. On the other hand by the argument in Step 3, for the minimizer
ũ∗ of L on Sm, there exists µ̃∗ ∈ R such that

Im(µ̃∗, ũ∗) = κm, ∂uIm(µ̃∗, ũ∗) = 0,
∂µIm(µ̃∗, ũ∗) = 0, P(µ̃∗, ũ∗) = 0.

Set ξ∗(t) := ũ∗(·/t) we have, by the Pohozaev identity, Im(µ̃∗, ξ∗(t)) → −∞ as t → +∞; thus,
up to a rescaling, we obtain ξ∗ ∈ Γm and

max
t∈[0,1]

Im(ξ∗(t)) = Im(µ̃∗, ũ∗) = κm,

which implies bm ≤ κm and the proof is completed.

4.3 Preliminary properties of Pohozaev energy levels
As highlighted, the goal of this Chapter is to study qualitative properties of solutions and, in
particular, of Pohozaev minima. In this Section, thus, we start by observing that the solution
found in Theorem 4.2.1 is actually a Pohozaev minimum. Since, afterwards, we will be interested
in studying symmetric properties of general ground states, in this Section we highlight the
dependence of some sets and energy levels from the subspace of radially symmetric functions.
Moreover, we show existence of positive solutions.
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Energy levels in radially symmetric spaces

We introduce the set of paths

Γr(µ) :=
{
γ ∈ C

(
[0, 1], Hs

r (RN )
) | γ(0) = 0, Jµ(γ(1)) < 0

}

and the Mountain Pass (MP for short) value

ar(µ) := inf
γ∈Γµ

max
t∈[0,1]

Jµ(γ(t)). (4.3.19)

Then we introduce

pr(µ) := inf
{Jµ(u) | u ∈ Hs

r (RN ) \ {0}, Pµ(u) = 0
}

the least energy of Jµ on the Pohozaev set of radially symmetric functions.

Proposition 4.3.1. The Mountain Pass level and the Pohozaev minimum level coincide, that is

ar(µ) = pr(µ) > 0.

In particular, the solution found in Theorem 4.2.1 is a Pohozaev minimum.

Proof. Let u ∈ Hs
r (RN ) \ {0} such that Pµ(u) = 0; observe that D(u) > 0. We define

γ̄(t) := u(·/t) for t ̸= 0 and γ̄(0) := 0 so that t ∈ (0,+∞) 7→ Jµ(γ̄(t)) is negative for large values
of t, and it attains the maximum in t = 1. After a suitable rescaling we have γ̄ ∈ Γr(µ) and thus

Jµ(u) = max
t∈[0,1]

Jµ(γ̄(t)) ≥ ar(µ). (4.3.20)

Passing to the infimum in (4.3.20) we have pr(µ) ≥ ar(µ). Let now γ ∈ Γr(µ). By definition we
have Jµ(γ(1)) < 0, thus by

Pµ(v) = NJµ(v) − s∥(−∆)s/2v∥2
2 − α

2 D(v), v ∈ Hs
r (RN ),

we obtain Pµ(γ(1)) < 0. In addition, since D(u) = o(∥u∥2
Hs) as u → 0 and γ(t) → 0 as t → 0 in

Hs
r (RN ), we have

Pµ(γ(t)) > 0 for small t > 0.

Thus there exists a t∗ such that Pµ(γ(t∗)) = 0, and hence

pr(µ) ≤ Jµ(γ(t∗)) ≤ max
t∈[0,1]

Jµ(γ(t));

passing to the infimum we come up with pr(µ) ≤ ar(µ), and hence the claim.

We pass to investigate more in details Pohozaev minima, showing that it is a general fact
that they are solutions of equation (4.1.1).

Proposition 4.3.2. Every Pohozaev minimum is a solution of (4.1.1), i.e.

Jµ(u) = pr(µ) and Pµ(u) = 0

imply
J ′

µ(u) = 0.

As a consequence

pr(µ) = inf
{Jµ(u) | u ∈ Hs

r (RN ) \ {0}, Pµ(u) = 0, J ′
µ(u) = 0

}
.
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Proof. Let u be such that Jµ(u) = pr(µ) and Pµ(u) = 0. In particular, considered γ(t) := u(·/t),
we have that Jµ(γ(t)) is negative for large values of t and its maximum value is p(µ) attained
only in t = 1.

Assume by contradiction that u is not critical. Let I := [1−δ, 1+δ] be such that γ(I)∩Kp(µ) =
∅, and set ε̄ := p(µ) − maxt/∈I Jµ(γ(t)) > 0. Let now U be a neighborhood of Kp(µ) verifying
γ(I) ∩U = ∅: by the Deformation Lemma 4.2.8 there exists an η : [0, 1] ×Hs

r (RN ) → Hs
r (RN ) at

level pr(µ) ∈ R with properties (1o)-(6o). Define then γ̃(t) := η(1, γ(t)) a deformed path.
For t /∈ I we have Jµ(γ(t)) < pr(µ) − ε̄, and thus by (2o) we gain

Jµ(γ̃(t)) = Jµ(γ(t)) < pr(µ) − ε̄, for t /∈ I. (4.3.21)

Let now t ∈ I: we have γ(t) /∈ U and Jµ(γ(t)) ≤ pr(µ) ≤ pr(µ) + ε, thus by (4o) we obtain

Jµ(γ̃(t)) ≤ pr(µ) − ε. (4.3.22)

Joining (4.3.21) and (4.3.22) we have

max
t≥0

Jµ(γ̃(t)) < pr(µ) = ar(µ)

which is an absurd, since after a suitable rescaling it results that γ̃ ∈ Γr(µ), thanks to (3o).

Remark 4.3.3. We point out that it is not known, even in the case of local nonlinearities [79], if

pr(µ) ?= inf
{Jµ(u) | u ∈ Hs

r (RN ) \ {0}, J ′
µ(u) = 0

}
.

On the other hand, by assuming that every solution of (4.1.1) satisfies the Pohozaev identity (see
e.g. [342, Proposition 2] and [138, Eq (6.1)] and Section 4.7), the claim holds true. We point
out that the equality may hold even if it is not true that every solution satisfies the Pohozaev
identity. The fact that Deformation Lemma 4.2.8 allows to deform the functional near critical
points not satisfying the Pohozaev identity might be useful in the investigation of these facts.

Energy levels in the whole space

We pass studying general Pohozaev minima on the whole space Hs(RN ). We start defining
the least energy of Jµ on the Pohozaev set, and call every minimizer a Pohozaev minimum (or
ground state)

p(µ) := inf
{Jµ(u) | u ∈ Hs(RN ) \ {0}, Pµ(u) = 0

}
. (4.3.23)

We start by showing that Proposition 4.3.2 holds also in a nonradial setting, providing here
the proof. To do this, we get advantage of the minimax paths and level of Jµ. Set

a(µ) := inf
γ∈Γµ

sup
t∈[0,1]

Jµ(γ(t))

where
Γ(µ) :=

{
γ ∈ C

(
[0, 1], Hs(RN )

) | γ(0) = 0, | Jµ(γ(1)) < 0
}
.

Notice that, with the same proof of Proposition 4.3.1 we obtain

a(µ) = p(µ) > 0. (4.3.24)

Proposition 4.3.4. Assume (F1)-(F2). Then every Pohozaev minimum of Jµ is a solution of
(4.1.1), i.e.

Jµ(u) = p(µ) and Pµ(u) = 0
imply

J ′
µ(u) = 0.

As a consequence

p(µ) = inf
{Jµ(u) | u ∈ Hs(RN ) \ {0}, Pµ(u) = 0, J ′

µ(u) = 0
}
.
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Proof. Assume by contradiction that J ′
µ(u) ̸= 0. Thus J ′

µ remains far from zero in a neighbor-
hood of u, that is there exist δ > 0 and λ > 0 such that

v ∈ B3δ(u) =⇒ ∥J ′
µ(v)∥∗ ≥ λ.

Consider the path γ(t) := u(·/t); it is straightforward to show that t ∈ R+ 7→ Jµ(γ(t)) is negative
for t ≫ 0 and it has a unique strict maximum, equal to Jµ(u) = p(µ) > 0, attained in t = 1. Let
now I := [1 − ω, 1 + ω], ω small, be such that

S := γ(I) ⊂ Bδ(u);

we can also assume that
max
t/∈I

Jµ(γ(t)) ∈ (0, p(µ)
)
.

Introduce moreover
0 < ε < min

{
p(µ) − maxt/∈I Jµ(γ(t))

2 ,
λδ

8

}
.

By writing S2δ := {v ∈ Hs(RN ) | d(v, S) ≤ 2δ}, we see that

v ∈ S2δ =⇒ ∥J ′
µ(v)∥∗ ≥ 8ε

δ

and in particular

v ∈ J −1
µ

(
[p(µ) − 2ε, p(µ) + 2ε]

) ∩ S2δ =⇒ ∥J ′
µ(v)∥∗ ≥ 8ε

δ
,

where we observe that p(µ) − 2ε > 0. We are thus in the assumptions of [379, Lemma 2.3], and
we have the existence of a local continuous deformation η : [0, 1] ×Hs(RN ) → Hs(RN ) such that
(we write J b

µ := J −1
µ

(
(−∞, b]

)
)

(a) η(0, v) = v,

(b) η(t, v) = v if v /∈ J −1
µ

(
[p(µ) − 2ε, p(µ) + 2ε]

) ∩ S2δ,

(c) Jµ(η(·, v)) is non increasing for each v ∈ Hs(RN ),

(d) η(1,J p(µ)+ε
µ ∩ S) ⊂ J p(µ)−ε

µ .

We thus define a deformed path
γ̃(t) := η(1, γ(t)).

Consider first t /∈ I. By (c) and the definition of ε, we have

Jµ(γ̃(t)) ≤ Jµ(γ(t)) < p(µ) − 2ε < p(µ).

Assume instead t ∈ I. Then γ(t) ∈ γ(I) = S and Jµ(γ(t)) ≤ Jµ(γ(1)) = p(µ) ≤ p(µ) + ε, thus
by (d) we have

Jµ(γ̃(t)) ≤ p(µ) − ε < p(µ).
Joining together the two inequalities we obtain

max
t>0

Jµ(γ̃(t)) < p(µ). (4.3.25)

On the other hand, we have γ̃(0) = η(1, γ(0)) = η(1, 0) = 0 since 0 /∈ J −1
µ

(
[p(µ) − 2ε, p(µ) + 2ε]

)
,

and Jµ(γ̃(t)) ≤ Jµ(η(1, γ(t)) ≤ Jµ(γ(t)) < 0 for t ≫ 0. Up to a rescaling, we can assume
γ̃ ∈ Γ(µ) and hence, by (4.3.24)

max
t∈[0,1]

Jµ(γ̃(t)) ≥ a(µ) = p(µ),

which is in contradiction with (4.3.25). The proof is thus concluded.
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Remark 4.3.5. As in Remark 4.3.3, we point out that it is not known, even in the case of local
nonlinearities, if

p(µ) ?= inf
{Jµ(u) | u ∈ Hs(RN ) \ {0}, J ′

µ(u) = 0
}
,

unless some additional assumptions on s or f are assumed.

In Corollary 4.5.8 we will state some relation between pr(µ) and p(µ).
Most of the qualitative properties that we will investigate, will be stated in the case of positive

solutions. Thus it is important to highlight the existence of a solution of constant sign.

Proposition 4.3.6. Assume (F1)–(F4) and that F ̸≡ 0 on (0,+∞) (i.e., t0 in assumption (F4)
can be chosen positive). Then there exists a positive radially symmetric solution of (4.1.1), which
is minimum over all the positive functions on the Pohozaev set.

Proof. Let us define
f̃ := χ(0,+∞)f.

We have that f̃ still satisfies (F1)–(F4). Thus, by Theorem 4.2.1 there exists a solution u of

(−∆)su+ µu = (Iα ∗ F̃ (u))f̃(u) in RN

where F̃ (t) :=
� t

0 f̃(τ)dτ , F̃ = χ(0,+∞)F . We show now that u is positive. Recall by Lemma 1.4.1
that u− = |u|−u

2 ∈ Hs
r (RN ). Thus, chosen u− as test function, we obtain

�
RN

(−∆)s/2u (−∆)s/2u− dx+ µ

�
RN

uu− dx =
�
RN

(Iα ∗ F̃ (u))f̃(u)u− dx.

By definition of f̃ and (1.2.5) we have

CN,s

�
RN ×RN

(u(x) − u(y))(u−(x) − u−(y))
|x− y|N+2s

dx dy − µ

�
RN

u2
− dx = 0. (4.3.26)

Splitting the domain, we gain
�
RN ×RN

(u(x) − u(y))(u−(x) − u−(y))
|x− y|N+2s

dx dy =

−
�

{u(x)≥0}×{u(y)<0}

(u+(x) + u−(y))(u−(y))
|x− y|N+2s

dx dy −

−
�

{u(x)<0}×{u(y)≥0}

(u−(x) + u+(y))(u−(x))
|x− y|N+2s

dx dy −

−
�

{u(x)<0}×{u(y)<0}

(u−(x) − u−(y))2

|x− y|N+2s
dx dy.

Since the left-hand side of (4.3.26) is sum of nonpositive pieces, we have u− ≡ 0, that is u ≥ 0.
Hence f̃(u) = f(u) and F̃ (u) = F (u), which imply that u is a positive solution of (4.1.1).

4.4 Regularity
In this Section we investigate regularity of solutions, focusing in particular on boundedness,
Hölder regularity and L1-summability.

The discussed results generalize some of the ones in [138] to the case of general, not homoge-
neous, nonlinearities; in particular, we do not even assume f to satisfy Ambrosetti-Rabinowitz
type conditions nor monotonicity conditions. Moreover, we improve the results in [277,342] since
we do not assume f to be superlinear, and we have no restriction on the parameter α.

Some of these results extend the ones in [79,302] to the fractional, Choquard framework.
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4.4.1 Boundedness by splitting
Here we prove that solutions of (4.1.1) are bounded. In particular, when dealing with sign-
changing solutions, we will consider also the following stronger assumption:

(F6) lim supt→0
|f(t)|

|t| < +∞,

which says that f is linear or superlinear in the origin. Observe that

(F6) =⇒ (F2,i) and (F3,i).

Theorem 4.4.1. Assume (F1)-(F2). Let u ∈ Hs(RN ) be a weak positive solution of (4.1.1).
Then u ∈ L∞(RN ). The same conclusion holds for generally (possibly sign-changing) solutions
by assuming also (F6).

We start from the following lemma, that can be found in [302, Lemma 3.3].

Lemma 4.4.2 ([302]). Let N ≥ 2 and α ∈ (0, N). Let λ ∈ [0, 2] and q, r, h, k ∈ [1,+∞) be such
that

1 + α

N
− 1
h

− 1
k

= λ

q
+ 2 − λ

r
.

Let θ ∈ (0, 2) satisfying

min{q, r}
(
α

N
− 1
h

)
< θ < max{q, r}

(
1 − 1

h

)
,

min{q, r}
(
α

N
− 1
k

)
< 2 − θ < max{q, r}

(
1 − 1

k

)
.

Let H ∈ Lh(RN ), K ∈ Lk(RN ) and u ∈ Lq(RN ) ∩ Lr(RN ). Then
�
RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ dx ≤ C∥H∥h∥K∥k∥u∥λ

q ∥u∥2−λ
r

for some C > 0 (depending on θ).

By a proper use of Lemma 4.4.2 we obtain now an estimate on the Choquard term depending
on Hs-norm of the function.

Lemma 4.4.3. Let N ≥ 2, s ∈ (0, 1) and α ∈ (0, N). Let moreover θ ∈ ( α
N , 2 − α

N ) and
H,K ∈ L

2N
α (RN ) + L

2N
α+2s (RN ). Then for every ε > 0 there exists Cε,θ > 0 such that

�
RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ dx ≤ ε2∥(−∆)s/2u∥2

2 + Cε,θ∥u∥2
2

for every u ∈ Hs(RN ).

Proof. Observe that 2 − θ ∈ ( α
N , 2 − α

N ) as well. We write

H = H∗ +H∗ ∈ L
2N
α (RN ) + L

2N
α+2s (RN ),

K = K∗ +K∗ ∈ L
2N
α (RN ) + L

2N
α+2s (RN ).

We split
�
RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ dx in four pieces and choose

q = r = 2, h = k = 2N
α
, λ = 2,

q = 2, r = 2N
N − 2s, h = 2N

α
, k = 2N

α+ 2s, λ = 1,
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q = 2, r = 2N
N − 2s, h = 2N

α+ 2s, k = 2N
α
, λ = 1,

q = r = 2N
N − 2s, h = k = 2N

α+ 2s, λ = 0,

in Lemma 4.4.2, to obtain�
RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ dx ≲

∥H∗∥ 2N
α

∥K∗∥ 2N
α

∥u∥2
2 + ∥H∗∥ 2N

α
∥K∗∥ 2N

α+2s
∥u∥2∥u∥ 2N

N−2s
+

+∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α

∥u∥2∥u∥ 2N
N−2s

+ ∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α+2s

∥u∥2
2N

N−2s

.

Recalled that 2N
N−2s = 2∗

s and the Sobolev embedding (1.2.7), we obtain�
RN

(
Iα ∗ (H|u|θ)

)
K|u|2−θ dx ≲

(
∥H∗∥ 2N

α
∥K∗∥ 2N

α

)
∥u∥2

2 +
(

∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α+2s

)
∥(−∆)s/2u∥2

2 +

+
(

∥H∗∥ 2N
α

∥K∗∥ 2N
α+2s

+ ∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α

)
∥u∥2∥(−∆)s/2u∥2. (4.4.27)

We want to show now that, since 2N
α > 2N

α+2s , we can choose the decomposition of H and K such
that the L

2N
α+2s -pieces are arbitrary small (see [71, Lemma 2.1]). Indeed, let

H = H1 +H2 ∈ L
2N
α (RN ) + L

2N
α+2s (RN )

be a first decomposition. Let M > 0 to be fixed, and write

H =
(
H1 +H2χ{|H2|≤M}

)
+H2χ{|H2|>M}.

Since H2χ{|H2|≤M} ∈ L
2N

α+2s (RN ) ∩ L∞(RN ) and 2N
α ∈ ( 2N

α+2s ,∞), we have H2χ{|H2|≤M} ∈
L

2N
α (RN ), and thus

H∗ := H1 +H2χ{|H2|≤M} ∈ L
2N
α (RN ), H∗ := H2χ{|H2|>M} ∈ L

2N
α+2s (RN ).

On the other hand

∥H∗∥ 2N
α+2s

=
(�

|H2|>M
|H2| 2N

α+2s dx

)α+2s
2N

which can be made arbitrary small for M ≫ 0. In particular we choose the decomposition so that
(

∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α+2s

)
≲ ε2

and thus
C ′(ε) :≈

(
∥H∗∥ 2N

α
∥K∗∥ 2N

α

)
.

In the last term of (4.4.27) we use the generalized Young’s inequality ab ≤ δ
2a

2 + 1
2δ b

2, with

δ := ε2
(

∥H∗∥ 2N
α

∥K∗∥ 2N
α+2s

+ ∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α

)−1

so that
(

∥H∗∥ 2N
α

∥K∗∥ 2N
α+2s

+ ∥H∗∥ 2N
α+2s

∥K∗∥ 2N
α

)
∥u∥2∥(−∆)s/2u∥2

≤ 1
2ε

2∥u∥2
2 + C ′′(ε)∥(−∆)s/2u∥2

2.

Merging the pieces, we have the claim.

The following technical result can be found in [207, Lemma 3.5].
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Lemma 4.4.4 ([207]). Let a, b ∈ R, r ≥ 2 and k ≥ 0. Set Tk : R → [−k, k] the truncation in k,
that is

Tk(t) :=





−k if t ≤ −k,
t if t ∈ (−k, k),
k if t ≥ k,

and write ak := Tk(a), bk := Tk(b). Then

4(r − 1)
r2

(
|ak|r/2 − |bk|r/2

)2
≤ (a− b)

(
ak|ak|r−2 − bk|bk|r−2

)
.

Notice that the (optimal) Sobolev embedding tells us that Hs(RN ) ↪→ L2∗
s (RN ). In what

follows we show that u belongs to some Lr(RN ) with r > 2∗
s; we highlight that we make no

use of the Caffarelli-Silvestre s-harmonic extension method, and work directly in the fractional
framework.

Proposition 4.4.5. Let H,K ∈ L
2N
α (RN ) + L

2N
α+2s (RN ). Assume that u ∈ Hs(RN ) solves

(−∆)su+ µu = (Iα ∗ (Hu))K, in RN

in the weak sense. Then
u ∈ Lr(RN ) for all r ∈

[
2, N

α
2N

N−2s

)
.

Moreover, for each of these r, we have

∥u∥r ≤ Cr∥u∥2

with Cr > 0 not depending on u.

Proof. By Lemma 4.4.3 there exists λ > µ (that we can assume large) such that
�
RN

(
Iα ∗ (H|u|))K|u| dx ≤ 1

2∥(−∆)s/2u∥2
2 + λ

2 ∥u∥2
2. (4.4.28)

Let us set
Hn := Hχ{|H|≤n}, Kn := Kχ{|K|≤n}, for n ∈ N

and observe that
Hn, Kn ∈ L

2N
α (RN ),

Hn → H, Kn → K almost everywhere, as n → +∞
and

|Hn| ≤ |H|, |Kn| ≤ |K| for every n ∈ N. (4.4.29)

We thus define the bilinear form

an(φ,ψ) :=
�
RN

(−∆)s/2φ (−∆)s/2ψ dx+ λ

�
RN

φψ dx−
�
RN

(
Iα ∗ (Hnφ

))
Knψ dx

for every φ,ψ ∈ Hs(RN ). Since, by (4.4.29) and (4.4.28), we have

an(φ,φ) ≥ 1
2∥(−∆)s/2φ∥2

2 + λ

2 ∥φ∥2
2 ≥ 1

2∥φ∥2
Hs(RN ) (4.4.30)

for each φ ∈ Hs(RN ), we obtain that an is coercive. Set

f := (λ− µ)u ∈ Hs(RN )
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we obtain by Lax-Milgram theorem that, for each n ∈ N, there exists a unique un ∈ Hs(RN )
solution of

an(un, φ) = (f, φ)2, φ ∈ Hs(RN ),

that is
(−∆)sun + λun − (

Iα ∗ (Hnun)
)
Kn = (λ− µ)u, in RN (4.4.31)

in the weak sense; moreover the theorem tells us that

∥un∥Hs ≤ ∥f∥2
1/2 = 2(λ− µ)∥u∥2

(since 1/2 appears as coercivity coefficient in (4.4.30)), and thus un is bounded. Hence un ⇀ ū
in Hs(RN ) up to a subsequence for some ū. This means in particular that un → ū almost
everywhere pointwise.

Thus we can pass to the limit in
�
RN

(−∆)s/2un (−∆)s/2φ+ λ

�
RN

unφ−
�
RN

(
Iα ∗ (Hnun

))
Knφ = (λ− µ)

�
RN

uφ;

we need to check only the Choquard term. We first see by the continuous embedding that un ⇀ ū
in Lq(RN ), for q ∈ [2, 2∗

s]. Split again H = H∗ +H∗, K = K∗ +K∗ and work separately in the four
combinations; we assume to work generally with H̃ ∈ {H∗, H∗}, H̃ ∈ Lβ(RN ) and K̃ ∈ {K∗,K∗},
K̃ ∈ Lγ(RN ), where β, γ ∈ {2N

α , 2N
α+2s}. Then one can easily prove that H̃nun ⇀ H̃ū in Lr(RN )

with 1
r = 1

β + 1
q . By the continuity and linearity of the Riesz potential we have Iα ∗ (Hnun) ⇀

Iα ∗ (Hū) in Lh(RN ), where 1
h = 1

r − α
n . As before, we obtain

(
Iα ∗ (Hnun

))
Kn ⇀

(
Iα ∗ (Hū))K

in Lk(RN ), where 1
k = 1

γ + 1
h . Simple computations show that if β = γ = 2N

α and q = 2, then
k′ = 2; if β = 2N

α , γ = 2N
α+2s (or viceversa) and q = 2, then k′ = 2∗

s; if β = γ = 2N
α+2s and q = 2∗

s,
then k′ = 2∗

s. Therefore Hs(RN ) ⊂ Lk′(RN ) and we can pass to the limit in all the four pieces,
obtaining �

RN

(
Iα ∗ (Hnun

))
Knφdx →

�
RN

(
Iα ∗ (Hū))Kφdx.

Therefore, ū satisfies

(−∆)sū+ λū− (
Iα ∗ (Hū)

)
K = (λ− µ)u, in RN

as well as u. But we can see this problem, similarly as before, with a Lax-Milgram formulation
and obtain the uniqueness of the solution. Thus ū = u and hence, as n → +∞,

un ⇀ u in Hs(RN )

and almost everywhere pointwise. Let now k ≥ 0 and write

un,k := Tk(un) ∈ L2(RN ) ∩ L∞(RN )

where Tk is the truncation introduced in Lemma 4.4.4. Let r ≥ 2. We have |un,k|r/2 ∈ Hs(RN ),
by exploiting (1.2.5) and the fact that h(t) := (Tk(t))r/2 is a Lipschitz function with h(0) = 0.
By (1.2.5) and by Lemma 4.4.4 we have

4(r − 1)
r2

�
RN

|(−∆)s/2(|un,k|r/2)|2 = CN,s

�
R2N

4(r−1)
r2

(
|un,k(x)|r/2 − |un,k(y)|r/2

)2

|x− y|N+2s

≤ CN,s

�
R2N

(
un(x) − un(y)

) (
un,k(x)|un,k(x)|r−2 − un,k(y)|un,k(y)|r−2)

|x− y|N+2s

Set
φ := un,k|un,k|r−2
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it results that φ ∈ Hs(RN ), since again h(t) := Tk(t)|Tk(t)|r−2 is a Lipschitz function with
h(0) = 0. Thus we can choose it as a test function in (4.4.31) and obtain, by (1.2.6),

4(r − 1)
r2

�
RN

|(−∆)s/2(|un,k|r/2)|2 ≤ CN,s

�
R2N

(
un(x) − un(y)

)
(φ(x) − φ(y))

|x− y|N+2s

= −λ
�
RN

unφ+
�
RN

(Iα ∗ (Hnun))Knφ+ (λ− µ)
�
RN

uφ

and since unφ ≥ |un,k|r we gain

4(r − 1)
r2

�
RN

|(−∆)s/2(|un,k|r/2)|2 ≤

≤ −λ
�
RN

|un,k|r +
�
RN

(
Iα ∗ (Hnun)

)
Knφ+ (λ− µ)

�
RN

uφ. (4.4.32)

Focus on the Choquard term on the right-hand side. We have, by using (4.4.29),
�
RN

(
Iα ∗ (Hnun)

)
Knφ ≤

≤
�
RN

(
Iα ∗ (|Hn||un|χ{|un|≤k})

)|Kn||un,k|r−1 +

+
�
RN

(
Iα ∗ (|Hn||un|χ{|un|>k})

)|Kn||un,k|r−1

≤
�
RN

(
Iα ∗ (|Hn||un,k|))|Kn||un,k|r−1 +

�
RN

(
Iα ∗ (|Hn||un|χ{|un|>k})

)|Kn||un|r−1

≤
�
RN

(
Iα ∗ (|H||un,k|))|K||un,k|r−1 +

�
RN

(
Iα ∗ (|Hn||un|χ{|un|>k})

)|Kn||un|r−1

=: (I) + (II). (4.4.33)

Focus on (I). Consider r ∈ [2, 2N
α ), so that θ := 2

r ∈ ( α
N , 2 − α

N ). Choose moreover
v := |un,k|r/2 ∈ Hs(RN ) and ε2 := 2(r−1)

r2 > 0. Thus, observed that if a function belongs to a
sum of Lebesgue spaces then its absolute value does the same (see Remark 1.5.3), by Lemma
4.4.3 we obtain

(I) ≤ 2(r − 1)
r2 ∥(−∆)s/2(|un,k|r/2)∥2

2 + C(r)∥|un,k|r/2∥2
2. (4.4.34)

Focus on (II). Assuming r < min{2N
α , 2N

N−2s}, we have un ∈ Lr(RN ) and Hn ∈ L
2N
α (RN ), thus

|Hn||un| ∈ La(RN ), with 1
a = α

2N + 1
r

for the Hölder inequality. Similarly

|Kn||un|r−1 ∈ Lb(RN ), with 1
b = α

2N + 1 − 1
r .

Thus, since 1
a + 1

b = N+α
N , we have by the Hardy-Littlewood-Sobolev inequality (see Proposition

1.3.1) that
�
RN

(
Iα ∗ (|Hn||un|χ{|un|>k})

)|Kn||un|r−1 dx

≤ C

(�
{|un|>k}

||Hn||un||a dx
)1/a (�

RN

||Kn||un|r−1|b dx
)1/b

.

With respect to k, the second factor on the right-hand side is bounded, while the first factor
goes to zero thanks to the dominated convergence theorem, thus

(II) = ok(1), as k → +∞. (4.4.35)
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Joining (4.4.32), (4.4.33), (4.4.34), (4.4.35) we obtain
2(r − 1)
r2

�
RN

|(−∆)s/2(|un,k|r/2)|2 dx ≤

≤ −λ
�
RN

|un,k|r dx+ C(r)
�
RN

|un,k|r dx+ (λ− µ)
�
RN

uφdx+ ok(1).

That is, by Sobolev inequality (1.2.7)

C ′(r)
(�

RN

|un,k| r
2 2∗

s

)2/2∗
s

≤ (C(r) − λ)
�
RN

|un,k|r + (λ− µ)
�
RN

|u| |un,k|r−1 + ok(1).

Letting k → +∞ by the monotone convergence theorem (since un,k are monotone with respect
to k and un,k → un pointwise) we have

C ′(r)
(�

RN

|un| r
2 2∗

s

)2/2∗
s

≤ (C(r) − λ)
�
RN

|un|r + (λ− µ)
�
RN

|u| |un|r−1 (4.4.36)

and thus un ∈ L
r
2 2∗

s (RN ). Notice that r
2 ∈ [

1,min{N
α ,

N
N−2s}). If N − 2s < α we are done.

Otherwise, set r1 := r, we can now repeat the argument with

r2 ∈
(

2N
N − 2s,min

{
2N
α
, 2
(

N

N − 2s

)2})
.

Again, if 2N
α < 2

(
N

N−2s

)2
we are done, otherwise we repeat the argument. Inductively, we have

(
N

N − 2s

)m

→ +∞, as m → +∞

thus 2N
α < 2

(
N

N−2s

)m
after a finite number of steps. For such r = rm, consider again (4.4.36):

by the almost everywhere convergence of un to u and Fatou’s lemma

C ′′(r)
(�

RN

|u| r
2 2∗

s

)2/2∗
s

dx ≤ lim inf
n

C ′′(r)
(�

RN

|un| r
2 2∗

s dx

)2/2∗
s

≤ lim inf
n

(
(C(r) − λ)

�
RN

|un|r dx+ (λ− µ)
�
RN

|u| |un|r−1 dx

)

≤ (C(r) − λ) lim sup
n

�
RN

|un|r dx+ (λ− µ) lim sup
n

�
RN

|u| |un|r−1 dx.

Being un equibounded in Hs(RN ) and thus in L2∗
s (RN ), by the iteration argument we have that

it is equibounded also in Lr(RN ); in particular, the bound is given by ∥u∥2 times a constant
C(r). Thus the right-hand side is a finite quantity, and we gain u ∈ L

r
2 2∗

s (RN ), which is the
claim.

The following lemma states that Iα ∗ g ∈ L∞(RN ) whenever g lies in Lq(RN ) with q in a
neighborhood of N

α ; in particular, it extends Proposition 1.3.1 (see also Remark 1.5.8).
In addition, it shows the decay at infinity of the Riesz potential, which will be useful in

Section 4.6.
Proposition 4.4.6. Assume that (F1)-(F2) hold. Let u ∈ Hs(RN ) be a solution of (4.1.1).
Then u ∈ Lq(RN ) for q ∈ [2, N

α
2N

N−2s

)
, and

Iα ∗ F (u) ∈ C0(RN ),

that is, continuous and zero at infinity. In particular,

Iα ∗ F (u) ∈ L∞(RN )

and (
Iα ∗ F (u)

)
(x) → 0 as |x| → +∞.
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Proof. We first check to be in the assumptions of Proposition 4.4.5. Indeed, by (F1)-(F2) and
the fact that u ∈ Hs(RN ) ⊂ L2(RN ) ∩ L2∗

s (RN ) we obtain that

H := F (u)
u

, K := f(u)

lie in L
2N
α (RN ) + L

2N
α+2s (RN ), since bounded by functions in this sum space (see Remark 1.5.3).

Now by Proposition 4.4.5 we have u ∈ Lq(RN ) for q ∈ [2, N
α

2N
N−2s); the claim follows by Remark

1.5.8.

Once obtained the boundedness of the Choquard term, we can finally gain the boundedness
of the solution.

Proposition 4.4.7. Assume that (F1)-(F2) hold. Let u ∈ Hs(RN ) be a positive solution of
(4.1.1). Then u ∈ L∞(RN ).

Proof. By Lemma 4.4.6 we obtain

a := Iα ∗ F (u) ∈ L∞(RN ).

Thus u satisfies the following nonautonomous problem, with a local nonlinearity

(−∆)s/2u+ µu = a(x)f(u), in RN

with a bounded. In particular

(−∆)s/2u = g(x, u) := −µu+ a(x)f(u), in RN

where
|g(x, t)| ≤ µ|t| + C∥a∥∞

(
|t| α

N + |t|
α+2s
N−2s

)
.

Set γ := max{1, α+2s
N−2s} ∈ [1, 2∗

s), we thus have

|g(x, t)| ≤ C(1 + |t|γ).

Hence we are in the assumptions of [157, Proposition 5.1.1] and we can conclude.

Proof of Theorem 4.4.1. The first part of the claim comes from Proposition 4.4.7. In the case
of sign-changing solutions, we may apply Proposition 1.2.24 with

g(x, t) :=
(
Iα ∗ F (u)

)
(x)f(t) − µu,

whenever u is a fixed solution and (F6) holds (together with (F1)–(F2)), thanks to Proposition
4.4.6.

4.4.2 Hölder regularity: strong solutions
Gained the boundedness, we obtain now that solutions are Hölder continuous and satisfy the
equation in the strong sense. This extra regularity will be also implemented in some bootstrap
argument for the L1-summability, see Section 4.4.3.

Proposition 4.4.8. Assume that (F1)-(F2) hold. Let u ∈ Hs(RN ) ∩L∞(RN ) be a weak solution
of (4.1.1). Then u ∈ H2s(RN ) ∩C0,γ(RN ) for any γ ∈ (0,min{1, 2s}), and u is a strong solution,
i.e. u satisfies (4.1.1) almost everywhere.

In addition, if s ∈ (1
2 , 1), then u ∈ C1,γ(RN ) for any γ ∈ (0, 2s− 1).
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Proof. By Proposition 4.4.7, Proposition 4.4.6 and (F2) we have that u ∈ L∞(RN ) satisfies

(−∆)su = g ∈ L∞(RN )

where g(x) := (Iα ∗ F (u))(x)f(u(x)) − µu(x). We prove first that u ∈ H2s(RN ). Indeed, we
already know that f(u), F (u) and Iα ∗ F (u) belong to L∞(RN ). By Remark 1.5.7, we obtain

f(u) ∈ L
2N

α+2s (RN ) ∩ L∞(RN ), F (u) ∈ L
2N

N+α (RN ) ∩ L∞(RN ),

Iα ∗ F (u) ∈ L
2N

N−2s (RN ) ∩ L∞(RN ), (Iα ∗ F (u))f(u) ∈ L2(RN ) ∩ L∞(RN ).

In particular,
g = (Iα ∗ F (u))f(u) − µu ∈ L2(RN ).

Since u is a weak solution, we have, fixed φ ∈ Hs(RN ),
�
RN

(−∆)s/2u (−∆)s/2φdx =
�
RN

g φ dx. (4.4.37)

Since g ∈ L2(RN ), we can apply Plancharel theorem and obtain
�
RN

|ξ|2sû φ̂ dξ =
�
RN

ĝ φ̂ dξ. (4.4.38)

Since Hs(RN ) = F(Hs(RN )) and φ is arbitrary, we gain

|ξ|2sû = ĝ ∈ L2(RN ).

By definition, we obtain u ∈ H2s(RN ), which concludes the proof. Observe moreover that
F−1((1 + |ξ|2s)û

)
= u+ g ∈ L2(RN ) ∩ L∞(RN ), thus by definition u ∈ H2s(RN ) ∩W 2s,∞(RN ).

By the embedding (1.2.13) (see also Proposition 1.2.25) we obtain u ∈ C0,γ(RN ) if 2s < 1 and
γ ∈ (0, 2s), while u ∈ C1,γ(RN ) if 2s > 1 and γ ∈ (0, 2s− 1).

It remains to show that u is an almost everywhere pointwise solution. Thanks to the fact
that u ∈ H2s(RN ), we use again (4.4.38), where we can apply Plancharel theorem (that is, we
are integrating by parts (4.4.37)) and thus

�
RN

(−∆)suφdx =
�
RN

g φ dx.

Since φ ∈ Hs(RN ) is arbitrary, we obtain

(−∆)su = g almost everywhere.

This concludes the proof.

We observe, by the proof, that if s ∈ (1
2 , 1), then u is a classical solution, with (−∆)su ∈ C(RN )

and equation (4.1.1) satisfied pointwise. We will further investigate these aspects in Section
4.4.4.

4.4.3 L1-summability: fixed point maps

We deal now with the summability of u in Lebesgue spaces Lr(RN ) for r < 2. We observe that
the information u ∈ L1(RN ) ∩ L2(RN ) is new even in the power-type setting: indeed in [138]
the authors, in order to ensure existence of solutions, assume the nonlinearity to be not critical,
while here we can include the possibility of criticality. Moreover, this result is new even for s = 1,
improving [302]. The L1-summability will be then used also to gain the asymptotic behaviour of
the solutions in Section 4.6.
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Remark 4.4.9. We start noticing that, if a solution u belongs to some Lq(RN ) with q < 2, then
u ∈ L1(RN ). Assume thus q ∈ (1, 2) and let u ∈ Lq(RN ) ∩ L∞(RN ), then we have

f(u) ∈ L
qN
α (RN ) ∩ L∞(RN ), F (u) ∈ L

qN
N+α (RN ) ∩ L∞(RN ),

Iα ∗ F (u) ∈ L
qN

N+α(1−q) (RN ) ∩ L∞(RN ), (Iα ∗ F (u))f(u) ∈ L
qN

N+α(2−q) (RN ) ∩ L∞(RN ).

Thanks to Proposition 4.4.8, u satisfies (4.1.1) almost everywhere, thus we have

F−1((|ξ|2s + µ) û
)

= (−∆)su+ µu = (Iα ∗ F (u))f(u) ∈ L
qN

N+α(2−q) (RN )

hence by the properties of the Bessel operator (1.2.12) we obtain that u itself lies in the same
Lebesgue space, that is

u ∈ L
qN

N+α(2−q) (RN ).

If qN
N+α(2−q) < 1, we mean that (Iα ∗ F (u))f(u) ∈ L1(RN ) ∩ L∞(RN ), and thus u ∈ L1(RN ) ∩

L∞(RN ). We convey this when we deal with exponents less than 1.
If q < 2, then

qN

N + α(2 − q) < q

and we can implement a bootstrap argument to gain u ∈ L1(RN ). More precisely




q0 ∈ [1, 2)

qn+1 = qnN

N + α(2 − qn)

where qn → 0 (but we stop at 1).

We show now that u ∈ L1(RN ). It is easy to see that, if the problem is (strictly) not
lower-critical, i.e., (F2) holds together with

lim
t→0

F (t)
|t|β = 0

for some β ∈ (N+α
N , N+α

N−2s), then u ∈ L1(RN ). Indeed u ∈ Hs(RN )∩L∞(RN ) ⊂ L2(RN )∩L∞(RN )
and

(Iα ∗ F (u))f(u) ∈ Lq(RN ),

where 1
q = β

2 − α
2N ; noticed that q < 2, we can implement the bootstrap argument of Remark

4.4.9.
We will show that the same conclusion can be reached by assuming only (F2).

Proposition 4.4.10. Assume that (F1)-(F2) hold. Let u ∈ Hs(RN )∩L∞(RN ) be a weak solution
of (4.1.1). Then u ∈ L1(RN ).

Proof. For a given solution u ∈ Hs(RN ) ∩ L∞(RN ) we set again

H := F (u)
u

, K := f(u).

Since u ∈ L2(RN ) ∩ L∞(RN ), by (F2) we have H, K ∈ L
2N
α (RN ). For n ∈ N, we set

Hn := Hχ{|x|≥n}.

Then we have
∥Hn∥ 2N

α
→ 0 as n → ∞. (4.4.39)
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Since supp(H −Hn) ⊂ {|x| ≤ n
}

is a bounded set, we have for any β ∈ [1, 2N
α ]

H −Hn ∈ Lβ(RN ) for all n ∈ N. (4.4.40)

We write our equation (4.1.1) as

(−∆)su+ µu = (Iα ∗Hnu)K +Rn in RN ,

where we introduced the function Rn by

Rn := (Iα ∗ (H −Hn)u)K.

Now we consider the following linear equation:

(−∆)sv + µv = (Iα ∗Hnv)K +Rn in RN . (4.4.41)

We have the following facts:

(i) The given solution u solves (4.4.41).

(ii) By the property (4.4.40) with β ∈ ( 2N
N+α ,

2N
α ), there exists q1 ∈ (1, 2), namely 1

q1
=

1
β + 1

2 − α
2N , such that Rn ∈ Lq1(RN ) ∩ L2(RN ).

(iii) By the property (4.4.39), for any r ∈ ( 2N
2N−α , 2] ⊂ (1, 2]

v ∈ Lr(RN ) 7→ An(v) := (Iα ∗Hnv)K ∈ Lr(RN )

is well defined and verifies
∥An(v)∥r ≤ Cr,n∥v∥r. (4.4.42)

Here Cr,n satisfies Cr,n → 0 as n → ∞.

We show only (iii). Since v ∈ Lr(RN ), by Hardy-Littlewood-Sobolev inequality and Hölder
inequality we obtain

∥An(v)∥r ≤ Cr∥Hn∥ 2N
α

∥K∥ 2N
α

∥v∥r,

where Cr > 0 is independent of n, v. Thus by (4.4.39) we have Cr,n := Cr∥Hn∥ 2N
α

∥K∥ 2N
α

→ 0
as n → ∞.

Now we show u ∈ Lq1(RN ), where q1 ∈ (1, 2) is given in (ii). Since ((−∆)s +µ)−1 : Lr(RN ) →
Lr(RN ) is a bounded linear operator for r ∈ (1, 2] (see (1.2.11)), (4.4.41) can be rewritten as

v = Tn(v),

where
Tn(v) := ((−∆)s + µ)−1(An(v) +Rn

)
.

By choosing β ∈ (2, 2N
α ) we have q1 ∈ ( 2N

2N−α , 2) ⊂ (1, 2), thus we observe that for n large, Tn is
a contraction in L2(RN ) and in Lq1(RN ). We fix such an n.

Since Tn is a contraction in L2(RN ), we can see that u ∈ Hs(RN ) is a unique fixed point of
Tn. In particular, we have

u = lim
k→∞

T k
n (0) in L2(RN ).

On the other hand, since Tn is a contraction in Lq1(RN ), (T k
n (0))∞

k=1 also converges in Lq1(RN ).
Thus the limit u belongs to Lq1(RN ).

Since q1 < 2 we can use the bootstrap argument of Remark 4.4.9 to get u ∈ L1(RN ), and
reach the claim.

With similar arguments we obtain also the following result for s = 1.

Proposition 4.4.11. Let s = 1 and assume N ≥ 3 and (F1)-(F2). Let u ∈ H1(RN ) ∩ L∞(RN )
be a weak solution of (3.1.1) Then u ∈ L1(RN ).
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4.4.4 Cγ-regularity: classical solutions
We continue the analysis of the regularity started in Proposition 4.4.8 and we infer the following
result. This extra regularity will be exploited in the discussion of the positivity of solutions, see
Section 4.5.1; some more results about the regularity of the solutions will be stated in Section
4.4.5.

Consider the condition

(F7) f ∈ C0,σ
loc (R) for some σ ∈ (0, 1].

Proposition 4.4.12. Assume (F1)-(F2). Let u ∈ Hs(RN ) ∩ L∞(RN ) be a weak solution of
(4.1.1). If s ∈ (1

2 , 1), then u ∈ C1,γ(RN ) for any γ ∈ (0, 2s− 1) and u is a classical solution.
Assume now instead s ∈ (0, 1) and in addition (F7). Then u is a classical solution, that is a

pointwise solution lying in

• C0,γ(RN ) ∩H2s(RN ) for some γ > 2s, if 2s < 1,

• C1,γ−1(RN ) ∩H2s(RN ) for some γ > 2s, if 2s ≥ 1.

More specifically, set ω := min{σ, 2sσ, α}, we have

• if ω + 2s ∈ (0, 1], then u ∈ C0,γ(RN ) for each γ ∈ (0, ω + 2s] ∩ (0, 1),

• if ω + 2s ∈ (1, 2], then u ∈ C1,γ−1(RN ) for each γ ∈ (0, ω + 2s] ∩ (0, 2),

• if ω + 2s ∈ (2, 3), then u ∈ C2,ω+2s−2(RN ).

Proof. Start noticing that by Proposition 4.4.6 we have Iα ∗ F (u) ∈ C0(RN ); in particular
Iα ∗ F (u) is pointwise finite. Moreover, by (F2) we have F (u) ∈ L

2N
N+α (RN ) ∩ L∞(RN ). If we

choose {
q ∈ [ 2N

N+α ,∞) if α ∈ (0, 1],
q ∈ [ 2N

N+α ,
N

α−1) if α ∈ (1, N)

we obtain
F (u) ∈ Lq(RN ), N

q < α < 1 + N
q

and thus we can apply Proposition 1.3.6 to conclude that

Iα ∗ F (u) ∈ C
0,α− N

q (RN ).

In particular, by suitable choices of q, we gain

Iα ∗ F (u) ∈ C0,ω(RN ) for every ω ∈ (0,min{1, α}).

Notice that up to now we did not use the regularity on f . Assume (F7) now. By Proposition
4.4.8 we have that u is bounded and u ∈ C0,γ(RN ) for every γ ∈ (0,min{1, 2s}). By composition,
we obtain

f(u) ∈ C0,θ(RN ), for θ ∈ (0,min{σ, 2sσ}).

Chosen
ω ≡ θ ∈ (0,min{σ, 2sσ, α})

then, since both f(u) and Iα ∗ F (u) are bounded and Hölder continuous, we have

(Iα ∗ F (u))f(u) ∈ C0,ω(RN ).

At this point we can use Proposition 1.2.25 to gain

• if ω + 2s ∈ (0, 1], then u ∈ C0,γ(RN ) for each γ ≤ ω + 2s, γ < 1,
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• if ω + 2s ∈ (1, 2], then u ∈ C1,γ−1(RN ) for each γ ≤ ω + 2s, γ < 2,

• if ω + 2s ∈ (2, 3), then u ∈ C2,ω+2s−2(RN ),

and thus the regularity claim. Finally, again by Proposition 4.4.8 u satisfies (4.1.1) almost
everywhere; moreover, by the achieved regularity and Proposition 1.2.1, we have that all the
appearing functions in (4.1.1) are continuous; thus the equation must be satisfied everywhere
pointwise. This concludes the proof.

4.4.5 C1 and C2 regularity

We prove now that, under some more restrictive conditions on s, α and σ, where f ∈ C0,σ
loc (RN ),

we can prove that u ∈ C1(RN ). We notice that partial results for s ∈ [1
4 , 1) are already contained

in Proposition 4.4.8 and Proposition 4.4.12. This C1-regularity will be implemented then in the
study of the Pohozaev identity in Section 4.7.

Proposition 4.4.13. Assume (F1)-(F2). Let u ∈ Hs(RN ) ∩ L∞(RN ) be a weak solution of
(4.1.1). Then

i) if s ∈ (1
2 , 1), then u ∈ C1,γ(RN ) for any γ ∈ (0, 2s− 1).

Assume now (F7) in addition. Then

ii) if s ∈ [1
2 , 1) and ω := min{σ, α} ≤ 2 − 2s, then u ∈ C1,γ(RN ) for any γ ∈ (0, ω + 2s− 1);

if instead ω > 2 − 2s, then u ∈ C2,ω+2s−2(RN );

iii) if s ∈ [1
4 ,

1
2), α > 1 − 2s and σ > 1−2s

2s , then u ∈ C1,γ(RN ) for every γ ∈ (0, ω + 2s − 1),
where ω := min{2sσ, α};

iv) if α < 2 and σ > 1 − 2s, then u ∈ C1,γ(RN ) for every γ ∈ (0, 1).

Proof. We need to check only the fourth case. We aim to prove

(Iα ∗ F (u))f(u) ∈ C0,ω
loc (RN ), for some ω + 2s > 1

in order to apply Proposition 1.2.25. We want to show thus that Iα ∗ F (u) is Hölder continuous;
more precisely, we will show that it belongs to C0,ω(RN ) for some ω that increases according to
γ, where u ∈ C0,γ(RN ), so that we can employ a bootstrap argument.

Thanks to Proposition 4.4.12, set

θ0 := min{σ + 2s, 2sσ + 2s, α+ 2s, 1}
= min{2sσ + 2s, α+ 2s, 1}

we have
u ∈ C0,γ(RN ) ∩ L∞(RN ), for γ ∈ (0, θ0).

By composition we obtain

f(u) ∈ C0,γ(RN ), for γ ∈ (0, σθ0),

and
F (u) ∈ C0,γ(RN ), for γ ∈ (0, θ0),

which implies, by Proposition 1.3.6 (possible since α < 2) and Remark 1.1.1 (recall that
Iα ∗ F (u) ∈ L∞(RN )), that

Iα ∗ F (u) ∈ C0,α+γ(RN ), for γ ∈ (0,min{θ0, 1 − α})
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that is
Iα ∗ F (u) ∈ C0,γ(RN ), for γ ∈ (0,min{θ0 + α, 1}).

Since ω0 := σθ0 < min{θ0 + α, 1}, we have

(Iα ∗ F (u))f(u) ∈ C0,γ(RN ) for γ ∈ (0, ω0).

We implement now the bootstrap argument. By Proposition 1.2.25 we gain

• if θ1 := ω0 + 2s > 1, then u ∈ C1,γ(RN ) for γ ∈ (0, θ1 − 1);

• if θ1 = ω0 + 2s ≤ 1, then u ∈ C0,γ(RN ) for γ ∈ (0, θ1).

In the first case, we stop. Otherwise,

(Iα ∗ F (u))f(u) ∈ C0,ω1(RN ), ω1 := σθ1,

and

• if θ2 := ω1 + 2s > 1, then u ∈ C1,γ(RN ) for γ ∈ (0, θ2 − 1);

• if θ2 = ω1 + 2s ≤ 1, then u ∈ C0,γ(RN ) for γ ∈ (0, θ2).

We proceed inductively by setting
{
ωi := σθi,

θi := ωi−1 + 2s,

that is
θi = σθi−1 + 2s.

We need to show that θi > 1 at some point. We observe that

θi > θi−1 ⇐⇒ θi−1 <
2s

1 − σ
.

If for some i we have
θi ≥ 2s

1 − σ
> 1

then we stop. Otherwise, θi is increasing, and thus its limit θi → l satisfies

l = σl + 2s

which means that l = +∞ or l = 2s
1−σ > 1. This concludes the proof.

Remark 4.4.14. We notice that, by assuming F ≥ 0, we can use Proposition 1.3.6 to implement
a bootstrap argument (namely ω0 := min{σ, N

N+α}θ0 with the notations of the above proof) to
get additional regularity for a generic α ∈ (0, N). We leave the details to the interested reader.
Similar arguments can be developed by assuming

|F (t) − F (s)| ≲ |t− s|θ|f(t) − f(s)|, for t, s ∈ R

for some θ ∈ (0, 1].
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Remark 4.4.15. Let us consider u > 0 radially symmetric decreasing and assume f ∈
C1((0,+∞)) with

|f ′(t)| ≲ |t|− N−α
N + |t| 2α

N−α , for t > 0
and

|f(t) − f(s)| ≲ |t− s|θ|f ′(t) − f ′(s)|, for t, s > 0
for some θ ∈ (0, 1], then we can refine the regularity argument of Remark 4.4.14 by exploiting
some asymptotic estimates. Indeed, better regularity on (Iα ∗F (u))f(u) can be deduced as follows:
for x, y ∈ RN we have
∣∣(Iα ∗ F (u)

)
(x)f(u(x)) − (

Iα ∗ F (u)
)
(y)f(u(y))

∣∣

≤
∣∣(Iα ∗ F (u)

)
(x) − (

Iα ∗ F (u)
)
(y)
∣∣ ∥f(u)∥∞ + |u(x) − u(y)|θ

∣∣(Iα ∗ F (u)
)
(y)
∣∣ |f ′(u(x)) − f ′(u(y))|

where, by Corollary 4.6.20 and Remark 4.6.17

∣∣(Iα ∗ F (u)
)
(y)
∣∣ |u(x)|− N−α

N ≤ 1 + |x|N−α

1 + |y|N−α
≤ C

whenever |x− y| ≤ 1. Thus the Hölder regularity exponent of (Iα ∗F (u))f(u) directly depends on
the ones of Iα ∗ F (u), u and on θ. We leave the details to the interested reader.

Finally, we exploit the L1-summability in order to further investigate the C2-regularity of the
solution u. We notice that some results are already contained in Proposition 4.4.12, whenever
s ∈ (1

2 , 1), with some restriction on the regularity of f and on α: for instance, if f ∈ C0,1
loc (R) we

need α + 2s > 2 (e.g., α ≥ 1). We prove now that, if f ∈ C1(R), then no restriction on α is
needed. Notice that f ∈ C1(R) implies f non sublinear in zero, that is (F6).

Proposition 4.4.16. Assume (F1)-(F2) and s ∈ (1
2 , 1). Let u ∈ Hs(RN ) ∩ L∞(RN ) be a weak

solution of (4.1.1). Then we have

• if (F7) holds with ω := min{σ, α} > 2 − 2s, then u ∈ C2,ω+2s−2(RN ),

• if f ∈ C1(R), then u ∈ C2,γ−2(RN ) for every γ < 2s+ 1.

Proof. We need to prove only the second point. First we show that Iα ∗ F (u) is in C1(RN ).
Indeed, considered η ∈ C∞

c (RN ) a smooth mollification of χB1 , we have
(
Iαη

) ∗ F (u) ∈ C1(RN )

since Iαη ∈ L1(RN ) has compact support and u ∈ C1(RN ) (by Proposition 4.4.8), while
(
Iα(1 − η)

) ∗ F (u) ∈ C1(RN )

since Iα(1−η) has support far from the origin and thus belongs to C1
b (RN ), while F (u) ∈ L1(RN )

by Proposition 4.4.10 (since u ∈ L1(RN ) ∩ L2(RN ) ⊃ L
N+α

N (RN ), see also Remark 4.4.9).
In particular

(−∆)su = −µu+ (Iα ∗ F (u))f(u) ∈ C1(RN ).
Since 2s > 1, we gain u ∈ H2s(RN ) ↪→ H1(RN ), and in particular ∂ju ∈ L2(RN ) ∩ C0,γ(RN ) ⊂
L∞(RN ) for each j = 1 . . . N . Moreover we have

∂j
(
Iα ∗ F (u)

)
=
(
Iαη

) ∗ (∂jF (u)
)

+
(
∂j(Iα(1 − η))

) ∗ F (u).

We want to show that the derivative can be moved to F (u) in the second term. Indeed, set
h := Iα(1 − η) for brevity, and let ϕn be a cut-off function with ϕn ≡ 1 in Bn and support in
Bn+1; thus

�
RN

∂jh(x− y)F (u(y))ϕn(y) =
�
RN

h(x− y)∂jF (u(y))ϕn(y)+
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+
�
RN

h(x− y)F (u(y))∂jϕn(y);

being ϕn → 1, ∂jϕn → 0 as n → +∞, and |h|, |∂jh| ≤ C together with F (u) ∈ L1(RN ) and
∂jF (u) = f(u)∂ju ∈ L1(RN ) (notice that f(u) ∈ L2(RN ) since u ∈ L2(RN ) ∩ L∞(RN )), by
dominated convergence theorem we reach the claim. Thus we obtain

∂j
(
(Iα ∗ F (u))f(u)

)
=
(
Iα ∗ (f(u)∂ju)

)
f(u) +

(
Iα ∗ F (u)

)
f ′(u)∂ju.

Since u ∈ L∞(RN ) and f ′ is continuous, we have f ′(u) is bounded. Thus the right hand side
belongs to L2(RN ) ∩ L∞(RN ).

If we prove that
∂j((−∆)su) = (−∆)s(∂ju) (4.4.43)

then we have
(−∆)s(∂ju) = −µ∂ju+ ∂j

(
(Iα ∗ F (u))f(u)

) ∈ L∞(RN );
by Proposition 1.2.25 and again 2s > 1, we obtain that ∂ju ∈ C1,γ(RN ) for any γ ∈ (0, 2s− 1),
which is the claim.

We deal thus with (4.4.43). Since ∂j((−∆)su) ∈ L2(RN ), we can evaluate the Fourier
transform F(∂j((−∆)su)

)
, and since (−∆)su ∈ C1(RN ) we have

F(∂j((−∆)su)
)

= iξjF((−∆)su
)

= iξj
(|ξ|2sF(u)

)
.

Since u ∈ L2(RN ) ∩ C1(RN ) we obtain

F(∂j((−∆)su)
)

= |ξ|2s(iξjF(u)
)

= |ξ|2sF(∂ju);

taking back the Fourier transform, we obtain (4.4.43). This concludes the proof.

4.5 Shape of ground states
In this Section we exploit the regularity of the solutions gained in Proposition 4.4.12 to deduce
the following theorem concerning the sign and the symmetry of the ground state solutions.

Theorem 4.5.1. Assume N ≥ 2 and (F7) in addition to (F1)-(F2). Assume moreover

(F8) (i) f is odd or even,
(ii) f has constant sign on (0,+∞).

Then every Pohozaev minimum of (4.1.1) has strict constant sign (strictly positive or negative),
is radially symmetric and decreasing.

This last result is obtained also for constrained problem with fixed mass, see Remark 4.5.9
for details.

Remark 4.5.2. We observe that the qualitative results in Theorem 4.5.1 holds also for least
energy solutions, when the Pohozaev identity holds for every solution, see Section 4.7 (see also
[138, Eq (6.1)] and [342]).

This theorem extends the result in Theorem 3.1.1 to the fractional case; in particular,
[302] deals with the case F even. Here we address also the study of the case F odd: as
already highlighted in Chapter 3, this case is generally less studied in literature, even if (in the
nonlocal framework) this assumption makes the functional symmetric as well as the odd case.
Mathematically, F odd reveals to be more challenging, since the interactions in the nonlocal
term among positive and negative contributions is stronger and more difficult to manage.

Specifically, we highlight that this result is new even in the limiting local case s = 1, N ≥ 3,
when F is odd, extending some results in [302]. Notice that in this framework the regularity
results hold for f merely continuous, and moreover every Pohozaev minimum is a least energy
solution, since every solution satisfies the Pohozaev identity (3.4.32).



4.5. Shape of ground states 139

Theorem 4.5.3. Let s = 1 and assume N ≥ 3 and (F1)-(F2). Assume moreover (F8). Then
every least energy solution of (3.1.1) has strict constant sign (strictly positive or negative), is
radially symmetric and decreasing.

4.5.1 Positivity through fibers
We want to show now that every Pohozaev ground state has constant sign. This result requires
some additional symmetric condition on f .

We start by providing some trivial but useful inequalities, consequence of Lemma 1.4.1.

Lemma 4.5.4. Let u ∈ Hs(RN ). Then

∥(−∆)s/2|u|∥2 ≤ ∥(−∆)s/2u∥2.

Assume moreover that

• f is odd, or

• f is even, and F has constant sign on (0,+∞),

then
D(|u|) ≥ D(u);

if f is odd, equality holds. As a consequence

Jµ(|u|) ≤ Jµ(u), Pµ(|u|) ≤ Pµ(u).

To prove the positivity of Pohozaev ground states, we need to get information about the
absolute value of the function. This analysis is simplified when dealing with local operators s = 1
(since ∥∇|u|∥2 = ∥∇u∥2 and the Pohozaev identity holds for every solution, see [302]), or when
dealing with local nonlinearities (since the source scales in the argument in the same way as
|u|2 and an equivalent minimization approach can be exploited, see [50]), or when dealing with
homogeneous nonlinearities (since another minimization approach holds, see [138, 300]). In order
to implement a different approach, we start observing the following fact.

For every u ∈ Hs(RN ), u ̸≡ 0, we define the fiber gu : (0,+∞) → R as follows

gu(t) := Jµ(u(·/t)) = tN−2s

2 ∥(−∆)s/2u∥2
2 + µ

tN

2 ∥u∥2
2 − tN+α

2 D(u), t ∈ (0,+∞).

By a straightforward computation we notice that

g′
u(1) = Pµ(u).

Since N + α > N > N − 2s it is immediate showing that there exists a single critical point for
gu, that we call λ(u), which is a global maximum. That is

g′
u(λ(u)) = 0, gu(λ(u)) ≥ gu(t) for each t ∈ (0,+∞).

Noticed that λ(u) > 0, we set
v := u(·/λ(u));

by the fact that gu(λ(u)t) = gv(t), we obtain g′
v(1) = 0, that is

Pµ(v) = 0.

In other words, the scaling through λ(u) brings u to the Pohozaev manifold; moreover, the energy
is maximized in λ(u) all over the scaling.

Proposition 4.5.5. Assume
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• f is odd, or

• f is even, and F has constant sign on (0,+∞),

in addition to (F1)-(F2). Assume moreover (F7). Let u be a Pohozaev minimum of (4.1.1).
Then u has strict constant sign (strictly positive or negative).

Proof. Since u satisfies Pµ(u) = 0, we obtain λ(u) = 1 and thus

gu(t) ≤ gu(1) for each t ∈ (0,+∞). (4.5.44)

Consider |u| and λ(|u|). Define
v := |u|(·/λ(|u|))

which satisfies Pµ(v) = 0. Since u is a Pohozaev minimum we obtain

Jµ(u) ≤ Jµ(v).

We then use Lemma 4.5.4 to gain

Jµ(u) ≤ Jµ(v)

= (λ(|u|))N−2s

2 ∥(−∆)s/2|u|∥2
2 + µ

(λ(|u|))N

2 ∥|u|∥2
2 − (λ(|u|))N+α

2 D(|u|)

≤ (λ(|u|))N−2s

2 ∥(−∆)s/2u∥2
2 + µ

(λ(|u|))N

2 ∥u∥2
2 − (λ(|u|))N+α

2 D(u)

= gu(λ(|u|)).
We finally use (4.5.44) with t = λ(|u|) and obtain

Jµ(u) ≤ Jµ(v) ≤ gu(λ(|u|)) ≤ gu(1) = Jµ(u).

Thus
Jµ(v) = Jµ(u) = p(µ)

which, together with Pµ(v) = 0, implies that v is also a Pohozaev minimum of (4.1.1). By
Proposition 4.3.4 we obtain that v is a weak solution of (4.1.1), positive by definition. Thus by
Proposition 4.4.7 we have v ∈ Hs(RN ) ∩L∞(RN ); this implies, by Proposition 4.4.12, that v is a
classical solution, and in particular well defined pointwise. Thus, if by contradiction there exists
an x0 ∈ RN such that v(x0) = 0, then computing

(−∆)sv(x0) + µv(x0) = (Iα ∗ F (v))(x0)f(v(x0))

we obtain, by definition of fractional Laplacian and f(0) = 0,

−
�
RN

v(y)
|x0 − y|N+2s

dy = 0

and hence v ≡ 0, which is absurd. Thus |u| ≠ 0. Being v ∈ L∞(RN ), we obtain u ∈ L∞(RN ),
and hence u continuous by Proposition 4.4.8. As a consequence, u does not change sign. This
concludes the proof.

Remark 4.5.6. We point out that, without assuming (F7), we can achieve

p(µ) = inf
{Jµ(u) | u ∈ Hs(RN ) \ {0}, Pµ(u) = 0, u positive

}

and the same for pr(µ). Indeed, let (un)n ⊂ Hs(RN ) \ {0}, Pµ(un) = 0, Jµ(un) → p(µ) be a
minimizing sequence. Set vn := |un|(·/λ(|un|)) we have Pµ(un) = 0 and, arguing as in the first
part of Proposition 4.5.5, we obtain

lim
n→+∞

Jµ(un) = p(µ) ≤ Jµ(vn) ≤ gun(λ(|un|)) ≤ Jµ(un);

thus Jµ(vn) → p(µ), which means that vn is a positive minimizing sequence.
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4.5.2 Radial symmetry
The solution found in Theorem 4.2.1 is radially symmetric by construction. We show now that,
under some condition on f , every Pohozaev ground state is actually radially symmetric. To this
aim, we will exploit the polarization introduced in Section 1.4. We remark that other techniques
could be investigated (with different assumptions on f , see e.g. [275,371]), but this goes beyond
the scope of this thesis.
Proposition 4.5.7. Assume that f has constant sign on (0,+∞) in addition to (F1)-(F2). Let
u be a positive Pohozaev minimum of (4.1.1). Then u is radially symmetric and decreasing with
respect to some point.
Proof. Let uH be the polarization of u with respect to a closed half-space H ⊂ RN . By
Proposition 1.4.5 we have

∥(−∆)s/2uH∥2 ≤ ∥(−∆)s/2u∥2.

Assume moreover that f ≥ 0 on (0,+∞) (if we substitute f with −f the Hartree-type terms are
conserved). Observed that F is nondecreasing on (0,+∞), we have by (1.4.40)

F (vH) = (F (v))H whenever v ≥ 0.

Thanks to these facts, we can argue as in [302, Section 5.3] to reach that Jµ(uH) = Jµ(u),
which implies D(uH) ≥ D(u); on the other hand, the inverse inequality is always true, and hence
D(uH) = D(u); again by the argument in [302] we have the claim.

Corollary 4.5.8. In the assumptions of Theorem 4.5.1, every Pohozaev minimum of (4.1.1) has
constant sign, is radially symmetric and decreasing. Moreover, assuming also (F3)-(F4), we have

pr(µ) = p(µ) = inf
{Jµ(u) | u ∈ Hs

r (RN ) \ {0}, Pµ(u) = 0, u positive
}
.

Proof Theorems 4.5.1 and 4.5.3. The claim of Theorem 4.5.1 is contained in Corollary 4.5.8.
The proof of Theorem 4.5.3 can be obtained arguing in the same way, obtaining regularity of
solutions by standard results (see e.g. [302]).

Remark 4.5.9. In Section 4.2.2 we found a Mountain Pass solution (µ̄, ū) for the L2-mass
prescribed problem by assuming L2-subcriticality of the nonlinearity. This solution is a ground
state of

L(u) = 1
2

�
RN

|(−∆)s/2u|2 dx− 1
2

�
RN

(Iα ∗ F (u))F (u) dx,

restricted to the set
Sm = {u ∈ Hs

r (RN ) | ∥u∥2
2 = m};

moreover, this solution (µ̄, ū) is a minimum over the Pohozaev set in the product space, that is

L(µ, u) = inf
Pν(v)=0

L(ν, v).

This property easily implies that ū is a ground state (in the unconstrained case) of Jµ̄ over the
Pohozaev set, that is

Jµ̄(ū) = pr(µ̄).
Thus, the positivity result in Proposition 4.5.5 applies to ū.

Actually, all the positivity and symmetry results gained in this Section hold also for this
constrained mass problem, up to simple adaptations. Indeed, in this case the proof of the positivity
is even easier, since

u ∈ {∥v∥2
2 = m

}
=⇒ |u| ∈ {∥v∥2

2 = m
}
,

which means that if u is a ground state, then |u| is a ground state as well. We highlight again
that this simplified approach can be not implemented in the unconstrained case. In addition,
under these symmetric and regularity assumptions (F7)-(F8), also this L2-minimum is actually
an L2-minimum all over the whole Hs(RN ) (and not only restricting the functional on Hs

r (RN )).
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4.6 Asymptotic decay

In this Section we exploit the L1-summability of the solutions to study the asymptotic behaviour
of solutions for |x| → +∞. Recall that 2#

α = N+α
N and 2∗

α,s = N+α
N−2s .

When s = 1 and f(u) = |u|r−2u, that is

− ∆u+ µu =
(
Iα ∗ |u|r)|u|r−2u in RN (4.6.45)

Cingolani, Clapp and Secchi in [109, Proposition A.2] obtained an exponential decay of positive
solutions whenever r ≥ 2, which means that the effect of the classical Laplacian prevails.
Afterwards, Moroz and Van Schaftingen in [300] (see also [301,304] and [101,128]) extended the
previous analysis in the case of ground state solutions to all the possible values of r in the range
[2#

α , 2∗
α,1], in particular by finding a polynomial decay when f is sublinear (i.e., the Choquard

term effect prevails). They prove the following result [300, Theorem 4].

Theorem 4.6.1 ([300]). Let s = 1 and let u ∈ H1(RN ) be a nonnegative ground state of (4.6.45),
and r ∈ [2#

α , 2∗
α,1]. Assume µ = 1. Then

• if r > 2, then
lim

|x|→+∞
u(x)|x| N−1

2 e|x| ∈ (0,+∞);

• if r = 2, then

lim
|x|→+∞

u(x)|x| N−1
2 e

� |x|
ν

√
1− νN−α

tN−α dt ∈ (0,+∞)

for some explicit ν = ν(u);

• if r < 2, then
lim

|x|→+∞
u(x)|x|

N−α
2−r = C(N,α, r, u) ∈ (0,+∞)

where
C(N,α, r, u) :=

(
CN,α∥u∥r

r

) 1
2−r (4.6.46)

with CN,α := Γ( N−α
2 )

2απN/2Γ( α
2 ) .

Notice that, when µ ̸= 1, µ influences both the limiting constants and the speed of the
exponential decays. We refer also to [135, Section 8.2] for some results on convolution equations
with non-variational structure.

The case of the fractional Choquard equation s ∈ (0, 1) with homogeneous f , that is

(−∆)su+ µu =
(
Iα ∗ |u|r)|u|r−2u in RN , (4.6.47)

has been studied by D’Avenia, Siciliano and Squassina in [138] (see also [139] and [280,395] for
other related results). In this paper the authors gain existence of ground states, multiplicity
and qualitative properties of solutions. In particular they obtain asymptotic decay of solutions
whenever the source is linear or superlinear, that is when r ≥ 2 (see also [41] for the p-fractional
Laplacian counterpart): in this case the rate is polynomial, as one can expect dealing with the
fractional Laplacian; more specifically, it does not depend on α, and they prove the following
theorem.

Theorem 4.6.2 ([138]). Let u ∈ Hs(RN ) be a solution of (4.6.47), and assume r ∈ [2, 2∗
α,s].

Then
0 < lim inf

|x|→+∞
|u(x)||x|N+2s ≤ lim sup

|x|→+∞
|u(x)||x|N+2s < +∞.
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In this Section we study the asymptotic profile of solutions of equation (4.1.1), starting by
the case f linear or superlinear. In the remeaning part we will develop the more tricky case of f
sublinear: the found decay is of polynomial type, with a rate possibly slower than ∼ 1

|x|N+2s ; the
result is new even for homogeneous functions f(u) = |u|r−2u, r ∈ [N+α

N , 2), and, differently from
the local case s = 1 in [300], new phenomena arise connected to a new s-sublinear threshold that
we detect on r.

This Section is mainly based on papers [115] and [198].

We show first some conditions which imply the decay at infinity of the solutions.

Lemma 4.6.3. Assume that (F1)-(F2) hold. Let u ∈ Hs(RN ) be a weak solution of (4.1.1).
Assume

(Iα ∗ F (u))f(u) ∈ L2(RN ) ∩ L∞(RN ).

Then we have
u(x) → 0 as |x| → +∞.

Proof. Being u solution of

(−∆)su+ µu =
(
Iα ∗ F (u)

)
f(u) =: χ in RN ,

where χ ∈ L2(RN )∩LN
2s (RN )∩L∞(RN ), we have the representation formula (being χ ∈ L2(RN ))

u = K ∗ χ

where K := K2s,µ is the Bessel kernel; we recall that K is positive, it satisfies K(x) ≤ C
|x|N+2s for

|x| ≥ 1 and K ∈ Lq(RN ) for q ∈ [1, 1 + 2s
N−2s) (see Lemma 1.2.29). Let us fix η > 0; we have, for

x ∈ RN ,

u(x) =
�
RN

K(x− y)χ(y)dy

=
�

|x−y|≥1/η
K(x− y)χ(y)dy +

�
|x−y|<1/η

K(x− y)χ(y)dy.

As regards the first piece
�

|x−y|≥1/η
K(x− y)χ(y)dy ≤ ∥χ∥∞

�
|x−y|≥1/η

C

|x− y|N+2s
dy ≤ Cη2s

while for the second piece, fixed a whatever q ∈ (1,min{2, N
N−2s}) and its conjugate exponent

q′ ∈ (max{2, N
2s},+∞) we have by Hölder inequality

�
|x−y|<1/η

K(x− y)χ(y)dy ≤ ∥K∥q∥χ∥Lq′ (B1/η(x))

where the second factor can be made small for |x| ≫ 0. Joining the pieces, we conclude the
proof.

Notice that u ∈ L2(RN ) ∩ L∞(RN ) implies the assumptions of Lemma 4.6.3.

4.6.1 The (super)linear case
By assuming the condition in zero (F6) for the function f , we obtain the following polynomial
decay, as stated in paper [115].
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Theorem 4.6.4. Assume (F1)-(F2) and (F6). Let u ∈ Hs(RN ) be a positive weak solution of
(4.1.1). Then there exists C ′, C ′′ > 0 such that

C ′

1 + |x|N+2s
≤ u(x) ≤ C ′′

1 + |x|N+2s
, for x ∈ RN .

We are now ready to prove the polynomial decay of the solutions.
Proof of Theorem 4.6.4. Observe that, by (F6) and Theorem 4.4.1

f(u)
u

∈ L∞(RN ). (4.6.48)

Moreover, by Proposition 4.4.6 we obtain

(Iα ∗ F (u))(x)f(u(x))
u(x) → 0 as |x| → +∞. (4.6.49)

As a consequence, by (4.6.49) and the positivity of u, we have for some R′ ≫ 0

(−∆)su+ 1
2µu = (Iα ∗ F (u))f(u) − 1

2µu =
(
(Iα ∗ F (u))f(u)

u − 1
2µ
)
u ≤ 0 in RN \BR′ .

Similarly

(−∆)su+ 3
2µu = (Iα ∗ F (u))f(u) + 1

2µu =
(
(Iα ∗ F (u))f(u)

u + 1
2µ
)
u ≥ 0 in RN \BR′ .

Notice that we always intend differential inequalities in the weak sense.
In addition, by Lemma 1.2.30 we have that there exist two positive functions W ′, W ′ and

three positive constants R′′, C ′ and C ′′ depending only on µ, such that




(−∆)sW ′ + 3
2µW

′ = 0 in RN \BR′′ ,

C ′

|x|N+2s
< W ′(x), for |x| > 2R′′.

and 



(−∆)sW
′ + 1

2µW
′ = 0 in RN \BR′′ ,

W
′(x) < C ′′

|x|N+2s
, for |x| > 2R′′.

Set R := max{R′, 2R′′}. Let C1 and C1 be some lower and upper bounds for u on BR,
C2 := minBR

W
′ and C2 := maxBR

W ′, all strictly positive. Define

W := C1C
−1
2 W ′, W := C1C

−1
2 W

′

so that
W (x) ≤ u(x) ≤ W (x), for |x| ≤ R.

Thanks to the comparison principle in Lemma 1.2.34, and redefining C ′ and C ′′, we obtain

C ′

|x|N+2s
< W (x) ≤ u(x) ≤ W (x) < C ′′

|x|N+2s
, for |x| > R.

By the boundedness of u, we obtain the claim.

We see that, for non sublinear f (that is, (F6)), the decay is essentially given by the fractional
operator. It is important to remark that, contrary to the limiting local case s = 1 (Theorem
4.6.1), the Choquard term in case of linear f seems not to affect the decay of the solution.
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Remark 4.6.5. We observe that the conclusion of the proof of Theorem 4.6.4 can be substituted
by exploiting the results in [190] through a Kato’s inequality (see also [19, Theorem 3.2]). Indeed
write V := −(Iα∗F (u))f(u)

u , which is bounded and zero at infinity as observed in (4.6.48)–(4.6.49),
and gain

(−∆)su+ V (x)u = −µu in RN .

Up to dividing for ∥u∥2, we may assume ∥u∥2 = 1. Thus we are in the assumptions of [190, Lemma
C.2] and obtain, for constant sign or sign-changing solutions of (4.1.1),

|u(x)| ≤ C1

(1 + |x|2) N+2s
2

together with
|u(x)| = C2

|x|N+2s
+ o

( 1
|x|N+2s

)
as |x| → +∞

for some C1, C2 > 0.

4.6.2 The sublinear case: fractional Laplacian versus Riesz potential
We focus now on the case f sublinear: we aim to study the fractional Choquard case s ∈ (0, 1),
α ∈ (0, N), in presence of general, sublinear nonlinearities. We point out that the arguments
in [300] cannot be directly adapted to the fractional framework: for instance, we see that the
explicit computation of the fractional Laplacian of some comparison function is not possible, and
the choice of the comparison functions itself is hindered by some growth condition typical of
the nonlocal framework; moreover, it is not obvious that all the weak solutions are pointwise
solutions, and neither one can deduce that the concave power of a pointwise solution is indeed a
solution (of a different equation) itself.

We start by presenting the case of homogeneous powers f , which has an interest on its own.
Since in the superlinear case the rate of convergence is of the type ∼ 1

|x|N+2s , in the sublinear
case we generally expect a slower decay. Actually this is what we find, as the following theorem
states.

Theorem 4.6.6. Let u ∈ Hs(RN ), strictly positive, radially symmetric and decreasing, be a
weak solution of (4.6.47). Let r ∈ [2#

α , 2) and set

β := min
{
N − α

2 − r
,N + 2s

}
≥ N.

Then
0 < lim inf

|x|→+∞
u(x)|x|β ≤ lim sup

|x|→+∞
u(x)|x|β < +∞.

We refer to Remark 4.6.12 and Corollary 4.6.32 for some comments and generalizations on
the assumptions. This result in particular applies to ground states solutions.

Corollary 4.6.7. Let u be a positive ground state of (4.6.47). Then the conclusions of Theorem
4.6.6 hold.

We highlight that the found decay of the ground states might give information, when
r < 2, also on the twice Gateaux differentiability of the corresponding functional and on the
nondegeneracy of the ground state solution itself, see [300] (see also [304, Section 3.3.5]). Moreover
this information on the decay may be exploited to study fractional Choquard equations with
potentials V = V (x) approaching, as |x| → +∞, some V∞ > 0 from above or oscillating, in
the spirit of [282, 283]. It might be further used, for example, in the semiclassical analysis of
concentration phenomena, see e.g. Chapter 5.

Joining the results in Theorem 4.6.2 and Theorem 4.6.6 we obtain the following picture of
the asymptotic decay of fractional Choquard equations.
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Corollary 4.6.8. Let u be a positive ground state of (4.6.47), with r ∈ [2#
α , 2∗

α,s] and µ > r − 1.

• If r ∈ [2#
α ,

N+α+4s
N+2s ], then

0 < lim inf
|x|→+∞

u(x)|x|
N−α
2−r ≤ lim sup

|x|→+∞
u(x)|x|

N−α
2−r < +∞;

in particular, N−α
2−r = N in the lower critical case r = 2#

α .

• If r ∈ [N+α+4s
N+2s , 2∗

α,s], then

0 < lim inf
|x|→+∞

u(x)|x|N+2s ≤ lim sup
|x|→+∞

u(x)|x|N+2s < +∞.

By the previous Corollary we see that the exponent

r∗
α,s := N + α+ 4s

N + 2s ,

r∗
α,s ∈ (2#

α , 2), separates the cases where the fractional Laplacian influences more the rate of
convergence (which does not depend on α), from the cases where the asymptotic behaviour
is dictated by the Choquard term (which does not depend on s). This phenomenon seems to
highlight a difference between the fractional and the local case, where the separating exponent is
r = 2 (see Theorem 4.6.1): indeed, when r ∈ (r∗

α,1, 2), the arbitrary big (as r → 2) polynomial
behaviour ∼ 1

|x|
N−α
2−r

keeps being slower than the exponential decay induced by the classical

Laplacian; this is not the case when compared with the polynomial decay induced by the fractional
Laplacian, and this is why this new phenomenon appears in this range. Thus r∗

α,s can be seen as
a kind of s-subquadratic threshold for the growth of F ; set instead

p∗
α,s := r∗

α,s − 1 = α+ 2s
N + 2s,

it can be seen as a s-sublinear threshold for the growth of f . Notice that

r∗
α,s

s→0→ 2#
α , r∗

α,s
α→N→ 2,

while
r∗

α,s
s→1→ N + α+ 4

N + 2 ∈ (2#
α , 2), r∗

α,s
α→0→ N + 4s

N + 2s ∈ (1, 2).

We refer also to the recent paper [209, Theorem 1.4] where asymptotic decay results are studied
in a different framework (still involving the fractional Laplacian and the Riesz potential); here a
threshold different from the classical case s = 1 is detected as well.

When r ∈ [2#
α , r

∗
α,s) we are also able to find a sharp decay for u.

Corollary 4.6.9. Let u ∈ Hs(RN ), strictly positive, radially symmetric and decreasing, be a
weak solution of (4.6.47); in particular, u may be a ground state. If r ∈ [2#

α , r
∗
α,s), we have

lim
|x|→+∞

u(x)|x|
N−α
2−r =

(
CN,α∥u∥r

r

µ

) 1
2−r

;

notice that, if µ = 1, the constant is coherent with (4.6.46).

We finally highlight that, for s ∈ (0, 1], the rate of convergence of the solutions for r ≤ r∗
α,s

is ∼ 1
|x|

N−α
2−r

: for bigger values of r, the rate stabilizes to ∼ 1
|x|N+2s when s < 1, while it keeps

getting faster when s = 1 (up to the threshold r = 2, where it gets constantly exponential). It
might be interesting to investigate other possible phenomena on fractional Choquard equations
when r is above and below this exponent r∗

α,s, or also possible phenomena in (r∗
α,1, 2) for the

local Choquard equation.
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Remark 4.6.10. We notice that, fixed a positive solution u, by setting

ρ := Iα ∗ ur

equation (4.6.47) can be rewritten as

(−∆)su+ µu = ρ(x)ur−1.

When µ = 0 and ρ(x) ≤ 1
|x|γ with γ > N , this fractional sublinear equation (r ∈ (0, 2)) has been

studied in [321] (see also [211, Theorem 4.4] where they extend the result to γ > 2s): here the
authors find an estimate from above of the asymptotic decay of the solutions, which is strictly
slower than ∼ 1

|x|N . Notice that, in our case, ρ = Iα ∗ur decays at most as ∼ 1
|x|N−α (see (1.3.34)),

and we discuss the strict positive mass case µ > 0. See also [138,253] for more results on the
zero mass case.

We pass now to more general nonlinearities, and study (4.1.1). We will assume (F1)-(F2),
which in particular imply

i) lim sup
t→0

|F (t)|
|t|2#

α

< +∞, ii) lim sup
|t|→+∞

|F (t)|
|t|2∗

α,s
< +∞, (4.6.50)

or equivalently that there exists C > 0 such that for every t ∈ R,

|F (t)| ≤ C
(|t|2#

α + |t|2∗
α,s
)
.

In addition we consider f sublinear in the origin, given by the following assumptions:

(F9) there exists r ∈ [2#
α , 2) such that

lim sup
t→0+

|f(t)|
tr−1 ∈ [0,+∞),

i.e., for some C̄ > 0 and δ ∈ (0, 1) we have

|f(t)| ≤ C̄tr−1 for t ∈ (0, δ); (4.6.51)

(F10) there exists r ∈ [2#
α , 2) such that

lim inf
t→0+

f(t)
tr−1 ∈ (0,+∞),

i.e., for some C > 0 and δ ∈ (0, 1) we have

f(t) ≥ Ctr−1 for t ∈ (0, δ). (4.6.52)

A sufficient condition for (F9) is clearly given by

lim sup
t→0+

f(t)
tr−1 = 0 for some r ∈ [2#

α , 2), (4.6.53)

which means that C̄ can be taken arbitrary small in (4.6.51); in particular it includes logarithmic
nonlinearities f(t) = t log(t2), where r can be chosen arbitrary close to 2. A sufficient condition
for (F10) is instead given (for example) by a local Ambrosetti-Rabinowitz condition of the type

f(t)t ≥ rF (t) > 0 for t ∈ (0, δ).

The restriction in (F9) and (F10) to right neighborhoods of zero is due to the fact we deal with
positive solutions.

We eventually come up with the following generalization of Theorem 4.6.6.
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Theorem 4.6.11. Assume (F1)-(F2), and let u ∈ Hs(RN ), strictly positive, radially symmetric
and decreasing, be a weak solution of (4.1.1). Let r ∈ [2#

α , 2) and set

β := min
{
N − α

2 − r
,N + 2s

}
≥ N.

(i) Assume (F9). Then
lim sup
|x|→+∞

u(x)|x|β ∈ (0,+∞).

(ii) Assume (F10), f locally Hölder continuous and
�
RN F (u) > 0 (e.g. F ≥ 0 on (0,+∞)).

Then
lim inf
|x|→+∞

u(x)|x|β ∈ (0,+∞).

If both conditions in (i) and (ii) hold, together with C = C (i.e., f is a power near the origin)
and r ∈ [N+α

N , N+α+4s
N+2s ), then we have the sharp decay

lim
|x|→+∞

u(x)|x|
N−α
2−r =


CN,α

(
limt→0+

f(t)
tr−1

) �
RN F (u)

µ




1
2−r

(4.6.54)

where CN,α > 0 is given in (4.6.46).

Remark 4.6.12. We highlight that the conclusions of Theorem 4.6.11 (as well as of Theorem
4.6.6) hold in more general cases. Indeed:

• The case
lim

t→0+

f(t)
t

= +∞

in a non-strict sense (i.e. limt→0
|f(t)|
|t|r−1 = 0 for each r ∈ [1 + α

N , 2), for example f(t) ∼
−t log(t2)) is included, and as we expect the decay is of order ∼ 1

|x|N+2s . See Corollary
4.6.31.

• The conclusions hold also without assuming radial symmetry and monotonicity of u, but by
assuming a priori that

lim sup
|x|→+∞

|u(x)||x|ω < +∞

for some ω > N2

N+α : see Remark 4.6.19. When u ∈ Lq(RN ), q < N+α
N , is radially

symmetric and decreasing, this is the case with ω = N
q (see Remark 4.6.17); in particular,

if q = 1, we have ω = N . Notice that u is automatically radially symmetric and decreasing
when u ∈ C1,1

loc (RN ), f(u) = |u|r−2u and ω > α
r−1 thanks to [254, Theorem 1] (see also

[371, Theorem 1.3]).

• In light of the previous remark, we highlight that the estimate from above actually holds true
also for nonnegative solutions u ≥ 0; see Proposition 4.6.23; moreover, it can be further
extended to |u| in the case of changing sign solutions, by applying a Kato’s inequality
[19, Theorem 3.2].

• The conclusions hold also for solutions u ∈ L1(RN ) ∩C(RN ) in the viscosity sense, without
assuming f Hölder continuous (which is needed in (ii) only to pass from weak to viscosity
solutions): see Section 4.6.6.

• When (F10) holds, we actually have F (t) ≥ C tr

r for t ∈ (0, δ); thus, being also u ∈ L∞(RN ),
the condition

�
RN F (u) > 0 means that F is not too negative in [δ, ∥u∥∞]. We highlight

that the energy term
�
RN

(
Iα ∗ F (u)

)
F (u) is always positive (see e.g. Proposition 1.3.2).
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• We find some estimates on the asymptotic constants, which are coherent, when r ∈ [2#
α , r

∗
α,s),

with the one found in Theorem 4.6.1 and Theorem 4.6.11: see Propositions 4.6.23 and
4.6.26, and Corollary 4.6.9. We notice that (4.6.47) is obtained by (4.1.1) formally choosing
f(t) =

√
r|t|r−2t. In our proofs – up to well posedness and regularity – we do not use that

F is the primitive of f : in particular, we do not apply (F9) and (F10) to F . Thus we can
arbitrary move constants from f to F in our arguments to adjust – for example – the value
of C, and this allows to gain the result for every µ > 0 (see also Corollary 4.6.30).

Our results apply in particular to Pohozaev minima of the equation, whenever some symmetric
assumption is assumed on f , that is (F7)-(F8). We notice that, since every Pohozaev minimum
has constant sign, it is not restrictive to assume a priori the sign of u.

Corollary 4.6.13. Assume (F1)-(F2) and (F7)-(F8). Let u be a (positive) Pohozaev minimum
of (4.1.1). Then the conclusions of Theorem 4.6.11 hold.

We finally want to highlight that our results may be adapted to the local case s = 1, extending
Theorem 4.6.1 to general nonlinearities, studied in [302]. We leave the details to the reader,
observing that in this case the rate of decaying is simply given by β = N−α

2−r , since, as already
observed, the solutions of the homogeneous linear (associated) equation decay exponentially.

Theorem 4.6.14. Let s = 1 and N ≥ 3, and assume (F1)-(F2). Let u ∈ H1(RN ), strictly
positive, radially symmetric and decreasing, be a solution of (3.1.1); in particular, u may be a
ground state. Let r ∈ [2#

α , 2).

(i) Assume (F9) and µ > (r − 1)C̄
1

r−1 . Then

lim sup
|x|→+∞

u(x)|x|
N−α
2−r ∈ (0,+∞).

(ii) Assume (F10) and
�
RN F (u) > 0 (e.g. F ≥ 0 on (0,+∞)). Then

lim inf
|x|→+∞

u(x)|x|
N−α
2−r ∈ (0,+∞).

If both conditions (i) and (ii) hold, together with C = C, then (4.6.54) holds.

In both the estimates from above and below in Theorem 4.6.11 we rely on some comparison
principle and the use of some auxiliary function whose fractional Laplacian is related to the
Gauss hypergeometric function. For the estimate from above we succeed in working with the
weak formulation of the problem; on the other hand, in order to deal with the estimate from
below, we find the necessity of working with u2−r, where 2 − r ∈ (0, 1): this concave power of
the solution may fail to lie in Hs(RN ), and thus we cannot treat the problem with its weak
formulation. The pointwise formulation seems to arise some problems as well, since the fractional
Laplacian of u2−r needs some restrictive assumption on α, s,N and r in order to be well defined.
This is why we work with a viscosity formulation of the problem: in this case, to pass from weak
to viscosity solutions, we ask only a bit of Hölder regularity on f . We remark that the estimate
from above may be treated with the viscosity formulation as well.

The remaining part of the Chapter is organized as follows. In Section 4.6.3 we recall the
suitable auxiliary function introduced in Section 1.2.2, and establish some asymptotic behaviour
on suitable comparison functions; other preliminary estimates are studied in Section 4.6.4. Then
in Section 4.6.5 we deal with the estimate from above, by working with the weak formulation,
while in Section 4.6.6 we study the asymptotic behaviour from below, by exploiting a viscosity
formulation. Finally in Section 4.6.7 we conclude the proofs of Theorem 4.6.11 and its corollaries.
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4.6.3 Fractional auxiliary functions
In order to implement some comparison argument, in Section 1.2.2 we introduced the function

hβ(x) := 1
(1 + |x|2)

β
2
,

which behaves, at infinity, like ∼ 1
|x|β , β > 0, but lies in Hs(RN ), avoiding the pole in the origin

when β ≥ N . This function verifies

(−∆)shβ(x) = Cβ,N,s 2F1

(
N

2 + s,
β

2 + s,
N

2 ; −|x|2
)

where Cβ,N,s := 22s Γ
(

N
2 +s

)
Γ
(

β
2 +s

)

Γ
(

N
2

)
Γ
(

β
2

) > 0 and 2F1 denotes the Gauss hypergeometric function.

Notice that we will be interested in β ∈ (0, N + 2s]. In Section 1.2.2 we collected some results on
Gauss hypergeometric functions and their asymptotic behaviour at infinity. We use now this
auxiliary function to study some comparison at infinity.

Lemma 4.6.15 (Comparison for weak equation). Let u ∈ C(RN ) be a weak solution of

(−∆)su+ λu = γhβ in RN \Bρ(0)

for some λ, γ > 0, ρ > 0 and
β ∈

(
N

2 , N + 2s
]
.

Then
lim sup
|x|→+∞

u(x)|x|β < ∞.

Moreover, if β ∈ (N
2 , N + 2s), we have

lim
|x|→+∞

u(x)|x|β = γ

λ
.

Proof. We start noticing that, since β > N
2 , then the equation is well posed from a weak point

of view. By Lemma 1.2.30 there exists a continuous function w ∈ H2s(RN ), such that

(−∆)sw + λw = 0 in RN \Bρ(0)

in the weak sense and pointwise, and moreover, for some C ′′
1 , C

′′
2 > 0,

C ′′
1

|x|N+2s
< w(x) ≤ C ′′

2
|x|N+2s

, for every |x| > ρ.

Let thus define, for some τ, σ ∈ R and θ ∈ [β,N + 2s] to be chosen,

vτ,σ(x) := γ

λ
hβ(x) + σhθ(x) + τw(x)

for every x ∈ RN . We have, for |x| > ρ,

(−∆)svτ,σ(x) + λvτ,σ(x) = γhβ(x) +
(
γ

λ
(−∆)shβ(x) + σ(−∆)shθ(x) + λσhθ(x)

)

=: γhβ(x) + gσ,θ(x).

By Lemma 1.2.13 we obtain
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• if β ∈ (N
2 , N) \ {N − 2s},

gσ,θ(x) ∼ γ

λ
C ′

β,N,shβ+2s(x) + σC ′
θ,N,shθ+2s(x) + λσhθ(x) as |x| → +∞;

in this case we assume θ ∈ (β,min{N, β + 2s}) \ {N − 2s};

• if β = N ,

gσ,θ(x) ∼ γ

λ
C ′

N,N,s log(x)hN+2s(x) + σC ′
θ,N,shN+2s(x) + λσhθ(x) as |x| → +∞;

in this case we assume θ ∈ (N,N + 2s);

• otherwise

gσ,θ(x) ∼ γ

λ
C ′

β,N,shN+2s(x) + σC ′
θ,N,shN+2s(x) + λσhθ(x) as |x| → +∞,

and in this case

– if β = N − 2s (possible only if N > 4s), we choose θ ∈ (N,N + 2s);
– if β ∈ (N,N + 2s), we choose θ ∈ (β,N + 2s);
– if β = N + 2s, we simply assume θ = N + 2s.

Assume first β < N + 2s. By the abovementioned choices of θ > β we obtain

gσ,θ(x) ∼ λσhθ(x) as |x| → +∞.

In particular, fixed ε > 0, for some R = Rε(γ, λ, β, θ, σ) ≫ 0 (we may assume R > ρ) we obtain

(1 − ε)λσhθ(x) ≤ gσ,θ(x) ≤ (1 + ε)λσhθ(x) for |x| ≥ R

if σ > 0, and
(1 + ε)λσhθ(x) ≤ gσ,θ(x) ≤ (1 − ε)λσhθ(x) for |x| ≥ R

if σ < 0. Notice that R does not depend on τ . Thus

(−∆)svτ,σ(x) + λvτ,σ(x) ≥ γhβ(x) + (1 − ε)λσhθ(x) ≥ γhβ(x) in RN \BR(0)

by choosing a whatever σ > 0, and

(−∆)svτ,σ(x) + λvτ,σ(x) ≤ γhβ(x) + (1 − ε)λσhθ(x) ≤ γhβ(x) in RN \BR(0)

by choosing a whatever σ < 0. Summing up
{

(−∆)svτ,σ(x) + λvτ,σ(x) ≥ γhβ(x) in RN \BR(0),
(−∆)svτ,σ(x) + λvτ,σ(x) ≤ γhβ(x) in RN \BR(0).

(4.6.55)

We choose now τ > 0 such that

vτ ,σ − u ≥ 0 on BR(0).

Indeed, we impose
γ

λ
hβ(x) + σhθ(x) + τw(x) ≥ u(x) on BR(0)

that is
τw(x) ≥ u(x) − γ

λ
hβ(x) − σhθ(x) on BR(0)
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which is satisfied if we impose (recall that σ > 0)

τ min
BR

w ≥ max
BR

u− γ

λ
hβ(R) ≥ u(x) − γ

λ
hβ(x) − σhθ(x) on BR(0)

that is
τ ≥ maxBR

u− γ
λhβ(R)

minBR
w

.

Similarly, we choose τ ∈ R such that

vτ ,σ − u ≤ 0 on BR(0),

given by
τ ≤ minBR

u− γ
λhβ(R)

maxBR
w

.

We notice that both the minimum and the maximum of w in the ball are finite and strictly
positive, since w > 0 is continuous. Thus, summing up

{
vτ ,σ − u ≥ 0 on BR(0),
vτ ,σ − u ≤ 0 on BR(0).

(4.6.56)

By joining (4.6.55) with the assumption on u, we obtain
{

(−∆)s(vτ ,σ − u)(x) + λ(vτ ,σ − u)(x) ≥ 0 in RN \BR(0),
(−∆)s(vτ ,σ − u)(x) + λ(vτ ,σ − u)(x) ≤ 0 in RN \BR(0).

(4.6.57)

By the weak version of the Comparison Principle (Lemma 1.2.34) we obtain
{
vτ ,σ − u ≥ 0 on RN ,

vτ ,σ − u ≤ 0 on RN .

that is
γ

λ
hβ(x) + σhθ(x) + τw(x) ≤ u(x) ≤ γ

λ
hβ(x) + σhθ(x) + τw(x)

and hence, by the assumption on w,

γ

λ
hβ(x) + σhθ(x) + τ

C ′′
1

|x|N+2s
≤ u(x) ≤ γ

λ
hβ(x) + σhθ(x) + τ

C ′′
2

|x|N+2s

for each x ∈ RN , x ̸= 0. Thus

γ

λ

|x|β

(1 + |x|2)
β
2

+ σ
|x|β

(1 + |x|2) θ
2

+ τ
C ′′

1
|x|N+2s−β

≤

≤ u(x)|x|β ≤ γ

λ

|x|β

(1 + |x|2)
β
2

+ σ
|x|β

(1 + |x|2) θ
2

+ τ
C ′′

2
|x|N+2s−β

,

which gives the claim passing to the limit |x| → +∞, since θ > β and β < N + 2s.
Assume now β = N + 2s, and choose θ = β = N + 2s. Now we have

gσ,θ(x) ∼ CσhN+2s(x) as |x| → +∞

where
Cσ := γ

λ
C ′

N+2s,N,s + σC ′
N+2s,N,s + λσ;
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recall that C ′
N+2s,N,s, C

′
θ,N,s < 0. We can choose proper σ ∈ R such that Cσ < 0 and thus the

first equation in (4.6.55) still hold. Since the sign of σ may be now different, we choose

τ ≥ maxBR
u− γ

λhβ(R) − min{σ, 0}
minBR

w
.

We come up then with the same proof, obtaining

lim sup
|x|→+∞

u(x)|x|β ≤ γ

λ
+ σ + τC ′′

2 .

Notice that the appearing constants depend on u, γ, λ, ρ, β,N, s.

Lemma 4.6.16 (Comparison for pointwise equation). Let u ∈ C(RN ) be a pointwise solution of

(−∆)su+ λu = γhβ in RN \Bρ(0)

for some λ, γ > 0, ρ > 0 and
β ∈ (0, N + 2s].

Then
0 < lim inf

|x|→+∞
u(x)|x|β ≤ lim sup

|x|→+∞
u(x)|x|β < ∞.

More precisely, if β ∈ (0, N + 2s), we have

lim
|x|→+∞

u(x)|x|β = γ

λ
.

Proof. The proof goes as the previous Lemma, with the difference that at the end we apply the
pointwise version of the Comparison Principle (Lemma 1.2.36).

4.6.4 A preliminary range
We start with some observations.

Remark 4.6.17. Let u ∈ Lq(RN ), for some q ∈ [1,+∞), be continuous and such that |u| is
radially symmetric and decreasing. Then, for every x ∈ RN ,

|u(|x|)|q|x|N = N |u(|x|)|
� |x|

0
tN−1dt = N

� |x|

0
|u(|x|)|qtN−1dt

≤ N

� |x|

0
|u(t)|qtN−1dt = N

ωN−1

�
B|x|(0)

|u(y)|qdy ≤ N

ωN−1
∥u∥q

Lq(RN )

where ωN−1 denotes the area of the N − 1 dimensional sphere. Thus

|u(x)| ≤ C2
u

|x|
N
q

, x ̸= 0

where C2
u := CN ∥u∥q

q > 0. In particular, if u ∈ L1(RN ), we have

|u(x)| ≤ C2
u

|x|N , x ̸= 0.

We keep with some preliminary results.
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Lemma 4.6.18. Let u ∈ L1(RN ) continuous be such that |u| is radially symmetric and decreasing.
Let f satisfy (F1)-(F2,i), and let θ ∈ (N,N + α]. Then there exists C = C(N,α) > 0 such that

∣∣∣∣
(
Iα ∗ F (u)

)
(x) − Iα(x)

�
RN

F (u)
∣∣∣∣ ≤ C∥F (u)∥∞,θIα(x)

( 1
1 + |x| + 1

1 + |x|θ−N

)

for each x ∈ RN , x ̸= 0.

Proof. First notice that u ∈ L∞(RN ), F (u) ∈ L∞(RN ), and that Iα ∗ F (u) and
�
RN F (u) are

finite and well defined. By Remark 4.6.17 we have

|u(x)| ≤ C2
u

|x|N → 0.

Thus
∣∣F (u(x))

∣∣|x|θ is bounded on a ball BR (since F (u) is bounded), and it is bounded on the
complement of this ball since

∣∣F (u(x))
∣∣|x|θ =

∣∣F (u(x))
∣∣

|u(x)| N+α
N

|u(x)| N+α
N |x|θ ≤

∣∣F (u(x))
∣∣

|u(x)| N+α
N

C

|x|N+α−θ

by considering the growth condition (F2,i) of F in zero (when R ≫ 0, not depending on θ) and
the restriction on θ. Thus

sup
x∈RN

∣∣F (u(x))
∣∣|x|θ < +∞

and Lemma 1.3.3 applies with g(x) := F (u(x)), which concludes the proof. We further notice
that

∥F (u)∥∞,θ ≤ ∥F (u)∥∞(1 +Rθ) +
(

lim sup
t→0

|F (t)|
|t| N+α

N

)
1 +Rθ

RN+α

for any θ ∈ (N,N + α] and any R ≫ 0 (not depending on θ, but depending on u).

Remark 4.6.19. In what follows, for the sake of exposition we will restrict our analysis to
the space of radially symmetric and decreasing functions in L1(RN ), but we highlight that this
assumption is needed only to get the a priori asymptotic decay of Remark 4.6.17. By the above
proof, actually we see that we may ask only

|u(x)| ≤ C

|x|ω

for some ω such that

ω >
N2

N + α
.

In particular ω = N , obtained in Remark 4.6.17, fits this condition. Alternatively, one may
assume this a priori asymptotic decay on u (and adapt the restrictions on θ by θ ∈ (N, N+α

N ω]).

Corollary 4.6.20. Let u ∈ L1(RN ) continuous be such that |u| is radially symmetric and
decreasing. Let f satisfy (F1)-(F2,i), and let θ ∈ (N,N + α]. Then for any ε > 0, there exists
Rε = Rε(N,α, θ) ≫ 0 such that

∣∣∣
(
Iα ∗ F (u)

)
(x)
∣∣∣ ≤ Iα(x)

(∣∣∣∣
�
RN

F (u)
∣∣∣∣+ ε∥F (u)∥∞,θ

)

and (
Iα ∗ F (u)

)
(x) ≥ Iα(x)

(�
RN

F (u) − ε∥F (u)∥∞,θ

)

for each |x| ≥ Rε.
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Remark 4.6.21. In Section 4.6.1 it was showed that the solutions decay as fast as ∼ 1
|x|N+2s when

the nonlinearity is linear or superlinear. In the sublinear case, we expect a slower decay. Indeed,
assume (F1)-(F2) and (F10), and let u be a strictly positive solution of (1.3.38). By Lemma
4.6.3 we obtain u(x) → 0 as |x| → +∞1. Thus there exists R ≫ 0 such that 0 ≤ u(x) ≤ δ < 1
for |x| ≥ R and thus

f(u(x)) ≥ Cur−1(x) for |x| ≥ R

together with
ur−1(x) ≥ u(x) for |x| ≥ R.

If we assume (Iα ∗ F (u))(x) ≥ 0 for |x| ≥ R, we gain

(−∆)su+ µu ≥ (Iα ∗ F (u))u on RN \BR(0)
which implies

(−∆)su+ 3
2µu ≥

(
Iα ∗ F (u) + 1

2µ
)
u on RN \BR(0).

By Proposition 4.4.6 we have that (Iα ∗F (u))(x) → 0 as |x| → +∞,2, thus for some R′ ≥ R ≫ 0
we get

(−∆)su+ 3
2µu ≥ 0 on RN \BR′(0).

At this point (being u strictly positive) we conclude as in the proof of Theorem 4.6.4 and obtain

u(x) ≥ C1
u

|x|N+2s
for |x| ≥ R

for some constant C1
u = CN,α,R,µ minBR

u > 0 and some sufficiently large R ≫ 0.
By Remarks 4.6.21 and 4.6.17, we obtain that every strictly positive, continuous, radially

symmetric and decreasing solution of (1.3.38) in L1(RN ) satisfies
C1

u

|x|N+2s
≤ u(x) ≤ C2

u

|x|N for |x| ≥ R ≫ 0, (4.6.58)

whenever f satisfies (F1)-(F2) and (F10), together with
�
RN F (u) > 0: indeed in this case, by

Lemma 4.6.18, we have
(
Iα ∗ F (u)

)
(x) ∼ Iα(x)

�
RN F (u) > 0 for |x| large. Thus the goal is to

improve the asymptotic decay (4.6.58) in the case of sublinear nonlinearities.
Remark 4.6.22. By Lemma 4.6.15, Corollary 4.6.20, and a bootstrap argument we can give
some first qualitative proofs of the main result. Indeed, by

(−∆)su+ µu =
(
Iα ∗ F (u)

)
f(u) ≲ Iα(x)ur−1 ≲ 1

|x|N−α

1
|x|γ0(r−1) = 1

|x|γ1

where γ0 := N and γ1 := γ0(r− 1) +N − α, and a comparison argument, we obtain u(x) ≲ 1
|x|γ1 .

By induction, set
γi+1 := γi(r − 1) +N − α

we obtain u(x) ≲ 1
|x|γi

and γi ↗ N−α
2−r (but the argument works only for γi ≤ N + 2s). Similarly,

(−∆)su+ µu =
(
Iα ∗ F (u)

)
f(u) ≳ Iα(x)ur−1 ≳ 1

|x|N−α

1
|x|γ0(r−1) = 1

|x|γ1

where now γ0 := N + 2s, which implies u(x) ≳ 1
|x|γi

and γi ↘ N−α
2−r if r ≤ r∗

s,α (while the case
r ≥ r∗

s,α implying γi ↗ N−α
2−r cannot be set in motion).

In order to pass to the limit we have to take care of the bounding constants (or, equivalently,
of the radii related to the complements of the balls where the inequalities hold), which is not
an easy task; see anyway Corollary 4.6.30. This suggests the implementation of more direct
approaches, as done in following Sections.

1If u is assumed radially symmetric and s ∈ ( 1
2 , 1), this is actually a consequence of the Strauss radial lemma.

If u is radially symmetric and decreasing, it is a consequence of the monotonicity and (a whatever) summability.
2Notice that the claim is obtained by assuming that u is a weak solution or, alternatively, that u is in the right

Lebesgue spaces; in particular it is true if u ∈ L1(RN ) ∩ L∞(RN ) a priori.
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4.6.5 Estimate from above
First, we deal with the estimate from above. In this case we succeed in arguing in the weak sense
with no additional assumption on f .

Proposition 4.6.23. Assume (F1) and (F9). Let u ∈ Hs(RN )∩L1(RN ), continuous, nonnegative,
radially symmetric and decreasing, be a weak solution of (1.3.38). Assume moreover

µ > (r − 1)C̄
1

r−1 .

Then, set β := min
{

N−α
2−r , N + 2s

}
, we have, for some Cu ≥ 0,

lim sup
|x|→+∞

u(x)|x|β ≤ Cu;

if β < N + 2s, the constant Cu depends on u in the following way:

Cu =
(2 − r)

(
CN,α

∣∣�
RN F (u)

∣∣) 1
2−r

µ− (r − 1)C̄
1

r−1

where CN,α > 0 is given in (1.3.32).

Remark 4.6.24. We observe that

r = 1 + α

N
=⇒ β = N,

r ∈
(

1 + α

N
, 1 + α+ 2s

N + 2s

)
=⇒ β = N − α

2 − r
∈ (N,N + 2s),

r ∈
[
1 + α+ 2s

N + 2s, 2
)

=⇒ β = N + 2s;

actually, as already observed, the asymptotic decay with β = N + 2s applies for general r ∈
[1 + α+2s

N+2s , 1 + α+2s
N−2s ], including linear and superlinear cases, thanks to the results in Section 4.6.1.

We notice that, when r > 1 + α
N , we are actually improving (4.6.58).

Proof. We start noticing that, by the Young product inequality, we obtain

(Iα ∗ F (u))f(u) ≤ 1
a

∣∣Iα ∗ F (u)
∣∣a + 1

b
|f(u)|b

when a, b > 0, 1
a + 1

b = 1. In particular we choose b = 1
r−1 and thus a = 1

2−r > 0 (possible thanks
to the sublinearity restriction on r); with this choice, by (4.6.51) and the fact that u(x) → 0 as
|x| → +∞, we obtain

(Iα ∗ F (u))f(u) ≤ (2 − r)
∣∣Iα ∗ F (u)

∣∣ 1
2−r + (r − 1)C̄

1
r−1u

for |x| ≥ R, where R = R(u) ≫ 0 is sufficiently large. By Corollary 4.6.20, for a whatever fixed
θ ∈ (N,N + α] and any ε > 0 we obtain

(Iα ∗ F (u))f(u) ≤ (2 − r)
(
Iα(x)

(∣∣∣∣
�
RN

F (u)
∣∣∣∣+ ε∥F (u)∥∞,θ

)) 1
2−r

+ (r − 1)C̄
1

r−1u

= (2 − r)
(∣∣∣∣
�
RN

F (u)
∣∣∣∣+ ε∥F (u)∥∞,θ

) 1
2−r C

1
2−r

N,α

|x|
N−α
2−r

+ (r − 1)C̄
1

r−1u

for every |x| ≥ Rε = Rε(u,N, α, θ), thus

(−∆)su+ µu ≤ (2 − r)C
1

2−r

N,α

(∣∣∣∣
�
RN

F (u)
∣∣∣∣+ ε∥F (u)∥∞,θ

) 1
2−r 1

|x|
N−α
2−r

+ (r − 1)C̄
1

r−1u.
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Notice that F (u) ̸≡ 0 (otherwise, by the equation, u ≡ 0 and the claim is trivial), thus we set

γu,ε := (2 − r)C
1

2−r

N,α

(∣∣∣∣
�
RN

F (u)
∣∣∣∣+ ε∥F (u)∥∞,θ

) 1
2−r

> 0

and
λ := µ− (r − 1)C̄

1
r−1 > 0

we obtain
(−∆)su+ λu ≤ γu,ε

|x|β in RN \BRε(0);

notice that we use the fact that 1
|x|

N−α
2−r

≤ 1
|x|β for |x| large. For each δ > 1 we have 1

|x|β ≤ δhβ(x)

when |x| > Rδ := (δ
2
β − 1)− 1

2 ; we may choose Rδ,ε > max{Rδ, Rε}. Thus

(−∆)su+ λu ≤ δγu,εhβ(x) in RN \BRδ,ε
(0). (4.6.59)

We have hβ ∈ L2(RN ), since 2N−α
2−r > N . By Lemma 1.2.31, being u ∈ Hs(RN ), there exists

v ∈ Hs(RN ) such that
{

(−∆)sv + λv = δγu,εhβ(x) in RN \BRδ,ε
(0),

v = u on BRδ,ε
(0).

Joining the first equation with (4.6.59) we obtain

(−∆)s(u− v) + λ(u− v) ≤ 0 in RN \BRδ,ε
(0)

and thus, by the weak version of the Comparison Principle (Lemma 1.2.34) we gain

u ≤ v on RN . (4.6.60)

By Lemma 4.6.15, if β < N + 2s, we can estimate v by

lim sup
|x|→+∞

v(x)|x|β ≤ δγu,ε

λ
.

This relation, combined with (4.6.60), gives

lim sup
|x|→+∞

u(x)|x|β ≤ δγu,ε

λ

for each δ > 1. In particular, as δ → 1+ and ε → 0+, we obtain the claim. If β = N + 2s, we
argue similarly (without moving δ and ε).

Notice that, if we assume (4.6.53), then one can choose every C̄ > 0, and thus in particular
every µ > 0 is allowed.

Corollary 4.6.25. Assume (F1) and the condition (4.6.53). Let u ∈ Hs(RN ) ∩ L1(RN ), con-
tinuous, nonnegative, radially symmetric and decreasing, be a solution of (1.3.38). Then, set
β := min

{
N−α
2−r , N + 2s

}
, we have

lim sup
|x|→+∞

u(x)|x|β ≤ Cu;

if β < N + 2s the constant Cu > 0 depends on u in the following way:

Cu :=
(2 − r)

(
CN,α

∣∣�
RN F (u)

∣∣) 1
2−r

µ
.

We observe that the previous estimate from above is still valid by considering viscosity
solutions u ∈ L1(RN ) ∩ C(RN ), see Section 4.6.6. We leave the details to the reader.
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4.6.6 Estimate from below
Next, we deal with the estimate from below. Here we need to deal with the fractional Laplacian
of the concave power of a function: since it might happen that uθ /∈ Hs(RN ) when u ∈ Hs(RN )
and θ ∈ (0, 1), the weak formulation seems not to be appropriate. Similarly, (−∆)suθ might be
not well defined pointwise, even if u is regular enough. Notice that knowing a priori that u is
continuous, radially symmetric and decreasing seems of no use. The idea is thus to treat the
problem via viscosity formulation, and we do it by exploiting the concave chain rule obtained in
Section 1.2.4.

Proposition 4.6.26. Assume (F1)-(F2,i) and the sublinear condition (F10). Let u ∈ L1(RN ) ∩
C(RN ), strictly positive, radially symmetric and decreasing, be a viscosity solution of (1.3.38).
Assume

�
RN F (u) > 0. Then,

lim inf
|x|→+∞

u(x)|x|
N−α
2−r ≥ C ′

u

where

C ′
u :=

(
CCN,α

�
RN F (u)dx
µ

) 1
2−r

and CN,α > 0 is given in (1.3.32). Moreover, set β := min
{

N−α
2−r , N + 2s

}
, we have, for some

C ′′
u > 0,

lim inf
|x|→+∞

u(x)|x|β ≥ C ′′
u ;

if N−α
2−r ≤ N + 2s (i.e. β = N−α

2−r ), we have C ′′
u := C ′

u, otherwise we have C ′′
u := C1

u (see Remark
4.6.21).

Proof. First notice that, by the assumptions, u ∈ L1(RN ) ∩L∞(RN ) and thus, by Remark 1.5.8,
Iα ∗ F (u) is pointwise well defined.

By Corollary 1.2.23, since 2 − r ∈ (0, 1 − α
N ] ⊂ (0, 1) we have

(−∆)su2−r ≥ 2 − r

ur−1

(
− µu+

(
Iα ∗ F (u))f(u)

)

on RN , in the viscosity sense. Thus

(−∆)su2−r + µ(2 − r)u2−r ≥ (2 − r)
(
Iα ∗ F (u))f(u)

ur−1 .

For a fixed θ ∈ (N,N + α] and any ε > 0 small, by Corollary 4.6.20 and (4.6.52) (since u(x) → 0
as |x| → +∞, being u decreasing and in L1(RN )) we obtain – we use here that

�
RN F (u) > 0 –

(
Iα ∗ F (u)

)
f(u) ≥ C

(�
RN

F (u) − ε∥F (u)∥∞,θ

)
Iαu

r−1 in RN \BRε(0)

for some Rε ≫ 0, thus

(−∆)su2−r + µ(2 − r)u2−r ≥ (2 − r)C
(�

RN

F (u) − ε∥F (u)∥∞,θ

)
Iα in RN \BRε(0);

that is, exploiting 1
|x|N−α ≥ 1

(1+|x|2)
N−α

2
, we get

(−∆)su2−r + λ′u2−r ≥ γ′
u,εhN−α in RN \BRε(0)

in the viscosity sense, where

γ′
u,ε := (2 − r)CCN,α

(�
RN

F (u) − ε∥F (u)∥∞,θ

)
> 0
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and
λ′ := µ(2 − r).

We observe that u2−r ∈ L∞(BR(0)) ∩C(BRε(0)), while hN−α ∈ L∞(RN ) ∩Cσ
loc(RN ) (for any

σ), thus by Lemma 1.2.33, there exists v ∈ Cω
loc(RN ), for some ω > 2s such that

{
(−∆)sv + λ′v = γ′

u,εhN−α in RN \BRε(0),
v = u2−r on BRε(0),

pointwise. Thus

(−∆)s(u2−r − v) + λ′(u2−r − v) ≥ 0 in RN \BRε(0)

in the viscosity sense, with
u2−r − v ≥ 0 on BRε(0).

Observe that, by Lemma 4.6.16, we have v(x) → 0 as |x| → +∞. Since (ur−2 − v)(x) → 0 as
|x| → +∞, by the viscosity version of the Comparison Principle (Lemma 1.2.36) we obtain

u2−r ≥ v on RN .

By Lemma 4.6.16 we gain

lim inf
|x|→+∞

v(x)|x|N−α ≥ γ′
u,ε

λ′ .

Combining the previous inequalities and sending ε → 0+, we have the first claim. We conclude
by adapting Remark 4.6.21 to the viscosity case (notice that u ∈ L1(RN ) ∩ L∞(RN )).

The above estimate applies, in particular, to pointwise solutions.

Corollary 4.6.27. Assume (F1)-(F2,i) and the sublinear condition (F10). Let u ∈ L1(RN ) ∩
Cγ

loc(RN ) for some γ > 2s, strictly positive, radially symmetric and decreasing, be a pointwise
solution of (1.3.38), such that

�
RN F (u) > 0. Then the conclusions of Proposition 4.6.26 hold.

By the results of the previous Sections (see Proposition 4.4.12), we gain sufficient conditions
in order to state that a weak solution is a pointwise solution.

Corollary 4.6.28. Assume (F1)-(F2,i) together with (F7), and the sublinear condition (F10).
Let u ∈ Hs(RN ) ∩ L1(RN ) ∩ C(RN ), strictly positive, radially symmetric and decreasing, be
a weak solution of (1.3.38), such that

�
RN F (u) > 0. Then u is a classical solution and the

conclusions of Proposition 4.6.26 hold.

Notice that, by the sublinearity in zero, the Hölder exponent σ can lie only in (0, r − 1].
We conjecture anyway that the conclusion of Corollary 4.6.28 holds in more general cases, by
assuming merely f continuous.

4.6.7 An s-sublinear threshold
We can sum up some of the results of the previous Sections in what follows.

Corollary 4.6.29. Assume (F1)-(F2,i) and the sublinear conditions (F9)-(F10), in particular

0 < lim inf
t→0

f(t)
|t|r−1 ≤ lim sup

t→0

f(t)
|t|r−1 ≤ C̄ < +∞.

Let u ∈ Hs(RN ) ∩ L1(RN ) ∩ C(RN ), strictly positive, radially symmetric and decreasing, be a
weak solution of (1.3.38). Finally assume (F7), i.e.

f ∈ C0,σ(R) for some σ ∈ (0, r − 1],
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and
�
RN F (u) > 0. Then, if

µ > (r − 1)C̄
1

r−1

we have
0 < lim inf

|x|→+∞
u(x)|x|β ≤ lim sup

|x|→+∞
u(x)|x|β < +∞

where β := min
{

N−α
2−r , N + 2s

}
.

We notice that, by assuming

lim sup
t→0

f(t)
|t|r−1 ∈ (0,+∞)

we obtain that
lim sup

t→0

f(t)
|t|r−ε−1 = 0

for any ε > 0. Thus we may directly extend the estimate from above to a whatever µ > 0 by
paying the cost of a slower decay at infinity; this was essentially contained already in Remark
4.6.22. Notice that we still need r − ε ≥ 2#

α .

Corollary 4.6.30. Assume (F1)-(F2,i) and the sublinear conditions (F9)-(F10), in particular

0 < lim inf
t→0

f(t)
|t|r−1 ≤ lim sup

t→0

f(t)
|t|r−1 < +∞

with r ∈ (2#
α , 2). Let u ∈ Hs(RN ) ∩ L1(RN ) ∩ C(RN ), strictly positive, radially symmetric and

decreasing, be a weak solution of (1.3.38). Finally assume (F7), i.e.

f ∈ C0,σ(R) for some σ ∈ (0, r − 1],

and
�
RN F (u) > 0. Then, if µ > 0 is arbitrary and ε > 0 is small, we have

0 < lim inf
|x|→+∞

u(x)|x|β0 ≤ lim sup
|x|→+∞

u(x)|x|βε < +∞

where
βε := min

{
N − α

2 − r + ε
,N + 2s

}
.

We can now conclude the proof of the main theorem.
Proof of Theorem 4.6.11. First, we show how to remove the restriction on µ in Proposition
4.6.23. Indeed, for any κ > 0 we can write

(
Iα ∗ F (u)

)
f(u) ≡ (

Iα ∗ Fκ(u)
)
fη(u), where fκ := 1

κf
and Fκ := κF . We can thus rewrite (f3) as

|fκ(t)| ≤ 1
κ
Ctr−1 for t ∈ (0, δ).

Since in Proposition 4.6.23 we did not use that F is the primitive of f (in particular, we did not
apply (f3) to F ), fixed a whatever µ > 0 we can choose κ such that

µ > (r − 1)
(
C

κ

) 1
r−1

> 0,

that is a large κ given by κ >
(

r−1
µ

)r−1
C, and obtain

lim sup
|x|→+∞

u(x)|x|β ≤ Cu,κ
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where, if β < N + 2s,

Cu,κ :=
(2 − r)

(
CN,ακ

∣∣�
RN F (u)

∣∣) 1
2−r

µ− (r − 1)
(

C̄
κ

) 1
r−1

.

We notice, as we expect, that as µ → 0 then κ → +∞ and Cu,κ → +∞, while C ′
u defined in

Proposition 4.6.26 is invariant under κ-transformations.
We show now the sharp decay. Indeed, we search for a κ such that Cu,κ = C ′

u. By a
straightforward analysis of g(κ) := Cu,κ − C ′

u, κ >
(

r−1
µ

)r−1
C, we find a (unique, explicit) zero

κ∗ (which actually is a point of minimum) if only if C = C, i.e. if f is exactly a power near the
origin.

By the results of the previous Sections (Theorem 4.4.1, Proposition 4.4.8, Proposition
4.4.10), we have that every positive solution is bounded, and every bounded solution is in
H2s(RN ) ∩ C(RN ) ∩ L1(RN ). By the previous results we conclude the proof.

The conditions on f in the previous results imply that f is sublinear, but in a strict sense.
We see that the results actually generalize to sublinear functions in a non strict sense.

Corollary 4.6.31. Assume (F1)-(F2,i). Assume moreover that f is sublinear in a non-strict
sense, i.e.

lim
t→0+

f(t)
t

= +∞

but
lim
t→0

f(t)
|t|r−1 = 0 for each r ∈ (2#

α , 2).

Let u ∈ Hs(RN ) ∩ L1(RN ) ∩ C(RN ), strictly positive, radially symmetric and decreasing, be a
weak solution of (1.3.38). Finally assume

f ∈ C0,σ(R) for some σ ∈ (0, r − 1].

Then, if µ > 0, we have

0 < lim inf
|x|→+∞

u(x)|x|N+2s ≤ lim sup
|x|→+∞

u(x)|x|N+2s < +∞.

Proof. The estimate from below comes from the argument in Remark 4.6.21 (since f(t) ≥ Ct
for t small and positive). The estimate from above comes from Proposition 4.6.23, after having
chosing a whatever r ∈ [r∗

α,s, 2).

Proof of Corollary 4.6.13. By the results in the previous Sections (Theorem 4.5.1), we have
that every Pohozev minimum has constant sign – e.g., it is strictly positive – (if f is odd or
even, and Hölder continuous), and it is radially symmetric and decreasing (if in addition f has
constant sign on (0,+∞)). Thus we conclude by the previous results.

All the previous theorems particularly apply to homogeneous nonlinearities f(u) = |u|r−2u;
notice that in this case we have f ∈ Cr−1

loc (RN ).

Corollary 4.6.32. Let u ∈ Hs(RN ), strictly positive, radially symmetric and decreasing, be a
solution of

(−∆)su+ µu = (Iα ∗ |u|r)|u|r−2u in RN

with r ∈ [2#
α , 2). Set, for every ε ≥ 0,

βε := min
{

N − α

2 − r + ε
,N + 2s

}
.

We have
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• if µ > r − 1 then

0 < lim inf
|x|→+∞

u(x)|x|β0 ≤ lim sup
|x|→+∞

u(x)|x|β0 < +∞;

• if r ∈ (2#
α , 2) and µ ∈ (0, r − 1] then, for any ε > 0 small,

0 < lim inf
|x|→+∞

u(x)|x|β0 ≤ lim sup
|x|→+∞

u(x)|x|βε < +∞.

Proof of Theorem 4.6.6, Corollary 4.6.7 and Corollary 4.6.9. Theorem 4.6.6 is a direct
consequence of the above result. By [138, Theorems 3.2 and 4.2] we have that every ground state
satisfies all the assumptions of the previous results; thus we have the claims of Corollary 4.6.7
and Corollary 4.6.9.

4.7 The Pohozaev identity
In [138, equation (6.1)], in presence of power nonlinearities, it is proved that every weak solution
u is C2 and thus satisfies the Pohozaev identity (4.2.5), and this relation is extended to general
superlinear nonlinearities f ∈ C1(R) in [342, Proposition 2]. Here we want to further extend the
identity to more general nonlinearities and to more general solutions u ∈ C1, without employing
the Caffarelli-Silvestre s-harmonic extension.

This Section is mainly based on the paper [117].
First, we collect the results of the previous Sections to highlight the conditions that ensure

the right regularity of the solutions.

Corollary 4.7.1. Assume that (F1)-(F2) hold. Let u ∈ Hs(RN ) ∩ L∞(RN ) be a weak solution
of (4.1.1). Assume in addition one of the following

• s ∈ (1
2 , 1),

• s = 1
2 and (F7),

• s ∈ [1
4 ,

1
2), α ∈ (1 − 2s,N) and (F7) with σ ∈ (1−2s

2s , 1],

• s ∈ (0, 1
2), α ∈ (0, 2) and (F7) with σ ∈ (1 − 2s, 1].

Then u ∈ C1,γ(RN ) for some γ ∈ (0, 1). If s ∈ (1
2 , 1) and (F7) holds too, then we can choose

γ ∈ (2s− 1, 1).

Thus we want to prove the following result.

Theorem 4.7.2. Let u ∈ Hs(RN )∩L∞(RN ) be a weak solution of (4.1.1), and assume (F1)-(F2).
Assume moreover (F7) and one of the following:

• s ∈ [1
2 , 1),

• s ∈ [1
4 ,

1
2), α ∈ (1 − 2s,N) and σ ∈ (1−2s

2s , 1],

• s ∈ (0, 1
2), α ∈ (0, 2) and σ ∈ (1 − 2s, 1].

Then u ∈ C1,γ(RN ) for some γ ∈ (max{0, 2s − 1}, 1), and u satisfies the Pohozaev identity
(4.2.5), or equivalently

1
2∗

α,s

∥(−∆)s/2u∥2
2 + µ

2#
α

∥u∥2
2 − D(u) = 0.

The result in particular applies to positive weak solutions u ∈ Hs(RN ) of (4.1.1).
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We start by the following integration by parts rule, inspired by [155, Lemma 4.2], obtained
under a pointwise well posedness of the fractional Laplacian and the existence of a weak gradient.

Proposition 4.7.3. Let s ∈ (0, 1). Let u ∈ Ḣs(RN ) ∩ Cγ
loc(RN ) ∩ Liploc(RN ) for some γ > 2s,

and assume (1.2.1). Let moreover X ∈ C1
c (RN ,RN ) be a vector field, and define, for x, y ∈ RN ,

x ̸= y,

Ks
X(x, y) :=

(
div(X)

)
(x) +

(
div(X)

)
(y)

2 − N + 2s
2

(X(x) −X(y)) · (x− y)
|x− y|2

the fractional divergence kernel related to X. Then it holds

CN,s

2

�
RN

�
RN

|u(x) − u(y)|2
|x− y|N+2s

Ks
X(x, y)dxdy = −

�
RN

(−∆)su (∇u ·X) dx;

noticed that the left-hand side is the weighted Gagliardo seminorm with weight Ks
X , set

Gs
u(x, y) := CN,s

2
|u(x) − u(y)|2
|x− y|N+2s

we can write
(Gs

u,Ks
X)L2(R2N ) = −((−∆)su∇u,X)

L2(RN ).

Proof. For the proof, we follow the lines of [154]. We start noticing that, being u ∈ Ḣs(RN ), by
the assumptions we have

Gs
u ∈ L1(R2N ), Ks

X ∈ L∞(R2N )

so that the product is summable. By dominated convergence theorem, the symmetry of the
kernel, and the Fubini theorem, we obtain

2
CN,s

(Gs
u,Ks

X)L2(R2N )

= lim
ε→0

�
|x−y|>ε

|u(x) − u(y)|2
|x− y|N+2s

Ks
X(x, y)dxdy

= lim
ε→0

�
|x−y|>ε

|u(x) − u(y)|2
|x− y|N+2s

(
div(X)(x) − (N + 2s)(x− y) ·X(x)

|x− y|2
)
dxdy

= lim
ε→0

�
RN

(�
RN \Bε(y)

|u(x) − u(y)|2
|x− y|N+2s

(div(X)(x)−

−(N + 2s)(x− y) ·X(x)
|x− y|2

)
dx

)
dy.

Exploiting that, for x ̸= y, ∇x
1

|x−y|N+2s = −(N + 2s) x−y
|x−y|N+2s+2 , and the divergence theorem

(possible because X
|·−y|N+2s ∈ C1

c (RN \Bε(y)) and u ∈ Liploc(RN ) ⊂ W 1,∞(supp(X)), see [170,
Theorem 4.6])

2
CN,s

(Gs
u,Ks

X)L2(R2N )

= lim
ε→0

�
RN

(�
RN \Bε(y)

|u(x) − u(y)|2
( div(X)(x)

|x− y|N+2s
−

−(N + 2s)(x− y) ·X(x)
|x− y|N+2s+2

)
dx

)
dy

= lim
ε→0

�
RN

(�
RN \Bε(y)

|u(x) − u(y)|2divx

(
X

|x− y|N+2s

)
(x)dx

)
dy



164 4. Doubly nonlocal equations: qualitative and quantitative results

= −2 lim
ε→0

�
RN

(�
RN \Bε(y)

(u(x) − u(y))∇u(x) · X(x)
|x− y|N+2s

dx

)
dy +

+ lim
ε→0

�
RN

(�
∂Bε(y)

|u(x) − u(y)|2 X(x)
|x− y|N+2s

· x− y

|x− y|dσ(x)
)
dy

= −2 lim
ε→0

�
RN

(�
RN \Bε(y)

u(x) − u(y)
|x− y|N+2s

∇u(x) ·X(x)dx
)
dy +

+ lim
ε→0

1
εN+2s+1

�
RN

(�
∂Bε(y)

|u(x) − u(y)|2X(x) · (x− y)dσ(x)
)
dy.

=: −2 lim
ε→0

Iε + lim
ε→0

Eε;

here we split the limits since we will prove the existence of both.
For the first integral, we notice that x 7→

�
RN \Bε(x)

|u(x)−u(y)|
|x−y|N+2s |∇u(x) · X(x)|dy ≤

Cε∥u∥∞|∇u(x) · X(x)| ∈ L1(RN ) so that we can apply Fubini theorem, then we perform a
symmetrization substitution and apply again Fubini theorem, and finally dominated convergence
theorem (since y 7→ 2u(x)−u(x+y)−u(x−y)

|y|N+2s ∈ L1(RN ) by Proposition 1.2.2), obtaining

CN,s lim
ε→0

Iε

= CN,s lim
ε→0

�
|x−y|>ε

u(x) − u(y)
|x− y|N+2s

∇u(x) ·X(x)dxdy

= CN,s

2 lim
ε→0

�
|y|>ε

2u(x) − u(x+ y) − u(x− y)
|y|N+2s

∇u(x) ·X(x)dxdy

= lim
ε→0

�
RN

∇u(x) ·X(x)
(
CN,s

2

�
RN \Bε(0)

2u(x) − u(x+ y) − u(x− y)
|y|N+2s

dy

)
dx

=
�
RN

∇u ·X(−∆)su.

For the second integral, notice that the set {(x, y) ∈ R2N | x ∈ supp(X), |x − y| = ε} is
bounded. Thus the integrand (being bounded) is summable, which allows us to implement the
Fubini theorem and obtain, by exploiting also a symmetrization argument,

(N + 2s)Eε = 1
εN+2s+1

�
|x−y|=ε

|u(x) − u(y)|2X(x) · (x− y)dσ(x) × dy

= 1
2εN+2s+1

�
|x−y|=ε

|u(x) − u(y)|2(X(x) −X(y)) · (x− y)dσ(x) × dy.

If supp(X) ⊂ BR(0), then out of the set

AR,ε := {(x, y) ∈ BR(0) ×BR(0) | |x− y| = ε}

the integrand is null. Thus, being u ∈ Liploc(RN ) (actually it is sufficient u ∈ C0,θ(RN ) for some
θ > s) and X ∈ Lip(RN ,RN ), we get

Eε ≲ 1
εN+2s+1

�
AR,ε

|x− y|4dσ(x) × dy

= ε−N−2s+3m2N−1(AR,ε).

Observed that m2N−1(AR,ε) ≲ mN (BR)mN−1(∂Bε) ∼ εN−1, we obtain Eε ≲ ε−2s+2 → 0.
Joining the pieces, we reach the claim.
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Corollary 4.7.4. In the assumptions of Proposition 4.7.3, let G ∈ C1(RN ) with G(u) ∈ L1(RN )
and

(−∆)su = g(u) in RN

in the pointwise sense, where G′ = g. Then

CN,s

2

�
RN

�
RN

|u(x) − u(y)|2
|x− y|N+2s

Ks
X(x, y)dxdy = −

�
RN

∇G(u) ·X dx

=
�
RN

G(u) div(X)dx,

i.e.
(Gs

u,Ks
X)L2(R2N ) = (G(u),div(X))L2(RN ).

We deal now with the Riesz kernel right-hand side of the equation.

Proposition 4.7.5. Let α ∈ (0, N) and H ∈ Liploc(RN ) ∩ L∞(RN ) be such that

(Iα ∗ |H|)|H| ∈ L1(RN ), (Iα ∗ |H|)|∇H| ∈ L1
loc(RN ).

Let moreover X ∈ C1
c (RN ,RN ) be a vector field and set, for x, y ∈ RN , x ̸= y,

K− α
2

X (x, y) :=
(
div(X)

)
(x) +

(
div(X)

)
(y)

2 − N − α

2
(X(x) −X(y)) · (x− y)

|x− y|2 .

Then �
RN

�
RN

Iα(x− y)H(x)H(y)K− α
2

X (x, y)dxdy = −
�
RN

(
Iα ∗H)∇H ·X dx,

i.e. set
Rα

H(x, y) := Iα(x− y)H(x)H(y)

we have
(Rα

H ,K
− α

2
X )L2(R2N ) = −((Iα ∗H)∇H,X)

L2(RN ).

Proof. We proceed as in the proof of Proposition 4.7.3. We start noticing that

Rα
H ∈ L1(R2N ), K− α

2
X ∈ L∞(R2N )

by the assumptions, so that the product is summable. Thus

(Rα
H ,K

− α
2

X )L2(R2N )

= lim
ε→0

�
RN

(�
RN \Bε(y)

Iα(x− y)H(x)H(y) (div(X)(x)−

−(N − α)(x− y) ·X(x)
|x− y|2

)
dx

)
dy.

Since H ∈ Liploc(RN ) ⊂ W 1,∞(supp(X)), we have

1
CN,α

(Rα
H ,K

− α
2

X )L2(R2N )

= − lim
ε→0

�
RN

(�
RN \Bε(y)

1
|x− y|N−α

H(y)∇H(x) ·X(x)dx
)
dy +

+ lim
ε→0

1
εN−α+1

�
RN

(�
∂Bε(y)

H(x)H(y)X(x) · (x− y)dσ(x)
)
dy.
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=: − lim
ε→0

Iε + lim
ε→0

Eε.

For Iε we notice that (Iα∗|H|)|∇H||X| ∈ L1(RN ), thus (x, y) 7→ Iα(x−y)H(y)∇H(x)·X(x) ∈
L1(R2N ) and we can apply (twice) Fubini theorem; moreover Iα(x− ·)H ∈ L1(RN ), and we can
apply dominated convergence theorem. Hence we obtain

CN,α lim
ε→0

Iε = lim
ε→0

�
|x−y|>ε

Iα(x− y)H(y)∇H(x) ·X(x)dxdy

= lim
ε→0

�
RN

∇H(x) ·X(x)
(�

RN \Bε(x)
Iα(x− y)H(y)dy

)
dx

=
�
RN

∇H(x) ·X(x)
(

lim
ε→0

�
RN \Bε(x)

Iα(x− y)H(y)dy
)
dx

=
�
RN

∇H(x) ·X (Iα ∗H).

We can write Eε instead as

Eε = 1
2εN−α+1

�
|x−y|=ε

H(x)H(y)(X(x) −X(y)) · (x− y)dσ(x) × dy.

If supp(X) ⊂ BR(0), set AR,ε := {(x, y) ∈ BR(0) × BR(0) | |x − y| = ε} and observed that
H ∈ L∞(RN ), we obtain

Eε ≲ 1
εN−α+1

�
AR,ε

|x− y|2dσ(x) × dy = ε−N+α+1m2N−1(AR,ε) ≲ εα → 0,

being α > 0. This concludes the proof.

Theorem 4.7.6. Let s ∈ (0, 1) and α ∈ (0, N) and assume that (F1)-(F2) hold. Let u ∈
Hs(RN ) ∩ Cγ

loc(RN ) ∩ Liploc(RN ) for some γ > 2s, be a pointwise solution of (4.1.1). Then u
satisfies the Pohozaev identity (4.2.5).

Proof. We apply Proposition 4.7.3 and Proposition 4.7.5 with H = F (u); notice that the
assumptions on u and F imply the needed conditions on H (in particular we highlight that
f(u) ∈ L

2N
N+α

loc (RN )). Thus, for a generic X ∈ C1
c (RN ,RN ) we obtain

(Gs
u,Ks

X)L2(R2N ) = −((−∆)su∇u,X)
L2(RN )

= µ
(
u∇u,X)

L2(RN ) − (
(Iα ∗ F (u))f(u) ∇u,X)

L2(RN )

= µ

2
(∇(u2), X

)
L2(RN ) − (

(Iα ∗ F (u))∇F (u), X
)

L2(RN )

= −µ

2
(
u2,div(X)

)
L2(RN ) + (Rα

F (u),K
− α

2
X )L2(R2N ).

In particular, we apply the result to

Xn(x) := φn(x)x,

where φn is a cut-off function with φn ≡ 1 in Bn(0), supp(φn) ⊂ Bn+1(0), ∥φn∥∞ = 1 and
|x||∇φn(x)| ≤ C for each x ∈ RN and n ∈ N; for instance, defined such φ1, we can set
φn := φ1(·/n) and obtain

|x||∇φn(x)| = |x/n||∇φ1(x/n)| ≤ ∥|x||∇φ1(x)|∥∞.

In particular, x 7→ xφn(x) is equi-Lipschitz. Noticed that div(Xn) = Nφn + ∇φn · x we gain

(Gs
u,Ks

Xn
)L2(R2N )
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= CN,s

2

�
RN

�
RN

|u(x) − u(y)|2
|x− y|N+2s

(
N(φn(x) + φn(y))

2

)
dxdy −

−CN,s

2

�
RN

�
RN

|u(x) − u(y)|2
|x− y|N+2s

(
N + 2s

2
(φn(x)x− φn(y)y) · (x− y)

|x− y|2
)
dxdy +

+CN,s

2

�
RN

�
RN

|u(x) − u(y)|2
|x− y|N+2s

(∇φn(x) · x+ ∇φn(y) · y
2

)
dxdy

→ CN,s

2

�
RN

�
RN

|u(x) − u(y)|2
|x− y|N+2s

(
N − N + 2s

2

)
= N − 2s

2 [u]2RN

where we used φn → 1, ∇φn → 0 and dominated convergence theorem. Similarly

(Rα
F (u),Kα

Xn
)L2(R2N ) →

�
RN

�
RN

Iα(x− y)F (u(x))F (u(y))
(
N − N − α

2

)
dxdy

= N + α

2

�
RN

(
Iα ∗ F (u)

)
F (u).

and
µ

2
(
u2, div(Xn)

)
L2(RN ) → µ

N

2 ∥u∥2
2.

Joining the pieces, we have the claim.

Proof of Theorem 4.7.2. The theorem is a consequence of Corollary 4.7.1 and Theorem
4.7.6.

Remark 4.7.7. We comment the name of Ks
X . Indeed, up to a multiplicative constant, we have,

for any β ∈ (0, 1) and X ∈ Lipc(RN ,RN ), by [132, equations (2.9c) and (2.11)] (see also [345])
�
RN

�
RN

Ks
X(x, y)

|x− y|N+β−1 =
�
RN

(�
RN

div(X(y))
|x− y|N+β−1dy

)
dx−

− N + 2s
2

�
RN

(�
RN

(X(x) −X(y)) · (x− y)
|x− y|N+β+1 dy

)
dx

=(N + β − 1)
�
RN

divβ(X)(x) − N + 2s
2

�
RN

divβ(X)(x)

=(N + 2β − 2 − 2s)
�
RN

divβ(X);

in particular �
RN

�
RN

Ks
X(x, y)

|x− y|N+s−1 = (N − 2)
�
RN

divs(X).

We refer also to [154, Chapter 3] where Ks
X is seen as the derivative of a suitable family of

deformations.
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Concentration phenomena: the effect of the fractional op-
erator

In this Chapter we investigate how the nonlocalities interact with concentration phenomena. We
consider the fractional, semiclassical nonlinear Schrödinger equation

ε2s(−∆)sv + V (x)v = f(v), x ∈ RN

where s ∈ (0, 1), N ≥ 2, V ∈ C(RN ,R) is a positive potential and f is a nonlinearity satisfying
Berestycki-Lions type conditions. For ε > 0 small, we prove the existence of at least cupl(K) + 1
positive solutions, where K is a set of local minima in a bounded potential well and cupl(K)
denotes the cup-length of K. Due to the generality of f , we cannot implement a Lyapunov-
Schimdt reduction, nor we can bound our functional on a Nehari manifold: thus, by means of
variational methods, our approach is to analyze the topological difference between two levels of
an indefinite functional in a neighborhood of expected solutions. Since the nonlocality comes
in the decomposition of the space directly, we introduce also a new fractional center of mass,
via a suitable seminorm. Some other delicate aspects arise strictly related to the presence of
the nonlocal operator: in particular, L∞-boundedness, regularity and polynomial decay have
to be specifically investigated. We show then that the found solutions decay polynomially and
concentrate around some point of K as ε → 0.

The main discussion (Section 5.1–5.4) will be focused on the case f Sobolev-subcritical. This
is based mainly on paper [111]. Afterwards, in Section 5.5, we will see how to treat the case f
critical; the argument will be based mainly on paper [197].

5.1 From classical to quantum: semiclassical states
In Section 2.1 we highlighted the physical relevance of the fractional Laplacian operator. In
particular we mentioned the study of standing waves of the fractional nonlinear Schrödinger
(fNLS for short) equation

iℏ∂tψ = ℏ2s(−∆)sψ + V (x)ψ − f(ψ), (t, x) ∈ (0,+∞) × RN (5.1.1)

i.e. factorized functions ψ(t, x) = e
iµt
ℏ v(x), µ ∈ R. Instead of considering the fixed case ℏ = 1, we

focus now on the study of small ℏ > 0: in this case standing waves are usually called semiclassical
states and the transition from quantum physics to classical physics is somehow described letting
ℏ → 0.

168
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Roughly speaking, when s = 1 the centers of mass qε = qε(t) of the soliton solutions in
(5.1.1), under suitable assumptions and initial conditions, converge as ℏ → 0 to the solution of
the Newton’s equation of motion

q̈(t) = −∇V (q(t)), t ∈ (0,+∞); (5.1.2)

for s ∈ (0, 1) a suitable power-type modification of equation (5.1.2) is needed. Here, considering
small ℏ roughly means that the size of the support of the soliton in (5.1.1) is considerably smaller
than the size of the potential V ; for details we refer to [46, 73, 191, 241], and to [337] for the
fractional case (see also [57] for the Choquard case).

Similar problems arise also in the study of superconductivity in Ginzburg-Landau vortices,
see [52] and references therein; here the point of concentration is indeed a point where a vortex
is formed.

Without loss of generality, shifting µ to 0 and denoting ℏ ≡ ε, the search for semiclassical
states leads to the investigation of the following nonlocal equation

ε2s(−∆)sv + V (x)v = f(v), x ∈ RN (5.1.3)

where V is positive and ε > 0 is small. Setting u := v(ε·), we observe that (5.1.3) can be
rewritten as

(−∆)su+ V (εx)u = f(u), x ∈ RN , (5.1.4)

thus the equation
(−∆)sU + aU = f(U), x ∈ RN (5.1.5)

becomes a formal limiting equation, as ε → 0, of (5.1.4), for some a > 0. Indeed, if x0 ∈ RN and
r > 0,

sup
x∈B(x0,εr)

|V (εx) − V (x0)| → 0 as ε → 0.

Solutions of (5.1.3) usually exhibit concentration behaviour as ε → 0: by concentrating solutions
we mean a family vε of solutions of (5.1.3) which converges, up to rescaling, to a ground state of
(5.1.5) and whose maximum points converge to some point x0 ∈ RN given by the topology of
V (see Theorem 5.5.1 for a precise statement). This point x0 reveals, generally, to be a critical
point of V – i.e. an equilibrium of (5.1.2) – as shown in [174,370].

In the limiting case s = 1 the semiclassical analysis of NLS equations has been largely
investigated, starting from the seminal paper [184]: by means of a finite Lyapunov-Schmidt
dimensional reduction argument, Floer and Weinstein proved the existence of positive spike
solutions to the homogeneous 3D cubic NLS equation, concentrating at each nondegenerate
critical point of the potential V (see also [309]); here the nondegeneracy of the ground states
of the limiting problem (5.1.5) is crucial. Successively, refined variational techniques were
implemented to study singularly perturbed elliptic problems in entire space: several existence
results of positive spike solutions to the NLS equation in a semiclassical regime are derived
under different assumptions on the potential and the nonlinear terms. We confine to mention
[13,66,78,81,82,140,148,149,326,370] and references therein.

Starting from the work [144], in [17, 96, 119–121,143,239] topological invariants were used
to derive multiplicity results in singularly perturbed frameworks, in the spirit of well known
results of Bahri, Coron [28] and Benci, Cerami [44] for semilinear elliptic problems with Dirichlet
boundary condition. Precisely, in [120] it has been proved that the number of positive solutions of
the stationary NLS equation is influenced by the topological richness of the set of global minima
of V . Some years later, using a perturbative approach, Ambrosetti, Malchiodi and Secchi [17]
obtained a multiplicity result for the NLS equation with power nonlinearity, assuming that the
set of critical points of V is nondegenerate in the sense of Bott. More recently, in [119] Cingolani,
Jeanjean and Tanaka improved the result in [120], relating the number of semiclassical standing
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waves solutions to the cup-length of K, where K is a set of local (possibly degenerate) minima of
the potential, under almost optimal assumptions on the nonlinearity (see also the recent paper
[123] in the context of nonlinear Choquard equations).

When s ∈ (0, 1), the search of semiclassical standing waves for the fNLS equation has been
firstly considered by Dávila, Del Pino and Wei in [146] under the assumptions f(t) = |t|p−2t,
with 2 < p < 2∗

s, where 2∗
s := 2N

N−2s is the Sobolev critical exponent, and V ∈ C1,α(RN ) is
bounded. Using a Lyapunov-Schmidt reduction inspired by [184,309], they showed the existence
of a positive spike solution whose maximum point concentrates at some nondegenerate critical
point of V : this approach relies on the nondegeneracy property of the linearization at the positive
ground state shown by Frank, Lenzmann and Silvestre [190]. Successively, inspired by [78,148],
variational techniques were employed to derive existence of spike solutions concentrating at local
minima of V , see [12, 20, 338] and references therein (see also [336] where global assumptions on
V are considered).

A first multiplicity result for the (fNLS) equation is obtained in [183], inspired by [120].
Precisely, letting K be the set of global minima of V , Figueiredo and Siciliano proved that the
number of positive solutions of (5.1.3), when f satisfies monotonicity and Ambrosetti-Rabinowitz
condition, is at least given by the Ljusternik-Schnirelmann category of K: here the search of
solutions of (5.1.3) can be reduced to the study of the (global) level sets of the Nehari manifold,
where the energy functional is restricted, and to deformation arguments valid on Hilbert manifolds
without boundary. See also [10] where the Ambrosetti-Rabinowitz condition is dropped. In [96],
moreover, Chen implemented a Lyapunov-Schmidt reduction for nondegenerate critical points
of V and power-type functions f in order to get multiplicity results related to the cup-length,
extending the results of [17].

In this first part of the Chapter we are interested to prove multiplicity of positive solutions
for the fNLS equation (5.1.3) when ε is small, without monotonicity and Ambrosetti-Rabinowitz
conditions on f , nor nondegeneracy and global conditions on V , concentrating at a local minimum
of V .

On the potential V we assume

(V1) V ∈ C(RN ) ∩ L∞(RN ), V := infRN V > 0 (see also Remark 5.1.3);

(V2) there exists a bounded domain Ω ⊂ RN such that

m0 := inf
Ω
V < inf

∂Ω
V ;

by the strict inequality and the continuity of V , we can assume that ∂Ω is regular. We define K
as the set of local minima

K := {x ∈ Ω | V (x) = m0}. (5.1.6)

On f we assume the following subritical assumptions

(f1) Berestycki-Lions type assumptions with respect to m0, that is

(f1.1) f ∈ C(R,R);
(f1.2) limt→0

f(t)
t = 0;

(f1.3) limt→+∞
f(t)
|t|p = 0 for some p ∈ (1, 2∗

s − 1), where we recall 2∗
s = 2N

N−2s ;

(f1.4) F (t0) > 1
2m0t20 for some t0 > 0, where F (t) :=

� t
0 f(s)ds;

(f2) f(t) = 0 for t ≤ 0.

On f we further assume

(f3) f ∈ C0,γ
loc (R) for some γ ∈ (1 − 2s, 1) if s ∈ (0, 1/2].
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Remark 5.1.1. We remark that (f3) is needed only to get a Pohozaev identity (see Proposition
2.2.2). See also Remark 5.4.3 below.

It is standard that weak solutions to (5.1.4) correspond to critical points of the C1-energy
functional

Iε(u) := 1
2

�
RN

|(−∆)s/2u|2dx+ 1
2

�
RN

V (εx)u2dx−
�
RN

F (u)dx, u ∈ Hs(RN ).

We remark that, because of the general assumptions on f , we can not take advantage of the
boundedness of the functional from above and below, nor of Nehari type constraint. Therefore
in the present paper we combine reduction methods and penalization arguments in a nonlocal
setting: in particular, as in [119,123], the analysis of the topological changes between two level
sets of the indefinite energy functional Iε in a small neighborhood Xε,δ of expected solutions is
essential in our approach. With the aid of ε-independent pseudo-differential estimates, we detect
such a neighborhood, which will be positively invariant under a pseudo-gradient flow, and we
develop our deformation argument in the context of nonlocal operators. To this aim we introduce
two maps Φε and Ψε between topological pairs: we emphasize that to define such maps, a center
of mass Υ and a functional Pa which is inspired by the Pohozaev identity are crucial.

With respect to the local case, several difficulties arise linked to special features of the nonlocal
nature of the problem: among them we have the polynomial decay of the least energy solutions
of the limiting problems, the weak regularizing effect of the fractional Laplacian, the lack of
general comparison arguments, the differences between the supports of a function and of its
Fourier transform, and the lack of the standard Leibniz formula (see e.g. [54, 336]). Moreover we
highlight that, for fractional equations, the nonlocal part strongly influences the decomposition
of the space and this makes quite delicate to use truncating test functions and perform the
localization of the centers of mass.

In the present Chapter we need to implement new ideas to overcome the above obstructions;
in particular we introduce a new fractional local center of mass by means of a suitable seminorm,
stronger than the usual Gagliardo seminorm in a bounded set.

Our main result is the following theorem.

Theorem 5.1.2. Suppose N ≥ 2 and that (V1)-(V2), (f1)–(f3) hold. Let K be defined by (5.1.6).
Then, for sufficiently small ε > 0, equation (5.1.3) has at least cupl(K) + 1 positive solutions,
which belong to C0,σ(RN ) ∩ L∞(RN ) for some σ ∈ (0, 1).

Here cupl(K) denotes the cup-length of K defined by the Alexander-Spanier cohomology with
coefficients in some field F (see Appendix A). Notice that the cup-length of a set K is strictly
related to the category of K, see Lemma A.10 and Remark A.11.

Remark 5.1.3. Observe that, arguing as in [78] and [81], we could omit the assumption that
V is bounded from above in Theorem 5.1.2. For the sake of simplicity, we assume here the
boundedness of V .

The regularity statement in Theorem 5.1.2 relies on some recent regularity results based on
fractional De Giorgi classes and tail functions (see Section 1.2.5); notice that the fact that the
noncriticality is strict in (f1.3) (that is p < 2∗

s − 1) is here needed. Through these results we are
able to prove also the concentration of the solutions.

Theorem 5.1.4. In the assumptions of Theorem 5.1.2, let vε be one of the cupl(K) + 1 family
of solutions of equation (5.1.3). Then, (vε)ε>0 concentrates in K as ε → 0, i.e. there exist a
maximum points xε ∈ RN of vε such that

lim
ε→0

d(xε,K) = 0;
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moreover, for some positive C ′, C ′′, we have the uniform polynomial decay

C ′

1 + |x−xε
ε |N+2s

≤ vε(x) ≤ C ′′

1 + |x−xε
ε |N+2s

, for x ∈ RN .

In addition, let (εn)n with εn → 0+ as n → +∞. Then, up to a subsequence, there exists a point
x0 ∈ K sucht that xεn → x0 as n → +∞, and vεn(εn · +xεn) converges in Hs(RN ) and uniformly
on compact sets to a least energy solution of

(−∆)sU +m0U = f(U), U > 0, U ∈ Hs(RN ). (5.1.7)

This first part of the Chapter is organized as follows. In Section 5.1.1 we recall the mixed
Gagliardo seminorm introduced in Section 1.2.1, while in Section 5.2 we show the uniform
polynomial decay of the solutions of (5.1.5), and we introduce a new fractional center of mass
Υ, by means of a suitable seminorm. Section 5.3 is the main core of the Chapter, where we
introduce a penalized functional and prove a deformation lemma on a neighborhood of expected
solutions; moreover, we build suitable maps Φε, Ψε essential in the proof of the multiplicity of
solutions. Then in Section 5.4 we prove Theorem 5.1.2 by the use of the deformation lemma and
the built maps applied to the theory of relative category and relative cup-length. Finally we
prove Theorem 5.1.4 by using regularity results based on fractional De Giorgi classes.

Afterwards, in Section 5.5 we move to the study of the critical case.

5.1.1 A tail-controlling mixed norm
In this Chapter we will make use of the following norm

∥u∥2
Hs

ε (RN ) := ∥(−∆)s/2u∥2
2 +

�
RN

V (εx)u2dx

which is an equivalent norm on Hs(RN ) (once ε is fixed), thanks to the positivity and the
boundedness of V ; the space Hs

ε (RN ) is defined straightforwardly. Moreover we will make use of
the mixed Gagliardo seminorm (introduced in Section 1.2.1)

[u]2A1,A2 =
�

A1

�
A2

|u(x) − u(y)|2
|x− y|N+2s

dx dy, [u]A := [u]A,A

for any A1, A2, A ⊂ RN and u ∈ Hs(RN ). For any u ∈ Hs(RN ) and A ⊂ RN it will be useful to
work also with the following norms:

∥u∥2
A := ∥u∥2

L2(A) + [u]2A,RN (5.1.8)

and
|||u|||A := ∥u∥A + ∥u∥Lp+1(A), (5.1.9)

where p is introduced in assumption (f1.3). We highlight that ∥u∥RN = ∥u∥Hs(RN ), but generally
∥u∥A ≥ ∥u∥Hs(A) for A ̸= RN . By Hs(A) ↪→ Lp+1(A) the norms ∥ · ∥A and |||·|||A are equivalent:
on the other hand, the constant such that |||u|||A ≤ CA∥u∥A depends on A, thus not useful for
expanding sets A = A(ε). This is why we will make direct use of |||·|||A.

Before ending this Section, we highlight that, by the assumptions on f , for each q ≥ p and
β > 0 there exists a Cβ > 0 such that

|f(t)| ≤ β|t| + Cβ|t|q and |F (t)| ≤ C
(
β|t|2 + Cβ|t|q+1

)
. (5.1.10)

5.2 Limiting equation
In this Section we further investigate the autonomous equation studied in Section 2.2.
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5.2.1 A single equation
Consider

(−∆)sU + aU = f(U), x ∈ RN (5.2.11)

with a > 0. Weak solutions of (5.2.11) are known to be characterized as critical points of the
C1-functional La : Hs(RN ) → R

La(U) := 1
2∥(−∆)s/2U∥2

2 + a

2∥U∥2
2 −

�
RN

F (U)dx, U ∈ Hs(RN ).

Set moreover the Pohozaev functional Pa : Hs(RN ) \ {0} → R+

Pa(U) :=
(

2∗
s

�
RN F (U)dx− a

2 ∥U∥2
2

∥(−∆)s/2U∥2
2

) 1
2s

+
, U ∈ Hs(RN ), U ̸= 0.

We further set
Cpo,a := inf

{
La(U) | U ∈ Hs(RN ) \ {0}, Pa(U) = 1

}

the Pohozaev minimum energy, and

Ea := inf
{
La(U) | U ∈ Hs(RN ) \ {0}, L′

a(U) = 0
}

the least energy for La.
We recall the following result by Section 2.2, where we further highlight the regularity, the

positivity and the decay at infinity (see [79, Theorems 1.1–1.3] and [177, Theorem 1.5]).

Theorem 5.2.1. Assume (f1) with respect to a > 0 and (f2).

• There exists a positive minimizer for Cpo,a > 0, which is a weak solution of (5.2.11).

• Every weak solution U ∈ Hs(RN ) of (5.2.11) is actually a strong solution, i.e. U satisfies
(5.2.11) almost everywhere. Moreover U ∈ H2s(RN ) ∩ Cσ(RN ) for every σ ∈ (0, 2s).

• Every weak solution U ∈ Hs(RN ) of (5.2.11) is strictly positive and decays polynomially at
infinity, that is there exist positive constants C ′

a, C
′′
a such that

C ′
a

1 + |x|N+2s
≤ U(x) ≤ C ′′

a

1 + |x|N+2s
, for x ∈ RN . (5.2.12)

Observe that the bounding functions in (5.2.12) belong to Lq(RN ) for any q ∈ [1,+∞].

• If (f3) holds, then the Pohozaev identity

Pa(U) = 1

holds for each nontrivial solution U of (5.2.11). As a consequence

Ea = Cpo,a. (5.2.13)

We observe that to reach the Pohozaev identity we need the solutions to be regular enough,
fact that is given by (f3). The functional Pa will be of key importance for estimating La from
below, see Lemma 5.2.3 and Lemma 5.2.6.

We highlight the polynomial decay of solutions of (5.2.11). This decay is much less slower
than the one, exponential, of the local case s = 1. An alternative proof, which underlines some
uniformity in a, can be found in Proposition 5.4.2.
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Remark 5.2.2. Since the equation is satisfied almost everywhere, we have also, by (5.1.10)

|(−∆)sU(x)| ≤ |f(U(x))| + a|U(x)| ≤ β|U(x)| + Cβ|U(x)|p + a|U(x)|

≤ C

( 1
1 + |x|(N+2s)p + 1

1 + |x|N+2s

)
≤ C

1
1 + |x|N+2s

for almost every x ∈ RN .

We end this Section by a technical lemma, which allows to link the level La(u) of a whatever
function u, having a functional Pa(u) ≈ 1, with the ground state Ea; in particular, it provides a
useful lower bound for La.

Lemma 5.2.3. Let u ∈ Hs(RN ) and define

g(t) := 1
2s
(
NtN−2s − (N − 2s)tN

)
, t ∈ R.

(a) If Pa(u) ∈
(
0,
(

N
N−2s

) 1
2s
)
, which we highlight is a neighborhood of 1, then

La(u) ≥ g(Pa(u))Ea.

(b) If u = Ua

(
·−q

t

)
for some q ∈ RN and t ∈ R, with Ua being a ground state of (5.2.11), then

the above inequality is indeed an equality, that is

La

(
Ua

( · − q

t

))
= g(t)Ea.

We highlight that the function g verifies

g(t) ≤ 1 and g(t) = 1 ⇐⇒ t = 1.

Proof. Let σ := Pa(u) and set v := u(σ·). Then Pa(v) = 1. A straightforward computation
shows, by using Pa(v) = 1 and g(σ) > 0, that

La(u) = g(σ)La(v) ≥ g(σ)Cpo,a = g(σ)Ea.

We see that, if u = Ua

(
·−q

t

)
, then by Pa(Ua) = 1 we have σ = Pa

(
Ua

(
·−q

t

))
= t and

thus v = Ua(· − q), which by translation invariance is again a ground state of (5.2.11); thus
La(v) = Cpo,a. This concludes the proof.

5.2.2 A family of equations: minimal radius map
In this Section we study equation (5.2.11) for variable values of a > 0. Introduce the notation

Ω[a, b] := V −1([m0 + a,m0 + b]) ∩ Ω

and similarly Ω(a, b) and mixed-brackets combinations. We choose now a small ν0 > 0 such that
the minimum m0 is not heavily perturbed, namely

• Berestycki-Lions type assumptions (f1) hold with respect to a ∈ [m0,m0 + ν0] – i.e., in
particular, F (t0) > 1

2(m0 + ν0)t20;

• assumption (V2) holds with respect to m0 + ν0, i.e. m0 + ν0 < inf∂Ω V ;

• Ω[0, ν0] ⊂ Kd ⊂ Ω for a sufficiently small d > 0 subsequently fixed, see Lemma A.5;
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• other conditions subsequently stated, see e.g. (5.2.14) and Lemma 5.2.6.

We observe that, by construction, for a ∈ [m0,m0 + ν0] the considerations of Section 5.2.1 apply.
Moreover, by scaling arguments on Cpo,a, we notice that

a ∈ [m0,m0 + ν0] 7→ Ea ∈ (0,+∞)

is strictly increasing and that, up to choosing a smaller ν0, we have1 Em0+ν0 < 2Em0 and thus
we can find an l0 = l0(ν0) ∈ R such that

Em0+ν0 < l0 < 2Em0 . (5.2.14)

As a final step in the proof of the main Theorem, we will make ν0 and l0 moving such that
νn

0 → 0 and ln0 → Em0 . We now define the set of almost ground states of (5.2.11)

Sa :=
{
U ∈ Hs(RN ) \ {0} | L′

a(U) = 0, La(U) ≤ l0, U(0) = max
RN

U

}
̸= ∅.

We observe that we set the last condition in order to fix solutions in a point and prevent them
to escape to infinity; the idea is to gain thickness and compactness (see [78, 119, 122]): notice
indeed that, in the case of a proper ground state U ∈ Sa, then U is radially symmetric (see also
(5.5.81)). We further define

Ŝ :=
⋃

a∈[m0,m0+ν0]
Sa.

The following properties of the set Ŝ will be of key importance in the whole paper.

Lemma 5.2.4. The following properties hold.

(a) There exist positive constants C ′, C ′′ such that, for each U ∈ Ŝ we have

C ′

1 + |x|N+2s
≤ U(x) ≤ C ′′

1 + |x|N+2s
, for x ∈ RN . (5.2.15)

(b) Ŝ is compact. Since it does not contain the zero function, we have

r∗ := min
U∈Ŝ

∥U∥Hs(RN ) > 0;

the maximum is attained as well.

(c) We have
lim

R→+∞
∥U∥RN \BR

= 0, uniformly for U ∈ Ŝ,

where the norm ∥ · ∥RN \BR
is defined in (5.1.8). Moreover, if (Un)n ⊂ Ŝ, and (θn)n ⊂ RN

is bounded, then
lim

n→+∞
∥Un(· + θn)∥RN \Bn

= 0.

Proof. We divide the proof in some steps.
Step 1. We see that Ŝ is bounded. Indeed, by the Pohozaev identity, we have

∥(−∆)s/2U∥2
2 = N

s
La(U) ≤ N

s
l0.

1Let ν0 to be fixed, and v be a m0-Pohozaev minimum (i.e. Lm0 (v) = Cpo,m0 ). Let rescale v in such a way it
belongs to the (m0 + ν0)-Pohozaev set, i.e. u := v(·/θ) for some explicit θ: computation shows θ > 1 and θ → 1 as
ν0 → 0. Thus Cpo,m0+ν0 ≤ Lm0+ν0 (u) = θN−2sLm0 (v) = θN−2sCpo,m0 . By choosing ν0 small we have θN−2s < 2.
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By (1.2.7) we have that also ∥U∥2∗
s

is uniformly bounded. Since L′
a(U)U = 0, we have by (5.1.10)

∥(−∆)s/2U∥2
2 + a∥U∥2

2 =
�
RN

f(U)Udx ≤ β∥U∥2
2 + Cβ∥U∥2∗

s
2∗

s

which implies, by choosing β < a, that also ∥U∥2
2 is bounded.

Step 2. There exist uniform C > 0 and σ ∈ (0, 1) such that

∥U∥∞ ≤ C, [U ]
C0,σ

loc
(RN ) ≤ C (5.2.16)

for any U ∈ Ŝ. We postpone the proof of (5.2.16), as well as the proof of the uniform pointwise
estimate (5.2.15) (where we use (f3)), since they will carry some arguments used in the proof of
Theorem 5.1.4 in Section 5.4.1; see Proposition 5.4.2.

We show now (b), which is a refinement of the fact that Sa itself is compact.
Step 3. We observe first that Ŝ is closed. Indeed, if Uk ∈ Sak

⊂ Ŝ converges strongly to U , then
up to a subsequence we have ak → a ∈ [m0,m0 + ν0] and, by the strong convergence, we have
that the condition

Em0 ≤ La(U) ≤ l0

holds, which in particular implies that U ̸≡ 0. Moreover, exploiting the weak convergence
Uk ⇀ U , and the almost everywhere convergence (together with the estimate on f , the uniform
estimate (5.2.15) and the dominated convergence theorem), we obtain that for each v ∈ Hs(RN )

0 = L′
ak

(Uk)v =
�
RN

(−∆)s/2Uk(−∆)s/2v dx+ ak

�
RN

Ukv dx−
�
RN

f(Uk)v dx

→
�
RN

(−∆)s/2U(−∆)s/2v dx+ a

�
RN

Uv dx−
�
RN

f(U)v dx = L′
a(U)v,

that is, L′
a(U) = 0. As regards the maximum in zero, we need a pointwise convergence. In order

to get it, we exploit the fact that, by (5.2.16), Uk are uniformly bounded in L∞(RN ) and in
C0,σ

loc (RN ) and we apply Ascoli-Arzelà theorem to get local uniform convergence. This shows that
U ∈ Sa ⊂ Ŝ.
Step 4. Let now Uk ∈ Sak

⊂ Ŝ. By the boundedness, up to a subsequence we have Uk ⇀ U ∈
Hs(RN ) and ak → a ∈ [m0,m0 + ν0]. We need to show that ∥Uk∥Hs(RN ) → ∥U∥Hs(RN ); the
closedness of Ŝ will conclude the proof.

As observed in Step 3, we have by the weak convergence that L′
ak

(Uk)Uk = 0 = L′
a(U)U ;

hence, if R > 0 is some radius to be fixed, we gain
∣∣∣
(
∥(−∆)s/2Uk∥2

2 + ak∥Uk∥2
2
)

−
(
∥(−∆)s/2U∥2

2 + a∥U∥2
2
)∣∣∣

≤
∣∣∣∣∣

�
|x|≤R

f(Uk)Ukdx−
�

|x|≤R
f(U)Udx

∣∣∣∣∣+

+
�

|x|>R
|f(Uk)Uk|dx+

�
|x|>R

|f(U)U)|dx =: (I) + (II).

Fix now a small η > 0. As regards (II), we have by (5.1.10)�
|x|>R

|f(Uk)Uk|dx ≤ β

�
|x|>R

|Uk|2dx+ Cβ

�
|x|>R

|Uk|p+1dx < η

for sufficiently (uniformly in k) large R > 0 thanks to (5.2.15); up to taking a larger R, it holds
also for U .

Fixed this R > 0, focusing on (I), by Proposition 1.5.5 we have
∣∣∣∣∣

�
|x|≤R

f(Uk)Ukdx−
�

|x|≤R
f(U)Udx

∣∣∣∣∣ < η
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for sufficiently large k = k(R). Merging together, we obtain

∥(−∆)s/2Uk∥2
2 + ak∥Uk∥2

2 → ∥(−∆)s/2U∥2
2 + a∥U∥2

2

which with elementary passages leads to the claim.

Step 5. Finally, we prove (c). By contradiction, there exists an η > 0 such that, for each n ∈ N
there exists a Un ∈ Ŝ which satisfies

∥Un∥RN \Bn
> η.

By the compactness, we have, up to a subsequence, Un → U ∈ Ŝ as n → +∞. Thus (notice that�
RN

|U(x)−U(·)|2
|x−·|N+2s dx ∈ L1(RN ) and absolute integrability of the integral applies)

η < ∥Un∥RN \Bn
≤ ∥Un − U∥Hs(RN ) + ∥U∥RN \Bn

→ 0

which is an absurd.
For the second part, we argue similarly. Indeed, up to a subsequence, Un → U in Hs(RN )

and θn → θ in RN , thus

∥Un(· − θn)∥RN \Bn

≤ ∥Un − U∥Hs(RN ) + ∥τθnU − τθU∥Hs(RN ) + ∥U(· − θ)∥RN \Bn
→ 0,

where τθ is the translation. This concludes the proof.

Remark 5.2.5. The compactness of the set Ŝ of (almost) ground states is somehow expected by
thinking at the power case f(u) = |u|p−2u: in this case, indeed, the ground state is unique (and
nongenerate) [190,247]. On the other hand, in the general case (for examples for suitable sums
of powers), uniqueness seems not to be the case [145,376].

Gained compactness, we turn back considering the set of all the solutions (with no restrictions
in zero), that is

Ŝ′ :=
⋃

p∈RN

τp(Ŝ);

we observe that Ŝ′ is bounded. Moreover we define an open r-neighborhood of Ŝ′, reminiscent of
the perturbation approach in [13,146,184],

S(r) := {u ∈ Hs(RN ) | d(u, Ŝ′) < r}

that is

S(r) =
{
u = U(· − p) + φ ∈ Hs(RN ) | U ∈ Ŝ, p ∈ RN , φ ∈ Hs(RN ), ∥φ∥Hs(RN ) < r

}
.

In order to re-gain some compactness, we aim to detect and somehow bound the point of
translation and the size of the error. To this last goal, we define a minimal radius map
ρ̂ : Hs(RN ) → R+ by

ρ̂(u) := inf
{

∥u− U(· − y)∥Hs(RN ) | U ∈ Ŝ, y ∈ RN
}
.

We observe
u ∈ S(r) =⇒ ρ̂(u) < r, (5.2.17)

and in addition
ρ̂(u) = inf{t ∈ R+ | u ∈ S(t)},
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where the infimum on the right-hand side is not attained. Finally, ρ̂ ∈ Lip(Hs(RN ),R) with
Lipschitz constant equal to 1, that is, for every u, v ∈ Hs(RN ),

|ρ̂(u) − ρ̂(v)| ≤ ∥u− v∥Hs(RN ). (5.2.18)

The detection of the point of translation will be instead more tricky, and will be investigated in
Section 5.2.3.

We end this Section with two technical lemmas. The first one is a direct consequence of
Lemma 5.2.3, and allows to link the level Lm0(u) of a whatever function u ∈ S(r) with the
ground state Em0 , once r is sufficiently small; this further gives a lower bound for the functional
Lm0 .

Lemma 5.2.6. Up to taking a smaller ν0 = ν0(l0) > 0, there exists a sufficiently small
r′ = r′(ν0, r∗) > 0 such that, for every u ∈ S(r′), we have

Lm0(u) ≥ g(Pm0(u))Em0 .

Proof. By Lemma 5.2.3 (a), we know that the inequality holds if Pm0(u) is in a neighborhood
of the value 1. Observe that Pa(U) = 1 if U ∈ Sa: by continuity and compactness, Pm0(U) ≈ 1
if U ∈ Sa and a ≈ m0. In particular, by choosing a small value of ν0, Pm0(U) ≈ 1 for U ∈ Ŝ.
Indeed

Pm0(U) = 1 + 1
2s

N

N − 2s (a−m0) ∥U∥2
2

∥(−∆)s/2U∥2
2

+ o(1);

the addendum on the right-hand side can be bounded by the maximum and the minimum over
Ŝ (notice that (−∆)s/2U cannot be zero) and thus we can find a uniform small ν0. Again by
continuity we have that Pm0(u) ≈ 1 for u ∈ S(r′), r′ sufficiently small. Indeed

Pm0(u) = 1 − 1
2s

N

N − 2s
1

∥(−∆)s/2U∥2
2

(
Lm0(U(· − p) + φ) − Lm0(U(· − p))

)
+ o(1).

This concludes the proof.

We notice that the condition Em0+ν0 < l0 keeps holding by decreasing ν0, so no ambiguity in
the l0-depending choice of ν0 in Lemma 5.2.6 arises. We focus now on the second lemma.

Lemma 5.2.7. There exist ν1 ∈ (0, ν0) and δ0 = δ0(ν1) > 0 such that

Lm0+ν1(U) ≥ Em0 + δ0, uniformly for U ∈ Ŝ.

Proof. Observe first that, since Ŝ is compact also in L2(RN ), we have also finite and strictly
positive minimum M and maximum M with respect to ∥ · ∥2. Consider ν1 ∈ (0, ν0) such that

Em0+ν1 − Em0 >
1
2(ν0 − ν1)M ;

we notice that such ν1 exists since, as ν1 → ν+
0 , the left hand side positively increases while the

right hand side goes to zero. Let now a ∈ [m0,m0 +ν0]; we consider two cases. If a ∈ [m0,m0 +ν1]
we argue as follow: for U ∈ Sa we have

Lm0+ν1(U) = La(U) + 1
2(m0 + ν1 − a)∥U∥2

2
≥ Ea + 1

2(m0 + ν1 − a)M =: (I) + (II);

now, the quantity (I) is minimum when a = m0, while (II) is minimum when a = m0 + ν1; if
both could apply at the same time, we would have as a minimum the quantity Em0 . Since it is
not possible, we obtain

inf
U∈
⋃

a∈[m0,m0+ν1] Sa

Lm0+ν1(U) > Em0 .
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If a ∈ (m0 + ν1,m0 + ν0] instead, we have

Lm0+ν1(U) ≥ Ea − 1
2(a− (m0 + ν1))M ≥ Em0+ν1 − 1

2(ν0 − ν1)M

and thus, by the property on ν1,

inf
U∈
⋃

a∈[m0+ν1,m0+ν0] Sa

Lm0+ν1(U) ≥ Em0+ν1 − 1
2(ν0 − ν1)M > Em0 .

This concludes the proof, by taking as δ0 > 0 the smallest of the two differences.

5.2.3 Fractional center of mass
As in [119], inspired by [43, 81, 149], we want to define a barycentric map Υ which, given a
function u = U(· − p) +φ ∈ S(r), gives an estimate on the maximum point p of U(· − p); since φ
is small and U decays (polynomially) at infinity, p is, in some ways, the center of mass of u. The
idea will be to bound Υ(u) in order to re-gain compactness.

Since the nonlocality comes into the very definition of the ambient space, we need the use
of the norm (5.1.8), which we notice being stronger than the one induced by the Gagliardo
seminorm.

Lemma 5.2.8. Let r∗ be as in Lemma 5.2.4. Then there exist a sufficiently large R0 > 0, a
sufficiently small radius r0 ∈ (0, r∗) and a continuous map

Υ : S(r0) → RN

such that, for each u = U(· − p) + φ ∈ S(r0) we have

|Υ(u) − p| ≤ 2R0.

Moreover, Υ is continuous and −Υ is shift-equivariant, that is, Υ(u(· + ξ)) = Υ(u) − ξ for every
u ∈ S(r0) and ξ ∈ RN .

Proof. Recalled that r∗ = min
U∈Ŝ

∥U∥Hs(RN ) > 0, we have by Lemma 5.2.4

∥U∥RN \BR0
< 1

8r
∗, uniformly for U ∈ Ŝ (5.2.19)

for R0 ≫ 0. Thus

r∗ ≤ ∥U∥Hs(RN ) ≤ ∥U∥BR0
+ ∥U∥RN \BR0

< ∥U∥BR0
+ 1

8r
∗

which implies
∥U∥BR0

> 7
8r

∗ and ∥U∥RN \BR0
< 1

8r
∗

for each U ∈ Ŝ. Consider now a cutoff function ψ ∈ C∞
c (R+) such that

[0, 1
4r

∗] ≺ ψ ≺ [1
2r

∗,+∞);

let r0 ∈ (0, 1
8r

∗) and define, for each u ∈ S(r0) and q ∈ RN , a density function

d(q, u) := ψ

(
inf

Ũ∈Ŝ

∥u− Ũ(· − q)∥BR0 (q)

)
.

Notice that d(·, u) is an integrable function: indeed [u(· + ξ)]BR0 (q) = [u]BR0 (q+ξ) for ξ ∈ RN , and
q 7→ ∥u− Ũ(· − q)∥BR0 (q) = ∥τqu− Ũ∥BR0

is continuous by

|∥τqu− Ũ∥BR0
− ∥τpu− Ũ∥BR0

| ≤ ∥τqu− τpu∥BR0
≤ ∥τqu− τpu∥Hs(RN ) → 0
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as p → q, and the infimum over continuous functions is upper semicontinuous.
If we show that d(·, u) ≥ 0 is not identically zero and it has compact support, then it will be

well defined the quantity

Υ(u) :=
�
RN q d(q, u)dq�
RN d(q, u)dq .

We show first that d(·, u) has compact support. Indeed if u = U(· −p) +φ and Ũ ∈ Ŝ is arbitrary,
then

∥u− Ũ(· − q)∥BR0 (q)

≥ ∥Ũ(· − q)∥BR0 (q) − ∥U(· − p)∥BR0 (q) − ∥φ∥BR0 (q)

≥ ∥Ũ∥BR0
− ∥U∥BR0 (q−p) − ∥φ∥Hs(RN ) ≥ 6

8r
∗ − ∥U∥BR0 (q−p);

take now q /∈ B2R0(p): if x ∈ BR0(q − p), by the fact that |x− (q − p)| < R0 and |q − p| ≥ 2R0,
we obtain that |x| ≥ R0, that is, x ∈ RN \BR0 . Therefore by (5.2.19)

∥u− Ũ(· − q)∥BR0 (q) ≥ 6
8r

∗ − ∥U∥RN \BR0
≥ 5

8r
∗ > 1

2r
∗ (5.2.20)

thus inf
U∈Ŝ

∥u− Ũ(· − q)∥BR0 (q) ≥ 1
2r

∗ and hence d(q, u) = 0 for q /∈ B2R0(p); this means that
supp(d(·, u)) ⊂ B2R0(p).

We show next that d(·, u) is equal to 1 on a ball. Indeed if u = U(· − p) + φ

inf
Ũ∈Ŝ

∥u− Ũ(· − q)∥BR0 (q) ≤ ∥u− U(· − q)∥BR0 (q)

≤ ∥U(· − p) − U(· − q)∥BR0 (q) + ∥φ∥BR0 (q) ≤ ∥τp−qU − U∥BR0
+ 1

8r
∗.

We can make the first term as small as we want by taking |p− q| small, that is
inf

U∈Ŝ

∥u− Ũ(· − q)∥BR0 (q) ≤ 1
4r

∗

for q ∈ Br(p), r small, which implies d(q, u) = 1.
By the fact that Br(p) ⊂ supp(d(·, u)) ⊂ B2R0(p) we have the well posedness of Υ(u) and

Υ(u) =

�
B2R0 (p) q d(q, u)dq�
B2R0 (p) d(q, u)dq .

The main property comes straightforward, as well as the shift equivariance. We show now the
continuity. Indeed, assume ∥u− v∥Hs(RN ) ≤ 1

8r
∗. Then, by (5.2.20),

∥v − Ũ(· − q)∥BR0 (q) ≥ ∥u− Ũ(· − q)∥BR0 (q) − ∥v − u∥BR0 (q) ≥ 1
2r

∗

and again we can conclude that supp(d(·, v)) ⊂ B2R0(p) for each ∥u − v∥Hs(RN ) ≤ 1
8r

∗, where
p depends only on u. Moreover, observe that

�
B2R0 (p) d(q, u)dq ≥

�
Br(p) 1 dq ≥ |Br| =: C1 not

depending on u and p (and similarly C2 := |B2R0 |), and that d(q, ·) is Lipschitz (since ψ and the
norm are so, and the infimum over a family of Lipschitz functions is still Lipschitz). Thus we
have

|Υ(u) − Υ(v)| ≤
�

B2R0 (p) |q| |d(q, u) − d(q, v)|dq�
B2R0 (p) d(q, u)dq +

+
�

B2R0 (p)
|q| d(q, v)dq

�
B2R0 (p) |d(q, v) − d(q, u)|dq�

B2R0 (p) d(q, u)dq
�

B2R0 (p) d(q, v)dq

≤
�

B2R0 (p)
|q|dq 1

C1

(
1 + C2

C1

)
∥u− v∥Hs(RN ) =: Cp∥u− v∥Hs(RN ).

Since Cp can be bounded above by a constant of the type C(1 + Υ(u)), we have
∥u− v∥Hs(RN ) ≤ r0 =⇒ |Υ(u) − Υ(v)| ≤ C(1 + Υ(u))∥u− v∥Hs(RN );

in particular this implies the continuity.



5.3. Singularly perturbed equation 181

5.3 Singularly perturbed equation
We come back now to our equation

(−∆)su+ V (εx)u = f(u), x ∈ RN . (5.3.21)

It is known that the solutions of (5.3.21) can be characterized as critical points of the functional
Iε : Hs(RN ) → R

Iε(u) := 1
2∥(−∆)s/2u∥2

2 + 1
2

�
RN

V (εx)u2dx−
�
RN

F (u)dx, u ∈ Hs(RN )

where Iε ∈ C1(Hs(RN ),R), since ∥ · ∥Hs
ε (RN ) is a norm.

We start with a technical result. Let ν1 be as in Lemma 5.2.7; we want to show that the
claim of the lemma continues holding, for ε small, if we replace Lm0+ν1 with Iε, and Ŝ with
S(r′

0) ∩ {εΥ(u) ∈ Ω[ν1, ν0]}, r′
0 small.

Lemma 5.3.1. Let ν1 and δ0 be as in Lemma 5.2.7. Then there exist δ1 ∈ (0, δ0) and r′
0 =

r′
0(δ1) ∈ (0, r0) sufficiently small, such that for every ε small we have

Iε(u) ≥ Em0 + δ1

for each u ∈ {u ∈ S(r′
0) | εΥ(u) ∈ Ω[ν1,+∞)} ⊃ {u ∈ S(r′

0) | εΥ(u) ∈ Ω[ν1, ν0]}.

Proof. First we improve Lemma 5.2.7 for La in the direction of the nonautonomous equation.
Indeed, by the assumption, we have V (εΥ(u)) ≥ m0 + ν1, that is

LV (εΥ(u))(U) ≥ Lm0+ν1(U) ≥ Em0 + δ0

for any U ∈ Ŝ. Moreover, if u = Ũ(· − p) + φ̃ ∈ S(r0) then, by Lemma 5.2.8, εp ∈ Ω2εR0 ⊂ Ω2R0

which is compact. By uniform continuity of V and boundedness from above of Ŝ, we have

LV (εp)(U) ≥ Em0 + δ0/2 (5.3.22)

for all U ∈ Ŝ and ε small enough.
Let now r′

0 to be fixed and u = U(· − p) + φ ∈ S(r1). Then we have

Iε(u) = Iε(U(· − p) + φ) = Iε(U(· − p)) + I ′
ε(v)φ

for some v ∈ Hs(RN ) in the segment [U(·−p), u]. Notice that v lies in a ball of radius max Ŝ+r′
0

and I ′
ε sends bounded sets in bounded sets (uniformly on ε); thus there exists a constant C, not

depending on U , p and φ, such that

Iε(u) ≥ Iε(U(· − p)) − C∥φ∥Hs(RN ) ≥ Iε(U(· − p)) − δ1/2 (5.3.23)

for ∥φ∥Hs(RN ) < r′
0 sufficiently small. Recalled that εp ∈ Ω2R0 we have, by the uniform continuity

of V and the uniform estimate (5.2.15), for sufficiently small ε,

Iε(U(· − p)) ≥ LV (εp)(U) − δ1/2

and the claim comes from (5.3.23) and (5.3.22), since, for δ1 < δ0/4,

Iε(u) ≥ Em0 + δ0/2 − δ1 ≥ Em0 + δ1.

Before introducing the penalized functional, we state another technical lemma, which gives a
(trivial, but useful) lower bound for I ′

ε(v)v for small values of v ∈ Hs(RN ).
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Lemma 5.3.2. There exists r1 > 0 sufficiently small and a constant C > 0 such that

I ′
ε(v)v ≥ C∥v∥2

Hs(RN ) (5.3.24)

for every ε > 0 and v ∈ Hs(RN ) with ∥v∥Hs(RN ) ≤ r1.

Proof. We have, by (5.1.10) with β < 1
2V ,

I ′
ε(v)v ≥ ∥(−∆)s/2v∥2

2 +
�
RN

V v2dx− β∥v∥2
2 − Cβ∥v∥p+1

p+1

≥ ∥(−∆)s/2v∥2
2 + 1

2V ∥v∥2
2 − Cβ∥v∥p+1

p+1 (5.3.25)

≥ C∥v∥2
Hs(RN ) − Cβ∥v∥p+1

Hs(RN ) ≥ C ′∥v∥2
Hs(RN )

where the last inequality holds for ∥v∥Hs(RN ) small, since p+ 1 > 2.

Remark 5.3.3. For a later use, we observe that one can improve (5.3.25) by

∥(−∆)s/2v∥2
2 + 1

2V ∥v∥2
2 − 2pCβ∥v∥p+1

p+1 ≥ C∥v∥2
Hs(RN ) (5.3.26)

up to choosing a smaller r1.

5.3.1 A mass-concentrating penalization
We want to study now a penalized functional (see [78, 83, 119]), that is Iε plus a term which
forces solutions to stay in Ω.

Since V > m0 on ∂Ω, we can find an annulus around ∂Ω where this relation keeps holding,
that is

V (x) > m0, for x ∈ Ω2h0 \ Ω

for h0 sufficiently small. We then define the mass-concentrating penalization functional Qε :
Hs(RN ) → R

Qε(u) :=
( 1
εα

∥u∥2
L2(RN \(Ω2h0 /ε)) − 1

) p+1
2

+
, u ∈ Hs(RN )

where α ∈ (0,min{1/2, s}).
We observe that, for every u, v ∈ Hs(RN ),

Q′
ε(u)v = (p+ 1)

εα

( 1
εα

∥u∥2
L2(RN \(Ω2h0 /ε)) − 1

) p−1
2

+

�
RN \(Ω2h0 /ε)

uv dx

and it is straightforward to prove the following estimate

Q′
ε(u)u ≥ (p+ 1)Qε(u). (5.3.27)

We thus set
Jε := Iε +Qε

the penalized functional. It results that Qε and Jε are in C1(Hs(RN ),R).
We want to find critical points of Jε and show, afterwards, that these critical points, under

suitable assumptions, are critical points of Iε too, since Qε will be identically zero. Let ε = 1:
observed that Q1(u) vanishes if u have much mass inside Ω, we see that J1(u) = I1(u) holds
when the mass of u concentrates in Ω; this is why we say that Qε forces u to stay in Ω. Similarly,
as ε → 0, much less mass must be found outside Ω/ε.

We start by two technical lemmas. The first one gives a sufficient condition to pass from weak
to strong convergent sequences in a Hilbert space, similarly to the convergence of the norms.
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Lemma 5.3.4. Fix ε > 0 and let (uj)j ⊂ Hs(RN ) be such that

∥J ′
ε(uj)∥(Hs(RN ))∗ → 0 as j → +∞. (5.3.28)

Assume moreover that uj ⇀ u0 in Hs(RN ) as j → +∞, and that

lim
R,j→+∞

∥uj∥Lq(RN \BR) = 0 (5.3.29)

for q = 2 and q = p+ 1. Then uj → u0 in Hs(RN ) as j → +∞.

Proof. We have by the weak lower semicontinuity of the norm

lim inf
j→+∞

∥uj∥Hs
ε (RN ) ≥ ∥u0∥Hs

ε (RN ). (5.3.30)

Moreover

∥uj∥2
Hs

ε (RN ) =
�
RN

f(uj)ujdx+ I ′
ε(uj)uj

=
(�

RN

f(uj)ujdx−
�
RN

f(u0)u0dx

)
+
(
I ′

ε(uj)uj − I ′
ε(u0)u0

)
+

+ I ′
ε(u0)u0 +

�
RN

f(u0)u0dx =: (I) + (II) + ∥u0∥2
Hs

ε (RN );

if we prove that
lim sup
j→+∞

(
(I) + (II)

) ≤ 0

we are done, because together with (5.3.30) we obtain

∥uj∥Hs
ε (RN ) → ∥u0∥Hs

ε (RN ) as j → +∞,

which implies the claim, since Hs
ε (RN ) is a Hilbert space.

Focus on (I); we have�
RN

(f(uj)uj − f(u0)u0)dx =
�

BR

(f(uj)uj − f(u0)u0)dx+

+
�
RN \BR

(f(uj)uj − f(u0)u0)dx =: (I1) + (I2).

The piece (I2) can be made small for j and R sufficiently large, by exploiting the estimates on f ,
assumption (5.3.29) and the absolute continuity of the Lebesgue integral for u0. For such large
R and j, up to taking a larger j, we can make the piece (I1) small by Proposition 1.5.5.

Focus now on (II); we first observe that by exploiting Hölder inequalities and again classical
arguments we have I ′

ε(uj)u0 → I ′
ε(u0)u0. Thus we have, by (5.3.28),

lim sup
j→+∞

(
I ′

ε(uj)uj − I ′
ε(u0)u0

)
= − lim inf

j→+∞
(
Q′

ε(uj)uj −Q′
ε(uj)u0

)

= − lim inf
j→+∞

(( 1
εα

∥uj∥2
L2(RN \(Ω2h0 /ε)) − 1

) p−1
2

+
·

·
(�

RN \(Ω2h0 /ε)
u2

jdx−
�
RN \(Ω2h0 /ε)

uju0dx

))
≤ 0

where the last inequality is due to the following fact: observe first that uj ⇀ u0 in Hs
ε (RN ) ↪→

L2(RN ) thus (by restriction) uj ⇀ u0 in L2(Rn \ (Ω2h0/ε)); by definition of weak convergence
and by the lower semicontinuity of the norm, we have

lim inf
j→+∞

�
RN \(Ω2h0 /ε)

u2
jdx ≥

�
RN \(Ω2h0 /ε)

u2
0dx = lim

j→+∞

�
RN \(Ω2h0 /ε)

uju0dx,
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that is

lim inf
j→+∞

( �
RN \(Ω2h0 /ε)

u2
jdx−

�
RN \(Ω2h0 /ε)

uju0dx

)
≥ 0.

Noticed that an ≥ 0 and lim infn bn ≥ 0 imply lim infn(anbn) ≥ 0, we conclude.

The second Lemma is a lower bound for Jε with respect to the functional Lm0 . We highlight
that in what follows we understand that the case m0 = V , i.e. m0 global minimum, gives rise to
a not-perturbed result.

Lemma 5.3.5. Set Cmin := 1
2(m0 − V ) ≥ 0 we have, for ε small and u ∈ Hs(RN ),

Jε(u) ≥ Lm0(u) − Cminε
α.

Proof. We have, recalling that m0 is the infimum of V over Ω2h0 and V is the infimum over RN ,

Jε(u) = Lm0(u) + 1
2

�
RN

(V (εx) −m0)u2dx+Qε(u)

≥ Lm0(u) + 1
2

�
RN \(Ω2h0 /ε)

(V (εx) −m0)u2dx+Qε(u)

≥ Lm0(u) − Cmin∥u∥2
L2(RN \(Ω2h0 /ε)) +Qε(u).

If ∥u∥2
L2(RN \(Ω2h0 /ε)) ≤ 2εα we have the claim by the positivity of Qε(u). If instead

∥u∥2
L2(RN \(Ω2h0 /ε)) ≥ 2εα, then

Qε(u) ≥
( 1

2εα
∥u∥2

L2(RN \(Ω2h0 /ε))

) p+1
2 ≥ 1

2εα
∥u∥2

L2(RN \(Ω2h0 /ε)).

Thus
Jε(u) ≥ Lm0 +

( 1
2εα

− Cmin

)
∥u∥2

L2(RN \(Ω2h0 /ε)) ≥ Lm0

for ε small. This concludes the proof.

5.3.2 Critical points and truncated Palais-Smale condition
In order to get critical points of Jε we want to implement a deformation argument. As usual, we
need a uniform estimate from below of ∥J ′

ε(u)∥(Hs(RN ))∗ , and this is the next goal.
First, by the strict monotonicity of Ea, let us fix l′0 = l′0(ν1) > 0 such that

Em0 < l′0 < Em0+ν1 ;

as well as ν0 and l0, even l′0 will be let vary as (l′0)n → Em0 in the proof of the existence.

Lemma 5.3.6. Let r0 and r1 be as in Lemma 5.2.8 and Lemma 5.3.2. There exists r′
2 ∈

(0,min{r0, r1}) sufficiently small with the following property: let 0 < ρ1 < ρ0 ≤ r′
2 and (uε)ε ⊂

S(r′
2) be such that

∥J ′
ε(uε)∥(Hs(RN ))∗ → 0 as ε → 0, (5.3.31)

Jε(uε) ≤ l′0 < Em0+ν1 , for any ε > 0, (5.3.32)

with the additional assumption

(ρ̂(uε))ε ⊂ [0, ρ0], (εΥ(uε))ε ⊂ Ω[0, ν0].

Then, for ε small
ρ̂(uε) ∈ [0, ρ1], εΥ(uε) ∈ Ω[0, ν1].
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We notice, by (5.3.31) and (5.3.32), that (uε)ε resembles a particular (truncated) Palais-Smale
sequence. As an immediate consequence of the Lemma, set the sublevel

Jc
ε := {u ∈ Hs(RN ) | Jε(u) ≤ c}

we have the following theorem.

Theorem 5.3.7. There exists r′
2 ∈ (0,min{r0, r1}) sufficiently small with the following property:

if 0 < ρ1 < ρ0 ≤ r′
2, then there exists a δ2 = δ2(ρ0, ρ1) > 0 such that, for ε small

∥J ′
ε(u)∥(Hs(RN ))∗ ≥ δ2

for any

u ∈
{
u ∈ S(r′

2) ∩ J
l′0
ε | (ρ̂(u), εΥ(u)) ∈ ((0, ρ0] × Ω[0, ν0]

) \ ([0, ρ1] × Ω[0, ν1]
)}

⊃
{
u ∈ S(r′

2) ∩ J
l′0
ε | ρ1 < ρ̂(u) ≤ ρ0, εΥ(u) ∈ Ω(ν1, ν0]

}
.

Remark 5.3.8. Arguing as in the last part of the proof of Lemma 5.2.4, noticed that Ŝ is compact
not only in Hs(RN ) but also in Lq(RN ) for q ∈ [2, 2∗

s], if (Un)n ⊂ Ŝ and (θn)n ⊂ RN is included
in a compact, we have

lim
n→+∞

|||Un(· + θn)|||RN \Bn
= 0,

where the norm |||·|||RN \Bn
is defined in (5.1.9).

Proof of Lemma 5.3.6. We use the notation, for h > 0,

Ωε
h := (Ωεh)/ε = (Ω/ε)h

and notice that if h < h′ then Ω/ε ⊂ Ωε
h ⊂ Ωε

h′ . Let r′
2 < min{r0, r1} to be fixed.

Step 1. An estimate for uε.
We have, for uε = Uε(· − pε) + φε ∈ S(r′

2),

|||uε|||RN \(Ω/ε) ≤ |||Uε(· − pε)|||RN \(Ω/ε) + |||φε|||RN \(Ω/ε)

≤ |||Uε(· − pε + Υ(uε))|||RN \(Ω/ε−Υ(uε)) + C∥φε∥Hs(RN )

≤ |||Uε(· − pε + Υ(uε))|||RN \(Ω/ε−Υ(uε)) + Cr′
2.

By the fact that εΥ(uε) ∈ Ω[ν1, ν0] ⊂ Ω, we have that 0 ∈ Ω/ε− Υ(uε) and thus Ω/ε− Υ(uε)
expands in RN as ε → 0. Moreover by Lemma 5.2.8 we have θε := Υ(uε) − pε ∈ B2R0 compact.
By Remark 5.3.8, for ε small we have

|||uε|||RN \(Ω/ε) ≤ (1 + C)r′
2 = C ′r′

2. (5.3.33)

Let
nε :=

[√
1 + 4h0/ε+ 1

2

]
∈ N

which by definition satisfies εnε(nε + 1) ≤ h0 and nε → +∞ as ε → 0. We have
nε∑

i=1
∥uε∥2

L2(Ωε
nε(i+1)\Ωε

nεi)
≤ ∥uε∥2

L2(Ωε
nε(nε+1)\Ωε

nε
) ≤ (C ′r′

2)2

and similarly
nε∑

i=1
[uε]2Ωε

nε(i+1)\Ωε
nεi,RN ≤ (C ′r′

2)2,
nε∑

i=1
∥uε∥p+1

Lp+1(Ωε
nε(i+1)\Ωε

nεi)
≤ (C ′r′

2)p+1
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thus, for some C = C(r′
2),

nε∑

i=1

(
∥uε∥2

Ωε
nε(i+1)\Ωε

nεi
+ ∥uε∥p+1

Lp+1(Ωε
nε(i+1)\Ωε

nεi)

)
≤ C.

This implies that there exists iε ∈ {1, . . . , nε} such that

∥uε∥2
Aε + ∥uε∥p+1

Lp+1(Aε) ≤ C

nε
→ 0 as ε → 0, (5.3.34)

where
Aε := Ωε

nε(iε+1) \ Ωε
nεiε

and C depends on r′
2 (we will omit this dependence).

Step 2. Split the sequence.
Consider cutoff functions φε ∈ C∞

c (RN )

Ωε
nεiε

≺ φε ≺ Ωε
nε(iε+1)

such that ∥∇φε∥∞ ≤ C
nε

= o(1) as ε → 0 (which is possible because the distance between Ωε
nεiε

and Ωε
nε(iε+1) is nε → +∞).

Define
u(1)

ε := φεuε, u(2)
ε := (1 − φε)uε and uε = u(1)

ε + u(2)
ε ;

notice that both supp
(
u

(1)
ε u

(2)
ε
)

and supp(F (uε) − F (u(1)
ε ) − F (u(2)

ε )) are contained in Aε, that
is where we gained the estimate of the norm. Moreover, since

supp(u(1)
ε ) ⊂ Ωε

nε(iε+1) ⊂ Ωεnε(nε+1)/ε ⊂ Ω2h0/ε

we have, by definition of Qε, that Qε(u(1)
ε ) = 0, Qε(uε) = Qε(u(2)

ε ) and

Q′
ε(u(1)

ε ) = 0, Q′
ε(uε) = Q′

ε(u(2)
ε ). (5.3.35)

Step 3. Relations of the functionals.
We show that

|Iε(uε) − Iε(u(1)
ε ) − Iε(u(2)

ε )| → 0 as ε → 0

from which
Jε(uε) = Iε(u(1)

ε ) + Iε(u(2)
ε ) +Qε(u(2)

ε ) + o(1). (5.3.36)

Indeed

|Iε(uε) − Iε(u(1)
ε ) − Iε(u(2)

ε )| ≤
∣∣∣∣∣

�
RN

(−∆)s/2u(1)
ε (−∆)s/2u(2)

ε

∣∣∣∣∣+
�

Aε

|V (εx)u(1)
ε u(2)

ε |

+
�

Aε

|F (uε) − F (u(1)
ε ) − F (u(2)

ε )|

=: (I) + (II) + (III).

The second piece can be easily estimated by the boundedness of φε and V , and the information
on the L2-norm given by (5.3.34), i.e (II) ≤ C

nε
. Similarly, as regards (III), we estimate each

single piece separately, in the same way: use (5.1.10) and the information on the L2-norm and
the Lp+1-norm given by (5.3.34), obtaining (III) ≤ C

nε
.

Focus instead on (I). Recall that (uε)ε ⊂ S(r′
2), and thus ∥uε∥2 is bounded. We have

(I) ≤ C

�
R2N

|u(1)
ε (x) − u

(1)
ε (y)||u(2)

ε (x) − u
(2)
ε (y)|

|x− y|N+2s
dx dy
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≤ 2C
�

Ωε
nεiε

×∁(Ωε
nε(iε+1))

|u(1)
ε (x) − u

(1)
ε (y)||u(2)

ε (x) − u
(2)
ε (y)|

|x− y|N+2s
dx dy+

+ 2C
�

Aε×RN

|u(1)
ε (x) − u

(1)
ε (y)||u(2)

ε (x) − u
(2)
ε (y)|

|x− y|N+2s
dx dy

=: 2C
(
(I1) + (I2)

)

since on Ωε
nεiε

× Ωε
nεiε

and ∁(Ωε
nε(iε+1)) × ∁(Ωε

nε(iε+1)) the integrand is null. Focusing on (I1)

(I1) =
�

(Ωε
nεiε

×∁(Ωε
nε(iε+1)))∩{|x−y|>nε}

|uε(x)uε(y)|
|x− y|N+2s

dx dy

≤ 1
2

�
(Ωε

nεiε
×∁(Ωε

nε(iε+1)))∩{|x−y|>nε}

u2
ε(x) + u2

ε(y)
|x− y|N+2s

dx dy

= 1
2

�
Ωε

nεiε

u2
ε(x)

�
∁(Ωε

nε(iε+1))∩{|x−y|>nε}

1
|x− y|N+2s

dy dx+

+ 1
2

�
∁(Ωε

nε(iε+1))
u2

ε(y)
�

Ωε
nεiε

∩{|x−y|>nε}

1
|x− y|N+2s

dx dy

≤ C∥uε∥2
2

�
|x−y|>nε

1
|x− y|N+2s

dx dy ≤ C

nε
2s

→ 0 as ε → 0.

Focusing on (I2) we have

(I2)

≤
�

Aε×RN

1
|x− y|N+2s

(
|(φε(x) − φε(y))uε(x)| + |φε(y)(uε(x) − uε(y))|

)
·

·
(
|(φε(y) − φε(x))uε(x)| + |(1 − φε(y))(uε(x) − uε(y))|

)
dx dy

≤
�

Aε×RN

|φε(x) − φε(y)|2|uε(x)|2
|x− y|N+2s

dx dy +
�

Aε×RN

|uε(x) − uε(y)|2
|x− y|N+2s

dx dy +

+2
�

Aε×RN

|φε(x) − φε(y)||uε(x)||uε(x) − uε(y)|
|x− y|N+2s

dx dy

≤
�

Aε×RN

|φε(x) − φε(y)|2|uε(x)|2
|x− y|N+2s

+
�

Aε×RN

|uε(x) − uε(y)|2
|x− y|N+2s

+

+2
( �

Aε×RN

|φε(x) − φε(y)|2|uε(x)|2
|x− y|N+2s

) 1
2
(�

Aε×RN

|uε(x) − uε(y)|2
|x− y|N+2s

) 1
2

=: A2 +B2 + 2AB

and we see that both A and B go to zero: B = [uε]Aε,RN ≤ C

n
1/2
ε

by (5.3.34), while for A we
exploit that ∥∇φε∥∞ → 0. Indeed, let αε := 1

∥∇φε∥∞
; we have

A2 =
�

Aε

|uε(x)|2
�

|x−y|≤αε

|φε(x) − φε(y)|2
|x− y|N+2s

dy dx+

+
�

Aε

|uε(x)|2
�

|x−y|>αε

|φε(x) − φε(y)|2
|x− y|N+2s

dy dx

≤ C∥uε∥2
L2(Aε)

(
∥∇φε∥2

∞

�
|z|≤αε

1
|z|N+2s−2dz + 4∥φε∥2

∞

�
|z|>αε

1
|z|N+2s

dz

)
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≤ C

nε
α−2s

ε

(
∥∇φε∥2

∞α
2
ε + 1

)
= C

nε
∥∇φε∥2s

∞ ≤ C

n2s+1
ε

→ 0 as ε → 0.

Thus (I2) ≤ C
n2s+1

ε
+ C

ns+1
ε

+ C
nε

≤ C′
nε

→ 0, which reaches the claim.
Step 4. Relations of the derivatives.
We have

∥I ′
ε(uε) − I ′

ε(u(1)
ε ) − I ′

ε(u(2)
ε )∥(Hs(RN ))∗ → 0 as ε → 0, (5.3.37)

from which, joined to (5.3.35),

J ′
ε(uε) = I ′

ε(u(1)
ε ) + I ′

ε(u(2)
ε ) +Q′

ε(u(2)
ε ) + o(1). (5.3.38)

Indeed by Hölder inequality, for any v ∈ Hs(RN ),

|I ′
ε(uε)v − I ′

ε(u(1)
ε )v − I ′

ε(u(2)
ε )v| ≤

�
Aε

|f(uε) − f(u(1)
ε ) − f(u(2)

ε )||v|dx

and again we argue in the same way as in the third piece of Step 3, observing that, by (5.1.10),
|f(uε)||v| ≤ β|uε||v| + Cβ|uε|p|v| thus

�
Aε

|f(uε)||v|dx ≤ β∥uε∥L2(Aε)∥v∥2 + Cβ∥uε∥p
Lp+1(Aε)∥v∥p+1

≤ C
(
β∥uε∥L2(Aε) + Cβ∥uε∥p

Lp+1(Aε)

)
∥v∥Hs

and hence the claim. In particular, |(I ′
ε(uε) − I ′

ε(u(1)
ε ) − I ′

ε(u(2)
ε )
)
u

(2)
ε | ≤ C

nε
. We see also that

I ′
ε(u(1)

ε )u(2)
ε = o(1). (5.3.39)

Indeed

|I ′
ε(u(1)

ε )u(2)
ε | ≤

∣∣∣∣∣

�
RN

(−∆)s/2u(1)
ε (−∆)s/2u(2)

ε dx

∣∣∣∣∣+

+
�

Aε

|V (εx)u(1)
ε u(2)

ε dx| +
�

Aε

|f(u(1)
ε )u(2)

ε dx| =: (I) + (II) + (III)

where for (I) and (II) we argue as in Step 3 obtaining (I) + (II) ≤ C
n2s

ε
+ C

nε
, while for (III) we

argue as in (5.3.38) obtaining (III) ≤ C
nε

.

Step 5. Convergence of u(2)
ε .

Observing that the support of u(2)
ε is outside Ω/ε, we have with arguments similar to Step 3 that,

by (5.3.33),
∥u(2)

ε ∥Hs(RN ) ≤ r1. (5.3.40)

Indeed, focusing only on the nonlocal part, we have (recall that supp
(
u

(2)
ε
) ⊂ ∁(Ω/ε))

�
R2N

|u(2)
ε (x) − u

(2)
ε (y)|2

|x− y|N+2s
≤ 2

�
∁(Ω/ε)×RN

|u(2)
ε (x) − u

(2)
ε (y)|2

|x− y|N+2s
dx dy

≤ 4
�
∁(Ω/ε)×RN

|φε(x) − φε(y)|2|uε(x)|2
|x− y|N+2s

dx dy+

+ 4
�
∁(Ω/ε)×RN

|uε(x) − uε(y)|2
|x− y|N+2s

dx dy

and we use again the final argument in Step 3 and (5.3.33) to gain, for ε small,

∥u(2)
ε ∥2

Hs(RN ) ≤ (C + o(1))∥uε∥2
L2(∁(Ω/ε)) + C[uε]2∁(Ω/ε),RN ≤ (Cr′

2)2
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where C does not depend on r′
2. We choose thus r′

2 such that (5.3.40) holds.
This allows us to use Lemma 5.3.2. By joining (5.3.31), (5.3.38), (5.3.39), (5.3.24), (5.3.27)

we obtain

o(1) = J ′
ε(uε)u(2)

ε = I ′
ε(u(1)

ε )u(2)
ε + I ′

ε(u(2)
ε )u(2)

ε +Q′
ε(u(2)

ε )u(2)
ε + o(1)

≥ C∥u(2)
ε ∥2

Hs(RN ) + (p+ 1)Qε(u(2)
ε ) + o(1)

or more precisely (we highlight this for a later use), for some C = C(r′
2),

o(1) = J ′
ε(uε)u(2)

ε ≥ C∥u(2)
ε ∥2

Hs(RN ) + (p+ 1)Qε(u(2)
ε ) −

(
C

nε
+ C

n2s
ε

)
, (5.3.41)

which implies (since Qε is positive) that

∥u(2)
ε ∥Hs(RN ) → 0 as ε → 0 (5.3.42)

and
Qε(u(2)

ε ) → 0 as ε → 0. (5.3.43)
As a further consequence, (5.3.42) and the boundedness of V imply

Iε(u(2)
ε ) → 0 and I ′

ε(u(2)
ε ) → 0 as ε → 0. (5.3.44)

Step 6. Convergence of I ′
ε(u(1)

ε ).
In particular we obtain from (5.3.44), together with (5.3.36) and (5.3.43), that

Jε(uε) = Iε(u(1)
ε ) + o(1). (5.3.45)

We want now to show that

I ′
ε(u(1)

ε ) → 0 in (Hs(RN ))∗ as ε → 0. (5.3.46)

Start observing that (5.3.44) together with (5.3.37) give

I ′
ε(uε) = I ′

ε(u(1)
ε ) + o(1); (5.3.47)

let now v ∈ Hs(RN ) and evaluate I ′
ε(u(1)

ε )v. We want to exploit (5.3.47) together again with the
assumption (5.3.31). In order to do this we need to pass from u

(2)
ε to uε, but getting rid of Q′

ε(uε)
on which we have no information. Thus we introduce a cutoff function φ̃ ∈ C∞

c (RN ) such that

Ω 3
2 h0

≺ φ̃ ≺ Ω2h0

and hence

supp(u(1)
ε ) ⊂ Ωh0/ε ⊂ Ω 3

2 h0
/ε ⊂ {φ̃(ε·) ≡ 1} ⊂ supp(φ̃(ε·)) ⊂ Ω2h0/ε.

Thus we have

I ′
ε(u(1)

ε )v (∗)= I ′
ε(u(1)

ε )(φ̃(ε·)v) + (1 + ∥v∥2)o(1)

= I ′
ε(uε)(φ̃(ε·)v) −

(
I ′

ε(uε)(φ̃(ε·)v) − I ′
ε(u(1)

ε )(φ̃(ε·)v)
)

+ (1 + ∥v∥2)o(1)

= J ′
ε(uε)(φ̃(ε·)v) −

(
I ′

ε(uε) − I ′
ε(u(1)

ε )
)

(φ̃(ε·)v) + (1 + ∥v∥2)o(1).

Indeed, we justify (∗) as done in Step 3: notice that u(1)
ε ≡ 0 outside Ωh0/ε and 1 − φ̃(ε·) ≡ 0 in

Ω 3
2 h0

/ε, so in the annulus (Ω 3
2 h0

/ε) \ (Ωh0/ε) both u
(1)
ε and 1 − φ̃(ε·) are zero; notice also that

∁(Ω 3
2 h0

/ε) and Ωh0/ε get far one from the other as ε → 0. Thus we have

|I ′
ε(u(1)

ε )((1 − φ̃(ε·))v)| = 2
�

(Ωh0 /ε)×∁(Ω 3
2 h0

/ε)

|u(1)
ε (x)||(1 − φ̃(εy))v(y)|

|x− y|N+2s
dx dy
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≤ 2
�

(Ωh0 /ε)×∁(Ω 3
2 h0

/ε)

|uε(x)||v(y)|
|x− y|N+2s

dx dy ≤ (1 + ∥v∥2)o(1)

where in the last passage we argue as for (I1) in Step 3. Notice that o(1) does not depend on v.
Thus we obtain

|I ′
ε(u(1)

ε )v|
≤

(
∥J ′

ε(uε)∥(Hs(RN ))∗ + ∥I ′
ε(uε) − I ′

ε(u(1)
ε )∥(Hs(RN ))∗

)
∥φ̃(ε·)v∥Hs(RN )

+(1 + ∥v∥Hs(RN ))o(1)

≤
(
∥J ′

ε(uε)∥(Hs(RN ))∗ + ∥I ′
ε(uε) − I ′

ε(u(1)
ε )∥(Hs(RN ))∗

)
∥v∥Hs(RN )

(
C + o(1)

)
+

+(1 + ∥v∥Hs(RN ))o(1)

where in the last inequality we argue as in Step 5 (again o(1) does not depend on v). Concluding,
we have, by choosing ∥v∥Hs(RN ) = 1, that

∥I ′
ε(u(1)

ε )∥(Hs(RN ))∗

≤ C
(
∥J ′

ε(uε)∥(Hs(RN ))∗ + ∥I ′
ε(uε) − I ′

ε(u(1)
ε )∥(Hs(RN ))∗

) (
1 + o(1)

)
+ o(1) → 0

by using (5.3.31) and (5.3.47).
Step 7. Weak convergence of u(1)

ε .
Set qε := Υ(uε) to avoid cumbersome notation. Since (εqε)ε ⊂ Ω[0, ν0] ⊂ Ω bounded in RN , we
have that up to a subsequence

εqε → p0 ∈ Ω[0, ν0] ⊂ Kd ⊂ Ω.

Moreover, by estimating the norm of u(1)
ε with the norm of uε (as done before, in Step 5, for u(2)

ε ),
where uε belongs to S(r′

2) bounded in Hs(RN ), we have that also u(1)
ε is a bounded sequence,

and thus is so u(1)
ε (· + qε), which implies, up to a subsequence

u(1)
ε (· + qε) ⇀ Ũ in Hs(RN ) as ε → 0.

For each v ∈ Hs(RN ) we apply this weak convergence to the following equalities, derived from
(5.3.46),

o(1) = I ′
ε(u(1)

ε )v(· − qε) =
�
RN

(−∆)s/2u(1)
ε (y + qε)(−∆)s/2v(y)dy+

+
�
RN

V (εy + εqε)u(1)
ε (y + qε)v(y)dy −

�
RN

f(u(1)
ε (y + qε))v(y)dy

=: (I) + (II) + (III).

For (I) and (III) we obtain by the weak convergence and by Proposition 1.5.5

(I) →
�
RN

(−∆)s/2Ũ (−∆)s/2v dy and (III) → −
�
RN

f(Ũ)v dy as ε → 0.

For (II) instead we have

∣∣∣∣(II) −
�
RN

V (p0)Ũv
∣∣∣∣ ≤

( �
RN

(V (εy + εqε) − V (p0))2v2(y)
)1/2

∥u(1)
ε (· + qε)∥2+

+ V (p0)
∣∣∣∣∣

�
RN

u(1)
ε (y + qε)v(y) −

�
RN

Ũv

∣∣∣∣∣
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where the first term goes to zero (thanks to the boundedness of u(1)
ε ) by the dominated convergence

theorem, while the second thanks to the weak convergence. Thus we finally obtain

L′
V (p0)(Ũ)v =

�
RN

(−∆)s/2Ũ (−∆)s/2v dy +
�
RN

V (p0)Ũv dy −
�
RN

f(Ũ)v dy = 0

for each v ∈ Hs(RN ), that is
L′

V (p0)(Ũ) = 0. (5.3.48)

Step 8. Strong convergence of u(1)
ε .

We want to show the strong convergence of u(1)
ε (· + qε), that is

u(1)
ε (· + qε) → Ũ in Hs(RN ) as ε → 0. (5.3.49)

Set w̃ε := u
(1)
ε (· + qε) − Ũ ⇀ 0, again by (5.3.46) we have

o(1) = I ′
ε(u(1)

ε )w̃ε(· − qε)

= L′
V (p0)(Ũ)w̃ε +

(
∥(−∆)s/2w̃ε∥2

2 +
�
RN

V (εy + εqε)w̃2
εdy

)
+

+
�
RN

(V (εy + εqε) − V (p0))Ũ w̃εdy +
�
RN

(f(Ũ) − f(Ũ + w̃ε))w̃εdy

=:
(

∥(−∆)s/2w̃ε∥2
2 +

�
RN

V (εy + εqε)w̃2
εdy

)
+ (I)

≥ ∥(−∆)s/2w̃ε∥2
2 + V ∥w̃ε∥2

2 + (I)

where we have used (5.3.48). We obtain by the boundedness of V and (5.1.10)

(I) ≥ − 2∥V ∥∞

�
RN

|Ũ ||w̃ε|dy −
�
RN

(
2β|Ũ | + Cβ(2p + 1)|Ũ |p

)
|w̃ε|dy−

−
�
RN

(
β|w̃ε|2 + 2pCβ|w̃ε|p+1

)
dy = o(1) − β∥w̃ε∥2

2 − 2pCβ∥w̃ε∥p+1
p+1;

in the last passage we have used that w̃ε ⇀ 0 in Hs(RN ), thus by Remark 1.4.2 |w̃ε| ⇀ 0 in
Hs(RN ) and hence in L2(RN ) and in Lp+1(RN ) (observing that Ũp ∈ L

1+ 1
p (RN )). Merging

together all the things we have, by (5.3.26) and choosing β < 1
2V ,

o(1) ≥ ∥(−∆)s/2w̃ε∥2
2 + (V − β)∥w̃ε∥2

2 − 2pCβ∥w̃ε∥p+1
p+1 ≥ C∥w̃ε∥2

Hs(RN )

and thus w̃ε → 0 strongly in Hs(RN ), that is the claim.
Step 9. Localization.
Observe first that Ũ ̸≡ 0. Indeed, if not, by (5.3.42), (5.3.49) and translation invariance of the
norm we would have

r∗ ≤ lim inf
ε→0

∥Uε∥Hs(RN )

≤ lim inf
ε→0

∥Uε(· − pε) + φε∥Hs(RN ) + lim inf
ε→0

∥φε∥Hs(RN )

≤ lim
ε→0

(
∥u(1)

ε ∥Hs(RN ) + ∥u(2)
ε ∥Hs(RN )

)
+ r′

2 ≤ r′
2 < r∗,

impossible. By (5.3.49) we obtain also

Iε(u(1)
ε ) → LV (p0)(Ũ) as ε → 0.

Thus we find, by using also (5.3.45) and (5.3.32),

LV (p0)(Ũ) = Iε(u(1)
ε ) + o(1) = Jε(uε) + o(1) ≤ l′0 + o(1)
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and hence, letting ε → 0,
LV (p0)(Ũ) ≤ l′0 < Em0+ν1 . (5.3.50)

Moreover by (5.3.48) and Ũ ̸≡ 0, we have

EV (p0) ≤ LV (p0)(Ũ);

joining together the two previous inequalities we find EV (p0) < Em0+ν1 which implies, by the
monotonicity of Ea, that

V (p0) < m0 + ν1.

Joining this information to the fact that p0 ∈ Ω (and in particular V (p0) ≥ m0) we have
p0 ∈ Ω[0, ν1), that is

εΥ(uε) → p0 ∈ Ω[0, ν1) as ε → 0. (5.3.51)

Exploiting again (5.3.50) (observe that Em0+ν1 < Em0+ν0 < l0) together with L′
V (p0)(Ũ) = 0,

and Ũ ̸= 0, we have that Ũ belongs to SV (p0) up to translations, that is

U := Ũ(· − y0) ∈ SV (p0) ⊂ Ŝ

for some suitable y0 ∈ RN . So, set
pε := qε + y0

we have
∥u(1)

ε − U(· − pε)∥Hs(RN ) → 0 as ε → 0. (5.3.52)

For a later use observe also that

εpε → p0 ∈ Ω[0, ν1) as ε → 0. (5.3.53)

Step 10. Conclusions.
By (5.3.51) we have that

εΥ(uε) ∈ Ω[0, ν1)

definitely for ε small. This is the first part of the claim. Moreover, by (5.3.52) and (5.3.42) we
gain

∥uε − U(· − pε)∥Hs(RN ) → 0 as ε → 0 (5.3.54)

and thus, since ρ̂(uε) ≤ ∥uε − U(· − pε)∥Hs(RN ) by definition, also ρ̂(uε) → 0 and hence

ρ̂(uε) ∈ [0, ρ1]

definitely for ε small. This concludes the proof.

In the next proposition we see that solutions of J ′
ε(u) = 0 are, under suitable assumptions,

also solutions of I ′
ε(u) = 0.

Corollary 5.3.9. Let (uε)ε be a sequence of critical points of Jε, that is J ′
ε(uε) = 0, satisfying

uε ∈ S(r′
2), Jε(uε) ≤ l′0 and εΥ(uε) ∈ Ω[0, ν0]

for any ε > 0. Then, for ε sufficiently small, we have

Qε(uε) = 0, and Q′
ε(uε) = 0.

In particular I ′
ε(uε) = 0, which means that uε is a solution of (5.3.21).
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Proof. By the proof of Lemma 5.3.6, we notice, since 1 −φε
iε

≡ 1 outside Ωε
iε+1, and thus outside

Ωh0/ε, that
∥uε∥L2(RN \(Ωh0 /ε)) = ∥u(2)

ε ∥L2(RN \(Ωh0 /ε)) ≤ ∥u(2)
ε ∥Hs(RN ) (5.3.55)

and hence ∥uε∥L2(RN \(Ωh0 /ε)) → 0 by (5.3.42).
Through a careful analysis of the Steps 3–5 of the proof, that is by (5.3.41) and (5.3.55), we

see, more precisely, that
∥uε∥2

L2(RN \(Ωh0 /ε)) ≤ C

nε
+ C

n2s
ε

+ o(1)

where C = C(r′
2) and o(1) depends on the rate of convergence of J ′

ε(uε). Thus, since we assume
J ′

ε(uε) ≡ 0, we gain uniformity, i.e., called α∗ := min{1, 2s}, we obtain

∥uε∥2
L2(RN \(Ωh0 /ε)) ≤ C

nα∗
ε

∼ εα∗/2 (5.3.56)

As a consequence
1
εα

∥uε∥2
L2(RN \(Ωh0 /ε)) → 0 as ε → 0

for α ∈ (0, α∗/2), and hence Qε(uε) ≡ Q′
ε(uε) ≡ 0 for ε sufficiently small.

We want to show now a (truncated) Palais-Smale-like condition.

Proposition 5.3.10. There exists r′′
2 ∈ (0,min{r0, r1}) sufficiently small with the following

property: let ε > 0 fixed and let (uj)j ⊂ S(r′′
2) be such that

∥J ′
ε(uj)∥(Hs(RN ))∗ → 0 as j → +∞ (5.3.57)

with the additional assumption
(εΥ(uj))j ⊂ Ω[0, ν0].

Then (uj)j admits a strongly convergent subsequence in Hs(RN ).

Proof. Let r′′
2 to be fixed. Since S(r′′

2) is bounded, up to a subsequence we can assume uj ⇀ u0
in Hs(RN ). We want to show that

lim
R→+∞

lim
j→+∞

∥uj∥Lq(RN \BR) = 0

for q = 2 and q = p+ 1 and conclude by Lemma 5.3.4.
Arguing similarly to Step 1 of the proof of Lemma 5.3.6, i.e. exploiting Remark 5.3.8, we

obtain for L ≫ 0, uniformly in j ∈ N,

|||uj |||RN \BL
≤ Cr′′

2 ;

indeed we work with the set BL − Υ(uj) which expands to RN as L, j → +∞, since Υ(uj) ∈ Ω/ε,
a fixed bounded set. Moreover, for any n ∈ N, we have

n∑

i=1
∥uj∥2

L2(BL+ni\BL+n(i−1)) ≤ (Cr′′
2)2

and similarly for the Gagliardo seminorm and the (p+ 1)-norm, thus for some ij,n ∈ {1, . . . , n}

∥uj∥2
Aj,n + ∥uj∥p+1

Lp+1(Aj,n) ≤ C

n

where Aj,n := BL+nij,n \BL+n(ij,n−1). Again similarly to Step 2 of the proof of Lemma 5.3.6, we
introduce ψj,n such that

BL+n(ij,n−1) ≺ ψj,n ≺ BL+nij,n
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and ∥∇ψj,n∥∞ = o(1) as n → +∞; moreover we set

ũj,n := (1 − ψj,n)uj .

Observe that χBL
≤ ψj,n, thus supp(ũj,n) ⊂ ∁(BL). Arguing as in Step 5 and 3 of the proof of

Lemma 5.3.6 we obtain�
R2N

|ũj,n(x) − ũj,n(y)|2
|x− y|N+2s

≤ 4
�
∁(BL)×RN

|ψj,n(x) − ψj,n(y)|2|uj(x)|2
|x− y|N+2s

dx dy+

+4
�
∁(BL)×RN

|uj(x) − uj(y)|2
|x− y|N+2s

dx dy ≤ o(1)∥uj∥2
L2(∁(BL)) + C[uj ]2∁(BL),RN

thus ∥ũj,n∥Hs(RN ) ≤ Cr′′
2 and hence, choosing r′′

2 sufficiently small, we have

∥ũj,n∥Hs(RN ) ≤ r1;

by Lemma 5.3.2, for q ∈ {2, p+ 1}, we obtain

∥uj∥2
Lq(RN \BL+nij,n

) = ∥ũj,n∥2
Lq(RN \BL+nij,n

) ≤ C∥ũj,n∥2
Hs(RN ) ≤ CI ′

ε(ũj,n)ũj,n.

Thus the claim comes if we show that

I ′
ε(ũj,n)ũj,n → 0 as j, n → +∞.

Indeed we have

I ′
ε(ũj,n)ũj,n = I ′

ε(uj)ũj,n −
�
R2N

(−∆)s/2(ψj,nuj)(−∆)s/2((1 − ψj,n)uj)dx−

−
�

Aj,n

V (εx)ψj,n(1 − ψj,n)u2
jdx−

�
Aj,n

(f((1 − ψj,n)uj) − f(uj))(1 − ψj,n)ujdx

=: J ′
ε(uj)ũj,n −Q′

ε(uj)ũj,n + (I) ≤ o(1) + (I)

where we have used that J ′
ε(uj) → 0 (as j → +∞, uniformly in n ∈ N), the boundedness of

∥ũj,n∥Hs(RN ) and the positivity of Q′
ε(uj)ũj,n. The term (I) can be estimated in the same way as

done in Steps 3-4 of the proof of Lemma 5.3.6 (fixed j ∈ N, and n → +∞), and hence we reach
the claim.

5.3.3 Deformation lemma on a neighborhood of expected solutions
We want to define now a neighborhood of expected solutions (see [119]), which will be invariant
under a suitable deformation flow. Consider r3 := min{r′, r′

0, r
′
2, r

′′
2} (see Lemma 5.2.6, Lemma

5.3.1, Theorem 5.3.7 and Proposition 5.3.10), and let us define

R(δ, u) := δ − δ2
2 (ρ̂(u) − ρ1)+ ≤ δ

and
Xε,δ :=

{
u ∈ S(ρ0) | εΥ(u) ∈ Ω[0, ν0), Jε(u) < Em0 +R(δ, u)

}

where
0 < ρ1 < ρ0 < r3,

ε is sufficiently small and

δ ∈
(
0,min

{
δ2
4 (ρ0 − ρ1), δ1, l

′
0 − Em0

})
; (5.3.58)

here δ1 and δ2 are the ones that appear in Lemma 5.3.1 and Theorem 5.3.7. Notice that the
height of the sublevel in Xε,δ depends on u itself; this will be used to gain a deformation which
preserves Xε,δ.
We begin by pointing out some geometrical features of the neighborhood Xε,δ.



5.3. Singularly perturbed equation 195

• Xε,δ is open. Indeed, S(ρ) and {Jε(u) < Em0 +R(δ, u)} are open, and Ω[0, ν0) = Ω(−γ, ν0)
for a whatever γ > 0 (since V cannot go under m0 in Ω) and thus open. Moreover it is
nonempty (see e.g. Section 5.3.4).

• If v ∈ Xε,δ ⊂ S(ρ0), then by (5.2.17) we have ρ̂(v) < ρ0.

• If v ∈ Xε,δ ⊂ {εΥ(v) ∈ Ω[0, ν0]}, then

εΥ(v) ∈ Ω[0, ν1). (5.3.59)

Indeed, if not, i.e. εΥ(v) ∈ Ω[ν1, ν0], then by Lemma 5.3.1 we have

Jε(v) ≥ Iε(v) ≥ Em0 + δ1 > Em0 + δ ≥ Em0 +R(δ, v)

which is an absurd.

• If R(δ, v) ≥ −δ then
v ∈ S(ρ0). (5.3.60)

Indeed δ2
4 (ρ̂(u) − ρ1)+ ≤ δ implies, by the restriction on δ,

(ρ̂(u) − ρ1)+ < ρ0 − ρ1.

If ρ̂(u) < ρ1 then clearly u ∈ S(ρ1) ⊂ S(ρ0). If instead ρ̂(u) ≥ ρ1, then ρ̂(u) < ρ0, which
again implies u ∈ S(ρ0).

We further define the set of critical points of Jε lying in the neighborhood of expected solutions

Kc :=
{
u ∈ Xε,δ | J ′

ε(u) = 0, Jε(u) = c
}
,

the sublevel
X c

ε,δ := Xε,δ ∩ Jc
ε

and the strip level
(Xε,δ)c

d := {u ∈ Xε,δ | d ≤ Jε(u) ≤ c},
for every c, d ∈ R. We present now a deformation lemma with respect to Kc, for c sufficiently
close to Em0 .

Lemma 5.3.11. Let c ∈ (Em0 − δ, Em0 + δ). Then there exists a deformation at level c, which
leaves the set Xε,δ invariant. That is, for every U neighborhood of Kc (U = ∅ if Kc = ∅), there
exist a small ω > 0 and a continuous deformation η : [0, 1] × Xε,δ → Xε,δ such that

(i) η(0, ·) = id;

(ii) Jε(η(·, u)) is non-increasing;

(iii) η(t, u) = u for every t ∈ [0, 1], if Jε(u) /∈ (Em0 − δ, Em0 + δ);

(iv) η(1,X c+ω
ε,δ \ U) ⊂ X c−ω

ε,δ ;

(v) η(·, u) is a semigroup.

Proof. Let V : {u ∈ Hs(RN ) | J ′
ε(u) ̸= 0} → Hs(RN ) be a locally Lipschitz pseudo-gradient

vector field associated to Jε, and let ϕ ∈ Liploc(Hs(RN ),R) be a cutoff function such that
supp(ϕ) ⊂ (Xε,δ)Em0 +δ

Em0 −δ and ϕ = 1 in a small neighborhood of c. We consider the Cauchy problem



η̇ = −ϕ(η) V(η)

∥V(η)∥Hs(RN )
,

η(0, u) = u.

(5.3.61)
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The proof keeps on classically, obtaining a deformation η : [0, 1] × Xε,δ → Hs(RN ). We want to
prove now that η goes into Xε,δ.

Let u ∈ Xε,δ. We need to show that η(t, u) ∈ Xε,δ for every t > 0. Since Xε,δ is open, η(s, u)
continues staying in Xε,δ for s small. Thus assume that

η(s, u) ∈ Xε,δ, for every 0 ≤ s < t0

for some t0 > 0, and we want to show that η(t0, u) ∈ Xε,δ. Notice first that, by using (iii), (v),
(ii) and the continuity of η and Jε we can assume that

Jε(η(t0, u)) ∈ [Em0 − δ, Em0 + δ). (5.3.62)

Step 1: εΥ(η(t0, u)) ∈ Ω[0, ν0).
By (5.3.59) we have

εΥ(η(s, u)) ∈ Ω[0, ν1), for every 0 ≤ s < t0,

and thus by continuity εΥ(η(t0, u)) ∈ Ω[0, ν1) ⊂ Ω[0, ν0].
Step 2: Jε(η(t0, u)) < Em0 +R(δ, η(t0, u)).
If ρ̂(η(t0, u)) ≤ ρ1 then R(δ, η(t0, u)) = δ and we directly have the claim, recalled that
Jε(η(t0, u)) < Em0 + δ by (5.3.62). Assume instead ρ̂(η(t0, u)) > ρ1. By continuity, there
exists t1 ∈ (0, t0) such that we have

ρ̂(η(s, u)) > ρ1, for every s ∈ [t1, t0].

In particular 



η(s, u) ∈ S(ρ0) ⊂ S(r3) ⊂ S(r′
2),

Jε(η(s, u)) < Em0 + δ < Em0+ν1 ,

ρ̂(η(s, u)) ∈ (ρ1, ρ0],
εΥ(η(s, u)) ∈ Ω[0, ν0]

for s ∈ [t1, t0]. Then by Theorem 5.3.7 we have

∥J ′
ε(η(s, u))∥(Hs(RN ))∗ ≥ δ2, for every s ∈ [t1, t0].

We can thus compute with standard argument, by using (5.3.61), the properties of the pseudo-
gradient and (5.2.18),

Jε(η(t0, u)) ≤ Jε(η(t1, u)) − δ2
2
(
ρ̂(η(t0, u)) − ρ̂(η(t1, u))

)

< Em0 + δ − δ2
2
(
ρ̂(η(t1, u)) − ρ1

)− δ2
2
(
ρ̂(η(t0, u)) − ρ̂(η(t1, u))

)

= Em0 +R(δ, η(t0, u)),

that is the claim.
Step 3: η(t0, u) ∈ S(ρ0).
By the previous point we have Jε(η(t0, u)) ≤ Em0 + R(δ, η(t0, u)). Since (5.3.62) implies
Jε(η(t0, u)) ≥ Em0 − δ, then by (5.3.60) we have η(t0, u) ∈ S(ρ0), and thus the claim.

5.3.4 Maps homotopic to the embedding
We search now for two maps Φε, Ψε such that, for a sufficiently small σ0 ∈ (0, 1) and a sufficiently
small δ̂ = δ̂(σ0) ∈ (0, δ) (see (5.3.58)), defined

I := [1 − σ0, 1 + σ0],
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we have, for small ε,
I ×K

Φε→ X Em0 +δ̂
ε,δ

Ψε→ I ×Kd

with the additional condition

∂I ×K
Φε→ X Em0 −δ̂

ε,δ
Ψε→ (I \ {1}) ×Kd;

then we will prove that Ψε ◦ Φε is homotopic to the identity. While the first property is useful
for category arguments to gain multiplicity of solutions, the second additional condition will
be essential for developing relative category (and cup-length) arguments and controlling the
sublevels of the functional below the expected critical level.

Definition of Φε

Let us fix a ground state U0 ∈ Sm0 ⊂ Ŝ, i.e. Lm0(U0) = Em0 (see Theorem 5.2.1 and (5.2.13)).
Define, for p ∈ K and t ∈ I (σ0 to be fixed)

Φε(t, p) := U0
( ·−p/ε

t

)
∈ Hs(RN ).

We show now that, for ε small, Φε(t, p) ∈ X Em0 +δ̂
ε,δ .

• Φε(t, p) ∈ S(ρ1) ⊂ S(ρ0):
indeed, recalled that the dilation t ∈ R 7→ U0(·/t) ∈ Hs(RN ) is continuous, we have

∥U0
( ·−p/ε

t

)
− U0(· − p/ε)∥Hs(RN ) = ∥U0 (·/t) − U0∥Hs(RN ) < ρ1

for t ∈ I and sufficiently small σ0 = σ0(U0) (not depending on ε). Thus, setting φt :=
U0
( ·−p/ε

t

)
− U0(· − p/ε) we have

Φε(t, p) = U0(· − p/ε) + φt

with U0 ∈ Ŝ, p/ε ∈ RN and ∥φt∥Hs(RN ) < ρ1, which is the claim.

• εΥ(Φε(t, p)) ∈ Ω[0, ν0):
indeed, by the previous point and Lemma 5.2.8, we have

|Υ(Φε(t, p)) − p/ε| < 2R0

hence |εΥ(Φε(t, p)) − p| < 2εR0, and since p ∈ K

d(εΥ(Φε(t, p)),K) < 2εR0.

For sufficiently small ε, we have K2εR0 ⊂ Ω[0, ν0), and thus the claim. In particular, for a
later use observe that

εΥ(Φε(t, p)) = p+ o(1). (5.3.63)

• Jε(Φε(t, p)) < Em0 +R(δ,Φε(t, p)):
indeed Φε(t, p) ∈ S(ρ1), thus ρ̂(Φε(t, p)) < ρ1, which implies R(δ,Φε(t, p)) = δ and the
claim comes from the following point, since δ̂ < δ.

• Jε(Φε(t, p)) < Em0 + δ̂:
indeed we have by Lemma 5.2.3 (b)

Jε(Φε(t, p)) = Lm0 (Φε(t, p)) + 1
2

�
RN

(V (εx) −m0)Φ2
ε(t, p)dx+Qε (Φε(t, p))
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=: Lm0

(
U0
( ·−p/ε

t

))
+ (I) + (II) = g(t)Em0 + o(1) (5.3.64)

≤ Em0 + o(1)

where we used g(t) ≤ 1. Indeed, as regards (I) we have

(I) = 1
2

�
RN

(V (εx+ p) −m0)U2
0 (x/t)dx → 0 as ε → 0

by exploiting that p ∈ K and the dominated convergence theorem, together with the
boundedness of V . Focusing on (II) instead, we have

(II) =
( 1
εα

∥U0(·/t)∥2
L2(RN \((Ω2h0 −p)/ε) − 1

) p+1
2

+
;

since p ∈ K ⊂ Ω ⊂ Ω2h0 , we have 0 ∈ Ω2h0 − p and moreover Br ⊂ Ω2h0 − p for some ball
Br; notice that Br/ε covers the whole RN as ε → 0. Therefore, by the polynomial estimate
we have

∥U0(·/t)∥2
L2(RN \((Ω2h0 −p)/ε) ≤ C∥ 1

1+|x|N+2s ∥2
L2(RN \(Br/ε)) ≤ CεN+4s,

and hence (II) → 0 as ε → 0, since α < N + 4s. Therefore, by choosing a sufficiently small
ε, we obtain

Jε(Φε(t, p)) ≤ Em0 + 1
2 δ̂ < Em0 + δ̂.

Finally, we show the additional condition.

• Jε(Φε(1 ± σ0, p)) < Em0 − δ̂:
indeed, looking at (5.3.64) we see that, for small ε,

Jε(Φε(1 ± σ0, p)) < g(1 ± σ0)Em0 + δ̂;

since g(1 ± σ0) < 1, we can find a small δ̂ < 1−g(1±σ0)
2 Em0 (not depending on ε) such that

Jε(Φε(1 ± σ0, p)) < g(1 ± σ0)Em0 + δ̂ < Em0 − δ̂ (5.3.65)

and thus the claim.

Definition of Ψε

Define a truncation

T (t) :=





1 − σ0 if t ≤ 1 − σ0,

t if t ∈ (1 − σ0, 1 + σ0),
1 + σ0 if t ≥ 1 + σ0

for t ∈ R, and
Ψε(u) :=

(
T (Pm0(u)), εΥ(u)

)

for every u ∈ X Em0 +δ̂
ε,δ . By the definition of T and property (5.3.59), we have directly

Ψε(u) ∈ I × Ω[0, ν1] ⊂ I × Ω[0, ν0] ⊂ I ×Kd.

Assume now u ∈ X Em0 −δ̂
ε,δ . We have, by using Lemma 5.3.5 and Lemma 5.2.6,

Em0 − δ̂ ≥ Jε(u) ≥ Lm0(u) − Cminε
α ≥ g(Pm0(u))Em0 − Cminε

α

and hence
Em0 ≥ g(Pm0(u))Em0 + δ̂ − Cminε

α > g(Pm0(u))Em0
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where the last inequality holds for ε small, not depending on u. Thus

g(Pm0(u)) < 1

and this must imply, by the properties of g, that Pm0(u) ̸= 1, and in particular

T (Pm0(u)) ̸= 1.

This reaches the goal.

An homotopy to the identity

Introduce the notation of topological pair from the algebraic topology: we write, for B ⊂ A and
B′ ⊂ A′,

f : (A,B) → (A′, B′)

whenever
f ∈ C(A,A′) and f(B) ⊂ B′.

Observed that Φε and Ψε are continuous, we can rewrite the stated properties as

Φε :
(
I ×K, ∂I ×K

)
→
(
X Em0 +δ̂

ε,δ , X Em0 −δ̂
ε,δ

)
,

Ψε :
(
X Em0 +δ̂

ε,δ , X Em0 −δ̂
ε,δ

)
→
(
I ×Kd, (I \ {1}) ×Kd

)

and
Ψε ◦ Φε :

(
I ×K, ∂I ×K

)
→
(
I ×Kd, (I \ {1}) ×Kd

)
,

where a straightforward computation shows

(Ψε ◦ Φε)(t, p) =
(
t, εΥ

(
U0
( ·−p/ε

t

)))
,

thus actually Ψε ◦ Φε :
(
I × K, ∂I × K

)
→
(
I × Kd, ∂I × Kd

)
. Clearly, we notice that the

inclusion map has the same property, that is set j(t, p) := (t, p) we have

j :
(
I ×K, ∂I ×K

)
→
(
I ×Kd, ∂I ×Kd

)
⊂
(
I ×Kd, (I \ {1}) ×Kd

)
.

We want to show that these maps are homotopic, information useful in the theory of relative
cup-length.

Proposition 5.3.12. For sufficiently small ε, the maps Ψε ◦ Φε and j are homotopic, that is
there exists a continuous map H : [0, 1] × I ×K → I ×Kd such that

H(θ, ·, ·) :
(
I ×K, ∂I ×K

)
→
(
I ×Kd, ∂I ×Kd

)
⊂
(
I ×Kd, (I \ {1}) ×Kd

)

for each θ ∈ [0, 1], with H(0, ·, ·) = Ψε ◦ Φε and H(1, ·, ·) = j.

Proof. Noticed that also Ψε ◦Φε fixes the first variable, it is sufficient to link the second variables
through a segment, that is

H(θ, t, p) :=
(
t, (1 − θ)εΥ

(
U0
( ·−p/ε

t

))
+ θp

)
,

with θ ∈ [0, 1]. We must check that H is well defined, since Kd is not a convex set, generally.
Indeed we have, by (5.3.63)

(1 − θ)εΥ
(
U0
( ·−p/ε

t

))
+ θp = (1 − θ)p+ o(1) + θp = p+ o(1).
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Since p ∈ K, for sufficiently small ε we have that p+ o(1) ∈ Kd, and thus the claim.

Before coming up to multiplicity results, we highlight that existence of a single solution could
be obtained without any use of algebraic tools. Notice that we need only the map Φε and the
first component of Ψε.

Proof (existence). Let p ∈ K. First observe that we can slightly change the map Φε such that

Φε(1 ± σ0, p) ∈ X Em0 −δ
ε,δ ; (5.3.66)

indeed (see (5.3.64) and (5.3.65)), it is sufficient to take a smaller ε > 0 and δ̂ < δ <
1−g(1±σ0)

2 Em0 < Em0 , where we point out that σ0 depends only on U0 and ρ1 (and thus not on
δ).

Let c = Em0 ; by contradiction, assume Kc ̸= 0. Thus, by the Lemma 5.3.11, there exists a
deformation η related to the regular value c. By Lemma 5.3.5 we have, for each σ ∈ I,

Lm0(η(1,Φε(σ, p))) ≤ Jε(η(1,Φε(σ, p))) + Cminε
α ≤ Em0 − δ + Cminε

α

where in the last inequality we have used that Φε(σ, p) ∈ X Em0 +δ̂
ε,δ ⊂ X c+δ

ε,δ . Thus, for ε small, we
have

Lm0(η(1,Φε(σ, p))) < Em0 for each σ ∈ I.

To conclude, we need to find a σ̃ ∈ I such that

Pm0(η(1,Φε(σ̃, p))) = 1

since this implies Lm0(η(1,Φε(σ̃, p))) ≥ Cpo,m0 = Em0 and thus an absurd.
Indeed, by (5.3.66) we have

Pm0(η(1,Φε(1 ± σ0, p))) = Pm0(Φε(1 ± σ0, p)) = 1 ± σ0

and the claim follows by the intermediate value theorem.

5.4 Existence of multiple solutions
We finally come up to the existence of multiple solutions. Here the algebraic notions of relative
category and relative cup-length (built on the Alexander-Spanier cohomology with coefficients in
some field F) are of key importance. We refer to the Appendix A for definitions, comments and
properties of these algebraic tools.

Proof of Theorem 5.1.2. By construction of the neighborhood Xε,δ and Corollary 5.3.9 (recall
that ρ0 < r3 ≤ r′

2 and that Jε(u) < Em0 +R(δ̂, u) ≤ Em0 + δ̂ ≤ l′0 for u ∈ Xε,δ), we have
{
u ∈ (Xε,δ)Em0 +δ̂

Em0 −δ̂
| J ′

ε(u) = 0
}

⊂
{
u ∈ Hs(RN ) | I ′

ε(u) = 0
}
.

Thus we obtain

#{u solutions of (5.3.21)} ≥ #
{
u ∈ (Xε,δ)Em0 +δ̂

Em0 −δ̂
| J ′

ε(u) = 0
}

(i)
≥ cat

(
X Em0 +δ̂

ε,δ , X Em0 −δ̂
ε,δ

) (ii)
≥ cupl

(
X Em0 +δ̂

ε,δ , X Em0 −δ̂
ε,δ

)
+ 1

(iii)
≥ cupl(K) + 1

that is the claim, up to the proof of (i)–(iii). Indeed, (i) is obtained classically from the
Deformation Lemma 5.3.11 as in Section A.5. Inequality (ii) is given by the algebraic-topological
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Lemma A.10. Point (iii) is instead due to the existence of the homotopy gained in Proposition
5.3.12 and properties of the cup-length: indeed, by (A.3) in Lemma A.4 (a), we have

cupl
(
X Em0 +δ̂

ε,δ , X Em0 −δ̂
ε,δ

)
≥ cupl(Ψε ◦ Φε);

moreover, since Ψε ◦ Φε is homotopic to the immersion j thanks to Proposition 5.3.12, we have
by Lemma A.4 (b)

cupl(Ψε ◦ Φε) = cupl(j),
which leads to the conclusion thanks to Lemma A.5. See Remark 5.4.1 for the proof of regularity.

5.4.1 Concentration in the potential well
We prove now the polynomial decay and the concentration of the found solutions in K. To deal
with uniform bound, we will make use of the fractional De Giorgi class recalled in Section 1.2.5.
Proof of Theorem 5.1.4. For ε sufficiently small, let uε be one of the cupl(K) + 1 critical
points of Jε built in Theorem 5.1.4, which by Corollary 5.3.9 is also a solution of (5.3.21), positive
by (f2). In particular, since it satisfies the assumptions of Lemma 5.3.6, looking at the proof (see
(5.3.54) and (5.3.53)) we obtain that

∥uε − U(· − pε)∥Hs(RN ) → 0

with U ∈ SV (p0), pε ∈ RN and
εpε → p0 ∈ Ω[0, ν1).

Step 1. Notice that we have found these solutions by fixing ν0, l0 and l′0. Let them move,
throughout three sequences νn

0 ↘ 0, ln0 ↘ Em0 , and (l′0)n ↘ Em0 , and find the corresponding
(sufficiently small) εn > 0 such that cupl(K) + 1 solutions exist; let uεn be one of those and pεn

as before. It is not reductive to assume εn → 0 as n → +∞; by a diagonalization-like argument
we obtain

uεn(· + pεn) → U in Hs(RN ), for some U least energy solution of (5.1.7), (5.4.67)

εnpεn → p0 ∈ K,

as n → +∞.
Step 2. From now on we write ε ≡ εn to avoid cumbersome notation. By I ′

ε(uε) = 0 we obtain

(−∆)suε + V (εx)uε = f(uε), x ∈ RN , (5.4.68)

thus (recall that uε is positive), by choosing β < V in (5.1.10),

(−∆)suε ≤ −V uε + f(uε) ≤ (β − V )uε + Cβu
p
ε ≤ Cβu

p
ε, x ∈ RN .

Therefore by Theorem 1.2.28 we have, choosing q = p+ 1, d1 = 0 and d2 = Cβ,

uε ∈ DGs,2
+
(
BR0(x0), 0, H, 0, 1 − p+ 1

2∗
s

, 2s,R0
)
,

with H = H(N, s, p, β) and R0 depending on N, s, p, Cβ and a uniform upper bound of the
Hs-norms of uε.

We can thus use now [134, Proposition 6.1]: observing that d(x0, ∂BR0(x0)) = R0, and that
µ = 1 − p+1

2∗
s

, we obtain, for any ω ∈ (0, 1] and R ∈ (0, R0
2 ),

sup
BR(x0)

uε ≤ C

(N − 2s)
1

2µ

1
ω

1
2µ

1
(2R)N/2 ∥uε∥L2(B2R(x0)) + ωTail(uε;x0, R)
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that is, rewriting the constant C = C(N, s, p, β),

sup
BR(x0)

uε ≤ C
1
ω

1
2µ

1
RN/2 ∥uε∥L2(B2R(x0)) + ωTail(uε;x0, R).

Step 3. We have

∥uε∥L∞(RN ) = sup
x0∈RN

sup
BR(x0)

uε

≤ sup
x0∈RN

(
C

1
ω

1
2µ

1
RN/2 ∥uε∥L2(B2R(x0)) + ωTail(uε;x0, R)

)
.

Observe that, by definition of Tail function (1.2.28) and Hölder inequality,

Tail(uε;x0, R) ≤ (1 − s)R2s∥uε∥L2(RN \BR(x0))∥ 1
|x−x0|N+2s ∥L2(RN \BR(x0))

≤ C

RN/2 ∥uε∥L2(RN ).

Thus

∥uε∥L∞(RN ) ≤ C

RN/2 sup
x0∈RN

(
ω

− 1
2µ ∥uε∥L2(B2R(x0)) + ω∥uε∥L2(RN \BR(x0))

)

≤ C

RN/2

(
ω

− 1
2µ + ω

)
∥uε∥L2(RN )

which is uniformly bounded by the properties on uε. Hence uε are uniformly bounded in L∞(RN ).
In addition, by the estimates on V , f and uε, we have

gε(x) := −V (εx)uε(x) + f(uε(x)) ∈ L∞(RN )

with bound uniform in ε; since

(−∆)suε = gε(x), x ∈ RN ,

by [134, Theorem 8.2] there exists σ ∈ (0, 1), not depending on uε, and C = C(N, s), such that,
for each R > 1 and x0 ∈ RN ,

[uε]C0,σ(BR(x0)) ≤ C

Rσ

(
∥uε∥L∞(B4R(x0)) + Tail(uε;x0, 4R) +R2s∥gε∥L∞(B8R(x0))

)

≤ C ′. (5.4.69)

We highlight that, since the constant is uniform in R > 1, we obtain uε ∈ C0,σ(RN ).
Step 4. By the local uniform estimate on uε we could gain ∥uε∥L∞(RN \(Ωh0 /ε)2R0) → 0, but this
lack of uniformity on the domain can be improved. Thus we exploit the tightness of ũε to reach
the claim, where

ũε := uε(· + pε).

Indeed, by Step 2, and (5.4.67) we have




(−∆)sũε + V (εx+ εpε)ũε = f(ũε), x ∈ RN ,

∥ũε∥∞ ≤ C,

ũε → U in Hs(RN ) as ε → 0, U least energy solution of (5.1.7).

In particular, it is standard to show that f(ũε) → f(U) in L2(RN ), ∥f(ũε)∥∞ ≤ C and
U, f(U) ∈ L∞(RN ). By interpolation we thus obtain

χε := ũε + f(ũε) → χ := U + f(U) in Lq′(RN )
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for every q′ ∈ [2,+∞), and ∥χε∥∞ ≤ C. Proceeding as in the proof of Lemma 4.6.3 we gain

ũε(x) → 0 as |x| → +∞, uniformly in ε. (5.4.70)

For the reader’s convenience, we give some details. Indeed, being ũε solution of

(−∆)sũε + ũε = χε − V (εx+ εpε)ũε, x ∈ RN ,

we have the representation formula

ũε = K2s ∗ (χε − V (εx+ εpε)ũε)

where K2s is the Bessel kernel. Let us fix η > 0; since V , ũε and K2s are positive, we have, for
x ∈ RN ,

ũε(x) =
�
RN

K2s(x− y)
(
χε(y) − V (εx+ εpε)ũε(y)

)
dy

≤
�

|x−y|≥1/η
K2s(x− y)χε(y)dy +

�
|x−y|<1/η

K2s(x− y)χε(y)dy.

As regards the first piece
�

|x−y|≥1/η
K2s(x− y)χε(y)dy ≤ ∥χε∥∞

�
|x−y|≥1/η

C

|x− y|N+2s
dy ≤ Cη2s

while for the second piece, fixed a whatever q ∈ (1,min{2, N
N−2s}) and its conjugate exponent

q′ ∈ (max{2, N
2s},+∞), we have by Hölder inequality
�

|x−y|<1/η
K2s(x− y)χε(y)dy ≤ ∥K2s∥q∥χε∥Lq′ (B1/η(x))

≤ ∥K2s∥q

(
∥χε − χ∥q′ + ∥χ∥Lq′ (B1/η(x))

)

where the first norm can be made small for ε < ε0 = ε0(η), while the second for |x| ≫ 0
(uniformly in ε). On the other hand, for ε ≥ ε0 (and thus for a finite number of elements, since
we recall we are working with ε ≡ εn small) the quantity ∥χε∥Lq′ (B1/η(x)) can be made small for
|x| ≫ 0, uniformly in ε. Joining the pieces, we have (5.4.70).
Step 5. Let now yε ∈ RN be a maximum point for uε, which exists by the boundedness of uε

and its continuity (see (5.4.69)). Therefore zε := yε − pε is a maximum point for ũε. In particular

ũε(zε) = max
RN

ũε = ∥ũε∥∞ ̸→ 0 as ε → 0

since on the contrary we would have ũε → 0 almost everywhere, which is in contradiction with
the fact that ũε → U ̸≡ 0 almost everywhere (up to a subsequence). As a consequence, thanks to
(5.4.70), we have that zε is bounded (up to a subsequence). That is, again up to a subsequence,

zε → p

for some p ∈ RN . In particular

εyε = εzε + εpε → p0 ∈ K

and, by the fact that
U(· + zε) → U(· + p) =: U in Hs(RN )

we have uε(· + yε) → U in Hs(RN ), U least energy solution of (5.1.7). We set

uε := uε(· + yε),
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uε → U in Hs(RN ), U least energy solution of (5.1.7);

in addition, uε is positive by (f2), and in the same way we obtained (5.4.70) we obtain also

uε(x) → 0 as |x| → +∞, uniformly in ε. (5.4.71)

Moreover, by exploiting the uniform estimates in L∞(RN ) and C0,σ
loc (RN ) we obtain by Ascoli-

Arzellà theorem also that uε → U > 0 in L∞
loc(RN ), with U continuous; this easily implies, for

every r > 0, that
min
Br

uε ≥ 1
2 min

Br

U > 0 (5.4.72)

for ε small, depending on U and r.
Step 6. By (5.4.71) we have, for R′ large (uniform in ε), that

uε(x) ≤ η′, for |x| > R′

for every ε > 0, where η′ > 0 is preliminary fixed. As a consequence, by (f1.2), we gain

−1
2V uε(x) ≤ f(uε(x)) ≤ 1

2V uε(x), for |x| > R′,

where V := ∥V ∥∞. We obtain by (5.4.68)

(−∆)suε + 1
2V uε ≤ f(uε) − 1

2V uε ≤ 0, x ∈ RN \BR′ ,

(−∆)suε + 3
2V uε ≥ f(uε) + 1

2V uε ≥ 0, x ∈ RN \BR′ .

Notice that we always intend differential inequalities in the weak sense. In addition, by Lemma
1.2.30 we have that there exist two positive functions W ′, W ′ and three positive constants R′′,
C ′ and C ′′ depending only on V , such that





(−∆)sW ′ + 3
2V W

′ = 0, x ∈ RN \BR′′ ,

C ′

|x|N+2s
< W ′(x), for |x| > 2R′′,

and 



(−∆)sW
′ + 1

2V W
′ = 0, x ∈ RN \BR′′ ,

W
′(x) < C ′′

|x|N+2s
, for |x| > 2R′′,

Set R := max{R′, 2R′′}. Let C1 and C1 be some uniform lower and upper bounds for uε on BR,
C2 := minBR

W
′ and C2 := maxBR

W ′, all strictly positive. Define

W := C1C
−1
2 W ′, W := C1C

−1
2 W

′

so that
W ≤ uε ≤ W, for |x| ≤ R.

Through a Comparison Principle (see Lemma 1.2.34), and redefining C ′ and C ′′, we obtain

C ′

|x|N+2s
< W (x) ≤ uε(x) ≤ W (x) < C ′′

|x|N+2s
, for |x| > R.

By the uniform boundedness of uε and (5.4.72) we also obtain

C ′

1 + |x|N+2s
< uε(x) < C ′′

1 + |x|N+2s
, for x ∈ RN .
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Recalling the definition of uε, we have finally obtained a sequence of solutions such that




uεn(yεn) = max
RN

uεn ,

d(εnyεn ,K) → 0,
C ′

1 + |x− yεn |N+2s
≤ uεn(x) ≤ C ′′

1 + |x− yεn |N+2s
, for x ∈ RN ,

∥uεn(· + yεn) − U∥Hs(RN ) → 0, for some U least energy solution of (5.1.7),

where the limits are given by n → +∞. Furthermore, by the uniform estimates in L∞(RN ) and
the local uniform estimates in C0,σ

loc (RN ) of uεn , together with the locally-compact version of
Ascoli-Arzelà theorem, we have that the last convergence is indeed uniform on compacts. Thus,
recalled that vεn = uεn(·/εn) are solutions of the original problem (5.1.3), defined xεn := εnyεn

we obtain, as n → +∞,




vεn(xεn) = max
RN

vεn ,

d(xεn ,K) → 0,
C ′

1 + |x−xεn
εn

|N+2s
≤ vεn(x) ≤ C ′′

1 + |x−xεn
εn

|N+2s
, for x ∈ RN ,

∥vεn(εn · +xεn) − U∥X → 0, X = Hs(RN ) and X = L∞
loc(RN ),

for some U least energy solution of (5.1.7). This concludes the proof.

Remark 5.4.1. We observe that Steps 2 and 3 apply to a whatever family of equations (uε)ε>0,
that is why the regularity statement in Theorem 5.1.2 holds true. Moreover, the uniform concen-
tration in K and the uniform polynomial decay are obtained by a contradiction argument.

Proof of Lemma 5.2.4: polynomial decay of Ŝ

By adapting some argument of the proof of Theorem 5.1.4 we can now complete the proof of
Lemma 5.2.4.

Proposition 5.4.2 (Polynomial decay). Assume (f1)–(f3). Let a > 0 and let U be a weak
solution of

(−∆)sU + aU = f(U), x ∈ RN .

Then there exist positive constants C ′
a, C

′′
a such that

C ′
a

1 + |x|N+2s
≤ U(x) ≤ C ′′

a

1 + |x|N+2s
, for x ∈ RN .

These constants can be chosen uniform for U ∈ Ŝ.

Proof. The proof is similar to the one carried out in Theorem 5.1.4.
Indeed, as in Step 2 and Step 3, we obtain the uniform boundedness in L∞(RN ). We point

out that the values Cδ, H, C and R0 depend on a ∈ [m0,m0 +ν0], since they depend on δ and we
must have δ < a; on the other hand, it is sufficient to take δ < m0 to gain uniformity. The same
can be said on the uniform boundedness in C0,σ(RN ) and for the constants R′′, C ′, C ′′ related to
the comparison functions W ′,W

′, thanks to Lemma 1.2.30. As we will show, this allows us to
gain that

lim
|x|→+∞

U(x) = 0 uniformly for U ∈ Ŝ, (5.4.73)

which leads, as in Step 6 of the proof, to

|f(U(x))| ≤ 1
2aU(x), for |x| > R′
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where R′ does not depend on a ∈ [m0,m0 + ν0]. In addition, compactness of Ŝ and a simple
contradiction argument lead to minBR

U ≥ C > 0 uniformly for U ∈ Ŝ. If we prove (5.4.73), we
conclude as in Step 6.

Let us prove (5.4.73). By contradiction, there exist (xk)k ⊂ RN , |xk| → +∞, (Uk)k ⊂ Ŝ and
θ > 0 such that Uk(xk) > θ > 0. Define

Vk := Uk(· + xk).

Since both are bounded sequences in Hs(RN ), we have Uk ⇀ U and Vk ⇀ V in Hs(RN );
moreover, by the uniform L∞(RN ) and C0,σ

loc (RN ) estimates and Ascoli-Arzelà theorem, we have
also that the convergences are pointwise. In particular by

Uk(0) ≥ Uk(xk) > θ, Vk(0) = Uk(xk) > θ

we obtain
U(0) ≥ θ > 0, V (0) ≥ θ > 0.

As a consequence, U and V are not trivial. Let now (ak)k ⊂ R be such that Uk ∈ Sak
; up to a

subsequence we have ak → a ∈ [m0,m0 + ν0]. Observed that also Vk are solutions of L′
ak

(Vk) = 0,
we obtain, as in Step 3 of Lemma 5.2.4 (see also Step 7 of the proof of Lemma 5.3.6), that U
and V are (nontrivial) solutions of L′

a(U) = 0. Hence

Em0 ≤ Ea ≤ La(U), Em0 ≤ Ea ≤ La(V ).

By the Pohozaev identity (applied to Uk) we have the following chain of inequalities, once fixed
R > 0 and k ≫ 0 such that |xk| ≥ 2R,

l0 ≥ lim inf
k→+∞

Lak
(Uk) = s

N
lim inf
k→+∞

�
RN

|(−∆)s/2Uk|2dx

≥ s

N
lim inf
k→+∞

(�
BR

|(−∆)s/2Uk|2dx+
�

BR

|(−∆)s/2Vk|2dy
)

≥ s

N

(�
BR

|(−∆)s/2U |2dx+
�

BR

|(−∆)s/2V |2dy
)

where in the last passage we have used that Uk ⇀ U in Hs(RN ), thus (−∆)s/2Uk ⇀ (−∆)s/2U
in L2(RN ), hence (by restriction) in L2(BR), and the weak lower semicontinuity of the norm.
Thus, by choosing R sufficiently large, we have, again by the Pohozaev identity (applied to U
and V , we use (f3))

l0 ≥ s

N

(�
RN

|(−∆)s/2U |2dx+
�
RN

|(−∆)s/2V |2dy
)

− η

= La(U) + La(V ) − η ≥ 2Em0 − η

which leads to a contradiction if we choose η ∈ (0, 2Em0 − l0), possible thanks to (5.2.14).

Remark 5.4.3. Actually, (f3) can be dropped, and we highlight here some modifications to the
previous proofs.

• Define Sa := {U ∈ Hs
r (RN ) \ {0} | L′

a(U) = 0, La(U) ≤ l0, Pa(U) = 1}.
We comment the proof of the compactness (Lemma 5.2.4). The nonemptiness si given by the
existence of a ground state with La(U) = Ea ≤ l0, which is automatically radially symmetric.
The boundedness of Ŝ is given by the extra condition on the Pohozaev; compactness is now
enduced by the radial symmetry (and the fact that

�
RN g(un)un →

�
RN g(u)u, see Proposition

1.5.5), and the strong convergence implies that the Pohozaev identity is preserved.
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Finally, the proof of uniform asymptotic decay (Proposition 5.4.2) is modified in the
following way: after having shown that, for Uk ∈ Ŝ and |xk| → +∞, Vk = Uk(· + xk)
satisfies Vk ⇀ V ̸≡ 0 (in Hs(RN ), thus in Lp(RN ), p ∈ (2, 2∗

s)), while Uk ⇀ U in Hs
r (RN ),

by the compactness we have Uk → U in Lp(RN ), p ∈ (2, 2∗
s). Thus, for every φ ∈ Lp′(RN )

we have φ(· − xk) ⇀ 0 ∈ Lp′(RN ) and hence
�
RN

Vkφ =
�
RN

Ukφ(· − xk) → 0

i.e. Vk ⇀ 0 in Lp(RN ), thus V ≡ 0, impossible.

• Lemma 5.2.6, Lemma 5.2.3 (and whenever the Pohozaev identity is used for Ŝ), can be
proved thanks to the extra condition in Sa.

Her we kept the original definition of Sa (i.e. U ∈ Hs(RN ) such that maxU = U(0)), since this
approach can be adapted also to frameworks where radial symmetry is not a feature of the limiting
problem.

5.5 The critical case
Goal of this Section is to study equation (5.1.3), that is

ε2s(−∆)sv + V (x)v = f(v), x ∈ RN ,

where now f is assumed critical and satisfying general Berestycki-Lions type conditions. When
ε > 0 is small, we obtain again existence and multiplicity of semiclassical solutions, relating the
number of solutions to the cup-length of the set of local minima of V ; these solutions are proved
to concentrate in the potential well, exhibiting a polynomial decay. In particular, we improve
the result in [221]. Finally, we prove the previous results also in the limiting local setting s = 1
and N ≥ 3, with an exponential decay of the solutions.

Here, thus, we assume (V1)-(V2) where we recall

m0 = inf
Ω
V

with
K = {x ∈ Ω | V (x) = m0}, (5.5.74)

and (f1)-(f3), where now (f1.3) is substituted with a critical (not pure) growth, i.e.

(f1’) Berestycki-Lions type assumptions with respect to m0 > 0, that is

(f1.1) f ∈ C(R,R);
(f1.2) limt→0

f(t)
t = 0;

(f1.3’) limt→+∞
f(t)

t2∗
s−1 = a > 0, where 2∗

s = 2N
N−2s , and moreover for some C > 0 and

max{2∗
s − 2, 2} < p < 2∗

s, i.e. satisfying

p ∈





( 4s
N − 2s,

2N
N − 2s

)
N ∈ (2s, 4s),

(
2, 2N
N − 2s

)
N ≥ 4s,

(5.5.75)

it results that
f(t) ≥ at2

∗
s−1 + Ctp−1 for t ≥ 0;

(f1.4) F (t0) > 1
2m0t20 for some t0 > 0.
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See also Remark 5.5.2 for some weakening and comments on the assumptions (V1), (f1.3’) and
(f3). Notice that the stronger condition on p in the first line of (5.5.75) is verified, whenever N ≥ 2,
only if N = 2 and s ∈ (1

2 , 1], or N = 3 and s ∈ (3
4 , 1]. We point out that the condition C > 0 in

(f1.3’) is of key importance: indeed, for pure critical nonlinearities of the type f(t) = |t|2∗
s−2t,

the limiting problem (5.1.5), that is

(−∆)su+m0u = |u|2∗
s−2u, x ∈ RN

does not admit any variational solution [138].
The existence of a solution in a critical, fractional setting, in the case of local minima

(V1)-(V2) and general Berestycki-Lions assumptions (f1’)-(f2)-(f3), has been faced in [238] by
assuming V ∈ C1(RN ), and moreover in [220] by means of penalization methods.

Inspired by [326], multiplicity of solutions of (5.1.3) in the case of global minima of V was
studied in [341] for power-type nonlinearities. Moreover, in [263] the authors consider functions
of the type

f(t) = g(t) + |t|2∗
s−2t, (5.5.76)

where g is subcritical and satisfies a monotonicity condition which allows to implement the
Nehari manifold tool, and they relate the number of solutions to the Lusternik-Schnirelmann
category of the set of global minima.

Existence of multiple solutions for local minima of V has been investigated, in the spirit
of [148], by [221] with sources of the type (5.5.76), where now g satisfies also an Ambrosetti-
Rabinowitz condition: this assumption enables to employ Mountain Pass and Palais-Smale
arguments, combined with a penalization scheme. Again, the authors are able to find cat(K)
solutions, where K is the set of local minima of V and cat(K) denotes its Lusternik-Schnirelmann
category.

In the present Section we prove a multiplicity result for equation (5.1.3) under almost optimal
assumptions of f , showing the concentration of the solutions around local minima of V .

In particular, we prove the following result.

Theorem 5.5.1. Assume s ∈ (0, 1), N ≥ 2 and that (V1)-(V2), (f1’)-(f2)-(f3) hold. Let K be
defined by (5.5.74). Then, for small ε > 0 equation (5.1.3) has at least cupl(K) + 1 positive
solutions, which belong to C0,σ(RN ) ∩ L∞(RN ) for some σ ∈ (0, 1). Moreover, each of these
sequences vε concentrates in K as ε → 0: namely, there exist xε ∈ RN global maximum points of
vε, such that

lim
ε→0

d(xε,K) = 0

and
C ′

1 + |x−xε
ε |N+2s

≤ vε(x) ≤ C ′′

1 + |x−xε
ε |N+2s

for x ∈ RN

where C ′, C ′′ > 0 are uniform in ε > 0. Finally, for every sequence εn → 0+ there exist a ground
state solution U of (5.5.77) and a point x0 ∈ K such that, up to a subsequence,

xεn → x0 ∈ K

and
vεn(εn · +xεn) → U as n → +∞

in Hs(RN ) and locally on compact sets.

We highlight that Theorem 5.5.1 extends the existence results in [220,263] to a multiplicity
result, and it improves the multiplicity theorem in [221], since we do not assume monotonicity
nor Ambrosetti-Rabinowitz conditions on the nonlinearity. Moreover, no nondegeneracy and
global conditions on V are considered.
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Remark 5.5.2. As observed in Remark 5.1.3, assumption (V1) in Theorem 5.5.1 can be relaxed
without assuming the boundedness of V (see also [78,81]). Moreover, the condition

p > max{2∗
s − 2, 2}

in (f1.3’) can be relaxed in p > 2 by paying the cost of considering a sufficiently large C ≫ 0;
see for instance [220,340]. Finally, we remark that (f3), instead of the mere continuity of f , is
needed only to get a Pohozaev identity by means of the regularity of solutions (see Proposition
2.2.2). See also Remark 5.5.8 for further comments.

The idea of the present Section is the following: first, we gain compactness and uniform
L∞-bounds on the set of ground states of the critical limiting problem (5.1.5); to this aim we
employ a Moser’s iteration argument adapted to the fractional framework, without the use of the
s-harmonic extension, and appropriate for weak solutions (see Proposition 1.2.24). The criticality
of the problem, as well as the absence of a chain rule, make the argument more delicate. The
gained uniformity allows then the introduction of a suitable truncation on the nonlinearity f ;
the new truncated function reveals thus to be subcritical.

Therefore, we can apply to the truncated problem the approach of the previous Sections:
we employ a penalization argument on a neighborhood of expected solutions, perturbation of
the ground states of a limiting problem, and this neighborhood results to be invariant under
the action of a deformation flow. Compactness is restored also by the use of the new fractional
center of mass, which engages the new strong seminorm; the topological machinery between two
level sets of the associated indefinite energy functional is then built also through the use of the
Pohozaev functional. The number of solutions is thus related to the cup-length of K and these
solutions are proved to exhibit a polynomial decay and to converge to a ground state of the
limiting equation. This last convergence allows finally to prove that these solutions solve the
original critical problem (5.1.3).

We point out that the techniques employed in the previous Sections cannot be applied directly
to the critical framework: indeed, the embedding of Hs(RN ) in L2∗

s (RN ) is not compact, even if
we reduce to radially symmetric functions or to bounded domains; in particular, the criticality
obstructs the convergence of truncated Palais-Smale sequences related to the penalized functional,
which is a key point in the proof. Moreover, the regularity results given by [134], exploited in
the concentration and in the decay of the solutions, do not apply; in particular, L∞-bounds
and compactness of the set of ground states of the limiting problem have to be specifically
investigated.

We highlight that the conclusions of Theorem 5.5.1 hold also for s = 1 and N ≥ 3, as we
state in Theorem 5.5.9. Regarding this local framework, Theorem 5.5.9 is the critical counterpart
of the result in [119]: again, we point out that the arguments exploited in the subcritical setting
of [119] cannot be directly implemented in our framework, because of the lack of compactness.
In the critical case, previous results were given by [11,21,393]: in particular we extend here the
existence result in [390] to a multiplicity result, and we improve the multiplicity theorem in [369]
in the sense that we do not need to work with global minima of V nor we need monotonicity on
f . In this setting, the solutions decay exponentially and enjoy more regularity. Notice that in
such a case (f3) is no more needed.

This last part of the Chapter is organized as follows. In Section 5.5.1 we obtain compactness
of the set of ground states and a crucial L∞-bound on the critical limiting problem. In Section
5.5.2 we use this uniform estimate to introduce a truncation which brings the problem back to
the subcritical case, and we prove Theorem 5.5.1. Finally, in Section 5.5.3 we deal with the local
case.
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5.5.1 Uniform L∞-bound

Let us recall some crucial results on the limiting critical problem (5.1.5), that is

(−∆)sU +m0U = f(U), x ∈ RN . (5.5.77)

We recall the energy L : Hs(RN ) → R

L(U) := 1
2

�
RN

|(−∆)s/2U |2 dx+ m0
2

�
RN

U2 dx−
�
RN

F (U) dx, U ∈ Hs(RN ),

the related least energy

Em := inf
{L(U) | U ∈ Hs(RN ) \ {0}, L′(U) = 0

}
,

and the Mountain Pass level
Cmp := inf

γ∈Γ
sup

t∈[0,1]
L(γ(t))

with
Γ :=

{
γ ∈ C

(
[0, 1], Hs(RN )

) | γ(0) = 0, L(γ(1)) < 0
}
.

We introduce also the following minimization problem

Cmin := inf
{T (U) | U ∈ Hs(RN ), V(U) = 1

}
(5.5.78)

where
T (U) :=

�
RN

|(−∆)s/2U |2 dx, V(U) :=
�
RN

(
F (U) − m0

2 U2
)
dx.

Notice that L = 1
2T − V . The following collection of results states the equivalence of the previous

problems and the existence of a solution.

Proposition 5.5.3. Assume (f1’)-(f2)-(f3). Then there exists a ground state solution for the
problem (5.5.77), that is a function U which solves the equation and such that

L(U) = Em.

Moreover, every ground state is also a Mountain Pass solution and (up to scaling) also a solution
for the minimization problem (5.5.78), and viceversa; in addition the following relations hold

Em = Cmp,

Em = s

N
(2∗

s)− N
2∗

ss (Cmin)
N
2s , (5.5.79)

and every ground state is positive. Finally, recalled that S is the best Sobolev constant for the
embedding (1.2.7), we have that the following upper bound holds

Cmin <

(2∗
s

a

) 2
2∗

s S (5.5.80)

where a > 0 appears in assumption (f1.3’).

Proof. The positivity is a straightforward consequence of assumption (f2). Existence of a ground
state solution can be achieved through the use of (5.5.80) and minimization of Cmin as classically
made by [50] (see also [80, Lemma 1]). The equivalence with the Mountain Pass formulation is
instead discussed as in [237]. We refer to [238, Proposition 2.4 and Remark 1.3] for the precise
statement and to [391, Section 4.1 and Remark 1.2], [255, Section 2] for details.



5.5. The critical case 211

Moreover, as observed in Remark 5.5.2, to get the existence of a ground state, the restriction
on the range of p in assumption (f1.3’) can be substituted, by arguing as in [341, Lemma 3.3],
with the request that C is sufficiently large (see also [220, Proposition 2.8] and references therein).

We refer also to [22, Theorem 3.1.3, Theorem 3.1.5].

Thanks to Proposition 5.5.3 we can define

Ŝ :=
{
U ∈ Hs(RN ) \ {0} | U ground state solution of (5.5.77), U(0) = maxRN U

}
.

We observe that, by the fractional version of the Pólya-Szegő inequality [311], every minimizer
of Cmin (i.e. every ground states of (5.5.77)) is actually radially symmetric decreasing up to a
translation (see also Remark 2.2.4 and [79, Proposition B.3]). Thus, the request in Ŝ for U to
have a maximum in zero is equivalent to the radial symmetry of U ; that is

Ŝ =
{
U ∈ Hs(RN ) \ {0} | U radially symmetric ground state solution of (5.5.77)

}
. (5.5.81)

Proposition 5.5.4. Every U ∈ Ŝ satisfies the Pohozaev identity, i.e.
�
RN

|(−∆)s/2U |2 dx− 2∗
s

�
RN

(
F (U) − m0

2 U2
)
dx = 0. (5.5.82)

Moreover, the set Ŝ is compact.

Proof. Once one observes that U ∈ L∞(RN ), which follows from Proposition 1.2.24, the proof
of (5.5.82) is gained by means of regularity results and explicit computations on the s-harmonic
extension problem; the arguments can be easily adapted from [79, Proposition 1.1] to the critical
case.

Let us show the boundedness of Ŝ. For any U ∈ Ŝ, the embedding (1.2.7) and the Pohozaev
identity (5.5.82) lead to

∥U∥2∗
s

≤ S− 1
2 ∥(−∆)s/2U∥2 = S− 1

2
N

s
L(U) = S− 1

2
N

s
Em;

moreover equation (5.5.77) and assumption (f1’) imply

∥(−∆)s/2U∥2
2 +m0∥U∥2

2 =
�
RN

f(U)U dx ≤ δ∥U∥2
2 + Cδ∥U∥2∗

s
2∗

s

for δ < m0 and some Cδ > 0. The combination of the two bounds leads to the claim.
Let thus focus on compactness; we use some ideas from [392]. Let Un be a sequence in Ŝ;

by (5.5.81) we assume (Un)n ⊂ Hs
r (RN ), where Hs

r (RN ) ↪→↪→ Lq(RN ) for q ∈ (2, 2∗
s). By the

boundedness of Ŝ we can assume Un ⇀ U in Hs
r (RN ). Set

σ :=
( 1

2∗
s

Cmin

) 1
2s

and
Vn := Un(σ·), V := U(σ·)

we have, by exploiting the Pohozaev identity, that Vn are solutions of the minimization problem
(5.5.78), that is

T (Vn) = Cmin, V(Vn) = 1.

Thus we have Vn ⇀ V in Hs
r (RN ), and hence Vn → V in Lq(RN ), q ∈ (2, 2∗

s), and Vn → V
almost everywhere. By the lower semicontinuity of the norm we obtain

T (V ) ≤ Cmin; (5.5.83)
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hence, to conclude the proof, it is sufficient to show that V(V ) = 1, since this implies also that
U = V (σ−1·) lies in Ŝ.

Set
Wn := Vn − V

we have by the Brezis-Lieb Lemma (since (−∆)s/2Vn ⇀ (−∆)s/2V in the Hilbert space L2(RN ))

T (Wn) = T (Vn) − T (V ) + o(1)
= Cmin − T (V ) + o(1) (5.5.84)
≤ Cmin + o(1). (5.5.85)

Moreover, rewrite V(Wn) as

V(Wn) =
�
RN

(
F (Wn) − a

2∗
s

W 2
n

)
dx+ a

2∗
s

∥Wn∥2∗
s

2∗
s

− m0
2 ∥Wn∥2

2. (5.5.86)

Again by the Brezis-Lieb Lemma (since Vn ⇀ V in Lq(RN ), q = 2, 2∗
s and Vn → V almost

everywhere) we have
∥Wn∥q

q = ∥Vn∥q
q − ∥V ∥q

q + o(1), q = 2, 2∗
s. (5.5.87)

Set
g(t) := f(t) − at2

∗
s−1

we have that g is subcritical at infinity by (f1.3’), and superlinear in zero by (f1.2); thus, set
G(t) :=

� t
0 g(τ)dτ , by Proposition 1.5.5 we have

�
RN

G(Wn) dx = o(1),
�
RN

G(Vn) dx =
�
RN

G(V ) dx+ o(1). (5.5.88)

Therefore by (5.5.86)–(5.5.88) we obtain

V(Wn) = V(Vn) − V(V ) + o(1)
= 1 − V(V ) + o(1). (5.5.89)

Finally, through a simple scaling argument, we observe that

T (u) ≥ Cmin(V(u))
2

2∗
s for every V(u) ≥ 0. (5.5.90)

We pass to prove that V(V ) = 1 by contradiction.
Case V(V ) > 1. In this case, by (5.5.90) we have

T (V ) ≥ Cmin(V(V ))
2

2∗
s > Cmin

which contradicts (5.5.83).
Case V(V ) < 0. Then, by (5.5.89) we have that

V(Wn) ≥ 1 − 1
2V(V ) > 1 for n ≫ 0.

Thus, by (5.5.90) we obtain

T (Wn) ≥ Cmin(V(Wn))
2

2∗
s ≥ Cmin

(
1 − 1

2V(V )
) 2

2∗
s

which contradicts (5.5.85).
Case V(V ) ∈ (0, 1). Again by (5.5.89) we have that

V(Wn) ≥ 1
2 (1 − V(V )) > 0 for n ≫ 0.
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Thus by (5.5.84), (5.5.90) and (5.5.89) we gain

Cmin = lim
n

(T (Wn) + T (V )
) ≥ Cmin lim

n

(
(V(Wn))

2
2∗

s + (V(V ))
2

2∗
s

)

= Cmin

(
(1 − V(V ))

2
2∗

s + (V(V ))
2

2∗
s

)

> Cmin
(
(1 − V(V )) + V(V )

)
= Cmin

which is an absurd.
Case V(V ) = 0. By (5.5.89) we have

V(Wn) = 1 + o(1), (5.5.91)

and thus by (5.5.90) T (Wn) ≥ Cmin(1 + o(1))
2

2∗
s . This, combined with (5.5.85), gives

T (Wn) = Cmin + o(1). (5.5.92)

Combining (5.5.91), (5.5.86) and (5.5.88) we obtain

1 + o(1) = V(Wn) = a

2∗
s

∥Wn∥2∗
s

2∗
s

− m0
2 ∥Wn∥2

2

that is

∥Wn∥2∗
s

2∗
s

= 2∗
s

a
+ 2∗

sm0
2a ∥Wn∥2

2 + o(1)

≥ 2∗
s

a
+ o(1). (5.5.93)

By (5.5.92), the Sobolev embedding (1.2.7) and (5.5.93) we gain

Cmin + o(1) = T (Wn) = ∥(−∆)s/2Wn∥2
2 ≥ S∥Wn∥2

2∗
s

≥ S
(2∗

s

a
+ o(1)

) 2
2∗

s
.

Letting n → +∞ we finally have

Cmin ≥
(2∗

s

a

) 2
2∗

s S

which is in contradiction with (5.5.80). This concludes the proof.

As a key property to employ the truncation argument, and to detect a handy neighborhood
of approximating solutions, we have the following result.

Proposition 5.5.5. The following bound holds

sup
U∈Ŝ

∥U∥∞ < ∞.

Proof. Assume by contradiction that there exists (Un)n ⊂ Ŝ such that ∥Un∥∞ → +∞ as
n → +∞. By the compactness of Ŝ in Proposition 5.5.4 we may assume that Un is positive and
convergent in Hs(RN ); in particular Un converges in L2∗

s (RN ) and is equibounded a. e. pointwise
by a function in L2∗

s (RN ). If we prove that

sup
n

∥Un∥∞ < +∞

we get a contradiction and conclude the proof. In order to do this, we argue as in the proof of
Proposition 1.2.24, uniformly in n for Un = U+

n ; the idea is a Moser’s iteration argument in a
critical, fractional framework, appropriate for weak solutions. We refer to [197] for details.
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5.5.2 The truncated problem
In virtue of Proposition 5.5.5, let

M := sup
U∈Ŝ

∥U∥∞ + 1.

We preliminary observe that we can find a t0 ∈ [0,M ] such that

F (t0) > 1
2m0t

2
0. (5.5.94)

Indeed fixed a whatever U ∈ Ŝ, by the Pohozaev identity (5.5.82) we have (notice that (−∆)s/2U
cannot identically vanish)

�
RN

(
F (U) − m0

2 U2
)
dx = 1

2∗
s

∥(−∆)s/2U∥2
2 > 0

and thus there exists an x0 ∈ RN such that

F (U(x0)) > m0
2 U(x0)2;

setting t0 := U(x0) ∈ [0,M ] we have the claim.
We thus set

k := sup
t∈[0,M ]

f(t) ∈ (0,+∞),

where we observe that the strict positivity is due to the fact that F (t0) > 0. Moreover we define
the truncated nonlinearity fk : R → R

fk(t) := min{f(t), k}, t ∈ R.

We have the following properties on fk : R → R:

• fk(t) ≤ f(t) for each t ∈ R,

• fk(t) = f(t) whenever |t| ≤ M ,

• fk(U) = f(U) for every U ∈ Ŝ.

Notice that the same relations hold also for F and

Fk(t) :=
� t

0
fk(τ)dτ.

We have that fk is subcritical, i.e. fk satisfies assumptions (f1)–(f3); here p ∈ (1, 2∗
s − 1) is

however fixed and t0 ∈ [0,M ] is the one appearing in (5.5.94); notice that t0 does not depend on
k.

Consider now the truncated problem

ε2s(−∆)sv + V (x)v = fk(v), x ∈ RN (5.5.95)

and the corresponding limiting truncated problem

(−∆)sU +m0U = fk(U), x ∈ RN . (5.5.96)

Notice again that, since fk satisfies (f2), all the ground states of (5.5.96) are positive. Thus
define

Ŝk :=
{
U ∈ Hs(RN ) \ {0} | U ground state solution of (5.5.96), U(0) = maxRN U

}
.

We have that the following key relation holds.
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Proposition 5.5.6. It results that Ŝ = Ŝk. Moreover, the least energy levels coincide.

Proof. Let us denote by Lk, Γk, Vk, Ek
m = Ck

mp, Ck
min the quantities of the truncation problem

analogous to the ones introduced in Section 5.5.1 for the critical problem.
First observe that, by Lk ≥ L, we have Γk ⊂ Γ and

Ck
mp ≥ Cmp; (5.5.97)

moreover for any V ∈ Ŝ we have also L′
k(V ) = 0, and hence

min
V ∈Ŝ

Lk(V ) ≥ min
L′

k
(V )=0

Lk(V ) = Ek
m. (5.5.98)

Let now U ∈ Ŝ. We have by (5.5.97) and (5.5.98)

Ck
mp ≥ Cmp = L(U) = Em = min

V ∈Ŝ

L(V ) = min
V ∈Ŝ

Lk(V ) ≥ Ek
m.

Therefore
Lk(U) = L(U) = Ck

mp = Ek
m

which, together with L′
k(U) = L′(U) = 0, gives that U ∈ Ŝk. Hence Ŝ ⊂ Ŝk. As a further

consequence we gain
Ek

m = Em. (5.5.99)

We show now that Ŝk ⊂ Ŝ. By (5.5.99), (5.5.79) and the analogous relation on the subcritical
problem, we have

Ck
min = Cmin,

thus, by rescaling, it is sufficient to prove that every minimizer of Ck
min is also a minimizer of Cmin.

Let thus U be a minimizer for Ck
min, i.e. T (U) = Ck

min and Vk(U) = 1. Since T (U) = Cmin, it
suffices to prove that V(U) = 1. By definition, we have

V(U) ≥ Vk(U) = 1.

On the other hand, set θ := (V(U)) 1
N we obtain, by scaling, that V(U(θ·)) = 1 and thus

T (U) = Cmin ≤ T (U(θ·)) = θ− N+2s
N T (U)

from which we achieve
V(U) ≤ 1.

This concludes the proof.

We are now ready to prove Theorem 5.5.1.

Proof of Theorem 5.5.1.
Step 1. We first look at the truncated problem (5.5.95). Indeed, by Theorems 5.1.2 and 5.1.4
we obtain the existence of cupl(K) + 1 sequences of solutions of (5.5.95) satisfying the properties
of Theorem 5.5.1 for ε > 0 small. For each of these sequences vε of solutions of (5.5.95), called
xε ∈ RN a global maximum point of vε, we obtain

lim
ε→0

d(xε,K) = 0

and
C ′

1 + |x−xε
ε |N+2s

≤ vε(x) ≤ C ′′

1 + |x−xε
ε |N+2s

for x ∈ RN

where C ′, C ′′ > 0 are uniform in ε > 0.
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Moreover, for every sequence εn → 0+ there exist U ∈ Ŝk and an x0 ∈ RN such that, up to
subsequences,

vεn(εn · +xεn) → U(· + x0), as n → +∞ (5.5.100)

in Hs(RN ) and locally on compact sets.
Step 2. Notice that by Proposition 5.5.6 we have U ∈ Ŝ, thus U(· + x0) is a ground state of
(5.5.77). We prove now that vε are solutions of the original equation, which is given by

∥vε∥∞ < M definitely for ε small. (5.5.101)

Assume by contradiction that (5.5.101) does not hold: thus there exists a sequence εn → 0 such
that

∥vεn∥∞ ≥ M for each n ∈ N.

By the previous Step, there exists an U ∈ Ŝk and an x0 ∈ RN such that, up to subsequence,
(5.5.100) holds. In particular, by the pointwise convergence we obtain

∥vεn∥∞ = v(xεn) → U(x0) ≤ ∥U∥∞ < M

which implies
∥vεn∥∞ < M

definitely for n ≫ 0, which is an absurd. Thus (5.5.101) holds. As a consequence

fk(vε) = f(vε)

and hence vε are solutions of the original problem (5.1.3), satisfying the desired properties.

Remark 5.5.7. We point out that the found solutions are perturbations of ground states of the
truncated limiting problem (5.5.96) which are, on the other hand, coinciding with the ground
states of the critical limiting problem (5.5.77) thanks to Proposition 5.5.6. One may think to
search directly the solutions as perturbation of functions in the compact set Ŝ, but actually
the direct approach in a critical setting reveals several problems, such as the convergence of
the Palais-Smale sequences. A different and direct approach is given in [21] by means of
Concentration-Compactness techniques, but in the assumptions that f satisfies monotonicity and
Ambrosetti-Rabinowitz conditions.

Remark 5.5.8. We see that actually the ideas of this Section adapts to study the case of f
negatively critical a < 0, or subcritical a = 0 (but not in the strict sense of (f1.3) treated in the
previous Sections), that is

lim
t→+∞

f(t)
|t|2∗

s−1 = a ∈ (−∞, 0],

instead of (f1.3’), filling the gap between the papers [111] and [197]. This case covers functions
of the type f(t) = |t|p−2t− |t|2∗

s−2t and f(t) = |t|2∗
s−2t

log(t2+2) .
In order to achieve this result, we sketch the steps:

• We substitute the existence result Proposition 5.5.3 with the one by [95], observing that
f ∈ C1 is needed only to get the Pohozaev identity, thus our assumptions (f3) is enough
(see also Remark 2.2.5).

• The uniform L∞-bound of Proposition 5.5.5 can be easily adapted.

• The uniform C0,σ-bound can be obtained as in the Step 3 of the proof of Theorem 5.1.4.



5.5. The critical case 217

• The compactness result Proposition 5.5.4 can be obtained as in the strict-subcritical case
Lemma 5.2.4. When a = 0, the proof follows verbatim, otherwise we adapt Step 4 in the
following way.
Let f = f+ −f−. If a < 0 it means that f+(t) = 0 for t ≫ 0; in particular f+ is subcritical.
By knowing Uk ⇀ U in Hs(RN ), ak → a and L′

ak
(Uk)Uk = 0 = L′

a(U)U we want to
show that ∥(−∆)s/2Uk∥2

2 + ak∥Uk∥2
2 → ∥(−∆)s/2U∥2

2 + a∥U∥2
2. Observe that, by (5.2.15),

Proposition 1.5.5 and Fatou’s Lemma, for any η > 0 there exists R ≫ 0 such that
∣∣∣∣∣

�
Bc

R

f(Uk)Uk

∣∣∣∣∣ ,
∣∣∣∣∣

�
Bc

R

f(U)U
∣∣∣∣∣ < η for each k ∈ N,

�
BR

f+(Uk)Uk →
�

BR

f+(U)U,

lim inf
k→+∞

�
BR

f−(Uk)Uk ≥
�

BR

f−(U)U.

Thus

lim sup
k

(
∥(−∆)s/2Uk∥2

2 + ak∥Uk∥2
2
)

≤ lim sup
k

�
RN

f(Uk)Uk

≤ lim sup
k

�
Bc

R

f(Uk)Uk + lim sup
k

�
BR

f+(Uk)Uk − lim inf
k

�
BR

f−(Uk)Uk

≤ η +
�

BR

f+(U)U −
�

BR

f−(U)U = η +
�
RN

f(U)U −
�

Bc
R

f(U)U

≤ 2η +
�
RN

f(U)U = 2η + ∥(−∆)s/2U∥2
2 + a∥U∥2

2.

Letting η → 0 we obtain

lim sup
k

(
∥(−∆)s/2Uk∥2

2 + ak∥Uk∥2
2
)

≤ ∥(−∆)s/2U∥2
2 + a∥U∥2

2

which, together with the semicontinuity of the norm, gives the claim.

The remaining part of the proof follows the lines of the critical case treated in this Section.

5.5.3 The local case
The arguments presented in Theorem 5.5.1 apply, with suitable modifications, also to local
nonlinear Schrödinger equations. We give here some details. Condition (f1’) rewrites in the local
case s = 1 as

(f1’) Berestycki-Lions type assumptions with respect to m0 > 0, that is

(f1.1) f ∈ C(R,R);
(f1.2) limt→0

f(t)
t = 0;

(f1.3’) limt→+∞
f(t)

t2∗−1 = a > 0, where 2∗ = 2N
N−2 , and moreover for some C > 0 and

max{2∗ − 2, 2} < p < 2∗, i.e. satisfying

p ∈





(4, 6) N = 3,
(
2, 2N
N − 2

)
N ≥ 4,

it results that
f(t) ≥ at2

∗−1 + Ctp−1 for t ≥ 0;
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(f1.4) F (t0) > 1
2m0t20 for some t0 > 0.

See also Remark 5.5.2 for some weakening and comments on the assumption (f1.3’).

Theorem 5.5.9. Suppose s = 1, N ≥ 3 and that (V1)-(V2), (f1’)-(f2) hold. Let K be defined by
(5.5.74). Then, for small ε > 0 the equation

−ε2∆v + V (x)v = f(v), x ∈ RN

has at least cupl(K)+1 positive solutions, which belong to C1,σ(RN )∩L∞(RN ) for some σ ∈ (0, 1).
Moreover, each of these sequences vε concentrates in K as ε → 0: namely, there exist xε ∈ RN

global maximum points of vε, such that

lim
ε→0

d(xε,K) = 0

and
vε(x) ≤ C ′exp

(
− C ′′

∣∣∣x− xε

ε

∣∣∣
)

for x ∈ RN (5.5.102)

where C ′, C ′′ > 0 are uniform in ε > 0. Finally, for every sequence εn → 0+ there exists a ground
state solution U of

−∆U +m0U = f(U), x ∈ RN

and a point x0 ∈ K such that, up to a subsequence, xεn → x0 and

vεn(εn · +xεn) → U as n → +∞

in Hs(RN ) and locally on compact sets.

Proof. The arguments of the previous Sections apply mutatis mutandis. Indeed, we define in the
same way the set of ground states Ŝ, which turns to be nonempty [392] and compact. Moreover
to get the uniform L∞(RN ) bound, one can easily adapt the proof of Proposition 5.5.5 after
observing that by the chain rule it holds

|∇h(U)|2 = ∇U · ∇h̃(U), U ∈ H1(RN ),

where we recall that h̃′ = (h′)2. Then the truncation machinery can be set in motion, and one
can prove Ŝk = Ŝ. Existence, multiplicity and decay of solutions of the truncated problem are
given by [119, Theorem 1.1 and Remark 1.3]; the regularity is instead a consequence of standard
elliptic estimates [354, Appendix B].
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A Some algebraic topology: the relative cup-length
In order to estimate the number of critical points of certain functionals not bounded from below
and above, it is useful to implement the algebraic-topological tool of the relative cup-length,
together with the more used relative category. In this Appendix we briefly recall the basic notion
of algebraic topology needed to define this object; afterwards we will highlight how it relates to
the category and how they are exploited in order to gain multiple solutions of PDEs. Finally we
will briefly recall also the definition of the genus.

A.1 The singular cohomology
We start by defining the singular cohomology. Here we essentially follow the self-contained
description due to [94], but we refer also to [69,160,168,210,210,217,287,288,350,368].

Fix X a topological space (in our case it will be a subset of some Hilbert space, such as
RN or Hs(RN ), see Section 5.4), and fix an abelian group G: actually the choice of G does not
heavily influence the main properties of cohomology, and usually G is chosen as a generic field F
[119], or some specific ones like the real field R [185,187] or the Z2 field [358].

Let q ∈ N, and let ∆q be the q-simplex defined by

∆q :=





q∑

j=0
λjej | λj ≥ 0,

q∑

j=0
λj = 1



 ≡



(λ0, λ1, . . . , λq, 0, . . . ) | λj ≥ 0,

q∑

j=0
λj = 1





where e0 := (0, 0, . . . ), e1 := (0, 1, . . . ) and so on, are vectors in R∞. We define the set of singular
q-simplexes by

Σq(X) := {σ : ∆q → X continuous}.
Starting from Σq(X) and G we can build the free abelian group Cq(X,G) with bases Σq(X),
that is

Cq(X,G) :=




∑

i, finite
giσi | gi ∈ G, σi ∈ Σq(X)





where the linear combination has to be intended in the formal sense1. We call Cq(X,G) the set
1For example, if G = R is a ring with unit 1R, we define the free abelian group in this way [368, page 4]: start

by identifying the elements σ ∈ σq with the functions fσ : Σq(X) → R, fσ(τ) :=
{

1R if τ = σ

0R if τ ̸= σ
. Then set

Cq(X, G) := {f : Σq(X) → Z | f(σ) ̸= 0 for a finite number of σ ∈ Σq(X)}
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of singular q-chains; here an inner summation and an external product (through G) can be easily
defined.

We define now a boundary operator on Cq(X,G), introducing it first on Σq(X) and then
extending it by linearity. Indeed, for any q ≥ 1 and σ ∈ Σq(X) and j = 0 . . . q we define
σ(j) ∈ Σq−1 by

σ(j)(x0, x1, . . . , xq−1) := σ(x0, x1, . . . xj−1, 0, xj , . . . xq−1)
where 0 is in the j-th position. Thus the boundary operator is defined as

∂σ :=
q∑

j=0
(−1)jσ(j)

and hence
∂ : Cq(X,G) → Cq−1(X,G).

If q = 0, the boundary operator ∂ : C0(X,G) → G is defined as ∂(∑ giσi) := ∑
gi (we are

formally setting C−1(X,G) := G). We have that ∂ is a homomorphism. Set

C∗(X,G) :=
⊕

q≥0
Cq(X,G)

we have ∂ : C∗(X,G) → C∗(X,G). It is a straightforward computation showing that

∂2 = 0

which is of key importance in the theory of homologies and cohomologies. With these ingredients
it is possible to define a homology H∗(X,G); we are anyway interested in cohomologies, and
thus we need first to pass on homomorphisms and dualities. Thus we define the set of singular
q-cochains

Cq(X,G) := Hom(Cq(X,G), G);
by using the bracket notation

[σ, c] := c(σ)
for every c ∈ Cq(X,G) and σ ∈ Cq(X,G), the definition of Cq(X,G) rewrites as

[σ1 + σ2, c] = [σ1, c] + [σ2, c] and [gσ, c] = g[σ, c]

for every c ∈ Cq(X,G), σ, σ1, σ2 ∈ Cq(X,G) and g ∈ G. We can hence define the dual operator
of ∂, named the coboundary operator, by

[σ, δc] := [∂σ, c]

for every c ∈ Cq−1(X,G), σ ∈ Cq(X,G); thus

δ : Cq−1(X,G) → Cq(X,G),

which is a homomorphism. Set

C∗(X,G) :=
⊕

q≥0
Cq(X,G)

we have δ : C∗(X,G) → C∗(X,G), and we obtain

δ2 = 0.
and observe that Σq(X) ≡ {fσ}σ∈Σq(X) is a basis for Cq(X, G), that is, elements of Cq(X, G) are of the form

f =
∑

i, finite

gifσi .
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In particular the last property easily implies that Im(δ) ◁Ker(δ), thus we are allowed to define
the singular q-cohomology group

Hq
∆(X,G) := Ker(δ|Cq(X,G))/Im(δ|Cq−1(X,G))

the sets Ker(δ) and Im(δ) are said, respectively, the sets of the cocycles and of the coboundaries.
We highlight that H0(X,G) may be interpreted as the set of functions X → G constant on
path-components of X [217, pages 198-199] (see also [368, Proposition 3.11], [210, page 183],
[350, page 244], [287, Lemma 1.2]), while Hq(∅, G) is the trivial cohomology [287, page 192].

Moreover we define the singular cohomology group on X with coefficients in G

H∗
∆(X,G) :=

⊕

q≥0
Hq

∆(X,G).

Assume from now on G = R to be a commutative ring with unit. On the cohomology
H∗

∆(X,R) (also called cohomology ring of X [160, Remark 8.17]) we can define a cup product:
instead of introducing it in terms of cross product, we give here a direct construction. We start by
defining it on C∗(X,R), then by quotient we obtain it also on H∗

∆(X,R). Indeed, fixed p, q ≥ 0,
we define

ϕp : ∆p → ∆p+q, βq : ∆q → ∆p+q

the immersions in the first p components and in the last q components respectively, i.e.

ϕp(λ1, . . . , λp, 0, . . . ) := (λ1, . . . , λp, 0, . . . , 0, 0, . . . ),

βq(λ1, . . . , λq, 0, . . . ) := (0, . . . , 0, λ1, . . . , λq, 0, . . . ),

so that, if σ ∈ Cp+q(X,R), then σϕp ∈ Cp(X,R) and σβq ∈ Cq(X,R). Thus we define, through
the product in R, the cup product

[σ, c ⌣ d] := [σϕp, c][σβq, d]

for any c ∈ Cp(X,R), d ∈ Cq(X,R) and σ ∈ Cp+q(X,R), which implies

⌣: Cp(X,R) × Cq(X,R) → Cp+q(X,R)

and more generally, ⌣: C∗(X,R) ×C∗(X,R) → C∗(X,R). Notice that multiplying c ∈ Cp(X,R)
with d ∈ C0(X,R) means multiplying by constant elements of the form ∑

i, finite giσi(e0), with
gi ∈ G and σi ∈ Σp(X). The cup product results bilinear, associative and unitary. Moreover, it
satisfies c ⌣ d = (−1)pqd ⌣ c (since R is commutative [217, Theorem 3.11]), which implies that
it is skew-commutative: even if not properly commutative, it nevertheless satisfies

c ⌣ d = 0 ⇐⇒ d ⌣ c = 0. (A.1)

Moreover, it holds
δ(c ⌣ d) = δc ⌣ d+ (−1)p ⌣ δd,

for c ∈ Cp(X,R) and d ∈ Cq(X,R); in particular, this easily implies that Ker(δ) is a subalgebra
of C∗(X,R) and Im(δ) is an ideal of Ker(δ). Thus, ⌣ can be passed to the quotient and hence
defined on

⌣: H∗
∆(X,R) ×H∗

∆(X,R) → H∗
∆(X,R).

Starting from a whatever cohomology H∗(X,R) = H∗
∆(X,R) (see Section A.2), we can define

the cup-length as the length of the longest nontrivial chain of cup products in H∗(X,R) (up to
the constants in H0(X,R)).
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Definition A.1. Let X be topological space and R be a commutative ring with unit. We define
the cup-length of X as

cupl(X,R) := max{l ∈ N∗ | ∃αi ∈ Hqi(X,R), qi ≥ 1 for i = 1 . . . l,
s.t. α1 ⌣ · · · ⌣ αl ̸= 0};

if such l does not exists, but H0(X,R) is not trivial, we set cupl(X,R) := 0, otherwise (if
H0(X,R) = {0}) we set cupl(X,R) := −1.

We notice that by (A.1), the order in the cup product is of no importance. In the case X is
not connected, a slightly different definition (which makes the cup-length additive) can be found
in [33].

For explicit computations of the cup-length we refer to [185, Example 3.4 and page 19] and
to [133]: for instance if B ⊂ RN is the closed unit ball, then cupl(∂B) = 1 for N ≥ 2; if TN is
the N -dimensional torus, then cupl(TN ) = N .

Singular relative cohomology and cup-length

We define now the cohomology and the cup-length relative to a topological pair (X,Y ), that is
Y ⊂ X topological spaces. Observed that

Cq(Y,G) ◁ Cq(X,G)
and that ∂ conserves Cq(Y,G), we can define the singular q-relative chain module

Cq(X,Y,G) := Cq(X,G)/Cq(Y,G).
Notice that Cq(X, ∅, G) ≡ Cq(X,G). Considered the canonical projection πq : Cq(X,G) →
Cq(X,Y,G), we introduce

∂̃ : Cq(X,Y,G) → Cq−1(X,Y,G)
the well defined function such that the canonical diagram commutes

∂̃ ◦ πq = πq−1 ◦ ∂.
The other definitions follows in the same way as before:

Cq(X,Y,G) := Hom(Cq(X,Y,G), G),
δ̃ : Cq−1(X,Y,G) → Cq(X,Y,G),
Hq

∆(X,Y,G) := Ker(δ̃)/Im(δ̃),
and also C∗(X,Y,G), C∗(X,Y,G), H∗

∆(X,Y,G) and ⌣ (see also [217, page 209]). Notice that,
if X is path-connected and Y ̸= ∅, then H0(X,Y,R) is trivial [210, page 183].

When G = R, we can define the relative cup-length as the length of the longest chain of cup
products in H∗(X,R) multiplied with an element of H∗(X,Y,R); see also [185,187,358].
Definition A.2. Let (X,Y ) be a topological pair and R be a commutative ring with unit. We
define the cup-length of X, relative to Y as

cupl(X,Y,R) :=
max{l ∈ N∗ | ∃αi ∈ Hqi(X,R), qi ≥ 1 for i = 1 . . . l, ∃α0 ∈ H∗(X,Y,R)

s.t. α0 ⌣ α1 ⌣ · · · ⌣ αl ̸= 0}.
if such l ∈ N does not exists, but H∗(X,Y,R) is not trivial, we set cupl(X,Y,R) := 0, otherwise
(if H∗(X,Y,R) = {0}) we set cupl(X,Y,R) := −1.

Notice that
cupl(X,R) = cupl(X, ∅, R);

this is the same as taking α0 ∈ H0(X,R), since H∗(X, ∅, R) is essentially H∗(X,G) (see also
[287, page 256] and [69, Proposition 12.3]). Again, for explicit examples we refer to [185, Example
3.4]: for instance, if B ⊂ RN is the closed unit ball, then cupl(B, ∂B) = 0.



Appendix – Some algebraic topology: the relative cup-length 223

Cup-length relative to a function

Let us consider two topological pairs (X,Y ) and (X ′, Y ′) and a continuous map f : (X,Y ) →
(X ′, Y ′), that is f : X → X ′ with f(Y ) ⊆ Y ′. It is possible to prove2 that f induces and
homomorphism of groups

f∗ : H∗(X ′, Y ′, G) → H∗(X,Y,G)

which is suitable functorial, namely

(id)∗ = id, (gf)∗ = f∗g∗, f∗ = g∗ whenever f, g homotopic.

Moreover one can show that

∂̃ ◦ f∗ = f∗ ◦ ∂̃, f∗(α1 ⌣ α2) = f∗(α) ⌣ f∗(α2);

the second is said the naturality of the cup product (see [160, Section 7.8.6]). With this tool, when
G = R, we can define the cup-length relative to f , as the length of the longest chain of cup products
in f∗(H∗(X ′, R)) ⊂ H∗(X,R) multiplied with an element of f∗(H∗(X ′, Y ′, R)) ⊂ H∗(X,Y,R);
see also [38].

Definition A.3. Let (X,Y ), (X ′, Y ′) be two topological pairs, R be a commutative ring with
unit and f : (X,Y ) → (X ′, Y ′) be continuous, with f∗ the induced homomorphism on the relative
cohomolgies. We define the cup-length relative to f as

cupl(f,R) :=
max{l ∈ N∗ | ∃αi ∈ Hqi(X ′, R), qi ≥ 1 for i = 1 . . . l, ∃α0 ∈ H∗(X ′, Y ′, R)

s.t. f∗(α0) ⌣ f∗(α1) ⌣ · · · ⌣ f∗(αl) ̸= 0};

if such l ∈ N does not exist, but f∗ ̸≡ 0, it results cupl(f) := 0, otherwise (if f∗ ≡ 0) we define
cupl(f) := −1.

Notice that
cupl(X,Y,R) = cupl(id(X,Y ), R),

and in particular cupl(X,R) = cupl(id(X,∅), R).

A.2 Other cohomologies
We highlight that other cohomologies could be used to define the cup-length: for instance, the
Alexander-Spanier cohomology [119] and the Čech cohomology [358]. We sketch here how they
are built, and then we point out how they are closely related to the singular cohomology.

2We show here the standard construction in the non-relative case [288, Section VII.3]. Consider the induced
function

f# : Cq(X ′) → Cq(X)
such that

(f#(c))(σ) = c(f ◦ σ) (i.e. [σ, f#(c)] = [f ◦ σ, c])
for every c ∈ Cq(X ′) and σ ∈ Cq(X). A straightforward computation shows that f# ◦ δ′ = δ ◦ f#, where
δ′ : Cq(X ′) → Cq+1(X ′); this easily implies that f#(Ker(δ′)) ⊂ Ker(δ) and f#(Im(δ′)) ⊂ Im(δ). This allows to
pass to the quotient and define

f∗ : Ker(δ′)/Im(δ′) → Ker(δ)/Im(δ).
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Alexander-Spanier cohomology. We refer to [286,287] (see also [350]). Let X be a topological
space and G be a group. We define the abelian group of all the q-functions

Φq(X,G) := {φ : Xq+1 → G}

and its normal subgroup

Φq
0(X,G) := {φ ∈ Φq(X,G) | φ = 0 in a neighborhood of the diagonal}.

On Φq(X,G) we can define the coboundary operator δ̄ : Φq(X,G) → Φq+1(X,G) by

(δ̄φ)(x0 . . . xq+1) :=
q+1∑

j=1
(−1)jφ(x0, . . . x̂j , . . . xq+1)

where x̂j means that the variable is omitted; we have δ̄2 = 0. Moreover, we can define the
q-cochain

C̄q(X,G) := Φq(X,G)/Φq
0(X,G)

and then the Alexander-Spanier cochain C̄∗(X,G), on which we can define δ̄ through quotients.
Thanks to the property δ̄2 = 0 we can pass to the quotient of Ker(δ̄) over Im(δ̄) and obtain the
Alexander-Spanier cohomology H̄∗(X,G). Slightly different definitions, which focus on locally
finitely valued q-functions or which define Φq

0 through supports, can be found in [286,287].

Once defined a relative Alexander-Spanier cohomology H̄∗(X,Y,G), by exploiting [288, The-
orem 14.6.1 and Proposition 14.6.2] one can show that actually, for Y closed subset of X
paracompact Hausdorff space (for example a manifold, such as RN or a more general Hilbert
space, see Section 5.4) and G = R ring, it results that

H̄∗(X,Y,R) ≈ H∗
∆(X,Y,R) (A.2)

that is, the Alexander-Spanier cohomology and the singular cohomology are isomorphic.

Čech cohomology. We refer to [67, 377] (see also [160,168,217,350]). Let X be a topological
space and G be a group (notice that we focus only on the case of a constant presheaf with
identical restrictions). Let U be a open covering of X and define

σ := (U0, . . . Uq)

to be a q-simplex if Ui ∈ U and |σ| := ⋂q
i=1 Ui ̸= ∅; |σ| ⊂ X is called support of σ. We thus define

Σ̌q as the set of all the q-simplexes, and

Čq(U, G) := {φ : Σ̌q → G}

the set of all the q-cochains. On Čq(U, G) we can define the coboundary operator δ̌ : Čq(U, G) →
Čq+1(U, G) as

(δ̌φ)(U0 . . . Uq+1) :=
q+1∑

j=1
(−1)jφ(U0, . . . Ûj , . . . Uq+1)

satisfying δ̌2 = 0. Thanks to this property we can define Ȟ∗(U, G) by passing to the quotient the
kernel and the image of δ̌. Finally, considering the coverings of X ordered by inclusion, we can
define the Čech cohomology as

Ȟ(X,G) := lim−→ Ȟ∗(U, G)

in the sense of the direct limits. Notice that, if X is an n-dimensional manifold and U is a good
cover, i.e. every finite intersection of its elements is diffeomorphic to RN (and there always exists
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such a good cover [67, Theorem 5.1]), then there is no need of passing to the direct limit, since it
results that

Ȟ∗(X,G) ≈ Ȟ∗(U, G);

in particular, the right-hand side does not depend on the particular good cover U.

By [67, Proposition 15.8] (see also [217, page 257]) we have that

Ȟ∗(X,Z) ≈ H∗
∆(X,Z)

whenever X is a manifold. Moreover [350, Corollary 6.9.9]

Ȟ∗(X,G) ≈ H̄∗(X,G)

whenever X is a closed subset of a manifold (or more generally, X is a Hausdorff space with
coefficients in a module G [350, Corollary 6.8.8]).

Once defined also the relative Čech cohomology, one can prove [350, pages 342 and 359]

Ȟ∗(X,Y,G) ≈ H̄∗(X,Y,G)

whenever X,Y are closed subset of a manifold. Thus, by combining this result with (A.2),
whenever Y and X are closed subsets of a manifold (such as RN or a more general Hilbert space,
see Section 5.4) and G = R ring, we have

Ȟ∗(X,Y,G) ≈ H∗
∆(X,Y,G);

see also [160, Proposition 8.6.12] for a direct proof in the case of a pair of ENR (Euclidean
Neighborhood Retracts, which is the case for example of Y ⊂ X ⊂ RN with X retractible).

See also [69] for further relations on these three cohomologies.

A.3 Properties of the cup-length
Here we focus on the case G := F for some field F, and we drop the dependence on G in the
notations. We collect some properties of the cup-length, see e.g. [38, Lemma 2.6].

Lemma A.4. We have the following properties.

(a) For any f : (A,B) → (A′, B′) and f ′ : (A′, B′) → (A′′, B′′) it results that

cupl(f ′ ◦ f) ≤ min{cupl(f ′), cupl(f)}.

As a consequence,
cupl(f ′ ◦ f) ≤ cupl(A′, B′). (A.3)

(b) For any f, g : (A,B) → (A′, B′) homotopic, we have

cupl(f) = cupl(g).

Finally, we cite the following key result [34] which can be found in [119, Lemma 5.5].

Lemma A.5. Consider the inclusion

j : (I ×K, ∂I ×K) → (I ×Kd, ∂I ×Kd)

for a whatever K ⊂ RN compact, Kd := {x ∈ RN | d(x,K) ≤ d}, and I = [a, b]. Then, for d > 0
sufficiently small, we have

cupl(j) ≥ cupl(K).
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A.4 Relation with the Ljusternik-Schnirelmann category
We recall here the definition of relative category, by following [185,358] and references therein
(see also [33]).

Definition A.6. Let X be a topological space and let A,B be two closed subsets of X. We call
the category of A in X, relative to B, and write

k = catX,B(A),

the least integer k ∈ N such that there exist A0, A1, . . . , Ak closed subsets of X which verify

• (Ai)i=0...k cover A;

• (Ai)i=1...k are contractible in X, i.e. id : Ai → X is homotopic to a constant;

• A0 is deformable in B, i.e. there exists a continuous h0 : [0, 1] × (A0 ∪B) → X such that
h0(0, ·) = id, h0(1, A0) ⊂ B and h0(t, B) ⊂ B for each t ∈ [0, 1].

If such k does not exists, we set catX,B(A) := +∞.

Examples of computations can be found in [185, Examples 2.2 and 3.7] and [186, Remark
3.2]. For example, if B is the unit ball in RN , then catB,∂B(B) = 1 (while it is equal zero if B is
the unit ball in Hs(RN )); if A is the annulus in RN with N ≥ 2, then catA,∂A(A) = 2; moreover
catR2,R(R2) = catR2,(0,0)(R2) = 0.

Remark A.7.

• If we drop the condition on B, A0 and h0, we have the classical definition of category, and
simply write catX(A); more precisely

catX(A) = catX,∅(A).

This definition can be given for a whatever A (even not closed), and a posteriori one has
catX(A) = catX(A) (see [133, Remark 1.12]).

• We required the covering to be closed, but equivalently one can ask A0 . . . Ak to be open (see
[133, Proposition 1.10]).

• We do not require that B ⊂ A0 ⊂ A, even if equivalent definitions could be given in this
way (see e.g. [185]).

• Some authors require the stronger condition h0(t, ·|B) = idB (see e.g. [119,186,187] and
Remark 2.2 in [358]), and this modification would bring no differences in what follows.

• Considered a continuous map f : (A,B) → (A′, B′) one can define the category of f
by substituting, in the definition (with A = X), "id : Ai → A" with "f|Ai

: Ai → A",
"h0 : [0, 1] × (A0 ∪ B) → A" with "h0 : [0, 1] × (A0 ∪ B) → A" and "h0(0, ·) = id" with
"h0(0, ·) = f"; in this case catA,B(A) = cat(id(A,B)). See [38]. Anyway, we will not use
this tool.

The following classical properties on category can be found, e.g., in [38, Lemma 2.2] and
[133, Lemma 1.13] (see also [185, Proposition 2.9]).

Lemma A.8. Let A be a closed subset of X.

• #A ≥ catX(A);
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• If A is compact, and every point in A has an open neighborhood in X contractible in X,
then there exists an open neighborhood N ⊂ X of A such that catX(N) = catX(A). In
particular, if A ⊂ X ⊂ X ′ ⊂ H, with A compact and X open subset of the Hilbert space H,
then the claim holds true for catX′(A).

Next proposition deals with some properties on relative category, and can be found, for
instance, in [358, Propositions 2.5 and 2.8] or [185, Propositions 2.4 and 2.9] (see also [186, Remark
3.2 and Propositions 3.4 and 3.5]).

Lemma A.9. Let A,A′, B, V be closed subsets of X.

• Then catX,B(A) = 0 if and only if A can be deformed in B, i.e. there exists h : (A ∪B) ×
[0, 1] → X such that h(0, ·) = id, h(t, B) ⊂ B for each t ∈ [0, 1] and h(1, A) ⊂ B. As a
consequence, if A ⊂ B, then catX,B(A). In particular, catX,A(A) = 0.

• If A ⊂ A′, then catX,B(A) ≤ catX,B(A′).

• If A ∪ B ⊂ X ⊂ X ′, then catX,B(A) ≥ catX′,B(A). In particular, if B ⊂ A ⊂ X, then
catA,B(A) ≥ catX,B(A).

• If catX(V ) < ∞, then catX,B(A \ V ) ≥ catX,B(A) − catX(V ).

• If there exists η : [0, 1] × (A ∪ B) → X such that η(1, A) ⊂ A′ and η([0, 1], B) ⊂ B, then
catX,B(A) ≤ catX,B(A′).

The following lemma links the concepts of category (when A = X) and cup-length, and it can
be found in [358, Proposition 2.6 and Remark 2.7] (see also [187, Theorem 1] and [185, Theorem
3.6]).

Lemma A.10. Let B be a closed subset of a metric space A. Then

catA,B(A) ≥ cupl(A,B) + 1.

In particular, catA(A) ≥ cupl(A) + 1.

To avoid cumbersome notation we will write

cat(A) := catA(A), and cat(A,B) := catA,B(A).

Notice that, if A ⊂ X, then cat(A,B) ≥ catX,B(A) (and in particular cat(A) ≥ catX(A)).

Remark A.11. We notice that in standard examples the inequality in Lemma A.10 is actually
an equality. Indeed, if K is a contractible set or it is finite (e.g. a single point), then

cupl(K) + 1 = catK(K) = 1;

if K = SN−1 is the N − 1 dimensional sphere in RN , then

cupl(K) + 1 = catK(K) = 2;

if K = TN is the N -dimensional torus, then

cupl(K) + 1 = catK(K) = N + 1.

However in general the strict inequality may hold, see [133, Sections 2.8 and 9.23] for some
examples.
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Remark A.12. When one deals with a functional which is not bounded from below, the tool of
the relative category is needed. On the other hand, for any interval I ⊂ R and any neighborhood
Kd of K, considered the inclusion

j : (I ×K, ∂I ×K) → (I ×Kd, ∂I ×Kd)

the key relation
cat(j) ≥ catK(K),

essential in the estimation of the relative category of two sublevels of the indefinite functional (see
[119, Remark 4.3]) does not generally hold [133, Remark 7.47]. Nevertheless, the same relation
for the cup-length

cupl(j) ≥ cupl(K)

holds true, as proved in [119, Lemma 5.5] (see also [185, Proposition 3.5]). That is why we take
advantage of the relative cup-length in order to get a bound on the number of solutions.

A.5 Application to multiplicity of solutions
We sketch now how to obtain multiple solutions from the information on the category of a set.

Let indeed J : X → R to be a C1-functional on a function space X, and denote, for every
c ∈ R, Jc := {J ≤ c} the sublevel at c and Kc := {J = c, J ′ = 0} the set of critical points at c.
Assume the following:

• there exist c̄ ∈ R and δ > 0 such that Kc is compact for every c ∈ [c̄− δ, c̄+ δ] (for example,
a Palais-Smale type condition holds at level c) and a Deformation Lemma holds around Kc;

• c̄ + δ is a regular value; this is not restrictive, up to choosing properly δ (small), since
otherwise we would have a sequence of critical values at levels c+ δn with δ1 > ... > δn → 0.

• there exist a compact K and two continuous maps ϕ1, ϕ2 such that (I × K, ∂I × K) ϕ1→
(J c̄+δ, J c̄−δ) ϕ2→ (I × Kd, ∂I × Kd) is homotopic to the inclusion j : (I × K, ∂I × K) →
(I ×Kd, ∂I ×Kd), where Kd = {x ∈ RN | d(x,K) ≤ d} and I = [a, b] for some a, b ∈ R.

We want to show

#
{
u ∈ X | J(u) ∈ [c̄− δ, c̄+ δ], J ′(u) = 0

} (i)
≥ catJ c̄+δ,J c̄−δ (J c̄+δ)
(ii)
≥ cupl

(
J c̄+δ, J c̄−δ

)
+ 1

(iii)
≥ cupl(K) + 1.

which is an estimate from below on the number of critical points of J .
Proof of (i). This is a consequence of the Deformation Lemma and of the compactness of

critical level sets, as done in [358, Proposition 3.2] and [186, Theorem 4.2] (see also [187, Theorem
3] and [185, Theorem 6.1]). Let thus define

k := catJ c̄+δ,J c̄−δ (J c̄+δ) ∈ N ∪ {+∞};

if k = 0 the claim is trivial, thus we can assume k ≥ 1. For each j = 1 . . . k define

Γj := {A ⊂ X | A closed, catJ c̄+δ,J c̄−δ (A) ≥ j},

cj := inf
A∈Γj

sup
A
J.
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Notice that, since j ≥ 1, then each A ∈ Γj cannot be included in J c̄−δ, that is cj ≥ c̄ − δ;
moreover, since j ≤ k, then J c̄+δ ∈ Γj , which implies cj ≤ c̄+ δ. Therefore

c̄− δ ≤ c1 ≤ c2 ≤ · · · ≤ c̄+ δ.

Fix j ∈ {1 . . . k} and let p ∈ N be such that

cj = · · · = cj+p =: c ∈ [c̄− δ, c̄+ δ];

to reach the claim, it is sufficient to show that

catJ c̄+δ (Kc) ≥ p+ 1 (A.4)

since #Kc ≥ catJ c̄+δ (Kc) and by combining the estimates for different values of cj (if ci ≠ cj we
clearly have different critical points at the two levels).

We do some preliminary work. We first exploit that c̄ + δ is a regular point to show that
c < c̄+ δ. Indeed, since Kc̄+δ = ∅, by the Deformation Lemma there exist η : [0, 1] × X → X
and an ω > 0 such that

• J(η(t, ·)) ≤ J(·) for each t ∈ [0, 1], and thus η : [0, 1] × J c̄+δ → J c̄+δ,

• η(1, J c̄+δ+ω) ⊂ J c̄+δ−ω, and thus η(1, J c̄+δ) ⊂ J c̄+δ−ω,

• J(t, J c̄−δ) ⊂ J c̄−δ for each t ∈ [0, 1];

by Lemma A.9 we have

catJ c̄+δ,J c̄−δ (J c̄+δ−ω) ≥ catJ c̄+δ,J c̄−δ (J c̄+δ) = k ≥ j;

thus J c̄+δ−ω ∈ Γj , which implies cj ≤ c̄+ δ − ω < c̄+ δ for each j, which is the claim.
Since c < c̄+ δ, we have Kc ⊂ {J < c̄+ δ} ⊂ J c̄+δ; moreover Kc is compact; thus by Lemma

A.8 we have that there exists an open neighborhood N of Kc such that

catJ c̄+δ (N) = catJ c̄+δ (Kc).

Corresponding to N , again by the Deformation Lemma there exist an ω ∈ (0, c̄+ δ − c) and an
η : [0, 1] × J c̄+δ → J c̄+δ (notice that Jc+ω ∪ J c̄−δ ⊂ J c̄+δ) such that η(1, Jc+ω \N) ⊂ Jc−ω and
η(t, J c̄−δ) ⊂ J c̄−δ for each t ∈ [0, 1]. By Lemma A.9 we have

catJ c̄+δ,J c̄−δ (Jc+ω \N) ≤ catJ c̄+δ,J c̄−δ (Jc−ω). (A.5)

Corresponding to ω, by definition of c = cj+p there exists an A ∈ Γj+p such that supA J < c+ ω,
which means that A ⊂ Jc+ω and thus

A \N ⊂ Jc+ω \N. (A.6)

We prove now (A.4) by contradiction. Assume cat(Kc) ≤ p < ∞. Thus, by (A.5), (A.6) and
Lemma A.9 (notice that A \N is closed) we have

catJ c̄+δ,J c̄−δ (Jc−ω) ≥ catJ c̄+δ,J c̄−δ (Jc+ω \N) ≥ catJ c̄+δ,J c̄−δ (A \N)
≥ catJ c̄+δ,J c̄−δ (A) − catJ c̄+δ (N) ≥ (j + p) − p = j.

This means that Jc−ω ∈ Γj , and thus

cj ≤ sup
Jc−ω

J ≤ c− ω = cj − ω

which is an absurd.
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Proof of (ii). This is a consequence of the property of algebraic topology given in Lemma
A.10.

Proof of (iii). This is due to the existence of the homotopy and properties of the cup-length.
Indeed, by (A.3) in Lemma A.4 (a), we have

cupl
(
J c̄+δ, J c̄−δ

)
≥ cupl(ϕ2 ◦ ϕ1);

we highlight that the left-hand side deals with subsets of the function space X, while the right-
hand side deals with subsets of RN . Since ϕ2 ◦ ϕ1 is homotopic to the immersion j, we have by
Lemma A.4 (b)

cupl(ϕ2 ◦ ϕ1) = cupl(j).
Finally, we conclude thanks to Lemma A.5.

A.6 The Krasnoselskii genus: a particular category

In order to obtain existence of multiple solutions in the entire space RN , without any topology
related to some potential V , it is useful to exploit some symmetry of the functionals, and some
tool related to them.

In particular, we introduce the well known Krasnoselskii genus.
Definition A.13. For any A closed subset of RN \ {0}, symmetric with respect to the origin
(i.e. A = −A), the Krasnoselskii genus is defined by

genus(A) := max {n ∈ N | ∃β : A → Rn \ {0} continuous and odd} ;
if such n does not exists, γ(A) := +∞; moreover γ(A) = 0 if (and only if) A = ∅.

The genus enjoys several standard properties [324, Section 3].
Proposition A.14. Let A,B ⊂ RN \ {0} be closed and symmetric.

• if A is finite, then genus(A) = 1;

• genus(A ∪B) ≤ genus(A) + genus(B);

• if genus(B) < ∞, then genus(A \B) ≤ genus(A) − genus(B);

• if h : RN → RN is continuous and odd, then genus(A) ≤ genus(h(A));

• if A is compact, then there exists a closed, symmetric neighborhood U ̸∋ 0 of A such that
genus(U) = genus(A) < ∞;

• if U is a symmetric neighborhood of the origin, then genus(∂U) = N .
Example A.15. The genus describes, roughly, how a set is wrapped near the origin. Let A be
a closed subset of RN \ {0}, such that A = −A. If A = B ∪ (−B), with B ∩ (−B) = ∅, then
genus(A) = 1. If A is connected, then genus(A) ≥ 2. Moreover, genus(SN ) = N + 1.

Actually, this tool reveals to be a subcase of the already introduced category. Indeed,
considered the action of Z2 over RN (which identifies x with −x) we have the following relation
[324, Theorem 3.7] (see also [171])

genus(A) = cat(RN \{0})/Z2(A/Z2).
This relation highlights the fact that the genus tool exploits not the topology of a particular
subset of RN , but the topology induced by a symmetry relation.
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