bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Gabor, Grzegorz and Quincampoix, Marc:
On existence of equilibria of set-valued maps
Bollettino dell'Unione Matematica Italiana Serie 8 6-B (2003), fasc. n.2, p. 309-321, Unione Matematica Italiana (English)
pdf (273 Kb), djvu (181 Kb). | MR1988207 | Zbl 1150.49007

Sunto

L'articolo fornisce delle condizioni sufficienti per l' esistenza di punti di equilibrio di applicazioni multivoche Lipschitziane in assegnati sottoinsiemi di spazi finito-dimensionali. Il principale contributo del presente articolo consiste nel fatto che non si danno condizioni di regolarità sulla frontiera degli insiemi considerati. L'approccio è basato sullo studio del comportamento delle traiettorie della corrispondente inclusione differenziale.
Referenze Bibliografiche
[1] J.-P. AUBIN-A. CELLINA, Differential Inclusions, Springer, 1984. | MR 755330 | Zbl 0538.34007
[2] J.-P. AUBIN, Viability Theory, Birkhäuser, Boston, 1991. | MR 1134779 | Zbl 0755.93003
[3] H. BEN-EL-MECHAIEKH-W. KRYSZEWSKI, Équilibres dans les ensembles nonconvexes, C. R. Acad. Sci. Paris Sér. I, 320 (1995), 573-576. | MR 1322339 | Zbl 0833.54024
[4] H. BEN-EL-MECHAIEKH-W. KRYSZEWSKI, Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc., 349 (1997), 4159-4179. | MR 1401763 | Zbl 0887.47040
[5] J. M. BONY, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Institut Fourier, Grenoble, 19, 1 (1969), 277-304. | fulltext mini-dml | MR 262881 | Zbl 0176.09703
[6] F. BROWDER, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. | MR 229101 | Zbl 0176.45204
[7] R. BROWN, The Lefschetz Fized Point Theorem, Scott, Foresman and Comp., Glenview Ill., London 1971. | MR 283793 | Zbl 0216.19601
[8] P. CARDALIAGUET, Sufficient conditions of nonemptiness of the viability kernel, PhD Thesis, Chapter 8, Université Paris IX Dauphine, 1992. | MR 1166049 | Zbl 0761.34016
[9] P. CARDALIAGUET, Conditions suffisantes de non-vacuité du noyau de viabilité, C. R. Acad. Sci., Paris, Ser. I, 314, 11 (1992), 797-800. | MR 1166049 | Zbl 0761.34016
[10] F. CLARKE-YU. S. LEDYAEV-R. J. STERN, Fixed points and equilibria in nonconvex sets, Nonlinear Analysis, 25 (1995), 145-161. | MR 1333819 | Zbl 0840.49010
[11] F. CLARKE-YU. S. LEDYAEV-R. J. STERN-P. R. WOLENSKI, Nonsmooth Analysis and Control Theory, Springer, 1998. | MR 1488695 | Zbl 1047.49500
[12] B. CORNET, Paris avec handicaps et théorèmes de surjectivité de correspondances, C. R. Acad. Sc. Paris Sér. A, 281 (1975), 479-482. | MR 386726 | Zbl 0317.90087
[13] B. CORNET-M.-O. CZARNECKI, Existence of (generalized) equilibria: necessary and sufficient conditions, Comm. Appl. Nonlinear Anal., 7 (2000), 21-53. | MR 1733400 | Zbl 1108.49301
[14] A. ĆWISZEWSKI-W. KRYSZEWSKI, Equilibria of set-valued maps: variational approach, Nonlinear Anal. TMA (accepted). | Zbl 1030.49021
[15] J. DUGUNDJI, Topology, Allyn and Bacon, Inc., Boston, 1966. | MR 193606 | Zbl 0144.21501
[16] S. EILENBERG-N. STEENROD, Foundations of Algebraic Topology, Princeton Univ. Press, New Jersey, 1952. | MR 50886 | Zbl 0047.41402
[17] K. FAN, Fixed point and minimax theorems in locally convex topological spaces, Proc. Nat. Acad. Sci. USA, 38 (1952), 121-126. | MR 47317 | Zbl 0047.35103
[18] K. FAN, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537. | MR 735533 | Zbl 0515.47029
[19] G. HADDAD-J. M. LASRY, Periodic solutions of functional differential inclusions and fixed points $\sigma$-selectionable correspondances, J. Math. Anal. Appl., 96 (1983), 295-312. | MR 719317 | Zbl 0539.34031
[20] K. MISCHAIKOW-M. MROZEK-P. ZGLICZYŃSKI (editors), Conley index theory, Banach Center Publ., 47, PWN, Warszawa, 1999. | MR 1675402 | Zbl 0913.00021
[21] M. MROZEK, Periodic and stationary trajectories of flows and ordinary differential equations, Zesz. Nauk. Uniw. Jagiellon. 860, Acta Math., 27 (1988), 29-37. | MR 982424 | Zbl 0684.34046
[22] S. PLASKACZ, On the solution sets of differential inclusions, Boll. Un. Mat. Ital. (7), 6-A (1992), 387-394. | MR 1196133 | Zbl 0774.34012
[23] M. QUINCAMPOIX, Frontières de domaines d'invariance et de viabilité pour les inclusions différentielles avec contraintes, C. R. Acad. Sci., Paris, 311 (1990), 411-416. | MR 1075661 | Zbl 0705.34014
[24] M. QUINCAMPOIX, Differential inclusions and target problems, SIAM J. Control Optimization, 30 (1992), 324-335. | MR 1149071 | Zbl 0862.49006
[25] R. SRZEDNICKI, Periodic and bounded solutions in blocks for time periodic nonautonomous ordinary differential equations, Nonlinear Anal. TMA, 22 (1994), 707-737. | MR 1270166 | Zbl 0801.34041
[26] V. VELIOV, Lipschitz continuity of the value function in optimal control, J. Optimization Theory Appl., 94, 2 (1997), 335-361. | MR 1460669 | Zbl 0901.49022

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali