Delitala, Marcello:
On the Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach
Bollettino dell'Unione Matematica Italiana Serie 9 1 (2008), fasc. n.3, p. 603-618, (English)
pdf (490 Kb), djvu (159 Kb). | MR 2455334 | Zbl 1188.92002
Sunto
This paper deals with the mathematical modelling, based on the kinetic theory of active particles, of a complex biological living system constituted by different populations of cells. The modelling refers to the competition between immune and tumor cells. Moreover, a qualitative and quantitative analysis is developed, to show how the models can describe several interesting phenomena related to biological applications. A final section highlights further research perspectives related to the modelling of genetic mutations.
Referenze Bibliografiche
[1]
N. BELLOMO,
Modelling complex living systems. A kinetic theory and stocastic game approach,
Birkhauser, Boston, (
2008). |
MR 2359781 |
Zbl 1140.91007[2]
N. BELLOMO -
N. K. LI -
P. K. MAINI,
On the foundation of cancer modeling - selected topics, speculations, and perspectives,
Math. Mod. Meth. Appl. Sci.,
18 (
2008), 593-646. |
fulltext (doi) |
MR 2402885 |
Zbl 1151.92014[3]
A. BELLOUQUID -
M. DELITALA,
Kinetic (cellular) models of cell progression and competition with the immune system,
Z. angew. Math. Phys.,
55 (
2004), 95-317. |
fulltext (doi) |
MR 2047290 |
Zbl 1047.92022[4]
A. BELLOUQUID -
M. DELITALA,
Modelling complex biological systems - A kinetic theory approach,
Birkhäuser, Boston, (
2006). |
MR 2248839 |
Zbl 1178.92002[5]
E. DE ANGELIS -
P.E. JABIN,
Qualitative Analysis of a mean field model of tumor-immune system competition,
Math. Mod. Meth. Appl. Sci.,
13 (
2003), 187-206. |
fulltext (doi) |
MR 1961000 |
Zbl 1043.92012[6] M. DELITALA - G. FORNI, From the mathematical kinetic theory of active particles to modelling genetic mutations and immune competition, Internal Report, Dept. Mathematics, Politecnico, Torino (2008).
[7]
L. DERBEL,
Analysis of a new model for tumor-immune system competition including long time scale effects,
Math. Mod. Meth. Appl. Sci.,
14 (
2004), 1657-1681. |
fulltext (doi) |
MR 2103095 |
Zbl 1057.92036[8]
A. D'ONOFRIO,
Tumor-immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy,
Math. Mod. Meth. Appl. Sci.,
16 (
2006), 1375-1401. |
fulltext (doi) |
MR 2251457 |
Zbl 1094.92040[11] D. HANAHAN - R. A. WEINBERG, The Hallmarks of cancer, Cell, 100, 57-70, (2000).
[12] H. L. HARTWELL - J. J. HOPFIELD - S. LEIBNER - A. W. MURRAY, From molecular to modular cell biology, Nature, 402 (1999), c47-c52.
[13]
M. KOLEV -
E. KOZLOWSKA -
M. LACHOWICZ,
Mathematical model of tumor invasion along linear or tubular structures,
Math. Comp. Mod.,
41 (
2005), 1083-1096. |
fulltext (doi) |
MR 2148091 |
Zbl 1085.92019[14] L. M. F. MERLO - J. W. PEPPER - B. J. REID - C. C. MALEY, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.