The Immersed Boundary Method (IBM) has been introduced by Peskin in the 70's in order to model and approximate fluid-structure interaction problems related to the blood flow in the heart. The original scheme makes use of finite differences for the discretization of the Navier-Stokes equations. Recently, a finite element formulation has been introduced which has the advantage of handling the presence of the solid (modeled via a Dirac delta function) in a more natural way. In this paper we review the finite element formulation of the IBM focusing, in particular, on the choice of the finite element spaces in order to guarantee a suitable mass conservation. Moreover, we present some links with the fictitious domain method.
Referenze Bibliografiche
[1]
S. BADIA -
F. NOBILE -
C. VERGARA,
Fluid-structure partitioned procedures based on Robin transmission conditions,
J. Comput. Phys.,
227 (14) (
2008), 7027-7051. |
fulltext (doi) |
MR 2435441 |
Zbl 1140.74010[2]
S. BADIA -
A. QUAINI -
A. QUARTERONI,
Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect,
Comput. Methods Appl. Mech. Engrg.,
197 (49-50) (
2008), 4216-4232. |
fulltext (doi) |
MR 2463662 |
Zbl 1194.74058[3]
S. BADIA -
A. QUAINI -
A. QUARTERONI,
Splitting methods based on algebraic factorization for fluid-structure interaction,
SIAM J. Sci. Comput.,
30 (4) (
2008), 1778-1805. |
fulltext (doi) |
MR 2407141 |
Zbl 1368.74021[5]
D. BOFFI,
Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations,
Math. Models Methods Appl. Sci.,
4 (2) (
1994), 223-235. |
fulltext (doi) |
MR 1269482 |
Zbl 0804.76051[7]
D. BOFFI -
N. CAVALLINI -
F. GARDINI -
L. GASTALDI,
Local mass conservation of Stokes finite elements, To appear in
J. Sci. Comput. (
2011). |
fulltext (doi) |
MR 2948699 |
Zbl 1264.74259[8]
D. BOFFI -
N. CAVALLINI -
L. GASTALDI,
Finite element approach to immersed boundary method with different fluid and solid densities, To appear in
Math. Models Methods Appl. Sci. (
2011). |
fulltext (doi) |
MR 2864640 |
Zbl 1242.76190[9] D. BOFFI - N. CAVALLINI - L. GASTALDI - L. T. ZIKATANOV, In preparation.
[10] D. BOFFI - L. GASTALDI, In preparation.
[11]
D. BOFFI -
L. GASTALDI,
A finite element approach for the immersed boundary method,
Comput. & Structures,
81 (8-11) (
2003), 491-501. In honor of Klaus-Jürgen Bathe. |
fulltext (doi) |
MR 2001876[12]
D. BOFFI -
L. GASTALDI -
L. HELTAI,
Numerical stability of the finite element immersed boundary method,
Math. Models Methods Appl. Sci.,
17 (10) (
2007), 1479-1505. |
fulltext (doi) |
MR 2359913 |
Zbl 1186.76661[13]
D. BOFFI -
L. GASTALDI -
L. HELTAI,
On the CFL condition for the finite element immersed boundary method,
Comput. 85 (11-14) (
2007), 775-783. |
fulltext (doi) |
MR 2308727[14]
D. BOFFI -
L. GASTALDI -
L. HELTAI -
CHARLES S. PESKIN,
On the hyper-elastic formulation of the immersed boundary method,
Comput. Methods Appl. Mech. Engrg.,
197 (25-28) (
2008), 2210-2231. |
fulltext (doi) |
MR 2412821 |
Zbl 1158.74523[15]
A. BRANDT -
E. O. LIVNE,
Multigrid techniques: 1984 guide with applications to fluid dynamics, volume
67 of
Classics in applied mathematics,
SIAM, Philadelphia,
2011. |
fulltext (doi) |
MR 3396211 |
Zbl 1227.65121[16]
F. BREZZI -
M. FORTIN,
Mixed and hybrid finite element methods, volume
15 of
Springer Series in Computational Mathematics,
Springer-Verlag, New York,
1991. |
fulltext (doi) |
MR 1115205 |
Zbl 0788.73002[17]
P. CAUSIN -
J. F. GERBEAU -
F. NOBILE,
Added-mass effect in the design of partitioned algorithms for fluid-structure problems,
Comput. Methods Appl. Mech. Engrg.,
194, (42-44) (
2005), 4506-4527. |
fulltext (doi) |
MR 2157973 |
Zbl 1101.74027[19]
S. DEPARIS -
M. A. FERNÁNDEZ -
L. FORMAGGIA,
Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions,
M2AN Math. Model. Numer. Anal.,
37 (4) (
2003), 601-616. |
fulltext EuDML |
fulltext (doi) |
MR 2018432 |
Zbl 1118.74315[20]
L. FORMAGGIA -
A. QUARTERONI -
A. VENEZIANI, editors,
Cardiovascular mathematics, volume
1, of
MS&A. Modeling, Simulation and Applications,
Springer-Verlag Italia, Milan,
2009. Modeling and simulation of the circulatory system. |
fulltext (doi) |
MR 2488002 |
Zbl 1300.92005[21]
V. GIRAULT -
R. GLOWINSKI -
T. W. PAN,
A fictitious-domain method with distributed multiplier for the Stokes problem, In
Applied nonlinear analysis, pages 159-174.
Kluwer/Plenum, New York,
1999. |
MR 1727447 |
Zbl 0954.35127[22]
R. GLOWINSKI -
T.-W. PAN -
J. PÉRIAUX,
A fictitious domain method for Dirichlet problem and applications,
Comput. Methods Appl. Mech. Engrg.,
111 (3-4) (
1994), 283-303. |
fulltext (doi) |
MR 1259864[23]
R. GLOWINSKI -
T. W. PAN -
J. PÉRIAUX,
Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies,
Comput. Methods Appl. Mech. Engrg.,
151 (1-2) (
1998), 181-194. Symposium on Advances in Computational Mechanics, Vol. 3 (Austin, TX, 1997). |
fulltext (doi) |
MR 1625430 |
Zbl 0916.76052[24]
R. GLOWINSKI -
J. PÉRIAUX -
T.-W. PAN,
Fictitious domain method for the Dirichlet problem and its generalization to some flow problems, In
Finite elements in fluids, Part I, II (Barcelona, 1993), pages 347-368,
Centro Internac. Métodos Numér. Ing., (Barcelona,
1993). |
MR 1292053 |
Zbl 0876.76060[25]
P. M. GRESHO -
R. L. LEE -
S. T. CHAN -
J. M. LEONE,
A new finite element for Boussinesq fluids. In
Pro. Third Int. Conf. on Finite Elements in Flow Problems, pages 204-215.
Wiley, New York,
1980. |
Zbl 0447.76026[26] D. F. GRIFFITHS, The effect of pressure approximation on finite element calculations of compressible flows. In Numerical Methods for Fluid Dynamics, pages 359-374. Academic Press, Morton, K. W. and Baines, M. J. edition, 1982.
[27]
G. GUIDOBONI -
R. GLOWINSKI -
N. CAVALLINI -
S. CANIC,
Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow,
J. Comput. Phys.,
228 (18) (
2009), 6916-6937. |
fulltext (doi) |
MR 2567876 |
Zbl 1261.76056[28] L. HELTAI, On the Stability of the Finite Element Immersed Boundary Method, Comput. & Structures, 86 (7-8) (2008), 598-617.
[29]
P. LE TALLEC -
J. MOURO,
Fluid structure interaction with large structural displacements,
Comput. Methods Appl. Mech. Engrg.,
190 (24-25) (
2001), 3039-3067. |
Zbl 1001.74040[30]
H. G. MATTHIES -
R. NIEKAMP -
J. STEINDORF,
Algorithms for strong coupling procedures,
Comput. Methods Appl. Mech. Engrg.,
195, (17-18) (
2006), 2028-2049. |
fulltext (doi) |
MR 2202913 |
Zbl 1142.74050[31] H. G. MATTHIES - J. STEINDORF, Partitioned strong coupling algorithms for fluidstructure interaction, Comput. Struct., 81 (2003), 1277-1286.
[32] HENRI
J.-P. MORAND -
ROGER OHAYON,
Interactions fluides-structures, volume
23 of
Recherches en Mathématiques Appliquées [Research in Applied Mathematics],
Masson, Paris,
1992. |
MR 1180076 |
Zbl 0754.73071[35]
C. S. PESKIN -
D. M. MCQUEEN,
A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid,
J. Comput. Phys.,
81 (2) (
1989), 372-405. |
fulltext (doi) |
MR 994353 |
Zbl 0668.76159[36]
R. PIERRE,
Local mass conservation and $C^0$-discretizations of the Stokes problem,
Houston J. Math.,
20 (1) (
1994), 115-127. |
MR 1272565 |
Zbl 0803.65105[37]
J. QIN -
S. ZHANG,
Stability of the finite elements $9=(4c + 1)$ and $9=5c$ for stationary Stokes equations,
Comput. 84 (1-2) (
2005), 70-77. |
fulltext (doi) |
MR 2199741[38]
L. R. SCOTT -
M. VOGELIUS,
Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials,
RAIRO Modél. Math. Anal. Numér.,
19 (1) (
1985), 111-143. |
fulltext EuDML |
fulltext (doi) |
MR 813691 |
Zbl 0608.65013[39]
C. TAYLOR -
P. HOOD,
A numerical solution of the Navier-Stokes equations using the finite element technique,
Internat. J. Comput. 1 (1) (
1973), 73-100. |
fulltext (doi) |
MR 339677 |
Zbl 0328.76020[40]
R. W. THATCHER,
Locally mass-conserving Taylor-Hood elements for two- and three-dimensional flow,
Internat. J. Numer. Methods Fluids,
11 (3) (
1990), 341-353. |
fulltext (doi) |
MR 1065219 |
Zbl 0709.76083[41]
D. M. TIDD -
R. W. THATCHER -
A. KAYE,
The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension,
Internat. J. Numer. Methods Fluids,
8 (9) (
1988), 1011-1027. |
fulltext (doi) |
MR 961777