bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Habermann, Jens:
Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
Bollettino dell'Unione Matematica Italiana Serie 9 3 (2010), fasc. n.3, p. 521-541, (English)
pdf (408 Kb), djvu (185 Kb). | MR 2742780 | Zbl 1217.49029

Sunto

For $\Omega \subset \mathbf{R}^{n}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_{loc}^{m,p(\cdot)}(\Omega,\mathbf{R}^{N})$ of a uniformly convex integral functional of the type $$\mathcal{F} \left[ u,\Omega \right] := \int_{\Omega} f(x,D^{m}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^{k}u \in C_{loc}^{0,\beta}(\Omega) \,\, \text{for} \,\, k \in \{0,\cdots,m-1\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup_{\rho\downarrow 0} \omega(\rho) \log \bigg( \frac{1}{\rho} \bigg) = 0.$$
Referenze Bibliografiche
[1] E. ACERBI - G. MINGIONE, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 2 (2001), 121-140. | fulltext (doi) | MR 1814973 | Zbl 0984.49020
[2] E. ACERBI - G. MINGIONE, Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Sc. Norm. Pisa Cl. Sci. (4), 30 (2001), 311-339. | fulltext EuDML | MR 1895714 | Zbl 1027.49031
[3] E. ACERBI - G. MINGIONE, Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213-259. | fulltext (doi) | MR 1930392 | Zbl 1038.76058
[4] E. ACERBI - G. MINGIONE, Gradient estimates for the $p(x)$-laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. | fulltext (doi) | MR 2155087 | Zbl 1093.76003
[5] S. CAMPANATO, Hölder continuity of the Solutions of Some Non-linear Elliptic Systems, Adv. Math., 48 (1983), 16-43. | fulltext (doi) | MR 697613
[6] Y. CHEN - S. LEVINE - R. RAO, Functionals with $p(x)$-growth in image processing, SIAM J. Appl. Math., 66, no. 4 (2006), 1383-1406. | fulltext (doi) | MR 2246061 | Zbl 1102.49010
[7] A. COSCIA - G. MINGIONE, Hölder continuity of the gradient of $p(x)$ harmonic mappings, C. R. Acad. Sci. Paris, 328 (1) (1999), 363-368. | fulltext (doi) | MR 1675954 | Zbl 0920.49020
[8] G. CUPINI - N. FUSCO - R. PETTI, Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | fulltext (doi) | MR 1703712 | Zbl 0949.49022
[9] L. DIENING, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, Math. Nachr., 268 (2004), 31-43. | fulltext (doi) | MR 2054530 | Zbl 1065.46024
[10] F. DUZAAR - A. GASTEL - J. GROTOWSKI, Optimal partial regularity for nonlinear elliptic systems of higher order, J. Math. Sci. Univ. Tokyo, 8 (2001), 463-499. | MR 1855456 | Zbl 0995.35017
[11] D. EDMUNDS - J. RÁKOSNÍK, Sobolev embeddings with variable exponent, Stud. Math., 143, No. 3 (2000), 267-293. | fulltext EuDML | fulltext (doi) | MR 1815935 | Zbl 0974.46040
[12] D. EDMUNDS - J. RÁKOSNÍK, Sobolev embeddings with variable exponent II, Math. Nachr., 246-27 (2002), 53-67. | fulltext (doi) | MR 1944549
[13] M. ELEUTERI, Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 8, 7-B (2004), 129-157. | fulltext bdim | fulltext EuDML | MR 2044264 | Zbl 1178.49045
[14] M. ELEUTERI - J. HABERMANN, Regularity results for a class of obstacle problems under non standard growth conditions, J. Math. Anal. Appl., 344 (2), (2008), 1120-1142. | fulltext (doi) | MR 2426338 | Zbl 1147.49028
[15] L. ESPOSITO - F. LEONETTI - G. MINGIONE, Sharp regularity for functionals with $(p,q)$ growth, J. Differential Equations 204, no. 1 (2004), 5-55. | fulltext (doi) | MR 2076158 | Zbl 1072.49024
[16] X. FAN - D. ZHAO, A class of DeGiorgi type and Hölder continuity, Nonlin. Anal., 36 (A) (1999), 295-318. | fulltext (doi) | MR 1688232
[17] E. GIUSTI, Direct methods in the calculus of variations, Singapore: World Scientific, vii (2003). | fulltext (doi) | MR 1962933 | Zbl 1028.49001
[18] J. HABERMANN, Partial regularity for minima of higher order functionals with $p(x)$ growth, Manuscripta Math., 126 (1) (2007), 1-40. | fulltext (doi) | MR 2395246 | Zbl 1142.49017
[19] J. HABERMANN, Calderón-Zygmund estimates for higher order systems with $p(x)$ growth, Math. Z., 258 (2) (2008), 427-462. | fulltext (doi) | MR 2357646 | Zbl 1147.42004
[20] O. KOVAÂČIK - Ž. J. RÁKOSNÍK, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41, no. 116 (1991). | fulltext EuDML
[21] P. MARCELLINI, Regularity and existence of solutions of elliptic equations with $p - q$-growth conditions, J. Differ. Equations, 90 (1991), 1-30. | fulltext (doi) | MR 1094446 | Zbl 0724.35043
[22] J. MUSIELAK, Orlicz spaces and modular spaces, Springer, Berlin, 1983. | fulltext (doi) | MR 724434 | Zbl 0557.46020
[23] K. R. RAJAGOPAL - M. RŮŽIČKA, Mathematical modelling of electro-rheological fluids, Cont. Mech. Therm., 13 (2001), 59-78.
[24] V. V. ZHIKOV, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. | MR 1486765 | Zbl 0917.49006

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali