bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Natale, María F. and Tarzia, Domingo A.:
Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity
Bollettino dell'Unione Matematica Italiana Serie 8 9-B (2006), fasc. n.1, p. 79-99, (English)
pdf (292 Kb), djvu (169 Kb). | MR2204902 | Zbl 1118.80005

Sunto

Si studia un problema di Stefan a una fase per un materiale semi-infinito con un coefficiente di conduttività termica dipendente dalla temperatura e con una condizione di temperatura costante o un flusso di calore del tipo $-q_0/\sqrt{t}$ ($q_0 > 0$) sulla faccia fissa $x=0$ . Si ottengono, in entrambi i casi, condizioni sufficienti per i dati in modo da avere una rappresentazione parametrica della soluzione di tipo similarità per $t\geq t_0>0$ con $t_0$ un tempo positivo arbitrario. Queste soluzioni esplicite sono ottenute attraverso l’unica soluzione di una equazione integrale dove il tempo è un parametro.
Referenze Bibliografiche
[1] V. ALEXIADES - A. D. SOLOMON, Mathematical modeling of melting and freezing processes, Hemisphere - Taylor & Francis, Washington (1983).
[2] I. ATHANASOPOULOS - G. MAKRAKIS - J. F. RODRIGUES (EDS.), Free Boundary Problems: Theory and Applications, CRC Press, Boca Raton (1999). | MR 1702131
[3] J. R. BARBER, An asymptotic solution for short-time transient heat conductionbetween two similar contacting bodies, Int. J. Heat Mass Transfer, 32, No 5 (1989),943-949.
[4] D. A. BARRY - G. C. SANDER, Exact solutions for water infiltration with an arbitrary surface flux or nonlinear solute adsorption, Water Resources Research, 27, No 10 (1991), 2667-2680.
[5] G. BLUMAN - S. KUMEI, On the remarkable nonlinear diffusion equation, J. Math. Phys., 21 (1980), 1019-1023. | fulltext (doi) | MR 574874 | Zbl 0448.35027
[6] A. C. BRIOZZO - M. F. NATALE - D. A. TARZIA, Determination of unknown thermal coefficients for Storm’s-type materials through a phase-change process, Int. J.Non-Linear Mech., 34 (1999), 324-340. | fulltext (doi) | MR 1658930
[7] P. BROADBRIDGE, Non-integrability of non-linear diffusion-convection equationsin two spatial dimensions, J. Phys. A: Math. Gen., 19 (1986), 1245-1257. | MR 844454 | Zbl 0617.35122
[8] P. BROADBRIDGE, Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media, J. Math. Phys., 29 (1988), 622-627. | fulltext (doi) | MR 931465 | Zbl 0651.76041
[9] J. R. CANNON, The one-dimensional heat equation, Addison - Wesley, Menlo Park (1984). | fulltext (doi) | MR 747979 | Zbl 0567.35001
[10] H. S. CARSLAW - J. C. JAEGER, Conduction of heat in solids, Oxford University Press, London (1959). | MR 959730 | Zbl 0972.80500
[11] J. M. CHADAM - H. RASMUSSEN H. (EDS.), Free boundary problems involving solids, Pitman Research Notes in Mathematics Series 281, Longman, Essex (1993). | MR 1216392
[12] M. N. COELHO PINHEIRO, Liquid phase mass transfer coefficients for bubbles growing in a pressure field: a simplified analysis, Int. Comm. Heat Mass Transfer,27, No 1 (2000), 99-108.
[13] J. CRANK, Free and moving boundary problems, Clarendon Press, Oxford (1984). | MR 776227 | Zbl 0547.35001
[14] J. I. DIAZ - M. A. HERRERO - A. LIÑAN - J. L. VAZQUEZ (Eds.), Free boundary problems: theory and applications, Pitman Research Notes in Mathematics Series323, Longman, Essex (1995).
[15] A. FASANO - M. PRIMICERIO (Eds.), Nonlinear diffusion problems, Lecture Notes in Math., N. 1224, Springer Verlag, Berlin (1986). | fulltext (doi) | MR 877985
[16] A. S. FOKAS - Y. C. YORTSOS, On the exactly solvable equation $S_t = [(\beta S + \gamma)^{-2} S_x]_x + \alpha(\beta S + g)^{-2} Sx$ occurring in two-phase flow in porous media, SIAM J. Appl. Math., 42, No 2 (1982), 318-331. | fulltext (doi) | MR 650227
[17] N. KENMOCHI (Ed.), Free Boundary Problems: Theory and Applications, I,II, Gakuto International Series: Mathematical Sciences and Applications, Vol. 13, 14, Gakkotosho, Tokyo (2000). | MR 1793016
[18] J. H. KNIGHT - J. R. PHILIP, Exact solutions in nonlinear diffusion, J. Engrg. Math., 8 (1974), 219-227. | fulltext (doi) | MR 378593 | Zbl 0279.76043
[19] G. LAMÉ - B. P. CLAPEYRON, Memoire sur la solidification par refroidissementd’un globe liquide, Annales Chimie Physique, 47 (1831), 250-256.
[20] V. J. LUNARDINI, Heat transfer with freezing and thawing, Elsevier, Amsterdam (1991)
[21] A. MUNIER - J. R. BURGAN - J. GUTIERREZ - E. FIJALKOW - M. R. FEIX, Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math., 40,No 2 (1981), 191-207. | fulltext (doi) | MR 610415 | Zbl 0468.35051
[22] M. F. NATALE - D. A. TARZIA, Explicit solutions to the two-phase Stefan problemfor Storm-type materials, J. Phys. A: Math. Gen., 33 (2000), 395-404. | fulltext (doi) | MR 1747160 | Zbl 0986.35138
[23] M. F. NATALE - D. A. TARZIA, Explicit solutions to the one-phase Stefan problemwith temperature-dependent thermal conductivity and a convective term, Int. J.Engng. Sci., 41 (2003), 1685-1698. | fulltext (doi) | MR 1985327 | Zbl 1211.35285
[24] R. PHILIP, General method of exact solution of the concentration-dependent diffusion equation, Australian J. Physics, 13 (1960), 1-12. | MR 118858 | Zbl 0135.31802
[25] A. D. POLYANIN - V. V. DIL’MAN, The method of the «carry over» of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Transfer, 33, No 1 (1990), 175-181
[26] C. ROGERS, Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen., 18 (1985), 105-109. | MR 783186
[27] C. ROGERS, On a class of moving boundary problems in non-linear heat condition: Application of a Bäcklund transformation, Int. J. Non-Linear Mech., 21 (1986), 249-256. | fulltext (doi) | MR 893762 | Zbl 0615.35044
[28] C. ROGERS - P. BROADBRIDGE, On a nonlinear moving boundary problem with heterogeneity: application of reciprocal transformation, Journal of Applied Mathematics and Physics (ZAMP), 39 (1988), 122-129. | fulltext (doi) | MR 928584 | Zbl 0661.35087
[29] G. C. SANDER - I. F. CUNNING - W. L. HOGARTH - J. Y. PARLANGE, Exact solution fornonlinear nonhysteretic redistribution in vertical soli of finite depth, Water Resources Research, 27 (1991), 1529-1536.
[30] D. A. TARZIA, An inequality for the coefficient $\sigma$ of the free boundary $s(t) = 2\sigma\sqrt{t}$ of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., 39(1981), 491-497. | fulltext (doi) | MR 644103
[31] D. A. TARZIA, A bibliography on moving - free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A #2 (2000) (with 5869 titles on the subject, 300 pages). See www.austral.edu.ar/MAT-SerieA/2(2000)/ | MR 1802028
[32] P. TRITSCHER - P. BROADBRIDGE, A similarity solution of a multiphase Stefan problem incorporating general non-linear heat conduction, Int. J. Heat Mass Transfer, 37, No 14 (1994), 2113-2121. | Zbl 0926.76119

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali