bdim: Biblioteca Digitale Italiana di Matematica

Un progetto SIMAI e UMI

Referenza completa

Fraia, Martina and Tosin, Andrea:
The Boltzmann legacy revisited:kinetic models of social interactions
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana Serie 1 5 (2020), fasc. n.2, p. 93-109, (English)
pdf, djvu.

Sunto

L'applicazione dei metodi classici della meccanica statistica, sviluppati originariamente da Ludwig Boltzmann per la gasdinamica, alla descrizione di fenomeni sociali è una storia di successo che in questo articolo cerchiamo di tratteggiare. Da un lato essa costituisce attualmente una fiorente linea di ricerca, che sta sempre più permeando contesti diversi tra loro quali l'econofisica, la sociofisica, la biomatematica, l'ingegneria dei trasporti per non citare che alcuni esempi. Dall'altro è anche una sfida matematica affascinante, perché richiede l'interazione di svariate competenze complementari: la modellistica, l'analisi dei modelli, la numerica. In questo articolo cerchiamo di dare un assaggio di tutto ciò usando come esempio motivante la formazione delle opinioni.
Referenze Bibliografiche
[1] G. ALBI, M. HERTY, and L. PARESCHI. Kinetic description of optimal control problems and application to opinion consensus. Commun. Math. Sci., 13(6):1407-1429, 2015. | fulltext (doi) | MR 3351435 | Zbl 1325.49001
[2] G. ALBI, L. PARESCHI, and M. ZANELLA. Boltzmann-type control of opinion consensus through leaders. Phil. Trans. R. Soc. A, 372(2028):20140138/1-18, 2014. | fulltext (doi) | MR 3268062 | Zbl 1353.91038
[3] E. BEN-NAIM. Opinion dynamics: rise and fall of political parties. Europhys. Lett., 69(5):671-677, 2005.
[4] M. L. BERTOTTI and M. DELITALA. On a discrete generalized kinetic approach for modelling persuader's influencein opinion formation processes. Math. Comput. Modelling, 48(7-8):1107-1121, 2008. | fulltext (doi) | MR 2458222 | Zbl 1187.91160
[5] A. V. BOBYLEV, M. BISI, M. GROPPI, G. SPIGA, and I. F. POTAPENKO. A general consistent BGK model for gas mixtures. Kinet. Relat. Models, 11(6):1377-1393, 2018. | fulltext (doi) | MR 3815148 | Zbl 1405.76042
[6] A. V. BOBYLEV and K. NANBU. Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E, 61(4):4576-4586, 2000.
[7] L. BOUDIN and F. SALVARANI. Modelling opinion formation by means of kinetic equations. In G. NALDI, L. PARESCHI, and G. TOSCANI, editors, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pages 245-270. Birkhäuser, Boston, 2010. | fulltext (doi) | MR 2744702 | Zbl 1211.91212
[8] G. E. P. BOX. Science and statistics. J. Amer. Statist. Assoc., 71(356):791-799, 1976. | MR 431440 | Zbl 0335.62002
[9] G. E. P. BOX. Robustness in the strategy of scientific model building. In Robustness in Statistics, pages 201-236. Academic Press, 1979.
[10] A. BRESSAN. Notes on the Boltzmann equation. Lecture notes for a summer course given at SISSA, Trieste (Italy), 2005.
[11] C. CERCIGNANI. Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford University Press, 2000. | MR 1700775
[12] S. CORDIER, L. PARESCHI, and C. PIATECKI. Mesoscopic modelling of financial markets. J. Stat. Phys., 134(1):161-184, 2009. | fulltext (doi) | MR 2489498 | Zbl 1168.82019
[13] S. CORDIER, L. PARESCHI, and G. TOSCANI. On a kinetic model for a simple market economy. J. Stat. Phys., 120(1):253-277, 2005. | fulltext (doi) | MR 2165531 | Zbl 1133.91474
[14] B. DÜRING, P. MARKOWICH, J.-F. PIETSCHMANN, and M.-T. WOLFRAM. Boltzmann and Fokker Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. A, 465(2112):3687-3708, 2009. | fulltext (doi) | MR 2552289 | Zbl 1195.91127
[15] B. DÜRING, L. PARESCHI, and G. TOSCANI. Kinetic models for optimal control of wealth inequalities. Eur. Phys. J. B, 91:265/1-12, 2018. | fulltext (doi) | MR 3868236
[16] E. ISING. Beitrag zur Theorie des Ferromagnetismus. Z. Physik, 31:253-258, 1925. | Zbl 1439.82056
[17] R. D. JAMES, A. NOTA, and J. J. L. VELÁZQUEZ. Long-time asymptotics for homoenergetic solutions of the Boltzmann equation: collision-dominated case. J. Nonlin. Sci., 29(5):1943-1973, 2019. | fulltext (doi) | MR 4007625 | Zbl 1453.35133
[18] M. A. NOWAK and C. R. M. BANGHAM. Population dynamics of immune responses to persistent viruses. Science, 272(5258):74-79, 1996.
[19] R. OCHROMBEL. Simulation of Sznajd sociophysics model with convincing single opinions. Internat. J. Modern Phys. C, 12(7):1091, 2001.
[20] L. PARESCHI. Hybrid multiscale methods for hyperbolic and kinetic problems. ESAIM: Proc., 15:87-120, 2005. | MR 2441323 | Zbl 1087.65088
[21] L. PARESCHI and G. RUSSO. An introduction to Monte Carlo method for the Boltzmann equation. ESAIM: Proc., 10:35-75, 2001. | fulltext (doi) | MR 1865188 | Zbl 0982.65145
[22] L. PARESCHI and G. TOSCANI. Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods. Oxford University Press, 2013. | Zbl 1330.93004
[23] M. PÉREZ-LLANOS, J. P. PINASCO, N. SAINTIER, and A. SILVA. Opinion formation models with heterogeneous persuasion and zealotry. SIAM J. Math. Anal., 50(5):4812-4837, 2018. | fulltext (doi) | MR 3852713 | Zbl 1416.91323
[24] I. PRIGOGINE. A Boltzmann-like approach to the statistical theory of traffic flow. In R. Herman, editor, Theory of traffic flow, pages 158-164, Amsterdam, 1961. Elsevier. | MR 134344
[25] I. PRIGOGINE and F. C. ANDREWS. A Boltzmann-like approach for traffic flow. Operations Res., 8(6):789-797, 1960. | fulltext (doi) | MR 129011 | Zbl 0249.90026
[26] I. PRIGOGINE and R. HERMAN. Kinetic theory of vehicular traffic. American Elsevier Publishing Co., New York, 1971. | Zbl 0226.90011
[27] M. PULVIRENTI and S. SIMONELLA. The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Invent. Math., 207(3):1135-1237, 2017. | fulltext (doi) | MR 3608289 | Zbl 1372.35211
[28] F. SLANINA. Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E, 69(4):046102/1-7, 2004.
[29] F. SLANINA and H. LAVIČKA. Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35:279-288, 2003.
[30] K. SZNAJD-WERON and J. SZNAJD. Opinion evolution in closed community. Internat. J. Modern Phys. C, 11(6):1157-1165, 2000.
[31] G. TOSCANI. Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481-496, 2006. | MR 2247927 | Zbl 1195.91128
[32] G. TOSCANI. Sulle code di potenza di Pareto. Mat. Cult. Soc. Riv. Unione Mat. Ital. (I), 1(1):21-30, 2016. | fulltext bdim | fulltext EuDML | MR 3559736 | Zbl 1418.91405
[33] G. TOSCANI, A. TOSIN, and M. ZANELLA. Multiple-interaction kinetic modeling of a virtual-item gambling economy. Phys. Rev. E, 100(1):012308/1-16, 2019.
[34] G. TOSCANI, A. TOSIN, and M. ZANELLA. Kinetic modelling of multiple interactions in socio-economic systems. Netw. Heterog. Media, 15(3) 2020. To appear (preprint doi:10.13140/RG.2.2.25753.77929). | fulltext (doi) | MR 4160179 | Zbl 1451.35103
[35] A. TOSIN and M. ZANELLA. Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles. Multiscale Model. Simul., 17(2):716-749, 2019. | fulltext (doi) | MR 3948232 | Zbl 1428.35268
[36] A. TOSIN and M. ZANELLA. Uncertainty damping in kinetic traffic models by driver-assist controls. Math. Control Relat. Fields, 2020. To appear (preprint doi:10.13140/ RG.2.2.35871.41124). | fulltext (doi) | MR 4288153 | Zbl 1473.35392
[37] C. VILLANI. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal., 143(3):273-307, 1998. | fulltext (doi) | MR 1650006 | Zbl 0912.45011
[38] C. VILLANI. A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Dynamics, volume I, chapter 2, pages 71-305. Elsevier, 2002. | fulltext (doi) | MR 1942465 | Zbl 1170.82369

La collezione può essere raggiunta anche a partire da EuDML, la biblioteca digitale matematica europea, e da mini-DML, il progetto mini-DML sviluppato e mantenuto dalla cellula Math-Doc di Grenoble.

Per suggerimenti o per segnalare eventuali errori, scrivete a

logo MBACCon il contributo del Ministero per i Beni e le Attività Culturali